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Abstract

This Master Thesis covers the development and use of tools and methods for integrating ar-

tificial reality with current methods of controlling and observing autonomous vessels such as

AUVs, ASVs, and UAVs. Autonomous vessels are capable of completing a wide variety of tasks

with minimal to no human interaction. However, at some point the vessels need to be moni-

tored, found, and collected. To anyone who has attempted to find floating objects in the sea or

spot a drone flying overhead, this is often a challenging task, even if you know roughly where to

look.

Today, autonomous systems use a range of methods and systems for monitoring and control.

Most of them are based on 2 dimensional maps on a flat screen, which plots the vessels position

and heading, with some also giving a 3D view. Using AR, another method of viewing becomes

available to enhance the users capabilities without hindering them from using traditional meth-

ods of tracking and control by allowing the user to still see the real world.

A method to bridge vehicle information from the LSTS toolchain to Unity has been deviced and

made, allowing for seamless dynamic connection between the two platforms. This method is

based on the compatibility between the IMC-messages used by LSTS, and the ROS Robotic Op-

erating System, which makes it possible to translate relatively seamlessly between the two plat-

forms. Once the ROS network mirrors the IMC network, the ROS messages can be transmitted

to Unity via TCP, allowing untethered connection between the simulation software and the AR

headset.

Using data from GeoNorge, a method has been shown how to extract depth data and converting

it into a 3D model useable by Unity. This model can then be placed in full scale underneath the

user to give a better understanding of the layout of the seabed near the user or the vehicles by

both showing the general structure and depth information based on coloring of the object.

In Unity, a method of giving the user a direct real-time view description of the vessels position,

heading, and path by both displaying a model in the approximate actual position of the vessel,

as well as giving a 3D model of the area in the users hand to show a more top down view as well

as a 3D understanding of the vessels position in relation to the seabed. This method solves the

problem of poor visibility while at sea, and allows for more realistic training scenarios while on

land.
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Sammendrag

Denne masteroppgaven dekker utviklingen og bruk av verktøy og metoder for integrering av

kunstig virkelighet (AR) for nåværende metoder for kontroll og observasjon av autonome fartøy

som AUV-er, ASV-er og UAV-er. Autonome fartøy er i stand til å utføre en bred variasjon av

oppgaver med minimal eller ingen menneskelig interaksjon. Imidlertid må fartøyene på et tid-

spunkt overvåkes, lokaliseres og hentes. For enhver som har forsøkt å finne flytende objekter i

havet eller få øye på en drone som flyr i luften, er dette ofte en utfordrende oppgave, selv om

man har en omtrentlig idé om hvor man skal se.

I dag bruker autonome systemer ulike metoder og systemer for overvåking og kontroll. De fleste

av dem er basert på todimensjonale kart på en flat skjerm, som viser fartøyets posisjon og ret-

ning, og noen gir også en tredimensjonal visning. Ved bruk av AR blir en annen visningsmetode

tilgjengelig for å forbedre brukerens evner uten å hindre dem i å bruke tradisjonelle metoder for

sporing og kontroll, ved å la brukeren fortsatt se den virkelige verden.

En metode for å koble droneinformasjon fra LSTS-verktøykjeden til Unity er utviklet og imple-

mentert, slik at det blir en sømløs og dynamisk tilkobling mellom de to plattformene. Denne

metoden er basert på kompatibiliteten mellom IMC-meldingene som brukes av LSTS og ROS

(Robotic Operating System), noe som gjør det mulig å oversette relativt sømløst mellom de to

plattformene. Når ROS-nettverket speiler IMC-nettverket, kan ROS-meldingene overføres til

Unity via TCP, noe som muliggjør trådløs tilkobling mellom simuleringsprogramvaren og AR-

hodesettet.

Ved å bruke data fra GeoNorge er det vist en metode for å trekke ut dybdedata og konvertere

det til en 3D-modell som kan brukes i Unity. Denne modellen kan deretter plasseres i full skala

under brukeren for å gi en bedre forståelse av utformingen av sjøbunnen i nærheten av bruk-

eren eller fartøyene, ved å vise både den generelle strukturen og dybdeinformasjonen basert på

fargen til objektet.

I Unity er det utviklet en metode for å gi brukeren en direkte sanntidsvisning av fartøyets po-

sisjon, retning og bane ved å vise en modell omtrentlig i den faktiske posisjonen til fartøyet,

samt gi en 3D-modell av området i brukerens hånd for å vise både en mer ovenfra-visning og

en tredimensjonal forståelse av fartøyets posisjon i forhold til sjøbunnen. Denne metoden løser

problemet med dårlig sikt mens man er til sjøs og åpner for mer realistiske treningscenarier på

land.
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Preface

This Master thesis has been written over the course of the spring 2023 and concludes the five-

year Master of Science in Marine Technology with a specialisation in cybernetics at the Norwe-

gian University of Science and Technology. This thesis has been created independently with the

aim of creating a user-friendly, innovative, and original implementation to solve future prob-

lems. The original ideas and description of the thesis were discussed and solidified with the

help of my main supervisor, Professor Asgeir J. Srensen, at the beginning of the semester.

The original idea for the project came to me in the fall of 2022 as i was assisting NTNU PhD

candidate Jens Bremnes in his testing of multiple simultaneous AUV and ASV deployments in

the Trondheimsfjord. In the active and crowded fjord, there were multiple occasions when the

location of the drones was unclear or mistaken. With the trafficked environment and the vary-

ing levels of rough seas, a method of quickly, easily and intuitively locating the drone position in

the water could be enormously helpful during operation.

Ideally the system would have been tested with real hardware in the fjord, but this was unfor-

tunately not possible. I hope to be able to test this or a similar system in the future and verify

the useability and usefulness of the setup. It has been a thorougly interesting semester making

it work.

Trondheim, 2023-06-26

Sondre Mikalsen-Schwenke
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Chapter 1

Introduction

1.1 Background and motivation

The marine domain of travel, transport, and research is showing an ever-increasing level of au-

tonomy and automation. Marine operations using multiple agents of homogenous and het-

erogenous networks of vehicles in multiple layers on the observational pyramid require a method

of observation that allows for a thorough understanding of the current situation, as well as a

method of adjusting the operational parameters for agents in the field. External operational

conditions, such as extreme weather or a sudden high-traffic area, will change the priorities of

autonomous systems. To keep control and a sufficient understanding of any situation, a new

method of visualization and control using a combination of Virtual Reality and current plat-

forms can be used to raise the awareness of an operator. Using the existing backbone structure

found in autonomous systems today, such as the LSTS toolchain, and ROS, the new visualiza-

tion tool will be constructed to allow for a more efficient and reliable method of knowing the

positions and actions of the autonomous agents surrounding the operator. A case study of cur-

rent and new visualization tools for monitoring operations using an autonomous underwater

vehicle (AUV) supported by an autonomous surface vehicle (ASV) will be conducted.

