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Abstract

High-quality production plans are essential for any manufacturing company. To construct

accurate production plans, reliable and accurate planning data is necessary. Production

Planning and Control (PPC) consists of three levels: strategic, tactical, and operational.

An important type of planning data for tactical planning is called master data. Tradi-

tionally, master data are set as static values that are rarely updated. Industry 4.0 has

enabled the collection of data from a variety of sources related to production, including

production feedback data that provide information about the situation on the shop floor.

This also introduces opportunities for the application of this type of data in PPC. This

principle of making PPC more data-driven is called smart PPC.

The primary objective of this study is to examine how production feedback data can

be applied in production planning in order to increase planning quality. The research

strategy employed in this study is based on design science and abductive reasoning. These

approaches are based on a real-life observation, or a field problem, and aim to develop

solution designs that introduce new or add to existing theories. The field problem in this

thesis was that the case company captured production feedback data but did not know

how to utilize it.

The study used three research methods to address the primary objective and field problem:

literature study, concept development, and case study of the Norwegian manufacturing

company Brynild.

The literature study is used to define the relevant theoretical aspects and create a theor-

etical base for the development of the concept. The theoretical findings can be divided

into three main parts: PPC, Industry 4.0, and smart PPC. It showed that there was a

research gap in the field of applying production feedback data in PPC beyond the strictly

theoretical. In addition, it showed that there are often discrepancies between master data

and the current conditions on the shop floor. Planning quality is highly reliant on accur-

ate and reliable planning data, thus inaccurate master data negatively affects planning

quality. To improve planning quality, there is potential in applying production feedback

data to set accurate master data values and thus improve this representation.

The concept developed in the study describes how production feedback data can be linked

to specific master data used for tactical planning. The concept also proposes that some

master data values should be set dynamically based on information from production feed-

back data. In addition, the concept illustrates further how production feedback data can

be applied in tactical planning. To support the concept, a step-by-step method is presented

for how companies can implement the concept in their operations. This method consists

of four steps: mapping, analysis, design, and implementation.

The method was then used in the case study to illustrate the concept through a practical

example. The case study showed that Brynild only collected production feedback data

from one of the production steps, which implied that quantitative analysis of the data

was not feasible. The application of the concept in Brynild was therefore carried out
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qualitatively. This meant that the case study included a review of the method with advice

on how Brynild themselves can prepare to introduce the concept instead of contributing

empirical results that confirmed or contradicted the purpose of the concept. Through the

case study, it emerged that the implementation step should have included a risk analysis

and that the implementation plan should have specified an incubation period where data

is collected.

This study provides three primary contributions to theory: 1) an overview of links between

production feedback data and master data for tactical planning; 2) a concept for applying

production feedback data in tactical planning; and 3) a method for applying production

feedback data in tactical planning. It also contributes to practice by providing practical

recommendations and guidance for implementing a specific smart PPC solution in com-

panies.
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Sammendrag

Produksjonsplaner av høy kvalitet er viktig for envher produksjonsbedrift. For å kon-

struere nøyaktige produksjonsplaner er det nødvendig å ha p̊alitelige og nøyaktige plan-

leggingsdata. Produksjonsplanlegging og kontroll (PPC) best̊ar av tre niv̊aer, strategisk,

taktisk, og operasjonelt. En viktig type planleggingsdata for taktisk planlegging er kalt

masterdata. Tradisjonelt sett er masterdata statiske verdier som oppdateres sjeldent. In-

dustri 4.0 har muliggjort innhenting av data fra en rekke forskjellige kilder relatert til

produksjon, inkludert data fra produksjonssystemer som gir informasjon om situasjonen

p̊a produksjonsgulvet. I tillegg introdusererer dette muligheter for applisering av denne

typen data i PPC. Dette prinsppet om å gjøre PPC mer datadrevet er kalt smart PPC.

Hovedm̊alet med denne studien er å undersøke hvordan tilbakemeldingsdata fra produk-

sjon kan appliseres i taktisk produksjonsplanlegging for å forbedre planleggingskvalitet.

Forskningsstrategien som brukes i denne studien er basert p̊a designvitenskap og abdukt-

ivt resonnement. Fundamentet til disse er en observasjon i virkeligheten, et feltprob-

lem, og de har som form̊al å utvikle et løsningsdesign for å introdusere nye, eller tilføye

til eksisterende teorier. Feltproblemet i denne oppgaven var at casebedriften innhentet

tilbakemeldingsdata fra produksjon, men de visste ikke hvordan de skulle utnytte dem.

Studien benyttet seg av tre forskningsmetoder for å addressere hodvedm̊alet og feltprob-

lemet: literaturstudie, konseuptvikling og case-studie av den norske produksjonsbedriften

Brynild AS.

Literatustudien brukes til å definere de relevante teoretiske aspektene og skape en teoretisk

base for utviklingen av konseptet. De teoretiske funnene kan deles inn i tre hoveddeler:

PPC, industri 4.0 og smart PPC. Den viste at det var et behov for forskning p̊a feltet

for applisering av tilbakemeldingsdata fra produksjon i PPC, utover det rent teoretiske. I

tillegg viste den at masterdata ofte ikke samsvarer med situasjonen i virkeligheten. Siden

planleggingskvalitet er sterkt avhengig av nøyaktige planleggingsdata, s̊a vil unøyaktige

masterdata negativt p̊avirke planleggingskvaliteten. For å forbedre planleggingskvaliteten

er det et potensiale ved å applisere tilbakemeldingsdata fra produksjon for å sette nøyaktige

masterdata verdier, og dermed forbedre denne representasjonen.

Konseptet som ble utviklet i studien beskriver hvordan tilbakemeldingsdata fra produks-

jon kan linkes til spesifikke masterdata brukt for taktisk planlegging. Konseptet foresl̊ar

ogs̊a at noen masterdata verdier bør kunne settes dynamisk basert p̊a informasjon fra

tilbakemeldingsdataen fra produksjon. I tillegg s̊a illustrerer konseptet videre hvordan

tilbakemeldingsdata kan appliseres i taktisk planlegging. Til slutt presenteres en trin-

nvis metode for hvordan bedrifter kan implementere konseptet i sine operasjoner. Denne

metoden best̊ar av de fire trinnene kartlegging, analyse, design, og implementering.

Metoden ble s̊a benyttet i case-studien for å illustrere konseptet i gjennom et praktisk

eksempel. Case-studien viste at Brynild kun innhentet tilbakemeldingsdata fra produksjon

fra ett av produksjonsstegene, noe som medførte at kvantitativ analyse av dataen ikke

var mulig å gjennomføre. Appliseringen av konseptet i Brynild ble dermed gjennomført
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kvalitativt. Dette medførte at case-studien inkluderte en gjennomgang av metoden med

r̊ad for hvordan Brynild kan tilrette seg for å introdusere konseptet, i stedet for at det bidro

med empiriske resultater som bekreftet eller motsa formålet med konseptet. Gjennom

arbeidet med case-studien kom det fram at implementeringstrinnet burde inkludert en

risikoanalyse og at implementeringsplanen burde spesifisert en inkubasjonsperiode hvor

data blir samlet.

Denne studien gir tre primære bidrag til teorien: 1) en oversikt over linker mellom

tilbakemeldingsdata fra produksjon og masterdata for taktisk planlegging, 2) et konsept

for applikasjon av tilbakemeldingsdata for produksjon i taktisk planlegging, og 3) en met-

ode for applikasjon av konseptet i bedrifter. Studien bidrar ogs̊a til praksis gjennom å

tilby praktisk anbefaling og veiledning for hvordan en spesifikk smart PPC løsning kan

implementeres i bedrifter.
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1 Introduction

1.1 Background

Today’s manufacturing markets are categorized by uncertain business environments and

customer requirements. Effectively adapting to such changes is a key success factor for any

manufacturing company (Jacobs et al. 2011). Hence, there is an urgent need for responsive

PPC with the ability to address these uncertainties (Saad et al. 2021). PPC is the group

of systems, procedures, and decisions that combine the different aspects of supply and

demand together, and it includes the decisions on when and what to produce, buy, and

sell, and in which quantities (Bonney 2000; Slack et al. 2013). PPC consists of large

and complex processes and is traditionally based on hierarchical approaches described

in three levels of detail, operational (short-term), tactical (medium-term), and strategic

(long-term) (Arica and Powell 2014; Vollmann et al. 2005).

Production planning can be described as a process of transforming a set of input paramet-

ers, which is based on planning data, into a desired set of outputs (Bonney 2000). These

input parameters represent the logical foundation of production planning, and thus, the

success of PPC and the quality of the production plans depend on having reliable and ac-

curate planning data and parameters (Hees and Reinhart 2015; Van Nieuwenhuyse et al.

2011). For tactical planning, the input parameters typically consist of static master data

often set in the Enterprise Resource Planning (ERP) system of the company and dynamic

data, such as customer orders (Vollmann et al. 2005).

Through the introduction of Industry 4.0, a term coined for the recent advances in digital

technologies in industrial production (OECD 2017), global production is currently under-

going a significant transformation through digitization (Saad et al. 2021). This emerging

digitization has facilitated large-scale data collection from a vast range of sources and

provided newfound opportunities for applying this data in production. This application of

data has introduced opportunities for more data-driven PPC, named smart PPC (Oluy-

isola 2021). Smart PPC not only provides support for human decision-making but also

aims to automate PPC tasks to facilitate a more integrated, dynamic, and real-time PPC

(Rahmani, Romsdal, Sgarbossa et al. 2022).

One specific source of data that has seen an emergence is the shop floor and its production

processes (Schäfers et al. 2019). The data is captured from sensory systems on the pro-

duction machines and can for example provide information about the status of production

jobs, the utilization of resources, set-up times, and waste (Schuh, Thomas et al. 2014).

This type of data is referred to as production feedback data.

A problem with traditional production planning is deviations between the planned situ-

ations and the real-life situations on the shop floor (Kurbel 2016). By analyzing production

feedback data, up-to-date information on the current situation on the shop floor can be

obtained and used to formalize production plans in order to minimize these deviations.

The purpose of this thesis is to investigate the application of production feedback data in

tactical production planning and its potential to improve planning quality.
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1.2 Research Objectives and Research Questions

The primary objective of this study is to examine how production feedback data can be

applied in production planning in order to increase planning quality. In order to achieve

the primary objective, three secondary objectives were defined to guide the research, as

follows:

1. Identify links between production feedback data and master data used for planning

2. Develop a concept for the application of production feedback data in tactical pro-

duction planning.

3. Provide a method for companies to integrate the concept into their operations.

In order to achieve the primary objective, the following two research questions have been

formulated:

RQ1: Which production feedback data is relevant for improving the accuracy of master

data used in tactical production planning?

This research question aims to explore the potential links between the planning data, i.e.

master data in the scope of this thesis, and the real-life situation on the shop floor which

is captured through production feedback data. In order to address this question, the

literature study is utilized to obtain insight into the existing research in the field of PPC

and the use of production feedback data. The concept is used to establish links between

production feedback data and master data, while the case study is used to illustrate which

production feedback data can and should be captured.

RQ2: How can production feedback data be applied in tactical production planning?

Having established the connection between production feedback data and tactical pro-

duction planning, this research question aims to further develop the understanding of the

specific ways in which production feedback data can be utilized for tactical planning pur-

poses. In order to answer this question, it is addressed in two ways: 1) through the concept

and 2) through the method for applying the concept in companies. The concept provides

an illustration of how production feedback data can be applied in tactical planning, which

is then applied in the case study through an illustrative example of how the concept could

be implemented in a real-world setting, specifically within the case company. The concept

is based on theoretical knowledge and findings from the literature study.
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1.3 Research Scope

The research scope is confined to investigating methods of improving planning quality

through new smart PPC applications. Particularly, the scope is further limited to tactical,

or medium-term, production planning, which includes two primary activities, namely MRP

and CRP. The focus is on methods for enhancing the accuracy of the master data used at

this planning level through the utilization of production feedback data. Furthermore, the

scope is confined to production environments of mass production and standard products,

with fixed processing steps and routings, i.e. that the sequence of processing operations

is predetermined and static for every product.

1.4 Thesis Structure and Research Outline

Table 1: Thesis Structure

Section 1
Introduction

Presents the background and motivation for the research,
along with the scope, objectives, and research questions
of the study. Additionally, this section provides an overview
of the structure of the thesis.

Section 2
Research Methodology

Describes the two concepts that guided the research strategy,
how the literature and case study was conducted, and how the
concept was developed.

Section 3
Theoretical Background

Describes the relevant theoretical aspects of the thesis. The
three main parts are PPC, Industry 4.0, and Smart PPC. Finally,
challenges and opportunities regarding the theory are presented.

Section 4
Concept for Application
of Production Feedback
Data

Presents a concept for applying production
feedback data to tactical production planning. The concept
includes two conceptual models that demonstrate how
production feedback data can be linked to tactical planning,
illustration of how production feedback data can be applied in
tactical planning and outlines a method for companies to integrate
production feedback data into their tactical planning processes.

Section 5
Case Study: Brynild

Includes an introduction to Brynild AS, a description of the PPC
processes and data capture capabilities of the company, and
an analysis of the current situation. Additionally, the concept is
applied to the company following the proposed four-step method.

Section 6
Discussion

Interprets and evaluates the main findings from the research in
relation to the research questions and objectives.

Section 7
Conclusion

Presents the main conclusions from the research, the contributions
of the thesis, its limitations, and suggestions for future research.
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Figure 1: Research outline
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2 Research Methodology

The research methodology in this master’s thesis comprised three main research methods:

literature study, concept development, and case study. Before these are presented, the

concepts which guided the research strategy are outlined. These concepts are design

science and abductive reasoning.

2.1 Research Strategy

The goal of design science is to develop knowledge to solve field problems through the

creation of new systems or the improvement of existing ones (Denyer et al. 2008; Van

Aken and Romme 2009). Denyer et al. (2008) characterized design science by:

• Research questions that are driven by an interest in field problems.

• An emphasis on generating prescriptive knowledge that can inform interventions and

systems to produce desired outcomes and solve field problems.

• The justification of research products is primarily based on their pragmatic validity,

i.e., whether the actions informed by this knowledge produce the intended outcomes.

Design science research studies typically consist of one or more cycles of research moving

between exploration and explanation (Romsdal 2014). Figure 2 shows how design science

is connected with the environment and the knowledge base with three types of research

cycles.

Figure 2: Design science research cycles (Romsdal 2014)

The relevance cycle initiates the research by providing the requirements, i.e. the field

problems, while the design science research output is returned to the environment for

evaluation in the real-life context. The rigor cycle provides past knowledge to the study,

and the outputs from the design science research generate additions to the knowledge

base. The design cycle is the core of the design study and generates and evaluates design

alternatives until a satisfactory design is achieved (Romsdal 2014). There are generally

five stages of design science which aim to: 1) frame a field problem, 2) develop an initial

solution design, 3) refine the initial solution design to solve the problem, 4) develop a
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substantive theory to establish theoretical relevance, and 5) develop a formal theory to

strengthen theoretical and statistical generalizability (Holmström et al. 2009; Van Aken

and Romme 2009).

Abductive reasoning, or systematic combining, is a research approach that is characterized

by a continuous movement between an empirical world and a model world, i.e. empirical

observations and theory (Dubois and Gadde 2002). Abductive reasoning focuses on refin-

ing existing theories rather than creating new ones. This involves successively modifying

original frameworks based on unanticipated empirical findings and theoretical insights

gained during the process (Dubois and Gadde 2002). The process allows the evolution of

theoretical framework, empirical fieldwork, and case analysis simultaneously. Abductive

research starts with a real-life observation and leads to a creative iterative process of ”the-

ory matching” in an attempt to find a new matching framework or to extend the theory

used prior to this observation (Kovács and Spens 2005). The process is shown in Figure 3.

Figure 3: The abductive research process (Romsdal 2014)

Utilizing abductive reasoning in design science research can be very useful, particularly in

the development of the initial solution design (Holmström et al. 2009). Furthermore, it

can be helpful in the other stages as it facilitates linking the study with the environment

and the knowledge base (Romsdal 2014).

The research in this study started with an observation in the case company - the field

problem. The next step was formulating the primary objective of the study. To address

the primary objective, the knowledge base was studied for existing research on the topic,

before continuing the design science cycles and creating a concept draft based on existing

theories. This was further refined through the design cycle, while continuously moving

between empirical observations and theory according to abductive reasoning. The pro-

posed concept, presented in Section 4, was then illustratively applied to the case company

to provide suggestions for how it can be applied in practice. The case study in turn led

to refinement of the method.
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2.2 Literature study

In order to gain a comprehensive understanding of the relevant theoretical concepts and

themes of the thesis, a structured literature study was conducted. Karlsson (2016) high-

lights three key reasons which emphasize the importance of conducting a thorough lit-

erature study. First, reviewing the literature on relevant topics helps identify current

knowledge and potential research gaps. This ensures that the chosen research topic is

viable and that the thesis has the potential to contribute to existing knowledge. Second,

the literature review can inform and inspire the research by suggesting relevant topics,

concepts, or methods to employ. Finally, conducting a literature study helps develop the

researcher’s skills and expertise in their field of study.

