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Abstract

Lens flare artifacts are undesired visual distortions caused by stray light, which can neg-
atively impact the integrity and quality of an image. These artifacts pose a significant
challenge in industrial applications like automotive and surveillance, where the quality
and reliability of input images are crucial. Although there are techniques to prevent
unwanted light from entering the camera, they are not always effective, requiring image
post-processing methods.

In this work, a comprehensive review of image reconstruction algorithms based on decon-
volution and stray light characterization through Point Spread Function (PSF) modeling
is conducted. These approaches emphasized the significance of accurately modeling the
stray light using the PSF specific to a camera system. However, necessary equipment to
measure the PSF is unavailable for this work, and attempts to generate a synthetic PSF
for evaluating the performance of a deconvolution algorithm resulted in unrealistic lens
flare artifacts. Furthermore, literature studies primarily focused on static camera system
setups like the ones found in microscopy or astronomy applications (telescope), indicating
limited potential for PSF-based lens flare reduction in dynamic industrial settings.

On the other hand, artificial intelligence, particularly deep learning neural networks, have
shown promising results in attenuating lens flare despite limited studies in this area. In
this work, a synthetic flare dataset is generated, and an iterative training process that
includes the evaluation of transfer learning is employed to develop FlareNet, the first com-
pact and lightweight U-Net based model for lens flare reduction. FlareNet architecture,
with a small parameter count of less than 150,000 parameters comprising convolutional
layers, demonstrates improvement in image quality by reducing flare artifacts on synthetic
test images. Furthermore, the model successfully reduces lens flare in real-life images, in-
dicating its potential for achieving visually satisfactory results despite having less than
0.5% of the weights of the state-of-the-art neural architecture used for this same appli-
cation. Additionally, a quantization-aware approach is applied to assess the impact of
reducing the weight representation from float32 to int8, resulting in a 30% lighter model
while considering the trade-off in accuracy.

This study serves as a proof-of-concept to understand the resource utilization and perfor-
mance of implementing a model such as FlareNet, as a hardware-based digital circuit. To
this end, the neural network is implemented in C++ using Vitis HLS, with each layer and
necessary elements implemented and tested. Synthesis and validation are performed us-
ing the VITIS tool, and reports are analyzed while experimenting with HLS optimization
directives. However, further work is necessary to optimize the overall design and explore
more parallelism potential, making it feasible for deployment in real-time applications.
Nevertheless, executing the model on a medium-end GPU demonstrates the possibility of
meeting real-time requirements in terms of frames-per-second, but at the cost of higher
power consumption, making it less suitable for low-power applications compared to an
FPGA implementation.
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Introduction

1 Introduction

Photographs of scenes with a strong light source within or near to the optics system’s field
of view tend to present lens flare artifacts. These artifacts are caused by unwanted light
behavior in the optical system, known as stray light. Although lens flare is just one type
of stray light phenomenon, it is particularly problematic as it obstructs content in the
image, reduces contrast and color diversity, and negatively impacts overall image quality
and interpretability [1], as it can be seen in Figure 1. The present project focuses on
attenuating lens flare artifacts, which is a challenging area of research in computer vision
due to the diversity of lens flare patterns and the multiple factors that can produce them,
such as light source characteristics, manufacturing imperfections, and lens wear and tear.

Although this type of artifacts may be trivial to casual photographers, it can severely
affect the performance of systems in various domains, such as healthcare, industrial,
security, and automotive. For instance, in automotive applications, high-quality images
are crucial for distinguishing between pedestrians, vehicles, and traffic lights. Strong light
sources, such as the sun or headlights, can generate lens flares, reducing contrast and
detail in the image. As computer vision algorithms rely on high-quality input images,
lens flare artifacts can corrupt and overwhelm the desired signal, increasing the likelihood
of system errors. Flare attenuation can be achieved through three different approaches:
modifying the optic system to reduce the amount of unwanted light entering the field of
view, modifying the image capture process, or applying digital image post-processing.

This work focuses on post-processing approaches for flare attenuation, with a special
emphasis on the potential of deep learning as an efficient solution that can be deployed as
a specialized hardware accelerator compared to traditional image restoration. The study
and evaluation of these approaches will provide valuable insights into the feasibility and
effectiveness of using deep learning for lens flare attenuation.

Figure 1: Example of image without and with lens flare artifact.
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Introduction

1.1 Thesis Objectives

This study aims to explore the feasibility of developing a lens flare attenuation system
suitable for real-time applications in industrial settings, with a specific focus on its in-
tegration into an embedded system. Therefore, the primary objective of this thesis is
to construct a proof-of-concept solution utilizing image post-processing techniques. To
achieve this overarching goal, the following specific objectives will be pursued:

• Conduct a comprehensive literature review on lens flare attenuation techniques,
focusing on image post-processing approaches.

• Assess image post-processing methods suitable for deployment in embedded sys-
tems, specifically for lens flare attenuation in industrial applications like automotive
systems.

• Select a viable algorithm from the evaluated approaches and analyze its performance
to determine its suitability for implementation as a hardware accelerator.

• Design and implement the chosen solution, as a proof-of-concept, considering key
constraints such as real-time application requirements, power consumption limita-
tions, and resource utilization efficiency.

• Define a set of relevant test cases to evaluate the proposed solution, and assess its
performance and robustness. Discuss the findings and provide recommendations for
potential future enhancements.

2
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1.2 Thesis Contributions

• Comprehensive literature review on existing image post-processing techniques for
flare attenuation.

• Evaluation of flare attenuation using deconvolution approaches with Point Spread
Function (PSF) modeling.

• Comprehensive literature review on the application of deep learning methods for
flare attenuation.

• Generation of synthetic dataset comprising images with and without flare for train-
ing and evaluation.

• Exploration and fine-tuning of the first lens flare attenuation lightweight neural
network model through iterative training and hyper-parameter optimization.

• Exploration of the potential of using transfer learning for flare attenuation.

• Discussion on the highlights and considerations to have during training a memory
lightweight model for flare attenuation.

• Exploration of using quantization aware techniques to optimize the deep learning
model for efficient inference.

• Evaluation of the performance and effectiveness of the trained model on real-life
images affected by flare and analysis on how to improve the results.

• Implementation and analysis of the convolutional neural network layers in C++ pro-
gramming language required to build the U-Net based architecture and synthesize
it using VITIS HLS.

• Synthesis and optimization of neural network layers using HLS optimization di-
rectives, analyzing their impact on resource utilization and performance for future
improvements and depoyment in FPGA.

• Functional verification of the Register Transfer Level (RTL) implementation through
VITIS Co-Simulation.

• Deployment of the deep learning model on two devices with GPUs (RTX3060 and
Jetson Nano Maxwell) to assess its performance on an embedded system.

It is worth mentioning that the entirety of the project was accomplished during the spring
semester, without any prior projects or studies forming the basis of this assignment.

3
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1.3 Thesis Organization

The thesis report is structured as follows:

Chapter 2 provides the theoretical foundation behind lens flare attenuation utilizing
image post-processing techniques, specifically image reconstruction using deconvolution
algorithms and deep learning. The chapter starts by elucidating the phenomenon behind
lens flare artifacts and explaining how characterizing stray light can assist in mitigating
this undesired effect. Furthermore, it introduces deep learning as a promising approach
to address this issue, with a primary focus on convolutional neural networks (CNNs),
while also discussing the crucial components necessary for its implementation. Then,
it presents state of the art work on flare attenuation using deep learning and provides
a brief introduction to common deep learning hardware accelerators such as GPUs and
FPGAs. Finally, the chapter explores the role of High-Level Synthesis (HLS) in enabling
the implementation of complex algorithms, including deep learning models, into hardware
designs.

Chapter 3 begins by examining previous endeavors in assessing the effectiveness of de-
convolution algorithms for flare attenuation. It draws conclusions on why a restoration
approach based on characterizing stray light using the Point Spread Function (PSF) is not
recommended for this project. Furthermore, the chapter introduces the implementation
of the proposed deep learning solution, encompassing multiple facets. These include the
generation of synthetic datasets, defining the structure of the neural network, the train-
ing process, and implementing the convolutional layers in C++ for High-Level Synthesis
(HLS). Additionally, the chapter provides comprehensive details on the quantization pro-
cedure and the deployment of the solution on an embedded device with AI acceleration
capabilities, specifically the Jetson Nano GPU.

Chapter 4 showcases the evaluation and results of the deep learning model. It provides
comprehensive insights into the training outcomes, quantization effects, and performance
during inference on both synthetic and real-life flared images. The chapter highlights sig-
nificant observations made during the training process and conducts a thorough analysis
of the HLS synthesis results with focus on the impact of optimization directives. Fur-
thermore, it evaluates the performance of deploying the neural network solution on the
resource-constrained Jetson Nano.

Chapter 5 concludes the thesis work, summarizing the main contributions, key findings,
and their implications.

Chapter 6 offers recommendations for future work and suggests potential improvements
based on the findings and analysis conducted throughout the study.

The Appendix includes a detailed description of the project’s GitHub repository, out-
lining the important files and providing instructions on how to execute them. It also
includes technical guidance on replicating the training procedure of the neural network
and configuring the Jetson Nano to run a C++ inference application.

4



Theoretical Background

2 Theoretical Background

This chapter aims to provide a concise introduction to the theoretical concepts necessary
for comprehending the subsequent design and implementation chapter.

2.1 Flare Attenuation through Deconvolution

2.1.1 Stray light

Stray light is an unwanted electromagnetic radiation that can adversely affect the quality
of data captured by optical systems, such as cameras [2]. This phenomenon can be caused
by a direct or indirect light source in front of the camera’s field of view, as well as by
light scattering on the optics surfaces due to dust and other imperfections, or by light
reflecting on mechanical mounting surfaces within the optical system [3]. Stray light
can be classified as either specular or scatter [4]. Specular stray light follows a physical
model and has a deterministic behavior. An example of specular stray light are "ghost
reflections", which occur when light from a source in the image field undergoes several
unwanted reflections before reaching the image sensor array. In contrast, scatter light
or flare has a more unpredictable behavior and is usually generated from light that gets
scattered inside the optical system due to imperfections in the lens surfaces. An example
of how lens flare is generated can be seen in Figure 2.

Figure 2: Example of how lens flare artifacts are generated in an optical system.

There are several mechanisms for mitigating stray light in general, and these can be
broadly classified into three types of approaches: i) modifying the optical system [5],
ii) modifying the procedure of capturing an image [3], and iii) applying image post-
processing techniques [6]. The first approach involves physically modifying the optical
system to prevent unwanted light from entering through the lenses. This can be achieved
through the use of baffle lenses, which block stray light from entering the optical system.
The second approach involves modifying the procedure of capturing an image in order to

5
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minimize the impact of stray light. For instance, in [3], the authors use a high frequency
occlusion mask between the scene and the camera. The resulting occluded scene along
with the unoccluded one are shot with multiple exposure times. Using the occluded
photos, the authors propose a method of estimating the stray light and then subtracted
it from the unoccluded photo. However, this approach requires a considerable amount of
images of a static scene before attempting the attenuation process. The third approach
is the most challenging one due to the different types of stray light artifacts that could
appear depending on the scene and the optical system. To reduce the complexity of the
problem, image post-processing algorithms often focus on specific types of stray light,
either specular or scatter, to attenuate them as accurately as possible. The present work
focuses particularly on lens flare attenuation. Examples of the two different types of stray
light artifacts that were discussed are illustrated in Figure 3.

Figure 3: Example of types of stray light: specular (ghost reflection), or scatter (flare).

2.1.2 Modeling Stray light

In a theoretical scenario, a three-dimensional point within the camera’s field of view should
individually influence the level of color intensity in its corresponding two-dimensional
pixel representation. However, in reality, light from neighboring pixels within and outside
the optical system’s field of view contaminate the rest of the image, especially when it
comes to a strong light source. This behavior can be modeled mathematically by defining
the intensity in a given pixel as the linear weighted combination of the intensities in all
points in an underlying ideal image [7]. For this purpose, a two-dimensional convolution
operation is defined.

Two-dimensional (2D) convolution is a common mathematical operation used in signal
and image processing. It involves sliding a small 2D matrix or kernel, as seen in Figure
4, over an image represented as another larger 2D matrix, and computing the sum of
element-wise products at each position. This operation can be used for tasks such as
blurring, edge detection, and feature extraction in image processing applications.

Therefore, the intensities in the observed image are the result of a two-dimensional con-
volution operation between an ideal image, referring to an image without the effects of

6
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lens flare artifacts, and a filter as seen in Equation (1). Where Obs(x,y) is the func-
tion of the observed image intensity, Img(x’,y’) is the ideal non contaminated image and
PSF(x,y;x’,y’) is the Point Spread Function (PSF) of the entire system. From this math-
ematical representation, it is theoretically possible to retrieve the ideal image by means
of applying the inverse operation of convolution, also known as deconvolution. A later
section will further explain the deconvolution operation used for image restoration along
with the most commonly used algorithms. However, the quality of the deconvolution
results are highly dependant on how well the PSF has been modeled.

Obs(x, y) =
∑
x′

∑
y′
PSF (x, y;x′, y′)× Img(x′, y′) (1)

Figure 4: Example of sliding window through image.

2.1.3 Point Spread Function (PSF)

The PSF is the impulse response of an optical system, characterizing the system’s response
to an individual point of light source. In other words, it describes how much power
is leaking between neighboring pixels according to their position. The PSF is usually
represented as a 2D function that describes how the point of light spreads out over a
certain distance from its original position. Therefore, the presented PSF of the entire
system, represented by PSF(x,y;x’,y’), is the collection of individual PSFs in every pixel
of the image. The shape of the PSF depends on various factors, such as the quality
of the optical system, the wavelength of the light, and the aperture size. As mentioned
before, estimating the PSF of an optical system is a crucial step in stray light attenuation.
According to [8], the process requires capturing several measurements of individual PSF
in each point of the camera’s field of view. This can be done by using a small light source
in a black scene that resembles one pixel at maximum intensity levels and the amount
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of light it spreads over its neighboring pixels. For this purpose, a small LED on a black
surface is placed far enough from the camera so that it represents the size of a single
pixel as seen in Figure 5. In order to avoid light reflections, it is recommended to conduct
the experiment in a dark room. It is desirable to measure the PSF for every pixel of the
image, but it is impractical due to the excessive amount of time it would take. Therefore,
a series of PSF measurements are taken from different pixels and the remaining PSFs
are estimated through interpolation techniques. Moreover, capturing measurements at
various exposure times is crucial to obtain a precise approximation of the PSF and avoid
pixel saturation.

Figure 5: Experimental setup used to measure the PSF of a camera.

Rather than relying on traditional interpolation techniques to estimate the PSF for all
remaining pixel points, a more accurate approach involves utilizing a parametric model
that considers the behavior of stray light within an optical system. This advanced solution
takes into account the specific characteristics and properties of the optical system, allowing
for a more precise estimation of the PSF. Examples of this is [8], a model derived from laws
of optical physics. Additionally, in order to estimate the parameters of the parametric
model, an error function must be defined and optimized by linear solvers using individual
PSF measurements as input. However, using a parametric model such as the one used in
[8] has certain limitations. Firstly, it struggles with smaller local maxima and is unable to
account for ghost reflections. Secondly, it does not consider light that enters the system
from outside the field of view of the camera.

Additionally, it is worth noting that the PSF, as shown in Figure 6, is a tensor that
depends on both the position of the light source and the neighboring pixels that are
affected by it. As a result, there is a convolution kernel for each pixel, which leads to
a complexity of O(MxNxnxm) for the deconvolution process. Where M and N are the
dimensions of the image, while n and m are the dimensions of the PSF kernel. This
means that the computational cost of the deconvolution operation grows rapidly as the
size of the image and the PSF kernel increase. For example, if we double the size of the
image or the PSF kernel, the computational cost will increase by a factor of 8. This can
make deconvolution computationally expensive and time-consuming. However, previous
research has shown that using a shift-invariant representation of the original PSF can
also achieve acceptable quality enhancement of the image while considerably reducing the
complexity of the deconvolution operation [8]. The shift-invariant PSF is obtained by
evaluating the shift-variant PSF at the center of the image.
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It is important to note that a significant portion of the research on image restoration
using PSF has primarily focused on setups involving still cameras or optical systems,
where the scenes are highly controlled and static. For instance, applications in fields such
as microscopy, astronomy (telescopes), and healthcare.

Figure 6: Shift-variant PSF kernel

2.1.4 Deconvolution

Deconvolution is a mathematical technique used to recover the original image from its
degraded version through the use of a restoration filter which is designed based on the
known properties of the degradation process, such as the PSF. In practice, this inverse
filter is often unstable or amplifies noise, and thus, additional techniques are used to
balance the trade-off between noise reduction and quality preservation.

Several algorithms have been developed and grouped based on their approach to achieve
image restoration. One way is based on whether the algorithm is solved in an iterative
or non-iterative way. Another way is based on the level of prior knowledge the algorithm
has about the PSF kernel: blind, semi-blind, or non-blind. Two important algorithms are
the Wiener and Richardson-Lucy deconvolution.

TheWiener filter is a non-iterative linear space-invariant filter known for fast computation,
it takes into account the frequency spectrum of the original image, the PSF, and the noise
in the degraded image. By using a statistical model, it estimates the optimal linear filter
that minimizes the mean squared error. The filter can be implemented in the frequency
and spatial domain using the Fourier Transform or Convolution respectively. Nonetheless,
the Wiener filter is sensitive to noise and can produce negative results, leading to ringing
effects in the restored image [9].

On the other hand, Richardson-Lucy is an iterative algorithm based on the Bayes theorem
that also assumes that the observed degraded image is a convolution of the true image
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and the PSF, corrupted with noise. In each iteration, an estimate of the ideal image is
updated by convolving the current estimate with the PSF and then scaling it to match
the degraded image. The scaled estimate is then used to update the current estimate in
the next iteration as seen in Equation (2). Where In+1 is the restored image in the next
iteration, I is the current image which is being restored, B is the initial flared image, and
the convolution operation is denoted by ∗. The algorithm stops iterating when the quality
of the image estimate reaches a satisfactory level based on a stopping criterion or when
a predetermined number of iterations is reached. Moreover, Richardson-Lucy has the
advantage of producing non-negative results and being robust against variations in PSF
estimation. However, the algorithm is computationally intensive and the amount of time
required for convergence to a satisfactory result is not known before run-time. The quality
of the restored image depends on the number of iterations and the stopping criterion used.
If the stopping criterion is not chosen properly, the algorithm may introduce artifacts in
the restored image [10].

In+1 = In ·
(
PSF ∗ B

PSF ∗ In
)β

(2)

Blind deconvolution is a type of image restoration algorithm that aims to recover the
original ideal image as well as the PSF through an iterative process. Unlike non-blind
deconvolution, which assumes a known PSF, blind deconvolution does not require any
knowledge of the PSF. Instead, it estimates both the original image and the PSF simulta-
neously, based on the degraded image alone. However, blind deconvolution is a challenging
problem due to the fact that its solution is non-unique and depends on assumptions and
constraints defined to regularize the solution. Blind deconvolution has shown promising
results in deblurring astronomical imaging, however it is still an active area of research
and further developments are needed to improve its accuracy and reliability in a wider
range of applications.
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2.2 Genetic Algorithms

Genetic Algorithms (GAs) are optimization algorithms that use adaptive heuristics in-
spired by natural selection and genetics [11]. They are widely used to solve complex search
and optimization problems. In the context of this work, GAs will be employed to search
for the optimal weights for a convolutional kernel that can model the behavior of lens
flare artifacts on an image, as it has been used before in other applications that required
optimization of kernel weights [12]. The GA follows a set of standard steps that are re-
peated through a defined amount of iterations, also known as generations, that simulate
time effect during an evolution process. This process is depicted in Figure 7, and each
step is explained below:

Figure 7: Diagram showing the main steps in a Genetic Algorithm.

• Initialization: a group of chromosomes is randomly generated, also known as popu-
lation. Here, each chromosome represents a potential solution to the search problem.
Each value inside the chromosome, also referred as gene, will be modified during
the iteration process.

Figure 8: Structure of a chromosome, also known as individual.

• Evaluation: each chromosome in the population is evaluated by using an objective
function, also known as fitness function, to rate how close a chromosome is to reach
a solution. The fitness function must be carefully defined based on the search
objectives, as it is the main way to guide the evolution of the chromosomes and
measures the quality of the solution.
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• Selection: mimics the idea of "survival of the fittest" in nature, as it selects only
the chromosomes with highest fitness values. There are various selection approaches
employed to choose parents for reproduction, such as: tournament and roulette.

• Reproduction: also known as crossover, involves combining genetic information from
two chromosome parents to create offspring. This process usually involves exchang-
ing or recombining segments of the genetic material between parents to generate
new chromosomes. There are several approaches employed for mating, such as:
one-point, one-point arithmetic, complete arithmetic, among others. For instance,
one-point crossover involves randomly selecting a single point along the chromosome
and exchanging the genetic material between the parents at that point as seen in
Figure 9. On the other hand, the arithmetic crossovers combine the genetic material
of both parents using a formula as seen in Figure 10.

Figure 9: One-point crossover

Figure 10: One-point arithmetic crossover.
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• Mutation: involves random changes done to the offspring’s genetic information.
This step helps to maintain diversity in the population and allows for exploration
of new areas of the solution space. For instance, two common types of mutation
approaches are: all genes mutation or single gene mutation as shown in Figure
11. For the first type, all the genes can potentially mutate based on the "mutation
probability" which will define if p_mut takes the value of 0 or 1. In case p_mut is 1,
then the gene will be incremented by a ratio (beta) of its current value. However, if
the mutation probability is 0, the gene will remain unchanged. Alternatively, in the
single gene mutation approach, only one randomly selected gene in the offspring will
undergo mutation based on the mutation probability. By increasing or decreasing
the mutation probability the algorithm can control the degree of exploration in the
solution space by applying drastic or subtle mutations in the genes.

Figure 11: Single gene mutation.

• Replacement: the chromosome parents with the lowest fitness values will be usually
replaced by the new offsprings, before starting the next generation.

• Termination: can include reaching a maximum number of generations, finding a
satisfactory solution, or running out of computational resources.
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2.3 Deep Learning

Artificial Intelligence (AI) has gained significant popularity across various fields due to
its ability to tackle complex problems. Machine learning (ML), a branch of AI, focuses
on the development of algorithms that can adjust their response to input stimuli through
an iterative learning process that requires exposure to data. These algorithms excel at
recognizing patterns in data to make predictions without being explicitly programmed.
In ML, there are two fundamental tasks: classification and regression. Classification
involves assigning input data into predefined classes, where the output of a classification
model is either a discrete class label or a probability distribution over the classes. On
the other hand, regression models aim to predict a continuous numerical value or a set of
values, commonly representing a quantity or a score. This type of model seeks to find a
function that best fits the data by minimizing the difference between predicted and actual
ground-truth values [13].

