
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

M
as

te
r’s

 th
es

is

Joel Taro Mörlin

Progressing the exploration of
portable impulse response using the
Sony Spresense

Master’s thesis in Electronic Systems Design and innovation
Supervisor: Guillaume Dutilleux
June 2023





Joel Taro Mörlin

Progressing the exploration of portable
impulse response using the Sony
Spresense

Master’s thesis in Electronic Systems Design and innovation
Supervisor: Guillaume Dutilleux
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





Acknowledgements

I would like to thank Guillaume Dutilleux for continued guidance and support
throughout this semester. Thanks to Peter Svensson for introducing me to this
wonderful topic and providing guidance throughout the prepatory work. Both
Guillaume and Peter have been wonderful throughout this entire year and i wish
them luck with future endeavours.

Thanks to my Peers for the continued support i have received throughout these
2 years. Special thanks go to my wonderful roommates and fellow members of
the PR-committee for providing motivation through this entire process. Finally i
would like to thank my family for continued love and support through the last
five yeas.

iii





Abstract

As technology progresses at a rapid rate the size requirements for large computa-
tions diminish. This allows previously extensive operations such as audio signal
processing to become portable, expanding efficiency and possibilities within the
field. This report presents a continuation of the exploratory work performed on
the Sony Spresense with the aim of establishing a solid foundation for future work
and documenting the potential of the platform. Findings include a system still un-
der construction five years after initial release and libraries restrictive to such an
extent that they limit system potential. The consequences of a microcontrollers
failure to establish a community is discussed together with the overall document-
ation and developer experience of the Spresense. A complete serial interface is
constructed as a foundation for future work on the SDK platform together with a
system for portable generation of exponential impulse responses. The presented
work shows a platform immensely capable of portable audio signal processing that
is ultimately let down by its own developers and failure to appeal to consumers.

v





Sammendrag

Mens teknologien utvikler seg i raskt tempo, reduseres arealkravene for store
beregninger. Dette gjør det mulig for en tidligere omfattende operasjon, som for
eksempel signalbehandling, å bli bærbar. Resultatet er en utvidning i effektiv-
iteten og mulighetene innen feltet. Denne oppgaven presenterer en fortsettelse av
det tideligere utforskende arbeidet på Sony Spresensen, med mål om å etablere
et solid fundament for fremtidig arbeid og dokumentere plattformens potensial.
Funnene inkluderer et system som fortsatt er under konstruksjon fem år etter ut-
givelse, og biblioteker som begrenser systemets potensial. Konsekvensene av at
en mikrokontroller ikke klarer å etablere entusiasme hos brukerne blir diskutert,
sammen med dokumentasjonen og utvikleropplevelsen som en helhet. Et kom-
plett serielt grensesnitt blir konstruert som et fundament for fremtidig arbei, sam-
men med et system for bærbar generering av eksponentielle impulsresponser. Det
presenterte arbeidet viser en plattform som er utrolig kapabelt til bærbar lydsig-
nalbehandling men som til slutt blir skuffet av sine egne utviklere og manglende
entusiasme hos kundene.

vii





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Commercial microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Spresense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Nuttx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Development Environments . . . . . . . . . . . . . . . . . . . . 7

2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Application construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Sine wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Audio Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Audio manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Object Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Component Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 Final Player Function . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Audio Recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Serial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 sine wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Audio Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Audio Recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



x CoPCSE@NTNU: An NTNU Thesis Document Class

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A Spec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Chapter 1

Introduction

1.1 Commercial microcontrollers

The proliferation of low-cost open-source commercially available microcontrollers
has resulted in a revolution within embedded systems. Popularized by general pur-
pose microcontrollers such as Arduino during the early 2010s the access ceiling to
embedded programming has diminished down to a commercial level. Distributed
with an open source nature the modification potential of these products have been
immensely popular among consumers as it allows free creation and adaption of
their own tools. This freedom has encouraged the creation and growth of com-
munities dedicated to furthering software developments allowing the platform to
reach its full potential.

Popularity growing has led to a lucrative business with several different com-
petitors eager to capture a market share. This competitive market combined with
the technology’s potential has led manufacturers to create embedded products tar-
geted towards specialized tasks. Allowing a product to surpass competitors within
specific application concepts centralizes the competition and allows the product to
capture a specific market through a direct approach. An example of such a product
is the Sony Spresense, a microprocessor solution based Sony’s powerful CDX5602
chipset. Designed for portability, Sony has put special focus on audio processing
and sensor fusion performance which makes the Spresense an excellent portable
audio analysis platform.

1



2 CoPCSE@NTNU: An NTNU Thesis Document Class

1.2 Background

Two previous projects have explored the potential of using the Sony Spresense
for auditory purposes at NTNU. Running simultaneously during spring 22’ the
work covered auditory recordings of insects. Designed to benchmark Spresense
capabilities, the work clearly illustrated the earliest reported issues while proving
the raw power of the technology. Both projects ran the Spresense in a multi ana-
lysis configuration with the system performing tasks in parallel. This was aimed
at exploring the ability to exploit the multi core CPU. Although both papers [1]
[2] attempted differing parallel interfacing the same issue was encountered. Final
conclusions where that the main issue lied with the Arduino library support for
recording and subsequently storing audio and video in a parallel environment.
Both papers further concluded that programming the Spresense using the SDK
environment would fix this issue. However, it remained unproven as neither pa-
per decided to further pursue this theory due to time constraints.

Preparatory work for this thesis was performed as to familiarize with the Sp-
resense. Main focus was put on exploring the three different development en-
vironments. As previous work had been done exclusively in Arduino the projects
focus was to verify the claimed restrictions and analyze if similar limitations where
present in other environments. Testing was performed through attempted imple-
mentation of an audio playback example combined with an OLED display. Doubt
had initially been placed upon the conclusions drawn by previous work. Although
of higher abstraction than the SDK environment, the Arduino should not be restric-
ted in a differing manner as both environments utilize the same libraries. Analysis
of the SDK documentation confirmed that a number of libraries including the Au-
dio where restricted from use in sub cores. This prohibits all use of audio tools in
multi processing confirming initial suspicion.

Further testing concluded that the python environment was unsuited for all
future work. Official support for the python environment is minimal with most
necessary libraries not currently available. This includes the audio libraries mak-
ing implementation of any impulse applications difficult. Python being interpreted
and thus inefficient for embedded applications[3] further compromises its poten-
tial and allows the environment to be deemed unsuited for future work.

Time restrictions forced the project to skip full exploration of the SDK prevent-
ing full conclusions to be drawn. However the SDK documentation alluded to an
environment better suited for embedded applications. Thus; although confirmed
that the SDK environment would not resolve the restrictions faced by previous
work on the Arduino it was decided that the SDK should be the main environ-
ment moving forward.



Chapter 1: Introduction 3

1.3 Intent

Previous work has proved the Spresense as a flawed but capable platform for
acoustic applications. Being in early development constricts collective knowledge
to official documentation allowing system restrictions to be undocumented. Al-
though some records has been conducted in regards to previous work at NTNU,
these have primarily focused on aspects related to acoustics. As such the embed-
ded perspective of the Spresense has not been explored. The SDK is of peculiar
interest as all previous projects has been conducted utilizing the Arduino. Exhib-
iting enhanced resemblance to traditional embedded environments and being in
closer proximity to the compiler grants the SDK a theoretical increased poten-
tial. Although not a definitive solution as stated by past contributions, study of
the SDK environment is essential for accessing the complete potential of the Sp-
resense. This thesis will focus on continuing the exploration of the Spresense to
further investigate its potential in auditory work at NTNU. Focus will be put upon
the embedded aspect of application construction with the aim of uncovering and
resolving uncertainties not adequately covered by official documentation. Issues
encountered by previous efforts are of extra interest and will be explored with the
aim of further documentation or rectification if possible. The SDK environment
is currently undocumented by NTNU causing assumption mistakes in regards to
system capabilities. Absence of knowledge about system limits makes spec con-
struction difficult potentially risking project failure if requirements are impossible.
This thesis aims to aid future work by performing a complete analysis of the SDK
environment with intent of providing vital guidance. Additionally, the attempted
construction of a portable impulse response measurement system will provide a
foundation for future work on the platform. The Spresense is a new embedded
platform under current development by Sony, it is therefore crucial that it is ex-
plored and documented properly if to be used by NTNU. Through mapping lim-
itation and features this thesis aims at providing a foundation towards all future
work hindering the uncertainty plaguing current work on the platform.