The research conducted in this thesis is a continuation of a specialization project (Syversen

2022). Hence, parts of the literature study in Sections 3.1, 3.2, and 3.3 is based on the

work performed in that project.

The literature study was initiated with an exploratory research phase where academic

databases were searched for information on the relevant theoretical aspects. Thereafter,

refined searches were performed and articles were studied in detail. The databases used

for this included Scopus, Google Scholar, Web of Science, and Science Direct. In order

to continuously improve the theoretical foundation of this thesis throughout its formu-

lation, an iterative approach was employed according to design science and abductive

reasoning. This involved systematically revising and reviewing relevant research topics to

ensure that new articles and developments were taken into account as new empirical ob-

servations emerged, and new iterations of the concept were made. Throughout the study,

potential limitations and opportunities were identified, allowing for further refinement of

the research topics. To identify additional relevant literature, a backward snowballing

approach was used, which involves reviewing the reference lists of highly relevant articles

to find other suitable sources (Jalali and Wohlin 2012). Some scientific literature was also

provided by senior researchers familiar with the topics of the thesis.

A selection of prevalent search words used throughout the literature study is presented in

Table 2. The resulting search strings could consist of one or several main and secondary

search words. The goal was to use a combination of generalized and precise search strings to

acquire a comprehensive understanding of the three main theoretical perspectives discussed

in Section 3, while also facilitating searches on the more detailed topics within the scope

of the study. The articles returned from the search strings were initially screened for

relevance, with non-relevant articles being disregarded and potentially relevant papers

being stored for further review. After this initial screening, the abstracts of the remaining

articles were reviewed before the full text was examined to acquire a complete overview.

The articles were then classified by their respective research topics. If particularly relevant

sections were identified, a backward snowballing approach was applied.
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Table 2: Search strings used for the literature study

Topic Primary search words Secondary search words

Production planning
and control

• PPC
• Information systems
• ERP
• Master data
• Planning quality
• Data quality
• Real-time events

• Applications
• Characteristics
• Estimation
• Handling
• Issues
• Uses

• Manual/experience-
based planning

• Automated planning

Industry 4.0

• Industry 4.0
• Smart manufacturing

• Production feedback
data

• Applications
• Technologies
• Collection
• Uses

Smart PPC • Smart PPC

• Applications
• Characteristics
• Technologies
• Implementation

2.3 Concept Development

The concept development was a collaborative effort between the author, the supervisors,

and other senior researchers and industry experts. The concept was developed through a

series of workshops and discussions, and it has also been published in Rahmani, Syversen

et al. (forthcoming). While the supervisors and other researchers were involved in the con-

ceptualization of the master study, the development of the core concept, and the execution

of the case study, the author was the main researcher and made all the main decisions

regarding the study. Additionally, the author performed the literature study, developed

interview guides, conducted and documented the interviews, validated the case data with

the company, analyzed the case data, elaborated the concept, expanded the case study,

and designed the proposed solution in Section 5.4.

The concept builds upon existing concepts and frameworks, as well as extensive experi-

ence of the co-contributors working on PPC challenges in collaboration with companies

from diverse production environments and industrial sectors. As previously stated, the

research was based on a real-life observation in the case company; Brynild collects produc-

tion feedback data from the nut packing lines, but they do not know how to fully utilize

the potential. Continuing with abductive reasoning, a meticulous study of the literature

indicated that there is largely unexplored potential for applying production feedback data

to improve production planning. This potential is facilitated by advancements in recent

technologies related to the introduction of Industry 4.0, as well as the emerging concept

of smart PPC. After several loops of the design science cycles and systematic combining

of the real-life observations and existing theoretical frameworks on the topic, a final iter-

ation of the concept was proposed: production feedback data could improve the master

data used for tactical production planning through the feedback loops shown in recent
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hierarchical PPC frameworks. After the general concept had been derived, the following

steps were pursued to support the validity of the concept with examples of master data

and production feedback data:

1. A comprehensive list of master data was compiled from the literature.

2. The master data with links to the situation on the shop floor was identified.

(a) Exclusion criteria: Master data with no discernible connection to planning or

that was unrelated to production and the production line was removed.

3. Production feedback data relevant to the master data identified in step 2 was iden-

tified.

The concept includes two conceptual models for applying production feedback data. Con-

ceptual modeling is a process in which a representation of selected phenomena within a

specific domain is constructed (Wand and Weber 2002), and the models are often graphical

representations of the relationship between entities or processes (Davies et al. 2006).

2.4 Case Study

A single case study of Brynild was conducted. In addition to providing the initial field

problem this research aimed to solve, the case study supports the theoretical foundation

with the context of a real-world example in a relevant company and industry. A case study

is a commonly used, qualitative research method that involves an in-depth examination

of a social unit (Kothari 2009). In the field of operations management, case studies have

consistently demonstrated their effectiveness as a research method, and they can be used

for research purposes such as exploration and theory building, testing, and elaboration

(Karlsson 2016; Ketokivi and Choi 2014). It is considered especially powerful in the

generation of new theories (Boer et al. 2015). To enhance credibility and contribute to

theory development, it is important to establish links between case study findings and

existing theoretical knowledge (Eisenhardt 1989). This is also supported by design science

and abductive reasoning.

The case company is a Norwegian confectionery and nuts manufacturer. It is a Small and

Medium-sized Enterprise (SME) actively involved in collaborating with researchers to find

innovative solutions. They have installed infrastructure for capturing production feedback

data on their nut packing lines, and have collected data for approximately two years. This

was the basis of the initial field problem this research aimed to solve; Brynild have good

procedures in place for collecting production feedback data, but they do not know how to

fully utilize its potential.

The original purpose of the case study was to perform a quantitative analysis of production

feedback data in the application of the concept in Section 5.4, the final part of the case

study. This could provide empirical findings to support, or reject, the proposed concept in

relation to the imposed effects on planning quality. However, Brynild does not capture the

necessary data for the analysis. To provide meaningful insight into the effects of applying
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protection feedback data in tactical production planning, the analysis would require data

from all steps or, at a minimum, data from the beginning of processing in addition to their

current data. Thus, the case study is instead illustrative and conducted using a qualitative

approach providing suggestions for how the application of the concept could be included

in the company’s operations if the required data was available.

After being presented with the initial field problem, the first phase of the case study in-

volved obtaining a general understanding of the company and its operations. This was

primarily achieved by reviewing previous case studies conducted by other master’s stu-

dents at the Department of Industrial and Mechanical Engineering at NTNU, information

collected by the co-supervisor Mina Rahmani, and public available information on their

websites.

Qualitative Data Collection

The next phase of the case study involved qualitative data collection. The data was collec-

ted through e-mail correspondences, semi-structured interviews, workshops, and physical

visits at Brynild’s facilities in Fredrikstad. Parts of the qualitative data collection was

conducted in the specialization project Syversen (2022). Thus, the sections presenting

information gathered from this phase of the case study, specifically Sections 5.1, 5.2, 5.3.2,

and 5.3.3 are also based on information collected in that project.

The company representatives involved in this phase were mainly nut production planner

Martin Oskarsson and supply chain director Mathias Holm. As a result of the qualitat-

ive data collection the nut production, its related functions, and other relevant research

topics could be thoroughly mapped. The following table shows a summary of the main

interactions with the company.
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Table 3: List of main events related to the quantitative data collections

Actor(s) Details Topic

Supply Chain Director
Mathias Holm

Digital meeting
Duration: 60 minutes
Date: 14/10/2022

Introduction to the project
and food manufacturing,
direction of the thesis

Supply Chain Director
Mathias Holm
Production Planner
Eirik Johannes Bl̊a

Factory tour and
semi-structured interview
Duration: 4 hours
Date: 21/10/2022

Guided tour of the factory,
questions related to
Brynild’s nut production and
PPC

Supply Chain Director
Mathias Holm
Haris Jasarevic

Semi-structured interview
Duration: 120 minutes
Date: 22/10/2022

Questions related to the
nut production planning
and the data they capture
from the nut packing lines

Production Planner
Martin Oskarsson

Semi-structured interview
Duration: 60 minutes
Date: 31/10/2022

Questions related to the
nut production planning
and control

Production Planner
Martin Oskarsson

Semi-structured interview
Duration: 70 minutes
Date: 09/02/2023

Questions related to the
nut production processes
and planning

Production Planner
Martin Oskarsson

Semi-structured interview
Duration: 45 minutes
Date: 23/02/2023

Questions related to the
ERP system and data they
use for planning

Supply Chain Director
Mathias Holm
Automation Engineer
Richard Skibenes
Haris Jasarevic
Representatives from:
Hansa Borg
BI Buillders
Dynamic Engineering

Workshop
Duration: 6 hours
Date: 01/03/2023

Workshop about
the digitalization of factory
systems and related
topics

Production Planner
Martin Oskarsson

Semi-structured interview
Duration: 55 minutes
Date: 02/03/2023

Continuation to questions
about the ERP systems,
planning data and
operations in the nut factory

Production Planner
Martin Oskarsson

Semi-structured interview
Duration: 120 minutes
Date: 26/03/2023

Questions about real-time
events handling in nut
production
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Quantitative data

Quantitative data were also provided by Brynild to support the qualitative data collec-

tion. Both Excel sheets used for production planning and a production feedback data

set from the HDG1 packing line were provided. The planning documents were used to

gain further insight into how the manual, experience-based planning for nut products is

conducted with the support of spreadsheet solutions. The data provided was production

feedback data which Brynild currently utilizes for Overall Equipment Efficiency (OEE)

calculations. This was used as support for the formulation of the concepts presented in

Section 4.

Table 4: Documents and data sets provided by Brynild

Filename Description

kopiProduksjonsbehov nøtter uke
4422-1723

Copy of the general production plans for 26 weeks.
Master data is used for constructing the plan

kopiuke 45
Copy of a day-by-day, detailed production plan for
one week. Includes what products to be be
produced in which shifts, for each packing line

OEE Data from HDG1

production feedback data. One record of
data for each run period of the HDG1 nut
packing line. Includes start and stop timestamps,
pause and stop times, speed, quality,
downtime, OEE, etc.
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3 Theoretical Background

This section provides an overview of the theoretical foundation established through the

literature study. It is organized into three main parts: Production Planning and Control

(3.1), Industry 4.0 (3.2), and Smart Production Planning and Control (3.3). The section

concludes with a summary of research opportunities provided by the literature study.

3.1 Production Planning and Control

3.1.1 Introduction to PPC

PPC encompasses the activities aimed at balancing the capabilities of operational re-

sources with market demands. It involves the implementation of systems, procedures, and

decisions that align various aspects of supply and demand together (Slack et al. 2013). It

includes the decisions of when and what to produce, buy and sell, and in which quantities

(Bonney 2000). Hierarchical frameworks are commonly used to describe and visualize

PPC’s many aspects at different levels of detail and time horizons (Oluyisola 2021). One

of the most popular PPC frameworks is introduced by Vollmann et al. (2005), and it

includes three levels of details; short-term (operational), medium-term (tactical), and

long-term (strategic). This framework is used as a foundational element for many of the

planning and ERP systems presently used for production (Oluyisola 2021). However, in

real-life production systems, several feedback loops are experienced, which this framework

does not consider. To obtain a more holistic and realistic depiction of the PPC system,

Oluyisola, Sgarbossa et al. (2020) adapted the framework from Vollmann et al. (2005),

building upon the works of Garetti and Taisch (1999) and Bonney (2000). This framework

is illustrated in Figure 4

The purpose of the long-term, strategic level is to establish a broad and aggregated view

of production operations. Sales and Operations Planning (S&OP) combines the plans and

data from sales and marketing with the production resources the company has available

(Jacobs et al. 2011). It is cross-functional in nature, with functions such as sales and mar-

keting and senior management involved together with the operational functions (Chapman

et al. 2017). The inputs for S&OP are demand data regarding volumes per product family

and in some cases, metadata regarding forecast accuracy, received from demand manage-

ment, and future available aggregate capacity received from resource planning (Oluyisola

2021). The S&OP provides the foundation from which Master Production Schedule (MPS)

is produced. The role of the MPS is to convert the disaggregated plan from S&OP into a

defined production and purchasing plan for the specific product levels (Jacobs et al. 2011).

Rough-cut capacity planning analyses the MPS to discover potential capacity problems

and whether critical resources are available to support the MPS (Chapman et al. 2017;

Jacobs et al. 2011). The output from the strategic level is the input for the detailed

material planning at the tactical level (Oluyisola, Sgarbossa et al. 2020).
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Figure 4: Production Planning and Control System (Oluyisola, Sgarbossa et al. 2020)

The tactical level considers a shorter timespan than the strategic level and emphasizes a

higher level of detail and accuracy than the long-term level. At this level, the MPS re-

cords are combined together with inventory and Bill of Materials (BOM) data to be used

as calculations for Materials Requirements Planning (MRP) (Jacobs et al. 2011). MRP

produces a set of raw material and component requirements, together with a suggested

replenishment order for materials (Jacobs et al. 2011; Oluyisola, Sgarbossa et al. 2020).

To produce the final outputs, a net requirement calculation has to be performed. The

MRP logic consists of three iterative steps: netting against available inventory, planned

order calculation, and BOM explosion for gross requirement calculations of components

(Higgins et al. 1996). MRP’s main goal is to decide what to order, in what quantities,

and at what time, both from purchasing and manufacturing (Oluyisola, Sgarbossa et al.

2020). Together with MRP, the tactical level also consists of Capacity Requirements

Planning (CRP). CRP is directly linked with the MRP and it considers the data from

the MRP, open orders, routings, and work centers as its inputs, with a goal of checking

that the required capacity is available (Chapman et al. 2017). CRP and MRP produce

capacity- and material plans of a significantly higher level of detail and a shorter time ho-

rizon than the ones produced on the strategic level. At this level, planning data typically

consists of static master data, which can be set in the company’s ERP system or defined

elsewhere. This includes information such as BOM and processing identification numbers

This is combined with dynamic data, such as scheduled receipts and inventory informa-

tion. The final outputs from the tactical level are the production plans and replenishment
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orders, which are also continually revised to ensure their accuracy is maintained (Oluy-

isola, Sgarbossa et al. 2020). Figure 5 shows a detailed view of the MRP process. The

figure shows how the net requirement calculation derives from both static and dynamic

information; MPS is combined with dynamic information regarding scheduled receipts,

inventory status, and Work-in-Process (WIP), together with static master data.

Figure 5: The Material Requirements Planning process, based on (J. O. Strandhagen et al.
2021)

The final operational level considers the daily operations and controls needed on the shop

floor and for purchasing and suppliers. The two systems on this level are thus called

the Shop-Floor Control (SFC) system and Purchasing/Supplier System (PSS). The SFC

system handles detailed scheduling and execution of production orders, and coordination

of the manufacturing processes, while the PSS issues purchasing schedules for the required

materials to execute daily operations (Oluyisola, Sgarbossa et al. 2020). At this level, the

documents usually consist of component-level purchase orders and work center-specific

work orders or job lists (Oluyisola, Sgarbossa et al. 2020). At the operational level, the

production operations and suppliers are also controlled, measured, and evaluated in terms

of their effectiveness (Oluyisola, Sgarbossa et al. 2020).

There is no definitive division between planning and control, neither in theory nor in

practice, and while they can be considered separate activities, they are still closely re-

lated (Slack et al. 2013). Slack et al. (2013) furthermore explains that there are some

distinguishing features of each that can help differentiate the two. Planning, by nature, is

characterized by uncertainty as it is simply a formalization of what one intends to happen

at some point in the future - and the future is inherently uncertain. It is also defined as

the decisions made on how to use current resources, determine what resources are needed,

and acquire new resources (Sanders 2017). Due to the uncertainty and lack of definit-

ive information about the future, planning is forecast-driven, and planning is therefore a

process of choosing the right actions based on forecasts (Sanders 2017). Control, on the

other hand, is a means of managing the potential deviations from the original plan. This

may involve revising short-term plans, reallocating resources, or performing unscheduled

maintenance on equipment Slack et al. (2013). In general, the importance of control in

PPC increases as the time of events approaches (Slack et al. 2013), shown in Figure 6.
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Figure 6: The balance between planning and control activities (Slack et al. 2013)

Kurbel (2016) claims that shortcomings from traditional PPC are due to two main chal-

lenges. The first challenge is that the planning of material quantities, capacity loads,

and manufacturing dates is performed in separate steps, and there is therefore no innate

guarantee that the required number of materials are ready by the due date. This can

lead to increased inventory holding costs or cause order deadlines to be missed, leading to

manufacturing disruptions and customer dissatisfaction. The second challenge is related

to the lack of correspondence between the planned situation and the real-life situation on

the shop floor due to production plans not being up-to-date. These discrepancies can be

caused by a number of reasons: inaccurate planning assumptions, unforeseen problems

occurring such as machine breakdowns, supplier shortages or operator illness, and lack of

actual data to update the production plans.