Deep learning (DL) is a sub-field of machine learning, and it draws inspiration from
the structure of the human brain to develop artificial neural networks. These extensive
networks can perform predictive analysis when trained with a substantial amount of data
specific to the application. Deep learning excels at automatically learning and extracting
relevant features from various types of raw data, such as images, text, or sound, without
the need of feature engineering. Additionally, it has the ability to adapt and improve
with the amount and diversity of available data, which will increase the robustness and
accuracy of its predictions on real-life cases [14]

2.3.1 Neural Network - Perceptron

As the building block of artificial neural networks lies the "perceptron", illustrated in Fig-
ure 12 and represented by a mathematical equation based on various learning parameters
like weights and biases [14] as seen in Equation (3). Here y represents the output of the
perceptron, wi are the weights associated with the input variables xi, b is the bias term.

Figure 12: Perceptron model.

y = activation(
n∑
i=1

wi · xi + b) (3)
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This equation shows how the perceptron takes multiple inputs and multiplies them by
a corresponding weight. These weighted inputs are then accumulated along with a bias
term. The resulting sum is passed through an activation function, which determines the
non-linear output behaviour of the perceptron. There are several activation functions
used in artificial netural networks and each has its own characteristics and application
which depends on the specific task and the properties desired in the model’s output [15].
The most common ones are explained below.

• Sigmoid: known as logistic function, maps the input to a value between 0 and 1. It
is useful in models where the output needs to be a probability.

• Rectified Linear Unit (ReLU): returns the input value if it is positive or returns zero
otherwise. It has gained popularity due to its simplicity and ability to mitigate the
vanishing gradient problem by only allowing positive values to move forward in the
network computation.

• Hyperbolic Tangent (Tanh): maps the input to a value between -1 and 1. It is often
used in internal hidden layers of neural networks.

• Softmax: takes a vector of real numbers as input and outputs a probability dis-
tribution over multiple classes, with a sum equal to one. It is commonly used in
multi-class classification tasks.

2.3.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are among the most important deep learning
architectures used for feature extraction from images and other multi-dimensional data.
A CNN, presented in Figure 13, stacks multiple layers of filters with different learning
parameters to extract and recognize increasingly complex features from the input data.
The key component of a CNN is the convolutional layer. This layer is conformed by a set
of filters with weights that are adjustable through back-propagation during the learning
process. Each filter performs a mathematical operation called convolution, which requires
the filter to slide across the input image while computing dot products between the filter
weights and the corresponding input values. The result is a set of feature maps that
highlight different patterns or recognize abstract features in an image, such as: texture,
color, edges, among others [16]. CNNs typically consist of multiple convolutional layers
followed by activation functions, typically ReLU, to introduce non-linearity into the net-
work. In addition, pooling layers, such as max pooling or average pooling, are usually
included between hidden layers which downsample the feature maps, reducing their spa-
tial dimensions while learning to retain the most important information. Depending on
the neural network application, the final layers can be fully connected layers or another
convolutional layer with dimensions that match the output data dimensions. Overall,
CNNs have revolutionized the field of computer vision and have become the go-to choice
for many visual recognition tasks, including image classification, object detection, and
semantic segmentation [17].
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Figure 13: Convolutional Neural Network (CNN)

2.3.3 Training and Inference

During the training process of a neural network, a large dataset is used, typically consisting
of input data paired with corresponding output ground-truth values. The ground-truth
represents the desired prediction that the model should learn to reproduce when given
a specific input. The neural network adjusts its internal parameters, which include the
weights and biases of each perceptron, using a technique called backpropagation [18].
Backpropagation involves propagating errors backward through the network to compute
gradients, which are then used to update the weights and biases of the neurons. This iter-
ative process of forward propagation, loss calculation, backward propagation and weights
updates continues until the model gradually improves its predictions and achieves higher
accuracy on unseen data, as portrayed in Figure 14.

Figure 14: Deep learning training process.
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The dataset is a crucial component in developing a deep learning solution as its quality
and diversity greatly impact the results. A diverse and representative dataset enables the
neural network to generalize its knowledge and make accurate predictions on real-world
data. Typically, the dataset is divided into three subsets: training, validation, and testing.

During the training phase, the model learns from the training data to improve its per-
formance. The validation data is used to assess whether the model is overfitting to the
training data and if it can generalize well to new data. Overfitting is one major problem
during training, and it happens when the model only learns how to predict on input data
that is the same or very similar to the train dataset, performing poorly with unseen data.
By monitoring the loss values of both the training and validation sets, it is possible to
determine if the model is learning effectively without overfitting. If both the training and
validation losses decrease in a similar ratio over iterations, assuming a balanced dataset,
it can indicate that the model is not overfitting. On the other hand, the testing data
provides an unbiased assessment of how well the final model generalizes to unseen data.

Inference in a neural network refers to the process of making predictions using a trained
model with set weights. Data enters through the input layer in the same format as it did
during training, and is propagated forward through the network with the activations and
weights of the neurons/perceptrons influencing the flow of information. Each neuron in
the network applies its activation function to the weighted sum of its inputs, producing an
output that serves as input for the next neuron. This process is repeated for all neurons
in each layer until the output layer is reached, where the final prediction is made.

2.3.4 Hyper-parameters

In deep learning, hyper-parameters are parameters that are defined before the training
process begins and determine the behavior and performance of the model. Unlike the
model internal parameters (weights and biases), which are learned during training, hyper-
parameters are not updated based on the data but rather selected by the developer. The
following are some of the most important and common hyper-parameters:

• Learning rate: controls the ratio at which the model parameters will be influenced
by the error loss correction after back-propagation. A high learning rate may cause
the model to converge quickly but risks missing the optimal solution, while a low
learning rate may lead to slow convergence or getting stuck in sub-optimal solutions.
A common starting point for the learning rate is around 0.01.

• Optimizers: play a crucial role in determining how the network learns from the
data and converges to the optimal solution. Popular optimizers include: Stochastic
Gradient Descent (SGD), Adaptive Moment Estimation (Adam), Nesterov Adam
(Nadam), Root Mean Square Propagation (RMSProp), among others [19]. For ex-
ample, Adam uses the historical gradients to compute adaptive learning rates for
each parameter. It considers two moving average estimates: i) first moment esti-
mate (mean of the gradients) and ii) second moment estimate (mean of the squared
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gradients). The level of contribution that past gradients have on the estimates are
controlled by using decay rates (beta1 and beta2). On the other hand, Nadam
modifies the update procedure by incorporating Nesterov momentum, which allows
the optimizer to anticipate the upcoming gradient descent and make more accurate
adjustments to the parameters.

• Epochs: determines how many times the model will iterate over the entire training
dataset. The choice of the number of epochs depends on factors such as the size of
the dataset, the complexity of the task, and the convergence behavior of the model
through the analysis of its performance with a validation dataset.

• Number of hidden layers: defines the depth of the neural network, which determines
the complexity and capacity of the model. Increasing the architectural depth by
adding more hidden layers can enable the model to learn more complex feature
representations but risking the possibility of overfitting.

• Activation functions: introduces non-linearity to the model. Choosing the appro-
priate activation functions, specially for hidden layers, such as ReLU, sigmoid, or
tanh, can impact the model’s ability to capture complex relationships in the data
[20].

• Batch size: refers to the number of training examples processed before the model’s
parameters are updated within an epoch. The number of times the parameters are
updated is defined by the number of elements in the train dataset divided by the
batch size. In addition, it affects the speed and stability of the training process [20].
Larger batch sizes can lead to faster training but require more memory capacity to
store activations and gradients in the development environment, while smaller batch
sizes can introduce more randomness into the training process, helping the model to
explore a wider range of examples and potentially improve its generalization ability.
However, smaller batches will require more parameter updates within an epoch,
leading to increased convergence time.

• Regularization techniques: are used to prevent overfitting by introducing random-
ness during training. Dropout is one regularization technique commonly used to
prevent overfitting and improve the models generalization ability [21]. It involves
randomly "turning off" or setting to zero a portion of the neurons in a layer during
each training epoch. This process encourages the network to learn more robust and
generalized features since no single neuron can rely solely on the presence of other
specific neurons.
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In addition to these hyper-parameters, there are some others that are unique to a Con-
volutional Neural Networks (CNNs) an are mentioned below:

• Number and size of filters: determine the capacity of the network to learn spa-
tial patterns at different scales. Increasing the number of filters can capture more
complex features, but at the cost of computational resources.

• Stride: determines the step size at which the filters move across an input image or
tensor. A stride larger than one reduces the spatial dimensions of the output feature
maps, speeding up the inference process but sacrificing detailed spatial information.

• Padding: adds extra border pixels to the input image, allowing the convolutional
filters to process pixels at the edges of the image. It prevents reduction in dimensions
during convolutional operations.

• Pooling: down-sample the feature maps by evaluating local neighborhoods [22].
Common evaluations include calculating the maximum or average value between
neighbors. The stride of the pooling operation determine the spatial reduction. A
pooling operation with a stride of 2 will half the dimensions.

• Kernel initializer: technique used to initialize the weights of the kernels in a neural
network. Different initialization methods can be used [23], two of the most common
ones are: i) Xavier Initialization: It initializes the weights with random values drawn
from a distribution that is scaled based on the number of input and output units
and works best for activation functions such as sigmoid or tanh, ii) He Initialization:
scales the weights based only on the number of input units, without considering the
number of output units and is specifically designed for ReLU activation function.
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2.3.5 Image Processing Metrics (MSE, MAE, SSMI)

In image processing, Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Structural Similarity Index (SSIM) are commonly used metrics to compare two images.

MSE measures the average squared difference between the original image and the pro-
cessed image. It is calculated as the average of the squared differences between corre-
sponding pixel values of the two images. MSE is a measure of the overall image quality,
and it penalizes large deviations from the original image more than small deviations. In
Equation (4), n is the number of data points, yi is the true value of the i-th data point,
and ŷi is the predicted value of the i-th data point.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (4)

MAE, on the other hand, measures the average absolute difference between the original
image and the processed image. It is calculated as the average of the absolute differences
between corresponding pixel values of the two images. Unlike MSE, MAE is less sensitive
to outliers and large deviations from the original image. In Equation (5), n is the number
of data points, yi is the true value of the i-th data point, and ŷi is the predicted value of
the i-th data point.

MAE = 1
n

n∑
i=1
|yi − ŷi| (5)

SSIM is a metric that takes into account the luminance, contrast, and structure of the
images being compared. It measures the similarity between the two images on a scale from
0 to 1, where 1 indicates perfect similarity. SSIM is more perceptually meaningful than
MSE or MAE because it models the sensitivity of the human visual system to changes in
the image [24]. In Equation (6), x and y are the two images being compared, where µx
and µy are the means, σx and σy are the standard deviations, σxy is the covariance, and
c1 and c2 are constants to avoid division by zero.

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

(6)
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2.3.6 Data Augmentation

Data augmentation is a common technique used to overcome the limited amount of avail-
able training data by increasing its diversity through the generation of new artificial
images [25]. It is essential to ensure that these artificially generated images are consistent
with real-world conditions, enabling the model to generalize well to unseen data [26]. For
instance, taking several pictures of the same scene with slightly rotated angles in the hor-
izontal plane, or varying light exposure levels through image attenuation, are examples
of data augmentation techniques.

Figure 15: Examples of image augmentation through horizontal flipping.

Figure 16: Examples of image augmentation through rotation.

Figure 17: Examples of image augmentation through light attenuation.
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Some other more advanced data augmentation techniques used in [27] and [28] that will
be used later in the implementation chapter are introduced and explained below:

• Remove DC background: removes the mean pixel intensity from the entire image.

• Affine transform: applies linear transformation that preserves the straightness of
lines while allowing for translation, rotation, scaling, and skewing of objects. An
affine transformation is represented by a matrix of size 3x3.

• Normalize and Random white balance: technique used to add variability to the
color temperature of an image by randomly adjusting the color channels, previously
normalized.

• Random blur and DC offset: adds variability to the image by applying a random
amount of blur and adds a random offset to the pixel values of the image.

• Additive gaussian noise: common type of noise with gaussian distribution (zero
mean and a known standard deviation) that is added to images to simulate the
effects of random variations in the image pixel values.

• Random digital gain: randomly scales the pixel channel values of an image by a
certain factor to simulate variations during image acquisition.

2.3.7 Transfer Learning

Transfer learning is a popular and powerful method in machine learning that allows the
reuse of a pre-trained model for a different task within a similar domain. For instance, a
pre-trained ResNet-50 neural network, which has been trained on a large dataset to classify
images between 1000 different classes, can be re-used for a personalized application that
requires classification between 38 completely new classes [29]. Compared to training a
new model from scratch, transfer learning saves a significant amount of time, data, and
hardware resources.

The key idea behind transfer learning is to use a pre-trained model that has already
learned to extract many general feature maps that are common to information in a similar
domain. This is especially useful in building convolutional-based models, where a pre-
trained model can be used as the "backbone" to recognize general features such as texture,
corners, shapes, among others. The output of these features can then be fed into a new
stage in charge of learning how to use the given features to predict values close to the
ground-truth ones. Figure 18 illustrates how a section of a pre-trained model can be
exported and used in a new model.
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Figure 18: Visual explanation of transfer learning and example of CNN feature map.

2.3.8 Model Quantization

As introduced in Section 2.3.1, the basic building block of any neural network is the
perceptron, which contains learning parameters that are adjusted during training. After
the learning process, the model can be used for inference as a set of interconnected static
parameters. The learning parameters are stored and called from memory every time a
process needs to run inference on some input. The standard representation of the values
is 32-bit floating-point, which allows for a high accuracy. However, a deep learning model
can have millions of parameters, leading to a significant amount of memory usage that
may not fit on certain hardware devices. For instance, a well known computer vision
network, ResNet-50, contains around 26 million weights and 15 million activations, which
requires around 150 MB of space in memory. So, a model that runs effectively on a
development environment, such as a server or a desktop computer, might not be able to
run effectively on a lower-end device with hardware constraints.

To address this issue, quantization can be used to optimize a model for a target device.
Quantization reduces the required memory space and also has a positive impact on latency
and power consumption while having little effect on model accuracy. Studies have shown
that using 8-bit integer precision values for weights and activations does not significantly
affect accuracy [30][31]. This is particularly important for low-end devices that lack
floating-point functional units for arithmetic operations.

There are several post-training quantization approaches, as explained in [32], but the
conservative approach is known as “dynamic range quantization”. This approach stati-
cally quantizes weights from 32-bit floating point to 8-bit precision integer, mapping the
min-max values of the floating point tensor to the min-max values of the 8-bit integer. Sta-
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tistical clipping techniques are also useful for avoiding outliers being considered as min
or max values [33]. However, certain neural networks, such as MobileNet [34], require
quantization-aware training to preserve accuracy as much as possible [35]. Quantization-
aware training is a technique that involves simulating the effects of quantization during
the training process. By introducing quantization effects, such as reducing the precision
of numerical values to fewer bits, the model learns to handle the resulting loss of precision
while still striving for the highest possible accuracy.

2.3.9 Deep Learning Frameworks

When it comes to implementing deep learning models, there are various software libraries,
commonly known as frameworks, that offer high-level interfaces for tasks such as model
design, data pre-processing, training, evaluation, and deployment in specific hardware
target environments. Two of the most widely used frameworks are TensorFlow and Py-
Torch.

TensorFlow [36], developed and maintained by Google, is an open-source framework that
provides a versatile architecture for building and training neural networks through its
rich set of tools and APIs, making it suitable for a wide range of applications. On the
other hand, PyTorch [37], developed and maintained by Facebook, is more popular among
researchers. It is known for its dynamic computational graph feature, which allows for
more flexibility in model design and debugging.

Both TensorFlow and PyTorch are extensively documented and supported by a com-
munity of developers. In addition, both are able to work with multiple programming
languages, including Python and C++. Therefore, the choice of framework depends more
on the specific requirements of the project and the developer’s familiarity with the frame-
work.
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2.4 Deep Learning for Flare Attenuation

Deep learning has achieved remarkable success in various domains. However, applying it
to flare attenuation tasks has been limited by the scarcity of real datasets available for
training such models. Acquiring a large number of aligned images with and without flare
from real scenarios is impractical due to the need for consistent photographic conditions
(lighting, camera angle, exposure time, and other factors) between images that cannot be
controlled in real-world scenarios. To overcome this challenge, several research works, such
as [28], [38], and [39], have addressed the problem by leveraging high-quality synthetic
datasets that incorporate a wide diversity of flare images merged with ground truth clean
scenes.

In the study supported by Google Research, [28] works on a synthetic dataset generated
by following the principles of optical physics to create flares that closely resemble real-
world cases. The process involves mathematically modeling the scatter and reflective
components generated by light diffraction in real lenses, resulting in a diffraction pattern,
to then generate a vast amount and variety of synthetic images of flares. Additionally, the
dataset includes real flares captured from different angles by rotating a camera around a
light source in a dark room. This combination of synthetic and real flare samples enhances
the diversity and realism of the dataset.

Similarly, [38] focuses on generating a dataset specifically for veiling glare, which is another
type of artifact caused by a light source within or near the camera’s field of view. However,
unlike [28], they do not employ mathematical modeling of lens systems in their dataset
generation process.

In another work, [39] proposed the first nighttime dataset for flare attenuation, considering
both scattering and reflective components. Like the previous study, their dataset consists
of synthetically generated samples without incorporating real flares.

To validate the use of synthetic datasets, all of these studies trained deep neural net-
works and evaluated the performance of different architectures. The work done in [28]
found that the U-Net architecture [40] produced the best results for flare attenuation.
During training, they employed two types of loss calculations: image loss and flare loss
using MSE and MAE metrics respectively. The former encourages the predicted image
to closely resemble the ground truth, while the latter encourages the predicted flare to
resemble the ground truth to avoid introducing artifacts in the predictions. The training
process involved approximately 60 epochs on a dataset of 20,000 samples, using the Adam
optimizer with a fixed learning rate of 0.0001.

To measure the quality of the reconstructed images, Structural Similarity Index (SSIM)
was used as a metric, comparing the predictions to a baseline defined by the input image
(with flare) and ground-truth (without flare) from the synthetic dataset. They achieved
a Structural Similarity Index (SSIM) of 0.994, surpassing the baseline SSIM of 0.843,
indicating that the predicted image closely resembles the input image. By specifically
addressing and mitigating the flare artifacts, the model effectively preserves the overall
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similarity between the input and predicted images. In addition, they also conducted an
evaluation on a real dataset visually showing the effectiveness of the model at attenuating
lens flare [28].

2.4.1 U-Net

U-Net is a state-of-the-art deep learning auto-encoder architecture used for image seg-
mentation [40]. An auto-encoder is a special type of neural network that copies its input
value to the output by learning how to compress the input data while minimizing recon-
struction error. Originally developed for biomedical image segmentation, U-Net gained
popularity in different domains due to its combination of speed and precision. The neural
network model shown in Figure 19 integrates two clear sections based on convolutional
layers: encoder and decoder.

The encoder follows a typical contraction path where in each block the input image
is passed through two 3x3 kernel size convolutions, each followed by a rectified linear
unit (ReLU). In addition, the spatial information is reduced through a 2D max-pooling
operation with stride 2, which is represented in Figure [19] by the red arrows pointing
down. This process generates a bottle neck from which the model is able to increase its
feature map knowledge. The feature channel dimension doubles in each block, with a
filter size increasing from 64 to 512 across the blocks. The encoding process is repeated
three times before reaching the bottom of the network, where two more convolutional
layers are applied without max-pooling. It is a common practice to utilize existing CNN
architectures like ResNet-101 [41], VGG16 [42], or MobileNet [34] as a backbone for the
encoder section. These architectures come with the advantage of pre-trained weights on
datasets such as ImageNet [43], allowing for transfer learning and achieving high accuracy.
However, despite their accuracy, these encoders are complex with multiple layers and
harder to work with for inference on edge devices with limited resources [44]. For instance,
when employing the MobileNet architecture for transfer learning, the model is divided into
several "blocks," each comprising a minimum of five layers. These layers typically include
at least two normal convolutions, two depthwise convolutions, batch normalization, and
concatenation layers to merge information from previous layers [34].

The decoder section is an extensive pathway that sequentially takes as input the concate-
nation between the up-convolutional features and the skip-connection as high-resolution
features from the contracting path. Every block in the decoder consists of a transposed
convolution for up-sampling the feature map followed by a 2D convolution that halves
the dimension of the feature channels. In addition, the transposed convolution is con-
catenated with the corresponding cropped feature map from the encoder shown as the
gray arrows connecting the decoder and encoder sections in Figure 19, to add original
information from the contracting path and avoid loss of information. Finally, each block
also includes two 3x3 convolutions with ReLU activation’s functions and the process is
repeated until reaching the output layer, where a 1x1 convolution with an output filter
size of three is applied to map the feature channel information to the three output classes.
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Figure 19: U-Net architecture [40].

2.4.2 Compact U-Net architectures

Despite the impressive performance of U-Net architectures, their pursuit of increased
accuracy often leads to complex designs with millions of trainable parameters. This
complexity demands extended training times and substantial computational resources,
making them impractical for low-power devices with limited memory. To enable U-Net
inference on edge devices, it is crucial to have models with low complexity, a small number
of trainable parameters, while maintaining accuracy in the results [44].

Researchers have made efforts to reduce the complexity of U-Net models. For instance,
the Squeeze U-Net model proposed in [45] achieves similar accuracy to the original U-Net
while having only 2.59 million trainable parameters compared to the original model [40]
with 30 million. Squeeze U-Net achieves this reduction by using fewer and simpler layers,
primarily employing 2D convolutional layers, 2D transposed layers, and concatenation
layers with ReLU activation functions. However, even with this reduction, Squeeze U-Net
is still relatively large for edge device inference.

Another approach to reducing complexity is presented in [46] and [44], where the authors
propose two U-Net-like architectures called C-UNet and C-UNet++. These models re-
duce complexity by removing convolutional stages compared to the original architecture.
Additionally, they utilize separable depthwise convolutional layers, which significantly re-
duce the number of parameters while maintaining the filtering capability. The depth of
the filters is also reduced, with the largest depth being 32, compared to the original U-
Net’s layers with 128, 256, 512, and 1024 depth filters. The authors find a good balance
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between size and accuracy, with the C-UNet model having 51,113 parameters and the
C-UNet++ model having as few as 9,129 parameters with only 4 types of convolutional
layers (2D convolution, 2D depthwise separable convolution, 2D transpose convolution
and 2D max-pooling), which can be seen in Figure 20.

Figure 20: Compact U-Net based architectures proposed by [44]: (a) C-UNet and (b)
C-UNet++. red: conv3x3 + ReLU, yellow: depthwise separable conv3x3 + ReLU, green:
2x2 max pool, orange: conv1x1 sigmoid, blue: 2x2 transpose convolution, lila: output

It is important to mention that these neural networks are specifically developed for se-
mantic segmentation of satellite images with smaller sizes and less complexity in the
training process, as it is a classification task rather than a regression one. For example,
the authors mention that skip connections can be eliminated from the models as they keep
high frequency information and this concrete application does not have much information
in that domain. Later during the implementation chapter, it will become evident that
skip connections are quite important for flare attenuation purposes, evidencing that every
application requires a different architecture. Nevertheless, these studies present valuable
insights on how to approach a reduction in model complexity for the U-Net architecture
and will serve as a base to train several compact U-Net based models for flare attenuation.