Chapter 2

The Spresense

Introduced in July 2018 the Spresense is a semi recent addition to the micro-
controller market. Designed towards hardware performance and low power con-
sumption it presented great potential for portable IoT solutions. The Spresense is
Sony’s first endeavour into microcontrollers and presents an unique environment
and potential compared to competitive platforms.

2.1 Software

Traditional microcontrollers utilize a low level programming language compiled
and flashed to an embedded OS designed to store and execute a single executable
at a time. Commercial introduction combined with technological advancements
has resulted in several variations on the traditional formula. Arduino being an
early contributor still utilizes the traditional microcontroller standard but relies on
their own Arduino programming language. Unique to the Arduino development
environment this language is not directly able to be compiled thus requiring a in-
terpretation before compilation 2.1.2. This allows the Arduino language to be of
simpler nature, lowering the knowledge barrier and decreasing construction time.
Rising interest in general purpose microcontrollers combined with technological
advancements has allowed a constant increase in power and cost effectiveness.
Less restrictions by hardware allows the implementation of more intricate operat-
ing systems with current microcontrollers attaining stronger resemblance to com-
puters than embedded platforms. Recent examples include the Arduino Portenta
X8 running an embedded adaptation of Linux [4] and the Sony Spresense utilizing
Nuttx.

5



6 CoPCSE@NTNU: An NTNU Thesis Document Class

2.1.1 Nuttx

Developed by the Apache software foundation Nuttx is a embedded scalable RTOS
designed for the purpose of microcontroller use [5]. Driven by a nonprofit organ-
ization Nuttx is designed towards an open source nature allowing tailoring to
specific products needs. Nuttx supports several development environments with
Linux and GNU make being the most natural development environment [6]. As
compilation is based on GNU make, Nuttx development not recommended on
Windows platforms. GNU compilation relies on file indexing, a process the Win-
dows NTFS journaling system is not optimized for [7] resulting in poor compila-
tion performance. Although possible to utilize Windows, the performance loss is
of such an extent that Spresense documentation warns users and recommends a
switch to Linux. Newer windows editions include WSL allowing the operation of
a Linux distribution without reliance on a virtual machine. Granting the ability to
run a windows distribution without compilation performance loss.

The Spresense utilizes a modified rendition of Nuttx suited towards the CDX5602
microcontroller. Structurally similar to the regular OS, modifications are minor
and include the additions of Spresense specific libraries and features. Being in-
distinguishable from distributed Nuttx during application construction the modi-
fications are observable during system configuration. Nuttx is designed towards
flexible development, as such nearly all features are configurable allowing exclu-
sion and inclusion dependent on hardware and application needs. Configuration
utilizes the Linux Kconfig system allowing easy alteration through the "menucon-
fig" frontend. Spresense specific features and libraries likewise need to be modi-
fiable through the Kconfig, as such the menuconfig frontend has been modified
to suit this requirement. Nuttx default configuration include no non vital features
requiring application construction to begin with a complete configuration build.
Allowing the prevention of bloat but necessitating the manual inclusion of all ne-
cessary application features. To prevent manual configuration each time a new
application is loaded Nuttx supports a storage system where builds can be saved
and accessed through a naming index.



Chapter 2: The Spresense 7

2.1.2 Development Environments

Supporting three differing development environments allow the Spresense to present
a competitive platform in several markets. Each environment yielding differing
potential and accessibility makes the Spresense lucrative to multiple developer
classes allowing a larger consumer base.

Arduino

Arduino is an open source programming language designed for the Arduino de-
velopment software. Based upon C++ it bares a similar structure with the addi-
tion of predefined functions and methods. Although considered an independent
programming language Arduino .ino files are a set of C/C++ functions called
from the code. Official documentation utilizes the name "sketch" as the files are
"sketches" of program interpretation. When compiled the Arduino sketch is inter-
preted by the Integrated Development Environment (IDE) which performs minor
pre-processing to convert the sketch into a C++ program. The programs depend-
encies are located and passed on to a AVR-GCC compiler that will compile the
code into a single machine readable intel .hex file that is passed to the board via
the bootloader. The AVR-GCC compiler used is architecture specific and will vary
from what board is chosen and connected to the IDE. However, caused by the Sp-
resense not utilizing an AVR chip for the CPU the environment instead relies on a
gcc cross compiler for compilation.

Main advantages of development through Arduino IDE are vast amounts of re-
sources and ease of use. The IDE itself is "plug and play" in nature with the envir-
onment automating the installation and flashing process. As such, the setup only
requires selection of the correct board model in the IDE. Resulting in a minimal
idea to prototyping time, beneficial for projects with tight time budgets. Moreover
the IDE provides a set of preinstalled development tools that require no set-up or
additional installs. The most significant of these additions is the Serial Monitor
and Serial plotter. Serial communication is beneficial in microcontroller develop-
ment as it allows live surveillance of program running order through writing and
reading the serial bus. Although serial writes significantly diminish program exe-
cution they are vital in allowing live monitoring of program running order. Serial
communication is not possible in native windows and require additional tools such
as putty. This is a non issue in Linux based systems as they allow SSH connections
natively. However this is not applicable to the Arduino IDE as the necessary Serial
communication software is bundled with the IDE further adding to the ease of use
and aforementioned "plug and play" nature.



8 CoPCSE@NTNU: An NTNU Thesis Document Class

Python

Python is an open source high level object oriented programming language that
trough a emphasis on simplicity and code readability has become one of the most
popular programming languages for both beginners and professionals [8]. With
an extensive standard library Python ensures a short and simple idea to prototyp-
ing time with minimal required focus on package management. Being open source
in nature combined with its popularity has also led to communities forming which
in turn develop their own libraries and packages [9]. The result has been one of
the best supported programming languages to date with a substantial amount of
official and community made packages. This can be observed in the word of digital
signal processing where the python library dsp-py have been developed to mimic
the functionality of industry titans like Mathworks Matlab [10]. With an simple
prebuilt package manager these additional packages can be installed in seconds
making it possible for some sectors to use python as their only programming lan-
guage.

Being a powerful and user friendly programming language great effort have
been invested to port Python to as many platforms as possible. Microcontrollers
are no exception and there are currently two Python renditions optimized to run
on microcontrollers. MicroPython was originally released in 2014 and is a soft-
ware implementation of python largely written in C. Featuring a reduced library
subset allowing it to run on systems with 256k of code space and 16k of ram Mi-
croPython is optimized to run in constrained environments making it suitable for
microcontrollers [11]. CircuitPython is a open source derivative of Micropython
released in 2017. Development is supported by Adafruit industries and the lan-
guage is aimed at simplifying MicroPhyton to make embedded programming as
accessible as possible [12]. The backing from Adafriut allows Circuitpython great
hardware support in addition to legitimacy.

Python distinguishes itself from other embedded languages by being inter-
preted. An interpreted language is not compiled but is instead aided by an inter-
preter that compiles and executes the code during runtime. The main advantage
of interpreted languages are their flexibility, as the code is compiled on a line
by line basis during runtime changes to the program without recompilation is
possible. Furthermore, the languages are platform independent as compilation
and execution are reliant on the interpreter and not hardware specific compiled
machine code. Disadvantages of interpreted languages are speed and hardware
control. Interpreted languages are slower than their pre-complied counterparts as
the compilation is performed during runtime.