Many of the PPC decisions in today’s modern manufacturing environment are still highly

reliant on experts’ experience (Rahmani, Romsdal, Sgarbossa et al. 2022), and the tasks

are often performed manually with the support of spreadsheet solutions (Man and J. O.

Strandhagen 2018). This has some particular limitations, especially for tasks such as in-

ventory minimization, factory utilization, and lateness minimization, due to human plan-

ners’ limited cognitive capabilities to handle tasks with high mathematical complexity

(Man and J. O. Strandhagen 2018). Investigating how technological advancements can

affect planning decisions is thus crucial, particularly with regard to the balance between

manual, experience-based planning, and automated planning (Man, J. W. Strandhagen

et al. 2020).
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3.1.2 Information Systems and Master Data

While many PPC tasks are performed manually, managing the different levels, activities,

and processes of PPC captured in Figure 4 requires information systems that are able to

integrate and coordinate the individual components to provide support for cross-functional

information sharing (Sagegg and Alfnes 2020). This is commonly achieved through the

use of Enterprise Resource Planning (ERP) systems with the support of spreadsheet solu-

tions (Chapman et al. 2017; Man and J. O. Strandhagen 2018). An ERP system contains

a database with a collection of pre-built applications that collaborate to support funda-

mental business activities within an organization. The ERP system is often regarded as

the foundation of a company’s business software portfolio and frequently works in con-

junction with other business software to benefit users and other actors. The integrated

database allows for easy access to information and a one-time data entry (Sagegg and

Alfnes 2020). There are some fundamental weaknesses in ERP systems. ERP systems are

typically difficult to manage and lack the ability to support the real-time decision-making

that is required in today’s manufacturing (Oluyisola, Bhalla et al. 2022). The systems

use system parameters - master data - which do not consider the uncertainties of real-

life factors such as unavailability of supply and variations in the shop floor (Koh et al.

2006). Additionally, they are often only able to provide support for initial planning due

to the lack of tools that can help update and analyze the proposed plans (Man and J. O.

Strandhagen 2018).

To help address some of these limitations and provide more information system tools

for PPC, additional software solutions such as Manufacturing Execution System (MES)

or Advanced Planning and Scheduling (APS) systems have been developed during the

past 20 years (Oluyisola, Bhalla et al. 2022; Öztürk and Ornek 2014).MES are software

solutions that directly support the operations on the production floor such as production

scheduling, production data collection, production performance analysis, and work center

sequencing and optimization (Sagegg and Alfnes 2020). APS on the other hand is more dir-

ectly involved in the planning process and related tasks. The APICS Dictionary describes

APS as any computer program that uses advanced mathematical algorithms or logic to

perform optimization or simulation on finite capacity scheduling, sourcing, capital plan-

ning, resource planning, forecasting, demand management, and others (Blackstone 2013).

The systems create a model of the physical planning problem, include an engine that can

evaluate different scenarios and consequences of planning actions, and finally visualize the

planning results in a user interface (Wiers and Kok 2017). APS has several benefits, in-

cluding real-time decision-making support. However, there are many challenges regarding

how they can be integrated with ERP systems and general implementation, which makes

their benefits hard to achieve in practice (Lupeikiene et al. 2014).MES and APS are also

described as often being too simplistic and rigid, and even though they can support some

levels of real-time decision-making support, they are still limited in their ability to adjust

to real-time data (Rahmani, Romsdal, Sgarbossa et al. 2022). They are also often costly

and require that employees with specialized competence (Oluyisola 2021).
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There are three main data categories for data used by ERP systems; master data, busi-

ness records, and system-generated transactions (Sagegg and Alfnes 2020). The three

categories are all related - the master data is used to create business records, and both

of them are further required to create system-generated transactions. But while both the

business records and transactions are created through business operations, master data

on the other hand is the foundation that identifies and describes all the different business

objects (Sagegg and Alfnes 2020). Master data is typically created once, used many times,

and is seldom updated or changed (Knolmayer and Röthlin 2006). Due to this static char-

acteristic, the master data used for planning purposes might not accurately represent the

current conditions on the shop floor, which might negatively impact the quality of the

production planning (Geiger and Reinhart 2016).

There are many different interpretations in the literature of what specific data is included

in master data for planning. To exemplify, Sagegg and Alfnes (2020) considers four basic

types of data components for master planning in an ERP system, of which two are master

data. They are called master data in the form of planning parameters and master data

on work centers, respectively. Master data in the form of planning parameters dictate

the formulation of master plans and are typically item-specific. These include planning

methods, lead times, safety stock levels, planning time fences, and optimal order sizes.

Master data on work centers consists of master data on production resources; machines,

workers, or even other ERP applications. Capacity calculations of work centers are the

primary value, and they provide future load and availability overviews. It defines capacity

restraints in production. Master planning also accounts for the BOM of products and thus

also considers all the different sub-components or intermediates in production planning.

A more in-depth, compiled list of typical master data from scientific and ERP literature

is presented in Table 7 in section 4.2.

3.1.3 Planning Quality

One of the primary goals of PPC is to develop a reliable production plan that closely

aligns with the actual implementation on the shop floor (Lingitz and Sihn 2020). The term

planning quality is frequently used in the industry and literature to gauge the effectiveness

of production planning (Lingitz and Sihn 2020). High planning quality is defined by Lingitz

and Sihn (2020) as production plans with no deviations or deviations within an acceptable

range between the pre-established production plan and the actual execution on the shop

floor. These deviations may arise from uncertainties such as inaccurate or incomplete

planning data, unforeseeable external events, or inadequate planning and control systems

(Lingitz and Sihn 2020). This suggests that planning quality is closely linked to one of the

two main challenges to traditional production planning described in Section 3.1. Lucht et

al. (2021) also introduced two evaluation parameters to measure the overall performance

of production plans: “planning accuracy” and “plan stability”. Planning accuracy refers

to the degree of congruence between a planned event and its actual realization, while

plan stability measures consistency, early anticipation of future changes, and triggers for

additional planning iterations.
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The input parameters used for production planning, which are based on planning data,

represent the logical foundation of production planning, and thus setting realistic PPC

parameters is one of the greatest challenges in PPC (Van Nieuwenhuyse et al. 2011).

Wiendahl et al. (2005) explains this by describing errors in planning parameters as one

of the eight main “stumbling blocks” of PPC. The parameter errors are divided into

two types; inconsistent and unrealistic parameters (Wiendahl et al. 2005). Inconsistent

parameters refer to the event of a discrepancy of parameter values between the different

levels of PPC, such as the operational and tactical levels. Unrealistic parameters are those

that do not reflect the reality of production (Wiendahl et al. 2005). The accuracy of some

of the parameters can be determined by measuring deviations between the actual values

measured in production with the ones used in planning (Wiendahl et al. 2005). For this to

be achievable, the ability to capture and apply data from the production lines is required.

Continuous updating of plans that can no longer be adhered to due to disruptions or

other events can help increase the quality of the plans and counteract the uncertainties

of initial production plans. However, this can have some negative impacts on production

by creating confusion on the shop floor, adding additional organizational costs due to

additional effort needed for planning, and affecting the capacity utilization (Lucht et al.

2021). Therefore, the goal should always be to strive for the highest possible accuracy of

plans at every level.

The planning quality is also influenced by the humans involved due to the cognitive

strengths and weaknesses they possess (Man and J. O. Strandhagen 2018). The cap-

abilities of human planners are somewhat limited when it comes to complex tasks, as

mentioned in Section 3.1. This can impose negative effects on the planning quality, espe-

cially if the planner is inadequate at translating the real-life capabilities of the company

into production plans.

The quality of the planning processes, and thus also the success of PPC, is highly depend-

ent on the quality of the planning data used, such as the master data (Hees and Reinhart

2015; Jakubiak 2021). As previously mentioned, the static nature of the master data

might cause negative effects on the quality due to discrepancies between the situation on

the shop floor and the data (Geiger and Reinhart 2016). In their study, (Hees and Reinhart

2015) cites a survey performed by Schuh, Westkämper et al. (2006) which illustrates that

planning systems of machine and plant engineering companies suffer from low quality, in-

accuracy, and low range in planning data, which directly resulted in a negative influence on

the performance of production planning. Further, a study of a medium-sized mechanical

engineering enterprise performed by Schuh, Potente et al. (2013), found that deviations

between production plans and the actual execution on the shop floor can increase up to

75% if the production planning was performed just three days ahead. This illustrates the

importance of companies having updated planning data available; companies should be

able to swiftly adapt their production plans to the current situation on the shop floor

to avoid consequences such as higher inventory, longer lead times, or low adherence to

promised delivery dates (Schuh, Thomas et al. 2014).
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Lindström et al. (2023) performed a recent study where the authors mapped different data

quality issues which could impose a negative effect on PPC. These data quality issues were

visualized in a cause-and-effect diagram, shown in Figure 7.

Figure 7: Cause-and-effect diagram showing data quality problems related to sources
(Lindström et al. 2023)

The diagram shows that errors from the production planners or other users could impose

several prevalent data quality issues in production planning: negligence can cause changing

task needs, inexperience can cause data production errors, and ignorance, inexperience, or

inattention of the users can cause inaccurate data entries (Lindström et al. 2023). Human

errors can also lead to inconsistencies in production feedback data through inaccurate or

entirely missing manual feedback (Schuh, Thomas et al. 2014).

3.2 Industry 4.0

Industry 4.0, which originated in Germany in 2011, refers to the fourth industrial re-

volution. This technological paradigm shift involves the integration of the Internet of

Things (IoT), Internet of Services, and Cyber-Physical Systems (CPS) into manufactur-

ing processes (Cañas et al. 2022). The focus of Industry 4.0 is on the development of

intelligent procedures and production processes, using technology to address the chal-

lenges of rapid product development, flexible production, and complex environments in

modern manufacturing (Brettel et al. 2014).
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Nosalska et al. (2019) defines Industry 4.0 as “... a concept of technological and organiza-

tional changes along integrated value chains and the development of new business models

that are driven by customer needs and the requirements of mass customization and enabled

by new technologies, connectivity and the integration of information technology.” They in-

troduced a framework for defining Industry 4.0, where they distinguish two integral factor

groups of Industry 4.0; technology and business. The technological factor group consists

of CPS, smart factory, and IoT. Nosalska et al. (2019) argues that the smart factory is

the most prominent factor, as they are the physical implementations of Industry 4.0 in

the real world. Smart factories are based on intelligent CPS that can “make autonomous

decisions and communicate with each other in real time”, while IoT is described as being

an enabler of an interconnected and smart system (Hermann et al. 2016). The business

factors include value chain integration, new business models, smart product, and customer

position. The most important aspect related to this factor group relates to changes in value

chains that are introduced by the exchange of data and communication (Nosalska et al.

2019). To summarize, Industry 4.0 technology serves as an enabler for more interconnec-

ted and modern manufacturing, and by connecting people, things, and data, there will

be an emergence of new ways of organizing and executing industrial processes (Hermann

et al. 2016).

3.2.1 Smart Manufacturing with Industry 4.0

The industry 4.0 revolution has presented the manufacturing industry with opportunities

to improve how they operate by creating real-time connections between resources, services,

and humans through the application of smart technologies such as IoT, Big Data Analysis

(BDA), Artificial Intelligence (AI) and Machine Learning (ML), and CPS (Oluyisola 2021;

Rahmani, Romsdal, Sgarbossa et al. 2022; Stock et al. 2018; Zheng et al. 2018). The

implementation of Industry 4.0 technologies has become widespread in the manufacturing

industry. This can be described as making the manufacturing industry smart (Zheng et

al. 2018) and can help address difficulties regarding current demands the manufacturing

industry experiences such as improved quality, reduced time to market, and increasingly

customized requirements (Zhang et al. 2015).Zheng et al. (2018) developed a conceptual

framework of Industry 4.0 smart manufacturing systems, presented in Figure 8. This

framework illustrates the common features of Industry 4.0 and potential measures that

can be implemented to facilitate a data-driven manufacturing process.
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Figure 8: Conceptual Framework of Industry 4.0
Smart Manufacturing Systems (Zheng et al. 2018)

3.2.2 Data Capture from Production

Smart technologies and Industry 4.0 has facilitated the capturing of real-time, updated

data from production processes. This type of data is called production feedback data and

includes information about the current status of active production jobs, the workstations

being used, and the duration of set-up and processing for each process step (Schuh, Thomas

et al. 2014). It can also represent information about process times, location data, inventory

data, production volumes, and more (Busert and Fay 2018). The data can either be

gathered autonomously via sensors through systems such as MES and Production Data

Acquisition systems, or it can be gathered through manual reporting from staff on the

shop floor (Reuter and Brambring 2016).

ISA95 is an international standard from the International Society of Automation for

enterprise-control system integration (ISA 2005). It includes the Automation Pyramid,

visualized in Figure 9, which is a hierarchical model that shows the information exchange

in five levels. The top level involves business planning and logistics managed by an ERP

system. The next level controls manufacturing operations through a MES. The monit-

oring and supervision level uses Human-Machine Interface (HMI) or Supervisory Control

And Data Acquisition (SCADA) systems. Equipment is controlled by the sensing and

manipulating level using a Programmable Logic Controller (PLC). Finally, the last level

uses sensory and signaling systems to capture data from the shop floor (Åkerman 2018).
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Figure 9: Automation Pyramid (adapted from ISA (2005))

Production feedback data can be used for multiple purposes, including ones shown in Fig-

ure 8. For instance, smart monitoring of production is an important aspect of industry

4.0 manufacturing systems (Janak and Hadas 2015). By placing sensors on manufac-

turing equipment smart monitoring can support operation, maintenance, and scheduling

by providing and analyzing production feedback data in real-time, for example, about

equipment efficiency, temperature, speed, and breakdowns (Zheng et al. 2018). A typical

example of the use of production feedback data for smart monitoring is OEE calculations.

OEE is a quantitative metric for measuring the productivity of individual production

equipment in manufacturing facilities (Muchiri and Pintelon 2008). OEE typically identi-

fies losses in three aspects of manufacturing; quality, performance, and availability, and the

aggregated metric is calculated as a function of these. The losses consume resources but

are not value-adding, therefore companies want to minimize these losses and consequently

maximize the OEE (Muchiri and Pintelon 2008). Nakajima (1988), who originally in-

troduced the term OEE in 1988, stated that there are six major losses that should be

eliminated to increase OEE, shown in Table 5.

Table 5: The six losses of OEE (Nakajima 1988)

Aspect of
manufacturing

Type of loss

Downtime
• Breakdown losses
• Set-up and adjustment losses

Speed (productivity)
• Idling and minor stoppage losses
• Reduced speed losses

Quality
• Quality defects and rework losses
• Reduced yield losses

Similarly, data-capturing from production lines can be used for smart machining. Ma-

chinery with sensors can enable synchronized machining processes by sending real-time

data to a cloud-based central system and in-process quality control through self-optimization

control systems. (Park and Tran 2014; Zheng et al. 2018; Zhong et al. 2013). For smart

production control, CPS can be implemented to achieve adaptive and high-resolution con-

trol systems (Stich et al. 2015). Smart scheduling mainly utilizes advanced models and
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algorithms, often based on ML to analyze production feedback data captured by sensors

on the shop floor (Zheng et al. 2018). ML can in short be explained as a computational

process that improves itself through experience, and it is a very powerful tool for many

application areas, such as pattern recognition (Bishop and Nasrabadi 2006; Jordan and

Mitchell 2015). A ML algorithm optimizes itself so that it can not only produce the desired

result when given training inputs but it can also generalize to produce the desired result

from new, unseen data (El Naqa and Murphy 2015). A drawback with ML analysis is that

it requires a large amount of data and high computing resources to process the collected

data and convert it to meaningful information (Adi et al. 2020). An example of analysis

that can be used for smart scheduling is time series analysis, which aims to understand

the mechanism behind an observed series over time and to predict its future values based

on its history and related factors (Cryer and Kellet 1991).

An important remark is that the data that can be captured from production lines do not

bring any added value on its own; it is with the use of domain-specific knowledge and

algorithms that useful information can be extracted (Lingitz, Gallina et al. 2018). And

for the data to be useful for operational applications such as PPC, it is essential that

the data be reliable, therefore it is necessary to perform quality assessments of the data

captured before they are used (Busert and Fay 2018).