In summary, U-Net architectures achieve their success through the combination of convo-
lutional layers in the encoder and decoder sections, as well as the use of skip connections
to transfer high-resolution features. The upcoming sections will delve into the key convo-
lutional layers required to build a compact U-Net architecture.

2.4.3 2D Convolutional Layer

The convolutional layer is a fundamental block in computing vision algorithms, used for
tasks such as feature extraction and image filtering. It involves applying a filter to an
input image, to produce a feature map [47]. The filter is a four-dimensional tensor with
dimensions that depend on the kernel size, the input depth (referred as m), and output
depth (referred as n) as seen in Figure 21.

The convolution process involves sliding each of these n filters across the input image.
Each section of the image that interleaves with the filter is called a window, which is of the

28



Theoretical Background

Figure 21: Dimensions of 2D convolutional filter.

same dimension as the filter kernel size in the x, y and depth axis. The entire dimension
of both the filter and window goes through an element wise multiply and accumulate
operation (MAC). The resulting values from each of the input depth channels (denoted
by m) are then summed to produce a single output value for each position in the output
feature map. This process is shown in Figure 22 and is repeated for each of the n filters
before the window slides into the next set of image pixels, resulting in n output values per
pixel, where n is the number of output channels for the layer. The window will continue
to slide across the entire input tensor while performing the previous operation with all the
filters, thus creating the entire output feature map one pixel (with depth of n channels)
at a time. The weights of the kernel are learned during training, allowing the convolution
operation to adapt to the specific task at hand. Common 2D kernel sizes include 2x2,
3x3, 5x5, and 7x7.

Figure 22: Example of 2D convolution operation for one filter.
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2.4.4 Depth-wise Separable 2D Convolutional Layer

Depth-wise separable convolution is a technique used to reduce the number of parameters
required in a typical 2D convolution, resulting in a memory-efficient layer that avoids
overfitting during training. This is achieved by separating the filter into their spatial
and depth dimensions, namely depth-wise and point-wise filters [34] as seen in Figure 23.
Similar to the typical 2D convolution layer, the filters will slide across the image operating
over the respective convolutional window, outputting one pixel with its respective output
depth at a time as it is done in the traditional convolution.

Figure 23: Dimensions of depth-wise and point-wise filters.

This process is executed as follows: in the depth-wise convolution, depicted in Figure 24,
each input channel of the filter and its corresponding window undergoes an individual
MAC operation. The results are then stacked together to form a final vector with the
same size as the input channel (represented bym). Next, in the point-wise convolution, as
illustrated in Figure 25, the depth-wise vector undergoes another MAC operation with the
point-wise filter weights. This operation is repeated for each output channel (represented
by n), generating the final convolution output for each pixel with a depth of n.

Similar to traditional convolutions, in this algorithm, the window continues to slide across
the entire input tensor, performing the same operation with all the filters. This process
continues until the entire output feature map is generated, pixel by pixel.
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Figure 24: Example of depth-wise convolution step for one filter.

Figure 25: Example of point-wise convolution step for n filters.

It is worth noting that depth-wise separable convolution can significantly reduce the
number of parameters required, compared to a normal 2D convolution. For example, a
3x3 kernel with input and output dimensions of 3 would require 81 parameters in a normal
2D convolution (3x3x3x3), while the depth-wise 2D convolution only needs 27 parameters
(3x3x3) for the spatial depth-wise step and an additional 9 parameters (3x1x3) for the
depth-wise step.
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2.4.5 Transposed 2D Convolutional Layer

The transpose convolutional layer applies a set of filters to an input to produce an out-
put of a larger spatial dimension [48]. The filter weights are learned during the training
process, and can be used to perform tasks such as image segmentation or image recon-
struction. However, it is important to note that transpose convolutional layers can lead
to artifacts in the output image, such as checkerboard patterns or blurring, if not used
carefully. To address this issue, several techniques have been proposed, such as stride-
2 convolutions. The transpose convolution exhibits a similar iterative behavior to the
preceding convolutional layers. However, instead of operating on a convolutional win-
dow, this algorithm processes a single pixel along with all its channels, as illustrated in
Figure 27. Each transpose filter is element-wise multiplied with the corresponding pixel
channel values, resulting in m matrices. These matrices are then summed, along with
the corresponding filter bias, to generate an output matrix that has increased dimensions
compared to the input pixel. This process is repeated for each transpose filter, and the
resulting matrices are stacked together, resulting in a matrix with output depth of n.

Figure 26: Dimension of transpose filter.

Figure 27: Example of 2D transpose convolution for one filter.
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However, certain considerations need to be taken into account depending on the number
of strides and the size of the filter kernel. If the kernel size is larger than the number of
strides, the convolutional results from each filter n become temporary results as they will
overlap with the next matrix convolution results. This can be seen in Figure 28, where a
stride of 2 and a kernel size of 3x3 result in temporary matrix sections that intersect with
each other. These intersecting sections, indicated by the gray-colored area in the output
matrix, will have their values added together as it is shown. On the other hand, if the
kernel size is equal to the stride, as shown in Figure 29, there is no intersection between
the convolution results, and there is no need to consider temporary results since they are
already final.

Figure 28: 2D transpose convolution using a kernel of size 3x3 and a stride of 2.

Figure 29: 2D transpose convolution using a kernel of size 2x2 and a stride of 2.
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2.4.6 2D Max-pooling Layer

Max-pooling is a technique commonly used in deep learning for down-sampling data
between layers. In the context of image processing and computer vision, down-sampling
is a common technique used to reduce the spatial resolution of an image or feature map.
Max-pooling works by sliding a window over the n-dimensional vector input data and
selecting the maximum value within that window as the output of the pooling operation
as seen in Figure 30. This technique can help reduce the size of the data and provide a
way to extract the most important features from the input. Additionally, max-pooling
can also help prevent overfitting by reducing the amount of noise in the data and making
the network more robust to data input variations. However, it is important to note that
there are some limitations to max-pooling, such as the possibility of losing important
features during the down-sampling process. Therefore, other pooling techniques such as
average pooling have also been proposed.

Figure 30: Example of max-pooling operation.

2.4.7 Adding Layer

The main purpose of this layer is to merge skip-connections, which consist of output
values from non-sequential layers. Typically, one of these layers originates from the en-
coder, while the other comes from the decoder section in an auto-encoder structure. By
incorporating inputs from earlier layers into later layers through skip connections, the
network effectively preserves valuable information that might have been lost otherwise
during backpropagation, particularly in deeper layers.

There are various approaches to merging skip connection information, depending on the
specific application and network architecture. For instance, the original U-Net model
adopts a concatenation layer, initially introduced in the Inception neural network [49].
However, this operation doubles the filter dimension of the resulting tensor, as depicted
in Figure 19, thereby increasing the model’s complexity. In contrast, the ResNet neural
network [41] introduced an addition layer, which performs element-wise addition between
two tensors of the same shape, resulting in a single tensor with unchanged dimensions.
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Figure 31: Example of adding operation between two feature maps.

2.4.8 Batch Normalization Layer

Batch normalization is a widely-used technique for normalizing data in neural networks.
This layer does not change the dimensions of the input, but instead applies a transforma-
tion that centers the output around zero and normalizes it to have unit variance. This
is crucial in some cases in order to ensure that the network is able to learn effectively by
reducing the likelihood of vanishing or exploding gradients, which can hinder the training
process. By normalizing the output, batch normalization helps to ensure that the network
is able to learn more quickly and accurately, leading to better overall performance.

2.4.9 Dropout Layer

The dropout technique is a powerful regularization method that is commonly used in deep
learning models to prevent overfitting. It works by randomly and temporarily disabling a
percentage of neurons in a layer during the training process [21]. This means that these
neurons are ignored during the forward propagation step and no updates are made to
their weights during the backward propagation step. By randomly dropping out neurons,
the model becomes less sensitive to the specific weights of individual neurons and allows
the model to generalize better to new, unseen data. It is worth mentioning that dropout
is only applied during training and during inference, all neurons are active and used to
make predictions.

Figure 32: Example of Dropuout regularization technique.
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2.5 Hardware Accelerators for Inference - GPU

The Graphics Processing Unit (GPU) has emerged as a crucial computing component due
to its ability to perform massive parallel processing. Originally developed for accelerating
3D graphics rendering in video games, GPUs have since evolved into more flexible and
programmable devices (known as GPGPUs [50]), finding applications in a wide range of
fields, including deep learning. Although GPUs excel at parallel arithmetic operations,
their purpose is more narrow compared to Central Processing Units (CPUs). Therefore,
in a computing system, CPUs and GPUs usually work together, with CPUs in charge
of orchestration-related tasks, such as the operating system, while the GPU handles the
heavy arithmetic computations.

GPUs feature a Single Instruction Multiple Data (SIMD) architecture that enables ef-
fective data parallelism across multiple processors with a single instruction. GPUs are
particularly efficient at matrix arithmetic operations in floating-point format, which is why
the number of "Floating Point Operations per Seconds (FLOPS)" is a key performance
indicator for GPUs.

NVIDIA is a global leader in GPU manufacturing and introduced the Compute Unified
Device Architecture (CUDA) as a parallel computing platform to diversify GPU use. This
platform allows developers to optimize their software for NVIDIA GPUs [51]. Developers
can choose how to run their programs in terms of the number of cores and clock frequency
in the CPU and GPU, considering the trade-off between throughput and power consump-
tion. NVIDIA also produces Jetson modules, a series of GPUs specifically designed for
embedded AI applications such as robots, drones, autonomous cars, sensor arrays, and
computer vision systems that require AI capabilities with low to medium power consump-
tion. The Jetson Nano [52] is one of these modules that delivers around 472 GFLOPS
while using only 5 to 10 watts of power depending on its configuration. In addition to
the GPU, the Nano includes Quad-core ARM Cortex-A57 and 4 GB of memory. It is
important to mention the level of flexibility a developer can have to decide how to run its
program in terms of number of cores and clock frequency in the CPU and GPU, which
implies a design trade-off between throughput and power consumption.

Figure 33: Jetson Nano [52].
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2.6 Hardware Accelerators for Inference - FPGA

Field-Programmable Gate Arrays (FPGAs) are integrated circuits that allows for the
development of custom logic for rapid prototyping of a digital design solution. In to-
day’s technological landscape, FPGAs have gained popularity for developing customized
accelerators, especially in complex applications like deep learning inference [53] [54].

One of the key strengths of FPGAs lies in their exceptional parallel processing capabilities,
enabling the simultaneous execution of multiple operations. The inherent parallelism of
FPGA designs significantly enhances performance and speeds up inference tasks. Further-
more, FPGAs offer a high degree of customization, empowering developers to implement
optimizations tailored to specific applications while maximizing overall performance.

In addition to their parallelism and flexibility, FPGA accelerators are renowned for deliver-
ing low-latency inference, making them ideal candidates for real-time applications. More-
over, FPGAs are highly energy-efficient, as they can be precisely configured to execute only
the necessary computations for inference, minimizing power consumption while maintain-
ing performance levels. Another noteworthy feature of FPGAs is their re-configurability,
which allows their hardware to be easily reprogrammed and updated to accommodate
changes in algorithms or models.

Figure 34: Zeus Zynq UltraScale [55]. Xilinx is a leading company in advanced pro-
grammable logic devices, particularly FPGAs

While FPGAs offer numerous advantages for developing tailored accelerators, it is im-
portant to acknowledge that implementing FPGA solutions requires highly specialized
expertise in hardware description languages such as VHDL and Verilog. Particularly for
complex algorithms like image or signal processing, the overall design efforts and time to
market can significantly increase due to the inherent challenges in designing and validat-
ing RTL (Register Transfer Level) designs. However, platforms such as those provided by
XILINX [56] can greatly assist developers in this journey. One notable tool is High-Level
Synthesis (HLS), which introduces an additional layer of abstraction for describing the
logic behavior of an algorithm.
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2.6.1 Image Processing with FPGA

Digital image processing is a critical field in various technological domains, presenting
increasing demands over time, including larger image sizes, higher bit resolution depths,
and deeper color channels. Traditional software-based implementations of image process-
ing algorithms are no longer optimal, particularly for real-time systems that require high
throughput [57]. Image processing via hardware implementation poses a most viable so-
lution for improving performance of image processing systems through the development
of specialized hardware accelerators.

Two potential solutions for a hardware implementation are individual DSPs (Digital Signal
Processors) and ASICs (Application-Specific Integrated Circuits). However, DSP units
are limited in their configuration flexibility and lack the potential to reach the level of task
parallelism that could be reached with a custom design in an FPGA. On the other hand,
while ASICs offer the highest performance, they are inflexible, expensive, and require
significant effort and time to produce. Additionally, GPUs (Graphics Processing Units)
are another interesting option for image acceleration, as they provide high throughput,
but they are not well-suited for low-power applications.

On the algorithmic side, particularly important for convolution tasks, is the buffer imple-
mentation. During convolution, each output pixel is computed by sliding an nxm window
over the input image and performing the convolution operation between the window and
the corresponding pixels. Storing the entire image in a buffer is highly inefficient in terms
of time and memory space [58]. To address this, buffers such as shift registers, as illus-
trated in Figure 35, are commonly used. These buffers store only the width of an image,
and are updated by consuming values incoming from a serial input stream to simulate
the window sliding process. In cases where the output image needs to have the same
dimensions as the input image, a process called padding is required. Padding involves
increasing the size of the input image based on the dimensions of the kernel being applied.
This is done by adding zeros or defined values to the borders of the image. By padding
the input image, the convolution operation can be performed on every pixel, including
those near the borders, preventing loss of information at the edges of the image.

Figure 35: Diagram of hardware implementation of window filtering based on [58].
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2.6.2 Vitis HLS

High-Level Synthesis (HLS) is a powerful technology that can efficiently transform be-
havioral logic described in high-level languages, such as C/C++ or SystemC, into digital
hardware on a Register-Transfer Level (RTL). This tool offers an easier and quicker way of
exploring design options, resulting in more effective hardware solutions with low time-to-
market times. HLS also provides other essential benefits, including increased productivity,
easier portability of solutions, and the re-use of designs and intellectual property (IP) with
simple changes on optimization directives [59].

At the core of HLS tools are binding and scheduling, which are responsible for RTL
generation by mapping control and data-flow operations into hardware design through an
optimization process [60]. Scheduling determines the clock cycle in which an operation
will occur, while binding determines the functional units used for each operation. The
result of the optimization process depends on user directives and constraints such as
latency, hardware resource utilization (also referred to as area), and throughput, as well
as the available microelectronic technology. Typically, HLS tools prioritize performance
(throughput) optimization, followed by latency and area optimization.

In Vitis HLS, developers can analyze the generated RTL design through various visu-
alization tools and obtain insights into: task scheduling, pipeline analysis, latency, and
hardware resource utilization (area). The hardware resources commonly used in synthesis
reports are presented and explained below.

• Flip-Flops: the basic building blocks of digital circuits required for storing bits of
data.

• DSP (Digital Signal Processing) Units: specialized hardware modules provided in
some FPGAs that execute signal processing operations efficiently.

• LUT (Look-Up Table): configurable memory elements used to implement combina-
tional logic functions.

• BRAM (Block RAM): dedicated on-chip memory resource used for storing and
buffering data.

• URAM (UltraRAM): high-performance memory resource provided in some Xilinx
FPGAs, offering larger storage capacity and higher bandwidth compared to tradi-
tional BRAM.
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2.6.3 Optimization Directives

One significant advantage of HLS technology is the ability to use user directives and
pragmas to configure the synthesis results for high-level code. HLS pragmas are embedded
into the C/C++ code to ensure that specific optimizations will always occur during re-
synthesis. Additionally, optimization directives can be specified as Tcl commands using an
external file specific to the solution. This approach provides greater flexibility during the
design exploration phase. If the solution is re-synthesized, only the embedded pragmas
are applied. Some of these important HLS directives are explained below based on [61].

The pragma#HLS inline directive allows a function to be dissolved into a calling function,
removing it as a separate entity in the RTL hierarchy. In some cases, this merging process
allows operations within the function to be shared and optimized along with the calling
function, resulting in improved performance. However, it is important to note that an
inlined function will not be available for later reuse. As a result, consecutive calls to the
inline function will result in increased RTL area, which can negatively impact the design’s
performance and resource usage.

The pragma #HLS dataflow directive enables task-level pipelining between functions,
with the objective of increasing the concurrency of the RTL implementation and overall
latency of the design. This optimization allows operations in a function to start before the
previous function completes all its operations, as long as there are no data dependencies
between functions and iterations. However, it is important to note that this optimization
can increase the complexity of the design and may require careful management of the
data dependencies between functions.

Figure 36: Example of implementation without and with dataflow optimization directive.

The pragma #HLS pipeline directive partitions the loop iterations into pipeline stages,
allowing multiple iterations to be executed concurrently. This can significantly improve
the performance of the design by increasing the throughput of the loop. However, it is
important to note that pipelining also increases the resource utilization of the design,
which may lead to increased area and power consumption. Designers must consider any
data dependencies within the loop, as these may limit the scope to which the loop can be
pipelined.
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Figure 37: Example of implementation without and with pipeline optimization directive.

The pragma #HLS array partition directive divides an array into smaller sections, which
can be helpful in achieving several parallel read/write accesses that cannot occur with only
one array address. Partitioning an array results in an RTL implementation with multiple
small memories and their respective addresses instead of one large memory, which can
potentially increase parallelization potential in the design by allowing multiple memory
accesses to occur concurrently, alleviating existing memory bottlenecks. However, it is
important to note that partitioning an array requires additional memory instances or
registers to be allocated, which can increase the area and power consumption of the
design.

Figure 38: Example of implementation without and with array partition directive.
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3 Design and Implementation

3.1 Design Considerations

The primary objective of this work is to evaluate potential image post-processing solutions
for flare attenuation. However, several considerations need to be taken into account during
this process to assess the prototype design and its results, with a focus on identifying areas
for improvement and future optimizations. Here are some key considerations:

• Real-time performance: The solution should aim to achieve a processing speed close
to 30 frames per second (FPS) to be suitable for real-time applications, such as
automotive.

• Camera-agnostic solution: The solution should not only be designed for one type of
camera or optic system.

• Embedded system compatibility: The solution should be designed to be deployable
on an embedded system with constrained resources. It should be optimized to
operate efficiently within these limitations.

• Subtle flare attenuation: The solution should be capable of attenuating flare ar-
tifacts in a subtle manner, ensuring that no additional artifacts or distortions are
introduced into the image during the process.

• Flare artifact type: The solution should be designed to attenuate flare artifacts
caused by the presence of a light source within or in close proximity to the camera’s
field of view.

By considering these factors, the evaluation of the prototype design and its results will
provide insights into its effectiveness, potential improvements, and future optimizations
for achieving successful flare attenuation in practical applications.
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3.2 Flare Attenuation through Deconvolution

The previous chapter emphasized the significance of measuring the Point Spread Function
(PSF) of the camera system for effective flare attenuation through deconvolution. Proper
characterization of the PSF is of great relevance to evaluate and select the most suitable
deconvolution algorithm, as well as to replicate the same results in productive or real
environments. However, accurately characterizing the PSF is a complex task that involves
several approximations and assumptions as discussed in Section 2.1.3. Since it is not
feasible to measure the PSF of a specific camera in this project due to the lack of necessary
equipment, a closed-loop evaluation procedure shown in Figure 39 has been proposed
to assess the deconvolution algorithm’s performance in a controlled environment. To
assess the algorithm’s effectiveness, an artificial image with added flare artifacts has to
be generated by applying convolution between a flare-free image an a simulated PSF that
could generate a realistic flare artifact. In addition, gaussian noise is added to the flared
image as a final stage in simulating the processes of taking a picture with a camera.
Then, the image is processed using the deconvolution algorithm to reconstruct the image
while attenuating the flare. The quality of the reconstructed image will be compared with
the original reference image (flare-free) using a comparison metrics such as SSIM. This
comparison helps determine the extent to which the deconvolution algorithm reduces flare
artifacts and helps decide between which deconvolution algorithm to choose and what will
be the expected performance.

Figure 39: Closed-loop evaluation procedure to assess performance of deconvolution al-
gorithm using a known simulated PSF.

The closed-loop evaluation procedure discussed in this context draws inspiration from
works such as [62] and [63], which utilized a similar approach for generating artificial test
images in a controlled environment. However, these works primarily focused on image
deblurring, where the point spread function (PSF) kernel could be easily modeled and
introduced to an image using image processing libraries like MATLAB. In the case of
lens flare and stray light in general, there is a lack of literature and established methods
for producing PSFs that could generate realistic artifacts on an image by means of con-
volution. Therefore, the following section will explore different approaches and methods
that have been tested out during this project to generate artificial PSFs for assessing the
efficiency of the deconvolution algorithm and the overall solution.
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3.2.1 Genetic Algorithm

Genetic algorithms (GA), introduced in Section 2.2, are used to try to find a shift-invariant
PSF kernel that could generate a lens flare-like artifact. For this purpose, two images are
considered as shown in Figure 40, one with flare and the other without it. The objective
is to find the kernel that transforms the original image (without flare) to the one with
flare by applying 2D convolution operation. It is important to note that these tests were
conducted on a grayscale image. This approach was chosen as each RGB channel possesses
its own PSF, and for simplicity, it was more practical to focus on a single channel.

Figure 40: Example of original image (left) and target image with flare (right).

The genetic algorithm follows an iterative cycle consisting of several steps to optimize
the PSF kernel weights. First, the GA generates an initial set of individuals or chromo-
somes, where each chromosome represents a potential PSF kernel as shown in Figure 41.
The chromosomes are evaluated by reshaping them from their flattened form to a two-
dimensional representation suitable for convolution. The reshaped kernel is convolved
with the original image, and the resulting convolved image is compared to the reference
flared image. The fitness value of each chromosome is calculated based on a chosen metric,
such as Mean Squared Error (MSE), Mean Absolute Error (MAE), or Structural Similar-
ity Index (SSIM). This value represents the similarity between the convolved image and
the reference image, with a higher fitness indicating a better match. The fitness results
along with its respective chromosomes are stored in a list called the mating pool. From
this pool, individuals with the highest fitness values are selected as survivors and proceed
to the mating process. The selection process ensures that individuals with better fitness
have a higher chance of contributing to the next generation.

During the mating process, the selected survivors are combined using various techniques,
such as crossover, to produce new offspring chromosomes. Moreover, the newly generated
offspring undergo a mutation process, where random changes are introduced to some of
the genes (weight values of the kernel). Mutation adds stochasticity to the algorithm and
helps in escaping local minima, potentially leading to a better global optimal solution.
Next, the mutated offspring replace a portion of the existing population, and the process
repeats from the evaluation step. The algorithm continues iterating until a termination
criterion is met, typically when the best chromosome with the highest fitness is found.
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Figure 41: Explanation of important steps in the Genetic Algorithm for PSF kernel
discovery.