1.2 Previous Work

This master project is a continuation of the project work done in the autumn of 2022.Mikalsen-

Schwenke 2022 This thesis covers a lot of the same subject with several additions and changes

in method and will therefore contain sections containing similar information as the original

project report.

2
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1.3 Project Objectives

The main objective of this project is to develop a method for translating the current setup for

control and monitoring of many autonomous systems into an XR platform.

1. Set up an environment to test the AR system using a realistic positional system. (LSTS

Toolchain)

2. Create a pipeline for transferring the positional data from the LSTS toolchain to Unity

3. Make a Unity program that can interpret the data and display the positions of the agents

run using the LSTS toolchain.

4. Integrate depth data to make the seabed visible to the user in both AR and VR mode.

5. Implement other methods of visualising the data coming from the LSTS toolchain using

AR/VR.

6. Demonstrate the system using two simulated cases, as well as a video showing the capa-

bilities of the system.

7. Propose improvements to the setup and uncover useful data on the requirements of such

a solution using AR/VR.

At the end of the project, a platform allowing dynamic connection between the LSTS toolchain

and Unity shall be built. The setup will be a proof of concept and a platform that can be used

for further development and expansion in terms of scope in the future. stability, usability, and

functionality of the system.

1.4 Contributions

To the authors’ knowledge, this project is one of very few instances where AR has been actually

applied and tested in combination with the LSTS toolchain. The setup and methods used in

the project contribute to a clearer understanding of how to setup and build such a connection

between the LSTS Toolchain, ROS, and an AR view that allows further work and improvements

to be done in the future. A method for generating 3D objects of bathymetric charts of the seabed

that are useable by Unity, as well as a method to translate coordinates between reference frames

for the correct placing on the seabed. The thesis also shows methods of conveying information

in Unity using shaders to display depth, and the use of lights and multiple objects to catch the

users’ attention.
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1.5 Thesis Outline

The thesis is setup in the following configuration.

• Chapter 1. Introduction

• Chapter 2. Background and Preliminaries: Covers some of the relevant topics and theory

discussed in this thesis. This includes information on autonomy, AR and VR, and reference

frames used in the thesis.

• Chapter 3. AR System Components and Setup: Describes the components and setup for

the individual components of the project. This includes each component of the LSTS

toolchain, ROS libraries, and the unity software running on the MQ2.

• Chapter 4. Results: Displays the systems uses by the means of two simulation cases, as

well as discussing a demonstration video.

• Chapter 5. Discussion: This chapter describes the capabilities of the software and dis-

cusses the results as well as potential points of improvement.

• Chapter 6. Conclusions and further work: The final chapter summarizing the results and

discusses future work that can be done to continue the work from the project.

• Bibliography

• Appendix A: Containing the link to the video demonstration as well.

• Appendix B: Containing link to the GitHub repository with the source code and relevant

code snippets used in the project.



Chapter 2

Literature Review and Preliminaries

Today, several systems are used for the autonomous control of marine targets. LSTS Toolchain

is a collection of tools for use with the monitoring and control of targets in the air, on the surface

and below the surface of the ocean. All of these systems have varying levels of autonomy and

monitoring. This chapter covers a overview of some of the relevant concepts and terminology

used in this thesis.

2.1 Autonomus Systems Today

2.1.1 Unmanned Underwater Vehicles

Unmanned underwater vehicles (UUVs) are a rapidly expanding area of research with numer-

ous applications. They are used for a variety of tasks, including bathymetric surveys, pipeline

inspections, cable maintenance, marine archaeology, and marine biology studies. There are

two main classifications of UUVs, remotely operated vehicle (ROV) and autonomous under-

water vehicles (AUV). Unlike AUVs, ROVs are tethered and usually controlled by an operator

located onshore or on a surface vessel. These vehicles are commonly equipped with manipula-

tor arms that enable them to perform interactive tasks such as interacting with valves, aiding in

underwater constructions and inspections.

AUV

Autonomous underwater vehicles (AUVs) represent a category of unmanned underwater vehi-

cles (UUVs) that operate independently, without the need for human intervention, making them

particularly suitable for underwater surveys. A typical AUV design includes a stern propeller for

controlling forward speed and two fins for managing pitch and heading, ensuring exceptional

maneuverability and the ability to cover extensive distances. See Figure: 2.3. AUVs often have

5
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a hydrodynamical shape, allowing them to be flexible, reach high speeds, and operate in com-

plex environments. They carry their power supply onboard and are often underactuated, which

means that they are not controllable at all degrees of freedom. Although this limits the duration

and geographical extension of operations and excludes tasks that require precise control of all

degrees of freedom.

AUVs can be equipped with a variety of sensors such as GNSS, Ultra Short Baseline (USBL),

Doppler Velocity Log (DVL), IMUs, and water quality sensors, making them suitable for environ-

mental monitoring, hydrography, and search and recovery (Kongsberg 2020). Current applica-

tions of AUV include the acquisition of high-resolution maps of the deep sea floor, the temporal

and spatial presence of the ocean to survey oceanographic states such as salinity and tempera-

ture(Bellingham 2009). There are also several military applications, such as mine detection and

clearance, and long-range reconnaissance (Bae and Hong 2023).

Some of the disadvantages that AUVs have are a lack of consistent communication; as nearly

all electro-magnetic radiation is blocked by the watercolumn. The only method of communi-

cation is via acoustic methods, often combined with the USBL system. However, this method,

compared to radio and satellites, lacks data bandwidth and makes navigation less accurate than

systems with GNSS capabilities. This also leads to an increased probability of loss of the AUV,

as a mistake in navigational data or a loss of power in the system can over time lead to great

discrepancies in the estimated position of the vessel and the actual position.
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Figure 2.1: Two of AUR-Labs LAUV vehicles.

Autonomous Surface Vehicle

ASVs are a category of unmanned surface vehicles that can operate independently, without hu-

man control or external methods of power delivery or production. Because the ASVs operate

on the surface they are able to receive and send constant data to and from the user using either

radio transmission, 4G networking, or satellites, and are able to maintain a constant accurate

positional update via GNSS. This allows ASVs to operate with sub-metre accuracy in their posi-

tioning no matter the length of the mission.

ASVs are considerably useful for a wide range of tasks such as environmental monitoring, wild

life tracking, large scale seabed and riverbed bathymetry, and search and rescue missions.

