
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Daniel Rahme

Physically Based Rendering on
Mobile

Measuring Performance and Power

Master’s thesis in Electronic Systems Design
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Deepali Yemul
June 2023

Daniel Rahme

Physically Based Rendering on Mobile

Measuring Performance and Power

Master’s thesis in Electronic Systems Design
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Deepali Yemul
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Daniel Rahme
Physically Based Rendering on Mobile

Measuring Performance and Power

Master thesis for the degree MSc in Electronic Systems Design

Trondheim, June 2023

Norwegian University of Science and Technology

Faculty of Information Technology
and Electrical Engineering
Department of Electronic Systems

ii

NTNU

Norwegian University of Science and Technology

Master thesis
for the degree of MSc in Electronic Systems Design

Faculty of Information Technology
and Electrical Engineering
Department of Electronic Systems

Supervisors
Deepali Yemul, Arm Norway AS
Per Gunnar Kjeldsberg, professor at NTNU

© 2023 Daniel Rahme

Abstract

Mobile phones are widely used and its hardware is now capable of rendering advanced
graphics. Physically based rendering (PBR) is a technique which makes computer graphics
look realistic and professional. PBR has been used by the movie industry for a long time
and now it has become more prevalent in gaming as PBR can be rendered in real-time. The
bidirectional reflectance distribution function (BRDF) is responsible for how light is reflected
on a surface based on the material properties of the surface. Two BRDF shading models and
two graphics APIs were measured and compared in this project in order to evaluate if the
performance and energy consumption was suitable for mobile.

Google Filament is an open-source PBR engine which was used to create test cases for
measuring power and performance on mobile. The BRDF of Unreal Engine 4 (UE4) was
added into the Filament engine and compared to Filament’s native BRDF. The graphics
back-end APIs in Filament, OpenGLES and Vulkan, were compared.

The rendered image quality of UE4’s BRDF implemented into Filament graphics engine was
unsatisfactory and flawed. The image quality of using the Vulkan back-end was incorrect
and indicated problems in the rendering, as the graphics API should not impact the render
quality.

The results showed the implemented UE4 BRDF performed 6% worse than Filament’s native
BRDF. The Vulkan graphics back-end performed 50% worse than OpenGLES which was
significant. The energy consumption of UE4’s BRDF used 9% more energy than Filament’s
native BRDF and the Vulkan back-end used 32% more energy per frame than OpenGLES.
The Vulkan back-end used less power and less of the central processing unit (CPU), but that
was not enough to compensate for the low performance. Furthermore, the GPU memory
bandwidth of the Vulkan back-end was twice of OpenGLES which indicated possible memory
bottleneck. This was further evidence that the Vulkan back-end in Google Filament was
incomplete.

v

Acknowledgement

I would first and foremost like to thank my excellent supervisors, professor Per Gunnar
Kjeldsberg from NTNU and Deepali Yemul from Arm Norway AS, for their great support
and guidance throughout the thesis work. A thanks to the external organization, Arm Norway
AS and the Power, Performance and Area team in particular for their help.

My time in NTNU has been phenomenal and I would like to thank the university for the
opportunity to study in Trondheim. Last but not least I would like to thank my mom.

vii

Contents

1 Introduction 1
1.1 Research Questions . 1
1.2 Research Method Goals and Limitations . 2
1.3 Main Contributions . 2

2 Theory 3
2.1 Light . 3
2.2 Computer Graphics . 5

2.2.1 GPU and graphics API . 5
2.2.2 Graphics rendering engines . 6

2.3 Physically Based Rendering . 6
2.3.1 The rendering equation . 6
2.3.2 Bidirectional reflectance distribution function 7
2.3.3 PBR Textures . 9
2.3.4 History and motivation . 10

2.4 Performance and Power Metrics . 12
2.4.1 Frame rate . 12
2.4.2 Bandwidth . 12
2.4.3 Cycles . 12
2.4.4 Power and DVFS . 13
2.4.5 Energy . 13

2.5 Equipment and Software Tools . 14
2.5.1 Mobile phones . 14
2.5.2 Profiling and Data Acquisition System 15
2.5.3 Graphics debugger . 15

2.6 Previous Work . 15

3 Experimental Implementation of PBR on Mobile Phone 17
3.1 Mobile Phone . 17
3.2 Measuring Tools . 17

3.2.1 Profiler for measuring performance metrics 18
3.2.2 Graphics debugger for capturing frames 18
3.2.3 DAQ for power measurements . 19

3.3 PBR Engine . 19
3.3.1 The scene . 20
3.3.2 Adding UE4 BRDF shading model into Filament’s BRDF shader . . . 21
3.3.3 The test case application . 21
3.3.4 The project repository . 23

3.4 System Overview and Test Setup . 23

ix

x CONTENTS

4 Results 25
4.1 Image Quality . 26

4.1.1 The Suzanne scene . 26
4.1.2 The Lucy scene . 27
4.1.3 Analysis . 27

4.2 Performance and Power . 29
4.2.1 Frame rate - frames per second (fps) 30
4.2.2 GPU memory bandwidth read-write - bytes per frame (MB/frame) . . 31
4.2.3 GPU cycles per frame (cycles/frame) 32
4.2.4 Processor Activity . 32
4.2.5 Battery power (W) . 36
4.2.6 Energy per Frame (mJ/frame) . 39

5 Discussion 41
5.1 Image quality . 41
5.2 Performance and Power . 41
5.3 Potential Improvements of the Experiment . 42

5.3.1 Measuring accuracy . 42
5.3.2 Mobile phones . 44
5.3.3 PBR engines . 44

5.4 Environmental Impact . 44

6 Conclusion 45

Bibliography 46

Appendices

A Appendix 1 Results 53
A.1 Comparisons of graphics API and BRDF shaders 55
A.2 Frame efficiency . 61
A.3 Plots of Scene Comparisons: Suzanne vs Lucy 62
A.4 Workload Power Comparison of 100 Scenes vs 10 Scenes Per Frame 68

B Appendix 2 Code 69
B.1 Appendix Bugfix Google Filament . 69
B.2 Filament BRDF Code . 70
B.3 UE4 BRDF Implementation Code . 71

List of abbreviations

API Application Programming Interface
APK Android Package Kit
AR Augmented Reality
GPU Graphics Processing Unit
CPU Central Processing Unit
PBR Physically Based Rendering
BRDF Bidirectional Reflectance Distribution Function
FPS Frames Per Second
UE4 Unreal Engine 4
V-Sync Vertical-Synchronization
VR Virtual Reality
DVFS Dynamic Voltage and Frequency Scaling

xi

Chapter 1

Introduction

Better computer graphics has been a hot topic for a long time and the demand is ever
increasing - especially now with mobile devices capable of running graphically intensive games
and the rise of Virtual Reality and Augmented Reality [1]. In recent years, Physically Based
Rendering (PBR) has gained popularity due to its photo-realistic look. It was first used by
the movie industry but as technology has advanced PBR can now be rendered in real-time
and thus suitable for gaming [2][3].

Using PBR, an object will be rendered by its physical attributes which are based on the real
world. This is achieved by using the same light physics as in real life [4]. Mobile gaming is
widely popular and today’s hardware can support more advanced graphics. thus PBR has
become relevant for mobile as it can add realism and improve the graphics of mobile games
[3]. There has been a lot of research in this topic, however, for mobile phones the research is
still lacking.

This thesis project was about PBR on mobile with focus on the physically based bidirectional
reflectance distribution function (BRDF). The BRDF was responsible for calculating the
realistic coloring of an object depending on the object’s material properties and how light
reflects on the object’s surface [4].

A comparison of Vulkan and OpenGLES graphics application programming interfaces (API)
was interesting due to the supposed reduced energy consumption and performance improve-
ment that Vulkan offers [5][6].

1.1 Research Questions

The research question for the thesis was the following:

– What options are there for PBR on mobile?

– How does the underlying graphics application programming interface affect the perfor-
mance and power?

– How do different PBR BRDFs compare in terms of image quality, performance and
power on mobile?

1

2 CHAPTER 1. INTRODUCTION

1.2 Research Method Goals and Limitations
The research was conducted as follows:

– Perform a literature study on the topic of PBR with focus on shading models.

– Find or create a framework for PBR on mobile.

– Create test cases using different BRDFs and graphics APIs.

– Measure and compare the BRDFs and graphics APIs for performance, power and image
quality.

The limitation for the research was the following:

– Simplistic and subjective rendered image quality analysis

– Use Android mobile device with an Arm Mali graphics processing unit (GPU)

– Due to limited time, only possible to compare two BRDFs

1.3 Main Contributions
The performance and power measurement results of Filament’s PBR engine measured on a
Asus ROG 6D mobile phone. The results covered in Chapter 4 showed that using Vulkan
graphics API back-end gave a 50% reduced performance and 20% higher energy consumption
than the OpenGLES graphics back-end. The implemented Unreal Engine 4 (UE4) BRDF
performed worse by 6% and used 9% more energy than Filament’s native BRDF. The
implemented UE4 BRDF had faulty rendering which was clearly visible in the image quality
analysis, see Figure 4.1 and 4.2.

A contribution to the official Google Filament repository was made by fixing a bug which
enabled this thesis to create the test cases by loading the textures correctly. The details are
described in Appendix B.1 and briefly discussed in Section 3.3.3.

Chapter 2

Theory

In order to understand how Physically Based rendering works and the experiment that was
conducted in chapter 3, the following topics will be presented: light, computer graphics,
physically based rendering, performance and power metrics, equipment and software tools
and the last section will be previous work.

2.1 Light

Figure 2.1: Light has a wavelength and a direction.

Light travels as a ray which has a direction from the light source and a wavelength. The
wavelength of the light will determine the perceived color. The interesting properties of light
in the context of this work is how it reflects of a surface as it varies depending on the material
[7].

3

4 CHAPTER 2. THEORY

(a) Specular reflection (b) Diffuse reflection

Figure 2.2: Light reflection and refraction. Illustrations inspired by J. F Blinn “Models of
light reflection for computer synthesized pictures” [8].

When a ray of light hits a surface it can either reflect or refract. Specular reflection of light
is when all incoming light is reflected off a smooth surface with the same angle which gives a
shiny look. In other terms, when the incoming angle of incidence θi and the outgoing angle of
reflectance θi are equal, see equation 2.1 and Figure 2.2a, this would be the case for a mirror
[8].

θi = θr (2.1)

Another type of reflection is called diffuse reflection which gives a matte look. This occurs
when light hits a rough surface and scatters into many different directions than the angle of
incidence θi, see Figure 2.2b. This means that the angle of incidence θi and reflectance θr

are different from the surface normal [9].

Figure 2.3: Refraction of light. Illustration inspired by J. F Blinn “Models of light reflection
for computer synthesized pictures” [8].

Refraction is when a ray of light goes through the surface into the material instead of reflecting
back. The light gets absorbed by the material and bends the light that travels inside the
material [10], see Figure 2.3. An example would be an object put in water, as water refracts
the light.

A combination of reflections and refraction can be had, i.e. light reflected on a surface can

2.2. COMPUTER GRAPHICS 5

have a specular and diffuse reflection or all three kinds with refraction. How specular and
diffuse reflection can be used and combined will come in later Section 2.3.2.

2.2 Computer Graphics

Figure 2.4: Simplified overview of a graphics pipeline. The process of rendering a frame can
be broken down to a vertex processing stage and a fragment processing stage. Illustration
inspired by M. Kenzel et al. “A high-performance software graphics pipeline architecture for
the gpu” [11].

The graphics pipeline describes the process of rendering a frame from points in 3D-space
onto a 2D-screen [11]. How it is done depends on the implementation of the graphics pipeline
[12][13][14].

The two most commonly used primitives are triangles and lines. These primitives are made
from vertices, where a vertex is a point in 3D-space (x, y, z). In computer graphics, a
3D-model is made up of triangles and lines forming a mesh [12][15].

Vertex processing operates on vertices in 3D-space. Examples of operations in this stage are
rotations, enlargement or other transformations performed on 3D-models. These operations
are written in a shader program which the graphics processing unit (GPU) executes. Shaders
run in the vertex stage are known as vertex shaders [15][11].

The rasterizer takes the generated 3D-world of the vertex processing stage and transforms it
into 2D-space. This is the process of going from vertices in 3D-space to pixels in 2D-space
[11].