Despite modifying several parameters (generations, mutation probability, chromosome
size, and different fitness functions such as MSE, MAE, SSIM) in an attempt to achieve
the highest fitness, the genetic algorithm (GA) did not succeed in finding kernel weights
that generated a flare-like effect on the original image through convolution. One of the
highest fitness results is shown in Figure 42, and demonstrates that the fitness gradually
increases with each generation, but it plateaus around the 400th generation at a relatively
low value. Despite some marginal improvements in subsequent generations, the algorithm
fails to significantly enhance the fitness until the final generation. This suggests that
the GA struggles to find an optimal solution for replicating flare artifacts on the original
image due to the complexity of the search problem. The results show that only blurrier
versions of the original image can be achieved, but no artifacts that could resemble lens
flare. These results can be attributed to the required complexity of the shift-variant PSF,
which is represented by a four-dimensional tensor, as explained earlier. A two-dimensional
shift-invariant kernel may not be adequate to accurately model the PSF using the current
search approach. Modifying the genetic algorithm to accommodate a more complex PSF
representation would require a significant number of generations and a more advanced
heuristic to approach an optimal solution, both of which are not part of the scope of this
work.
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Figure 42: Fitness evolution curve through the generations.

3.2.2 Blind Deconvolution

As explained in the previous chapter, blind deconvolution is a technique used without
necessarily having explicit information about the PSF. However, it is mostly used for re-
covering a sharp version of an input blurry image and no applications to flare attenuation
have been reported. The MATLAB "deconvblind" image function was used for this pur-
pose. The function requires an initial estimate of the PSF and the number of iterations
it should try to reconstruct the image and estimate the PSF. The attempts of using this
method resulted in kernels that could not approximate a flare-like effect on a clean image.

Figure 43: Blind deconvolution restoration result.
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3.2.3 Using the Optical Parametric Model

In order to obtain the Point Spread Function (PSF) for every point in the camera’s
field of view (shift-variant kernel), a parametric model suggested in [8] is used instead
of a simple interpolation technique. This parametric model, represented by Equation
(7) and Equation (8), consists of two components: SI , which models imperfections due to
phenomena other than lens scatter, and SD, which represents the scatter component. The
parameters β, θ, A, B, d, f , and g are used to control how the model approximates the
PSF based on the optical properties. In [64], measurements of the PSF were taken from
a camera system, and a linear optimization process was used to estimate the parameters
of the parametric model. The resulting parameters (β, θ, A, B, d, f , g) were then
substituted into the parametric model equation, and the shift-invariant PSF kernel was
obtained by evaluating the equation at the center of the image.

Table 1: Parametric model parameters calculated in [64].

Parameter β θ d b α f
Value 0.826 1.063 1.175 -0.000007427 -0.00001514 2.127

Following this same approach, but considering the obtained parametric model in [64] and
presented in Table 1, the idea is to determine whether such a kernel can generate lens
flare artifacts when convoluted with an image.

sI (x0, y0, x1, y1; β, σ) = β

σ
exp

(
−(x1 − x0)2 + (y1 − y0)2

σ2

)
(7)
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0+y2
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2
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f (8)

After multiple attempts using different kernel sizes, the results consistently showed similar
outcomes as depicted in Figure 44. Instead of lens flare artifacts, the images exhibited a
blurred version of the original image. Despite experimenting with various kernel sizes for
the parametric model, the desired lens flare effect could not be achieved. This discrepancy
arises from the fact that the PSF is unique to a particular camera system operating under
specific conditions. Ideally, to obtain results, it would be necessary to use images captured
with the exact same camera.
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Figure 44: Results of using parametric model.

3.2.4 Fast Fourier Transform

Considering the fact that a convolution operation in spatial domain such as the one in
Equation (1) can also be described as a multiplication operation in the frequency domain
as seen in Equation (9), it is theoretically possible to retrieve the PSF if both of the other
variables are known. To this end, two images with and without flare are used to clear out
the PSF in the frequency domain.

PSF (f) = Flared_Image(f)
Original_Image(f) (9)

Figure 45: Process of using the Fast Fourier Transform (FFT).

Although the transfer function obtained by dividing the flared and original images in the
frequency domain successfully reconstructs the image without flare through the deconvo-
lution algorithm (as shown in Figure 45), it does not represent the Point Spread Function
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(PSF) of an optical system. Instead of attenuating the flare artifact by modeling the
behavior of stray light, the coefficients of the transfer function have been determined so
that their weighted combination, applied through deconvolution, reproduces the original
image. Treating this transfer function as a PSF to introduce lens flare into other im-
ages will result in incoherent results, as shown in Figure 46. This is because the transfer
function is very specific to the pair of images used for its estimation.

Figure 46: Example of using the transference function (PSF) on a different image to
generate a flare artifact.
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3.2.5 Flare Attenuation through Deconvolution - Assessment

Lens flare attenuation poses a significant challenge that has not been extensively addressed
with image processing techniques. The limited amount of studies point towards the use of
image reconstruction through deconvolution and stray light characterization (PSF mod-
eling). However, after conducting a thorough literature review and a practical pre-study
to determine the feasibility of utilizing the closed-loop process depicted in Figure 39, it
has become evident that this approach is not viable due to the following reasons:

1. The estimation of a real PSF of an optic system requires specialized tools and setups
that were not accessible for this particular study. As a result, the characterization
of the PSF and its subsequent utilization in the analysis of the deconvolution algo-
rithm performance were not feasible. Important to mention that the reconstruction
deconvolution algorithm can only be applied to images taken by the same camera
system used to characterize the PSF.

2. Despite conducting various tests in Section 3.2, it was not feasible to accurately
replicate a simulated PSF kernel capable of generating realistic lens flare artifacts.
The convolution operations between the artificially generated PSF and a clean image
resulted in a blurred version of the original image rather than a flare artifact that
accurately represents real-life scenarios. Without a valid PSF it is not possible to
assess the effectiveness of any deconvolution algorithm, let alone compare multiple
algorithms using image quality metrics.

3. Even if a known PSF is available, deconvolution algorithms for stray light atten-
uation have primarily been developed and tested for static camera system setups
[64] [7], or in general static optical system setups such as in microscopy, astron-
omy, or healthcare applications [4], [8], [6], [10]. These algorithms have been tested
and proposed for such controlled environments. However, deploying these solutions
in dynamic and rapidly changing environments, such as in industrial applications,
presents additional challenges. The PSF in these scenarios can vary significantly
due to factors like camera motion, changing lighting conditions and especially lens
wear and tear, which will require a frequent PSF calibration for each of the RGB
channels.

4. Iterative deconvolution algorithms, such as Richardson-Lucy introduced in Section
2.1.4, have demonstrated their suitability for image reconstruction in the presence
of varying PSFs. However, one important limitation is that there is no fixed num-
ber of iterations that guarantees optimal reconstruction. Determining the optimal
number of iterations can be challenging and computationally expensive. This makes
it difficult to estimate the processing speed of the algorithm, which is crucial for
real-time applications.
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3.3 Flare Attenuation with Deep Learning

As introduced in Section 2.4, deep learning approaches have shown remarkable results
in image restoration for lens flare artifacts attenuation in recent years. This is achieved
through the use of convolutional neural networks (CNNs), which can learn to extract
relevant features from the input image and generate the corresponding output image with
high accuracy. The proposed solution contemplates the use of deep learning due to the
following main reasons:

1. Deep learning-based approaches do not require any PSF characterization of a specific
camera system, making it more robust than traditional deconvolution techniques
and enabling a camera agnostic solution for flare attenuation.

2. Deep learning-based approaches have demonstrated their superiority over traditional
methods in handling various factors that are commonly present in real-life scenarios,
including varying scenes, camera and lens types, light exposure, camera angles, and
other environmental factors.

3. Previous studies have demonstrated promising outcomes in flare attenuation tasks
using well-established convolutional neural network (CNN) architectures, such as
U-Net.

4. Previous studies have successfully demonstrated the feasibility of using synthetic
flare datasets to train deep learning models for accurate predictions on real-life data.
By leveraging synthetic data during the training phase, the deep learning model can
learn and capture the essential features and characteristics of flare artifacts.

5. The existing deep learning flare attenuation approaches have not been designed for
deployment in constrained embedded systems due to their high complexity. By
considering the previous studies as baselines, it is possible to leverage their insights
to guide through exploration and analysis while carefully assessing the trade-off
between model complexity and performance.

6. While deep learning offers several advantages, it can also have its drawbacks. One
significant challenge is the difficulty in interpreting and explaining the reasoning
behind inference predictions, especially when compared to more deterministic ap-
proaches used in traditional image reconstruction algorithms. Consequently, a con-
siderable number of synthetic images are necessary to thoroughly test the solution
and statistically verify its ability to reduce flare without introducing additional ar-
tifacts to the image.

7. On the other hand, implementing deep learning architectures like convolutional net-
works in hardware poses additional challenges. These networks often involve a large
number of filters, with each convolutional layer requiring computations on different-
sized dimensions. These dimensions are typically significant, which necessitates
multiple iterations to compute. As a result, the hardware implementation of such
complex networks becomes more intricate and must be evaluated carefully.
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3.3.1 Dataset

As already mentioned, the most feasible approach to training a deep neural network for
flare attenuation is by generating a synthetic dataset that is complex and diverse enough
to enable the network to learn and generalize to real-life scenarios. In this work, the flare
dataset is selected from [28] because of its high quality, diversity of lens flare patterns
and the fact that it has already been used for training a deep learning model. The other
public flare dataset [39] is especially created for night applications and does not include
real flares. Therefore, the selected dataset comprises 2000 synthetic flares and 3000 real
flares captured by a camera rotating around a light source in a dark room. Moreover, the
scene dataset is based on the Flick 30k [65]. Figure 47 shows samples of both datasets.

Figure 47: Sample images from the flare (synthetic and real) and the scene datasets.

The procedure to generate the synthetic dataset involves several steps based on a method
proposed in [28] and illustrated in Figure 49. First, a scene and a flare image are randomly
selected from their respective datasets. Then, the flare image undergoes random scaling,
rotation, and color augmentation procedures introduced in Section 2.3.6. Finally, the
modified flare image is overlaid onto the scene to create a composite image, which is used
as the input for the deep learning model. On the other hand, the corresponding original
image of the scene is used to create the ground-truth image. This process is repeated
multiple times with different random combinations of flare and scene images to create a
diverse and complex synthetic dataset of 32,000 pairs of images (with and without flare)
as seen in Figure 48. The script used to merge the flares and scenes datasets is based on
[28] and it is available in the GitHub repository for this project in Appendix 7.1.

Figure 48: Example of scene with flare and original scene.

52



Design and Implementation

Figure 49: Procedure to merge scenes and flares to generate the synthetic dataset based
on [28].

3.3.2 Masking Saturated Pixels on Target Image

To ensure that the neural network focuses on attenuating the flare and not the light source,
it is important to address the issue of saturated pixels that occur when the light source
generating the flare is within the camera’s field of view. These saturated pixels have RGB
values that are far beyond the point of recovery. Therefore, the neural network should
not focus on removing the light source, otherwise it will be a waste of model capacity
and the resulting image would be susceptible to artifacts appearing where the light source
(saturated pixels) is supposed to be. It is important to recall that the solution is meant to
attenuate the flare and not eliminate the light source. Therefore, the ground-truth image
is modified by removing saturated pixels from consideration. The new ground-truth is
computed by using the flare and its corresponding scene, where the pixels with an RGB
value above a defined saturation threshold (0.97) are passed into the ground-truth scene.
The result of this process is illustrated in Figure 50. This modification ensures that the
neural network learns to attenuate the flare without focusing on the saturated section.

Figure 50: Example of scene merged with flare (left) and new ground-truth with saturated
pixels (right).
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3.3.3 Neural Network Model - Overview

Section 2.4 of this work, discussed how a U-Net based architecture was chosen for the
task at hand. However, it is important to note that the original U-Net with 30 million
parameters was not evaluated in this study due to its large size. Instead, the evaluation
started with a smaller model inspired by the structure of U-Net and implemented using
transfer learning. In this case, MobileNetv2 [34], specifically designed for applications
with limited computing resources, was selected as the backbone due to its compact size
compared to other well-known models like Resnet18 [41] or VGG16 [42].

To further reduce the complexity of the transfer learning network, the scaling parameter
(alpha) of MobileNetv2 was adjusted to strike a balance between accuracy and complexity.
The alpha parameter controls the number of channels in the network, with a value of
1.0 indicating maximum width, using the full set of channels specified in the original
architecture. In this work, an alpha value of 0.35 was used, significantly reducing the
original design network from around 2 million parameters to 141,646 parameters.

Figure 51 illustrates the architecture of the transfer learning version, referred to as
FlareNet-TL. However, as mentioned in Section 2.4.1, it is important to acknowledge
that the model still presents a complex and deep architecture, indicating the intricacy of
the chosen approach. A diagram of the model can be seen in the GitHub repository of
this project in Appendix 7.1, showing its complexity and the amount of layers it contains.

Figure 51: Diagram of FlareNet-TL model
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Although the transfer learning-based network demonstrates promising results, part of its
architecture inherited from MobileNetv2 poses an extra complexity when it comes to
hardware implementation due to its higher number of layers and parameters. To address
this limitation and seek a simpler yet effective neural network, a new model without
transfer learning is proposed inspired on more compact models such as the C-UNet [44]
and HC-UNet [46], introduced in Section 2.4.2.

Through several iterations, different hyper-parameters and CNN layers were evaluated
to identify the optimal architecture with good performance while keeping the parameter
count limited following a similar approach to [44]. The best architecture, depicted in
Figure 52, emerged from this iterative process. During the exploratory phase, significant
modifications were made to the network’s depth, filter sizes, and inclusion of skip connec-
tions. These adjustments, which will be further explained in Section 4.3, were crucial in
achieving the desired performance while maintaining a compact parameter count.

The resulting model, referred to as FlareNet-simple, has a total of 92,051 parameters.
Further insights gained during the exploratory phase will be elaborated on in the subse-
quent chapter. However, it is important to mention that a smaller model was also tested,
resembling the C-UNet++ architecture [44]. However, during the training process, mini-
mal to no improvement was observed, indicating that the model was too small for the task
at hand. It was concluded that a good trade-off between accuracy and model complexity
can be achieved within a vicinity of 92,000 parameters.

Figure 52: Diagram of FlareNet-simple model.
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3.3.4 Training

This section provides technical details of the deep learning implementation used in the
project. The complete script used for training and validation, including detailed comments
and instructions on how to run it, can be accessed on the project’s GitHub repository in
Appendix 7.1. To build and train the proposed versions of the FlareNet neural network, we
use Jupyter Notebook, which allows for faster training using a GPU. For instructions on
how to configure the setup for GPU training, please refer to the Appendix. Additionally,
TensorFlow is used as the deep learning framework, based on the author’s prior experience
with it. An overview of the training pipeline is depicted in Figure 53.

Figure 53: Overview of the process to train the deep learning model.

Important to mention that the following libraries are used along with TensorFlow in this
implementation: i) Scikit-learn: Open source library based on python for machine learning
applications, ii) OpenCV: Open source Computer Vision library, iii) Numpy: Open source
library based on python, highly optimized to work with large multidimensional vectors
and matrices, along with math functions to operate on them.

Image Data Pre-processing
Furthermore, the most important steps to condition the input and output (ground-truth)
images are the following: i) resizing image to a standard size of 255x255 pixels, ii) nor-
malization of RGB values, resulting in 255x255x3 matrix of floating point values between
0 and 1, and iii) train-validate-test split of the 32,000 image dataset in a random way
following a 80%, 10% and 10% ratio respectively. Overall, 25600 instances are used for
training, 3200 for validation, and 3200 for testing.

U-Net Architecture Definition
After several iterations to find the most suitable architecture and hyper-parameters,
the proposed model is implemented in this section using the Keras API with a Ten-
sorFlow backend as presented in Listing 1. In this section, only the implementation
of the FlareNet-simple model will be explained, the implementation of its counterpart
(FlareNet-TL) can be found in the GitHub repository. The first layer is a convolutional
layer with 16 filters of size (3, 3) and applies a ReLU activation function. The resulting
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feature map is then max-pooled with a kernel of size (2, 2). The next layers follow a
similar pattern of a separable convolution layer with a ReLU activation function and a
max-pooling layer. The number of filters is doubled for each layer, resulting in 32, 48,
and 64 filters, respectively. The network then applies a series of transpose convolution
layers with strides of 2, effectively upsampling the feature map back to the original input
size. The transpose convolution layers are followed by skip connections that merge the
output of the corresponding convolutional layer in the encoder section and the input of
the transpose convolution layer in the decoder section by an adding operation. Finally,
the output of this layer is fed to another convolutional layer with 3 filters and a sigmoid
activation function, which produces the final output image with the same dimensions as
the input image.

Training
After defining the hyper-parameters, such as loss function, optimizer, kernel initializers,
and the number of epochs (which will be discussed in Sections 4.1.1 and 4.1.2 for the best
models), two callback functions are instantiated: i) Early Stopping: form of regularization
used to avoid over-fitting during training. The learning process stops if the accuracy does
not improve after a number of epochs called the “patience”, and ii) Reduce Learning Rate:
reduces the learning rate during training by a given “factor” after no improvement is seen
for a “patience” number of epochs.

Model Evaluation
Lastly, the model is evaluated using the test dataset to assess its performance on unseen
data, providing an indication of its generalization capabilities. After evaluation, the model
is saved to preserve its architecture, weights, optimizer, and training configurations for
future reference and reproducibility.
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Listing 1: Model Definition
de f FlareNet_simple ( ) :

inputs = Input ( (256 , 256 , 3 ) )

x1_skip = Conv2D(16 , (3 , 3 ) , padding='same ' ) ( inputs )
x1_skip = Act ivat ion ( " r e l u " ) ( x1_skip )
x2 = MaxPooling2D ( (2 , 2 ) ) ( x1_skip )
x3 = SeparableConv2D (32 , (3 , 3 ) , padding="same " ) ( x2 )
x3 = Act ivat ion ( " r e l u " ) ( x3 )
x4 = MaxPooling2D ( (2 , 2 ) ) ( x3 )
x5_skip = SeparableConv2D (48 , (3 , 3 ) , padding="same " ) ( x4 )
x5_skip = Act ivat ion ( " r e l u " ) ( x5_skip )
x6 = MaxPooling2D ( (2 , 2 ) ) ( x5_skip )
x7 = SeparableConv2D (64 , (3 , 3 ) , padding="same " ) ( x6 )
x7 = Act ivat ion ( " r e l u " ) ( x7 )
x8 = MaxPooling2D ( (2 , 2 ) ) ( x7 )

x9 = Conv2DTranspose (64 , (3 , 3 ) , padding="same " , s t r i d e s =2)(x8 )
x9 = Act ivat ion ( " r e l u " ) ( x9 )
x10 = Conv2DTranspose (48 , (3 , 3 ) , padding="same " , s t r i d e s =2)(x9 )
x10 = Act ivat ion ( " r e l u " ) ( x10 )

sk ip1 = Add ( ) ( [ x5_skip , x10 ] )
sk ip1 = Act ivat ion ( " r e l u " ) ( sk ip1 )
x14 = Conv2DTranspose (32 , (3 , 3 ) , padding="same " , s t r i d e s =2)( sk ip1 )
x14 = Act ivat ion ( " r e l u " ) ( x14 )
x15 = Conv2DTranspose (16 , (3 , 3 ) , padding="same " , s t r i d e s =2)(x14 )
x15 = Act ivat ion ( " r e l u " ) ( x15 )

sk ip2 = Add ( ) ( [ x1_skip , x15 ] )
sk ip2 = Act ivat ion ( " r e l u " ) ( sk ip2 )
outputs = Conv2D(3 , (1 , 1 ) ) ( sk ip2 )
outputs = Act ivat ion ( " s igmoid " ) ( outputs )

FlareNet_simple = Model ( inputs , outputs )

re turn FlareNet_simple
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3.4 Model Quantization

The trained FlareNet-simple is quantized from a 32-bit floating point representation to a
8-bit integer representation with the goal of considerably reducing the amount of memory
space required to store the weights and speed up computation by requiring only integer
arithmetic units instead of floating point ones. As previously explained in Section 2.3.8,
quantization aware training usually results in a model with better performance.

Therefore, this section dives into the technical side of the deep learning quantization aware
training. The complete script which includes training and performance evaluation can be
found in the GitHub repository of this project in Appendix 7.1. Jupyter Notebook is
again used with the same training setup along with the GPU. To quantize the model, the
TensorFlow Lite [36] model optimization library is used, which allows to load an already
trained model and further train it by considering the weights as 8-bit integer values. The
model is trained for a short amount of epochs with the same dataset and hyper-parameters
which are detailed later in Section 4.1.3. This process is done following the code in Listing
2.

Listing 2: Quantization Aware Training
import tensor f low_model_optimizat ion as tfmot

quantize_model = tfmot . quant i za t i on . keras . quantize_model
q_aware_model = quantize_model ( trained_model )
q_aware_model . compi le ( l o s s=SSIMLoss ,

opt imize r = Nadam( 0 . 0 0 1 ) ,
met r i c s =[SSIMLoss ] )

h i s t o r y = q_aware_model . f i t ( t ra in_dataset ,
va l idat ion_data=val id_dataset , epochs=EPOCHS,
steps_per_epoch=tra in_steps ,
va l i da t i on_s t ep s=va l id_steps )

Once the model has been trained, the model is exported into a Tensor Flow Lite format
and saved for further inspection as shown in Listing 3. The quantized weights of each
layer can be analyzed using the Netron application [66], which allows for easy inspection
and extraction of the model parameters.

Listing 3: Tensor Flow Lite Model Conversion
conve r t e r = t f . l i t e . TFLiteConverter . from_keras_model ( q_aware_model )
conve r t e r . op t im i za t i on s = [ t f . l i t e . Optimize .DEFAULT]
quant ized_tf l i t e_mode l = conver t e r . convert ( )

However, extracting the bias weights of the 2D Transpose layer from the TensorFlow Lite
model was not possible due to incompatibility issues that require further investigation.
As a result, we will utilize a fixed-point representation that is defined in Section 3.5.3.

59



Design and Implementation

3.5 Hardware Implementation with HLS

As an important part of the-proof-of-concept, the aim of this section is to estimate the
hardware resources required to implement the FlareNet-simple architecture as a digital
circuit. To achieve this, each layer of the architecture is modeled and implemented using
HLS, introduced in Section 2.6.2. The relevant parts of the implementation will be pre-
sented and explained, but the theoretical justification for the algorithmic implementation
of each layer can be found in the previous chapter. For the complete implementation,
please refer to the project repository in GitHub found in Appendix 7.1.

3.5.1 Design Overview

The overall data flow of the neural network model is shown in Figure 54. The architecture
consists of five different types of layers: i) 2D Convolution, ii) 2D Max-Pooling, iii)
2D Depth-wise separable convolution, iv) 2D Transpose Convolution, and v) Adding,
each of which will be implemented and explained in detail. Additionally, each layer
considers buffers to cache input and intermediary values during the inference process.
The data is transmitted from layer to layer using stream data types and each layer is
implemented as templated functions to be called with corresponding values for parameters
such as input/output size, input/output depth, kernel weights, among others. The entire
implementation model is built in the FlareNet function, including reading the input image
data and writing the output inference results.