3.3 Smart Production Planning and Control

3.3.1 Introduction to Smart PPC

Implementing industry 4.0 technologies into production systems facilitates large-scale data

collection from a variety of sources (Rahmani, Romsdal, Sgarbossa et al. 2022). This data

can not only assist human decision-making but also enable the automation of planning

and control tasks for dynamic and real-time PPC (Rahmani, Romsdal, Sgarbossa et al.

2022). This concept of integrating industry 4.0 technologies with PPC is an emerging

concept, which has been aptly named smart PPC. Oluyisola (2021) defines smart PPC as:

“The integration of emerging technologies and capabilities in the industry 4.0 framework

with PPC processes to improve the performance of the production system by enabling real-

time, data-driven decision-making and continuous learning with input from a more diverse

range of sources.” A systematic literature review was conducted by Bueno et al. (2020)

to determine the core Industry 4.0 technologies that support smart PPC. The studies

they analyzed that addressed standard planning activities involved the implementation of

real-time data collection through IoT, BDA and AI, CPS, and cloud-based manufacturing.

Smart PPC incorporates the three levels from the hierarchical PPC frameworks with

the intention of intelligently managing all key processes using data from multiple sources

while allowing for human intervention (Oluyisola, Sgarbossa et al. 2020). A mechanism for

continuous feedback from the production system should also be incorporated to effectively

address any events that may occur (Oluyisola, Sgarbossa et al. 2020).
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Smart PPC should, in general, perform better since it will use a huge variety of endogen-

ous data from the production system and external data from its environment (Oluyisola,

Sgarbossa et al. 2020), and should thus not exclusively be reliant on the capabilities of the

human planner. There remain, however, several challenges to be solved for practitioners

in the transition towards smart PPC: 1) the difficulty of agreeing on the value of data,

2) deciding which data to use and share, 3) the cost of technology, 4) the required infra-

structure, and 5) the resistance to moving from conventional enterprise systems (Rahmani,

Romsdal, Sgarbossa et al. 2022).

Through literature, Rahmani, Romsdal, Sgarbossa et al. (2022) categorized smart PPC

into four main elements; real-time data management, dynamic production planning and

re-planning, autonomous production (execution) control, and continuous learning. These

are briefly explained below.

Real-time Data Management

A real-time data management system tracks, collects, analyzes, and protects data from

both intrinsic sources, such as inventory movement and production lines, and extrinsic

sources, such as suppliers, in real-time (Saad et al. 2021). For effective use in PPC, real-

time technologies must be deployed to relevant objects for data collection. By integrating

real-time data into business processes, companies can implement adaptive and responsive

planning, scheduling, and execution systems (Arica and Powell 2014). Capabilities to

handle the real-time data effectively is a requirement for this to be feasible (Arica and

Powell 2014).

Dynamic Production Planning and Re-planning

A dynamic production planning system can quickly respond to unplanned events or

changes in production processes (Rahmani, Romsdal, Sgarbossa et al. 2022), allowing

companies to adapt to rapid changes in the business environment and customer require-

ments (Saad et al. 2021). This requires participation from both internal and external

parties in the production planning phase, as well as access to real-time data (Saad et al.

2021). Real-time, production feedback data can be used in several ways for dynamic re-

planning. For example, real-time events data from the shopfloor can enable model-based

scheduling and re-scheduling, and other production feedback data can support dynamic

adjustments of planning parameters such as master data. A recent study by Rahmani,

Romsdal, Syversen et al. (forthcoming) investigated the relationship between the per-

formance of a production schedule and the accuracy of master data through analysis of

production feedback data. Findings from this study indicated that even small deviations

in master data accuracy had an impact on the makespan, i.e. the time of a job from start

to finish. Advanced models and algorithms are often used to analyze data captured by

sensors for real-time re-scheduling (Zheng et al. 2018), and distributed “smart” models

utilizing a hierarchical interactive architecture have also been found to be effective for

reliable real-time scheduling (Marzband et al. 2016). This suggests a synergy between

Smart Manufacturing and Smart PPC, where data generated from Smart Manufacturing

can be applied to PPC tasks such as production planning.
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Autonomous Production Control

Autonomous production control systems are characterized by decentralized and digitized

production control. This means that objects such as machines, pallets, and conveyors

can process information and make decisions on their own, without the need for human

intervention (Martins et al. 2020). The aim of this approach is to enhance the performance

of production systems by allowing individual components to rapidly adapt to changing

conditions (Saad et al. 2021). To achieve this, objects must be able to communicate and

collaborate with each other in real-time (Pereira and Romero 2017). Additionally, the

system must be capable of self-optimization through continuously analyzing the situation

and adjusting job assignments to machines as needed (Köchling et al. 2016).

Continuous Learning

Continuous learning involves capturing and converting tacit knowledge and experience

from individuals involved in PPC tasks into data that can be used in the production system

(Bresler et al. 2020; Oluyisola 2021). Tacit knowledge is a form of implicit knowledge that

is relied upon for learning and is invoked in a wide range of intellectual inquiries, including

traditional academic subjects and investigations into the nature and transmission of skills

and expertise (Gascoigne and Thornton 2014). Many companies have invested heavily in

new technologies to automate production processes. However, decisions regarding PPC are

still largely based on experience (Bresler et al. 2020; Rahmani, Romsdal, Sgarbossa et al.

2022). Digitizing the processing and relaying of knowledge can improve decision-making

in PPC (Rahmani, Romsdal, Sgarbossa et al. 2022).

3.3.2 Assessing the Need for Smart PPC

While Industry 4.0 and Smart PPC provide opportunities to implement new technologies,

these are not guaranteed to provide operational improvements regardless of company-

specific characteristics and how the technologies are implemented. There are indications

from studies that many companies struggle in their efforts to become more data-driven

and implement smart operations (Bean and Davenport 2019; Oluyisola 2021). Therefore,

the limitations of each technology and the characteristics of the production system and

planning environment must thus be taken into account when selecting and implementing

smart technologies for a smart PPC system (Oluyisola 2021).

Rahmani, Romsdal, Sgarbossa et al. (2022) provided a framework to assess the need for

smart PPC based on a company’s planning environment characteristics. The planning

environment characteristics assist in determining the PPC contexts where smart PPC is

most beneficial by providing an understanding of the setting in which PPC is conducted

(Romsdal et al. 2021). Planning environment characteristics can be categorized into three

main categories; product, demand, and manufacturing process (Jonsson and Mattsson

2003), and they provide an understanding of the environment in which a company performs

its PPC tasks. In the framework, variables from the three main categories of planning

environments are linked with the need for smart PPC, where the ”need” is understood as

the expected degree smart PPC improves PPC performance. The framework has a scale

assigned for each variable, where if a company has the variable at its most challenging
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setting, this is associated with a high need for smart PPC. The scale is from one to three

stars (*) for each variable indicating the importance of smart PPC for each; one star means

that no considerable PPC improvements are expected, whereas three stars indicate that

the variable is currently at its least favorable, and thus has high expected benefit from

smart PPC. A table with all the variables, their definition, and how the scale is defined

per variable is shown in Table 6.

Analyzing a company’s planning environment characteristics and their relationship to

smart PPC can provide insight into the potential benefits of revising the company’s PPC

operations. This can help assess the importance of introducing smart PPC and its expected

impact on efficiency and responsiveness. The framework can also assist in identifying

appropriate PPC methods and making informed design decisions related to the supply

chain (Rahmani, Romsdal, Sgarbossa et al. 2022).
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Table 6: Framework linking planning environment characteristics with the need for smart
PPC (Rahmani, Romsdal, Sgarbossa et al. 2022)

Category Variable Definition
Need for smart PPC

* ** ***

Product

Product
complexity

Number of levels
in the BOM, number
of items on each
level, and
interrelatedness
of product components

Low Medium High

Product
variety

Number of product
variants

Low Medium High

Product life
cycle

Stage and length of a
product’s life cycle
from launch to
termination

Long Medium Short

Product
volume and
variability

Volume related to
market demand and
variability of volume

Low Medium High

Market

Delivery
lead time

The time window
between the placement
of customer order
until its delivery to
the customer

Long Medium Short

Delivery
lead time
variability

Predictability and
stability of demand

Low Medium High

Demand
variability

Predictability and
stability of demand

Low Medium High

Ability to
keep
inventory

Perishability of raw
materials, intermediates,
and finished goods
inventories

High Medium Low

Process

Process
lead time

The time between
starting and terminating
a process

Short Medium Long

Process
flexibility

Ability to change
product volume and
produce different types
of products

High Medium Low

Process
complexity

Number of processes
and interrelatedness
of processes

Low Medium High

Supply
variability

Predictability and
stability of supply

Low Medium High
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3.3.3 Implementation of a Smart PPC System

By analyzing a company’s planning environment characteristics and their relationship to

smart PPC, it is possible to gain a better understanding of whether the company charac-

teristics synergize with smart PPC solutions. While identifying the potential benefits of

introducing smart PPC is a crucial first step, it is not sufficient for successful implement-

ation. To effectively implement a smart PPC system, it is also important to design and

develop the smart PPC in a careful manner. In this regard, Oluyisola (2021) proposed a

set of principles and considerations that should be considered:

• The design of a smart PPC system should consider the characteristics of the planning

environment. This highlights a common problem: expensive systems that require

managers to alter production systems to fit the PPC system, rather than the PPC

system being designed to integrate with the existing production system.

• The architecture of the PPC system should be both scalable and flexible, allowing

it to adapt to changes in production system parameters, which may not be accur-

ately predictable or controllable in advance. Such parameters may include demand

volumes, demand patterns, and product portfolios.

• The implementation plan for a smart PPC system should include an incubation

period during which data can be collected for analysis or for training machine learn-

ing models if such data is not already available. This would also provide an oppor-

tunity to test the accuracy of machine learning models and account for estimation

errors in PPC activities.

Despite the potential benefits of implementing new technologies, there remain economic

risks associated with making significant changes to operational processes. Adopting an

incremental approach to the implementation of new technologies can mitigate investment

risks and facilitate the gradual transition of the company towards a smart system (Schuh,

Anderl et al. 2017). This is particularly relevant for small and medium-sized enterprises

with limited research and development budgets (Oluyisola 2021).

3.4 Research Opportunities

The presentation of the theoretical background highlights some challenges and opportun-

ities related to smart PPC and new application areas. Planning quality is directly affected

by the accuracy of the master data used. Master data is updated infrequently, which can

lead to discrepancies between the actual situation on the shop floor and the master data.

Industry 4.0 has facilitated large-scale data collection from various sources, and oppor-

tunities have emerged for companies to revamp and optimize operations through the in-

troduction of new technologies. Smart technologies can collect production feedback data

and can allow for the data to be processed and applied in real-time. Most studies that

address the use of production feedback data for PPC are typically on a conceptual level
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or apply the data for control or scheduling purposes, but there is an untapped potential

for applying production feedback data in tactical production planning.

The addition of smart PPC systems has been the subject of extensive research in recent

years. However, studies have indicated that companies face challenges in adopting new

technologies and smart operations. While the potential benefits of utilizing data from

digitalized production systems for smart PPC purposes are promoted in academia, actual

adoption by the industry remains limited. There is also a lack of empirical research

demonstrating the improvements that can be achieved through the use of smart PPC.

There is thus an opportunity for more research in the field of applying production feedback

data in tactical production planning as a smart PPC solution. Production feedback data

can provide accurate information on the same aspects that some master data represents.

Analyzing production feedback data and incorporating this into master data can provide a

better representation of the real-life situation on the shop floor. The accuracy of the master

data will therefore increase accordingly. In cases where the situation on the shop floor

varies over time or with other factors that can be captured by production feedback data,

some master data should be dynamically determined to ensure that it remains up-to-date

and accurate.
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4 Concept for the Application of Production Feedback Data

in Tactical Production Planning

In this section, the concept for the application of production feedback data is developed and

presented. The concept is developed from existing theories introduced in Section 3 and its

purpose is to improve the quality of production plans by providing a better representation

of the situation on the shop floor in tactical production plans.

4.1 Introduction to Concept

As mentioned in Section 3.1, Oluyisola, Sgarbossa et al. (2020) adapted the established

PPC framework of Vollmann et al. (2005) and introduced feedback loops to better cap-

ture the real-life situation witnessed in production systems. As the feedback loops are

particularly prevalent and significant in real-life situations between the operational and

tactical levels (Bonney 2000), the framework from Oluyisola, Sgarbossa et al. (2020) has a

particularly detailed focus on these levels. The purpose of this framework, shown in Fig-

ure 4 was to research the potential of improving the performance of the production system

performance through the application of dynamic data gathered directly from the produc-

tion system. In this framework, the lower-level planning processes are merely conceptually

linked with the higher levels through feedback loops on performance. In particular, there

are feedback loops on the system, capacity use, material use, and purchasing performance.

However, the framework does not define what type of data would be relevant, nor does it

depict how the data from the lower levels can be applied in higher-level processes. This

lack of specification from this and the other established PPC frameworks in literature and

academia inspired the work in this section, which resulted in the formulation of a concept,

introduced later.

The literature study revealed two key matters regarding the application of master data

used for planning, including for the tactical production level i.e. the MRP and CRP

processes: 1) the quality of the production planning is highly dependent on the master

data used, and 2) since the master data used in planning is typically static, there are

possibly large deviations between the current state of the shop floor and the planning

process. To better reflect the real-life situation and thus potentially improve the quality

of the material and capacity planning, production feedback data could be utilized.

Hence, it is proposed that production feedback data could be utilized to analyze and up-

date the master data to facilitate a more accurate representation of the real-life situation,

thereby potentially enhancing the quality of MRP and CRP. To illustrate this, the frame-

work of (Oluyisola, Sgarbossa et al. 2020) is adapted and expanded to demonstrate how

such data should be fed into master data rather than directly into the tactical-level plan-

ning processes. This approach better reflects the necessity for processing, aggregating, and

analyzing production feedback data prior to its utilization in tactical planning processes.

The proposed concept is shown in Figure 10
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Figure 10: Conceptual model for the application of production feedback data in tactical
production planning (based on Oluyisola, Sgarbossa et al. (2020))

In the conceptual model, the feedback from the SFC and PSS is fed into the master

data used for the tactical planning processes instead of directly into the processes as

performance loops. By taking production feedback data into account when determining

the values of the master data, the accuracy of master data can be increased, leading to

a better representation of the shop floor’s state in tactical planning processes. This is

further elaborated below.

32



4.2 Linking Production Feedback Data to Master Data

The conceptual model in Figure 10 illustrated how production feedback data can be fed

into master data for the tactical planning level through feedback loops. The production

feedback data increases the data foundation used for assessing the master data values, so

the decision-makers are provided with planning data of increased accuracy. As highlighted

in section 3.4, some master data should be dynamic if analysis of the production feedback

data indicates that the values change over time or with other measurable factors. There-

fore, it is suggested that companies conduct an analysis of production feedback data to

ascertain which elements of master data should remain static and which should be dynam-

ically determined. For the master data which is deemed static, the production feedback

data can be used to validate or optimize the values.

To reflect this, a new conceptual model was created. The model, shown in Figure 11 was

adapted from Figure 5, to show at a higher level of detail how production feedback data

can be incorporated into the MRP process. The original model included static inform-

ation lead times, parts lists, and product structures. This complies with the definition

of master data and is thus interpreted as such. For the new conceptual model, the two

master data components represent the incorporation of production feedback data in the

decision-making process: 1) to validate the accuracy of static master data, and 2) to dy-

namically determine variable master data. Both the static and dynamic master data are

then employed in the computation of net requirements.

Figure 11: Conceptual model for the application of production feedback data into MRP
(based on J. O. Strandhagen et al. (2021))

This conceptual model challenges the traditional view of master data as static values that

are set once and seldom changed thereafter. By instead allowing certain master data to

be dynamic, production plans can better reflect the situation on the shop floor and thus

have increased accuracy.

An example to illustrate how master data can be analyzed through production feedback

data and differentiated between static and dynamic follows. Consider the BOM’s quant-
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ity coefficient; the required quantity of an intermediate or sub-component to produce a

finished product (Kurbel 2016). If historical feedback data indicates that the quantity re-

mains constant over time, across different batch sizes and machines, it can be designated

as a static parameter in the master data. Conversely, if the data reveals variability in the

quantity, it may be advantageous for planners to dynamically determine its value using

real-time data from the production line, and incorporate it as an input for the planning

process for the upcoming period.