Chapter 2: The Spresense 9

SDK

A Software Development Kit is the complete development package for a given sys-
tem. An IDE and SDK perform the same tasks, however the IDE gives an interfaced
access to the SDK toolset making development through an IDE easier than purely
through an SDK. Sony’s official development kit for the Spresense is called Spre-
sense SDK and is based on the open source NuttX RTOS [13]. Development using
Spresense SDK can be performed through a Command Line Interface or Sony’s
"Spresense VSCode IDE" extension for VSCode. The CLI in combination with a
text editor such as Emacs or VIM is the preferred choice for some experienced
programmers as it is more efficient for large systems However, an IDE comes with
the benefit of understanding the code written by the programmer. This allows the
IDE to detect and suggest fixes to compilation errors, warn the user if syntax is
broken and automatically suggest code during programming. This is however de-
pendent on the quality of the IDE and will vary depending on the language and
platform used.As the compiler used is the same for both CLI and IDE the choice of
what platform to use is decided by the developers own preference. Nonetheless,
the beginner friendly nature of the IDE makes is the recommended choice for in-
experienced and intermediate programmers.

The Spresense SDK toolset relies on the GNU Arm Toolchain for compilation
and thus allows programming in C and C++. These are compiled languages and
considered the current norm for embedded programming. Unlike interpreted lan-
guages discussed in section 2.1.2 compiled languages are compiled into hardware
specific machine code before compilation. Compiled languages are much faster
than interpreted and preferred for microcontollers as the platform puts a higher
emphasis on performance and efficiency. Both C and C++ also allow for direct
memory allocation through the use of tools like pointers. Memory allocation is
vital in embedded programming as the tight tolerances require complete memory
control to maximize performance.

Stemming from the same family of languages C and C++ share similar aspects.
However, although all C++ compilers support C linkage the age and thus devel-
opment time of the two languages have caused them to become distinctive. Being
object oriented C++ allows for higher expressive power and easier code recyc-
ling. This expressive power comes at the cost of complexity making C++ harder
to master with an increased difficult of grasping total program size. With memory
optimization crucial for embedded programming this volatility makes C++ unfit
for certain systems requiring extreme optimization. Being introduced in the 1970s
C is a simple and strict language. This allows less expressive power but a quicker
learning curve and a better grasp of total programming size. With its age C is per
writing a common industry standard allowing for superior documentation and
support.



10 CoPCSE@NTNU: An NTNU Thesis Document Class

2.2 Hardware

The Sony Spresense is an ARM Cortex -M4F 32-bit RISC based microprocessor
specialized for auditory and video processing purposes. The Spresense achieves
this performance through a 6 core rendition of the M4F processor running at 156
MHz. Although running at a lower frequency than the competition the multi core
arrangement allows the Spresense excellent throughput for its price range. The
nearest competitor, the Arduino Portenta H7 combines a single core Arm M7 run-
ning at 480MHz with a single core Arm M4 running at 240Mhz [4]. Despite yield-
ing impressive computational power and outperforming the Spresense for single
core operations the core count of the Spresense allows greater throughput. This
allows the Spresense to greater exploit the parallel nature of digital signal pro-
cessing.

Figure 2.1: The Spresese mainboard portlist[14]

The Spresense contain a large set of unique features on a small footprint.
Incorporating a standardised set of GPIO protocols with the inclusion of the audio
oriented I2S allows the Spresense to achieve standard microcontroller flexibility.
Facilitating the focus on media the Spresense features a Camera Serial Interface
which in conjunction to the aforementioned I2S GPIO allows full audio and video
support [14]. Satellite navigation is supported through the GNSS antenna and 2
ADC channels allow analog interfacing. The small scale of the Spresense combined
with the large set of features to result in limitations. As such support for external
interfacing has been included through a B-2-B connector allowing expansion of
the Spresense feature set at the cost of size.



Chapter 2: The Spresense 11

2.2.1 Extensions

Considerate of its small size the Spresense was designed towards the expansion of
features through extensions. Sony currently offers two differing expansion boards,
LTE and a general port extension. Both interface through the B-2-B connector and
add designated microphone pins, a headphone connector and support for a micro
SD card. Similar in construction the two boards differ in application. Implied by
name the LTE extension board allow communication via LTE-M network through
a SIM. At the time of writing the connection is only supported by 4 LTE providers
making the extension highly specialized. Less specialized, the "general" extension
board increases the GPIO count and adds the ability to tweak pin voltage through
jumper adjustment.

Figure 2.2: The Spresese extension portlist[14]

Offering an significant increase in features, the extension board emerges as the
the default and recommended configuration. Extended storage through SD-card
support allows the Spresense to operate with large file mediums including audio
and video. This is further encouraged through the inclusion of four designated
microphone pins an the inclusion of a 3.5mm audio jack for playback. The reduced
functionality induced by the small footprint of the main board limits application
possibilities. Although designed towards media application the restrictive design
of the Spresense results in wasted resources if not paired with the extension board.



12 CoPCSE@NTNU: An NTNU Thesis Document Class

2.3 Support

Sony provides documentation for all three development environments and official
extensions available to the Spresense through their "Developer World" website.
Designed to act as a central hub for development the website in theory provides
everything required for creation on Sony products. Structure is conformed to the
product and will thus vary depending on type and needs. The Spresense devel-
opment site is partitioned into 7 sections, each containing respective subsections.
The most vital are the sections dedicated to the three design environments avail-
able to the Spresense. Containing details regarding installation and setup as well
as API guides and explanations to each example application the section is essen-
tial in granting knowledge of the development environment. Other sections detail
general introductory information, details and explanations about hardware and
links to support and release notes. Sony also hosts their own developer forum al-
lowing users to discuss development of the hardware and software featured on
the "Developer World" site. The forum is moderated and supported by official Sony
representatives allowing questions and discussions to be answered by profession-
als. Official support allows the forum a responsibility for providing feedback al-
lowing user input to contribute to development. Although an excellent resource
the forum lacks a search function restricting users to manual searching the entire
forum for information. Individual forum posts are further not treated as pages, as
such they are not included in search engine indexes making them unavailable for
direct linking. At the time of writing forum searches are thus limited to manually
scrolling and reading topic titles leading to poor User Experience.



Chapter 3

Application construction

Impulse measurement using a single microcontroller requires a collection of mul-
tiple individual programs to work in harmony. In order to successfully gather im-
pulse responses each part of the system will have to work flawlessly as run time
errors or simple timing mistakes will jeopardize recorded data. Thorough testing
and construction of the system is therefore imperil as this will minimize the risks of
program errors. The completed system has shown potential for real world applica-
tions, thus great emphasis will be put on program design. Modality and organiza-
tion will allow for a greater user experience whilst also quickening understanding
and modification of program code. The latter is of significant importance as if the
project should fail to achieve the spec or the program is to be reworked the effort
will be minimized. This chapter will present the construction and hierarchy of the
complete system as described by the spec.

13



14 CoPCSE@NTNU: An NTNU Thesis Document Class

3.1 Serial Communication

Discussed in 2 the Nuttx Operating System lacks native two way serial communic-
ation support. The ability to communicate directly with the hardware during run
time is not crucial as the Nuttx operating system allows flashing of multiple pro-
grams simultaneously. This allows debugging by splitting code into multiple pro-
grams and calling them directly from the OS. However, communication through
serial is preferred as this allows direct program control during run time through
buffer comparisons with a state machine. Initial focus will therefore be on the con-
struction of a two way serial communication system. This will provide the basis
for all future testing and control of the system. The function of this design is there-
fore crucial and ensuring correct operation necessary before moving on to other
features.

Official Sony documentation for the SDK environment list no resources for
the implementation of a serial communication system. However, with the SDK
environment being based on a more prevalent operating system several external
resources for Nuttx can be used. The serial protocol implementation is based on
the Nuttx serial guide[15] provided by micro-ROS. Originally developed for mi-
crocontroller based robotics the code and guidance provides a sufficient baseline
and is fully compatible with the SDK-rendition of the OS.