The fragment processing stage operates on the pixels. Usually this is where the colors
(textures) are applied to the rendered frame, see Figure 2.4. This is also where the light
and shadows are calculated. The fragment shaders are called by the GPU in this stage [11].
Things affecting the fragment shading are the rendering resolution and the textures. The
rendering resolution will determine how many pixels will be rendered and the textures will
be applied on to the pixels for coloring.

2.2.1 GPU and graphics API

A GPU is suitable for massive parallel computation and is often optimized for 3D graphics
rendering and has proficient parallel computation capabilities for non-graphical applications
[16].

6 CHAPTER 2. THEORY

A graphics API is a programming interface for graphics rendering. It is used to setup the
graphics rendering pipeline and shaders used for the graphics application and is the interface
for interacting with the GPU [11].

The most used and well known graphics application programming interface (API) used for
Android is Open Graphics Library for Embedded Systems (OpenGLES) created by the
Khronos group [17][18].

Vulkan is the newer graphics API also created by the Khronos group and can do both graphics
rendering and compute. This API is explicit and the developer has to configure everything
as there are no defaults. Furthermore, the developer is responsible for memory management,
synchronization and run-time error checking which is not the case with OpenGLES [19]. The
CPU uses a lot of energy and the Vulkan approach reduces the CPU usage, thus making it
more energy efficient [6][20].

2.2.2 Graphics rendering engines

A graphics API is the interface for communicating with the GPU, as previously mentioned.
It is tedious to write the same application for multiple graphics API. A graphics engine can
be used to make the graphics application code portable. A graphics engine has 3D-rendering
capabilities which supports multiple graphics API and acts as a layer of abstraction between
the application and the underlying graphics API and rendering pipeline [21], see Figure
2.4.

A popular game engine is Unreal Engine which has appealing and advanced looking graphics.
This game engine has been used for many known video games [22][23]. Another very popular
game engine is Unity. It is cross-platform and supports many graphics API [24].

Google Filament is an open-source PBR real-time renderer which is cross-platform but with
focus on Android. It supports platforms such as Android, Linux, Windows and iOS. It has
support for graphics APIs such as OpenGL, Vulkan and Metal. Filament strives to be as
efficient and lightweight as possible which makes it suitable for mobile. Filament is written
in the programming language C++ and has supported API for C++ and Java [25].

2.3 Physically Based Rendering

This section will give an introduction to the topic of physically based rendering. The things
that will be discussed is the rendering equation, the bidirectional reflectance distribution
function, PBR textures and the history and use cases of PBR.

2.3.1 The rendering equation

The rendering equation solves the outgoing radiance of a surface, see Equation 2.2. In
computer graphics, the radiance that the rendering equation solves is converted to RGB
color for one pixel [26]. Therefore the rendering equation calculates the shading of the surface
depending on the material and how the light reflects on the surface.

What makes this equation difficult to solve is due to the infinite recursion. As light bounces
from object to object, the incoming light also has its own equation to solve [27].

The rendering equation was introduced by James Kajiya and David Immel et al in 1986 [28],

2.3. PHYSICALLY BASED RENDERING 7

see Equation 2.2. Where Lo is outgoing radiance, Le is emitted radiance, Li is the incoming
radiance, p is position, Ω is the surface area of a hemisphere, fr is the BRDF function covered
in Section 2.3.2, n · ωi is the surface normal times angle of incoming light, and dωi is the
integrand over the incoming light.

Lo(p, ωo) = Le +
∫

Ω
fr(p, ωi, ωo)Li(p, ωi) · n · ωi dωi (2.2)

A general simplification of the rendering equation is to remove the emitted radiance Le as
it is trivial for computer graphics. The finite integral is replaced by a discrete Monte-Carlo
integration, see Equation 2.3.

Lo(p, ωo) =
∑
Ω

fr(p, ωi, ωo)Li(p, ωi) · n · ωi dωi (2.3)

2.3.2 Bidirectional reflectance distribution function

The BRDF is the function which calculates how light reflects on an object based on its
material properties [4]. From the rendering equation, see Equation 2.2, the BRDF function
fr has a specular and diffuse reflection component, see Equation 2.4.

fr = fdiffuse + fspecular (2.4)

A physically based BRDF needs to respect the following four principals [29]:

– Energy conservation

– Helmholtz reciprocity principle

– Microfacet model

– Fresnel effect

Energy conversation means that it cannot be more power reflected or absorbed than the
incoming power [4]. The Helmholtz reciprocity principle states that light travels the same
path from both directions [30]. The microfacet model and the Fresnel effect will be covered
in this section.

Diffuse reflection

The diffuse reflection has a mate look which is the opposite of shiny, i.e wood or rubber.
A common model for calculating diffuse lighting is the Lambertian diffuse model [29], see
Equation 2.5. Diffuse reflection has been previously presented in Section 2.1.

fdiffuse =
color

π
(2.5)

8 CHAPTER 2. THEORY

Specular reflection

The specular reflection function fspecular is more complex and has two main parts, the
microfacet model and the Fresnel effect.

Figure 2.5: Microfacet theory showcasing blocked reflection. Illustration inspired by Torrance
et al. "Microfacet Models for Refraction through Rough Surfaces" [31]

The microfacet model is used to calculate how light reflects on a rough surface. By modeling
the surface at a microscopic level, light can either reflect or be blocked by the surface, see
Figure 2.5. The blocked reflection is called shadowing-masking geometry [31]. A well known
model for specular reflection is the Cook-Torrence microfacet model which has a distribution
function (D) and a geometric visibility function (G) [29].

The Fresnel effect gives an object a glossy specular reflection when viewed from a low angle.
If viewed from above, no glossy reflection would be seen [4], see Figure 2.6.

(a) Glossy reflection when viewed
from a low angle.

(b) No glossy reflection when
viewed directly from above.

Figure 2.6: Example of the Fresnel effect showing glossy reflection of a chair’s leg.

2.3. PHYSICALLY BASED RENDERING 9

The Cook-Torrence specular reflection model with the Fresenel effect is expressed as Equation
2.6 [29].

fspecular =
DGF

πcos(ωi)cos(ωo) (2.6)

BRDF Shading models

Examples of BRDF shading models used by Filament and UE4 will be presented in this
section.

Figure 2.7: BRDF shading models of Google Filament and Unreal Engine 4.

Filament’s standard shading model was called "Lit" and used the Cook-Torrence microfacet
model and the Lambertian diffuse model. Filament had several other PBR shading models
used for different purposes, i.e. the "Subsurface" shading model can be used for translucency
and transparency effects. This shading model is useful for rendering human skin or wax
candles.

Unreal Engine 4’s shading model used the Cook-Torrence microfacet model for specular
reflection and the Lambert diffuse model for diffused reflection. For diffuse reflection, the
Lambertian diffuse Schlick function was used by both Filament and Unreal Engine 4. What
differed was the geometric function and the normal distribution function [23], see Figure
2.7.

The original BRDF shader code of Filament and an implemented UE4 can be found in
Appendix B Code B.2 and B.3.

2.3.3 PBR Textures

The BRDF uses the PBR textures for calculating the final color of a pixel. These textures
give information about the color of a material, how light should reflect and how shadows
should be applied for a more natural look [32].

There are five commonly used textures for PBR which describes a material’s properties: base

10 CHAPTER 2. THEORY

color (also called albedo), metallic, roughness, ambient occlusion and normal map, see Figures
2.8 and 2.9.

(a) Base color
(albedo)

(b) Metallic (c) Roughness (d) Ambient
Occlusion

(e) Normal map

Figure 2.8: PBR texture of oak wood which is a non-metallic material. Source: Free PBR
[33].

(a) Base color
(albedo)

(b) Metallic (c) Roughness (d) Ambient
Occlusion

(e) Normal map

Figure 2.9: PBR texture called "Pirate gold" which is a metallic material. Source: Free PBR
[33].

The base color, or albedo, is a texture used for describing the main colors of the material. If
the material is wood the the color will be brown, see Figure 2.8a. If the material is gold the
the color will be yellow, see Figure 2.9a.

The metallic texture tells if a material is metallic or not. Black color means non-metallic and
white means metallic, see Figures 2.8b and 2.9b.

The roughness texture gives information about the roughness of the materials surface, see
Figures 2.8c and 2.9c.

The ambient occlusion texture is used for applying soft shadows on a surface for a more
realistic look, see Figure 2.8d and 2.9d. This technique is used for fast calculations of shadows
coming from indirect ambient light [34].

The normal map texture gives information about the depth of the surface. This texture
provides the BRDF shading models with normal vectors of the material’s surface, see Figure
2.8e and 2.9e.

2.3.4 History and motivation

In 1970 a computer scientist named Jim Blinn stated "As technology advances, rendering
time remains constant" which became known as Blinns’ law. This meant that rendering

2.3. PHYSICALLY BASED RENDERING 11

more complex graphics was the objective instead of rendering the same thing but faster [35].
The research about PBR took off in the 80’s when Turner Whitted published a paper about
ray-tracing and lightning effects [4].

In the same decade, Cook and Torrence introduced the microfacet reflection model. This
model made it possible for metals to look accurate in rendered computer graphics [36].

Goral et al. introduced radiosity which is an approach to solve the rendering equation by
using finite element method (FEM). This approach incorporated global diffuse lightning
in graphics, which took into account how surfaces reflected diffused lightning from object
to object. A model of how objects correctly interact with each other in terms of diffuse
reflectivity. Radiosity is a global illumination algorithm as light bouncing off objects is taken
into account [37].

Diffuse lighting was further improved by Cohen, Greenberg, Nishita and Nakamae. At the
time, this was a very computationally demanding effect but the results were satisfactory
[38][39].

In 1984 Cook, Porter and Carpenter improved upon Whitted’s ray-tracing model. The new
model called distributed ray-tracing introduced depth of field and motion blur of moving
objects and was capable of making objects look glossy and translucent [40].

In 1986 Kajiya developed the rendering equation which generalised and incorporated the
different physically based rendering techniques. Path-tracing was introduced as an Monte-
Carlo integral solution for the rendering equation [28].

Use cases and studies of PBR

In film production, physically based shaders have been used by Disney in movies like Tangled
(2010) where the hair was physically based. For the movie Wreck It Ralph (2012), every
surface used a physically based shader. The movie Wall-E used physically based shaders
where the BRDF model was developed together with the people who used it. More movies
using PBR are Gravity (2013) and The Hobbit: Battle of the five armies (2014) [4].

For augmented reality (AR), a study concerning teaching students about PBR thought AR
has shown that PBR is well suited for AR and helped the students to better understand the
concept of PBR [41]. Another study regarding rendering realistic smoke simulation based on
physics for virtual reality (VR) has stated that hardware was a limiting factor for immersive
VR experience and there can be improvements in optimizing algorithms and techniques to
achieve a smoother experience [42].

Scene understanding is important for robotic navigation and human companion assistance.
However, there is a limited amount of useful real images for training a convolutional neural
network. A study used PBR to produce synthetic realistic looking images for training their
neural-network which increased indoor scene understanding tasks [43]. Another study used
a neural network to speed-up the rendering of PBR and the results looked photo-realistic
[44].

Mobile has limited hardware capability for high-fidelity PBR rendering. An experiment has
shown by having a server-client based system, the rendering time can be reduced signifi-
cantly [45]. Another study has shown that using PBR game engines can speed-up computer

12 CHAPTER 2. THEORY

generated imagery (CGI) production time and reduce costs by a great deal [46].

2.4 Performance and Power Metrics

This section will present the most relevant metrics for measuring performance and power on
a mobile phone device. The metrics will be the following: frame rate, bandwidth, processor
cycles, power, dynamic voltage and frequency switching and energy.

2.4.1 Frame rate

Frame time is the measured time it takes to compute, render and display a frame. The inverse
is the frame rate, measured in frames per second (fps) which is the pace to compute, render
and display the frames [47][48].

Referring to the graphic pipeline in Figure 2.4, the total rendering time of a frame consists
of the tcompute which can be the vertex processing time, the trender is the rasterization and
fragment processing time and tdisplay is the time it takes to send the final image to the display,
see Equation 2.7.

tframe = tcompute + trender + tdisplay (2.7)

The frame rate is the inverse of frame time measured as frames per second (fps), see Equation
2.8.

fps =
1

tframe
(2.8)

2.4.2 Bandwidth

Bandwidth and throughput are synonymous with the amount of data that can be transferred
per unit time [49][50][51].

bandwidth =
bytes

second
(2.9)

Another way to measure bandwidth is bytes per frame which is calculated by dividing the
bandwidth with the frame rate to get the bandwidth per frame [52].

bandwidthframe =
bandwidth

fps
=

bytes

second
·

second

frame
=

bytes

frame
(2.10)

2.4.3 Cycles

Processor cycles is a measure of how much work the processor needs to do for a certain task
[53]. The metric can be used to calculate cycles per instruction (CPI) or processor usage as
cycles per second (cycles/s) [54]. The relation between cycles, clock frequency and execution
time can be seen in equation 2.11[55].