2.1.2 Unmanned Areal Vehicle

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are autonomous or remote con-

trolled aircraft that operate without an onboard human pilot. These aircrafts are often equipped

with various sensors, cameras, and navigation systems that allow them to fly and perform tasks
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without direct human intervention. UAVs come in different sizes, ranging from small hand-

held drones to larger fixed-wing aircraft, and can be powered by electric batteries, combustion

engines, or even solar energy. UAVs are widely used in aerial photography and videography, sur-

veying and mapping, agriculture, infrastructure inspection, search and rescue operations, and

even military applications. UAVs offer significant benefits, such as cost effectiveness, increased

safety, and the ability to access difficult-to-reach or hazardous areas. They can be programmed

to follow predefined flight paths, perform complex manoeuvres, and capture high-resolution

imagery or sensor data. However, UAVs also raise concerns related to privacy, security, and

airspace regulations, as their widespread use requires careful consideration of ethical and legal

implications. The drawbacks of UAVs are limited payload capacity, limited operational length,

vulnerability to wind and weather, as well as risk of loss of vehicle.

Figure 2.2: AUR-labs ASV, Grethe.
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Figure 2.3: UAV fra NTNU AUV Lab. Foto: Asgeir J.Sørensen

2.2 The Future of AUVs and ASVs

An idea is to deploy a fleet of autonomous underwater vehicles (AUVs) and autonomous surface

vehicles (ASVs) in the ocean to perform various tasks collectively. They can collaborate on tasks

such as underwater surveillance, mapping the ocean floor, and identifying targets. If one vehicle

discovers a target, this information can be shared with other AUVs and ASVs in the vicinity.

Communication can be achieved using acoustic or radio signals. The AUVs and ASVs can be

seen as a decentralised system with mobile nodes operating in the ocean. In the event of a

vehicle malfunction or loss, the remaining vehicles retain the majority of the information and

continue the mission.

Exciting AUV and ASV Applications in the Ocean

• Underwater surveillance of critical areas and marine assets.

• Search and rescue missions for lost objects or individuals in the ocean.



CHAPTER 2. LITERATURE REVIEW AND PRELIMINARIES 10

• Environmental monitoring and research, including studying marine life, water quality,

and ecosystem health.

• Exploration and mapping of the ocean floor and underwater geological features.

• Disaster response and recovery operations in the aftermath of marine incidents or natural

disasters.

• Military applications, such as underwater reconnaissance and mine detection.

The military has a strong interest in using AUVs and ASVs for various maritime operations.

These vehicles can replace the need for manned patrols along coastlines and monitor restricted

areas. With advanced algorithms and sensors, they can navigate complex underwater environ-

ments, detect underwater threats, and gather valuable intelligence. AUVs and ASVs can also be

used in coastal management to monitor pollution levels, detect oil spills, and protect marine

ecosystems. In addition, they can contribute to scientific research by collecting data on ocean

currents, temperature, salinity, and other oceanographic parameters. Using specialised sensors,

AUVs and ASVs can identify underwater archaeological sites, locate underwater resources, and

aid in underwater construction projects.

The future of AUVs and ASVs in the ocean holds great potential for a wide range of applications,

from maritime security to environmental protection and scientific exploration.

2.3 AR in navigation today

Today, AR has not yet been applied as a normal tool in the maritime sector, with a few excep-

tions starting to emerge. With the launch of multiple incresingly complex headsets from Meta,

Microsofts several AR headsets such as the Hololens as well as the soon to be released Apple Vi-

sion Pro, there is reason to believe that in the coming years an increase in interest and demand

will happen in the maritime sector.

2.3.1 Uses of AR in maritime sector.

Raymarine ClearCruise AR.

Raymarine has been proactive and launched its first AR solution for maritime use in 2019 with

the name ClearCruise (Raymarine 2020). This system uses HD cameras and a processing unit to

display information on a 2D screen for the user. The system provides a augmented reality view

on the screen, allowing users to see critical navigation objects, surrounding automatic identifi-

cation system (AIS) traffic, navigation markers, and waypoints in sync with real-world visuals.
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The system does, however, not support any sort of AR headset or glasses, and little information

is known about how the system works specifically.

Equinors use of Hololens

Although not directly used in navigation, Equinor has since its digitalisation been integrating

AR solutions into its development process (Equinor 2021). Using the Hololens and Unity game

engine, the workers are able to visualise digital models overlaid onto the physical environment,

enabling them to easily navigate complex structures and identify specific components. Accord-

ing to Equinor, this greatly increases the efficiency in installing new systems on oil rigs, and

saves cost by allowing the integrators to catch mistakes before construction physically begins.

2.3.2 Augmented Reality and its use cases

The use of AR in maritime navigation addresses issues such as limited visibility, lack of land-

marks, and increasing maritime traffic. Using AR technology, operators can visualise their route

on the water, identify obstacles that are difficult to perceive, and display real-time information

on sea conditions directly in their field of view.

AR systems in maritime navigation are designed to reduce the cognitive load on human op-

erators and increase safety. With the increasing amount of information available from sensors

and instrumentation on ships, even simple tasks can become complex and distracting. AR helps

by providing visual overlays of relevant information, allowing sailors to better perceive and un-

derstand their surroundings. For example, AR can paint navigation information, such as routes

and obstacles, directly onto the sea surface, taking advantage of the higher vantage point on

ships. This integration of visual information into the maritime environment through AR can

significantly improve situational awareness and decision making, ultimately improving safety

and reducing the stress experienced by sailors.

The following subsections cover some of the most widely used AR / VR headsets today and cover

some differences, strengths, and weaknesses.

Meta Quest 2

For this thesis, the headset used for AR/VR is the Meta Quest 2 (MQ2), formerly known as Oculus

Quest 2 Fig: (2.4). The headset is designed to run simulations and games natively in the headset,

without the need for an external computer to run code and generate graphics. The headset uses

a combination of four cameras as well as internal measuring units to track the user’s position

in space. The headset can use camera feeds to recreate the view in front of the headset to give
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the user a view of the world through the headset. However, the view is quite grainy black and

white because the cameras only film in the infrared spectrum, and were initially designed only

for tracking the user in space. However, for the purposes of this thesis, the view is good enough

to give a valid platform for discussing the validity of a future set-up.

Figure 2.4: Meta Quest 2. AR/VR headset

Meta Quest Pro

Another headset developed by Meta is the Meta Quest Pro headset. This headset has the benefit

of using the same framework as the widely used Quest 2, but comes with a number of additional

features. Like the MQ2, the Quest Pro uses cameras to both track the world around the user and

to show the user a realistic view which is displayed on the screens in front of the users eyes. This

headset however has dedicated AR cameras which gives a full-color high resolution videofeed

to view the world in front of the user making it easier to complete both complex and mundane

tasks while wearing the headset.