A list of prevalent master data from scientific and ERP literature, primarily from Jak-

ubiak (2021), Kurbel (2016), and Sagegg and Alfnes (2020), was compiled. The master

data, shown in Table 7, is separated into five main categories: part or component, product

structure, production line or work center, routings, and operating facility. The part or

component master data refers to attributes of all parts of the end product, including all

sub-components needed and the end product itself (Kurbel 2016). Product master data

show which parts make up a product and the relationship between them (Kurbel 2016).

Resource data considers the tools and machines used to produce parts where data can be

generated and captured (Kurbel 2016). Routings refer to the list of operations required

for the manufacturing of a produced part (Kurbel 2016). Finally, operating facility mas-

ter data provides insights into the manufacturing facilities and other workplaces (Kurbel

2016). There are also some other noteworthy definitions: scrap rate is an expression for

the percentage of units that are scrapped after or during production due to defects or

other quality issues (Chiu et al. 2007). The scrap rate is identified per material, product,

and resource. Processing time refers to the duration needed to manufacture a product,

whereas changeover time denotes the time necessary to prepare a resource for transitioning

from the completion of a previous batch to the commencement of a new one (Mali and

Inamdar 2012).
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Table 7: Combined list of master data from the literature (based on Jakubiak (2021),
Kurbel (2016), and Sagegg and Alfnes (2020)).

Category Master data for planning

1. Part or
component

• Part type, name, number, and
description

• Physical characteristics data
• Quality characteristics data
• Replenishment time data
• Basic information including

variant code, basic material,
drawing number,
form identification

• Scrap factor data - part:
1) quantity dependent
2) setup dependent

• Organizational data
• Validity data

2. Product • BOM and where-used lists
• Quantity coefficient
• Structure type data
• Information regarding the parts,

including upper and lower-part
ID and variant code

• Scrap factor data - product
• Organizational data
• Validity data

3. Resource • Operation number and description
• Necessary operator skills data
• Operation times data including:

1) Processing time per unit
2) Setup time
3) Required factors in lead
time reduction

• Capacity
• Average scrap rate

production line
• Organizational data
• Validity data

4. Routings • Routing type and number
• Parts data, including

the part that routing refers to
and processed parts in the
operations of the routing

• Organizational data
• Validity data
• Drawing reference data

5. Operating
facility

• Operating facility number,
location, name, and/or
description

• Cost center and machine
cost rate

• Technical data
• Capacity

• Worker data
• Usage/performance rates
• Average setup time
• Maintenance data
• Organizational data

After having compiled a general list of master data, it was subsequently studied to identify

the most relevant master data for tactical planning, i.e. MRP and CRP. Two main ex-

clusion criteria were established: 1) master data without a clear link to tactical planning,

and 2) master data without a clear link to production operations. Additionally, master

data related to routings were excluded as the scope of the research was confined to fixed

routings, though this master data could be relevant in some other production environ-

ments. Operating facility data were also excluded because the data is of too high a level

to be relevant for tactical planning.
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Next, the list of master data relevant to tactical planning was used as inspiration to identify

production feedback data that could be linked to each of the master data types. For each

master data type, relevant production feedback data were identified and formulas were

developed to calculate the master data based on the production feedback data. Examples

of application areas were also identified. The result is presented in Table 8.

Table 8: Overview of master data for tactical planning with relevant production feedback
data

Category Master data for
planning

Relevant production
feedback data

Formulas and examples
of application in tactical
planning

Part or
component

Scrap rate per part - Number of parts
consumed per batch
- Number of scrapped
parts per batch

- Formula: number of
scrapped parts / number
of parts consumed
- Used in calculation of
net requirement for parts

Product

Quantity coefficient
per product

- Number of input units
or amount of raw
materials consumed
per batch
- Number of units
produced per batch

- Formula: number of input
units / number of units
producted
- Used to determine the
number of parts or input
units in the BOM

Scrap rate per
product

- Number of units
producted per batch
- Number of scrapped
units per batch

- Formula: number of
scrapped units / number
of units produced
- Used in calculation of
gross requirement for
units

Resource

Processing time
per unit

- Start and end time
per batch (i.e.
production run)
- Number of units
produced per batch
- Start and end times
of stops (within batch)

- Formula: batch time
((end time - start time) -
total stop time (end time -
start time, per stop)) /
number of produced units
- Used in tactical planning

Changeover time
per resource

- End time of previous
batch and start time
of next batch

- Formula: sum of time
for activities between
batches
- Used in CRP and
scheduling

Scrap rate per
resource

- Number of units
produced per resource
- Number of scrapped
units per resource

- Formula: number of
scrapped units per
resource / number of
units produced per
resource
- Used in calculation
of CRP and scheduling
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The first column lists the categories of master data, including parts or components,

products, and resources. The second column lists the specific master data for planning that

can be improved using production feedback data. The third column provides examples of

relevant production feedback data that can be used to improve the accuracy of the master

data. The fourth column presents formulas and examples of how this production feedback

data can be applied in tactical planning processes.

For example, the first row shows that an accurate scrap rate per part value can be found

through production feedback data on the number of parts consumed and parts scrapped

per batch. The formula for calculating the scrap rate is provided, and it can be used in

the calculation of net requirements for parts. Similarly, other rows show how production

feedback data on input units, scrapped units, processing times, changeover times, and

other factors can be used to improve the accuracy of other master data for planning.

A key note is that the overview of master data does not contain capacity, despite it being

a key parameter used in production planning. This is because the capacity, in practice, is

determined by a combination of the company’s subjective decisions, such as the length and

number of shifts each day and the number of employees, rather than being an objective

value that can be captured directly from the production system.

4.3 Method for Application of Concept

The final contribution of this section is a proposed step-by-step method for the application

of the introduced concept for companies. A method is a goal-oriented and systematic

approach to resolving theoretical and practical challenges. This means that it provides

rules and instructions for achieving goals or solving problems through a structured process

(Braun et al. 2005). A method is considered valuable support for improving business

processes as it provides directions, rules, and structured developing activities that are

useful for the act of improvement (Zellner 2011).

The method took inspiration from the control method methodology (Alfnes and J. O.

Strandhagen 2000). There are four main steps in the proposed method: mapping, ana-

lysis, design, and implementation. The steps are designed to be carried out cyclically or

in parallel instead of in a strict, linear sequence. This approach enables ongoing feedback

and refinement during the implementation of the concept, and for example, allows findings

from later stages to inform and support additional data collection and analysis in earlier

stages. A prerequisite for the successful implementation of the method is cross-functional

involvement and collaboration in the company, including production managers and plan-

ners, IT, shop floor operators, forecasting, etc. The steps are described below with regard

to objectives, general activities, and the desired outcomes of each.

Step 1 - Mapping

The objective of step 1 is to map and collect data to construct a systematic representation

and thus develop a comprehensive understanding of the company’s production processes,

ongoing operations, and planning and control mechanisms. This also includes obtaining

a detailed overview of the company’s inherent data collection and its capabilities. The

37



mapping should identify production data that is presently being collected, as well as the

methods, sources, and frequency of data collection. The company should also compile a

list of production data that are not currently being collected but could be beneficial for

improving master data. In conjunction with the mapping of production data, a complete

list of the master data utilized for planning should be established.

Step 2 - Analysis

The objective of the analysis phase is to analyze the data collected in step 1. In this

step, the company should: 1) identify which production data is relevant to use as feedback

into master data for tactical planning, and 2) determine which master data for planning

should be static and which should be dynamic. The lists of master data for planning

and production feedback data from the first step serve as the foundation for the analyses.

First, master data lacking a clear link to production planning should be excluded. Then,

for each type of master data, relevant production feedback data should be identified and

links should be established (e.g. Table 8). The result is a list of the links between master

data and production feedback data. After the relevant production feedback data with

links to master data has been identified, it should be ascertained whether each master

data value should be static or dynamically determined in each planning cycle. For this,

historical production data should be analyzed to establish if or how the data fluctuates

over time and whether it is random or can be accurately predicted. Data that does not

appear to fluctuate over time can be classified as static parameters in the master data,

and the analyses can be employed to validate the values used, for example, in the ERP

system. Data that is found to vary over time should be classified as dynamic parameters,

where historical production feedback data is analyzed to accurately determine values in

each planning cycle.

Step 3 - Design

The objective for this phase is to determine, standardize, and describe how production

feedback data should be implemented in production planning in the future. This includes

defining what production feedback data to collect, how often and from where it should

be collected, and how it should be processed. Moreover, production planners and other

stakeholders involved with the production feedback data should be provided with docu-

mentation and user guides on how to use this data in planning. This includes instructions

on how often static master data should be analyzed or validated, the analyses required to

classify static or dynamic input parameters in each planning process, and the thresholds

that necessitate a reevaluation of the classification of the planning parameters. Addition-

ally, it should be established how the production feedback data should be cleaned, and, if

needed, how it should be combined with other data prior to its use for planning.

Step 4 - Implementation

The final step of the method is the implementation of the solution designed in step 3.

To ensure a successful implementation, an implementation plan should be created. The

implementation step should involve the staff directly associated with the designed solu-

tion, such as production managers and planners, shop floor operators, and IT staff. In

addition to these, other stakeholders may also be involved. For example, senior manage-

ment may need to provide support and resources for the implementation, while external
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consultants or vendors may be utilized for additional expertise or technical assistance for

the installation of production feedback data capturing systems or data management. An

implementation plan should be created. The new solution should be implemented into

the company’s planning processes, the company’s ERP system, and other information

systems or tools used by the production planners. Overall, a successful implementation

will require careful planning, effective communication and collaboration among stakehold-

ers, and a commitment to continuous improvement as the solution is integrated into the

company’s operations.

Summary of Method

The four steps are all important for effectively implementing the concept in a company.

Step 1 helps the company gain a comprehensive understanding of its internal processes

and data collection capabilities. This step involves identifying what data is currently

being collected and what additional data could be collected and also used for planning

purposes. Step 2 provides insight into the relationship between the situation on the shop

floor and the master data, and whether the master data are set optimally. It involves ana-

lyzing the collected data to determine which production data is relevant for planning and

whether master data should be static or dynamic. This step is important for establishing

links between production feedback data and master data and for determining accurate

and representative master data values. Step 3 provides guidelines on how production

feedback data should be implemented in production planning through standardized pro-

cedures. This includes defining what data to collect, how often it should be collected, and

how it should be processed. This step helps ensure that production planners and other

stakeholders have the necessary documentation to start using production feedback data

in planning. Finally, Step 4 involves the actual implementation of the solution. This step

requires careful planning, effective communication and collaboration among stakeholders,

and a commitment to continuous improvement as the solution is integrated into the com-

pany’s operations. This step is very important to ensure that the solution is effectively

integrated into the company’s operations.

These steps provide a comprehensive and structured approach to including production

feedback data in tactical planning. The method helps ensure that the solution is based

on a thorough understanding of the company’s operations and that it is tailored to its

specific needs. This will increase the likelihood of successful implementation and thus also

the potential for improving planning quality.
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5 Case Study: Brynild AS

The case study is presented in this section. First, a general introduction to the company

is given, before descriptions of its production processes, PPC, and data capture capabil-

ities are presented. Thereafter, an analysis of their planning environment characteristics,

PPC, and their data capture is conducted. The section is finalized with illustrative im-

plementation of the method in 4.3, providing suggestions for how Brynild can implement

the concept of applying production feedback data in their tactical planning in the future.

5.1 Introduction to Brynild

Brynild is a family-owned confectionery manufacturer based in Norway. The company

produces a range of products, including nuts, sugar confectionery, pastilles, and chocolate,

which are sold under several different brands, including Den Lille Nøttefabrikken, St.

Michael, Brynild, Dent, and Minde Sjokolade.

The company’s headquarters and primary production facilities are located in Fredrikstad,

Norway, where they have been since the consolidation of seven distributed production

facilities into a single centralized location in 2010. In 2021, Brynild also acquired a smaller

factory in Årjäng, Sweden. The company employs approximately 230 people and generates

annual revenue of around NOK900 million.

Brynild’s primary market is Norway, where approximately 90% of its products are sold.

The remaining 10% are sold to other Nordic countries. After production at the Fredrikstad

facilities, Brynild’s products are transported by truck to a finished goods warehouse in

Vestby, which is owned by a third-party company. From there, the products are distributed

to Brynild’s customers, all of which are large Norwegian wholesalers who supply one or

more retail chains. In total, Brynild’s products are sold to consumers at approximately

6000 sales points, the majority of which are grocery stores.

5.1.1 Market

Norwegian wholesalers impose strict requirements for delivery times and service levels

on their suppliers, typically demanding a service level of 98% and delivery lead times

of just two to three days. Given the production and logistics lead times involved, it is

essential for Brynild to maintain sufficiently high finished goods inventories to meet order

requirements. Brynild categorizes its market into four types: new product introductions,

regular demand, campaign demand, and seasonal demand:

New Product Introductions For new product introductions, sales must be anticipated

in advance. When a new product is introduced to the market, expected demand is

forecasted based on previous experience with similar product introductions. A safety

stock of approximately two months’ supply is maintained to ensure that the supply

chain is saturated with the new product.
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Regular Demand Regular demand is forecasted using a module in Brynild’s ERP sys-

tem called SAP APO. This module takes into account historical data and other avail-

able information to generate a monthly forecast for each Stock-Keeping Unit (SKU),

i.e. each product variant.

Campaign Demand Campaign demand arises from product-specific promotional cam-

paigns agreed upon between Brynild and retail chains. These campaigns have a

delivery lead time of four to six weeks.

Seasonal Demand There is seasonal demand for uniquely seasonal products and se-

lected regular products increases during Halloween, Christmas, Easter, and summer

seasons. This demand is planned four months in advance, alongside regular demand,

and is based on historical data. Production of seasonal products begins three to four

months before the season to accommodate the significant increase in demand during

these periods.

5.1.2 Production Processes

Brynild operates separate production lines and machines for each of its three main product

categories: nuts, sugar confectionery, and chocolate. Some products may move between the

chocolate and nuts sections for coating purposes, or from sugar confectionery to chocolate.

However, no other types of products are allowed into the sugar confectionery section due

to concerns about allergen contamination.

There are a total of 25 production lines across the three main product categories, with

approximately half of the machines dedicated to processing and the other half to packaging.

The production machines generally have high setup times, and the majority of material

flow is handled manually. Brynild is currently focused on automating more of its material

handling processes and has acquired several collaborative robots and automated guided

vehicles to reduce the amount of manual labor required. The production and packaging

processes for nuts are described in greater detail in the following parts.

Characteristics of the Nut Production

There are approximately 200 different inputs, i.e. raw materials and packaging materials,

and 80 different variants of finished products in nut production. Nuts are characterized

by high raw material costs and moderately high perishability. Nut production is mainly

organized into four main integrated process steps: separating, cooking (frying or dry

roasting), mixing, and packaging. There are no mandatory buffer zones between the inter-

mediates, meaning the intermediates could go directly from one step to the next. However,

this is not necessarily the case, and intermediates may be stored on the shop floor while

waiting for the next process to be ready. All finished intermediates should be packaged

on the same day, but they may be stored for up to four days before packaging if needed.

Generally, this gives a process lead time for nuts of approximately one to four days until

they are ready to be shipped to the finished goods warehouse.
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The first three steps are briefly described below, while the packaging is explained in more

detail subsequently. The process is also visualized in Figure 12:

Separating The first process is to separate the nuts from potential foreign objects. This

process is performed in a vibration separator machine. There are two vibration

separators, one of which is allocated to chili nuts.

Frying After the nuts are clean, they can proceed to be fried. There are three machines

for frying nuts with variable drum sizes and capacities, one of which is allocated

specifically for chili nuts. The chili nuts are first manually coated in flour and water

and then fried before spices are added. The largest of the two remaining machines

has approximately twice the capacity of the smaller one, and peanuts are only fried

in this due to quicker contamination of the frying oil from peanuts compared to other

nut types. This allows for higher utilization of the smaller fryer. All nuts are fried in

vegetable oil, and salt may be added to non-chili nuts during this step. The coating

of chili nuts is the only manual step in this process. There is one active operator for

each of the fryers in use.

Dry Roasting Nuts may be dry roasted instead of fried. Dry roasting is performed for

unsalted nuts. There is one machine and one operator for the dry roasting process.

Mixing The mixing process is used for nut products which consist of several different

intermediates such as salted or unsalted nuts, fruits, and chocolate-coated nuts.

There are up to three operators for the mixing process; some intermediates, such as

raisins, come in cartons. These cartons have to be manually opened by an operator

and then the raisins have to be fed through a special machine which ensures that

the intermediates do not stick together. In addition, one operator is always required

for the mixing process itself.

Figure 12: Production process
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Characteristics of the Nuts Packaging

The packaging process is of particular interest, as it is where the current infrastructure

for capturing production feedback data is installed. Additionally, the production plan-

ner initially plans for the output from the packaging line and then backtracks the plans

through the processing stage to ensure that the correct output is achieved at each stage

of production.