2.4. PERFORMANCE AND POWER METRICS 13

Processor cycles = fclock · texecution (2.11)

2.4.4 Power and DVFS

Power (P) is a rate of energy measured in joules per second and can be used to calculate how
much heat is dissipated [56]. Electric power can be expressed in multiple ways, see equations
2.12, 2.13 and 2.14.

P = I · V (2.12)

P = I2 · R (2.13)

P =
V 2

R
(2.14)

In electronics, the power of a transistor is expressed as static and dynamic power, see equation
2.15. The static power (Pstatic is the leakage power from capacitors and leaking current. The
dynamic power comes from the switching of the transistors and takes up most of the total
transistor power [56].

Ptransistor = Pdynamic + Pstatic (2.15)

Static power is expressed as the product of the supply voltage Vdd, the leakage current Ileak

which is a technology dependant parameter, the number of transistors (N) and kdesign which
is a design dependant parameter [57][58], see Equation 2.16 .

Pstatic = V dd · Ileak · N · kdesign (2.16)

Dynamic power is expressed as the product of the transistor activity α, the effective capaci-
tance Ceff , the supply voltage squared V 2

dd and the clock frequency fclock, see Equation 2.17
[56].

Pdynmaic = αCeff V dd2fclock (2.17)

Dynamic voltage and frequency scaling (DVFS) is a technique for reducing power consump-
tion by changing the voltage and frequency dynamically [59].

2.4.5 Energy

Energy can be seen as the amount of work needed to fulfill a task. Potential electric energy
is closely related to electric power which is a rate of energy, where E is energy in joules, P is
power in Watt and t is time in seconds [56], see Equation 2.18.

14 CHAPTER 2. THEORY

E = P · t (2.18)

Energy efficiency, also referred to as "performance per watt" is a measure of performance rate
per joule [58]. A common metric is frame efficiency which is measured as frame rate per Watt
(fps/W) which simplifies down to frames per joule, see Equation 2.19.

Energy Efficiency =
fps

P
=

frames

second
Joules

second

=
frames

Energy

[
frames

J

]
(2.19)

Another energy efficiency metric used is FLOPS per Watt, where FLOPS stands for floating-
point operations per second [60] [61], see Equation 2.20.

Efficiency =
FLOPS

P
=

Floating-point operations
Energy

[
flops

J

]
(2.20)

A better metric is frame energy, which is the inverse of frame efficiency and which tells how
many joules per frame, see Equation 2.21. This metric is more descriptive and tells you the
energy. The metric "performance per Watt" is ambiguous and harder to understand than
energy per frame [62].

Frame Energy =
P

fps
=

1
Energy Efficiency =

Energy

frame

[
J

frame

]
(2.21)

2.5 Equipment and Software Tools

This section will address the equipment and tools that were used or considered for this
research. First the latest generation of mobile phones will be presented then the methods for
measuring performance and power will be discussed and last, the graphics rendering engines
will be discussed.

2.5.1 Mobile phones

The phones using the external organization’s latest and second latest generation of processors
were Vivo X90 Pro and Asus ROG 6D. The specifications can be seen in Table 2.1.

2.6. PREVIOUS WORK 15

Table 2.1: The specification of the phones Vivo X90 Pro and Asus ROG 6D.

Vivo X90 Pro Asus ROG 6D
Operating
system Android 13 Android 12

System-on-chip Mediatek Dimensity 9200 Mediatek Dimensity 9000+

CPU chipset
1x Arm Cortex-X3 @3.05 GHz
3x Arm Cortex-A715 @2.85GHz
4x Arm Cortex-A510 @1.80 GHz

1x Arm Cortex-X2 @3.2GHz
3x Arm Cortex-A710 @2.85GHz
4x Arm Cortex-A510 @1.80GHz

GPU Arm Immortalis-G715 MC11 Arm Mali-G710 MC10
Memory RAM LPDDR5 12GB LPDDR5X 16GB/12GB
Display 1260x2800, 120Hz AMOLED 2448x1080, 165Hz AMOLED
Battery Li-Po 4870mAh Li-Po 6000mAh

At the time of writing, the latest phone of the two was the Vivo X90 Pro. The Vivo X90 Pro
had the latest Arm GPU, Immortalis-G715, and a newer CPU chipset, see Table 2.1. The
Asus ROG 6D had the previous generation GPU, Mali-G710 and previous generation of CPU
chipset. However, the Asus ROG 6D phone used the latest memory technology, LPDDR5X,
while the Vivo X90 Pro used the older LPDDR5 technology.

2.5.2 Profiling and Data Acquisition System

Mobile phones run on battery and the lifetime is a limiting factor for applications and therefor
it is important to optimize the applications to be more energy efficient. A profiler is a tool for
profiling applications and computer systems by observing CPU activity, memory bandwidth,
network traffic and energy [63].

Android Studio Profiler which is a system-wide profiler, meaning it can profile events and
hardware at a system level [63]. Google’s profiler called Perfetto is an open-source system-
wide profiler for Android and considered a good alternative to Android Studio Profiler
[64]. Arm, the external organization have an application level profiler called Streamline
Performance Analyzer which is capable of measuring application level statistics like threads
and had access to hardware counters for CPU, GPU and memory [65].

A data acquisition system (DAQ) is a tool used to measure real-world physical quantities
such as electrical power, temperature, pressure and more. The DAQ samples the real-world
quantities through sensors and transducers. The measured signals are converted into digital
values and stored in a computer for further analysis and processing [66].

2.5.3 Graphics debugger

Renderdoc is a graphics debugger used for capturing and examining a rendered frame. All the
assets in a frame can be viewed i.e. the 3D-model, the texture and the shader code. Renderdoc
will show how the graphics pipeline was setup for the captured frame, the graphics API calls
and shaders used [67].

2.6 Previous Work
Studies have shown that frame rate performance can be significantly increased and memory
and energy consumption can be decreased by using Vulkan graphics API over the known

16 CHAPTER 2. THEORY

standard OpenGLES. A study about Vulkan rendering for mobile measured an increased
frame rate up to 30%, decreased memory usage by 30% and less power consumption by
20% over using OpenGLES API [20]. However, the experiment was only tested for 2D-
rendering and not 3D-rendering. Measuring for 3D-rendering on mobile using Vulkan API
will conducted in this thesis project.

Another study about evaluating the performance and energy efficiency of OpenGLES and
Vulkan on a desktop rendering server measured a power decrease up to 50% by using Vulkan.
Vulkan’s frame rate outperformed OpenGLES when power was not a concern and the GPU
utilization was higher when using Vulkan. However, the development time for Vulkan is much
longer and the learning curve is steeper than OpenGLES [5].

These studies set the expectation that Vulkan should increase performance and reduce power
over using OpenGLES API. The following chapter will discuss how this will be tested.

Chapter 3

Experimental Implementation of
PBR on Mobile Phone

The goal of this thesis project was to measure PBR on mobile and investigate how the
graphics API and BRDF shading model affected the power and performance. In order to
achieve this goal, three main components were needed: a mobile phone, a PBR graphics
engine and measurement tools.

This chapter will discuss the choices made and the process of obtaining performance and
power measurements of PBR on mobile. First, the tools used for measuring performance
and power will be presented. Then the choice of PBR engine and the test cases used in the
experiment. The last section will be an overview of how the experiment was conducted to
obtain performance and power measurements.

3.1 Mobile Phone

The phone used for this project was the Asus ROG 6D, an Android phone marketed for
gaming. It was provided by the external organization and it used the external organization’s
previous generation CPU chipset and GPU, see Table 2.1.

One of the reasons Asus ROG 6D was chosen over the newer generation phone, Vivo X90
Pro, was due to the better memory technology. Memory is often the bottle neck and thus
the best memory technology was chosen [68]. On the same note, Vivo X90 Pro was released
during the thesis work which meant that the driver could have issues which could give poor
performance as the driver is still being optimized. Also the availability of the newer phone
was low as it was the latest technology.

3.2 Measuring Tools

The measuring tools used for measuring performance and power were provided by the external
organization and their usage will be presented below and throughout this chapter. The
process of measuring PBR on mobile will be presented in a later section.

17

18CHAPTER 3. EXPERIMENTAL IMPLEMENTATION OF PBR ON MOBILE PHONE

Figure 3.1: The measuring tools used to obtain performance measurements, rendered images
and electrical power measurements.

The information of interest was rendered images, performance and power metrics, see Section
2.4:

– Image Quality

– Frame rate [fps]

– GPU memory bandwidth (read and write) [bytes/frame]

– GPU cycles [cycles/frame]

– CPU and GPU activity

– Battery power [W] and frame energy [mJ/frame]

In short, Streamline was used for measuring performance, Renderdoc was used for captur-
ing images and National Instrument’s (NI) DAQ for measuring battery power, see Figure
3.1.

3.2.1 Profiler for measuring performance metrics

The profiler Arm Streamline was used for measuring the performance metrics such as frame
time, GPU memory bandwidth (read and write), GPU cycles and processor activity. This
profiler was the natural choice as it was developed by the external organization for the
processors used on the phone (Asus ROG 6D) and worked on application-level profiling.

Other alternative profilers considered were Perfetto and Android’s profiler, see Section 2.5.2.
However, those were system-level profilers and would not give as accurate measurements or
interesting metrics specific for the GPU and CPU.

3.2.2 Graphics debugger for capturing frames

The graphics debugger used was Renderdoc which captured the rendered images used for
image quality analysis. Renderdoc was also used for verification of which BRDF shading
model was used, assets (3D-model and textures) and API-calls. Renderdoc was used for
developing the test cases presented in next Section 3.3.

3.3. PBR ENGINE 19

3.2.3 DAQ for power measurements

NI’s DAQ was used for measuring the battery power of the phone under test (Asus ROG
6D). The external organization had a setup for automating power measurements of phones
and was used for obtaining power measurements.

3.3 PBR Engine

Google Filament was the choice of PBR engine because it already had a framework setup
for PBR on Android mobile. Unity, Unreal Engine and the external organization’s own
framework were considered alternatives, see Section 2.2.2. Unreal Engine had the most
advanced graphics and would be the second choice.

Figure 3.2: Google Filament PBR Engine Overview. The Filament project contained assets,
samples and the Filament library. The Android samples used the Filament library and the
assets which were built into an Android package kit (APK). The APK is the file used for
installing the application into the Android phone.

The Google Filament project included everything needed to create a PBR application for
Android. For this project, the assets, the filament library and an Android sample were used
and modified to create test cases, see Figure 3.2.

20CHAPTER 3. EXPERIMENTAL IMPLEMENTATION OF PBR ON MOBILE PHONE

The goal was to create test cases for comparing graphics API and BRDF shading models.
Filament had an Android sample called "Textured Object" which was a PBR application
displaying a rotating 3D-model with PBR textures on it. This sample was used as a baseline
for creating the test cases used in this project.

The configurations for the experiment was the scene, the back-end graphics API and the
BRDFs. The scene was either Suzanne or Lucy. The back-end graphics API was OpenGLES
or Vulkan. The BRDF used was either Google Filament’s native BRDF or an implementation
of UE4’s BRDF into the Filament library. In total, eight test cases were created using these
three configurations, see Table 3.1. These configurations will be discussed below.

Table 3.1: The test cases from the configurations of scene, graphics API back-end and BRDF
shading model.

Scene Graphics API BRDF

lucy gles filament
lucy gles ue4
lucy vk filament
lucy vk ue4

suzanne gles filament
suzanne gles ue4
suzanne vk filament
suzanne vk ue4

3.3.1 The scene

(a) The Suzanne scene with wooden
texture.

(b) The Lucy scene with metallic golden
texture.

Figure 3.3: The scenes called Suzanne and Lucy.

The purpose behind having two different scenes was to measure how the amount of vertices
and the type of texture would affect the performance and power. The 3D models were already
included in the Google Filament project and the textures used were from a free PBR texture
website [33].