Microsoft Hololens 2

Microsoft was early in their development of AR solutions when they unveiled the original Hololens

in 2016. Hololens differs from Metas Quest platform in that the users view of the outside world

is never blocked. This allows the headset to project 3D objects and "holograms" in front of the

user without the loss of sight which makes operating outside equipment and reading screens

while wearing the headset not a problem. The headset is compatible with Unity game develop-

ment, and it is therefore relatively easy to convert the software developed in this thesis to run
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on the Hololens. However, the headset does come with a pricetag of $3500 and is therefore not

available for use in this project.

2.4 Reference frames

Reference frames are a method of establishing the relationship between two bodies and are a

crucial tool in most navigational methods. For normal navigation and control, atleast two refer-

ence frames are necessary for positional coordination. For this thesis, the reference frames use

the same notation as Dune, which is the SNAME notation for NED and body frames (Pérez and

Blanke 2023). The frames used in this thesis are shown in Fig. 2.5.

Figure 2.5: Representation of the reference frames used in this thesis

2.4.1 NED Frame

The Earth-fixed NED(North-East-Down) frame is used for the positioning of the drones in the

EstimatedState messages and is centered at the starting point of the drones. The x, y, and z

axes always point in the North, East, and Downward directions, respectively. The frame can
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be represented as a 6-DOF (Degrees-of-Freedom). system that includes roll, pitch, and yaw

rotations, using the representation shown in Figure 2.6.

η= [p Θ]T = [N E D φ θ ψ]T ∈R6 (2.1)

Figure 2.6: Representation of NED frame.(Wikipedia 2023)

2.4.2 Body frame

The body frame is a frame that follows each individual vessel and is centred in the centre of

gravity. The axes of the frames follow the vessel rotation, with the x-axis of the frame pointing

towards the front of the vessel, the y-axis points towards the starboard position, and the z-axis

points downwards. Additionally, the velocity values for the vessel are given in the body frame as

the velocity ν and the angular velocity ω (Pérez and Blanke 2023).

ν= [p ω]T = [u v w p q r ]T ∈R6 (2.2)

2.4.3 UnityFrame

The Unity frame refers to the coordinate system within the Unity programme. At launch, the

programme sets the default origin of the frame to be the location of the VR headset. This can be

reset at any time by using a "recenter/"adjust view" functionality allowing frame to be rotated

in reference to either north or the body frame of a ship depending on the situation.
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2.4.4 WGS 84, World Geodetic System

To coordinate the positioning of the user, drones, and seabed, the use of an Earth-fixed coor-

dinate system is required. For this thesis, the coordinate system used is the WGS 84 standard.

The WGS 84 standard is the current iteration used in GPS navigation and is used both by LSTS

Toolchain and Google when referring to latitude and longitude. The standard has its origin in

Earth’s centre of mass and uses two angles and height to define positions on the Earth’s surface

with the sea.

Latitude φ States the degrees from the equator. It is equal to 90◦ at the north pole, −90◦ at the south

pole, and it is 0◦ at the equator.

Longitude λ States the degrees of rotation from the IERS reference meridian, placed 102 metres east

of the historical Greenwich meridian.

2.4.5 translation

Translation between the Earth-fixed WGS 84 frame and the Earth-fixed NED frame is done using

the AlvinXY algorithm as outlined in (Murphy and Singh 2010). The algorithm, which is also

used by som ROS packages, defines some latitude (φ) and longitude (λ) orign to be equivalent

to some x and y coordinates. For the 3D model of the seabed used, this was set as shown in 2.3.

These values need to be synced for every 3D seabed or land model used in such a setup.

φ= 63.44254823

λ= 10.35537962

x = 2000

y =−4000

(2.3)

using this as a reference, the translation was implemented as such.

1

2 public class LatLongTranslater
3 {
4

5 public static double[] zeroLatLong = { 63.441924, 10.406475 };
6 public static double[] zeroUnityZX = { 2000, -4000 };
7

8 private static double zLatRad =(zeroLatLong[0]) * Math.PI / 180;
9 private static double zLongRad = (zeroLatLong[1]) * Math.PI / 180;

10 private static double mDegLon = (111415.13 * Math.Cos(zLatRad))
11 - (94.55 * Math.Cos(3.0 * zLatRad)) - (0.12 * Math.Cos(5 * zLatRad));
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12 private static double mDegLat = 111132.09 - 566.05 * Math.Cos(2 * zLatRad)
13 + 1.20 * Math.Cos(4.0 * zLatRad) - 0.002 * Math.Cos(6.0 * zLatRad);
14

15

16 //This method takes a LatLon double and translates it into this zone's game
world coordinates,→

17 public Vector3 GetUnityPosition(double[] latLonPosition)
18 {
19 double z = zeroUnityZX[0]+((latLonPosition[1] - zeroLatLong[1]) * mDegLon);
20 double x = zeroUnityZX[1]+((latLonPosition[0] - zeroLatLong[0]) * mDegLat);
21 Vector3 unityCoord = new Vector3((float)z, 0f, (float)x);
22 return unityCoord;
23 }
24

25 // This method takes a vector of unity positions and converts it into latitude
and longitude coordinates,→

26 public double[] GetLatLonPosition(Vector3 unityPos)
27 {
28 double lon = unityPos[1] / mDegLon + zeroLatLong[1];
29 double lat = unityPos[0] / mDegLat + zeroLatLong[0];
30 double[] endLatLong = { lat, lon };
31 return endLatLong;
32 }
33 }



Chapter 3

AR System Components and Setup

This chapter provides an in-depth exploration of the simulation platform components and the

augmented reality setup. It offers a comprehensive description of each component used in the

setup, including its requirements and its specific role within the system. The setup is made to be

used either on board of a stationary vessel or in a on-shore control lab setting. Figure 3.1 shows

the overall setup of the system when in use. During testing, the LSTS toolchain components as

well as the ROS nodes are running on a dedicated laptop running Linux Ubuntu, while the unity

instance is running natively standalone on a Meta Quest 2 headset.

Figure 3.1: Setup used for testing the AR setup.

17



CHAPTER 3. AR SYSTEM COMPONENTS AND SETUP 18

3.1 Components used

3.1.1 LSTS Toolchain

The LSTS software toolchain is a framework designed for the control, management, and super-

vision of autonomous ocean and air vehicles operating in challenging environments. (Ferreira

et al. 2017) It addresses the increasing complexity that arises from the use of heterogeneous

multi-vehicle teams in maritime operations. The most useful components of the toolchain for

this project are Dune, which simulates AUV, ASV, and UAV vehicles, the IMC message protocol

for communicating between the components, and Neptus for visualising and controlling the

drones.

Dune, Unified Navigation Environment

Dune serves as a comprehensive operational environment, facilitating internal communication

and control among various components within an autonomous vessel. These components in-

clude the positioning system (GPS, USBL, IMO), Doppler Velocity Log (DVL), communication

modules and actuators (Ferreira et al. 2017). By utilising tasks, Dune enables seamless informa-

tion sharing between individual components. A task, which acts as a fundamental subprogram,

has the capability to subscribe to and publish information in the form of IMC messages (Fyrvik

2022).