When activated the serial communication will open the UART with read and
write permission along with initializing a while loop. The while loop performs act-
ive polling on the UART and stores transmitted characters in a buffer. As a result of
Nuttx limitations in the UART read interface, only one character can be extracted
per cycle. Behaviour will continue until a return character is detected. Indicat-
ing that the user is finished typing the arrival of the return will trigger a UART
write-back of the buffer displaying the message sent and wiping redundant data.
Although forming the basis of the UART communication, the code lacks a func-
tional interface to directly control program running order. This can be achieved by
implementing a buffer comparison in the write back stage allowing certain com-
mands to trigger specific system functions. Calling a function during a while loop
will temporarily break it until the function is returned creating a command based
state machine. Finally, as the GNU based compiler does not support strings the
Serial State Machine "SSM" is aided by a "String Compare" function. This function
simplifies the comparison of char arrays operated by the serial protocol.



Chapter 3: Application construction 15

Code listing 3.1: Simplified example showing the Serial State Machine

// char to string conversion //
bool stringCompare(char *a, char *b){
int sizea = sizeof(a);
for(int i = 0; i <= sizea-1; i++){
if(a[i] != b[i]){
return false;

}
}
return true;

}

//UART communications //
bool uart_comms(){
printf("initializing␣uart\n");
int fd;
char buffer;
char buffer_aux[256] = {};
int ret;
int i = 0;
//command buffers
char quit_buf[4] = {’q’,’u’,’i’,’t’};
char test_buf[4] = {’t’,’e’,’s’,’t’};

fd = open("/dev/ttyS0", O_RDWR); //Open the uart with RW permission
if (fd < 0) {
printf("Error␣UART");

}

while (1) {
ret = read(fd, &buffer, sizeof(buffer));//It return only a char
if (ret > 0) {
buffer_aux[i] = buffer;//Saving in the auxilary buffer
i++;
printf("%c", buffer);

//user presses enter
if (buffer == ’\r’) {
ret = write(fd, buffer_aux, sizeof(char) * i); //writeback
printf("\n");

//just a test of the uart
if(stringCompare(test_buf, buffer_aux)){
printf("well..␣the␣uart␣works\n\n");

}

//termination of the program
if (stringCompare(quit_buf, buffer_aux)) {
printf("quitting␣the␣program...␣\n");
return false;

}

if (ret > 0) {i = 0;}
}

}
}

}



16 CoPCSE@NTNU: An NTNU Thesis Document Class

3.2 Sine wave generation

Early specification listed interest in performing exponential sine wave generation
on chip. Although several external tools existed and the process of transferring
files to the Spresense was observed to be fluid. The practicality of having portable
impulse generation was too large to ignore. Should a tool be developed that al-
lows the hardware to generate impulse noise the Spresense would provide a fully
independent platform only requiring external computation for post-processing. As
such the specification listed a tool set for generating exponential sine waves and
storing them on the Spresense SD card in the .Wav format.

Table 3.1: Header structure for Wav file

Offset
(bytes)

Field Size
(bytes)

Field Name Sample Value

0 4 Chunk ID "RIFF"
4 4 Chunk Size File size - 8 bytes
8 4 Format "WAVE"
12 4 Subchunk1 ID "fmt"
16 4 Subchunk1 Size 16
20 2 Audio Format 1 PCM
22 2 Num Channels 2
24 4 Sample Rate 44100
28 4 Byte Rate 176400
32 2 Block Align 4
34 2 Bits Per Sample 16
36 4 Subchunk2 ID "data"
40 4 Subchunk2 Size total file size
44 – Data sample data

Before data can be written a .Wav file a correct header needs to be construc-
ted. This header file contains information about the file such as the waveform data
format, sampling rate and channel count. Pictured in appendix ?? the header is
responsible for giving information regarding interpretation of the bit stream con-
tained in the file. Correct header construction is therefore crucial as errors will
lead to file corruption. Header and file construction is based upon [16] which
utilizes a struct based system to establish and write header data. This method
exploits a manner in the function "fwrite" which retains the original format of
data written. Allowing struct arrangement to emulate the header structure and
be directly written to a waw file. When called a set of essential parameters will
be passed to a function "generate_waw_file" and an empty file opened in write
binary mode. The dynamic header values are calculated from the function para-
meters and are combined with statics into a struct which is then written to the file.



Chapter 3: Application construction 17

Header generation complete, the file can be filled with data. Samples are gen-
erated from a sine oscillator function which calculates and translates the samples
into the correct format. The algorithm used in the oscillator is based on the syn-
chronized swept sine method revised in [17]. This method prevents period drift
in exponential sine sweep which if not adjusted can lead to incorrect phase estim-
ation for High Harmonic frequency responses. An example of a non synchronized
linear sine-sweep is pictured in 3.1

Figure 3.1: Non synchronized swept-sine signal[17]

The sine wave generator is heavily reliant on the "cmath" library as this provides
sinusoidal and logarithmic functions. Sample format is dependent on the "bits per
sample" defined by the wav header and are required to conform to the defined bit
length. By default the samples are represented with a int16_t variable and can-
not be changed without altering program code, locking the header value to 16.
Finally samples are written individually to the wav file with stereo files having
two writes per sample. All code responsible for the generation of impulses have
been localized within a header "wawgen.h". This header will contain all necessary
functions and structures needed to generate a full impulse.



18 CoPCSE@NTNU: An NTNU Thesis Document Class

3.3 Audio Player

Playback is fundamental in impulse measurement as it is responsible for producing
the impulse noise. The SDK environment provides a prebuilt audio subsystem with
audio player functionality. Divided into a layer structure, the subsystem allows
access to three partitions:

• Audio manager (High Level API)
• Object Layer (Object Level API)
• Component layer (Low Level API)

3.3.1 Audio manager

The audio manager is the high level access point to the audio subsystem and util-
ises a message passing interface to control system behavior. Pictured in 3.2 Com-
mands are sent to the subsystem via "AS_SendAudioCommand" which carries the
"AudioCommand" format. Each command passed invokes a response from the sub-
system, this response carries the "AudioResult" format and can be collected with
"AS_RecieveAudioResult". The command system is synchronous and will block all
incoming commands until the result is returned, paring of send and receive com-
mands is therefore recommended.

Figure 3.2: The command process of the High Level API[13]

Command format is a data structure which starts with a 4 byte command
header. This header contains the size of the command, a command code identi-
fying the command to be executed and a sub code specifying command target.
Following the command header is a set of command parameters, these are de-
pendent on the command code and not size limited allowing multiple inclusions
per command. The return format retains a similar structure to the command with
a header and return parameters.



Chapter 3: Application construction 19

Figure 3.3: The complete state machine for high level API control[13]

System behaviour is controlled by a state machine pictured in 3.3. State trans-
itions are instigated by received commands which in turn transmits a handshake
upon completed transition. The message system allow simple and intuitive inter-
action with the Audio subsystem. However, the lack of access to individual pro-
gram functions combined with the handshake protocol limit application potential.
Additionally the state machine makes the High level API unsuitable in constructing
a impulse response system as it prohibits running audio recordings and playbacks
synchronously.

3.3.2 Object Layer

Providing simpler functions, the object level API allows construction of more flex-
ible applications than the high level API. Based on a "Media Player Object" con-
trolling the playback, object level API operates by passing commands between the
Object Player and the application. This interaction is done through a set of pre-
defined functions passing parameters which through a more direct approach offers
larger application possibilities. Function structure is similar to the High Level API
with each command requiring a specific predefined parameter set following a tar-
get id. The target ID is required as the Object Level API allows the initialization
of two separate "Media Player Objects" allowing dual playback. Out of scope as
post processing is done off board the Object layer API features support for audio
mixing through the "Output Mixer Object". The Mixer is initialized in the same
manner as the "Media Player Object" and shares a similar command based beha-
viour model.