Figure 54: Diagram of the structure of the FlareNet model to be implemented in HLS.
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3.5.2 Vitis HLS - File Architecture

The file architecture of an HLS implementation for the neural network follows the same
good practices as a C++ design. The file structure, as depicted in Figure 55, is utilized
to implement the FlareNet-simple neural network in Vitis HLS.

• The "weights.h" file contains twenty-one multidimensional arrays that correspond
to the filter weights for each respective layer. These weights are extracted from the
trained FlareNet neural network. The "FlareNet.cpp" file invokes this "weights" file
to utilize the filter weights.

• The "FlareNet.cpp" and "FlareNet.h" file defines various constant parameters, in-
cluding input size, output size, input depth, and output depth of the neural network.
Additionally, it includes functions related to each of the five types of layers present
in the network: 2D Convolution, 2D Depth-Wise Separable Convolution, 2D Max-
Pooling, 2D Transpose Convolution, and Adding. Moreover, it contains functions
for the buffers along with their initialization and update procedures. Finally, it also
constructs the structure of the FlareNet neural network as seen in Figure 54 by
connecting different layers and passing the corresponding parameters to each layer.

• The "FlareNet_TestBench.cpp" file in the HLS implementation is responsible for
reading input stimuli, which are images with flare artifacts. It then calls the FlareNet
function to perform inference on these input stimuli. The resulting output from the
FlareNet model is compared with the "golden" reference result obtained from a
software execution. If the output and the reference result are equivalent, the test is
considered to have passed. The "Test Bench" file serves as the main function in the
HLS implementation, overseeing the testing and verification process.

Overall, this file structure enables the implementation of the FlareNet neural network in
Vitis HLS, allowing for hardware synthesis and verification through the test bench.

Figure 55: File architecture of the HLS implementation in VITIS.
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3.5.3 Functions and data types

As mentioned earlier, the implementation of the model introduced in Figure 54 involves
five different types of layers, each implemented as an individual function. However, the
model requires the usage of these layers in multiple instances with varying parameters,
such as input tensor size, depth, filter kernel size, and filter depth. To achieve flexibility
and modularity in the design, VITIS HLS supports native C++ templates. When different
C++ template values are passed to a function, unique instances of the function are created
for each template value. During synthesis with VITIS HLS, these copies are synthesized
independently [67]. The template parameters can be used to define the characteristics of
the input tensor, such as size and depth, as well as other configurable options specific to
each layer as shown in the Listing 4. Additionally, it enables easier exploration of different
design configurations and evaluates their performance.

Listing 4: Functions and Templates
MaxPooling2D<in_size , pool_s ize , out_depth>

( stream_in , stream_out ) ;

Conv2D_transposed<in_size , in_depth , pool , out_size , out_depth>
( stream_in , stream_out , trans_weights , t rans_bias ) ;

An important element considered during the implementation in HSL are the streams.
Streams are usually applied to efficiently handle data transfer between different modules
in a hardware design, due to the fact that it provides a standardized communication
protocol that facilitates parallel processing of data [67]. There are several benefits to using
streams in the design, such as enabling dataflow-oriented designs and other optimizations
such as data buffering, data parallelism, and pipeline scheduling that can improve the
performance, latency, and resource utilization of the design. Listing 5 shows how the
streams are defined in HLS.

Listing 5: Streams
h l s : : stream<datatype_input> input_stream ;
h l s : : stream<datatype_output> output_stream ;
h l s : : stream<datatype_interna l > stream_0 ;

Selecting the appropriate data type representation for the input and output image values
as well as the model weights is very important as it will impact the use of resources and
the latency of the design. Arbitrary Precision (AP) fixed data type is a commonly used
number representation that provides flexibility and allows for precise control over the
range and resolution of fixed-point numbers [67]. Listing 6 shows how this data type is
defined in HLS. The <A, B> notation indicates that the fixed type has a total width
of A bits, with B of those bits reserved for the fractional part (decimal places), and the
remaining A−B bits allocated for the integer part.
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Listing 6: Datatypes
typede f ap_fixed <18, 8> model_type_in ;
typede f ap_fixed <18, 8> model_type_out ;
typede f ap_fixed <18, 8> model_type_weights ;

In the context of this application, we have allocated 10 bits for the integer part and 8
bits for the fractional part (decimal places). The selection of the number of bits is done
based on comparing the image inference results from the implementation in C++ with
the inference results directly from the deep learning framework with full bit representa-
tion (float32) to select the smallest fixed-point representation that generates minimum
differences between both of them. This is essential to ensure that values in internal layers
during inference calculation have a sufficient bit range representation to prevent trunca-
tion or overflow issues as it is possible to see in Figure 56 if less bits are used for the
integer section.

Figure 56: Examples of different FlareNet inference results depending on the fixed-point
resolution.

3.5.4 Buffers

Buffers play a crucial role in the implementation of CNNs as the convolutional layers
require the input information to be cached in order to have the multi dimensional values
needed for the convolution operation. In addition, they provide temporary storage for in-
termediate results during forward propagation in the neural network. For this application,
two types of buffers were designed: with and without zero-padding. The zero-padding
buffer is utilized in the 2D convolutional and 2D depth-wise separable convolutional lay-
ers. It works by adding zeros to the edges of the input tensors, which expands the tensor
size and makes it compatible with the size of the filter. On the other hand, the simple
version of the buffer (without zero-padding) is used only in the Max-Pooling layer.

The dimensions of the input buffer depends on the kernel size, tensor input length, and
tensor input depth. The convolutional window is a section of the input buffer that is the
same size as the kernel size. The two input buffer structures are similar, but the buffer
with zero-padding is larger due to the logic to add zeros to both sides of the image (left
and right), as shown in Figure 57 and Figure 58. In addition, the simple version of the
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buffer for max-pooling utilizes only "kernel-1" amount of line buffers instead of "kernel"
line buffers as its simpler logic allows it.

Each type of buffer has its own function for initializing its values. The "initialize buffer
function" is used to fill the buffer with values from the input stream. This function fills
the buffer from left to right and top to bottom, with the lower right corner being the last
value to be inputted. The difference between the initialization of the two buffers can be
seen in Figure 57 and Figure 58. The zero-padding buffer introduces zeros in the first and
last columns and the first row of the buffer, while the values in between are filled based
on the same logic as the non-zero-padding buffer.

It is important to note that VITIS HLS provides a dedicated C++ class called "line buffers"
[68] for handling this type of convolutional buffers and includes buffering functions such
as shift, insert, get, etc. However, our attempts to synthesize a solution using them were
unsuccessful. This could potentially be attributed to an issue with the VITIS software
version running on Windows, which requires further investigation. Similarly, the problem
arises when attempting to use vector classes. While using the native "line buffers" could
potentially aid in synthesizing a more efficient design, implementing the buffers as normal
arrays simplifies the debugging process, as the flow of information in the arrays is easier
to follow.

Figure 57: Example of initializing max-pooling input buffer with kernel pool size of 2x2.

Figure 58: Example of initializing input buffer with zero-padding with kernel size of 3x3.

Each type of buffer has its own function for updating its values. The "update buffer
function" shifts all the existing values in the input buffer one step to the left. In addition,
the last two values from the first row of the convolution window are copied back to the first
two rows of the last column of the input buffer, as represented by the two blue squares in
Figure 59. This is because these values will still be required in future iterations, replicating
the behavior of the window sliding one stride down with a kernel of size 3x3. Finally, a
new value from the input stream is added in the last column and row of the input buffer,
as shown by the red square in Figure 59. The difference in the behavior of the update
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function for the two types of buffer is based on how the zero-padding buffer handles the
borders to input zero values whenever it is necessary. Therefore, it must evaluate whether
the window is positioned in the first column, last column or last row of the input tensor.

Figure 59: Example of how values are updated in the zero-padding input buffer.
The following will describe only the two functions related to the zero-padding buffer,
the rest can be found in the GitHub repository. The "initialize input buffer" function is
described by the following pseudo-code in Listing 7. It consists of three nested loops that
iterate through the input buffer. The function implements zero-padding by adding zeros
to the first row, first column, and last column of the input buffer. For all other positions,
the function reads values from the input stream and fills the buffer accordingly as seen
in Figure 58. The optimization directive #HSL PIPELINE is used in the depth channel
inner loop so that the synthesized tool will aim to insert one value into the buffer for
every clock cycle.

Listing 7: Initialize Buffer
f o r ( x = 0 ; x < ke rne l_s i z e ; x++):

f o r ( y = 0 ; y < input_s ize +1; y++):
f o r ( chn = 0 ; chn < depth ; chn++):
#pragma HLS PIPELINE
i f ( x < 1 ) :

p ixe l_va l = 0 ;
e l s e i f ( y < 1 ) :

p ixe l_va l = 0 ;
e l s e :

input_stream >> pixe l_va l ;
i f ( y > kerne l_s i ze −1):

i f ( y == input_s ize ) :
input_buf fe r [ x ] [ y−ke rne l_s i z e +1] [ chn ] = 0 ;

input_buf fe r [ x ] [ y−ke rne l_s i z e ] [ chn ] = pixe l_va l ;
i f ( y < ke rne l_s i z e ) :

window [ x ] [ y ] [ chn ] = pixe l_va l ;

The following pseudo-code describes the algorithm of the "update input buffer" function
in Listing 8 and Listing 9. It consists of three nested loops that iterate through the
convolutional window, shifting all the values to the left. Additionally, the two lower
values of the first column are saved in a temporal array.
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Listing 8: Update Window
temporal [ ke rne l_s i ze −1] [ depth ] ;
p ixe l_va l = 0 ;
f o r ( x = 0 ; x < ke rne l_s i z e ; x++)

f o r ( y = 0 ; y < ke rne l_s i z e ; y++)
f o r ( chn = 0 ; chn < depth ; chn++)
#pragma HLS PIPELINE
i f ( ( y == 0) and ( x > 0 ) ) :

temporal [ x −1] [ chn ] = window [ x ] [ y ] [ chn ] ;
i f ( y < kerne l_s i ze −1)

window [ x ] [ y ] [ chn ] = window [ x ] [ y +1] [ chn ] ;
e l s e

window [ x ] [ y ] [ chn ] = input_buf fe r [ x ] [ 0 ] [ 0 ] ;

Another set of nested loops repeat the same shift-left task for the rest of the input buffer.
On the last column, the temporal values that were saved earlier are copied back into the
first two rows of the last column in the input buffer, following the pattern shown in Figure
59. If the window is positioned in the first column, last column, or last row of the input
buffer, the function accounts for zero-padding values. Otherwise, the function retrieves
the next value from the input stream. It is worth noting that all of the control flags,
including "last column," "first column," "last row," and "max pooling," are evaluated and
updated in the layer function that calls the update function.

Listing 9: Update Buffer
f o r ( x = 0 ; x < ke rne l_s i z e ; x++):

f o r ( y = 0 ; y < input_size−ke rne l_s i z e +2; y++):
f o r ( chn = 0 ; chn < depth ; chn++):
#pragma HLS PIPELINE
i f ( y < input_size−ke rne l_s i z e +1):

input_buf fe r [ x ] [ y ] [ chn ] = input_buf fe r [ x ] [ y +1] [ chn ] ;
e l s e :

i f ( x < kerne l_s i ze −1):
input_buf fe r [ x ] [ y ] [ chn ] = temporal [ x ] [ chn ] ;

e l s e :
i f ( last_row_flag != 1 ) :

i f ( l a s t_co l_ f l ag == 1 or f i r s t _ c o l _ f l a g == 1 ) :
p ixe l_va l = 0 ;

e l s e :
input_stream >> pixe l_va l ;

input_buf fe r [ x ] [ y ] [ chn ] = pixe l_va l ;
e l s e :

input_buf fe r [ x ] [ y ] [ chn ] = 0 ;
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3.5.5 2D Convolutional Layer

The 2D convolutional layer follows the logic explained in detail in Section 2.4.3, and
is implemented in hardware as shown in Figure 60. The work done in [47], [69] and
[70] helps as reference to further understand the logic behind the implementation of the
convolutional layers in C++. The design starts by initializing the zero-padding input
buffer using the first values from the input stream. Then, the convolution process begins
between the convolution window and the kernel filters. The convolution operation is
carried out as a multiply-accumulate operation (MAC), as explained in the corresponding
chapter. To this result, the biases for each filter are added. The resulting value is then
passed through a rectified linear unit (ReLU) activation function, which sets all negative
values to zero. This process is repeated for each filter based on the output depth size,
while the result per filter is sent to the output stream. The input buffer and kernel window
values are updated to include new data from the input stream after every kernel filter has
been convoluted. This process is repeated until the last value from the input stream has
been introduced to the kernel window and processed.

Figure 60: Overview of hardware implementation of 2D Convolution Layer.

The following pseudo-code in Listing 10 describes how the convolution operation is per-
formed using an input buffer and a set of predefined filters. The first two loops are used
to slide the input tensor across the filters and will be found in every other convolutional
layer. After initializing the first values of the convolutional window and input buffer, the
three last nested loops perform the convolution operation for each filter, using the opti-
mization directive #HSL PIPELINE to specify that the convolution operations for each
n filter should be executed concurrently in hardware. After the convolution operation is
complete, the respective bias value is added and the result is passed through the activation
function (ReLU), the final result is written to two output streams. Finally, the function
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in-charge or updating the buffer and window values is called, which simulates the concept
of the window sliding one stride, ready to repeat the process with new values in the next
iteration. It is essential to note that certain layers require two output streams: one to
proceed to the subsequent sequential layer and the other to function as the skip connec-
tion. Since streams can only be consumed once, it is imperative to have two streams in
such cases. The GitHub repository contains the actual C++ implementation, which also
includes a different 2D convolutional layer which is tailored for the last layer, where a 1x1
kernel is utilized. This implies that the convolution operation only requires the values of
a single pixel. Despite this variation, the overall procedure remains largely unchanged.

Listing 10: 2D Convolution - Kernel 3x3
input_buf fe r [ k e rne l_s i z e ] [ input_size−ke rne l_s i z e +2] [ input_depth ] ;
window [ ke rne l_s i z e ] [ k e rne l_s i z e ] [ input_depth ] ;

init_buffer_and_window ( ) ;

f o r ( x = 0 ; x < input_s ize ; x++):
f o r ( y = 0 ; y < input_s ize ; y++):

f o r ( f i l t e r = 0 ; f i l t e r < output_depth ; f i l t e r ++):
#pragma HLS PIPELINE
window_conv_result = 0 ;
f o r ( win_chn = 0 ; win_chn < input_depth ; win_chn++):

f o r (win_x = 0 ; win_x < kerne l_s i z e ; win_x++):
f o r (win_y = 0 ; win_y < kerne l_s i z e ; win_y++):

#pragma HLS PIPELINE
window_conv_result += window [ win_x ] [ win_y ] [ win_chn ] ∗

w e i g h t _ f i l t [ win_x ] [ win_y ] [ win_chn ] [ f i l t e r ] ;

window_conv_result += bia s [ f i l t e r ] ;
window_conv_result = r e l u ( window_conv_result )

output_stream_1 << window_conv_result ;
output_stream_2 << window_conv_result ;

update_buffer_and_window ( ) ;
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3.5.6 Depth-wise Separable 2D Convolutional Layer

The Depth-wise separable 2D convolution layer follows the logic explained in detail in
Section 2.4.4, and is implemented in hardware as illustrated in Figure 61. Like the original
convolution, it requires buffering the input data to fill a convolutional window, using the
same buffer structure and functions. However, this convolution layer works with two types
of filters: the depth-wise filter and the point-wise filter.

Figure 61: Overview of hardware implementation of Depth-wise Separable 2D Convolution
Layer.

Similar to the original convolution, the depth-wise convolution window and depth-wise
filter are of the same dimensions, but the MAC operation outputs one value per input
channel, which is stored in a depth-wise vector following the pseudo-code seen in Listing
11. Once the depth-wise convolution is completed and the depth-wise vector is filled with
the same number of values as the number of input channels, the point-wise convolution
begins.

Listing 11: Depth-wise convolution
f o r ( win_chn = 0 ; win_chn < input_depth ; win_chn++):

depthwise_res = 0 ;
#pragma HLS PIPELINE
f o r (win_x = 0 ; win_x < kerne l_s i z e ; win_x++):

f o r (win_y = 0 ; win_y < kerne l_s i z e ; win_y++):
depthwise_res += weight_depth_f i l t [ win_x ] [ win_y ] [ win_chn ] ∗

window [ win_x ] [ win_y ] [ win_chn ] ;

depthwise_vector [ win_chn ] = depthwise_res ;
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The next convolutional step is a MAC operation between each point-wise filter and the
respective depth-wise vector as described in the pseudo-code seen in Listing 12. The
output of the point-wise convolution is added with the respective bias and then passed
through a rectified linear unit (ReLU) activation function. The final result is then sent to
the output stream. Similar to the normal convolution, the input buffer and kernel window
values are updated to include new data from the input stream after every kernel filter
has passed through the depth-wise and point-wise operations. This process is repeated
until the last value from the input stream has been introduced and processed using the
convolutional window.

Listing 12: Point-wise convolution
f o r ( f i l t e r = 0 ; f i l t e r < output_depth ; f i l t e r ++):

po intwise_res = 0 ;
f o r ( win_chn = 0 ; win_chn < input_depth ; win_chn++):

#pragma HLS PIPELINE
pointwise_res += depthwise_vector [ win_chn ] ∗

weight_po int_f i l t [ win_chn ] [ f i l t e r ] ;

po intwise_res += bia s [ f i l t e r ] ;
po intwise_res = r e l u ( po intwise_res )
output_stream << pointwise_res ;
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3.5.7 Transposed 2D Convolutional Layer

The Transpose 2D convolutional layer follows the logic explained in detail in Section 2.4.5,
and its hardware implementation resembles that of Figure 62. The work done in [71] and
[72] works as an initial reference to understand the logic behind the implementation of
this layer in C++. This particular type of convolution differs from others in that it does
not require buffering of the input data, as it operates on a single pixel value (including all
of its input channels) to produce an output array with expanded dimensions. However,
buffering the output of each transpose convolution remains necessary, as the intermediate
results are required for the subsequent iterations. To address this, a buffer is defined and
initialized with the bias values of the kernel filters. In the implementation, this buffer
is referred to as the "transpose buffer". Similar to other convolution processes, a MAC
operation is performed between the pixel depth values and the kernel filters for all filters
that contribute to the output definition.

Figure 62: Overview of hardware implementation of Transposed 2D Convolution Layer.

However, the result of the MAC operation between the pixel depth values and the input
depth values of the filter is stored temporarily in the "transpose buffer". In Figure 63,
you can observe how the output values from previous convolutions of pixel channels are
accumulated in the buffer by sliding right with a stride of two, effectively doubling the
dimension of the input tensor along the "y" axis (columns). The described logic is evident
in the pseudo-code provided in Listing 13.
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Figure 63: Example of how the transposed buffer is used to accumulate intermediate
results.
Listing 13: Transposed 2D Convolution - Filling Transpose Buffer
f i l l_p ixe l_chn_va lue s ( p ixe l_vec ) ;

f o r ( f i l t e r = 0 ; f i l t e r < output_depth ; f i l t e r ++):
f o r (win_x = 0 ; win_x < kerne l_s i z e ; win_x++):

f o r (win_y = 0 ; win_y < kerne l_s i z e ; win_y++):
conv_res = 0 ;
#pragma HLS PIPELINE
f o r ( i n t win_chn = 0 ; win_chn < input_depth ; win_chn++):

#pragma HLS PIPELINE
conv_res += pixe l_vec [ win_chn ] ∗

w e i g h t _ f i l t [ win_x ] [ win_y ] [ f i l t e r ] [ win_chn ] ;
tran_buff [ win_x ] [ y+win_y ] [ f i l t e r ] += conv_res ;

Once the transposed buffer is fully filled, it is ready to output its values through the
output stream. However, only the first two rows can be outputted at this stage, as the
last row in the buffer is still needed to be accumulated with the results from the next
iteration. It is important to note that before the values are sent to the output, they
undergo a ReLU activation function, which eliminates any negative values. Additionally,
the transpose buffer needs to be updated for the next iteration, as depicted in Figure 64. In
this process, the last row is shifted up by two strides to become the first row, effectively
doubling the dimension of the input tensor along the "x" axis (rows). Meanwhile, the
middle and last rows are set back to the bias value to prepare for the next iteration. The
described logic is evident in the pseudo-code provided in Listing 14. Same as before, the
optimization directive #HSL PIPELINE is used in both iterative sections at the depth
and filter inner loop respectively.
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Figure 64: Example of how the transposed buffer outputs and updates its values.

Listing 14: Transposed 2D Convolution - Writing Output
f o r ( i n t tran_x = 0 ; tran_x < ke rne l_s i z e ; tran_x++) {

f o r ( i n t tran_y = 0 ; tran_y < output_size ; tran_y++) {
f o r ( i n t tran_f = 0 ; tran_f < output_depth ; tran_f++) {

#pragma HLS PIPELINE
i f ( tran_x == 0 ) :

i f ( tran_buff [ tran_x ] [ tran_y ] [ tran_f ] < 0 ) :
output_stream << 0 ;

e l s e :
output_stream << tran_buff [ tran_x ] [ tran_y ] [ tran_f ] ;
tran_buff [ tran_x ] [ tran_y ] [ tran_f ] =
tran_buff [ tran_x+s t r i d e ] [ tran_y ] [ tran_f ] ;

e l s e i f ( tran_x == 1 ) :
i f ( tran_buff [ tran_x ] [ tran_y ] [ tran_f ] < 0 ) :

output_stream << 0 ;
e l s e :

output_stream << tran_buff [ tran_x ] [ tran_y ] [ tran_f ] ;
tran_buff [ tran_x ] [ tran_y ] [ tran_f ] = b ia s [ tran_f ] ;

e l s e :
tran_buff [ tran_x ] [ tran_y ] [ tran_f ] = b ia s [ tran_f ] ;
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3.5.8 2D Max-Pooling Layer

The 2D Max-pooling layer follows the logic explained in detail in Section 2.4.6, and its
hardware implementation is shown in Figure 65. Similar to the convolution layers, this
implementation also requires buffering the input data before proceeding with the max-
pooling operation. However, it computes a maximum value search operation instead of a
multiply and accumulate operation. In addition, the output depth will remain the same
as the input depth, resulting in writing one maximum value to the output stream per
input channel.

Figure 65: Overview of hardware implementation of 2D Max-Pooling Layer.

The input buffer used for max pooling operations is illustrated in Figure 66. The buffer is
initialized with a window size of 2x2. When updating the input buffer, values are shifted
twice (stride=2) every time a new window is required, which reduces the dimension by
two on the "y" axis. Important to mention that for this type of buffer, a new input stream
value is added to the lower corner of the window. Once the entire input tensor length
has been processed, the buffer is filled again with the next new values. In contrast to 2D
Convolution and 2D Depthwise Separable convolution, there is no need to reuse values
from the buffer, because the window is of size 2x2 and its values are supposed to be shifted
with a stride of 2 through the "x" dimension, effectively reducing its dimension by half.