One notable feature of Dune is its ability to simulate autonomous underwater vehicles (AUVs)

used by the AUR-Lab (Autonomous Underwater Robotics Laboratory). Through the initiation

of one or multiple Dune instances, the default drone models such as "lauv-simulator-1s" and

"lauv-xplore-1s" or "caravela" for Autonomous Surface Vehicle (ASV) testing can be simulated.

IMC Inter-Module Communications

The Inter-Module Communications (IMC) component within LSTS plays a vital role in facilitat-

ing seamless communication among heterogeneous vehicles, sensors, humans, and local com-

ponents. Serving as a robust communication protocol, IMC establishes a standardised frame-

work comprising various data types and messages that can be exchanged between tasks within

Dune and Neptus(Fyrvik 2022). IMC operates on the basis of a bus structure, enabling Dune-

defined tasks to access and interact with all messages transmitted through the system via sub-

scribe and publish functions. Each instance initiated by Dune possesses a unique IMC ID, en-

suring that the source of every message can be precisely traced back to the corresponding Dune

instance.
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Neptus

Neptus serves as the graphical user interface for LSTS. It provides users with an interface to

efficiently monitor enabled Dune instances (targets) and the current status of IMC messages

within the system. (Dias et al. 2005) The Neptus interface offers a straightforward approach to

planning various operations, including setting waypoints, defining row patterns for; searching,

configuring loitering states, and more. Additionally, Neptus facilitates the process of uploading

and executing these plans for one or multiple vehicles. Neptus is capable of using log files to

replay older real or simulated missions in real time to allow for further review and analysis of

older data. Historically, software tools such as Neptus have been crucial in effectively tracking

LAUVs and ASVs through top-down 2D maps.

3.1.2 Robotic Operating System (ROS)

ROS (Robotic Operating System) is a popular open-source software platform widely used in the

development of robotics applications. It offers a comprehensive range of tools and libraries

that facilitate the management and coordination of various robot components, including sen-

sors, actuators, and control algorithms. One of the key advantages of ROS is its modular design,

which allows developers to incorporate new functionality into a robot by creating and integrat-

ing new code modules. This modularity, along with its strong online presence and pre-existing

components designed for seamless integration with Unity, makes ROS an attractive choice for

robotics projects.

ROS offers a wide range of capabilities and features that contribute to its popularity in the

robotics community. One notable aspect is its support for a variety of programming languages,

including C++, Python, and more, allowing developers to choose the language with which they

are most comfortable. Additionally, ROS provides a rich collection of preexisting packages and

libraries, offering ready-to-use solutions for common robotic tasks such as mapping, localisa-

tion, perception, and navigation. This extensive ecosystem of packages, combined with the

active and supportive ROS community, makes it easier for developers to leverage existing tools

and collaborate with others in the field.

In the context of message transmission, ROS follows a structure similar to Dune and IMC mes-

sages. Each type of IMC message can be converted into a ROS message, and instead of exchang-

ing messages between Dune tasks, ROS Nodes communicate by publishing and subscribing to

ROS topics. This communication system shares similarities with the subscription and publish-

ing mechanisms used by IMC between Dune tasks. In particular, any ROS node can subscribe

to or publish to any ROS topic, enabling the creation of a highly scalable system for building
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robotics applications.

IMC-ROS Bridge

The IMC-ROS Bridge package played an essential role in facilitating seamless communication

between the IMC and ROS frameworks by enabling the translation of IMC messages into ROS

messages(SMaRC n.d.). By initiating an ROS node, this package establishes a connection and

subscribes to the IMC messages generated by Dune, harnessing them to publish equivalent ROS

topics. This bidirectional functionality extends to controlling Dune instances or Neptus from

ROS nodes as well, providing a versatile interface between the two systems. Specifically, in the

context of this project, the IMC::EstimatedState and IMC::SimulatedState message types were

used to track the estimated and simulated positioning data, respectively. These messages are

then translated and made available as /IMC/EstimatedState and /IMC/SimulatedState topics

within the ROS ecosystem.

ROS-TCP Bridge

To enable the transmission of data from the ROS environment, including the Dune vehicle po-

sitions, to the HMD running Unity, the ROS-TCP Bridge package is employed. The ROS-TCP

Bridge package, developed by Unity, facilitates the transmission of ROS topics to Unity using a

TCP connection. This package requires the IP-address of the laptop and a designated port to es-

tablish the TCP connection and transmit the ROS topics to Unity. For seamless integration, the

ROS-TCP Bridge package is designed to work in conjunction with the Unity package called ROS-

TCP Connector. The ROS-TCP Connector enables Unity to both subscribe to and publish ROS

topics over TCP directly from the HMD, providing a seamless communication channel between

the ROS environment and the Unity simulation.

3.1.3 Unity Game engine

The Unity game engine, developed by Unity Technologies, is a versatile and widely used cross-

platform engine that is known for its application in various interactive applications, most no-

tably video games and, in more recent years, VR/AR experiences. Alongside game development,

Unity also caters to the creation of simulations, mobile apps, and other interactive content. Its

popularity comes from its intuitive interface and high-quality graphics. Unity features a graph-

ical user interface with a drag-and-drop component-based approach to development and uses

C# as its scripting language. This combination makes Unity accessible to beginners and smaller

teams, providing an easier learning curve for developers. Additionally, Unity boasts a vibrant

and supportive community, offering extensive resources such as tutorials, documentation, and
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forums, empowering developers to dive into Unity and achieve their creative visions. In the con-

text of this thesis, the Unity game engine was specifically chosen due to its proven track record

as simulation software, as demonstrated in projects such as Autoferry Gemini (Vasstein et al.

2020), as well as some previous experience in using Unity for the development of a VR experi-

ence during the Experts in Teamwork course, highlighting its ability to create immersive virtual

reality environments. To integrate augmented reality capabilities, the Oculus Integration SDK

serves as the foundation for AR integration within Unity. Furthermore, to establish a connec-

tion with the ROS environment, the ROS-TCP Connector package is used, enabling seamless

communication between Unity and ROS over TCP.

Oculus Integration SDK

The Oculus Integration SDK, initially developed by Oculus VR and now under the umbrella of

Meta (formerly Facebook Technologies), is a comprehensive software development kit specifi-

cally designed to empower developers in creating virtual reality (VR) applications for the Meta

HMD platform. This SDK comprises a collection of tools, libraries, and resources that stream-

line the development process and facilitate seamless integration with Meta’s VR hardware. With

the Oculus Integration SDK, developers gain access to a range of features, including virtual re-

ality camera control, controller tracking, hand tracking, and an essential component known as

passthrough AR that allows AR development. The SDK is accompanied by detailed documen-

tation, which greatly simplifies the integration process compared to many other more general

SDK approaches.