20 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 3.4: Example running of the MediaPlayerObject[13]

Example use case is figured in 3.3 and shows the handshake based running
order of the Object level API. Operation begins with creation, activation and ini-
tialization of a player object which is done through respective functions. Follow-
ing a completed starting process the player is controlled via a simple "start - stop
- skip" interface and playback will continue until all audio files are performed or
the stop call is received. The Object Level API allows direct access to the audio
playback interface and thus foregoes the limitations of the state machine running
order enforced by the High Level API. This will in theory allow parallel operation
of the recording and playback objects, making an impulse response application
possible.

3.3.3 Component Layer

Warned by [13] the low level API is still under development and thus no official
documentation is provided. With the limited time budget it was therefore decided
that exploration of the Low Level API was to be dropped.



Chapter 3: Application construction 21

3.3.4 Final Player Function

Limits to the High Level API induced by the state machine architecture discussed
in 3.3.1 and the Low Level API still being developed 3.3.3 Forces the final player
application to be implemented via the Object level API. The control commands
provided by the audio player libraries allow for easy control of the Media Player
Object. However, the struct based parameters utilized by the control functions fol-
low a hierarchical structure and require complex initialisation. Picured in 3.5 is the
structure of "AsCreatePlayerParam_t" passed by "AS_CreatePlayerMulti" respons-
ible for creating the Media Player Object. The struct is simple and organized but
the "pool_id" substruct contain scope resolution operators to the "MemMgrLite"
class. Being a part of the Memory Manager this class is responsible for allocating
memory pools and returning identification. This requires a new set of functions
and parameters that adhere to the memory manager libraries further complicat-
ing the parameter initialization.

Figure 3.5: Structure of the "AsCreatePlayerParam_t" parameter passed by
"AS_CreatePlayerMulti" [18]

This snowballing effect is best visualized by the Audio Player Objif example
code. Written by the same developers responsible for the Audio libraries the ex-
ample consists of 1400 lines of code. The example can be split into two parts where
the first 1000 lines define functions necessary in creating memory pools and cor-
rect function parameters. The final 400 lines describe application initialization,
running order and error handling. This size and complexity makes construction
of a custom program tailored to spec time consuming and difficult. However, as
example code already exists it can be modified and converted to a header allowing
direct access to all structures and functions defined in the example application.



22 CoPCSE@NTNU: An NTNU Thesis Document Class

Final audio playback implementation utilizes a modified copy of the audio
player objif example. Modifications include porting to a header file and recon-
struction of the main entry point to a standard function. Transformation of the
entry point is required as the header extension identifies a non-executable library
file. The result is an executable main file "audio_Player_Call" which creates and
initializes all required parameters and objects required by the audio player lib-
rary. Followed by the playback of audio files and eventual closing of the media
player object upon completion. Although being a copy of example code the au-
dio player provides simple playback of sound files and player control fulfilling the
spec requirements.



Chapter 3: Application construction 23

3.4 Audio Recorder

Crucial in impulse response measurement the audio input is responsible for ac-
cumulating reactions triggered by the audio output. Specification described an
audio recorder capable of 4 channel analog input and user controlled gain. Ini-
tially expected to be located in a separate subsystem the audio recorder library
operates on the same layer structure as the audio player. Providing API access to
three differing control partitions of different abstraction levels. Discussed in 3.3
restrictions in operation and incomplete work constrains choice to the Object level
API.

Figure 3.6: Example running of the MediaRecorderObject[13]

Derived from the same subsystem and thus inheriting its features, the Audio
Recorder utilizes an equal "media object" structure to the audio player. Example
running order is portrayed in 3.6 and contains equal elements to the media player
object 3.4. This similarity allows operation to be plagued by equal complexity is-
sues to the Audio playback. However, this resemblance grants the possibility of
implementing a similar solution to that implemented in3.3.4.

Final recorder implementation utilizes a modified header implementation of
the "audio recorder objif" example. The main entry point has been converted to a



24 CoPCSE@NTNU: An NTNU Thesis Document Class

function allowing calling of the example running order. Including complex system
initialisation and a full recording cycle the example in this configuration provides
sufficient recording functionality. Reasoning behind such an implementation has
previously been covered in 3.3.2. Bearing similar structure with a length of 1200
lines the recorder is far too complex to construct from scratch given the time
budget. As the example provides all necessary features a custom implementation
is thus not required



Chapter 4

Results

Development on any new embedded platform is guaranteed to include a diverse
set of challenges. The spresense is not an unfamiliar platform as previous work
had been performed on the hardware 1.2. This work was preparatory and con-
ducted using the Aurduino IDE which allows for quick development through a
simplified interface. However, Arduino operates in an unconventional manner
compared to traditional embedded environments making it unsuited for larger ap-
plications. For larger development the SDK environment is preferred as this more
closely resembles traditional embedded development environments. This chapter
will present the experience constructing an impulse application using SDK includ-
ing the resulting performance of its individual parts.

4.1 Serial

Originally designed for the Nuttx based Robotic control system Micro-ROS 3.1 the
serial interface has performed very well. Initially conceived as non essential, the
serial communication has provided an invaluable flexibility to application struc-
ture and debugging. The command based state machine forms the backbone of
system running order and allows quick command list modification via if statement.
Debugging and verification can thus be done by formulating multiple variations
of the afflicted application section and creating unique command calls for each.
Similarly complex program parts can be split up and called individually allowing
clear examination of running order and issues. Both techniques was actively used
in the debugging and construction of the sine oscillator significantly speeding up
verification. However, the construction of the serial communication protocol in
addition to compiler restrictions hinder full functionality. Mentioned in 3.1 the
serial buffer is filled by using a busy-wait protocol on the UART. Achieved by con-
stantly reading the UART buffer and checking for new characters busy-waiting
ensures that no passed parameter is lost. This continuous read is resource heavy
and in the case of the Spresense blocks some operations while in effect. As the
original serial protocol provides no direct write-back and support for buffer modi-
fication the User Experience was suboptimal. Direct write-back would allow the

25



26 CoPCSE@NTNU: An NTNU Thesis Document Class

user to monitor their own inputs similar to common terminal or text editors. This
would allow review of the UART buffer before sending improving UX, and was in-
tended to coincide with buffer modification connected to the backspace allowing
full buffer control.

Code listing 4.1: Attempts at implementing direct printing and buffer modifica-
tion to the serial protocol

printf("%c", buffer); //print buffer contents

if (buffer == 127) { //char is backspace
buffer_aux[i] = NULL;
buffer_aux[i-1] = NULL;
i--;

}

Attempted improvements to the serial protocols are figured in 4.1 and would
be implemented between the auxiliary buffer saving and return check. Having
been verified in isolated environments these implementations are hindered by
the busy waiting polling of the UART. This issue can be resolved by rewriting the
serial protocol to be less intrusive such as via interrupts. However, as the serial
monitor is fully functional the benefit of rewriting a protocol for convenience is
not logical. As this would revert resources from more crucial implementations,
wasting an already strained time budget. Likewise the issues regarding lack of
support for strings as variables was ignored as tools where implemented to make
the issue acceptable. The root of the issue is unknown but is likely caused by ab-
sence of support from the compiler or Nuttx.

The inclusion of a serial monitor has greatly benefited the application perform-
ance and efficiency. Although not perfect the command based structure allows for
flexible application construction and verification. Had the Serial communication
non been implemented early the project, time span would be increased signific-
antly and many features would not have been implemented.



Chapter 4: Results 27

4.2 sine wave generation

Initially believed to be supported as the Spresense is advertised towards acous-
tic and media processing. The hardware generation of impulse response signals
was conceived as an easy specification. However, no official documentation hints
towards such an toolset and after becoming intimately familiar with the Spre-
sense throughout development, it can be concluded that such a library does not
exist. The lack of official toolsets complicate module construction as a Wav file
will have to be generated from scratch. Although complicated, several external
resources for waveform generators exists. Created by a course team on The Uni-
veristy of Notre Dame. The "wavfile" library [16] describes a digital waveform
toolset that allows simple generation and storage of digital sound. Fulfilling all
spec requirements and being based in C original intention was to create an expo-
nential sine oscillator extension and utilize the prebuilt library. However, as the
library was incompatible with the Spresense a custom extension with inspiration
from the "wawfile" library was created.