After nuts have undergone the relevant processing steps, they are prepared for packaging

and stored as WIP. For a few specific SKU, the products are not processed before being

packaged. The nut packaging station comprises five different packaging lines, each designed

for a specific type of primary packaging: Bosch, HDG1, Duplex, Beger, and Løsvekt. A

table showing these five packaging lines and their corresponding primary packaging types

is presented in Table 9.

There are four primary packaging types in general: pillow bags, zipper bags, boxes, and

beakers with lids. Boxes are used for pick-and-mix products, whose contents are removed

from their primary packaging in stores and placed on specialized shelves or counters where

customers can select the products and quantities they want. The remaining three primary

packaging types are also consumer units. Pillow bags and boxes are available in several

sizes. All nut bags are flushed for oxygen and filled with nitrogen to extend their shelf life,

as oxidation significantly reduces the shelf life of nut products. The interior of the nut

bags is also laminated with a special coating to ensure that they are completely airtight.

Table 9: Table of packaging lines with corresponding packaging types (Syversen 2022)

Nut packaging line Type of primary packaging

Bosch Small pillow bags

Duplex Small and medium-sized zipper bags

HDG1 Medium and large sized zipper bags

Løsvekt 2,5 kg boxes with pick and mix

Beger Plastic beakers with lid

The nut packaging process proceeds as follows. Final intermediates are first weighed

and packaged in primary packaging before undergoing quality control to ensure that the

products meet the required standards. Quality control is performed automatically and

includes checks of the weight of the primary packaging units and an X-ray scan for foreign

objects. Units that fail quality control are removed from the line, while the nuts contained

are later returned into circulation to reduce waste.

After passing quality control, the products are sent through a box maker, where they are

packed into boxes, their secondary packaging units, which serve as the final distribution

packs. These boxes are standardized in size to ensure that they can be stacked on pallets.

Boxes containing pick-and-mix products are not further packaged but proceed directly to

palletizing. Finally, the pallets are wrapped in plastic and prepared for shipment to the

finished goods warehouse. An image of a nut packaging line with its various machines is

shown in Figure 13.
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Figure 13: Image of a nut packaging line
Image provided by Brynild

5.2 Production Planning and Control and Data Capture in Brynild

5.2.1 Production Planning and Control

Brynild primarily uses a make-to-stock approach for its standard products, as maintaining

an inventory buffer is typically necessary to achieve the desired service level. For promo-

tional campaigns, a make-to-order approach is used. Nut production planning is performed

by a single production planner, who creates the production plans manually using Excel

and with some support from the company’s SAP ERP system. The production plan-

ner’s primary responsibilities include developing weekly production plans and monitoring

progress against these plans. The weekly production plans include the amount to be pro-

duced per shift. Planning is primarily performed in cyclic iterations, with some planning

activities occurring on specific weekdays and others being performed continuously.

Planning Activities

The foundation of Brynild’s planning process is demand forecasting, which is performed

using the APO module in the company’s ERP system. This is an automated process

that uses data from the previous 12 months to generate forecasts for up to 12 months

ahead. The initial monthly forecasts are then split into weekly forecasts by the ERP

system. The nut production planner considers forecasts for up to 26 weeks ahead when

planning production. The planner manually adjusts the weekly forecasts to account for

planned new product launches, campaigns, seasonal products, and confirmed orders. The

resulting output is an MPS that specifies weekly production orders in terms of the number

of distribution packs (DPAKs) for all SKU for the next 26 weeks.

In conjunction with the MPS, the production planner also performs continuous rough-cut

capacity planning to smooth production over the coming weeks. There are generally nine

shifts available each week for processing all nuts except chili nuts, which have seven shifts

available due to the need for more frequent replacement of the frying oil due to more

contamination. The production planner plans for only these shifts for nut production to

avoid overestimating weekly capacity, but extra night shifts can be added if necessary

to meet demand. Capacity is calculated based on an estimate of the average output per

shift per SKU, determined through trial and error. The total output can vary significantly

between operators and from shift to shift, so the average is considered sufficiently accurate
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for planning purposes. As of today, Brynild rarely experiences capacity-related issues, and

there are no particular capacity bottlenecks in the nut factory that must be accounted for,

however, the chocolate coating station located in the chocolate production section can be

a bottleneck in infrequent cases.

Brynild has a set safety stock for all SKUs, and the MPS is continuously updated to ensure

that the stock levels exceed the set safety stock. The values for safety stock are established

manually for each individual SKU. SKUs that are strictly produced by make-to-order do

not have a set safety stock.

The MPS is of higher levels of detail the closer they get to the present day. According

to the production planner, the plans are generally detailed for the first four weeks, and

then the level of precision is gradually decreased. He typically plans for about 10 weeks

ahead, while the later week’s inputs are an estimate to make sure that they do not run into

capacity issues that require capacity leveling. The later weeks may, for instance, also be

considered for capacity leveling due to production stopping for three weeks in the summer.

The weekly production schedule is the plan with the highest level of detail. This is

constructed manually for the following week and is finalized every Wednesday. These

schedules specify the shifts and packaging lines for each SKU, with one SKU assigned to

each shift per line. The schedules are updated as needed to account for any disruptions

that may arise. Disruptions that require re-planning are typically caused by processing

failures that affect the quality or quantity of products produced. Material shortages are

rare, as these are generally well-managed earlier in the MPS process.

After finalizing the weekly production schedule, the planner prints and sends the daily

production orders to the factory floor. At the end of each shift, digital shift reports are

submitted from each packaging line to the factory system, i.e. Brynild’s MES. These re-

ports are generally not used for further planning unless significant anomalies are detected.

The production planner’s final responsibility is to manage raw material requirements and

stock levels. Raw material requirements for weekly production orders are obtained from

the company’s ERP system and forwarded to the purchasing department as needed. An

overview of the planning activities and their associated planning horizons is presented in

Table 10.

Table 10: Table including all the planning activities for the nut production planner

Planning activity
Planning
Horizon

When
Manual/
ERP

Master production scheduling 26 weeks Continually ERP/manual

Rough-cut capacity planning 10 weeks Continually Manual

Weekly production schedule 1 day - 1 week Every Wednesday Manual

Production re-planning 1 week When required Manual

Daily production order 1 day Daily Manual

Daily shift report 1 day Each shift Manual

Raw material requirements 1 Day Continually Manually
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The production planner is also responsible for monitoring the effectiveness and perform-

ance of the production schedule. However, it is noteworthy that there are no established

procedures for verifying the accuracy of initial production plans in relation to actual out-

put. This verification could be accomplished by analyzing data from daily plans and

computing an estimated margin of error. The production planner for nuts believes that,

in general, the plans are fairly accurate, but that their accuracy may be somewhat reduced

for chili nuts.

An observation related to these PPC activities is that Brynild does not specifically classify

any of their activities specifically as MRP and CRP. This does not mean that they do not

perform tactical planning, however. The tactical planning is rather performed through

the MPS and the weekly production scheduling.

Planning Data

There are set-up and changeover times for both processing and packaging machines. Ma-

chines must be washed between the production of products that contain salt, those that

do not, and chili nuts. Theoretically, the most efficient scheduling approach would be to

produce unsalted, salted, and chili-coated nuts in that order. However, this may not al-

ways be possible due to factors such as demand or inventory levels. While the changeover

matrix used is not complex, minimizing the total number of changeovers is an import-

ant consideration. Machine set-up times are approximately 30 minutes, while changeover

times are around four hours in total.

Another significant factor in nut production planning is the shelf life of products. Pro-

duction output must be leveled according to demand to ensure that there are at least 100

days remaining until the expiry date for each product type. This is achieved by assigning

specific weights to product types based on their overall shelf life. For one packaging line,

HDG1, no weights are assigned to products due to their similar shelf lives. The BOM must

also be taken into account, as sufficient quantities of each intermediate must be available

for the mixing process. In addition, processing speed is considered when planning produc-

tion. Processing speeds, or the capacity per shift, are set as product-specific constants and

rarely change. These speeds have been estimated based on average production output and

efficiency on specific lines. Some products have penalized production outputs to account

for additional changeover times that may be required. The production planner stated that

machine speeds are not changed lightly due to the coordination required with operators.

Since the planning process is conducted manually, the majority of the master data used

for constructing the weekly production schedule and the MPS are set in Excel and not in

the ERP system. The function, however, is similar to how it would function in an ERP

system. The master data in the ERP system is primarily used for forecasting and capacity

leveling for the later weeks in the MPS. In addition, some of the master data in the ERP

system are merely approximate values, since they are just used for forecasting and general

capacity leveling in the future.
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5.2.2 Data Capture

Production feedback data is continuously captured from sensory systems installed on all

five nut packaging lines and forwarded to their MES. This system for capturing production

feedback data has been operational for the past two years, although some packaging lines

had the systems installed at a later date. As a result, the system has already processed

and stored a substantial amount of data. All the production feedback data is stored in

SQL databases.

Each packaging line is equipped with an operator panel HMI, allowing operators to select

the products to be packaged during each shift. The MES retrieves all relevant product

data, which is then stored alongside the data acquired from the sensory systems. This

enables a detailed analysis of how different product types behave on the packaging line.

The system captures operational data such as machine speed, alarm types, operator events,

and breaks. The MES is also connected to Brynild’s ERP system and a web application

for data visualization. An overview of the data acquisition system is depicted in Figure

Figure 14.

Figure 14: Visualization of the data capturing system
Adapted from Brynild

5.2.3 Current Applications of Data

The data acquired by the system is currently utilized for advanced OEE calculations and

alarm classifications during the packaging process. These calculations take into account

the operational data from each machine on the packaging lines, and the parameters used in

the calculations can be adjusted at any time. This allows for fine-tuning of the measures

to produce precise and representative OEE values. For example, breaks are currently

factored into the OEE calculations as a negative value, whereas they were not previously

considered. The OEE values are also differentiated by individual products, allowing for a

more detailed analysis that takes into account the different packaging lines and products.

This information is visualized through easily interpretable statistics in the web application.

The equations used for their OEE calculations are:
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OEE =
Actual production

Maximum possible production
= Availability · Speed ·Quality

Productive time

Batch time
= Availability

Amount produced

Productive time
= Average speed,

Average speed

Set speed
= Speed

1 − Waste

Amount produced
= Quality

The web application also generates comprehensive shift reports, which provide detailed

information about the data captured on the packaging line during each shift. These reports

include information about the difference between the actual and preset packaging speeds,

alarms, and breakdowns, as well as data about the physical inputs, outputs, and general

properties of the packaging shifts.

5.3 Analysis of Current Situation

A qualitative analysis of Brynild’s PPC was conducted. The analysis was performed with

the intention of identifying the potential for improving their PPC operations through smart

PPC, challenges regarding their current operations, and other uses for the production

feedback data they collect.

5.3.1 Planning Environment Characteristics

To evaluate and categorize the PPC, the framework from Rahmani, Romsdal, Sgarbossa

et al. (2022) was applied. This provides a structured overview of the operational char-

acteristics and an assessment of the need for smart PPC solutions. The result is shown

Table 11 and explained below.

For the product category, there are over 200 different inputs and packaging types and

over 80 different variants of finished products. Hence, both the product complexity and

product variety variables can be classified as high. Regarding the product life cycle, most

standard products experience a long life cycle over several years or decades. But Brynild

also introduces a lot of new products to the market, many of which have very short life

cycles. Therefore the overall product life cycle can be characterized as medium length.

Lastly, product volumes and variability is high due to mass production and high variety

in product volume from seasonal demand and promotional campaigns.
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Table 11: Brynild’s planning environment characteristics with needs for smart PPC

Category Variable Characteristics
Need for smart PPC

* ** ***

Product

Product
complexity

High number of
inputs and finished
products

Low Medium High

Product
variety

High variety of
products and
packaging types

Low Medium High

Product life
cycle

Long life cycle for
most standard
products, short for
many new product
introductions

Long Medium Short

Product
volume and
variability

High product volumes
and volume
variability

Low Medium High

Market

Delivery
lead time

Two to three days
delivery of products

Long Medium Short

Delivery
lead time
variability

Low variability in
the delivery lead time

Low Medium High

Demand
variability

High degree of
seasonality and many
promotional
activities gives high
variability in demand.

Low Medium High

Ability to
keep
inventory

Moderately high
perishability of
raw materials and
intermediates.

High Medium Low

Process

Process
lead time

Medium process
lead time

Short Medium Long

Process
flexibility

Limited capacity and
fixed process steps

High Medium Low

Process
complexity

Four main, integrated
processing steps.
Medium number of
different routings.

Low Medium High

Supply
variability

There can be
some variability
with the supply of nut
products.

Low Medium High
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For the market category, delivery lead time can be classified as short due to their customers

demanding a delivery lead time of two to three days. The variability of this lead time is thus

also low. Demand variability is high also due to the high degree of seasonality of many

promotional campaigns. Nuts have, like many other food products, high perishability

compared to other product categories. Thus, the ability to keep inventory is low.

For the process category, the process lead time is between one and four days, which can

be classified as medium. There are rarely capacity-related issues, but the processing steps

and routings are fixed, hence the process flexibility is classified as medium. The process

complexity is medium due to a medium number of different routings between four main,

integrated processing steps. Finally, the supply variability is also classified as medium due

to some variability from nut suppliers.

The assessment shows that many of the characteristics of the nut production correspond

with a high need for smart PPC; seven variables are in the least favorable setting, four

in the medium setting, and the final variable is currently in the most favorable setting.

If scores are assigned from one to three for each variable where one is given for variables

with the most favorable setting, two for medium, and three for the least favorable setting,

the nut production planning environment scores a cumulative 29 out of a maximum of

36. This indicates that Brynild may gain significantly from implementing smart PPC

solutions.
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5.3.2 Analysis of the PPC

Based on the literature study it is evident that the quality of production plans is important,

and that it is highly reliant on the quality of master data. Currently, Brynild does not

experience any capacity-related restrictions related to the production of nuts. This allows

their current simple, manual approach to production planning. The master data utilized

for production planning is static, with defined values that remain constant between shifts

or weeks. The values are established through trial and error without validation of their

accuracy. Furthermore, the planning is performed mostly periodically while their demand

is continuous. As a result, the PPC does not accurately reflect the current situation

of the shop floor. While these characteristics simplify the planning processes, they also

impede the overall accuracy and do not allow for any optimizations of nut production

planning as it currently is performed. And given the high cost of nuts as raw materials and

strict service-level requirements, Brynild is, as of now, also reliant on accurate production

plans to minimize waste and thus reduce overall production costs, and reach customer

requirements.

In case of potential future needs for increased capacity, the inaccuracy of the production

planning process may represent a bottleneck, inhibiting the full utilization of the produc-

tion line capacity. As such, methods for optimizing planning procedures are appropriate,

and alongside the planning environment characteristics indicate that Brynild should con-

tinue exploring options regarding smart PPC.

5.3.3 Opportunities From the Data Capture

Brynild is successfully utilizing some of the data they are capturing in their daily operations

through the OEE calculations. These calculations provide insight into the effectiveness of

the packaging machines, offering opportunities for future optimization on the packaging

lines. However, as acknowledged by Brynild themselves, they are not currently realizing

the full potential of the data they are capturing. Additionally, the large amounts of data

they have collected over the past two years remain largely unused.

The data collection is currently limited to the nut packaging lines, which means that data-

driven optimization of other processing steps is not achievable as is. By implementing data

capture infrastructure across all processing stages, Brynild could conduct analyses and

optimizations of material flow and get a similar overview of the efficiency and utilization

of all the processes through OEE calculations.

One potential application for production feedback data that has been proposed is the

utilization of data for improved machine alarm classification. By analyzing factors such

as the machine on which the alarm occurred, the error code, and the product being

packaged at the time, it may be possible to determine the underlying causes of alarms.

This could increase the uptime of Brynild’s packaging lines by reducing the frequency

of stops and minimizing disruptions to operations. Another potential application is the

use of production feedback data for preventative maintenance, which Brynild is currently
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collecting data to improve through machine learning.

Finally, there is the opportunity of using the production feedback data to improve the

accuracy of production planning through master data. The data can be used to classify

master data, or used to validate or optimize the static values according to the introduced

concept. This is explored further in the next section.

5.4 Proposals for the Application of Production Feedback Data in Tac-

tical Production Planning in Brynild

Following is a proposed design for the application of the concept presented in Section 4

for Brynild. This design follows the four-step method, and aims to address three primary

challenges identified in the analysis of the case company: 1) the usage of simple planning

procedures, 2) the inability to fully utilize the production feedback data currently being

collected, and, 3) they only capture data from the nut packaging line, which does not

present a realistic depiction of the situation on the shop floor. The goal is to illustrate how

Brynild can start incrementally adopting smart PPC solutions to support their challenging

planning environment characteristics.