Unity objects

To populate the scene, a GameObject called ROSConnection based on the ROS-TCP Connector

is added to the unity scene. This is then connected to the ROS environment over TCP using the

ip-adress and port set by the ROS-TCP Endpoint. For this project, the IP of 10.53.0.207:11355 was

used in conjunction with port forwarding to reach the LSTS network from anywhere. The object

is now able to see, publish, and subscribe to all the topics in the ROS environment described

in the message-type list. ROSConnection, can then be used as input in scripts embedded in

other game objects such as information boards and other objects. ROSConnection was also the

main movement generator in Unity. For every Drone found, a Sphere GameObject is spawned

around the user using the body frame coordinates given in the /imc/estimated_state_imc topic

in a realistic distance in relation to the user. A board of entity information is also placed and

moved with the sphere to give a description of the vehicles distance and depth. This is shown

in figure 3.2. More views from the AR perspective as well as default simulation condition from

third person view can be found in the appendix.
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Figure 3.2: AR view of Drone1.

3.2 The Implementation

3.2.1 LSTS Toolchain

Dune Instances

For Dune instances, there was no need to write any new code. For each LAUV type that is in use,

it is necessary to specify the types of IMC messages to send over UDP, specifically Announce,

EstimatedState, SimulatedState, and StateReport. In addition, the port for the broadcasted UDP

messages needs to be close to the port of the IMC_ROS_bridge. For this setup, the port of the

IMC_ROS_bridge is set to 30106, so a good port for the Dune targets in the range 30101 - 30115.

In addition, each Dune vehicle has a configuration file used in the simulations that needs to

be edited to send the desired IMC message types to the right ports. This was done by either

editing the vehicle.ini files or creating a clone and naming it vehicle-saved.ini file, which has

priority. The file is then edited by adding three subsections to set the desired values.

"Transports.Announce" enables the broadcast of announce messages and to which ports to

broadcast. The "Announce" messages contain the names of the vehicles, such as "lauv-xplore-

1".

The section "[Transports.UDP]" contains information on which IMC message types to be broad-

cast over UDP and which port to attempt to listen and broadcast from.
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The "[Transports.Discovery]" section contains a list of ports that are available to the target to

broadcast to. If the set port in "Transports.UDP" is taken, this is the list of available ports it will

attempt to use instead. Ideally, this would be edited in the Task.cpp file to be capable of taking

an integer range instead of integers, but for the purposes of this thesis it was not prioritised.

1 [Transports.Announce]
2 Announcement Periodicity = 10.0
3 Enable Broadcast = true
4 Enable Loopback = true
5 Enable Multicast = true
6 Multicast Address = 224.0.75.69
7 Ports = 30100, 30101, 30102, 30103, 30104, 30105, 30106, 30107, 30108, 30109, 30110,

30111, 30112,→

8

9 [Transports.UDP]
10 Always Transmitted Messages = Abort, SimulatedState, EstimatedState, StateReport
11 Announce Service = true
12 Communication Range = 0.0
13 Contact Timeout = 30.0
14 Dynamic Nodes = true
15 Local Port = 30101
16 Print Incoming Messages = false
17 Print Outgoing Messages = false
18

19 [Transports.Discovery]
20 Multicast Address = 224.0.75.69
21 Ports = 30100, 30101, 30102, 30103, 30104, 30105, 30106, 30107, 30108, 30109, 30110,

30111, 30112,→

22 Print Incoming Messages = false
23

In order to start a new drone using Dune, an instance is created. This is done by starting

the ./dune executable and specifying the vehicle type such as Lauv-simulator-1. In addition,

the instance can run with the -p flag, which allows the user to specify the profile, determining

the type of vehicle that is being run. Typically, this is either Hardware or Simulation. For this

project, only Simulation was used. An example of a Dune instance is shown below.

1 ./dune -c lauv-simulator-1 -p Simulation
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Neptus

Neptus is, as mentioned above, the graphical user interface used to monitor and control drones

run by Dune instances with IMC messages. To control the vehicles simulated by the Dune in-

stances, the Neptus console was used to plan and execute routes and missions for the vehicles to

complete. An example of this can be seen in Figure: 4.2. In addition to simulating new scenarios,

the Neptus MRA (Mission, Review and Analysis) tool will also be used to rerun older scenarios

gathered from real-world tests with multiple vehicles. This is done by running the Data.lsf file

generated during the real-world tests in MRA, and then starting "Mission Replay" and enabling

"Network replay" as shown in Figure: 4.6.

Figure 3.3: View of the planning feature of Neptus.
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Figure 3.4: View of the Mission Replay feature of Neptus MRA.

3.2.2 ROS

For the ROS implementation, most of the work lies in understanding the components of the

system and then implementing the transmission of the desired IMC messages. Since ROS uses

a subscribe/publish relationship with its nodes, the IMC network can be translated nearly 1

to 1 by setting each IMC message type to be the same as an ROS topic. This is done by the

imc_ros_bridge.

imc_ros_bridge

By default, the IMC_ROS_bridge was set up to transmit information from ROS to IMC, not the

other way around. In order to allow messages such as EstimatedState to be translated from IMC

to ROS, a EstimatedState.cpp file had to be added to the imc_to_ros folder containing the infor-

mation in the message being transfered, as well as the source of the message, used for syncing

info on the Unity side 3.2.2. In addition to the default normal contents of the messages, it is

also necessary to include the source of the messages in order to handle messages from multiple

drones at the same time. Specifically, the heading information src_id is fetched in the .cpp file

of each message type and is added to the ros_msg topic before any other information 3.2.2.
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1 #include <imc_ros_bridge/imc_to_ros/EstimatedState.h>
2

3 namespace imc_to_ros {
4

5 template <>
6 bool convert(const IMC::EstimatedState& imc_msg, imc_ros_bridge::EstimatedState&

ros_msg),→

7 {
8 ros_msg.src = imc_msg.getSource();
9 ros_msg.lat = imc_msg.lat;

10 ros_msg.lon = imc_msg.lon;
11 ros_msg.height = imc_msg.height;
12 ros_msg.x = imc_msg.x;
13 ros_msg.y = imc_msg.y;
14 ros_msg.z = imc_msg.z;
15 ros_msg.phi = imc_msg.phi;
16 ros_msg.theta = imc_msg.theta;
17 ros_msg.psi = imc_msg.psi;
18 ros_msg.u = imc_msg.u;
19 ros_msg.v = imc_msg.v;
20 ros_msg.w = imc_msg.w;
21 ros_msg.vx = imc_msg.vx;
22 ros_msg.vy = imc_msg.vy;
23 ros_msg.vz = imc_msg.vz;
24 ros_msg.p = imc_msg.p;
25 ros_msg.q = imc_msg.q;
26 ros_msg.r = imc_msg.r;
27 ros_msg.depth = imc_msg.depth;
28 ros_msg.alt = imc_msg.alt;
29

30 return true;
31 }
32 }

Then the EstimatedState.h header file containing the variable types needed to be inserted

into the /include/imc_ros_bridge/imc_to_ros/ folder.