3.3. PBR ENGINE 21

The Suzanne scene was composed of the 3D-model named Suzanne which had 47232 vertices
and a non-metallic wooden PBR texture, see Figure 2.8, and an image based lighting texture
providing background and light. The Lucy scene used the 3D-model named Lucy which had
100338 vertices (more than twice of Suzanne) and a metallic golden PBR texture, see Figure
2.9, and a different image based lighting, see Figure 3.3.

Each PBR texture pack consisted of an albedo (base color), metallic, roughness, ambient
occlusion and normal map texture, covered in Section 2.3.3.

3.3.2 Adding UE4 BRDF shading model into Filament’s BRDF shader

Google Filament had its own native physically based BRDF. Filament’s BRDF was supposed
to be visually appealing and energy efficient. To test this, an implementation of UE4’s BRDF
shading model was added into the Google Filament library.

This was achieved by adding the UE4’s BRDF into Google Filaments BRDF shader source
code (brdf.fs), see Figure 3.2. These two BRDF shading models have been covered in
previously in Section 2.3.2. The UE4 shading model was from the article "Real Shading
in Unreal Engine 4" by Brian Karis [23] and was expressed as mathematical formulas. This
was translated into shader code and was added along-side Filament’s native BRDF shading
model in the same file. The shader was written in OpenGL shading language (GLSL).

The selected BRDF shading model was compiled into the Filament library which was used by
the test application. In order to change the BRDF shading model, the Filament library had
to be re-built from scratch every time. Rebuilding the Filament project took long compilation
time compared to building the Android test application.

As previously mentioned, the graphics debugger Renderdoc was used to that the correct
BRDF shading model was used in the test application. The effect of which BRDF was used
could be seen visually on the display of the phone.

The original Filament’s BRDF shading code can be found in B.2 and the implemented UE4’s
BRDF shading model in B.3.

3.3.3 The test case application

The original Filament Android sample called "Textured object" was used as a baseline for
the test cases. The test cases were written in Kotlin which was a Java based programming
language. The test cases was then compiled into Android applications (apk) and installed on
a mobile phone, see Figure 3.2.

In order to create PBR applications used as test cases, a bug had to be fixed. By fixing
this bug, multiple copies of the base sample application called "Textured Object" could be
created and changed. Details about this contribution to the offical Google Filament project
repository can be found in Appendix B.1.

The modifications done and how the test application worked will be presented below.

22CHAPTER 3. EXPERIMENTAL IMPLEMENTATION OF PBR ON MOBILE PHONE

Figure 3.4: Simplified overview of the test case application data-flow.

The test case application had two main parts - the setup and the render-loop, see Figure
3.4.

Fixed size resolution and disabling dynamic resolution optimization

For better comparisons, a fixed frame resolution of 1080x1920 pixels was set and Filament’s
dynamic resolution optimization had to be disabled. This was to ensure that all test cases
were rendered in the same resolution.

The dynamic resolution optimization would render at a lower resolution, i.e. 720x1280
pixels, and scale up the final image which was sent to the display at the set resolution
of 1080x1920. This was detected in Renderdoc and the OpenGLES and Vulkan back-end
used different resolutions for rendering. Disabling this optimization gave more deterministic
test cases.

Off-screen rendering

For better comparisons and more accurate power measurements of the mobile processors,
off-screen rendering was set up. This meant rendering the frame to memory instead of the
display, see Figure 2.4. This took the screen out of the power measurements and gave more
accurate results.

3.4. SYSTEM OVERVIEW AND TEST SETUP 23

Graphics API back-end

The graphics API back-end was then chosen which was either OpenGLES or Vulkan. The
default graphics back-end in Filament was OpenGLES but that could be changed to Vulkan.
This was achieved by changing one line in the original code and no graphics API knowledge
was needed to use either of the graphics back-end APIs. This was one of the benefits of using
a graphics engine, see Section 2.2.2.

Scene

Then the view was set up containing the scene, camera and rotation matrix for rotating the
3D-model clockwise, see Figure 4.1. The scene had either the 3D-model Suzanne or Lucy
along with their respective textures, see Section 3.3.1. In this thesis, the word scene and view
were used synonymously. The scene (or view) was rendered in the render-loop, see Figure
3.4.

The vertical-synchronization limit

The vertical-synchronization (v-sync) limit was the maximum refresh rate of the display. This
limited the GPU from rendering at its fastest potential. This limit was set to 120 fps (8.33
ms) and this was the fastest frame rate which could be measured. If the GPU rendered faster
than 120 fps then the GPU had to wait idly for the display to finish. The initial test cases
surpassed this limit and thus all test cases were measured at 120 fps.

The first solution was by setting up off-screen rendering. The off-screen rendering should
by-pass the display and its v-sync limit. This did not work and the reason was not further
investigated due to limited time.

The second solution was to decrease the frame rate by having the GPU do more work. What
was rendered in a frame was the so called workload. To increase the workload, the same scene
was rendered multiple times per frame. This lowered the frame rate and differences between
the test cases could be measured.

At first, the workload was rendering the same scene 100 times per frame. The results were
to unrealistic and the workload was lowered down to 10 scenes rendered per frame. The
profiler Arm Streamline was used to detect the unrealistic performance values where the frame
rate was less than 10 fps and the GPU bandwidth was very high. The graphics debugger
Renderdoc was used to confirm the number of scenes render per frame were correct.

The workload of rendering the same scene 10 times per frame was used for the final results
given in Chapter 4.

3.3.4 The project repository

The original Filament repository in Github was forked into a own repository where the test
cases were developed. The repository for this project can be found in Github [69].

3.4 System Overview and Test Setup

Credit and thanks goes to the external organization for their guidance and help using their
automated measuring system for obtaining the power and performance measurements of the

24CHAPTER 3. EXPERIMENTAL IMPLEMENTATION OF PBR ON MOBILE PHONE

PBR test cases which ran on the mobile phone.

Figure 3.5: Overview of the system for conducting the experiment.

To recap this chapter, Google Filament PBR engine was used to build test cases for comparing
the graphics back-end APIs Vulkan and OpenGLES and the BRDF shading models of UE4
and Filament. The test cases were installed on an Android phone, Asus ROG 6D, and
power and performance was measured using the measuring tools: Arm Streamline profiler,
Renderdoc graphics debugger and NI’s DAQ, see Figure 3.5.

The test cases were measured for their peak performance and power. This meant that the
phone was in a state which it could render at its fastest speed and output its maximum
power. This phenomenon could be seen when the phone started at a lower temperature of
26 degrees Celsius.

The phone was cooled down using a fan and each test case ran three times for 60 seconds. A
measurement started only when the phone was under 26 degrees Celsius.

Obtaining the measurement were done automatically but processing the performance and
power results had to be done manually. The performance metrics were calculated from 10
consecutive frames measured in Arm Streamline profiler. A discussion about this will be
covered in later Chapter 5.

The results of measuring the test cases will be presented in the next Chapter 4.

Chapter 4

Results

This chapter will present the results of the experiment conducted in this thesis project. The
first section will present the image quality results, followed by performance and power and
the last section will present the processor activity results. The end of each section will have
an analysis part discussing the results.

25

26 CHAPTER 4. RESULTS

4.1 Image Quality

This section will present the rendered images of the eight test cases - starting with Suzanne,
followed by the Lucy scene and the an analysis section. The figure is read as follows:

– Horizontally comparing BRDF: Filament (left) and UE4 (right)

– Vertically comparing graphics API: OpenGLES (top) and Vulkan (bottom)

The results of the image quality will be discussed more in depth later in chapter 5.

4.1.1 The Suzanne scene

(a) OpenGLES API and Filament BRDF (b) OpenGLES API and UE4 BRDF

(c) Vulkan API and Filament BRDF (d) Vulkan API and UE4 BRDF

Figure 4.1: Image quality comparison of the Suzanne scene.

Starting with the comparison of Filament’s and UE4’s BRDF. Filament’s BRDF rendered a
complete and satisfactory looking scene of Suzanne where the wooden texture could easily
be identified, see Figure 4.1a. UE4’s BRDF rendered frames which had a shiny white outline
close to the edges of Suzanne model, see Figure 4.1b. Filament’s BRDF gave a more shiny
and glossy reflection on the wooden texture, see Figure 4.1c, compared to UE4’s BRDF which
made Suzanne look mate and dull, see Figure 4.1d. The white lines along the edges were
more subtle in the Suzanne scene using Vulkan API and UE4’s BRDF , see Figure 4.1d.

Looking at the graphics APIs OpenGLES and Vulkan. Suzanne had a clear wooden color
using OpenGLES while the Vulkan test cases had very dark colors and dimmed lighting,
see Figure 4.1c and 4.1d. It was harder to see the wooden texture on the Vulkan test cases
for the Suzanne scenes. The graphics back-end should not affect the visuals of the rendered
frame.

4.1. IMAGE QUALITY 27

4.1.2 The Lucy scene

(a) OpenGLES API and Filament BRDF (b) OpenGLES API and UE4 BRDF

(c) Vulkan API and Filament BRDF (d) Vulkan API and UE4 BRDF

Figure 4.2: Image quality comparison of the Lucy scene.

Inspecting the results of the Lucy scenes by first comparing the BRDFs, Filament versus
UE4 implementation, the biggest visible difference was how the direct light reflected on the
model. With the Filament BRDF’s, the direct light reflected properly on the 3D-model
Lucy, see Figures 4.2a and 4.2c. The UE4’s BRDF made Lucy look darker and the specular
reflections were on different spots of the model and was missing the bulk of light shining on
the 3D-model, see Figure 4.2b and 4.2d.

Comparing the graphics APIs, OpenGLES and Vulkan. The Vulkan back-end made the
texture look darker and the details of the texture were lost, see Figures 4.2c and 4.2d. Looking
at Lucy with Vulkan API and UE4’s BRDF (Figure 4.2d, it was very dark and the material
was not resembling gold as clearly as the other cases.

4.1.3 Analysis

Starting with the impact of changing the graphics API, Vulkan changed the image quality
which was unexpected. The Vulkan API made the frames look darker and the textures lost
details. The underlying graphics API should not affect the image quality and this was a
strong indication of errors in Google Filament’s Vulkan back-end.

The implementation of UE4’s BRDF into the Google Filament project had worse image
quality compared to Filament’s native BRDF. The test cases using UE4’s BRDF had a white
line along the edges. A possible cause could be erroneous implementation of the UE4’s BRDF.
Another reason could be that the lighting model of UE4’s PBR shading model was not taken
into account, only the BRDF was implement. It is very likely that UE4’s BRDF would look

28 CHAPTER 4. RESULTS

better using UE4’s graphics engine.

Comparison between the two textures, non-metallic (Suzanne) and metallic (Lucy), the
Vulkan back-end worked better on the metallic scene Lucy over the non-metallic scene
Suzanne. On the Suzanne scene, it was hard to see the wooden texture using Vulkan
back-end. For the Lucy scene, the metallic texture could be identified. The test case using
Vulkan back-end with UE4’s BRDF was considered unacceptable for PBR, see Figure 4.1d
and 4.2d.

A deeper discussion regarding the procedure will be covered in Chapter 5 Section 5.1.

4.2. PERFORMANCE AND POWER 29

4.2 Performance and Power

This section will cover the performance and power results. The setup of how the experiment
was conducted and how the results were obtained has been covered in previous Section 3.4.
The final results can be seen in Table 4.1.

Table 4.1: Performance and power results of the test cases. The configurations were the
scenes: Lucy (lucy) and Suzanne (suzanne), the graphics back-end APIs: OpenGLES (gles)
and Vulkan (vk) and the BRDFs: Filament (filament) and Unreal Engine 4 (ue4).

Scene API BRDF Frame Rate GPU Bandwidth Cycles / frame Power Efficiency Energy
[fps] R/W [MB/frame] [W] [fps/W] [mJ/frame]

lucy gles filament 76.3 172.8 12800000.0 9.5 8.0 124.3
lucy gles ue4 76.3 170.6 12800000.0 8.8 8.6 115.7
lucy vk filament 37.5 350.5 20200000.0 6.2 6.1 164.2
lucy vk ue4 36.2 352.7 20700000.0 5.8 6.3 159.3

suzanne gles filament 84.7 166.1 11500000.0 9.3 9.1 110.0
suzanne gles ue4 79.4 174.3 12300000.0 9.5 8.4 119.7
suzanne vk filament 35.1 360.4 21300000.0 7.4 4.7 211.8
suzanne vk ue4 35.2 360.9 21900000.0 7.4 4.8 209.3

The results will be presented by looking at each metric in the following order: frame rate, GPU
memory bandwidth, GPU cycles, battery power consumption and energy per frame.