Initial errors where largely related to formatting of the Wav file as header and
sample data would cause file corruptions if not defined correctly. Issues where
caused by two 4 byte segments defining total file and data size. Located in the
header and thus written before the samples these caused initial issues as file size
is difficult to define before completion. The waveform toolset solved this issue
with a double pass that utilized "fseek" to find the end pointer allowing easy cal-
culation of file and data size. Theoretically effective the direct implementation
resulted in file corruption caused by improper header parameters. Instead a more
direct approach was chosen, as the header size is 44 bytes and sample size can
be calculated from existing parameters. File size can be found by calculating total
data size and adding 44 bytes.

Additional Issues where caused by the procedure of writing samples to the
file. Samples need to be written in a binary 16-bit format and was initially passed
via "fprintf". Designed towards formatted printing "fprint" will ignore protocols
defined during file opening and will default towards the passed parameters format.
This will cause corruption for non binary variables but is fixed by utilizing "fwrite"
as a substitue. Generation speed of the wav file is a non critical issue but can
cause issues for larger processes. During verification it was noted that the system
performance for sine wave generation was below expectations. Testing concluded
that a 1 second signal with a SR of 48000 would average at 15 seconds. Initially
unknown if this issue was caused by writing or processing it was theorized that the
individual writing protocol caused a bottleneck. Later verification confirmed the
sine oscillator as the issue. This would require a rewrite of the calculation proto-
cols such as the implementation of Look Up Tables. However, as the bottleneck is
non critical and discovery was done late in development an implementation was
not attempted.



28 CoPCSE@NTNU: An NTNU Thesis Document Class

Development time of the exponential impulse generator was longer than ini-
tially suspected. Despite the presence of a library capable of exact spec several
modifications had to be implemented and tested. Expected as the Spresense is an
embedded platform the total time committed was far larger than initially anti-
cipated. Lengthy development time has nevertheless resulted in a robust system
that fulfils the goals set by the spec. The library is however plagued by slow per-
formance stemming from poor calculation protocols. Requiring an extensive re-
structure not allowed by the current time budget this implementation is strongly
recommended for future developments.

4.3 Audio Player

Initial evaluations of audio support for the spresence was conceived as impressive.
Documentation presented an intuitive library, containing multiple API options of
differing complexity offering versatile application construction. Supporting mul-
tiple API abstraction levels the Object Level was deemed most suitable. This de-
cision was made following documentation studies concluding with the Object level
as the least restrictive option. Despite early impressions the audio libraries place
certain restrictions on running order and operation, limiting total utility. This dis-
covery was surprising as the Spresense is heavily advertised towards audio ap-
plications. The absence of certain features, namely the low level API is excusable
as the platform is still in a developmental phase. However, several core design
decisions restrict application flow to such an extent that their inclusions are ques-
tionable.

Specification describes an audio output capable of playing a choice of differ-
ing audio tracks with low latency. Despite being uncomplicated the audio library
core structure embroils this task to an unnecessary extent. Official documentation
alludes to an alternative setup allowing playback of individual sound files. This
setup procedure is neither provided in example code or official documentation
and is thus non-replicable. As instructions are not provided operation is forced to
the playlist centered default provided in examples. Working upon an predefined
CSV list containing track databases this mode is targeted towards construction of
a conventional audio player. Dynamic playback of single tracks during running
order therefore requires a program rewrite of the playlist. An unnecessary com-
plication of a already large system.

Final implementation utilized a modified version of the existing object layer
example code. Discussed in 3.3 discovery of the intricate object setup caused this
implementation. Although initially conceived as substandard, continued research
of the core design revealed a functional audio player given its environment. Ini-
tial appearance of the object layer API showed promise. As initial work consisted
of grasping the convoluted system structure, little attention was put towards the



Chapter 4: Results 29

control API. It was assumed that the API would allow a limited interaction similar
to a standard audio control interface (play, pause, skip). Further studies revealed
the absence of any control interface. Player operation would therefore be reliant
on the playlist stopping only if the stop command was issued or the playlist was
completed. Justifying the existence of a playlist based operation protocol, this af-
firms initial suspicions that the audio library in its current state is suited for simple
playback applications. This may change upon the completion and introduction of
the Low level API or an update of the existing media object structure. However,
if the current core design is not changed these implementations will fail to grant
significant improvements as the current structure is significantly flawed. Although
unnecessarily complicated, the audio player works and will provide a viable plat-
form of impulse playback.

4.4 Audio Recorder

Caused by the extended development time of audio playback features, work on
audio input was commenced late in the project lifespan. Initial concerns where
raised by potential results similar to the complex playback subsystem. Although
at this point familiar with the Spresense libraries and file structure the temporal
budget did not allow an implementation of equal complexity to the audio player.
Relief was thus shown upon the discovery that audio recording was located within
the same audio subsystem as the player. This would however denote that the re-
corder was plagued by the same inhibiting restrictions as the playback.

Discussed in 4.3 the audio subsystem central structure inhibit design flexibil-
ity. The Media Player Object was plagued by a forced reliance on playlist based
scheduling and a limited command set. Under similar context, the Recorder Ob-
ject is less affected by subsystem restrictions as its required workload is smaller.
Recorder task load typically only require resources for starting and stopping. As
both are present in the object command set the construction of additional support
systems are not required. This is in stark contrast to the Playback Object which
required several support implementations in order to fulfil expected operation.

Final implementation can thus be constructed using a modified copy of the
"Audio Recorder Objif" example. This implementation is performed in the same
manner as the Aduio Playback with a header file conversion and redefinition of the
entry point into a standard function. The example provides complete functional-
ity and requires no additional custom tools. Although a significant improvement
compared to the Player Object the Recorder still suffers from significant set-up
time. Discussed in 4.3 this is caused by the core design of the audio subsystem
and will not be resolved unless a object level redesign is performed. The comple-
tion and release of the low level environment has the potential to relieve some
core issues but as of writing no information about the development or structure
is available.





Chapter 5

Discussion

5.1 Documentation

The development experience for the Spresense SDK environment has been un-
satisfactory in several aspects. Expected support tools such as documentation and
forums have delivered subpar resources forcing a trial and error approach to setup
and programming. This lack of guidance has been one crucial factor in the projects
failure to achieve spec as budgeted time was wasted on forced system deconstruc-
tion. Absence of community documentation further complicates this issue. At the
time of writing few documented Spresense SDK projects or forums transcending
the Developer World website exist symbolizing a larger issue of failure to reach
consumer appeal.

Early project setbacks where attributed in failure to embrace the developer
world forum. Fully moderated, it provides a valuable resource through direct
contact and guidance with Spresense developers. Restrictive in its lack of search
functionality and search engine indexing, the connection to Sony staff negates the
shortcomings of official documentation. Further, the project has through involve-
ment in the forum directly influenced Spresense development by notifying issues
plaguing the Audio Player. Updates to official documentation regarding SDK on
WSL have also been observed following a forum inquiry over issues plaguing the
platform. Inability to establish a dedicated user base is further illustrated with low
forum contributions and a predominance of Arduino related topics.

As of the time of writing the Spresense reaches its 5th year on the commer-
cial market. Failure to achieve mainstream appeal is apparent through minuscule
community activity and absence of projects exploiting full hardware potential.
Documentation is subpar but as observed receives updates at slow but regular in-
tervals. Considering its persistent low popularity and slow development the risk
of abandonment is realistic and necessitates evaluation for future projects.