1 #ifndef IMC_TO_ROS_ESTIMATEDSTATE_H
2 #define IMC_TO_ROS_ESTIMATEDSTATE_H
3

4 #include <imc_ros_bridge/imc_ros_bridge_server.h>
5 #include "imc_ros_bridge/EstimatedState.h"
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6 #include <IMC/Spec/EstimatedState.hpp>
7 #include <geometry_msgs/Pose.h>
8

9 namespace imc_to_ros {
10 bool convert(const IMC::EstimatedState& imc_msg, imc_ros_bridge::EstimatedState&

ros_msg);,→

11 } // namespace imc_to_ros
12

13

14 #endif // IMC_TO_ROS_ESTIMATEDSTATE_H

Then for EstimatedState and Announce, the message type file .msg was already created,

however for the StateReport which is used for latitude/longitude checking, the message file

needed to be added. 3.2.2

1

2 add .msg file here
3

And finally to start the necessary processes to check for the messages and link everything

together, the bridge_node.cpp file needs to be edited to start the new bridge component. For

EstimatedState, this was done by adding the line as shown below 3.2.2.

1

2 Add bridge node lines here.
3

ROS-TCP-Endpoint

For the ROS-TCP-Endpoint, the only task it has is to read all the topics available in the ROS

network and transmit them to the ROS-TCP-Connector running in Unity. Therefore, the setup

consists of setting the correct ip adress and port in the endpoint.launch file like shown 3.2.2

1

2 <launch>
3 <arg name="tcp_ip" default="192.168.1.11"/>
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4 <arg name="tcp_port" default="11355"/>
5

6 <node name="unity_endpoint" pkg="ros_tcp_endpoint"
7 type="default_server_endpoint.py" output="screen">
8 <param name="tcp_ip" type="string" value="$(arg tcp_ip)"/>
9 <param name="tcp_port" type="int" value="$(arg tcp_port)"/>

10 </node>
11 </launch>
12

3.3 Unity

Unity is a game engine, designed for 2D, 3D, and XR games. For this project, the starting point

used is the example scene made by the oculus SDK for showcasing Passthrough, which consists

of an empty scene with some floating objects in an augmented reality space. From there all

assets in the scene except for the camera model and the object manipulator GameObject were

deleted. This allows for a simple starting point when it comes to enabling the Passthrough AR

mode. The GameObject connections used in the project can be seen in

3.3.1 Connecting to ROS

ROSConnection GameObject

In order to connect to the ROS network, the "ROSConnection" object is created and added to

the scene as an invisible entity. The component "ROS Connection" from the package ROS-TCP-

Connection can then be added to the GameObject "ROSConnection", and the default ip and

port information can be set in the editor. The game object will now automatically connect to

the ros network on progam start, either in the editor or in the headset. However, in order to use

the connection and the rostopics the custom component Ros_drone_movement is created. The

component functions as the ros message handler, as well as starting some of the other startup

functionalities of the application such as initial positioning in relation to the seabed.

Generating drones

As stated above, the RosConnection object handles the reading and processing of ROS messages.

In this thesis, the two main types of messages are:

• EstimatedState, which contains positional information on each drone.
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• Announce, which contains naming information on the drone.

When a message is received, the source of the message is read first, then if no match is found

in the array of current targets, a new GameObject is created based on the preface GameObject

AUV. For this project, all received messages are shown as the same type AUV by the programme,

however, this could be changed type of vessel specified by the Announce message. When the

object has been created and added to the scene, the relevant information from the message is

added to the object as well as the source of the message. If the message is an EstimatedState,

the position of the drone is moved to the corresponding position stated by the message. If the

message type is Announce, the name of the object is displayed by the text box below the drone

(Figure: 3.2). If no Announce message is received, the name of the drone is set as "Drone(ID of

message source)", eg "Drone64".

Syncing drones names with positions

Using EstimatedState as a source of drone positions makes for a relatively simple method of

reading the drone positions relative to the starting position as well as the depth. It is, however, an

issue with syncing the read positions from the EstimatedState message with the specific relevant

drone, as there is no drone name in the EstimatedState message. The solution is to use the

source (src) data point from the header of the message to pinpoint the message source, then this

source can be used on the Announce message to find the name of the drone from the sys_name

parameter.

syncing drone position to lat long

Now that the source of every EstimatedState message is known, the position of every drone can

be placed in the simulated world. Using the StateReport IMC message, a known lat, long is given

as the origo in a NED reference frame. By placing the Ned frame in the game world which has

a default origo position of NTNU Biological Station using the lat long in StateReport, the drone

and user positions can be placed in the game world.

Input fields

To enable a dynamic IP and Port useage that can vary based on the dynamically set ip of the

server PC, two input fields have been inserted into the scene. These will be used for the set IP

and Port that the ROSConnection object uses to connect to the ROS environment. In order to

interact with the fields using the VR controllers, the ObjectManipulator object script was rewrit-

ten to look for trigger input from the controller and then look for interactions with the input

field.
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To make ROS messages compatible, the imc messages ".msg" files were added to a rosMessages

folder. From there message types, type classes were autogenerated into, for example, Estimat-

edStateMsg.cs files. For some reason, the class names are generated incorrectly to "RosMes-

sages/EstimatedState" and needs to be edited into "imc_ros_bridge/EstimatedState"

Figure 3.5: Interface for transparency control, ip/port input, and Hand-projection view.

Importing the seabed

In order to import the seabed, multiple methods were attempted, and there surely are many

methods of gathering the data, this is the method used for this simple example using only Trond-

heimsfjorden. First, the depth data of the seabed is collected from GeoNorge(GeoNorge 2023)

in the 3D object format ".tif". These data are then imported into a programme called QGIS soft-

ware which is able to read the.tif file and display it as a 3D map. Then using the imported QGIS

plugin "Qgis2threejs" it is possible to export the map as a ".gltf" file. This ".gltf" file can then be

imported into the unity project and placed as a GameObject in the scene using the ".gltf" import
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plugin "GLTFUtility". It is now possible to interact and manipulate the map of the seabed as any

other 3D object.