Comparison results with less than 5% change were considered to have no change. Explained
by the external organization, this range between 0 - 5% was due to the inner workings of
Android OS which was out of control. All comparison plots of the results can be found in
Appendix A Section A.1.

30 CHAPTER 4. RESULTS

4.2.1 Frame rate - frames per second (fps)

Figure 4.3: Frame rate results comparing OpenGLES (gles) and Vulkan (vk). Higher is
better.

Looking at the absolute values, the OpenGLES test cases ran on average 80 fps and Vulkan
around 40 fps, see Figure 4.3. The frame rate of both graphics back-end were above the
acceptable range for real-time rendering which was 30 fps. A frame rate below 30 fps was
considered to be too unpleasant for gaming. However, the Vulkan back-end was close to this
minimum limit.

Comparing the graphics API’s, Vulkan was 50% slower than OpenGLES. The results were
surprising because the expectation was that the Vulkan back-end should perform better [5][20]
which was not the case, see Section 2.6. These performance results of the Vulkan back-end
further indicated that there are issues with the Vulkan back-end.

For the BRDFs, UE4’s BRDF performed 6% worse than Filament’s. The BRDF did not have
a big impact on the performance as the back-end garphics APIs.

4.2. PERFORMANCE AND POWER 31

4.2.2 GPU memory bandwidth read-write - bytes per frame (MB/frame)

Figure 4.4: GPU memory bandwidth results comparing OpenGLES (gles) and Vulkan (vk).
Lower is better.

Looking at the GPU bandwidth read and write results, the OpenGLES test cases had
approximately 170 MB/frame and Vulkan around 355 MB/frame, see Figure 4.4.

Comparing the graphics API, Vulkan had more than twice as high bandwidth compared
to the OpenGLES graphics back-end. The bandwidth results suggested that memory was
the bottle-neck and could be one of the possible reasons for the reduced performance of the
Vulkan back-end. As previously covered in Section 2.2.1, in Vulkan the programmer was
responsible for managing memory. Why the Vulkan back-end used twice as much memory
could be explained by sub-optimal memory management in the Filament project for the
Vulkan back-end.

Comparing the BRDFs, there was no change in bandwidth as the change was under the
acceptable range of 5%.

32 CHAPTER 4. RESULTS

4.2.3 GPU cycles per frame (cycles/frame)

Figure 4.5: Cycles per frame results comparing OpenGLES (gles) and Vulkan (vk). Lower is
better.

Looking at the GPU cycles per frame results, overall the OpenGLES test cases ran for
12 megacycles per frame and the Vulkan cases for 21 megacycles per frame, see Figure
4.5. Comparing the graphics API, Vulkan to OpenGLES, Vulkan used 58% to 85% more
cycles than OpenGLES. These extra instructions used by Vulkan API could potentially be
redundant memory read-write operations.

Comparing the BRDFs, UE4 to Filament’s BRDF, UE4’s BRDF used 7% more cycles than
Filament meaning it performed worse.

4.2.4 Processor Activity

This section will take a closer inspection at the processor activity captured by the application
profiler Arm Streamline. The processor activity of graphics API OpenGLES and Vulkan will
be compared against each other.

4.2. PERFORMANCE AND POWER 33

(a
)

C
PU

ac
tiv

ity
of

us
in

g
O

pe
nG

LE
S

ba
ck

-e
nd

(b
)

C
PU

ac
tiv

ity
of

us
in

g
Vu

lk
an

ba
ck

-e
nd

Fi
gu

re
4.

6:
C

PU
ac

tiv
ity

of
O

pe
nG

LE
S

an
d

Vu
lk

an
gr

ap
hi

cs
A

PI
ca

pt
ur

ed
in

A
rm

St
re

am
lin

e
pr

ofi
le

r.
Vu

lk
an

us
ed

le
ss

of
th

e
C

PU
th

an
O

pe
nG

LE
S

ba
ck

-e
nd

gr
ap

hi
cs

A
PI

.

34 CHAPTER 4. RESULTS

Starting with the CPU activity of using OpenGLES graphics back-end API, the big CPU
core (Cortex X2) was used the first 10 seconds at 40%. After 10 seconds the smaller cores
(Cortex A510 and A710) took over and used 10% and 20% of the CPUs respectively, see
Figure 4.6a.

Looking at the Vulkan graphics back-end API, the big core (Cortex X2) was used for the
whole run starting at 20% CPU usage. After the 10 second mark the CPU usage dropped
down to 16%, see Figure 4.6b.

The processor activity results showed that the Vulkan graphics back-end API was more
efficient by using less of the CPU compared to OpenGLES. This confirmed that the bottleneck
was not the CPU.

4.2. PERFORMANCE AND POWER 35

(a
)

G
PU

ac
tiv

ity
of

us
in

g
th

e
O

pe
nG

LE
S

ba
ck

-e
nd

(b
)

G
PU

ac
tiv

ity
of

us
in

g
th

e
Vu

lk
an

ba
ck

-e
nd

Fi
gu

re
4.

7:
G

PU
ac

tiv
ity

(c
yc

le
s

an
d

ba
nd

w
id

th
)

of
O

pe
nG

LE
S

an
d

Vu
lk

an
gr

ap
hi

cs
A

PI
ca

pt
ur

ed
in

A
rm

St
re

am
lin

e
pr

ofi
le

r.
O

pe
nG

LE
S

sh
ow

s
a

sin
us

oi
da

lb
eh

av
io

ur
an

d
Vu

lk
an

sh
ow

ed
hi

gh
an

d
lo

w
ac

tiv
ity

re
gi

on
s.

36 CHAPTER 4. RESULTS

Examining the GPU activity of OpenGLES graphics back-end API, the GPU cycles were
constant while the bandwidth had a sinusoidal characteristic with peaks and lows, see Figure
4.7a.

Looking at the GPU activity of Vulkan back-end, the GPU activity was very high at the
start of the test case application and after 7 seconds the activity dropped by half. This
lower activity region remained until the activity went back up at the 45 seconds mark. The
cycles and bandwidth shared the same characteristics, see Figure 4.7b. The measurement for
Vulkan were all from the high GPU activity region at the start. It was observed that in the
lower activity region the frame time reached the maximum measurable frame time of 8.33 ms
(120 fps) which was due to the V-sync limit.

The behaviour of both The OpenGLES and Vulkan back-end could not be explained and
further investigation would be required. All the test cases using the Vulkan back-end were
measured in the high activity state.

4.2.5 Battery power (W)

Figure 4.8: Average battery power consumption comparing OpenGLES (gles) and Vulkan
(vk). Lower is better.

The power results showed that the OpenGLES graphics back-end used around 9 W and
the Vulkan back-end around 6-7 W, see Figure 4.8. Comparing the graphics APIs, Vulkan
to OpenGLES, Vulkan used 35% less power at best and 20% less at worst compared to
OpenGLES. The Vulkan graphics back-end used less power and the reason was primarily the

4.2. PERFORMANCE AND POWER 37

lower usage of the CPU which was covered in the previous section. These results proved that
the Vulkan API uses less of CPU and thus the power was lower.

Comparing the BRDFs, UE4 to Filament’s, UE4 used 7% less power compared to Filament.
UE4’s BRDF saved more power and was better for reducing power consumption.

38 CHAPTER 4. RESULTS

(a)
Power

and
tem

perature
m

easurem
ent

result
ofthe

Suzanne
scene

using
O

penG
LES

A
PIand

Filam
ent

BR
D

F

(b)
Power

and
tem

perature
m

easurem
ent

result
ofthe

Suzanne
scene

using
Vulkan

A
PIand

Filam
ent

BR
D

F

Figure
4.9:

Power
m

easurem
ent

ofO
penG

LES
and

Vulkan
graphics

back-end.

4.2. PERFORMANCE AND POWER 39

Looking at the battery power measurements, OpenGLES started at 9 W and could have short
spikes up to 11 W, see Figure 4.9a. With the Vulkan back-end, the power started at 10 W
and after 40 seconds dropped down to 4 W, see Figure 4.9b. The temperature went from 26
to 27 degrees in 60 seconds, a one degree rise in temperature.

The battery power measurements showed that the OpenGLES graphics back-end started
at a high power and remained constant with spikes. The Vulkan back-end started with
high power and then dropped significantly lower. This gave the Vulkan back-end less average
power consumption than OpenGLES. A reason why the Vulkan back-end had this drop could
be compared with the processor activity drop covered in previous Section 4.2.4. However,
the duration of the high power usage and the high GPU activity duration did not align
time-wise.

Both the OpenGLES and Vulkan back-end had high initial power usage and the explanation
was due to peak performance. As previously mentioned, this meant the device could run at
its maximum performance and power when the device was at a lower temperature, which
was 26 degrees. As the device heated up the performance and power dropped. All test cases
were measured for their peak performance.

4.2.6 Energy per Frame (mJ/frame)

Figure 4.10: Energy per frame results comparing OpenGLES (gles) and Vulkan (vk). Lower
is better

40 CHAPTER 4. RESULTS

Looking at the frame energy, the OpenGLES API back-end used around 110-124 mJ per
frame and the Vulkan back-end ranged from 160-212 mJ per frame, see Figure 4.10.

Comparing the graphics APIs, Vulkan to OpenGLES, the results showed Vulkan used at best
32% more energy and at worst 93% more energy than OpenGLES. Note that for Vulkan,
the Lucy scenes used less energy than the Suzanne scenes. The Vulkan back-end used more
energy per frame than OpenGLES even though the power consumption was lower. The lower
power consumption of Vulkan was not enough to compensate for the slow frame rate.

Comparing the BRDFs, UE4 to OpenGLES, UE4’s BRDF used 9% more energy compared
to Filament’s native BRDF. UE4’s BRDF had worse energy consumption.

For frame efficiency results, see Appendix A Section A.2.

Chapter 5

Discussion

In this chapter, the results will be discussed at a higher level, reflection and improvements of
the measuring process will be presented and possible future work will be suggested.

5.1 Image quality

The test cases with the most appealing image quality were the ones using the OpenGLES
graphics back-end with Filament’s native BRDF, see Figures 4.1a and 4.2a.

The Vulkan graphics back-end changed the shading of the frame which should not occur. This
was the biggest indication that the Vulkan back-end had issues with incorrect rendering. This
was a critical problem and should be solved before the Vulkan back-end could be used for
practical graphics applications.

The implemented UE4 BRDF looked worse than the native Filament BRDF on all test cases.
Reasons for this has already been discussed in Section 4.1.3. Better knowledge and experience
was needed to pinpoint the root cause. More studies about image quality analysis would yield
a deeper understanding of the topic and better comparisons would be made.

In order to change the BRDF used, the whole Filament project had to be built from scratch
which could take several minutes. Due to the lengthy build time, solution on how to fix the
poor image quality of the implemented UE4 BRDF into Filament was not explored.

An improvement to the image quality comparison process would be to have a static rendered
frame, meaning the 3D-model would not rotate as it did in all test cases. However, the
rendered frames of the test cases were visibly different and no tool was needed to compare
the images. If the images were slightly different from each other then a tool for comparing
images would be required for the differences to be seen.

5.2 Performance and Power

The Vulkan graphics back-end API in Google Filament performed worse than the OpenGLES
back-end in all performance metrics except for power . The performance results strongly
indicated that the memory bandwidth of the GPU was a possible reason for the worsened
performance of choosing Vulkan over OpenGLES. The CPU usage was far less with the Vulkan

41

42 CHAPTER 5. DISCUSSION

back-end and a big factor for the reduced power consumption. If the frame rate of Vulkan
improved, then the energy consumption could potentially be far less than the OpenGLES
back-end.

The GPU activity of both the Vulkan and OpenGLES graphics back-end APIs remained
unanswered. Further investigation was needed and running the profiler for longer may give
clues about these behaviours, see Figure 4.7. The test cases with the Vulkan back-end were
measured only within the high activity state. If the test cases ran for a known amount of
frames and the lower GPU activity state was present, then it would result in a lower average
frame rate. Suggested improvement of running test cases with fixed amount of frames will
be discussed in next section.