31



32 CoPCSE@NTNU: An NTNU Thesis Document Class

5.2 System

The modified Nuttx operating system has performed beyond all initial expecta-
tions. Flexibility and intuitive design has allowed effective prototyping and con-
struction throughout the entire development process. Modified in a manner that
retains OS core structure allows Nuttx specific resources to be used, simplifying
comprehension and easing construction process. Extensive configuration allows
the inclusion and exclusion of all non essential features, permitting builds optim-
ized towards certain hardware or applications. However, the default configura-
tion excludes all non essentials requiring reconfiguration for each new applica-
tion flashed 2.1.1. Nuttx attempts to negate this by including an index based stor-
age system for configurations. This systems failure was observed several times
throughout early development and was not relied on further. Nuttx documenta-
tion hints towards configuration files included with applications, such a system
would streamline configuration but a limited time budget hindered further ex-
ploration.

Figure 5.1: The example folder structure with colour indexed library connections,
the shortcut fix is portrayed through the dotted connection



Chapter 5: Discussion 33

Success of the SDK developer environment can be attributed to the inclusion
of Nuttx. The modifications performed by Sony are of such a poor standard that
it impairs the OS and caused several substantial setbacks in the early phase of the
project. Nuttx is directly connected to the underlying file structure of the envir-
onment. As such poor file management directly affects the Nuttx user experience.
Initial issues where faced upon the construction of a custom application. Docu-
mentation clearly describes the process of adding an custom application which is
required to be located within the example folder. However, documentation fails
to declare the fact that there are two example folders located within the hierarchy
5.1. Command line based application selection which in documentation is used
to select and flash the examples only allows access to the lowest example folder.
This results in new users creating an custom application in the topmost folder res-
ulting in Nuttx failing to locate the file. Additionally the differing example folders
are granted access to separate libraries. This issue was faces by the project when
attempting to port the Audio Player to the lower example folder and was solved
by locating the library files available to each example location and creating folder
shortcuts linking them together. As the location of both libraries were not refer-
enced and unclear, the paths had to be reverse engineered using error messages
and directory scavenging. The success of this solution is particularly strange as it
displays that separation of examples is not based upon dependencies which indic-
ates it as unnecessary.

Discussed in 2.1.1 Nuttx compilation is optimized towards Linux based op-
erating systems. Although initial attempts where conducted on Windows, per-
formance was of such poor nature that a switch was required to achieve effective
development. Later tests verified the performance difference as tenfold, resulting
in 5-10 minute compilations for larger applications. Initially WSL was chosen as
it allows the creation of a Linux subsystem within Windows, voiding the need for
dual boot and virtual machines. Documentation had referenced support for WSL
but described uncertainties as the system had not been verified. Implementation
was attempted using Win10 WSL2 but failed during the setup, later verification by
Spresense forum moderation verified that Win11 WSL2 functions properly whilst
Win10 fails due to unknown errors. This issue has been rectified in an update to
the documentation. As attempts with WSL2 failed, Ubuntu running in an Virtu-
alBox VM was decided as an suitable alternative. Although the projects second
option, operation through a desktop allow easier maneuvering and thus better
grasp of the convoluted file structure discussed previously. Design and operation
through a dual boot or virtual machine is thus deemed as the preferred option for
new developers to the SDK environment.



34 CoPCSE@NTNU: An NTNU Thesis Document Class

5.3 Features

Spresense SDK documentation presents a feature rich environment with library
support for all advertised applications. The reliance on quality audio libraries was
crucial for project success as the budgeted time did not allow for development of
custom libraries. Initial study of the object oriented API was promising and it was
believed that spec would be achieved utilizing the media object libraries. How-
ever as discussed in 4.3 and 4.4 the core hierarchy of the libraries are structured
in a manner that disincentives modification. The fundamental issue is the function
control parameters reliance on resources defined by separate libraries. Creating
dependencies not declared by documentation and forcing a staggering initializ-
ation process spanning multiple libraries. The consequences of this hierarchy is
best observed through the playback and recording examples respective 1000 lines
of initialization code. Several improvements could be implemented to alleviate
the dependency issues. The inclusion of setup functions for the respective librar-
ies would reduce dependencies and lessen code size improving comprehension.
However, improvements would only mediate issues as a complete reconstruction
is require should the dependency issues be rectified.

Control functions and operation of the Audio player clearly demonstrate a
failure by developers to recognize its utilization case. Current design limit play-
back to a playlist based system, lacking the capability to select and play individual
files. The decision to force playlist based operation is perplexing as this pattern
combined with the absence of a traditional playback interface force an execution
pattern reminiscent of a tape deck. Consequently, the resulting library is optimized
towards the construction of a inferior audio player and fiercely complicate the de-
velopment of other applications. Although unique to the audio player library the
failure to create a feature embracing the possibilities granted by hardware is a
recurring theme and one of the core issues faced by the current development of
the Spresense.



Chapter 5: Discussion 35

5.4 Application

Final application construction does not accomplish the requirements set by the
spec. Although disappointing, the resulting information gathered through attemp-
ted construction has greatly improved the knowledge about the SDK environment.
The constructed application provides an excellent foundation for future develop-
ments but improvements can still be made. Current running order revolves around
the serial state machine which currently does not allow backspace. Several at-
tempts where made to implement buffer manipulation using similar logic to the
return trigger. The efforts where unsuccessful as the active polling blocks opera-
tion, thus requiring a complete rewrite of the serial protocol to be less intrusive.
The sine wave generator required extensive development time as failure to prop-
erly configure the header would cause file corruption. This lengthy development
has resulted in a very robust system. But as verification exceeded its time budget
the exponential sine wave generator has not been verified to the same standard.
Although theoretically functional the lack of proper testing disallows identifying
the generator as fully functional. Should the exponential sine wave generator be
deemed as defective the repair process is simplified through a modular system
structure. As discussed in 3.3 the playback and recording is constructed through
modification of the example applications. Initially a consequence of poor design,
the limitations of the framework result in the examples fully exploiting library
potential. As such the consequences of utilizing modified audio examples are lim-
ited. Excluding the use of pre-existing examples, modular application construction
was primary when designing the application. Modular design allows the reuse of
all project assets for future developments and was largely motivated by the in-
ferior versatility of the Audio framework provided by the Spresense. The final
application provides a solid foundation for future efforts both in program code
and documentation of Spresense shortcomings.





Chapter 6

Conclusion

This thesis has further explored use of the Sony Spresense as an impulse response
measurement platform. Through attempted construction utilizing an unknown
environment further knowledge about the Spresense has been obtained with the
goal of aiding subsequent projects on the platform. This newfound understanding
of how the Spresense performs under all environments will allow future work to
comprehend the current issues plaguing the system and prevent overestimation
of system capabilities.

Official development of the Spresense is still incomplete 5 years after its intro-
duction to the commercial market. The completed frameworks, namely the audio
libraries are of poor design and disallow the extraction of full hardware potential.
As such many completed Spresense libraries will require redesigns should the is-
sues be alleviated, furthering its status as incomplete.

The failure to establish a dedicated community is evident through the lack of
forum activity and documented projects on the platform. Symbolizing a commer-
cial failure, this hurts the Spresense as community created resources allow for
quicker innovations through shared libraries and guides diminishing the overall
potential of the microcontroller platform.

A foundation for future works on the platform has been constructed. Designed
as a modular system this foundation will provide a valuable resource for sub-
sequent attempts. Several modules of the system are also generic allowing porting
to other microcontrollers should future works move away from the Spresense.

For conclusion, the Spresense demonstrates great potential but suffers due to
poor framework and failure to establish a dedicated community. Should the plat-
form continue development under the acoustics department several critical issues
require addressing. Largely related to the current Spresense SDK construction the
issues are only rectified by a rewrite of the entire framework. As such the move
away from the Spresense to a different platform should be considered.

37





Bibliography

[1] A. C. Worsøe, ‘Insect flight sound acquisition system with eight microphones,’
Master’s thesis in Electronics Systems Design and Innovation NTNU, vol. 1,
pp. 1–79, 2022.