5.4.1 Step 1 - Mapping

Objective: map and collect data to construct a systematic representation and thus de-

velop a comprehensive understanding of Brynild’s production processes, ongoing opera-

tions, and PPC mechanisms.

Summary of Findings

The findings presented in Section 5 thus far are the results of the preliminary mapping of

Brynild. Below is a summary of some key observations:

• Separating, cooking, mixing, and packaging are the four main production processing

steps.

• Production feedback data is only captured in the packaging step.

• There is one production planner responsible for planning, and the planning can be

categorized as manual and experience-based. The planner uses Excel to construct

the production plans with some support from the ERP system.

• Brynild does not perform MRP & CRP specifically, the tactical planning is a com-

bination of the weekly production schedule and the nearest weeks in the MPS.

• The way Brynild currently performs PPC can only work because they have excess

capacity.

• The master data is set through trial and error, and there are master data set in both

Excel and the ERP system.

• There are no established procedures to verify the accuracy of production plans.
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Table 12: Master data for planning

Excel ERP

• Safety stock
• Changeover times
• Processing speed

(capacity per shift)
• BOM

• Takt time
• Production time
• Batch size

Production Feedback Data

The production feedback data records Brynild currently collects and utilizes for OEE cal-

culations are collected every time the packing machine starts and stops, meaning there is

generally one record of data per batch. These records include the following variables: re-

port id, oee, availability, speed, quality, waste, startUnix, endUnix, date, start

time batch, stop time batch, total duration, time for breaks, time for stops, art-

icle number, article name, article weight, amount produced, and input volume

(in weight).

Table 8 in Section 4 presented master data for planning and linked each to examples of

relevant production feedback data. These production feedback data are thus used as a

basis for the suggested master data for Brynild to collect. By comparing this list to the list

of production feedback data variables above, it is apparent that the types of data Brynild

is collecting are relevant for the application in tactical production planning. However,

since the four main production processes are considered integrated, they each have to

be considered in unison when constructing the production plans. Since the data is only

collected from the nut packaging line, analyses of the current data are not sufficient to

provide a holistic depiction of the situation on the shop floor. Therefore, Brynild will have

to install additional sensory systems and start collecting more data before the concept of

applying production feedback data in tactical production planning can be fully utilized.

Master data

With an overview of the relevant operations and production feedback data established,

the final part of the mapping step is compiling a list of master data used for production

planning. As previously mentioned, Brynild has master data both in Excel and in the

ERP system. The master data in Excel is primarily used for constructing the MPS and

weekly production schedules. There are specific master data for each SKU. A selection of

master data used for planning purposes is presented in Table 12.

To supplement these, Brynild could consider incorporating master data such as scrap rates

and quantity coefficients into their planning process, as they are collecting the required

data for making such calculations.
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5.4.2 Step 2 - Analysis

Objective: analyze the data collected in step 1 and: 1) identify which production data

is relevant to use as feedback into master data for planning, and 2) provide examples of

how to determine which master data should be static and which should be dynamic.

Brynild does not currently collect the necessary data to perform the desired data analysis

for this study. This step will therefore only focus on outlining the steps required to

perform such an analysis. It will provide examples of how production feedback data can

be analyzed and utilized to determine which master data should be dynamic and which

should be static.

Relevant Production Feedback Data

In order to determine which production feedback data Brynild captures that can be ana-

lyzed to determine master data values, Table 8 from Section 4.2, which presents links

between typical master data and production feedback data, is used as a reference. Any

production feedback data that is not represented in this table is excluded from consid-

eration. This leaves start time batch, stop time batch, total duration, time for

breaks, time for stops, amount produced, and input volume (in weight) as the

relevant production feedback data from this data set.

Determining Static or Dynamic Master Data

The process of determining if master data should be classified as static or dynamic can

involve analyzing historical production data through time series analysis and investigating

whether the values change over time. If production feedback data that is linked to a specific

master data remains relatively constant over time, the master data should be classified

as static. However, if the production feedback data varies over time or in response to

other factors, the master data should be considered dynamic. The variations have to

be predictable and patterns need to be discovered through analysis of the production

feedback data, or through other available data such as which operator was responsible for

each batch. As mentioned in Section 3.2.2, ML can be a powerful tool for such pattern

recognition, and it can also be useful for finding correlations between master data and

different production feedback data. However, ML requires large amounts of data to train

on. Therefore, Brynild can not properly apply ML unless data has been captured over a

longer period of time.

To illustrate how master data can be determined as static or dynamic in Brynild, the

example from Section 4.2 regarding the quantity coefficient of the BOM can be continued.

Suppose Brynild is producing a nut product consisting of a single nut raw material which

is processed in several steps. The final product should consist of 100 nuts. If analysis

of the production feedback data on the raw material input volume and the number of

finished products produced per batch show that the resulting quantity coefficient is mostly

constant, with small and few variations between different batch sizes and machines, the

master data should be classified as static. The predominant value should then be set
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as the master data value to ensure accurate planning. This is visualized in Figure 15.

This shows an example of this analysis showing a possible time series over a period of 80

batches. Most of the values are approximately 111, i.e. there needs to be an input of 111

nut raw material units to produce an output of 100, the required number of nuts per one

finished product. The variations are generally small, with very few larger deviations. In

this case, the master data quantity coefficient value could be set to 111, ensuring that the

master data is accurate and facilitating high planning quality.

Figure 15: Example of a time series analysis indicating a static quantity coefficient

An analysis of the same production feedback data as the example above could also show

a large variation in the quantity coefficient over time. This can indicate that the master

data should be dynamic. Further analysis is then required to determine which factors

on the shop floor, if measurable, lead to the variations. The master data would have

to be analyzed in relation to other production feedback data to find correlations. If a

pattern is found, then production feedback data can be analyzed in real-time for each

planning cycle to dynamically determine the optimal value of the quantity coefficient. If

no pattern is found, an estimated value will have to suffice. An example analysis of this,

showing a potential dynamic quantity coefficient, is shown in Figure 16. In this figure, the

quantity coefficient varies between 109 and 115. Given the high cost of raw nut materials,

such significant variations in the quantity coefficient could result in large deviations in

the production plans from the actual situation when using an average value for planning,

which leads to substantial expenses over time. As such, it is crucial to ensure the accuracy

of the master data to mitigate these costs.

For master data determined to be static, other analyses may be required to validate or

optimize the values. For instance, suppose the initial analysis indicates that the processing

speed master data should be static. In Brynild, the processing speed is expressed in terms

of the amount produced per batch. The objective of this analysis is to identify the optimal

processing time per unit that maximizes total production output by balancing the trade-off

between increased waste at higher speeds and reduced base output at lower speeds.
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Figure 16: Example of a time series analysis indicating a dynamic quantity coefficient

5.4.3 Step 3 - Design

Objective: determine, standardize, and describe how production feedback data should

be implemented in production planning in the future.

Implementing a new production planning system at Brynild may be disruptive to current

operations if the system is not designed and developed carefully (Oluyisola 2021). The lit-

erature study also found that many companies generally struggle in the implementation of

smart PPC. As such, it is important to carefully design the new system with consideration

for the principles of implementing a smart PPC system, as outlined in Oluyisola (2021).

To summarize, the system should be designed to integrate with the existing production

system and the system should be scalable and flexible.

Data Capture

Brynild will have to install additional sensory systems to enable the required analysis for

the application of feedback data into production planning. A recommendation is to install

similar sensory systems as they already have on the packaging lines, as this will simplify

integration with the existing systems and provide opportunities for standardization of the

data. It is also recommended to maintain the practice of collecting one data record per

batch, as this facilitates the acquisition of the necessary feedback data for analysis as

mentioned.

There are several options available for Brynild to consider regarding the capture of data.

One approach involves collecting data solely from essential data capture points. These

points are defined as those without which no meaningful analysis can be conducted. Two

such essential points exist in the processing: at the beginning of separation and at the

ending of packaging, i.e. at the start and end of the processing. Analysis of production

feedback data from these points can be utilized for the determination of static and dynamic

master data about total processing time and the scrap rate per product. An alternative

approach involves capturing data from the beginning and end of each processing step which

can allow for analysis that gives a holistic depiction of the situation in each processing

step. These secondary data capture points can collect data that allows for the analysis
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of additional master data regarding the processing time and scrap rate per resource, in

addition to providing valuable information on the distribution of non-value and value-

added time in the production process. There could also be added feedback points at

the beginning of each set-up or changeover of the machines to facilitate optimizations of

changeover time master data.

Figure 17 shows the possible data capture points from the four processing steps. The

figure presents a simplified version of the processing stages and data capture for enhanced

clarity. In practice, the system would require data capture from each processing machine,

including six machines for separating, cooking, and mixing and five packaging lines cap-

turing production feedback data. The system would initially collect data from the sensors

on the data capture points to the HMI before transmitting it to the MES and then to the

SQL database before processing and integration into the master data.

Figure 17: Examples of data capture points

The first method of data capture offers a simplified approach that yields significant inform-

ation about the process through the analysis of production feedback data. This approach

has the benefits of lower financial and resource-related investment costs and ease of im-

plementation in tactical planning. However, it has the disadvantage of providing limited

data, as it does not provide information about individual processes or the distribution

of non-value-added and value-added time in production. As such, it is recommended to

install additional data capture points at each processing step, as well as at the start of

each set-up. This would facilitate the optimization of a greater amount of master data

and provide opportunities for larger improvements in planning quality. In addition, the

data can be useful outside of merely using it to improve the master data. For example,

the inclusion of more data capture points would enable calculations of OEE for the other

processing steps, providing a more comprehensive insight into the production processes.
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Regardless of the chosen approach, it is essential for the system to maintain records of

the various product batches throughout the production process to allow for analysis of the

entire process. For instance, consider two products that utilize the same raw material but

require different processing steps. To optimize production efficiency and meet production

goals, the planner may want both products to begin processing in the separating process

simultaneously. In this scenario, the system must be capable of recording the allocation

of raw materials to each SKU and tracking the intermediates throughout the production

process until packaging is complete.

Data Preparation

Once the approach for data collection has been determined, it is necessary to establish

procedures for validating, preparing, and processing the data for analysis. The current

approach for preparing data can serve as a foundation for developing procedures for hand-

ling the newly collected data. The current data is stored in SQL databases, which can

be expanded to include the new data. The OEE data is processed and data types are

combined more than what is required for the new data. For instance, the ”Speed” data is

calculated from the amount produced, productive time, and the set speed of the machines.

Disaggregated values would be sufficient for the application of production feedback data

in production planning. The data would require cleaning through the removal of outliers

related to measurement or processing errors, such as records that are just a few seconds

or where nothing was produced. This is because they do not represent an actual situation

on the processing machine and they can thus distort the analysis.

Instructions on how to utilize the production feedback data in planning

With procedures for capturing and preparing data established, the final part of this step

includes providing suggested measures, or instructions, for the production planner and

other relevant employees to enable the inclusion of production feedback data in production

planning. This part is also based on the analysis performed in step 2.

1. How often to analyze or validate master data

The dynamic master data should be updated for each planning cycle. In Brynild’s

case, the weekly production schedule is finalized every Wednesday. Thus, the ana-

lysis should be performed and concluded so the production planner has time to

incorporate the new master data values in the schedules. In the case of the MPS,

which is updated continuously, it should suffice with weekly updating of the master

data as well due to the lower accuracy of the plans. Additionally, the data should

be analyzed and updated in response to large events or disruptions.

The static master values should be validated periodically, but it should not be ne-

cessary to evaluate them at the same frequency as the dynamic values. A suggestion

could be to perform validation at the beginning of every month to ensure that the

values do not deviate too far from reality and thus negatively affect the planning

quality for long periods of time.
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2. The analyses required to classify the master data

Adding production feedback data in the tactical planning of Brynild will require a

range of different algorithms and methods for analysis. In this proposed design, only

time series analysis and general ML have been briefly discussed. Time series can

be performed with and without the use of ML, and ML is a broad term including

many different methods and algorithms. Thus, more research and examinations of

the data are required to provide a full assessment of what is needed to analyze all

the different data.

3. The thresholds that require a reevaluation of the classification of the

master data

The production processes and operations in Brynild are likely to change with time.

Thus, the classifications of static and dynamic master data are not meant to be static

themselves. Therefore, thresholds should be established that trigger reevaluation.

Master data that was previously static may have larger variations over time due to

changes in, for example, machinery and equipment, raw material quality, or product

specifications. The opposite is true for dynamic master data. As variations in the

master data will change the resulting production plans to a varying degree, the

thresholds will have to be individual per master data and set on a basis of cost-

benefit. Brynild should also determine whether the static master data should be

continuously monitored, or if analysis at regular intervals suffice.

Figure 18 illustrates the process of data analysis in Brynild as a data pipeline. The pipeline

starts with raw data sets, which are then validated and prepared for analysis. After the

analysis through time series, machine learning or other methods is complete, the results

are deployed and the relevant master data values are updated. These master data values

now serve as the new foundation for tactical production planning.

Figure 18: Pipeline for data analysis
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5.4.4 Step 4 - Implementation

Objective: provide suggestions for how the solution designed in previous steps can be

implemented.

After the first three steps have been conducted, Brynild can move toward the implement-

ation of the designed system. While the implementation of a new production planning

system at Brynild has the potential to disrupt current operations if not carefully planned

and prepared for, the design of the concept should enable a smooth transition without

interrupting ongoing operations. Inherently, the analysis and updating of most master

data values should not result in disruptions either.

Implementation plan

A concise implementation plan should be created with expected time frames for milestones.

The plan should encapsulate the installation of the data capture systems, the beginning of

the data capture, the preparation of data, the establishment of procedures for analyzing

the data, and the necessary steps to include the production feedback data in production

planning. An implementation plan should also include an incubation period where data

can be collected and ML models can be trained (Oluyisola 2021). In this period, the data

can be used for OEE calculations of the other processing steps, which Brynild already has

established procedures for. OEE calculations would require the addition of data capture

points from the beginning and end of each processing step.

Risk assessment

While not included in the original method, Brynild should perform a risk assessment during

the implementation step. There are risks associated with making changes to operations,

and Brynild as a SME does have a limited research and development budget. Hence, it it is

crucial for the company that the implementation is not disruptive to their current planning

and control operations. Some risks are mitigated since Brynild is already familiar with the

installation of data capture systems and the application of the data. If the application of

production feedback data in their production planning were to be unsuccessful, the newly

installed systems would still provide valuable data for monitoring their production.

Who should be involved

During the implementation phase of the concept, it is important to involve key personnel

from different functions to ensure that the implementation is successful. This includes

the nut production planner, the shop floor operators, production managers, and staff

responsible for the data infrastructure and capture processes. There should also be a

representative from senior management overseeing the implementation. Staff who were

involved in previous data capture installations can provide valuable support during the

start-up phase of the data and its preparation. Brynild might also have to hire external

consultants for support with the data handling and analysis, and will likely require external

vendors to support the setup of data capture systems.

60



6 Discussion

The primary objective of this thesis was to examine how production feedback data can be

applied in production planning in order to increase planning quality. This was addressed

through the answers to two research questions, in which findings from the literature study

and case study are discussed in the following, in relation to the proposed concept. To

finalize the discussion, the main limitations of this research and suggestions for future

research are presented.

6.1 Research Question 1

RQ1: Which production feedback data is relevant for improving the accuracy

of master data used in tactical planning?

This study has identified relevant production feedback data for tactical production plan-

ning. This has been compiled in a format easily communicable to manufacturers and is

shown in Table 8, as presented in 4.2. This includes an overview of links to relevant master

data within the scope of this thesis and was constructed as a part of the concept intro-

duced in this study. A prerequisite for generating the list of relevant production feedback

data was to compile a comprehensive list of master data from scientific and ERP literat-

ure (Table 7), and study this data. Then, links between the master data and production

feedback data could be established based on the characteristics of the master data and

how they relate to the situation on the shop floor.

Findings from the literature study did not provide specific examples of relevant production

feedback data in the context of applying data for tactical production planning purposes.

However, the insights from the literature study and case study had applications beyond

directly presenting the answers to the research question. Findings from the literature

study in Section 3.2.2 showed that production feedback data typically could include in-

formation about the status of production jobs, the workstations, set-up and processing

status, in addition to location, production volume, and inventory information (Busert and

Fay 2018; Schuh, Thomas et al. 2014). These findings coupled with Table 7 served as the

theoretical foundation which allowed the list of relevant production feedback data to be

derived from the study of master data. The literature study also identified a number of

articles addressing the use of production feedback data for PPC (Reuter and Brambring

2016; Schäfers et al. 2019; Schuh, Thomas et al. 2014), indicating a potential for the

application of production feedback data in tactical planning.