Before any measurements were conducted, the test cases were tried on an older generation
phone (Samsung Galaxy S10 Exynos) and the Vulkan back-end had visibly low frame rate
and the same image quality issues discussed previously. All official Android samples in the
Filament repository used OpenGLES back-end by default. Many of the reported issues in
the repository were Vulkan back-end related. The Google Filament project strongly suggests
that the Vulkan back-end is still work in progress and not ready yet for practical use.

Investigating why the Vulkan back-end rendered incorrectly, how to improve GPU memory
bandwidth bottleneck and frame rate would an interesting and important future work as the
Vulkan back-end has the potential to surpass OpenGLES in terms of performance and energy
consumption [5][20].

The implemented UE4 BRDF performed worse than Filament’s native BRDF. As previously
mentioned, the lighting model of UE4 was not implemented into the Filament project. It
would be interesting to see if lighting model would correct the render quality and see how it
would affect performance. Further studies and understanding was needed for better and more
accurate BRDF measurements and comparisons. A proposed improvement will be given in
the next section.

The initial experiment with the different scenes was to see how the number of vertices affected
performance. The 3D-model Lucy had twice as many vertices than Suzanne but did not show
any clear performance impact. Comparing the scenes were uninteresting for PBR and it was
difficult to clearly state what was being compared. The focus was on the graphics back-end
APIs and BRDFs. The comparison results of the two scenes can be found in Appendix
A.3.

5.3 Potential Improvements of the Experiment

This section will discuss the measuring accuracy of the experiment, the phone used for
measuring performance and power and a discussion about the PBR engine.

5.3.1 Measuring accuracy

Starting with measuring accuracy, this section will discuss the how the accuracy of the test
cases and measurements could be improved.

5.3. POTENTIAL IMPROVEMENTS OF THE EXPERIMENT 43

The workload solution

Due to the V-sync frame rate limit of 120 fps, which meant that anything faster than 120 fps
could not be measured, the workload was increased by rendering the same scene 10 times per
frame. As previously mentioned, the initial workload was rendering the same scene 100 times
per frame and later changed to 10 scenes per frame. It would be interesting to investigate
how the performance and power scales with different number of scenes rendered per frame.
It was a factor of 10 change in performance when changing workload from 100 scenes down
to 10 scenes rendered per frame, this showed a linear characteristic. If the frame rate of
rendering one scene could be estimated, then the OpenGLES back-end could render at 800
fps and Vulkan at 400 fps in theory.

When comparing workloads of rendering 100 scenes versus 10 scenes per frame, the power
consumption showed similar results, see Appendix A Section A.4. This meant that power
consumption did not scale linearly and the actual energy consumption per rendered scene
could not be estimated. A better solution was needed to accurately estimate the energy
consumption for rendering one scene per frame. Due to power not scaling linearly, due to
the battery power having a dynamic and static part where the dynamic part is scaling, see
Section 2.4.4. the test cases with a workload of rendering 100 scenes per frame were discarded
from the final results.

The best solution for by-passing the V-sync limitation would be to render off-screen. This
did not work, however this was not tested again after disabling the dynamic resolution
optimization feature discussed in Section 3.3.3. Disabling the V-sync frame rate limit would
give more accurate results and the Google Filament rendering overhead could potentially be
measured. To render the overhead, the render-loop has to be empty (no scene rendered) and
the overhead time could then be measured.

Fixed amount of frames

All the test cases ran indefinitely until the application was terminated. The issue was that
the numbers of frames rendered during the run was unknown. If the test cases ran for
a fixed number of frames, then the performance and energy calculations would be more
accurate.

This would enable the processing of the measured results to be automated. The results
would be more precise and the number of samples would could far more. The performance
and power measurements were done manually which was very time consuming. Only ten
consecutive frames were measured and the average frame rate, bandwidth and cycles was
calculated from those ten frames. This was a very low amount of frames and by having fixed
frames, the results would be much more accurate, i.e run a test case for 1000 frames while
measuring time, performance and power.

Temperature and DVFS

The power measurements ran for 60 seconds and the temperature rise was only 1 degree
Celsius which was too small of a change to see the temperature’s impact on the power
consumption. A longer measurement run would show how temperature affected the battery
power consumption of the phone. The expectation would be that the power drops as
temperature increases due to power consumption generates heat, see Section 2.4.4.

44 CHAPTER 5. DISCUSSION

Another interesting characteristic would be to see how DVFS worked in practice. By measur-
ing the frequency and voltage and see the impact of the consumption and how temperature
impacts the frequency and voltage.

Frame resolution and PBR texture covering the whole frame

Instead of comparing two different scenes, a more relevant experiment for PBR would be to
try different resolutions. This would work as the BRDF operates on pixels in the fragment
processing stage and not on vertices in the vertex processing stage, see Figure 2.2. This ex-
periment could tell how well the Filament engine would perform on higher resolutions.

A better way to test the BRDF shading models would be to occupy the whole frame with a
PBR texture. This would mean that every pixel in the rendered frame would go through the
BRDF shader and thus more accurate measurements of the BRDFs would be acquired.

5.3.2 Mobile phones

All the measurements were measured on a Asus ROG 6D phone and the other phone consid-
ered was the Vivo X90 Pro which had older memory technology, see Table 2.1. Given from
the results, the GPU memory bandwidth was a possible bottleneck for the Vulkan back-end
graphics API. By testing on the Vivo X90 Pro, the bandwidth bottleneck could further be
verified as the phone has a newer GPU but worse memory technology than the ASUS ROG
6D. If the Vivo X90 Pro would have same or worse performance than the Asus ROG 6D -
then the memory bandwidth bottleneck would be concluded as the possible root cause for
the poor performance of the Vulkan graphics back-end.

Suggested future work would be to try on multiple mobile phones with different GPUs.

5.3.3 PBR engines

Google Filament engine was the only PBR engine used for measuring power and performance
of PBR on mobile. Suggested future work would be to measure PBR using other engines
such as the latest Unreal Engine or Unity. The main challenge would probably be to create
good comparable test cases across the different engines.

5.4 Environmental Impact
As previously discussed, the Vulkan back-end has the potential to reduce the energy con-
sumption if the performance issues were solved. With lower energy consumption comes
longer battery life and less frequent charging. This means that energy could be saved and as
most people own a mobile phone, the impact would be noticeable and less energy usage is
better for the environment.

PBR is an easy rendering technique to implement which does not require any special dedicated
hardware. This means it could run on older devices and there would be no need to buy a
newer phone for using advanced looking graphics. This would improve the longevity of the
mobile phone and reduce electronic waste as the phone does not need to be replaced by a
newer one.

Chapter 6

Conclusion

The PBR engine Google Filament was used to conduct the experiment of measuring PBR
on mobile. The choice of back-end graphics API impacted the image quality, performance
and energy consumption severely. Choosing Vulkan over OpenGLES resulted in 50% worse
performance, the image quality showed faulty rendering and the energy consumption was
32% higher than OpenGLES. The GPU bandwidth was twice as large using Vulkan which
indicated a possible memory bandwidth bottleneck. The Vulkan graphics back-end was
clearly still work in-progress and continues to improve in the Filament project.

The experiment of comparing Filament’s native BRDF to the implemented UE4 BRDF
showed that UE4’s BRDF performed worse by 6% and used 9% more energy than Filaments
native BRDF. The rendered image quality of UE4’s BRDF with the Vulkan back-end was
considered unacceptable for PBR. Reasons for the worsened image quality of UE4’s BRDF
could be erroneous implementation and inaccurate measurement procedure for comparing
BRDFs.

Possible improvements of the experiments and future work would be to investigate how the
Vulkan back-end could be optimized and conduct more accurate experiments for comparing
BRDFs.

45

Bibliography

[1] T. Hiranyachattada and K. Kusirirat, Using mobile augmented reality to enhancing
students’ conceptual understanding of physically-based rendering in 3d animation. Nov.
2019. [Online]. Available: https://eric.ed.gov/?id=EJ1242139.

[2] A. Ace 3D Studio, Physically-based rendering: Using pbr for games, animations, and
more, May 2023. [Online]. Available: https://3d-ace.com/blog/physically-based-
rendering-using-pbr-for-games-animations-and-more/.

[3] M. Short, Physically based shading on mobile, Oct. 2018. [Online]. Available: https://
medium.com/spaceapetech/physically-based-shading-on-mobile-d7d4e90bb4bd.

[4] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From Theory to
Implementation. Elsevier Science, 2016, isbn: 9780128007099.

[5] M. Lujan, M. Baum, D. Chen, and Z. Zong, “Evaluating the performance and energy
efficiency of opengl and vulkan on a graphics rendering server,” in 2019 Interna-
tional Conference on Computing, Networking and Communications (ICNC), Feb. 2019,
pp. 777–781. doi: 10.1109/ICCNC.2019.8685588.

[6] M. Lujan, M. McCrary, B. W. Ford, and Z. Zong, “Vulkan vs opengl es: Performance and
energy efficiency comparison on the big.little architecture,” in 2021 IEEE International
Conference on Networking, Architecture and Storage (NAS), Oct. 2021, pp. 1–8. doi:
10.1109/NAS51552.2021.9605447.

[7] X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive
physical model for light reflection,” in Proceedings of the 18th Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’91, New York, NY,
USA: Association for Computing Machinery, 1991, pp. 175–186, isbn: 0897914368. doi:
10.1145/122718.122738.

[8] J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in Proceed-
ings of the 4th Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’77, San Jose, California: Association for Computing Machinery, 1977,
pp. 192–198, isbn: 9781450373555. doi: 10.1145/563858.563893.

[9] J. F. Blinn, “Light reflection functions for simulation of clouds and dusty surfaces,”
SIGGRAPH Comput. Graph., vol. 16, no. 3, pp. 21–29, Jul. 1982, issn: 0097-8930. doi:
10.1145/965145.801255.

[10] P. Shirley, B. Smits, H. Hu, and E. Lafortune, “A practitioners’ assessment of light
reflection models,” in Proceedings The Fifth Pacific Conference on Computer Graphics
and Applications, 1997, pp. 40–49. doi: 10.1109/PCCGA.1997.626170.

47

https://eric.ed.gov/?id=EJ1242139
https://3d-ace.com/blog/physically-based-rendering-using-pbr-for-games-animations-and-more/
https://3d-ace.com/blog/physically-based-rendering-using-pbr-for-games-animations-and-more/
https://medium.com/spaceapetech/physically-based-shading-on-mobile-d7d4e90bb4bd
https://medium.com/spaceapetech/physically-based-shading-on-mobile-d7d4e90bb4bd
https://doi.org/10.1109/ICCNC.2019.8685588
https://doi.org/10.1109/NAS51552.2021.9605447
https://doi.org/10.1145/122718.122738
https://doi.org/10.1145/563858.563893
https://doi.org/10.1145/965145.801255
https://doi.org/10.1109/PCCGA.1997.626170

[11] M. Kenzel, B. Kerbl, D. Schmalstieg, and M. Steinberger, “A high-performance software
graphics pipeline architecture for the gpu,” ACM Trans. Graph., vol. 37, no. 4, Jul. 2018,
issn: 0730-0301. doi: 10.1145/3197517.3201374.

[12] J. Foley, Computer Graphics: Principles and Practice (Addison-Wesley systems pro-
gramming series). Addison-Wesley, 1996, isbn: 9780201848403.

[13] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan, “Gramps: A
programming model for graphics pipelines,” ACM Trans. Graph., vol. 28, no. 1, Feb.
2009, issn: 0730-0301. doi: 10.1145/1477926.1477930.

[14] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering. CRC Press, 2019,
isbn: 9781315362007.

[15] S. Buss, 3D Computer Graphics: A Mathematical Introduction with OpenGL (3-D Com-
puter Graphics: A Mathematical Introduction with OpenGL). Cambridge University
Press, 2003, isbn: 9780521821032.

[16] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “Gpu
computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008, issn:
1558-2256. doi: 10.1109/JPROC.2008.917757.

[17] D. Ginsburg, B. Purnomo, D. Shreiner, and A. Munshi, OpenGL ES 3.0 Programming
Guide (OpenGL). Pearson Education, 2014, isbn: 9780133440126.

[18] H. Lee and N. Baek, “Implementing opengl es on opengl,” in 2009 IEEE 13th Interna-
tional Symposium on Consumer Electronics, May 2009, pp. 999–1003. doi: 10.1109/
ISCE.2009.5156990.