Figure 66: Example of how the input buffer updates its values.
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The described logic is implemented in the pseudo-code provided in Listing 15. The struc-
ture closely resembles that of a regular convolutional layer, with the addition of a con-
ditional statement. This conditional statement ensures that the maximum value search
is executed only after the buffer has shifted by two units (due to a stride of 2) along
the y width dimension. In this implementation, an output is written for every channel
m during each clock cycle, as indicated by the optimization directive #HSL PIPELINE.
Then, the buffer is updated by shifting the values to the left. Once all the maximum
operations have been performed on the width dimension, the buffer is initialized again
with the subsequent input values from the stream.

Listing 15: 2D Max-Pooling
input_buf fe r [ poo l_s i ze ] [ input_size−poo l_s i ze ] [ depth ] ;
window [ poo l_s i ze ] [ poo l_s i ze ] [ depth ] ;

init_buffer_and_window_maxpool ( ) ;

f o r ( x = 0 ; x < ( input_s ize / 2 ) ; x++):
f o r ( y = 0 ; y < input_s ize ; y++):

i f ( y%poo l_s i ze == 0 ) :
f o r ( win_chn = 0 ; win_chn < depth ; win_chn++):

#pragma HLS PIPELINE
maxpool_val = 0 ;
f o r (win_x = 0 ; win_x < poo l_s i ze ; win_x++):

f o r (win_y = 0 ; win_y < poo l_s i ze ; win_y++):
i f ( maxpool_val < window [ win_x ] [ win_y ] [ win_chn ] ) :

maxpool_val = window [ win_x ] [ win_y ] [ win_chn ] ;

output_stream << maxpool_val ;

update_buffer_and_window_maxpool ( ) ;
i f ( x != ( ( input_s ize /2) −1)) :

init_buffer_and_window_maxpool ( ) ;
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3.5.9 Adding Layer

The Adding layer follows the logic described in Section 2.4.7 and its hardware implemen-
tation is shown in Figure 67. The logic is simple and requires two input streams. The
input channel values from both input streams are added together, element-wise, and then
passed through the activation function (ReLU). The resulting values are transferred to
the output stream, resulting in the same output depth as the input depth.

Figure 67: Overview of hardware implementation of Adding Layer.

The provided logic is implemented in the pseudo-code provided in Listing 16. The first
two loops are necessary for iterating over the input tensor values, while the last nested
loop fetches all the depth values of the corresponding pixels and performs the addition
operation. As a result of the optimization directive #HSL PIPELINE, the tool will try
to produce one result at every clock cycle.

Listing 16: Adding Layer
f o r ( x = 0 ; x < input_s ize ; x++):

f o r ( y = 0 ; y < input_s ize ; y++):
f o r ( chn = 0 ; chn < depth ; chn++):

#pragma HLS PIPELINE
in_stream_1 >> pixel_val_1 ;
in_stream_2 >> pixel_val_2 ;
adding_resu l t = pixel_val_1 + pixel_val_2 ;
adding_resu l t = r e l u ( adding_resu l t )
output_stream << adding_resu l t ;
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3.6 Synthesis and Validation with HLS

Through Vitis HLS, it is possible to facilitate the debugging and validation process of
the neural network implemented in C++. A test bench is utilized to ensure the correct
functional behavior of the network. The test bench follows a straightforward logic as
depicted in Figure 68. Initially, a series of images are read from text files, where each file
contains the pixel channel values in a flattened format. These values are then normalized
by dividing them by 255, which corresponds to the maximum RGB intensity value, as
required by the neural network. Subsequently, the normalized values are reorganized into
a three-dimensional array with dimensions of 255x255x3. The FlareNet function is then
called to perform inference on this input. The resulting output is written into a text
file and immediately compared with the corresponding golden reference. If the values
from the output result match the golden reference exactly, the evaluation proceeds to the
next test image. This process continues until either all the test images are successfully
evaluated or a discrepancy is found between the output and golden reference results.

Figure 68: Logic behind test bench verification process.

After ensuring the functionality of the C++ implementation, the synthesis process is
performed using VITIS. During synthesis, certain parameters and constraints need to be
specified. First, a clock frequency constraint is set, which in this case is configured to 300
MHz. This constraint helps optimize the design for the target frequency. Additionally, the
target FPGA board is selected for synthesis. In this scenario, the chosen FPGA board
is the Zeus Zynq UltraScale [55] (target device: XQZU11EG-FFRC1760-2-i) as it is a
industrial graded device used in automotive and artificial intelligence applications. These
specifications guide the synthesis tool to generate the optimized hardware implementation
for the specified FPGA target.

After the synthesis process, the VITIS tool generates an RTL (Register Transfer Level)
design along with a comprehensive report that provides important performance metrics
which will be presented and discussed in Section 4.5. These metrics include latency, es-
timated clock frequency, and utilization of hardware resources such as Flip-Flops (FF),
Digital Signal Processing units (DSP), Look-up Tables (LUT), among others. This in-
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formation helps developers assess whether the design fits within the available resources
of the FPGA and identify potential areas for performance improvement. To validate the
functional behavior of the generated RTL design, Co-Simulation is performed using HLS.
This approach utilizes the same test bench that was used for software validation (C++
implementation). However, instead of executing inference on the software model, infer-
ence is carried out using the RTL design. Input values are passed to the RTL design, and
the output is compared against the golden reference as it is done during the software val-
idation. This process ensures that the RTL implementation produces the same results as
the C++ implementation, providing confidence in the correctness of the hardware design.

3.7 Inference in GPU

To evaluate the performance of the trained model on an AI accelerator, such as a GPU,
two devices are used: a laptop (Sword 15 A11UE [73], equipped with a Core i7 processor
and a NVIDIA RTX3060 GPU) and the Jetson Nano GPU from NVIDIA [52]. To run
inference on both devices, an application is built using C++, OpenCV, and ONNX-
runtime. The integration of the deep learning network in a C++ application is possible
through the use of a model converter such as "Open Neural Network Exchange" (ONNX
[74]). ONNX is an open-source ecosystem that allows representing machine learning
models with a standardized set of operators across multiple frameworks, providing access
to hardware optimizations while maximizing performance. In the case of running the
model on NVIDIA GPUs, ONNX utilizes CUDA for optimizations. The behavior of this
application and how the different components and tasks interact with each other are
presented in a general view on Figure 69. Visual Studio 2022 is used to develop the
proposed application.

The following sections will provide further details on important aspects to consider for the
implementation, along with code snippets of crucial parts. For a complete implementation,
including detailed comments and instructions on how to build and run the application in
the Jetson Nano using CMAKE, refer to the GitHub repository of the project in Appendix
7.1.

Figure 69: C++ inference application overview.
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Model Conversion
To use the deep learning model trained using TensorFlow, first it has to be converted to
an ONNX extension. This is done in Listing 17.

Listing 17: Model Conversion
model = t f . keras . models . load_model ( " /PATH/ FlareNet . h5 " ,

custom_objects ={ 'SSIMLoss ' : SSIM})
format = ( t f . TensorSpec ( ( None , 256 , 256 , 3 ) , t f . f l o a t32 ,

name="input_image " ) , )
onnx_model ,_=tf2onnx . convert . from_keras ( model , input_s ignature=format ,

opset =12)
onnx . save ( onnx_model , "/PATH/ FlareNet . onnx " )

Variable Initialization
To run inference, an environment must be first instantiated. This environment is the
main entry point of the ONNX Runtime to create a so-called session for inference. In
addition, the memory space for the input and output tensors following the ONNX format
are generated based on the input and output image dimensions used to train the network.
The model will run inference using the address space of the input and output tensors
as reference, expecting to find the input image on the input tensor so it could leave the
inference result on the output tensor. Finally, the inference session is instantiated in the
environment and the ONNX extension model is loaded. The most important parts of this
process can be seen in Listing 18.

Listing 18: Variable Initialization - ONNX
Ort : : Env env ;
Ort : : RunOptions runOptions ;
Ort : : S e s s i on s e s s i o n ( ) ;

// Def ine and i n i t i a l i z e the Input and Output Tensors .
const array<int64_t ,4> input_shape = {1 ,256 ,256 ,3} ;
const array<int64_t ,4> output_shape = {1 ,256 ,256 ,3} ;
// Def ine input and output vector−f l a t t e n s i z e .
const i n t output_dim = 3∗255∗255;
const i n t input_dim = 3∗255∗255;
f l o a t ∗ input_img = new f l o a t [ input_dim ] ;
f l o a t ∗ in ference_img = new f l o a t [ output_dim ] ;

auto input_tensor =
Ort : : Value : : CreateTensor<f l o a t >(input_img , input ,
input_dim , input_shape . data ( ) , input_shape . s i z e ( ) ) ;

auto output_tensor =
Ort : : Value : : CreateTensor<f l o a t >(memory_info , inference_img ,
output_dim , output_shape . data ( ) , output_shape . s i z e ( ) ) ;

// Create ONNX Ses s i on with FlareNet model .
s e s s i o n = Ort : : S e s s i on ( env , model_directory , Ort : : Ses s ionOpt ions { } ) ;
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Image Pre-processing
Test images are conditioned using OpenCV to fulfill the input data shape and pixel value
required by the FlareNet model. This process is shown in Listing 19 and follows the next
steps: i) resizing image to 256x256, ii) flattening the image to a one dimensional array as
required by ONNX input tensor, and iii) normalizing the pixel values between 0 and 1 by
dividing the RGB channel values by 255.

Listing 19: Image Pre-processing
cv : : Mat image = imread ( "/PATH/ test_flared_img_x . jpg " ) ;
// Res i ze the image to the input dimension o f the FlareNet .
r e s i z e ( image , image , S i z e (256 , 2 5 6 ) ) ;
//Reshape the image to 1D vecto r .
image = image . reshape (1 , 1 ) ;
// Normailze number to between 0 and 1 and convert to vec to r .
vector<f l o a t > image_vec ;
image . convertTo ( image_vec , CV_32FC3, 1 . / 2 5 5 ) ;

Inference
During inference, the model expects the following relevant inputs as seen in Listing 20: i)
The input layer name of the model, which identifies where the input tensor is located, ii)
The address pointing to the memory space of the input tensor, where the input image is
expected to be, iii) The output layer name of the model, which identifies where the output
tensor should store the inference result, iv) The address pointing to the memory space of
the output tensor, where the resulting image will be stored. As illustrated in Figure 69,
the application iterates through 1000 images and calculates the average execution time
for the inference process.

Listing 20: Run Inference
//Copy image data to t enso r input array .
copy ( image_vec . begin ( ) , image_vec . end ( ) , input ) ;
//Run I n f e r e n c e .
s e s s i o n . Run( runOptions , input_names . data ( ) , &input_tensor ,

1 , output_names . data ( ) , &output_tensor , 1 ) ;
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4 Results and Discussion

This section provides detailed insights into the implementation results, including the
training outcomes of the deep learning model, the impact of quantization effects, and the
results achieved during inference on both synthetic and real-life flared images. Addition-
ally, the chapter explores the outcome of HLS synthesis and investigates how different
optimization directives influence the overall performance of the design. Furthermore, it
evaluates the deployment performance of the neural network solution on both mid-end
and low-end devices with GPU accelerators.

4.1 Neural Network Training

This section presents the details of the training conditions found to be the best for both
of the deep learning architectures.

4.1.1 FlareNet with Transfer Learning

The FlareNet-TL model, introduced in Section 3.3.3, was trained with a total of 23,644
instances, each consisting of a pair of images (input and target). In addition, 3178 images
are used for validation during the training process. The hyper-parameters found to be
the most suitable ones during training are the following:

• Epochs: 100 epochs with a regularization technique called Early Stopping setup
with a patience of 15 epochs. During training, the neural network stopped improving
after 46 epochs.

• Loss function: A functioned based on the structural similarity (SSMI) metric was
selected as the loss function (1 - SSMI) as it shows better performance at focusing
on reducing the flare and restoring the color contrast of the image while avoiding
artifacts in the process.

• Batch: A batch size of 8 instances is selected as it reduces the amount of memory
required to compute each training step of an epoch.

• Optimizer: Nesterov Adam (Nadam).

• Kernel Initializer: He Normal.

• Learning rate: An initial learning rate of 1e-4 was selected. This small learning
rate is better suited to fine tuning in transfer learning. In addition, the learning
rate is reduced automatically by a factor of 0.1 every 8 epochs if there is no evident
loss reduction when evaluating the model with the validation dataset.
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The test dataset comprises of 3178 instances and is used to assess how well the model
is able to generalize to unseen data. The Structure Similarity Index (SSIM) is used to
evaluate how similar are the predicted images when compared to the ground-truth (images
without flare). In addition, the SSIM is also calculated between the input image (with
flare) and the ground-truth, to build the baseline from where improvements are expected.
Due to the fact that the only difference is the flare in between the three images (input,
ground-truth and prediction), if the SSIM value between the prediction and ground-truth
is higher than the SSIM value between the input and ground-truth, it is possible to
conclude that the flare artifacts are being attenuated. Overall, the results in Table 2
shows that the predicted images are more similar to the ground-truth than the input
images (with flare), evidencing an improvement in the image quality.

Table 2: Inference Accuracy

Input vs Ground-truth Pred. vs Ground-truth
SSIM 0.772 0.888

Figure 70 shows how the validation loss is closely decreasing at a similar ratio as the
training loss, which is a good indicator of how well the model is learning, while not
over-fitting the training dataset.

Figure 70: Learning curve of best FlareNet-TL model.

In order to enhance the model’s validation, a new dataset comprising 25,425 synthetic
test images is generated. In addition, two more metrics are used to evaluate how close
the output predicted images are compared to the ground-truth. MAE and MSE values
are considerably lower on the predicted image when compared to the input image, using
the ground-truth as reference. The results presented in Table 3 exhibit similar results as
those observed in the previous evaluation using the smaller test dataset. This consistency

82



Results and Discussion

demonstrates the model’s ability to generalize well to unseen data. However, it is im-
portant to note that the current dataset consists solely of synthetic images. To ensure a
comprehensive evaluation, real-world images containing actual flare artifacts should also
be considered in the assessment process.

Table 3: Inference Accuracy

Input vs Ground-truth Pred. vs Ground-truth
SSIM 0.803 0.902
MAE 0.105 0.057
MSE 0.028 0.008

4.1.2 FlareNet

A simpler version of the previous model without transfer learning, named FlareNet-simple,
also introduced in Section 3.3.3, was trained with the same dataset of 23,644 instances,
along with 3178 images used for validation. The hyper-parameters found to be the most
suitable ones during training are the following:

• Epochs: 200 epochs with a regularization technique called Early Stopping setup
with a patience of 15 epochs.

• Loss function: The same functioned based on the SSMI metric was selected as the
loss function (1 - SSMI).

• Batch: A batch size of 12 was selected.

• Optimizer: Nesterov Adam (Nadam).

• Kernel Initializer: He Normal.

• Learning rate: An initial learning rate of 1e-3 was selected. This small learning
rate is better suited to start training a neural network without trained weights.
In addition, the learning rate is reduced automatically by a factor of 0.1 every 10
epochs if there is no evident loss reduction when evaluating the model with the
validation dataset.

The test dataset consisted of the same 3178 instances and the SSIM metric is also used to
evaluate how similar are the predicted images when compared to the ground-truth (images
without flare). Similar results, shown in Table 4, confirm also that the predicted images
are more similar to the ground-truth than the input images, evidencing an improvement
in the image quality. However, as expected, the previous model performs slightly better
due to the transfer learning component and the overall higher complexity of the model
structure.
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Table 4: Inference Accuracy

Input vs Ground-truth Pred. vs Ground-truth
SSIM 0.772 0.866

Figure 71 shows how the validation loss is closely decreasing at a similar ratio as the
training loss, which is a good indicator of how well the model is learning, while not
over-fitting the training dataset.

Figure 71: Learning curve of best FlareNet-simple model.

The same large test dataset, consisting of 25,425 synthetic test images, is utilized to
validate the performance accuracy observed in the FlareNet-simple model. The results,
as shown in Table 5, demonstrate a consistent performance compared to the smaller
dataset, however inferior to the transfer learning-based model.

Table 5: Inference Accuracy

Input vs Ground-truth Pred. vs Ground-truth
SSIM 0.803 0.881
MAE 0.105 0.073
MSE 0.028 0.011
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4.1.3 Quantization-aware

The previous model (FlareNet-simple) was quantized to assess the impact of such opti-
mization techniques on the accuracy and size of the model. The model was trained with
the same training dataset as before, with the following hyper-parameters:

• Epochs: only five epochs as the model is already trained and it requires a few
epochs to be trained with the entire dataset during aware quantization.

• Loss function: The same functioned based on the structural similarity (SSMI)
metric was selected as the loss function (1 - SSMI).

• Batch: The same batch size of 12 was used to follow a similar training process
during quantization.

• Learning rate: A small learning rate of 1e-4 was used because the neural network
is already trained.

After applying quantization-aware training, the model is assessed using Tensorflow on the
same small test dataset consisting of 3178 instances, which was previously used to evaluate
the two preceding models. The outcomes displayed in Table 6 reveal a slight reduction in
accuracy performance compared to the previous result. This outcome is anticipated since
it represents a trade-off due to the model’s weight being reduced to approximately 30%
of its initial size, as illustrated in Table 7.

Table 6: Inference Accuracy

Input vs Ground-truth Pred. vs Ground-truth
SSIM 0.772 0.850

Table 7: Model Size (Mb)

Model Size (Mb)
Original (float32) 0.363
Quantized (int8) 0.1134

Despite demonstrating good performance with int8 quantized weights, it was not possible
to obtain all the necessary weights from the TensorFlowLite model using the Netron App
[66]. Specifically, the bias weights for the Transpose 2D Convolution were not retrievable,
making it impossible to utilize them in the subsequent designs. Nevertheless, these results
highlight the potential benefits of employing a quantized model for this application, and
further efforts should be undertaken to ensure proper exportation of the weights.
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4.2 Model Inference

The FlareNet models are performing two tasks: i) attenuating the flare, and ii) restoring
the RGB values of the image. To accomplish the first objective, the network’s encoder
section is responsible for extracting high-level features that are related to the location and
intensity of the flare. On the other hand, the decoder section then uses this information
to reconstruct a flare-free image that has the same resolution as the input image. As
for the second objective, the network must learn how to restore the RGB values of the
entire image, as the process of attenuating the flare can lead to color distortions in the
non-flare regions of the image. To address this issue, the network is trained to minimize
the difference between the restored image and the original image in terms of structural
similarity, as measured by the SSIM function. This helps ensure that the network produces
visually pleasing and natural-looking images after flare attenuation. The above predictions
using synthetic images done by the FlareNet-TL show both of these objectives being
fulfilled. Inference examples for the same images processed using the FlareNet-simple
model demonstrate a similar effect in attenuating the flare artifact. These examples can
be found in the last Section 7.4 of the Appendix .

4.2.1 Synthetic Test Images

Figure 72: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 73: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

86



Results and Discussion

Figure 74: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 75: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 76: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

87



Results and Discussion

Figure 77: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 78: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 79: left: input image, middle: ground-truth, right: FlareNet-TL prediction.
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Figure 80: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 81: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 82: left: input image, middle: ground-truth, right: FlareNet-TL prediction.
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Figure 83: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 84: left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Figure 85: left: input image, middle: ground-truth, right: FlareNet-TL prediction.
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4.2.2 Inference on Real images

To assess the generalization capability of the FlareNet models to real-life cases of lens flare
artifacts, a collection of real images containing these effects was assembled. It is important
to note that since there is no ground-truth available for comparison, there is no objective
metric to quantitatively measure the extent of attenuation achieved by the model as
it was provided in Section 4.1. However, a visual inspection of the following images
reveals a noticeable reduction in the intensity of the flares, indicating that the model
successfully attenuates them to some degree. To ensure a diverse and comprehensive
test, the images were captured using different cameras, demonstrating that the model can
effectively attenuate flare artifacts regardless of the camera system used. It is important to
note that although the flares in the real images are originating from the sun as the primary
light source, this serves as a proof-of-concept. It is crucial to further evaluate the model’s
performance on different types of flares originating from various light sources. Figures
86 to 89 (taken by Xiaomi, Samsung, and Iphone cameras) demonstrate the superior
performance of FlareNet-TL in attenuating flare while effectively avoiding the generation
of additional artifacts in the image. In comparison, FlareNet-Simple occasionally produces
black spots around the light source. These findings reinforce the results obtained from the
synthetic dataset in Section 4.1, indicating that FlareNet-TL exhibits better generalization
capabilities when encountering new data.

Figure 86: left: input, middle: FlareNet-TL prediction, right: FlareNet-simple prediction.

Figure 87: left: input, middle: FlareNet-TL prediction, right: FlareNet-simple prediction.
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Figure 88: left: input, middle: FlareNet-TL prediction, right: FlareNet-simple prediction.

Figure 89: left: input, middle: FlareNet-TL prediction, right: FlareNet-simple prediction.

During the evaluation process, images from [28] were also utilized. Notably, in Figures 91,
92, and 93, it is evident that the FlareNet model effectively improves the contrast of RGB
colors of the input images, however displaying minimal reduction in the flare artifacts.
Instead, in cases where increasing RGB color contrast is not necessary, as observed in
Figure 90, the model seems to focus more on attenuating the flare artifacts.

However, it is important to note that the model encounters additional challenges when
dealing with reflections (shown as the colorful arch-shaped artifacts), resulting in some
undesired distortion, as depicted in Figures 94 and 95. Addressing these specific challenges
would require further improvements. One potential solution is to incorporate a more
diverse dataset that includes this type of flare artifacts. Additionally, exploring a more
complex U-Net-based architecture at the cost of increased computational resources could
also be worth considering.
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Figure 90: Examples of FlareNet-TL inference using real-life images from [28].

Figure 91: Examples of FlareNet-TL inference using real-life images from [28].

Figure 92: Examples of FlareNet-TL inference using real-life images from [28].
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Figure 93: Examples of FlareNet-TL inference using real-life images from [28].

Figure 94: Examples of FlareNet-TL inference using real-life images from [28].

Figure 95: Examples of FlareNet-TL inference using real-life images from [28].
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It is worth mentioning that the current state-of-the-art model for flare attenuation [28]
utilizes the original U-Net architecture, as defined in [40], with 23 convolutional layers
and nearly 30 million learnable parameters. In addition, [28] also introduces a different
model with transfer learning with several layers from VGG19 as backbone, adding up to
around the same size of the U-Net architecture. Finally, [38] works with a modified U-Net
architecture adding a deeper layer, increasing its original size and complexity. It is evident
that these models have not been designed for deployment on memory constraint devices
such as embedded systems. In comparison, the FlareNet-TL model employs roughly less
than 0.5% of the parameters found in the state-of-the-art flare attenuation model.

Despite its smaller size, FlareNet-TL demonstrates promising results, as evident from
previous examples and the observed increase in image quality during evaluation with
the synthetic test dataset using the SSIM metric. These results indicate the potential
of the FlareNet architecture for efficient and effective image restoration with reduced
computational requirements.