[2] K. Øverli, ‘Acquisition system with recording of audio and images for hy-
menoptera,’ Master’s thesis in Electronics Systems Design and Innovation
NTNU, vol. 1, pp. 1–85, 2022.

[3] R. Avila. ‘Embedded software programming languages: Pros, cons, and
comparisons of popular languages.’ (2022), [Online]. Available: https://
www.qt.io/embedded-development-talk/embedded-software-programming-
languages-pros-cons-and-comparisons-of-popular-languages (vis-
ited on 20/05/2023).

[4] Arduino. ‘Arduino portenta h7.’ (2022), [Online]. Available: https : / /
docs.arduino.cc/hardware/portenta-h7 (visited on 19/12/2022).

[5] T. A. S. Foundation. ‘About apache nuttx.’ (2020), [Online]. Available: https:
//nuttx.apache.org/docs/latest/introduction/about.html (visited
on 02/06/2023).

[6] T. A. S. Foundation. ‘Development environments.’ (2020), [Online]. Avail-
able: https://nuttx.apache.org/docs/latest/introduction/development_
environments.html (visited on 23/05/2023).

[7] S. Groot. ‘Major performance (i/o?) issue in /mnt/* and in (home.’ (2018),
[Online]. Available: https://github.com/Microsoft/WSL/issues/873#
issuecomment-425272829 (visited on 02/06/2023).

[8] P. software foundation. ‘Python for beginners.’ (2022), [Online]. Available:
https://www.python.org/about/gettingstarted/ (visited on 19/12/2022).

[9] P. software foundation. ‘The python package index.’ (2022), [Online]. Avail-
able: https://pypi.org/ (visited on 19/12/2022).

[10] D. Anh. ‘Dsp-py-lib.’ (2020), [Online]. Available: https://github.com/
dinhanhx/DSP-py-lib (visited on 02/06/2023).

[11] D. George. ‘Micropython.’ (2022), [Online]. Available: https://micropython.
org/ (visited on 19/12/2022).

39

https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://docs.arduino.cc/hardware/portenta-h7
https://docs.arduino.cc/hardware/portenta-h7
https://nuttx.apache.org/docs/latest/introduction/about.html
https://nuttx.apache.org/docs/latest/introduction/about.html
https://nuttx.apache.org/docs/latest/introduction/development_environments.html
https://nuttx.apache.org/docs/latest/introduction/development_environments.html
https://github.com/Microsoft/WSL/issues/873#issuecomment-425272829
https://github.com/Microsoft/WSL/issues/873#issuecomment-425272829
https://www.python.org/about/gettingstarted/
https://pypi.org/
https://github.com/dinhanhx/DSP-py-lib
https://github.com/dinhanhx/DSP-py-lib
https://micropython.org/
https://micropython.org/


40 CoPCSE@NTNU: An NTNU Thesis Document Class

[12] CricuitPython. ‘Micropython.’ (2022), [Online]. Available: https://circuitpython.
org/ (visited on 19/12/2022).

[13] S. Corp. ‘Spresense sdk developer guide.’ (2023), [Online]. Available: https:
//developer.sony.com/develop/spresense/docs/sdk_developer_
guide_en.html#_audio_subsystem (visited on 04/05/2023).

[14] Sony. ‘Introduction - spresense hardware.’ (2023), [Online]. Available: https:
//developer.sony.com/develop/spresense/docs/introduction_en.
html#_spresense_hardware (visited on 27/05/2023).

[15] jfm92. ‘How to use serial comunication in your app.’ (2018), [Online].
Available: https://github.com/micro-ROS/NuttX/issues/10 (visited
on 02/05/2023).

[16] dthain. ‘Wavfile: A simple sound library.’ (2013), [Online]. Available: https:
//www3.nd.edu/~dthain/courses/cse20211/fall2013/wavfile/ (vis-
ited on 03/05/2023).

[17] S. Novak Lotton, ‘Synchronized swept-sine: Theory, application and imple-
mentation,’ Journal of the Audio Engineering Society, vol. 63, no. 10, p. 786,
2015.

[18] C. A. S. Team. ‘Audio player api.h file reference.’ (2023), [Online]. Avail-
able: https://developer.sony.com/develop/spresense/developer-
tools/api-reference/api-references-spresense-sdk/audio__player_
_api_8h.html (visited on 09/05/2023).

https://circuitpython.org/
https://circuitpython.org/
https://developer.sony.com/develop/spresense/docs/sdk_developer_guide_en.html#_audio_subsystem
https://developer.sony.com/develop/spresense/docs/sdk_developer_guide_en.html#_audio_subsystem
https://developer.sony.com/develop/spresense/docs/sdk_developer_guide_en.html#_audio_subsystem
https://developer.sony.com/develop/spresense/docs/introduction_en.html#_spresense_hardware
https://developer.sony.com/develop/spresense/docs/introduction_en.html#_spresense_hardware
https://developer.sony.com/develop/spresense/docs/introduction_en.html#_spresense_hardware
https://github.com/micro-ROS/NuttX/issues/10
https://www3.nd.edu/~dthain/courses/cse20211/fall2013/wavfile/
https://www3.nd.edu/~dthain/courses/cse20211/fall2013/wavfile/
https://developer.sony.com/develop/spresense/developer-tools/api-reference/api-references-spresense-sdk/audio__player__api_8h.html
https://developer.sony.com/develop/spresense/developer-tools/api-reference/api-references-spresense-sdk/audio__player__api_8h.html
https://developer.sony.com/develop/spresense/developer-tools/api-reference/api-references-spresense-sdk/audio__player__api_8h.html


Appendix A

Spec

41



42 CoPCSE@NTNU: An NTNU Thesis Document Class

Topic Functionality Priority

Audio output On-board generation of exponential sine sweeps1 mandatory

Audio output Generated sine sweeps must start and stop at zero
crossing 1

mandatory

Audio output Parameters for on-board generation: fmin, fmax, dura-
tion (s), repetitions, delay between repetitions (s) 1

mandatory

Audio output Playback of audio files prepared on a host computer mandatory

Audio output Choice between several files for playback optional

Audio output Single channel mandatory

Audio output Dual channel optional

Audio output Playback only mod2 optional

Audio input Channel count of 4 mandatory

Audio input Analog inputs mandatory

Audio input User controllable input gain (if allowed) mandatory

Audio input Toggelable microphone power optional

Audio input Record only mode2 optional

FDxS Scheduling is done through standalone config file mandatory

FDxS Support for scheduling relating to sunrise to sunset optional

FDxS Use of GNSS to get latitude/longitude optional

FDxS Support for continuous recording mandatory

FDxS Support for recording according to a duty cycle mandatory

FDxS Way to turn a configuration file to a timeline for veri-
fication

optional

Synchronization GNSS time stamp optional

Recorded audio Format: WAV mandatory

Recorded audio Recording time(start) and date mandatory

Recorded audio Location is user-defined mandatory

Recorded audio Location is based on GNSS signal optional

Hardware Power source: Li-ion 18650 batteries in parallel optional

Hardware Preamplifier: 40dB gain on/off optional

Hardware High-pass filter: 20 Hz on/off optional

Hardware Sensor supply: constant current 4 mA on/off optional

Hardware Waterproof casing optional

Hardware Internal humidity sensor optional

Synchronization Functionality optional




	Acknowledgements
	Abstract
	Sammendrag
	Contents
	Introduction
	Commercial microcontrollers
	Background
	Intent

	The Spresense
	Software
	Nuttx
	Development Environments

	Hardware
	Extensions

	Support

	Application construction
	Serial Communication
	Sine wave generation
	Audio Player
	Audio manager
	Object Layer
	Component Layer
	Final Player Function

	Audio Recorder

	Results
	Serial
	sine wave generation
	Audio Player
	Audio Recorder

	Discussion
	Documentation
	System
	Features
	Application

	Conclusion
	Bibliography
	Spec