[19] G. Sellers and J. Kessenich, Vulkan Programming Guide: The Official Guide to Learning
Vulkan (OpenGL). Pearson Education, 2016, isbn: 9780134464688.

[20] M. Gambhir, S. Panda, and S. J. Basha, “Vulkan rendering framework for mobile mul-
timedia,” in SIGGRAPH Asia 2018 Posters, ser. SA ’18, Tokyo, Japan: Association for
Computing Machinery, 2018, isbn: 9781450360630. doi: 10.1145/3283289.3283336.

[21] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke, “Sponge: Portable
stream programming on graphics engines,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ser. ASPLOS XVI, Newport Beach, California, USA: Association for Computing
Machinery, 2011, pp. 381–392, isbn: 9781450302661. doi: 10.1145/1950365.1950409.

[22] A. Sanders, An Introduction to Unreal Engine 4. CRC Press, 2016, isbn: 9781498765107.
[23] B. Karis, “Real shading in unreal engine 4,” Epic Games, Tech. Rep., 2013. [Online].

Available: http://blog.selfshadow.com/publications/s2013-shading-course/
karis/s2013_pbs_epic_notes_v2.pdf (visited on 02/05/2016).

[24] J. K. Haas, “A history of the unity game engine,” Diss. Worcester Polytechnic Institute,
vol. 483, no. 2014, p. 484, 2014.

[25] P. Rideout, Getting started with filament on android, May 2020. [Online]. Available:
https://medium.com/@philiprideout/getting- started- with- filament- on-
android-d10b16f0ec67.

[26] P. Shirley, R. K. Morley, P.-P. Sloan, and C. Wyman, “Basics of physically-based
rendering,” in SIGGRAPH Asia 2012 Courses, ser. SA ’12, Singapore, Singapore:
Association for Computing Machinery, 2012, isbn: 9781450319133. doi: 10 . 1145 /
2407783.2407785.

48

https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/1477926.1477930
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/ISCE.2009.5156990
https://doi.org/10.1109/ISCE.2009.5156990
https://doi.org/10.1145/3283289.3283336
https://doi.org/10.1145/1950365.1950409
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://medium.com/@philiprideout/getting-started-with-filament-on-android-d10b16f0ec67
https://medium.com/@philiprideout/getting-started-with-filament-on-android-d10b16f0ec67
https://doi.org/10.1145/2407783.2407785
https://doi.org/10.1145/2407783.2407785

[27] J. R. Wallace, M. F. Cohen, and D. P. Greenberg, “A two-pass solution to the rendering
equation: A synthesis of ray tracing and radiosity methods,” SIGGRAPH Comput.
Graph., vol. 21, no. 4, pp. 311–320, Aug. 1987, issn: 0097-8930. doi: 10.1145/37402.
37438.

[28] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’86, New York, NY,
USA: Association for Computing Machinery, 1986, pp. 143–150, isbn: 0897911962. doi:
10.1145/15922.15902.

[29] M. Ashikmin, S. Premože, and P. Shirley, “A microfacet-based brdf generator,” in
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’00, USA: ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 65–74, isbn: 1581132085. doi: 10.1145/344779.344814.

[30] M. Capderou, “Confirmation of helmholtz reciprocity using scarab satellite data,”
Remote Sensing of Environment, vol. 64, no. 3, pp. 266–285, 1998, issn: 0034-4257.
doi: https://doi.org/10.1016/S0034-4257(98)00004-2.

[31] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for re-
fraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference
on Rendering Techniques, ser. EGSR’07, Grenoble, France: Eurographics Association,
2007, pp. 195–206, isbn: 9783905673524.

[32] A. Kumar, Beginning PBR texturing: Learn physically based rendering with allegorith-
mic’s substance painter. Apress, 2020, isbn: 978-1-4842-5899-6. doi: 10.1007/978-1-
4842-5899-6.

[33] FreePBR, Free pbr. [Online]. Available: https://freepbr.com/.
[34] P. Shanmugam and O. Arikan, “Hardware accelerated ambient occlusion techniques on

gpus,” ser. I3D ’07, Seattle, Washington: Association for Computing Machinery, 2007,
pp. 73–80, isbn: 9781595936288. doi: 10.1145/1230100.1230113.

[35] T. Whitted, “An improved illumination model for shaded display,” in Proceedings of
the 6th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIG-
GRAPH ’79, Chicago, Illinois, USA: Association for Computing Machinery, 1979, p. 14,
isbn: 0897910044. doi: 10.1145/800249.807419.

[36] R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM
Trans. Graph., vol. 1, no. 1, pp. 7–24, Jan. 1982, issn: 0730-0301. doi: 10 . 1145 /
357290.357293.

[37] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the inter-
action of light between diffuse surfaces,” SIGGRAPH Comput. Graph., vol. 18, no. 3,
pp. 213–222, Jan. 1984, issn: 0097-8930. doi: 10.1145/964965.808601.

[38] M. F. Cohen and D. P. Greenberg, “The hemi-cube: A radiosity solution for complex
environments,” in Proceedings of the 12th Annual Conference on Computer Graphics
and Interactive Techniques, ser. SIGGRAPH ’85, New York, NY, USA: Association
for Computing Machinery, 1985, pp. 31–40, isbn: 0897911660. doi: 10.1145/325334.
325171.

[39] T. Nishita and E. Nakamae, “Continuous tone representation of three-dimensional
objects taking account of shadows and interreflection,” SIGGRAPH Comput. Graph.,
vol. 19, no. 3, pp. 23–30, Jul. 1985, issn: 0097-8930. doi: 10.1145/325165.325169.

49

https://doi.org/10.1145/37402.37438
https://doi.org/10.1145/37402.37438
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/344779.344814
https://doi.org/https://doi.org/10.1016/S0034-4257(98)00004-2
https://doi.org/10.1007/978-1-4842-5899-6
https://doi.org/10.1007/978-1-4842-5899-6
https://freepbr.com/
https://doi.org/10.1145/1230100.1230113
https://doi.org/10.1145/800249.807419
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/964965.808601
https://doi.org/10.1145/325334.325171
https://doi.org/10.1145/325334.325171
https://doi.org/10.1145/325165.325169

[40] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” SIGGRAPH
Comput. Graph., vol. 18, no. 3, pp. 137–145, Jan. 1984, issn: 0097-8930. doi: 10 .
1145/964965.808590.

[41] T. Hiranyachattada and K. Kusirirat, Using mobile augmented reality to enhancing
students’ conceptual understanding of physically-based rendering in 3d animation. Nov.
2019. [Online]. Available: https://eric.ed.gov/?id=EJ1242139.

[42] G. Psomathianos, N. Sourdakos, and K. Moustakas, “Smoke diffusion simulation and
physically-based rendering for vr,” in 2021 International Conference on Cyberworlds
(CW), Sep. 2021, pp. 117–120. doi: 10.1109/CW52790.2021.00025.

[43] Y. Zhang, S. Song, E. Yumer, et al., “Physically-based rendering for indoor scene
understanding using convolutional neural networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 5057–5065. doi:
10.1109/CVPR.2017.537.

[44] P. Dai, Z. Li, Y. Zhang, S. Liu, and B. Zeng, “Pbr-net: Imitating physically based
rendering using deep neural network,” IEEE Transactions on Image Processing, vol. 29,
pp. 5980–5992, 2020, issn: 1941-0042. doi: 10.1109/TIP.2020.2987169.

[45] M. Aranha, P. Dubla, K. Debattista, T. Bashford-Rogers, and A. Chalmers, “A physically-
based client-server rendering solution for mobile devices,” in Proceedings of the 6th In-
ternational Conference on Mobile and Ubiquitous Multimedia, ser. MUM ’07, Oulu, Fin-
land: Association for Computing Machinery, 2007, pp. 149–154, isbn: 9781595939166.
doi: 10.1145/1329469.1329489.

[46] K. H. Baek, Y. Ji, H. W. Jin, and T. S. Yun, “Game engine pbr for background cgi
production of live-action contents,” in 2019 IEEE Conference on Graphics and Media
(GAME), Nov. 2019, pp. 18–21. doi: 10.1109/GAME47560.2019.8980984.

[47] J. Y. C. Chen and J. E. Thropp, “Review of low frame rate effects on human perfor-
mance,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 37, no. 6, pp. 1063–1076, Nov. 2007, issn: 1558-2426. doi: 10.1109/
TSMCA.2007.904779.

[48] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey, “Need for speed: A
benchmark for higher frame rate object tracking,” in 2017 IEEE International Confer-
ence on Computer Vision (ICCV), 2017, pp. 1134–1143. doi: 10.1109/ICCV.2017.128.

[49] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth estimation: Metrics,
measurement techniques, and tools,” IEEE Network, vol. 17, no. 6, pp. 27–35, Nov.
2003, issn: 1558-156X. doi: 10.1109/MNET.2003.1248658.

[50] D. Burger, J. R. Goodman, and A. Kägi, “Memory bandwidth limitations of future
microprocessors,” SIGARCH Comput. Archit. News, vol. 24, no. 2, pp. 78–89, May
1996, issn: 0163-5964. doi: 10.1145/232974.232983.

[51] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory bandwidth
analysis for full-search block-matching vlsi architecture,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 12, no. 1, pp. 61–72, Jan. 2002, issn:
1558-2205. doi: 10.1109/76.981846.

[52] M. Swanson, B. Zhu, and A. Tewfik, “Data hiding for video-in-video,” in Proceedings
of International Conference on Image Processing, vol. 2, Oct. 1997, 676–679 vol.2. doi:
10.1109/ICIP.1997.638586.

50

https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://eric.ed.gov/?id=EJ1242139
https://doi.org/10.1109/CW52790.2021.00025
https://doi.org/10.1109/CVPR.2017.537
https://doi.org/10.1109/TIP.2020.2987169
https://doi.org/10.1145/1329469.1329489
https://doi.org/10.1109/GAME47560.2019.8980984
https://doi.org/10.1109/TSMCA.2007.904779
https://doi.org/10.1109/TSMCA.2007.904779
https://doi.org/10.1109/ICCV.2017.128
https://doi.org/10.1109/MNET.2003.1248658
https://doi.org/10.1145/232974.232983
https://doi.org/10.1109/76.981846
https://doi.org/10.1109/ICIP.1997.638586

[53] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multimedia appli-
cations,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 292–331, Aug. 2006, issn:
0734-2071. doi: 10.1145/1151690.1151693.

[54] Y. Yang, H. Jiang, Y. Wu, Y. Lv, X. Li, and G. Xie, “C2qos: Cpu-cycle based network
qos strategy in vswitch of public cloud,” in 2021 IFIP/IEEE International Symposium
on Integrated Network Management (IM), May 2021, pp. 438–444.

[55] Y. Oyama, “How does malware use rdtsc? a study on operations executed by malware
with cpu cycle measurement,” in Detection of Intrusions and Malware, and Vulnera-
bility Assessment, R. Perdisci, C. Maurice, G. Giacinto, and M. Almgren, Eds., Cham:
Springer International Publishing, 2019, pp. 197–218, isbn: 978-3-030-22038-9.

[56] A. von Meier, Electric Power Systems: A Conceptual Introduction (Wiley Survival
Guides in Engineering and Science). Wiley, 2006, isbn: 9780470036402.

[57] S. Mittal, “A survey of architectural techniques for improving cache power efficiency,”
Sustainable Computing: Informatics and Systems, vol. 4, no. 1, pp. 33–43, 2014, issn:
2210-5379. doi: https://doi.org/10.1016/j.suscom.2013.11.001.

[58] D. Price, M. Clark, B. Barsdell, R. Babich, and L. Greenhill, “Optimizing performance
per watt on gpus in high performance computing: Temperature, frequency and voltage
effects,” Computer Science - Research and Development, vol. 31, Nov. 2016. doi: 10.
1007/s00450-015-0300-5.

[59] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in
chip-multiprocessors,” in Proceedings of the 2007 International Symposium on Low
Power Electronics and Design, ser. ISLPED ’07, Portland, OR, USA: Association for
Computing Machinery, 2007, pp. 38–43, isbn: 9781595937094. doi: 10.1145/1283780.
1283790.

[60] R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding gpu power: A survey of
profiling, modeling, and simulation methods,” vol. 49, no. 3, Sep. 2016, issn: 0360-0300.
doi: 10.1145/2962131.