Furthermore, the images (Figure 96 to Figure 102) presented below provide visual com-
parisons between the predictions made by FlareNet-TL (middle image) and the state-of-
the-art flare attenuation model (right image) from [28]. As expected, due to its higher
complexity, the predictions made by the state-of-the-art model are highly superior, nearly
eliminating any signs of flare. However, FlareNet still strives to blend the flare arti-
facts into the rest of the image and improve color contrast without introducing artifacts,
especially for pixels that are further away from the light source.

It is worth noting that even the state-of-the-art model encounters difficulties in attenuating
reflection flares, as illustrated in Figure 102. However, it does manage to correctly atten-
uate the remaining flare. In contrast, the FlareNet model, as mentioned earlier, exhibits
poor performance when attempting to attenuate this type of artifact. This disparity in
performance can be attributed to the larger capacity of the state-of-the-art model, which
allows it to learn more complex features and thus better handle such challenges than its
counterpart, which is less than 0.5% of its size.

Figure 96: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model [28].
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Figure 97: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model [28].

Figure 98: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model [28].

Figure 99: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model [28].
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Figure 100: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model[28].

Figure 101: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model[28].

Figure 102: left: input, middle: FlareNet-TL prediction, right: state-of-the-art model[28].
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4.3 Neural Network Training - Highlights

In this section, the most relevant considerations found during training to have a positive
impact on the overall result, are explained.

4.3.1 Advantage of using Transfer Learning

Results have demonstrated that the transfer learning-based FlareNet surpasses the simple
FlareNet model (both introduced in Section 3.3.3) in attenuating flares as seen in Table
8. This outcome is expected since transfer learning can extract more meaningful features
in the encoder section, leveraging the pre-trained weights on a larger image dataset. In
addition, the transfer learning based model requires approximately one quarter of the
amount of epochs required by its counterpart to reach an acceptable SSIM result, as its
decoder side has already been trained and its weights are already adjusted to extract
important features from input images. However, it is important to recall that the transfer
learning-based FlareNet has a deeper architecture as mentioned in Section 2.4.1, which
can be more challenging for implementing in hardware. One sample result can be observed
in Figure 103, illustrating the advantage of the transfer learning-based model in reducing
flares while effectively restoring the original contrast and RGB color values of the image.
Importantly, the transfer learning approach avoids introducing any noticeable artifacts.

Table 8: Transfer Learning vs Simple version of FlareNet model.

Ground-truth FlareNet-TL FlareNet-simple
SSIM 0.803 0.902 0.881
MAE 0.105 0.057 0.073
MSE 0.028 0.008 0.011

Figure 103: Inference using FlareNet model versions with and without transfer learning.
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4.3.2 Impact of using Skip-connections

During the process of reducing the network size and the number of trainable parameters,
various configurations inspired by the U-Net architecture were tested. The objective was
not only to find an architecture suitable for attenuating the flare but also to minimize the
resource requirements, particularly if they did not significantly impact the results. One of
the experiments involved removing the skip connections, introduced in Section 2.4.7, to
evaluate their impact on the overall outcome. As depicted in Figure 104, the absence of
skip connections had a noticeable detrimental effect on the restored image quality. Skip
connections facilitate the propagation of both high-level and low-level features throughout
the network. In the absence of skip connections, information can become distorted or
diluted as it passes through multiple deeper layers, resulting in a loss of fine-grained
details.

Figure 104: Examples of inference using model without skip-connections.
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4.3.3 Reduce number of Learning Parameters

Reducing the number of model parameters is crucial for achieving a lightweight model
that can be efficiently accelerated in hardware. However, this reduction must be carefully
balanced with the trade-off between accuracy and model complexity. Here are several
approaches that were employed to achieve parameter reduction:

• Depth-wise separable CNN: Instead of using traditional 2D convolutional layers,
separable convolutional layers introduced in Section 2.4.4 were employed. These
convolutions split the standard convolution into two separate operations: depth-
wise convolution and pointwise convolution, reducing the number of parameters by
factorizing the convolutional filters.

• Building own U-Net based model: To achieve a lighter and more efficient model
for image restoration, a U-Net inspired architecture introduced in Section 3.3.3 was
employed, with a focus on reducing the number of layers, filters, and complex layers
like batch normalization. The goal was to strike a balance between model complexity
and the ability to achieve high-quality image restoration.

• Using MobilNetv2 in transfer learning model: MobilNetv2 [34] was chosen as the
backbone architecture due to its smaller size and efficiency compared to larger mod-
els like VGG16 [42]. By using MobilNetv2, the number of parameters is significantly
reduced while still maintaining a good level of accuracy.

• Alpha Reduction 0.35: as already explained in Section 3.3.3, the alpha reduction
technique involves scaling down the number of filters in the network layers of the
MobilNetv2 architecture, which makes the model lighter and requires fewer param-
eters to train.

The impact of these parameter reduction techniques can be observed in several aspects.
First, the model size is significantly reduced, making it more suitable for hardware ac-
celeration and deployment on resource-constrained devices. Second, the training process
becomes more efficient as fewer parameters need to be learned and optimized. Third,
the inference speed is improved due to the reduced computational requirements of the
model. Finally, there is a trade-off in terms of accuracy, where the model may achieve
lower performance compared to larger and more complex models.

The exploratory phase of reducing the model complexity was done gradually. This in-
volved training a model on the same dataset and carefully examining its performance in
attenuating flare. The process was then repeated after reducing the model’s complexity,
allowing for an evaluation of the trade-off between flare attenuation capacity and model
size. This approach is similar to the comparison conducted between the FlareNet-simple
model and its transfer learning version.
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4.3.4 Loss Selection

During the training process, the choice of a suitable loss function plays a crucial role in
achieving desirable results in image regression tasks. In regression algorithms, commonly
used metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE) have
been employed for tasks like image reconstruction and flare removal, as seen in the state-
of-the-art model for flare attenuation in [38] and [28]. However, when utilizing these
metrics as the loss function for training any of the FlareNet model versions, it resulted in
the generation of artifacts in the predicted images, particularly in the areas surrounding
the light source or near the flare.

Considering that the FlareNet models are considerably smaller compared to the original
U-Net architecture used in the state-of-the-art model in [38] and [28], comprising less than
0.5% of the size, adjustments in the training process were necessary. To address this issue,
the structural similarity (SSIM) function was considered as a loss metric. Compared to
MAE or MSE, the incorporation of SSIM yielded significantly improved results for this
smaller neural network.

Considering one of the first neural architectures trained under the same conditions for
comparison purposes (dataset and hyperparameters), Table 9 shows the impact of choos-
ing between the three image metrics, showcasing again the advantage of using SSIM. Even
though the models trained with MSE and MAE still present improvements, the main dis-
advantage is the generation of artifacts on the inference image. In addition, the models
trained with MAE and MSE are slower to train and usually get stuck in local minima,
limiting the learning capacity of the network.

The SSIM metric assesses the structural similarity between two images by measuring
factors like luminance, contrast, and other structural differences. By integrating SSIM
into the loss function, the model is encouraged to generate images that not only minimize
pixel-level differences but also preserve the structural and perceptual characteristics of the
original image as a primary objective. As a result, the artifacts near the light source and
around the flare are considerably reduced, leading to visually improved predictions that
are free from artifacts. Figure 105 and Figure 106 provide examples that showcase the
enhanced performance achieved on models trained with the SSIM loss function compared
to the ones trained with MSE and MAE under same training conditions (dataset and
hyperparameters). These findings confirm that for a smaller model like the versions of
FlareNet, a loss function incorporating SSIM as part of its evaluation criteria is highly
advantageous.

Table 9: Performance comparison between models trained with different loss functions.

Ground-truth Loss SSIM Loss MAE Loss MSE
SSIM 0.802 0.888 0.851 0.840
MAE 0.105 0.062 0.071 0.075
MSE 0.028 0.009 0.010 0.012
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Figure 105: Examples of inference using model trained with different loss metrics. It is
possible to see in the MAE and MSE images, that some "purple" circular aches are being
generated on the image, which is not the case for the model using SSIM.

Figure 106: Examples of inference using model trained with different loss metrics.
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4.3.5 Importance of Dataset Variety

It is important to emphasize the significance of selecting an appropriate dataset tailored
to the specific type of flare attenuation, its color for instance. Given the model’s relatively
small size (less than 150,000 parameters), its ability to effectively extract features from
the dataset is limited. As a result, during the initial testing phase, the focus was placed
on the most common type of flare (white tone) for training the model, as depicted in the
previous section showcasing the results of the test and real images.

However, to validate the model’s capability to handle a wider range of flare colors, a new
dataset was created. This dataset incorporated flares with different colors by randomly
modifying the random white balance during the synthetic dataset generation process. The
modification required to accomplish this color change is included in the respective python
script as a detailed comment. The results demonstrated that even with the FlareNet-
simple architecture, the model could successfully handle various flare colors, as evident
from the inference results on the test images displayed in Figure 107, Figure 108 and
Figure 109.

Furthermore, real-life images with actual flares were also subjected to testing, as show-
cased in Figure 110 and Figure 111. These tests confirmed that the model can generalize
well to real-world scenarios, effectively attenuating flares present in the images.

Figure 107: Examples of FlareNet-simple inference on synthetic dataset.

Figure 108: Examples of FlareNet-simple inference on synthetic dataset.
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Figure 109: Examples of FlareNet-simple inference on synthetic dataset.

Figure 110: Examples of FlareNet-simple inference on real-life images.

Figure 111: Examples of FlareNet-simple inference on real-life images.
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4.4 Impact of flare attenuation in other algorithms

As mentioned earlier, lens flare can introduce unwanted artifacts into images, thereby
reducing their quality and adversely affecting algorithms that rely on artifact-free images.
This section will show two examples of the potential implications of flare attenuation
achieved by the deep learning model on other algorithms that utilize the image as input.

One such algorithm is an edge detector, as depicted in Figure 112. The processed image
from the FlareNet model allows for better feature extraction, particularly in the lower left
corner, while eliminating edge detections caused by flare artifacts in the upper part of the
image. Although further studies are required for a comprehensive analysis of the impact,
it is evident that an edge detector benefits from using the predicted image generated by
models like FlareNet.

Figure 112: Example of using Edge Detector after flare attenuation.

Let’s consider a more complex algorithm, such as a deep learning object detection model:
YOLOv3 [75]. In the predicted image with attenuated flare (Figure 114), the confidence
of the object detector in detecting a human is higher (98% compared to 85%) than in
the image without flare attenuation (Figure 113). Furthermore, the unprocessed image
exhibits two incorrect detections (car and bicycle), whereas such errors are not present in
the predicted image.
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Figure 113: Example of using YOLOv3 Object Detection model before flare attenuation.

Figure 114: Example of using YOLOv3 Object Detection model after flare attenuation.

These observations suggest that the flare attenuation performed by the FlareNet model
can have positive effects on the performance of other algorithms, such as edge detec-
tion and object detection. However, further research is necessary to objectively evaluate
and quantify the overall impact of these improvements in different scenarios and with a
considerable amount of images.
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4.5 Hardware Synthesis

This section presents the findings of the hardware synthesis of the FlareNet-simple model
using High-Level Synthesis (HLS) and VITIS. The main objectives are to analyze the
performance of the synthesized solution and assess the impact of different optimization
directives on key metrics such as latency and resource utilization (area). This analysis
provides an estimated idea of the required hardware resources as well as the estimated
performance, based on VITIS HLS simulation and synthesis tool, which can be improved
for a future implementation in an FPGA. While the analysis provides valuable insights,
these results are considered as a starting point for refining the design and making necessary
adjustments for a practical FPGA deployment. Throughout the following sections, the
target FPGA is the Zeus Zynq UltraScale (target device: XQZU11EG-FFRC1760-2-i)
[55] and the clock frequency for synthesis is set to 300 MHz.

For this proof-of-concept, the FlareNet-simple model is chosen due to its more compact
architecture compared to the transfer learning variant. It contains fewer skip connections
and very few convolutional layers as already explained in Section 3.3.3. To evaluate the
runtime performance of the FlareNet implementation in C++, a series of 1000 executions
were conducted on the development device [73]. The average time taken to complete one
inference was found to be 60.44 sec, with little differences between observed execution
times. It is important to note that this type of software execution might not provide
the most accurate reference, as various factors can influence the results, such as concur-
rent tasks running on the operating system, the clock frequency of the device, among
other potential variables. Despite these limitations, this initial software-based latency
estimation serves as a starting point for understanding the performance characteristics
of the FlareNet model implemented in C++, and how much this can be enhanced by
implementing the model as a digital circuit.

4.5.1 Sequential Implementation

An initial implementation was synthesized disabling all optimization directives. Conse-
quently, all optimization techniques such as dataflow, pipeline, loop unrolling, and array
partitioning were disabled. This resulted in the HLS tool generating a sequential design,
where tasks within layers and functions are executed sequentially, one after the other.
Although this approach allows for resource re-utilization, leading to lower resource con-
sumption/area (as indicated in Table 11), it also increases the latency (as observed in
Table 10). It is particularly noticeable that the sequential implementation requires a
minimal number of DSPs. However, the estimated latency for this implementation is
approximately as high as 18,428 ms. It is worth clarifying that these are estimated values
provided by the VITIS HSL synthesis tool after generating the RTL design.
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Table 10: Latency Analysis - No optimizations - Floating Point

HW Latency (cycles) HW Latency (ms)
Min 4889194250 16134
Max 5584202570 18428

Table 11: Utilization Analysis - No optimizations - Floating Point

BRAM 18K DSP FF LUT URAM
Total 31 5 10962 26507 0

Available 1200 2928 597120 298560 80
Utilization (%) 31 0.002 1 8 0

In the previous implementation, the input, output, and weights were represented using
floating-point values. However, utilizing a fixed-point representation as discussed in Sec-
tion 3.5.3, offers significant advantages in terms of efficiency in the RTL design. Table
13 demonstrates this by showing that the fixed-point implementation requires half the
number of BRAMs (Block RAMs) compared to the floating-point implementation. Fur-
thermore, the use of a more constrained data type leads to a significant reduction in the
number of clock cycles. This can be observed in Table 12, where the latency is significantly
reduced compared to the floating-point implementation.

Table 12: Latency Analysis - No optimizations - Fixed Point

HW Latency (cycles) HW Latency (ms)
Min 1928993322 6366
Max 2604813930 8596

Table 13: Utilization Analysis - No optimizations - Fixed Point

BRAM 18K DSP FF LUT URAM
Total 181 12 7582 18454 0

Available 1200 2928 597120 298560 80
Utilization (%) 16 0.004 1 6 0
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4.5.2 Pipeline Optimization

The current implementation still follows a sequential design approach. However, by ap-
plying the pipeline optimization directive (pragmas) within the loops of each layer in the
depth dimension as seen in the different Listings from 7 to 16 in Section 3.5.2, we can in-
troduce parallel execution within iterations. This allows tasks within each loop to overlap,
leading to improved performance. The pipeline directive inserts pipeline registers in the
design, breaking data dependencies and enabling the execution of subsequent iterations
before the previous iterations complete. This concurrent execution of independent oper-
ations helps reduce the overall execution time, as shown in Table 14. In fact, the latency
is reduced by almost four times compared to the previous sequential implementation.

The pipeline directive enhances performance by increasing parallelism within the loops.
However, it also requires additional resources to work concurrently, as evident in Table
15. The utilization of Flip-Flops (FF), Digital Signal Processing (DSP), and Look-Up
Tables (LUT) shows a significant increase. The pipeline design requires approximately 2
times the number of FFs, around 5 times the number of DSPs, and about 1.5 times the
number of LUTs compared to the original sequential design. This increase is attributed
to the replication of functional units to enable concurrent usage, unlike the sequential
implementation where units could be reused. Additionally, pipelining requires instanti-
ating extra registers, known as pipeline registers, as well as new pipeline control signals.
It is important to note that this optimization directive does not enable true concurrent
execution of tasks within layers and functions, and focuses on inner-loop concurrency.
Therefore, there is still potential for improvement in the overall design by considering the
possibility of concurrency between neural layers as it is known for a fact that it is not
necessary for a layer to finish processing the totality of its input information before the
next layer can start executing with the output values from the previous one.

Table 14: Latency Analysis - Pipeline

HW Latency (cycles) HW Latency (ms)
Min 550849346 1818
Max 730657378 2411

Table 15: Utilization Analysis - Pipeline

BRAM 18K DSP FF LUT URAM
Total 199 55 14337 30169 0

Available 1200 2928 597120 298560 80
Utilization (%) 16 1 2 10 0

109



Results and Discussion

4.5.3 Dataflow and Pipeline Optimization

When both the pipeline and dataflow optimization directives are applied together, it
allows for a more optimized implementation by taking advantage of both parallel execution
within loops and concurrent execution of tasks within layers and functions of the neural
network architecture. The optimization directive #HSL DATAFLOW is applied in the
main function where all the layers used in the FlareNet model are instantiated. By using
both directives together, the HLS tool can generate a design that benefits from both
intra-loop parallelism (achieved through the pipeline directive) and inter-task parallelism
(achieved through the dataflow directive). This results in reduced latency as seen in Table
16, where the latency is reduced to around one fourth, while the resources utilization
remains almost the same compared to the pipeline-only implementation as seen in Table
17.

It is crucial to note that the application of this new optimization allows for concurrent
execution of the neural layers. Consequently, the latency between layers is superimposed
as one can start before the previous one finishes working with all the input data as already
explained in Section 2.6.3 about the dataflow directive. However, if only the pipeline
optimization is applied without concurrent execution between layers, the inference time
will be the cumulative sum of the latency for each layer in the model as every layer has
to wait to finish its computation before the next one can start.

Table 16: Latency Analysis - Dataflow and Pipeline

HW Latency (cycles) HW Latency (ms) Interval (cycles)
Min 155277746 512 154750481
Max 155277746 512 154750481

Table 17: Utilization Analysis - Dataflow and Pipeline

BRAM 18K DSP FF LUT URAM
Total 199 55 14797 29972 0

Available 1200 2928 597120 298560 80
Utilization (%) 16 1 2 10 0
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4.5.4 Utilization Analysis - Layers

The implemented solution, which incorporates pipelining and dataflow optimization di-
rectives, has shown the best performance results in terms of resources and latency. The
following analysis provides a detailed overview of each layer in the solution, as shown in
Table 18.

Table 18: FlareNet Layers Analysis

Lat.(cycles) Lat.(ms) BRAM DSP FF LUT
Conv2D 154750480 511 4 28 2883 2812

2DMaxPool 136414122 450 4 0 560 2151
2DSeparable 121145271 400 8 2 1095 2746
2DMaxPool 34506186 114 6 0 747 2235
2DSeparable 37130407 123 13 2 1110 2751
2DMaxPool 6628650 21.8 6 0 751 2354
2DSeparable 9904823 32.7 15 3 1236 2907
2DMaxPool 1158122 3.8 4 0 739 2222
2DTranspose 11329093 37.4 45 1 555 1651
2DTranspose 33995157 112 37 1 564 1833

Add 196611 0.65 0 0 41 183
2DTranspose 71795301 237 32 1 572 1818
2DTranspose 106001461 350 25 1 576 1729

Add 1048579 3.5 0 0 44 188
Conv2D 3538965 11.7 0 16 1420 731

By optimizing the entire implementation using the dataflow directive, the execution of
layer functions in the neural network can be parallelized, resulting in improved perfor-
mance. Therefore, the absolute estimated inference time is largely affected by the layer
that takes the longest to execute. In this scenario, the first 2D Convolutional layer re-
quires 154750480 clock cycles to complete, which leaves 527266 cycles for the remaining
layers to process the last pixels of the input data that the convolutional layer is processing
at the end. This relationship is depicted in Figure 115.

To further understand this behavior, we can examine the Interval parameter, which rep-
resents the number of clock cycles required before a new image can be input into the
first layer of the neural network. The absolute interval of the network, as shown in Table
16, is 154750481 cycles. Interestingly, this value is just one clock cycle more than the
latency of the first convolutional layer. Consequently, right after the first convolutional
layer finishes processing, a new image can start being processed. However, it will still
take an additional 527266 cycles for the first image to complete processing, resulting in a
total latency of 155277746 cycles or 512 ms, as reported.
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Figure 115: Example of the impact of applying dataflow directive.

On the other hand, it can be noticed that while the dimension of the input tensor decreases
throughout the encoder, the latency of the layer significantly reduces. For example, the
first 2D Max-pooling layer with an input dimension of 255x255 takes around 110 times
more than the last 2D Max-pooling layer with an input dimension of 32x32. Additionally,
on the decoder side, as the dimension increases, so does the latency. It is important to
note that despite the filter dimension increasing throughout the encoder section, reaching
a maximum value of 64 in the bottom layer (the last max-pooling layer), the latency still
depends more on the length dimension (columns) than on the filter dimension, as this last
one is pipelined.

The synthesized RTL design exhibits low resource utilization, particularly with respect to
the minimal number of DSP units required. However, this suggests that certain operations
are still being executed sequentially, leading to increased execution time. Unfortunately,
due to time constraints, it was not possible to identify and resolve code dependencies
within the buffering functions. This limitation hinders further optimization of the design,
including the application of optimization directives such as #HLS array partitioning, as
discussed in Section 2.6.3. Employing such directives could help alleviate the memory
bottleneck by enabling parallel access to buffer arrays, which is currently not feasible.
Additional optimization directives, such as #HLS loop unroll, were also evaluated in this
study. However, the results showed that implementing #HLS loop unroll did not provide
latency improvements. On the contrary, it led to increased resource utilization.

Another observation is that the latency of the 2D Transpose Layer also scales with its
output dimension, despite not utilizing an input buffer like the other convolutional layers.
This is because it still requires an output buffer, with size defined by the output dimension,
to store temporary results while computing the actual output, thereby making the layer
dependent on the increasing dimension in the decoder.
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Furthermore, it is worth noting the advantages of using 2D Separable Convolutional layers
instead of traditional ones in terms of DSP utilization. By separating the kernel filter into
depthwise and pointwise components, the DSP requirement is significantly reduced.

4.5.5 Image Dimension Analysis

In order to assess the scalability of the design to different input dimensions, designs
were synthesized using the same constraints as before, but this time considering input
images of varying sizes: 64x64x3, 128x128x3, 256x256x3, and 512x512x3. As shown in
Table 19, the findings align with our previous observations, indicating that the design’s
latency scales directly with the image size. For a small image size of 64x64x3, the design
achieves an inference time of only 21.8 ms. However, for a larger image size of 512x512x3,
the inference time increases significantly, reaching as high as 4 seconds. Once again, it
becomes apparent that the layers that require a buffer contribute the most to the overall
execution time, reaffirming the criticality of optimizing this aspect of the design. As
expected, the dependency between the input image size and the number of BRAMs is
evident. Since the size of the width buffer is determined by the image size, it follows that
the amount of BRAMs required for it will vary accordingly.