The case study illustrated how companies collect and apply production feedback data,

such as through OEE calculations for monitoring production resources. Brynild collects a

range of production feedback data that they use for this purpose, shown in Section 5.4.1.

The production feedback data collected by Brynild provides information about the status

of production jobs, set-up and processing status, and production volumes, and thus cor-

responds with the types of data presented in the literature study. The case study also

contributed to understanding difficulties regarding the application of production feedback
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for the purpose stated in this thesis. To enable the analysis of production feedback data

to improve the accuracy of master data, companies must collect data from multiple cap-

ture points to obtain sufficient information from the entire production process, from raw

materials to packaging. For example, it is insufficient to only analyze data from one

specific processing step when determining the quantity coefficient of a product because

the coefficient considers the total number of raw materials required to produce a single

product.

Table 8 shows production feedback data linked to different master data used for tactical

planning. The master data is divided into three main categories, namely part or compon-

ent, product, and resource. The master data are all characterized by being related to the

situation on the shop floor processing, which is the enabling factor that allows assessments

of their values through information gathered from the shop floor, i.e. the linked produc-

tion feedback data. Establishing the master data values based on production feedback

data should enable the increase of accuracy and reliability of the master data, as they are

based on an accurate representation of the current conditions of the shop floor (Geiger

and Reinhart 2016).

Increased master data accuracy should contribute to increased planning quality (Hees

and Reinhart 2015), and provide improvements for several aspects of tactical production

planning. Increasing the accuracy of master data in the part or component category

can improve net requirement calculations through accurate information on the ratio of

defective parts, thus improving the quality of MRP. For the product category, increased

master data accuracy can improve the precision of the BOM, which can help planning by

better representing the time and resources required to produce each product. It can also

help with gross requirement calculation. Improved accuracy of resource master data can

be beneficial by increasing the quality of the CRP.

By specifying an overview of relevant production feedback data that can be used for im-

proving the accuracy of master data, a foundation has been established for the application

of such data in tactical planning. This is addressed further in the next section.
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6.2 Research Question 2

RQ2: How can production feedback data be applied in tactical production

planning?

The second research question is relevant to any manufacturer. Despite the amount of

literature on the topics of smart PPC and production feedback data, a lack of practical

guidance and concrete solutions were revealed for the application in tactical production

planning. Consequently, a significant portion of this study was dedicated to developing

a concept for applying production feedback data in tactical production planning, and

further, a method for manufacturers to follow to implement the concept in practice.

6.2.1 The Concept for Applying Production Feedback in Tactical Production

Planning

In answering this research question, it is important to consider some of the limitations

of existing hierarchical PPC frameworks, such as the one by Oluyisola (2021). These

frameworks only conceptually link the lower planning levels with the higher planning

levels through feedback loops on performance, without specifying what type of data is

relevant and how this information can be applied in the higher-level processes.

The new conceptual model for hierarchical PPC frameworks in Section 4.1, shown in

Figure 10, responds to the lack of specification in previous PPC frameworks by establishing

the feedback loops from the operational to the tactical level as production feedback data

from the shop floor, which this study then posits can be analyzed and fed into master data

for the tactical planning processes. Further, the concept suggests that master data should

both be static and dynamic, instead of the traditional view of master data as something

static that is created once and rarely changed thereafter. Figure 11 shows how both static

and dynamic master data can be incorporated in the MRP process. Thus, production

feedback data in tactical production planning can have two primary application areas:

1) to validate and monitor static master data, and 2) to dynamically determine variable

master data.

Incorporating production feedback data into tactical production planning and allowing

master data to be dynamic rather than just static should offer several advantages over

traditional approaches to tactical production planning. The utilization of production

feedback data expands the data foundation used for planning and ensures that the master

data is based on current and realistic information which accurately represents the situation

in the company. This addresses one of the main challenges of traditional PPC introduced

by Kurbel (2016). This challenge is related to the lack of correspondence between the

real-life situation on the shop floor and the planned situation, and improving this can

help enhance plan stability. In addition, validating the accuracy of master data through

the use of production feedback data ensures that the planning is based on accurate and

reliable data, contributing to increased planning quality and ensuring the overall success

of PPC (Hees and Reinhart 2015). Lastly, by reducing the reliance on humans in order
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to establish the data foundation used for planning, several of the prevalent data quality

issues experienced in PPC highlighted by Lindström et al. (2023) can be reduced.

6.2.2 The Method for Applying the Concept in Companies

Having established conceptually how production feedback data can be applied in tactical

production planning, the method for applying the concept in companies contributes fur-

ther to the answer to this research question. A method provides valuable support for

improving business processes through a structured process (Braun et al. 2005; Zellner

2011). The method consists of four main steps: 1 - mapping, 2 - analysis, 3 - design, and

4 - implementation. The steps are discussed below in relation to the literature study and

the illustrative application in Brynild in the case study.

Mapping focuses on developing a comprehensive understanding of the current production

processes, PPC, and data collection capabilities of the company. This step highlights the

importance of analyzing the current situation and data before further steps are carried out.

The mapping of the case company highlighted some differences between how companies

conduct PPC and the way it is presented in the literature. Brynild does not perform

the traditional tactical production planning processes MRP and CRP, but the tactical

planning is rather a combination between the weekly production scheduling and MPS.

They also do not solely rely on master data from the ERP system for planning, they also

have master data set manually in Excel. The case study also confirms some other findings

from the literature study that production is often carried out manually with the support

of spreadsheet solutions and that the decisions regarding PPC are highly reliant on expert

experience (Man and J. O. Strandhagen 2018; Rahmani, Romsdal, Sgarbossa et al. 2022).

Additionally, the case study demonstrated that master data is rarely updated and may be

based on estimated values without verification of their accuracy. Lastly, the case study

provided valuable insight that companies that are collecting production feedback data

may not collect sufficient data to apply the concept without adding more infrastructure

for capturing data. This does, however, not mean that the application of the concept is

infeasible for Brynild and companies in similar situations. Rather, it means that more

extensive initial preparations will likely have to be conducted before applying the concept

further for many companies. This emphasizes the importance of thorough mapping as a

prerequisite for implementing smart PPC solutions further.

In the next step, analysis, the data collected through the preceding mapping is analyzed.

Analyzing the production feedback data is required to validate the accuracy of static mas-

ter data in the company, and to determine accurate dynamic master data values in each

planning cycle. Due to the lack of quantitative analysis in the application of the concept

in Brynild, the case study is largely inconclusive for empirically assessing the effectiveness

of this step. The literature study, however, presents a recent study by Rahmani, Roms-

dal, Syversen et al. (forthcoming) that illustrates that even small deviations in master

data accuracy have an effect on production schedules. Tactical production planning is

performed at a higher level in the hierarchical PPC frameworks, with its outputs having

a direct impact on the production schedules. Thus, it can be assumed that the same
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effect is prevalent in tactical planning as well, highlighting the importance of conducting

a thorough analysis of the master data to improve its accuracy.

When data has been analyzed and static and dynamic master data has been determined,

the next step consists of designing the system for applying production feedback data in

the tactical planning of the company. Findings from the literature study suggested that

it is essential that the system is designed to integrate with existing production systems

and that the system is scalable and flexible (Oluyisola 2021). As was highlighted in the

mapping, Brynild does not collect data from sufficient data collection points. If more

data-capturing points are required, carefully deciding where these should be is a pivotal

decision to make during the design phase. Adding more data capture points increases the

data foundation and allows for more use cases of the data, also outside of the application

for tactical production planning. These benefits have to be weighed against the additional

cost of installing more data-capturing infrastructure and more complex data management

and analysis as a consequence of more data.

The final step of the method involves implementing the designed system. It is crucial to

be meticulous during this step to ensure that the company can successfully integrate and

apply the concept within its operations. A finding from the literature study suggests that

an incubation period should be included in the implementation plan of a smart PPC sys-

tem. During this incubation period, data can be collected and ML models can be trained

(Oluyisola 2021). The proposed implementation step did not specify this as a part of the

implementation plan, although it should have been addressed. Numerous data analysis

techniques, such as ML, require substantial amounts of data before meaningful analysis

can be conducted. In addition, during the case study, it was discovered that the method

for applying the concept did not specify that the risks associated with the implementation

should be assessed. The introduction of a new procedure for conducting tactical planning

is a significant change to the overall planning operations of a company, and there are

thus associated risks with the implementation of the system (Schuh, Anderl et al. 2017).

Therefore, a risk assessment should be performed to identify potential challenges, risks,

and the potential economic impact of successful or failed implementation. While a risk

assessment should be performed regardless of company size or budget, it will be partic-

ularly important for SME’s due to their limited budget and capabilities for research and

development. The implementation step is thus expanded to encompass these elements

to provide more holistic guidance and direction for companies in the application of the

concept in accordance with design science and abductive reasoning.

A finding from the literature state that many companies struggle in the implementation

of smart PPC technologies (Bean and Davenport 2019; Oluyisola 2021). This finding

highlights the importance of providing guidance and practical approaches to support com-

panies in their efforts to implement these solutions and realize their benefits. By offering

clear and actionable advice through the method, companies may be better equipped to

implement the concept of applying production feedback data in their tactical production

planning and thus benefit from increased planning quality.
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6.3 Limitations

This study was conducted by means of a qualitative concept development phase with an

illustrative proposal for the application of the concept in the Brynild. Thus, the most

prominent limitation of this study is the absence of a quantitative analysis of data to

demonstrate the effects of implementing the proposed concept in real-world companies.

This limitation was due to Brynild not having the required data for analysis. As a result,

the study was unable to provide empirical evidence to support, or reject the concept.

Another limitation is that the list of master data for planning linked to relevant production

feedback data Table 8 is not exhaustive. The data will vary depending on company-specific

characteristics of the data capture, and operations.

The concept was specifically tailored for a mass production environment with fixed pro-

cess steps and routings. As such, the production feedback data presented does not fully

encapsulate the characteristics of other production environments.

The idea of dynamically determining master data values has not yet been implemented

in practice. Thus, the feasibility of dynamically adjusting master data in ERP and other

planning tools has yet to be determined. Additionally, the impact of using dynamic master

data values on coordination with shop floor operators and production logistics has not been

studied.

6.4 Suggestions for Future Research

The case study’s application of the concept lacked empirical analysis. As a result, fu-

ture research should be conducted with a focus on fully exploring the concept’s potential

through the addition of data analysis. There are several assessments that can be made.

Firstly, comparing the results of using approximate master data with accurate master data

values validated through the analysis of production feedback data for tactical production

planning. The effect of including dynamic master data should be investigated, studying

how it would affect production operations. This will provide a more comprehensive un-

derstanding of the concept’s capabilities and limitations and will help to identify areas for

further development and improvement. The concept should also be applied and tested in

various production environments.
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7 Conclusion

This thesis has examined how production feedback data can be applied in tactical produc-

tion planning in order to increase planning quality. It was found that production feedback

data is relevant for providing information about the situation on the shop floor and that

this should be considered in tactical planning to ensure that the plans represent the real-

life situation, increasing planning quality. The first research question considered which

production feedback data is relevant for improving the accuracy of master data used in

tactical production planning, and the second research question considered how production

feedback data can be applied in tactical production planning.

An overview was established that links relevant production feedback data with master

data used for planning. The accuracy of the master data can thus be increased by better

representing the situation on the shop floor. This overview includes specific examples of

production feedback data that are applicable in the context of tactical production planning,

thereby addressing the first research question.

Production feedback data can be applied in tactical production planning through master

data for planning. A concept was developed, which included a conceptual model showing

how the operational and tactical planning levels can be linked by applying production

feedback data in the master data used for the tactical planning level. The concept also

challenges the traditional view of master data as inherently static and proposes that some

master data should be dynamically determined to better represent the actual situation on

the shop floor. This is illustrated in a second conceptual model, where production feedback

data is applied to both static and dynamic master data of the MRP for net requirement

calculations. This concept provides a partial answer to the second research question.

In addition, a method for applying the concept in practice was developed. Companies

can follow the proposed method to implement the use of production feedback data in

their tactical planning. The method, consisting of four main steps, recommends that

companies should start with mapping their production and planning operations before

production feedback data is analyzed and static and dynamic master data is assessed.

After this, the company can design the overall system for how production feedback data

should be included in their tactical production planning in the future. The final step

includes the implementation of the designed solution. It was found that this step did not

highlight the importance of conducting a risk assessment, nor did it specify the need of

including an incubation period in the implementation plan. The implementation step is

thus suggested to be expanded to encompass these elements. The extension of the method

based on empirical observations is an example of the practical application of design science

and abductive reasoning used in the study. The method and its application through the

case study provide the second part of the answer to the second research question.

Overall, the study provides three main contributions to the theory. The first contribution

is the overview specifying links between production feedback data and master data for

tactical planning. The second contribution is the two conceptual models demonstrating

how production feedback data can be applied in tactical production planning. Lastly is
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the method for using production feedback data in tactical master planning for companies.

This study thus also provides valuable contributions to practice. Many companies face

challenges in applying smart PPC and becoming more data-driven. While the tools and

theories exist, there is a lack of detailed recommendations and guidance for companies to

effectively implement these systems. The stepwise method provided in this study provides

helpful guidance in order to attain smarter operations, increase planning quality, and

attain a responsive PPC system able to respond to the variations of today’s manufacturing

markets.

Further research should be conducted to address the illustrative nature of this thesis.

Quantitative analysis should be performed on production feedback data in order to test

the master data values, and how it can affect the accuracy of tactical production planning.
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Öztürk, Cemalettin and Arslan M Ornek (2014). ‘Operational extended model formula-

tions for advanced planning and scheduling systems’. In: Applied Mathematical Mod-

elling 38.1, pp. 181–195.

72



Park, Hong-Seok and Ngoc-Hien Tran (2014). ‘Development of a smart machining system

using self-optimizing control’. In: International Journal of Advanced Manufacturing

Technology 74.9-12, pp. 1365–1380.

Pereira, A.C. and F. Romero (2017). ‘A review of the meanings and the implications of

the Industry 4.0 concept’. In: Procedia Manufacturing 13, pp. 1206–1214.

Rahmani, Mina, Anita Romsdal, Fabio Sgarbossa, Jan Ola Strandhagen and Mathias Holm

(2022). ‘Towards smart production planning and control; a conceptual framework link-

ing planning environment characteristics with the need for smart production planning

and control’. In: Annual Reviews in Control 53, pp. 370–381.

Rahmani, Mina, Anita Romsdal, Øyvind Anders Myrset Syversen, Fabio Sgarbossa and

Jan Ola Strandhagen (forthcoming). ‘Production Scheduling using Production Feed-

back Data; an Illustrative Case Study’. In: IFIP Advances in Production Management

Systems: Production Management Systems for Responsible Manufacturing, Service,

and Logistics Futures. Ed. by Erlend Alfnes, Anita Romsdal, Jan Ola Strandhagen,

Gregor von Cieminski and David Romero. Spinger.

Rahmani, Mina, Øyvind Anders Myrset Syversen, Anita Romsdal, Fabio Sgarbossa and

Jan Ola Strandhagen (forthcoming). ‘Smart Production Planning and Control; Concept

for improving Planning Quality with Production Feedback Data’. In: IFIP Advances

in Production Management Systems: Production Management Systems for Responsible

Manufacturing, Service, and Logistics Futures. Ed. by Erlend Alfnes, Anita Romsdal,

Jan Ola Strandhagen, Gregor von Cieminski and David Romero. Spinger.

Reuter, Christina and Felix Brambring (2016). ‘Improving data consistency in production

control’. In: Procedia Cirp 41, pp. 51–56.

Romsdal, Anita (2014). ‘Differentiated production planning and control in food supply

chains’. PhD thesis. Norges University of Science, Technology, Faculty of Engineering

Science and Technology.

Romsdal, Anita, Fabio Sgarbossa, Mina Rahmani, Olumide Oluyisola and Jan Ola Strand-

hagen (2021). ‘Smart Production Planning and Control: Do All Planning Environments

need to be Smart?’ In: IFAC-PapersOnLine 54.1, pp. 355–360.

Saad, Sameh M, Ramin Bahadori, Hamidreza Jafarnejad and Muhamad F Putra (2021).

‘Smart Production Planning and Control: Technology Readiness Assessment’. In: Pro-

cedia Computer Science 180. Proceedings of the 2nd International Conference on In-

dustry 4.0 and Smart Manufacturing (ISM 2020), pp. 618–627. issn: 1877-0509.

Sagegg, Odd Jøran and Erlend Alfnes (2020). ERP systems for manufacturing supply

chains: Applications, configuration, and performance. Auerbach.

Sanders, Nada R (Sept. 2017). Supply Chain Management. 2nd ed. Standards Information

Network.
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