[61] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and improving gpu
energy efficiency,” ACM Comput. Surv., vol. 47, no. 2, Aug. 2014, issn: 0360-0300. doi:
10.1145/2636342.

[62] T. Akenine-Möller and B. Johnsson, “Performance per what?” Journal of Computer
Graphics Techniques (JCGT), vol. 1, no. 1, pp. 37–41, 2012, issn: 2331-7418.

[63] T. Hagos, “Android studio profiler,” in Android Studio IDE Quick Reference: A Pocket
Guide to Android Studio Development. Berkeley, CA: Apress, 2019, pp. 73–82, isbn:
978-1-4842-4953-6. doi: 10.1007/978-1-4842-4953-6_7.

[64] L. Ivankin, Comparing perfetto with android profiler, Sep. 2022. [Online]. Available:
https://hackernoon.com/comparing-perfetto-with-android-profiler.

[65] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, et al., “Full-system analysis and char-
acterization of interactive smartphone applications,” in 2011 IEEE International Sym-
posium on Workload Characterization (IISWC), Nov. 2011, pp. 81–90. doi: 10.1109/
IISWC.2011.6114205.

[66] M. Di Paolo Emilio, Data Acquisition Systems: From Fundamentals to Applied Design.
Jan. 2013, isbn: 978-1-4614-4213-4. doi: 10.1007/978-1-4614-4214-1.

51

https://doi.org/10.1145/1151690.1151693
https://doi.org/https://doi.org/10.1016/j.suscom.2013.11.001
https://doi.org/10.1007/s00450-015-0300-5
https://doi.org/10.1007/s00450-015-0300-5
https://doi.org/10.1145/1283780.1283790
https://doi.org/10.1145/1283780.1283790
https://doi.org/10.1145/2962131
https://doi.org/10.1145/2636342
https://doi.org/10.1007/978-1-4842-4953-6_7
https://hackernoon.com/comparing-perfetto-with-android-profiler
https://doi.org/10.1109/IISWC.2011.6114205
https://doi.org/10.1109/IISWC.2011.6114205
https://doi.org/10.1007/978-1-4614-4214-1

[67] C. Doppioslash, “When shading goes wrong,” in Physically Based Shader Development
for Unity 2017: Develop Custom Lighting Systems. Berkeley, CA: Apress, 2018, pp. 217–
224, isbn: 978-1-4842-3309-2. doi: 10.1007/978-1-4842-3309-2_17.

[68] H. Jang, S. Lee, J.-J. Lee, and K. Han, “Releasing the memory bottleneck to display
video correctly,” in 2022 19th International SoC Design Conference (ISOCC), Oct.
2022, pp. 340–341. doi: 10.1109/ISOCC56007.2022.10031379.

[69] D. Rahme, Danielrahme/filament: Google filament repository. [Online]. Available: https:
//github.com/DanielRahme/filament.

52

https://doi.org/10.1007/978-1-4842-3309-2_17
https://doi.org/10.1109/ISOCC56007.2022.10031379
https://github.com/DanielRahme/filament
https://github.com/DanielRahme/filament

Appendix A

Appendix 1 Results

In this appendix chapter the figures of the results are presented.

53

54

A.1 Comparisons of graphics API and BRDF shaders

(a) Vulkan vs OpenGLES.

(b) UE4 vs Filament.

Figure A.1: Frame rate comparisons.
55

(a) Bandwidth Graphics APIs.

(b) Bandwidth BRDFs.

Figure A.2: Frame rate comparisons
56

(a) Cycles Graphics APIs.

(b) Cycles BRDFs.

Figure A.3: GPU cycles results.
57

(a) Graphics API: Vulkan vs OpenGLES.

(b) BRDFs: UE4 vs Filament.

Figure A.4: Power results.
58

(a) Efficiency APIs.

(b) Efficiency BRDFs.

Figure A.5: Frame efficiency results.
59

(a) Energy: Vulkan vs OpenGLES.

(b) Energy: Filament vs UE4.

Figure A.6: Frame energy results.
60

A.2 Frame efficiency

Figure A.7: Absolute frame efficiency.

Looking at the frame efficiency, the OpenGLES test cases had around 8-9 fps per Watt and
Vulkan around 5-6 fps per Watt, see figure A.7. Comparing the graphics APIs, Vulkan to
OpenGLES, the results showed Vulkan was at best 24% less efficient and at worst 48% less
efficient than OpenGLES, see figure A.5a. Comparing the BRDF shaders, UE4 to Filament,
the result showed that UE4 was 8% less efficient compared to Filament, see figure A.5b.

61

A.3 Plots of Scene Comparisons: Suzanne vs Lucy

Figure A.8: Results FPS.

62

Figure A.9: Results bandwidth.

63

Figure A.10: Results cycles.

64

Figure A.11: Results power.

65

Figure A.12: Results frame efficiency.

66

Figure A.13: Results comparison frame energy.

67

A.4 Workload Power Comparison of 100 Scenes vs 10 Scenes
Per Frame

Figure A.14: Power comparison of workload rendering 10 scenes vs 100 scenes.

68

Appendix B

Appendix 2 Code

This Appendix chapter will have all the source code mentioned in the report

B.1 Appendix Bugfix Google Filament
In order to conduct the experiments, a pull-request was issued to the original Google Filament
repository: https://github.com/google/filament/pull/6634

The code change was renaming the associated package name from textured to utils. This
change enabled loading textures by using the utility library utils. Previously, the texture
loading function was only accessibly for one specific sample application. This was a bug and
the solution has made it possible to create the test cases used in this thesis.

Affected file:

android/filament-utils-android/src/main/java/com/google/android/filament/utils/TextureLoader.kt

Merged was completed in Mars 13th, 2023 with the commit Fix wrong package name.

Commit hash: 277a12dbf0b5ea22dc1e7aa1969999a208f931c1

Listing B.1: Google Filament Bugfix
−package com . goog l e . android . f i l a m e n t . textured
+package com . goog l e . android . f i l a m e n t . u t i l s

Listing B.1: Google Filament Bugfix

69

https://github.com/google/filament/pull/6634

B.2 Filament BRDF Code

Listing B.2: Filament BRDF shader code.
1 //−−
2 // Filament nat ive BRDF
3 //−−
4
5 f l o a t D_GGX(f l o a t roughness , f l o a t NoH, const vec3 h) {
6 // Walter et a l . 2007 , " Micro face t Models f o r R e f r ac t i o n through Rough

S u r f a c e s "
7
8 // In mediump , the re are two problems computing 1 .0 − NoH^2
9 // 1) 1 .0 − NoH^2 s u f f e r s f l o a t i n g po int c a n c e l l a t i o n when NoH^2 i s c l o s e to 1

(h i g h l i g h t s)
10 // 2) NoH doesn ' t have enough p r e c i s i o n around 1 .0
11 // Both problem can be f i x e d by computing 1−NoH^2 in highp and prov id ing NoH

in highp as w e l l
12
13 // However , we can do b e t t e r us ing Lagrange ' s i d e n t i t y :
14 // | | a x b | | ^ 2 = | | a | | ^ 2 | | b | | ^ 2 − (a . b) ^2
15 // s i n c e N and H are un i t v e c t o r s : | | N x H| | ^ 2 = 1 .0 − NoH^2
16 // This computes 1 .0 − NoH^2 d i r e c t l y (which i s c l o s e to zero in the

h i g h l i g h t s and has
17 // enough p r e c i s i o n) .
18 // Overa l l t h i s y i e l d s b e t t e r performance , keeping a l l computations in mediump
19 #i f d e f i n e d (TARGET_MOBILE)
20 vec3 NxH = c r o s s (shading_normal , h) ;
21 f l o a t oneMinusNoHSquared = dot (NxH, NxH) ;
22 #e l s e
23 f l o a t oneMinusNoHSquared = 1 .0 − NoH ∗ NoH;
24 #e n d i f
25
26 f l o a t a = NoH ∗ roughness ;
27 f l o a t k = roughness / (oneMinusNoHSquared + a ∗ a) ;
28 f l o a t d = k ∗ k ∗ (1 . 0 / PI) ;
29 r e turn saturateMediump (d) ;
30 }
31
32
33 f l o a t V_SmithGGXCorrelated_Fast (f l o a t roughness , f l o a t NoV, f l o a t NoL) {
34 // Hammon 2017 , "PBR D i f f u s e L ight ing f o r GGX+Smith Mic ro sur f ace s "
35 f l o a t v = 0 .5 / mix (2 . 0 ∗ NoL ∗ NoV, NoL + NoV, roughness) ;
36 r e turn saturateMediump (v) ;
37 }
38
39
40 vec3 F_Schlick (const vec3 f0 , f l o a t VoH) {
41 f l o a t f = pow (1 . 0 − VoH, 5 . 0) ;
42 r e turn f + f0 ∗ (1 . 0 − f) ;
43 }
44
45 f l o a t Fd_Lambert () {
46 r e turn 1 .0 / PI ;
47 }

Listing B.2: Filament BRDF shader code.

70

B.3 UE4 BRDF Implementation Code

Listing B.3: Implementation of Unreal Engine 4 BRDF shader.
1 //−−
2 // UE4 BRDF implementat ions
3 //−−
4
5 f l o a t D_GGX_UE4(f l o a t roughness , f l o a t NoH) {
6 f l o a t a2 = roughness ∗ roughness ∗ roughness ∗ roughness ;
7 r e turn a2 / ((PI ∗ (NoH ∗ NoH) ∗ (a2 − 1 . 0) + 1 . 0) ∗ (PI ∗ (NoH ∗ NoH) ∗ (a2 −

1 . 0) + 1 . 0)) ;
8 }
9

10
11 f l o a t V_Schlick_ue4 (f l o a t roughness , f l o a t NoV, f l o a t NoL) {
12 f l o a t k = (roughness + 1 . 0) ∗ (roughness + 1 . 0) / 8 . 0 ;
13 f l o a t g_v = NoV / (NoV ∗ (1 . 0 − k) + k) ;
14 f l o a t g_l = NoL / (NoL ∗ (1 . 0 − k) + k) ;
15 r e turn g_v ∗ g_l ;
16 }
17
18
19 vec3 F_Schlick_ue4 (const vec3 f0 , f l o a t LoH) {
20 f l o a t exponent = (−5.55473 ∗ LoH − 6 .98316) ∗ LoH ;
21 r e turn f0 + (1 . 0 − f 0) ∗ pow (2 . 0 , exponent) ;
22 }
23
24
25 f l o a t Fd_Lambert () {
26 r e turn 1 .0 / PI ;
27 }

Listing B.3: Implementation of Unreal Engine 4 BRDF shader.

71

	Introduction
	Research Questions
	Research Method Goals and Limitations
	Main Contributions

	Theory
	Light
	Computer Graphics
	GPU and graphics API
	Graphics rendering engines

	Physically Based Rendering
	The rendering equation
	Bidirectional reflectance distribution function
	PBR Textures
	History and motivation

	Performance and Power Metrics
	Frame rate
	Bandwidth
	Cycles
	Power and DVFS
	Energy

	Equipment and Software Tools
	Mobile phones
	Profiling and Data Acquisition System
	Graphics debugger

	Previous Work

	Experimental Implementation of PBR on Mobile Phone
	Mobile Phone
	Measuring Tools
	Profiler for measuring performance metrics
	Graphics debugger for capturing frames
	DAQ for power measurements

	PBR Engine
	The scene
	Adding UE4 BRDF shading model into Filament's BRDF shader
	The test case application
	The project repository

	System Overview and Test Setup

	Results
	Image Quality
	The Suzanne scene
	The Lucy scene
	Analysis

	Performance and Power
	Frame rate - frames per second (fps)
	GPU memory bandwidth read-write - bytes per frame (MB/frame)
	GPU cycles per frame (cycles/frame)
	Processor Activity
	Battery power (W)
	Energy per Frame (mJ/frame)

	Discussion
	Image quality
	Performance and Power
	Potential Improvements of the Experiment
	Measuring accuracy
	Mobile phones
	PBR engines

	Environmental Impact

	Conclusion
	Bibliography
	Appendix 1 Results
	Comparisons of graphics API and BRDF shaders
	Frame efficiency
	Plots of Scene Comparisons: Suzanne vs Lucy
	Workload Power Comparison of 100 Scenes vs 10 Scenes Per Frame

	Appendix 2 Code
	Appendix Bugfix Google Filament
	Filament BRDF Code
	UE4 BRDF Implementation Code