Table 19: Image Dimension Analysis

Latency (ms) BRAM DSP FF LUT
64x64x3 21.8 131 55 14296 29308

128x128x3 113 160 55 14554 29595
256x256x3 512 199 55 14797 29972
512x512x3 4000 271 55 14999 30295
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4.6 GPU Inference

This section presents the findings of executing inference using the FlareNet-simple model
on different computing devices with AI accelerators as described in Section 3.7. Two
devices were considered: a medium-end and a low-end device. The purpose of this test
was to evaluate the inference time on both devices. It is crucial to emphasize that the
application built in Section 3.7 was utilized for this test. This application leverages the
ONNX-runtime for executing inferences on the model. It is important to note that this
approach differs significantly from the C++ implementation for HLS, where each layer
and the overall architecture were individually implemented in C++.

The medium-end device [73] used for inference is equipped with an NVIDIA RTX3060
GPU that operates at a frequency of 900 MHz, which can be boosted up to 1425 MHz
depending on the workload, and a maximum power consumption of 80 Watts. In contrast,
the Jetson Nano [52] was selected as the low-end device, and its Maxwell GPU operates
at 640 MHz which can also be busted but up to 921 MHz, with a maximum power
consumption of 12 Watts.

By evaluating the inference execution on both devices, it is possible to gain insights into
the model’s performance across different hardware configurations and assess its feasibility
in real-world deployment scenarios. As anticipated, the mid-end device equipped with a
more advanced GPU exhibited a significantly higher throughput, surpassing the capabil-
ities of the Jetson Nano by over 5 times, as shown in Tables 20 and 21.

Table 20: Software Latency - RTX3060 GPU

SW Latency (ms)
Latency (mean) 31

Table 21: Software Latency - Jetson Nano GPU

SW Latency (ms)
Latency (mean) 165

Several factors can contribute to the superior performance of the GPUs compared to
a FPGA-based neural network implementation. For example, GPUs feature specialized
hardware components like tensor cores that are optimized for deep learning tasks such as
matrix multiplications and convolutions. Furthermore, GPUs offer a mature ecosystem
with libraries like CUDA and cuDNN, which provide optimized functions for deep learn-
ing tasks that can be accessed through the use of model converters such as ONNX. These
libraries leverage the parallel architecture of GPUs, offering highly efficient implementa-
tions of common deep learning operations.

It is worth noting that GPUs are designed to operate at higher clock frequencies compared
to FPGAs, typically ranging from 600 MHz to 900 MHz during execution. This higher
operating frequency allows GPUs to execute instructions at a faster rate, contributing to
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their overall performance advantage. However, it is important to acknowledge that GPUs
generally consume more power than FPGA implementations.

On the other hand, FPGA implementations require careful custom hardware design to
fully exploit their parallelism potential. While high-level synthesis (HLS) tools like Vitis
HLS provide a level of abstraction by allowing the use of C++ to describe functional
behaviour, they still require high expertise to optimize the architecture and exploit par-
allelism effectively. Failure to carefully program and leverage the available optimization
directives may result in under-utilization of the FPGA’s potential parallelism. There-
fore, optimizing the entire architecture and exploring other optimization techniques are
necessary, demanding additional time.

There are however, new platforms available such as VITIS AI [76] help to deploy a neural
network directly from a deep learning framework such as TensorFlow into an FPGA
without having to functionally describe the algorithm using HLS, optimizing the solution
to maximize inference speed. The library uses optimized deep-learning processor units
(DPU) core along with a specialized software stack to accelerate several DNN models as
it can be seen in [77].
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5 Conclusions

The primary objective of this study was to evaluate an approach for reducing lens flare
artifacts through image post-processing techniques. A comprehensive review of traditional
methods was conducted, mainly focusing on image reconstruction algorithms based on
deconvolution. These approaches emphasized the importance of modeling stray light
using the Point Spread Function (PSF) specific to a camera system. However, necessary
equipment to measure the PSF was unavailable for this work, and attempts to simulate a
PSF for evaluating the performance of a deconvolution algorithm resulted in unrealistic
lens flare artifacts. Additionally, even with a known PSF, literature studies focused on
static camera setups, such as the ones found in microscopy or healthcare applications,
indicating limited potential for PSF-based lens flare reduction in industrial settings. This
limitation arises from factors such as the dynamic nature of the PSF in real-world scenarios
which requires frequent characterization and update, and the uncertainty in execution
time due to the iterative nature of some deconvolution algorithms. As a result, this
particular image post-processing technique was not further investigated.

On the other hand, artificial intelligence, particularly deep learning neural networks, have
shown promising results in flare attenuation despite limited studies. A synthetic flare
dataset was generated, and an iterative training process was employed to develop the first
compact and lightweight U-Net based model for lens flare reduction, named FlareNet with
and without a transfer learning component. Through a systematic approach, the aim was
to identify the optimal set of hyper-parameters and architecture that could effectively
minimize flare artifacts while maintaining computational efficiency.

Noteworthy insights were gained during the process, including the importance of skip
connections, the benefits of transfer learning, and the selection of an appropriate loss
metric. It was found that, for a small model, using the Structural Similarity Index (SSIM)
as a loss metric yielded effective results in reducing flare without introducing additional
artifacts in the restored image. Both versions of the FlareNet model (with and without
transfer learning) demonstrated improvement in image quality on the testing dataset, with
a modest parameter count of less than 150,000 and a simple neural network architecture
comprising five types of layers. However, as expected, the FlareNet version with transfer
learning shows better performance at mitigating flare artifacts, but at the cost of using
a more complex and deeper architecture. Moreover, a quantization-aware approach was
applied to assess the impact of reducing the weight representation from float32 to int8,
resulting in a lighter model while considering the trade-off in accuracy. The quantized
network exhibited a marginal decrease in accuracy but reduced the model’s memory weight
to 30% of its initial size. Additionally, the FlareNet models demonstrated its ability to
reduce flare in real-life images, indicating that it can achieve satisfactory visual results
despite having less than 0.5% of the weights of state-of-the-art neural architectures.

Furthermore, as part of the proof-of-concept, the simple FlareNet model version was
implemented in C++ using Vitis HLS to profile the required resources and performance
when deployed as a digital circuit on an FPGA. Each of the model’s five layers, along with
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other necessary elements like zero-padding logic buffers, were implemented and tested.
Synthesis and validation were performed using the VITIS tool, and reports were analyzed
while experimenting with HLS optimization directives. Results demonstrated that for the
selected FPGA and a clock frequency of 300 MHz, the inference time is approximately 512
ms (equivalent to approximately 2 frames-per-second) with minimal resource utilization
well within the device’s limits. Due to time constraints, limited attempts were made
to further optimize the solution, but it became evident that a different approach was
required for the buffer structure and related functions as they seemed to create a memory
bottleneck that limits further parallelism done by the HSL tool.

Although this study serves as the first proof-of-concept to understand the resource require-
ments for a digital design implementation of a lens flare attenuation deep learning-based
model, further work and expertise in HLS are necessary to optimize the convolutional lay-
ers, so it can be suitable for real-time applications. In addition, there is still potential for
further task parallelization considering that at the moment the utilization is considerably
low. Therefore, recommendations for future work to potentially enhance the performance
of the entire solution are provided in the final section of this study.

Finally, the model’s performance was evaluated on two GPU devices, comparing the
execution time on different hardware accelerators. On a laptop with a medium-end GPU,
the model achieved an inference speed of 32 frames-per-second, while on a lower-end GPU
like the Jetson Nano, it achieved 6 frames-per-second. Considering that these GPUs
operate at frequencies between 650 MHz and 950 MHz, lower inference times would be
expected at the cost of higher power consumption.
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6 Recommendations and Future Work

While a proof-of-concept for the solution has been successfully implemented within the
four-month timeframe of this project, it is important to acknowledge that there are still
several points that need to be addressed. These points have become apparent during the
course of this work and require further attention and resolution.

(i) Considering the learning behavior of both versions of the FlareNet model (with and
without transfer learning) during the training process, the validation loss steadily
decreases in a similar proportion to the training loss, suggesting that the model
still has the potential to learn without necessarily overfitting to the dataset. To
explore this further, it is recommended to increase the number of epochs and also
expand the dataset by adding more instances. Additionally, the current dataset
generation process involves running a Python script to generate and store the 32,000
image instances in a folder. However, an alternative approach can be adopted by
leveraging TensorFlow Data Generator [36] to automate the dataset creation during
the network training. With this approach, there would be no need to store the
entire dataset separately, and the network can be trained directly on the fly using
the merged flared and deflared images generated in real-time. This could potentially
help to handle larger amounts of images during training.

(ii) By applying quantization-aware training to the FlareNet model without transfer
learning and using int8 weights instead of float32, a significant reduction in memory
utilization of approximately 30% was achieved, while maintaining a relatively small
drop in image quality reconstruction. However, during the process of extracting
the int8 weights from the TensorFlow Lite model using the Netron app [66], it was
discovered that not all int8 weights, specifically the bias weights of the transpose
convolution filter, could be successfully extracted. Considering the potential benefits
of using int8 weights, such as decreased resource utilization in the FPGA, it is
recommended to explore alternative methods for extracting the weights from the
TensorFlow Lite model. In addition, the same procedure can be applied to the
transfer learning version to assess its performance.

(iii) To enhance the performance and applicability of the FlareNet architecture, it is
important to enrich the dataset with various types of lens flare artifacts. Specifically,
additional reflection types should be included. These types of artifacts present
unique challenges that the current model has not adequately addressed.

(iv) It is important to note that the current solution has been trained using images with
flare in a day-time condition. However, no specific evaluation has been conducted to
assess its performance for applications that operate in low-light or nighttime condi-
tions. To address this gap and ensure the effectiveness of the FlareNet architecture
in nighttime scenarios, it would be valuable to train it using a dataset specifically
designed for nighttime applications. The Flare7K dataset [39], which is specifically
tailored for nighttime scenes, can serve as an excellent resource for this purpose.
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(v) Considering the superior performance exhibited by the transfer-learning based FlareNet
model, it is advisable to investigate its efficient implementation in hardware, lever-
aging the fact that most of the necessary layers have already been implemented in
HSL. However, it is important to note that additional time, beyond the scope of
this project, was required to construct and validate the bigger architectural model,
as well as export and condition all of its weights.

(vi) During this study, various image comparison metrics have been employed to assess
the effectiveness of the solution in reducing flare. However, it is crucial to acknowl-
edge that certain industrial applications may necessitate an alternative evaluation
criteria that aligns with industry standards. Therefore, further investigation is re-
quired to determine the appropriate evaluation criteria for such applications.

(vii) Although the proof-of-concept was conducted using images of size 255x255, it is
crucial to assess the scalability of the solution to accommodate larger images as
needed in industrial applications. Two potential options can be considered for han-
dling larger image sizes: i) Down-sampling and up-sampling: One approach is to
down-sample the larger images to a fixed size that the deep learning model can
process, such as 255x255. After applying the FlareNet model to the down-sampled
image, the inference result can be up-sampled to the original size required by the
application. This approach allows for leveraging the existing model and framework
while accommodating larger image dimensions, however the effect on image qual-
ity after down-sampling and up-sampling procedures has to be assessed. ii) Entire
solution for fixed-sized images: Another option is to develop and implement the
entire solution specifically for a fixed image size that aligns with the requirements
of the industrial application. This approach involves retraining the neural network,
potentially modifying the architecture to include deeper layers in the auto-encoder
design to further reduce the dimension of the image. The C++ layers for HLS can
be reused with different parameters to adapt to the new image size.

(viii) An initial evaluation has been conducted to assess how the deep learning model
impacts other algorithms that utilize the inference image as input, showing positive
benefits. However, it is important to note that this evaluation has been performed
with a limited amount and variety of images containing flare. Expanding the evalua-
tion dataset to include a wide range of images with varying levels of flare will provide
a more comprehensive understanding of how the deep learning model interacts with
different algorithms.

(ix) In relation to the HSL implementation, while synthesis reports offer a valuable
estimation of performance, it is essential to deploy the solution on an FPGA for
obtaining more precise results concerning utilization and, specifically, inference time.
Nonetheless, before the actual deployment, additional optimization of the design is
necessary to enhance its performance as already seen in synthesis.

(x) Furthermore, deploying the solution on an FPGA will enable a direct and objective
comparison between the inference image produced by the hardware implementation,
utilizing fixed-point representation (10 bits for integers, 8 bits for decimals), and the
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image generated by the TensorFlow software framework, which employs a float32
representation. This comparison will allow for an objective assessment of the trade-
off between using a fixed-point representation versus a floating point one in terms
of any potential compromise in image quality after reconstruction.

(xi) During the HLS implementation phase, it became apparent that the logic used for
implementing the zero-padding buffers needed modification to reduce latency and
improve algorithm performance. One notable difference between the zero-padding
and normal buffers (used in the max-pooling layers) is their width: the normal
buffers have a width of [kernel_size-1], while the zero-padding buffer has a width
of [kernel_size]. Although this design choice helps manage the insertion of zeros
into the buffer, it introduces an additional line buffer that must be shifted left
image_input_size * image_input_size times. Consequently, this considerably in-
creases latency. It is worth mentioning that the normal buffer was also implemented
in a similar fashion, and the latency of the layer was halved by reducing the dimen-
sion of the buffer in a later optimization step. However, due to time constraints
within the project timeframe, it was not possible to finish the same modification
to the zero-padding buffer. Therefore, additional work is required to optimize the
zero-padding buffer.

(xii) To address the limitations related to buffer update function and improve parallelism
utilization, a thorough examination of the synthesis results is crucial. This anal-
ysis will help identify additional potential parallelism opportunities and allow for
the exploration of alternative optimization directives. For instance, the application
of the #HLS ARRAY PARTITIONING optimization directive holds promise as a
means to tackle the memory bottleneck hindering further parallelism implementa-
tion. Moreover, leveraging native HLS Line Buffering functions, as outlined in the
VITIS User Guide [67], could offer a compelling solution. By pursuing further opti-
mization of the design, it may be possible to handle images with larger dimensions
without incurring prohibitive inference times. For instance, the current 4-second in-
ference time for a 512x512 image could potentially be reduced to acceptable levels.

(xiii) Another approach to implementing the entire network in C++ using HLS is to lever-
age dataflow compilers specifically designed for deep learning inference on FPGAs.
These compilers, such as VITIS AI [76], FlexCNN [77], or FINN [78], offer a stream-
lined process for loading models directly from deep learning frameworks like Tensor-
Flow or model versions in ONNX format into VITIS. Although these platforms are
relatively recent, they have shown promising results in efficiently and user-friendly
deploying highly complex neural networks. However, while dataflow compilers may
provide convenient ways to deploy complex neural networks on FPGAs, they ab-
stract away implementation details, making it challenging for developers to have
fine-grained control over understanding the design outcomes.

(xiv) Performing a comparison of the inference time between the state-of-the-art U-Net
based network [28] and FlareNet would be a valuable endeavor. However, to con-
duct this comparison, it is necessary to train the complete U-Net architecture, as
described in the paper [28], since a pre-trained model is currently unavailable.
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Apendix

7 Apendix

7.1 Project Repository

This work includes a GitHub repository where all the source files and configuration scripts
are included. This chapter will explain the organization of the repository.

GitHub Project Repository:
Flare Attenuation Filter

Below is an explanation of what can be found in each of the directories. It is important
to mention that all of the source files include detailed comments. In addition, all of the
file PATHs have to be changed depending on the system and device.

Deep Learning Model Training

(i) Generate FlareNet Dataset: python notebook script based on [28] used to gen-
erate the synthetic dataset by merging flare and scene images.

(ii) Training FlareNet models: python notebook script used to train either the
transfer learning or simple version of the FlareNet model.

(iii) Quantization aware Training: python notebook script used to do quantization-
aware training.

(iv) Convert FlareNet to ONNX model: python notebook script to convert a
tensorflow-keras model to onnx extension.

(v) Models: directory that contains FlareNet models.

C++ HLS Hardware Design

(i) Weights: Includes the ".h" file with all the weight constant arrays extracted from
the FlareNet-simple neural network.

(ii) Main Function - FlareNet: Includes the ".cpp" and ".h" files that contain all the
layer and buffering functions required to build the neural model. In addition, it
contains the function that instantiates all the layers in order to build the structure
of the FlareNet-simple neural network.

(iii) Test Bench: Includes the ".cpp" test bech file required for validation purposes.

(iv) Data: directory that contains some input images in ".txt" format along with its
corresponding golden reference result.
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Application GPU deployment

(i) C++ Inference Application: Includes the "Inference.cpp" file which contains the
source code for the application.

(ii) ONNX-cmakeconfig CMAKE - Jetson Nano: Includes the ONNX-runtime
cmake configuration file, based on [79], necessary to build the C++ inference appli-
cation in the Jetson Nano running Jetpack operative system.

(iii) ONNX Model: directory that contains FlareNet-simple model in onnx format.

Simulated PSF for Deconvolution

(i) Genetic Algorithm: Includes the python file with the genetic algorithm to search
for a simulated PSF.

(ii) Richardson-Lucy Algorithm: Includes the python file with the Richardson-Lucy
deconvolution algorithm used for testing and better understanding its behaviour and
how it can be implemented.

(iii) Parametric Model: Includes the python file that implements the PSF from the
work done in [64].

7.2 Configuration of Jupyter Notebook to train with GPU

The training scripts were run using the following setup:

• Windows 11

• Anaconda 3 open-source distribution platform.

• Jupyter Notebook 6.4.8.

In order to activate the GPU for training, it is necessary to first install the correct
tensorflow-gpu package before installing the other required libraries. The following se-
quence of commands were executed in the Anacoda environment in order to run the
notebook successfully.

Listing 21: Install Jetpack on Jetson
conda c r e a t e −−name tf_gpu tensor f l ow −gpu
conda i n s t a l l −c conda−f o r g e jupyt e r l ab
pip i n s t a l l opencv−python
conda i n s t a l l −c conda−f o r g e matp lo t l i b
conda i n s t a l l −c anaconda s c i k i t −l e a rn
conda i n s t a l l −c anaconda s c i k i t −image
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To run the quantization-aware training with GPU, the following sequence of commands
were executed in the Anacoda environment.

Listing 22: Install Jetpack on Jetson
! pip i n s t a l l t ensor f l ow −model−opt imiza t i on
conda i n s t a l l −c conda−f o r g e keras

7.3 Configuration and Deployment on Jetson Nano

The following configurations are done in headless mode as well as connected to a monitor.
Putty and FileZilla are used for remote connection and friendly SFTP user interface
between development PC (running Windows) and both edge devices.

Install Jetpack on Jetson
In case the Jetson model has no pre-installed Jetpack version, install the one that corre-
sponds as stated in [80]. Otherwise, if the Jetson model has a preinstalled Jetpack version,
check which one by executing the following command:

Listing 23: Install Jetpack on Jetson
sudo apt−cache show nvidia−j e tpack

The Jetpack version used for this project is:

• Jetson Nano: 4.5

Install the ONNX Runtime Repository
Depending on the Jetpack version installed, different versions of CUDA, cuDNN and
TensorRT will be also installed and available. It is not recommended to uninstall and
install any of these modules independently. The procedure will vary depending on the
Jetson module and Jetpack version. According to the version of these modules, follow the
requirement chart in [81] and [82] to make sure there is compatibility between versions.
Following the Jetpack versions used for this project, execute the next commands to install
onnxruntime v1.6.0:

Jetson Nano: 4.5

Listing 24: Install the ONNX Runtime Repository on Jetson Nano
g i t c l one −−s i n g l e −branch −−r e c u r s i v e −−branch r e l −1.6 .0
https : // github . com/ Microso f t /onnxruntime

Specify the CUDA compiler, or add its location to the PATH.
CMAKE can’t automatically find the correct nvcc if it’s not in the PATH, so assign it
using the following command.
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Listing 25: Export CUDA path
export CUDACXX="/ usr / l o c a l /cuda/ bin /nvcc "

Install the ONNX Runtime build dependencies
Install the required dependencies with the following command:

Listing 26: Install the ONNX Runtime build dependencies
sudo apt i n s t a l l −y −−no−i n s t a l l −recommends bui ld−e s s e n t i a l
so f tware −prope r t i e s −common l ibopenb la s −dev l ibpython3 .6−dev
python3−pip python3−dev python3−s e t u p t o o l s python3−wheel

Install Cmake building from source
Cmake is needed to build ONNX Runtime. Because the minimum required version is
3.18, it is necessary to build it from source. Execute the next commands based on [?].

Listing 27: Install Cmake building from source
wget https : // cmake . org / f i l e s /v3 .23/ cmake −3 .23 . 0 . ta r . gz
ta r x f cmake −3 .23 . 0 . ta r . gz
cd cmake −3.23.0
sudo apt−get i n s t a l l l i b s s l −dev
. / boots t rap
make
sudo make i n s t a l l
cmake −−ve r s i on

If after cmake –version, cmake is still not found, add the installed cmake bin directory
path in .bashrc:

Listing 28: Export cmake path
export PATH=/home/ user /cmake −3.23.0/ bin

Build the ONNX Runtime Python wheel with TensorRT support
Change directory to where the build.sh file is located and run the following command.

Listing 29: Build the ONNX Runtime Python wheel with TensorRT support
. / bu i ld . sh −−c o n f i g Re lease −−update

−−bu i ld −−build_wheel −−skip_submodule_sync
−−bui ld_shared_l ib −−use_tensorr t
−−cuda_home / usr / l o c a l /cuda
−−cudnn_home / usr / l i b /aarch64−l inux −gnu
−−tensorrt_home / usr / l i b /aarch64−l inux −gnu

Copy the required library and include files
Cmake looks for the libraries and includes files on predefined paths. In order to run
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properly the next cmake file and CMakeList, copy the “Release” directory located inside
/build/Linux into /home/<username>/.local/lib and copy the “include” directory into
/home/<USERNAME>/.local/.

Include the cmake file needed to locate Onnxruntime library
Create /cmake/onnxruntime directories inside /home/<username>/.local/ and copy on-
nxruntime -config.cmake that can be found in the GitHub repository into /home/ <user-
name>/.local/share/cmake/onnxruntime.

Transfer the Application into Jetson
Copy the Application folder into a directory. The folder includes: i) CMakeList.txt needed
to build the application, ii) Deep Learning Model directory from which the application
will read the ONNX model, iii) source directory with the main.cpp program, and iv)
include directory with the helpers.cpp, helpers.h and utils.h files.

Build Application
Create the build directory and build the application as follows.

Listing 30: Build Application
mkdir bu i ld && cd bu i ld
cmake . .

Compile Application
When the build is complete, go to the build directory and compile.

Listing 31: Compile Application
make

7.4 FlareNet-simple Inference

Figure 116: left: input image, middle: ground-truth, right: FlareNet-simple prediction.
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Figure 117: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 118: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 119: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 120: left: input image, middle: ground-truth, right: FlareNet-simple prediction.
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Figure 121: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 122: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 123: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 124: left: input image, middle: ground-truth, right: FlareNet-simple prediction.
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Figure 125: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 126: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 127: left: input image, middle: ground-truth, right: FlareNet-simple prediction.

Figure 128: left: input image, middle: ground-truth, right: FlareNet-simple prediction.
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