The imported ".gltf" model of the seabed, now a GameObject in the scene, is then applied with

a passthrough filter, allowing it to be transparent to the real world on command. The level of

transparency can then be adjusted using the seabed transparency buttons in the world edit

pane. When a button is clicked, the passthrough opacity level is adjusted using the "update-

Transparency" script attached to the map object and the transparency is adjusted to the per-

centage specified on the button 3.5.

Visualizing depth on Model using shaders

In the earlier tests of the seabed model, it became apparent that understanding distance and

depth based on eye sight to the model was harder than expected. To handle this, an automatic

coloring shader has been created to paint the 3D model according to depth.

A shader is a script used to contain mathematical calculations and algorithms to calculate the

output colour and style of each pixel rendered on the object, based on the input of lighting,

the material configuration, and the shape of the object to be rendered (Unity 2023). For the

colour-changing shader script, four colours are chosen as input, one for ground colour (any-

thing above -1m), and then three colours for the depth gradient. The minimum and maximum

depth are also entered into the component in the editor; however, this can be changed to dy-

namically changing based on the size of the object being rendered. The shader then goes over

every rendered pixel in the objects, checks the height of the point, and then gives a shade of the

three input colours based on the height. Upon viewing the seabed model from above, it became

quickly apparent that seeing where the land ended and the sea began is nearly impossible from

the shape alone. Therefore, in addition to the colour change with depth, any piece of the 3D

model above -1m is coloured brown. The result can be seen in the following images taken from

a distance. Figure: 3.6, 3.7
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Figure 3.6: Top-Down view of Trondheimsfjorden.

Figure 3.7: Isometric view of Trondheimsfjorden.

Positioning in reference to seabed

The positioning of the player and the targets can then be placed in reference to the seabed sur-

face using the AlvinXY translation implemented in the LatLongTranslate script. 2.4.5
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Hand projection/top-down view

With the full-scale seabed functioning and positioned correctly in relation to the given latitude

and longitude of the user, the next thing that became apparent while testing was the user’s de-

sire to move around the scene and/or get a top-down view of the environment and simulation.

This would of course be possible by either moving or scaling the seabed model around the user,

however, this would remove the user from the current situation in case of an ongoing encounter

and would also increase the risk of motion-sickness for inexperienced AR/VR users. Instead, a

method of projecting the simulated state onto the top of the user hand has been devised 3.8.

To do this, a default, empty smaller version of the fjord is running with a disabled render status

from the start of the programme. When the "Area Projection" button (see Figure: 3.5) is pressed,

the GameObject changes to a visible render status, making it visible to the user, and begins up-

dating its position to the top of the user’s hand. The user is then able to view the situation from

multiple angles and rotate using the controller direction as the projection rotation direction.

Figure 3.8: Projection view of Trondheimsfjorden, projected to user hand.
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Results

4.1 Results

The project setup was tested using two situations where simulated LAUVs were used using Dune

run on a laptop running Linux. In case 1, One ASV and one LAUV is running simultaneously in

front of the user. The idea is to see how easy it is to differentiate between the surface ASV and

the submerged LAUV. In case 2, two LAUVs are running in two patterns at two depths to show

the possibility to keep track of multiple submerged LAUVseven at long distances using the e.

The project setup was tested using several cases in which simulated targets ran simulated

cases by running plans made in Neptus. Two cases are shown in this results section, as well as a

demonstration of the system, shown in video given in Appendix A.1.

4.1.1 Case 1

For the first case is focused on showing the system working with one surface running agent, and

one submerged agent. Running the pattern shown in figure 4.1. During the pattern, the LAUV,

named Drone1 in unity was set to move a depth of 15m depth in a row pattern of length 300m

and width 75m, while the ASV, named Drone2 was to move ontop of the first drone and maintain

position to simulate aiding in positioning using USBL. Both drones were moving at a velocity of

2.5m/s

34
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Figure 4.1: Path used in case 1.

Figure 4.2: Top down view of the drone movements in Unity.

Figure 4.3: Side-view of the drone movements in Unity.
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The tracking of the drones can be seen as the yellow dots in the 3D object. The case shows

the drones moving in a correct manner to in accordance with the simulation.

4.1.2 Case 2

The second test shows the system’s ability to display the movements of multiple drones in a

larger area. There are two LAUV drones running two larger routes simultaneously, as shown

in Fig. 4.4. The first drone is moving along a route around the user and moves in a simulated

scan by running a crossing pattern of 100m at a depth of 90m. The drone then returns to the

south of the user. The second drone moves simultaneously in a pattern around munkholmen.

At the north side of munkholmen it runs a simulated scan by moving in a row pattern at 90m

with a length of 300m, and a width of 100m. The drone then continues on its path around

munkholmen to end up south of the user.

Figure 4.4: Path used in case 2.

As shown both vessels were sucessfully tracked along the entire path as shown by the yellow

dots. Both images are taken of the view given by the Area Projection feature of the software.
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Figure 4.5: Top down view of the drone movements in Unity.

Figure 4.6: Side-view of the drone movements in Unity.
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Discussion

This thesis has shown a method of connecting the LSTS toolchain to a AR/VR platform in or-

der to give a new and improved method of tracking Unmanned Vehicles in a marine setting.

The setup was then tested with three cases, showing the versitility in the setup, as well as the

strengths. The method of setting up the connection is to use an ROS network to function as

a unifying bridge that can be used more easily to make the system compatible with other plat-

forms than the LSTS toolchain, such as Gazebo, without having to do major changes in the Unity

software.

By making the system an application running natively on the OQ2 headset, the necessary hard-

ware for running the setup is drasticly simplified when compared to running the software on

a PC tethered headset. The LSTS Toolchain instances and ROS are running on a Dell laptop

from 2013 running Ubuntu with only two cores, no graphical processor, and 6Gb of RAM. A PC-

tethered AR/VR setup will require a substantially more powerful computer to run, and would in

most cases require the user to be physically tethered to the compouter at all times with either

a USB-C or DisplayPort cable. Due to the simplicity of the setup, it is easy to move the setup to

new locations, requiring only the laptop running Ubuntu, a router, and the OQ2. If the laptop

is running port forwarding, then the user only needs an internet connection to use the virtual

reality headset and use the visual components of the setup. This simplicity was an integral part

of the idea of the system.

For the setup used in the thesis, the port range 30100 -30114 was used to broadcast UDP mes-

sages, with the IMC_ROS_Bridge holding the 30112 port. This is because the Dune system was

not designed to run a large number of instances at the same time, leading to the port range hav-

ing to be hardcoded to every dune instance individually. This is, however, not a perfect solution,

as sometimes the Dune instance is still not able to establish a connection, at which point the

solution is to restart the instance, which works most of the time. There is no documentation

38
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that i have found that describes this problem, but the issue lies most likely in the networking

solution of the Dune instances.

Originally, the method used to translate the coordinates was based on the conversion of one

number range to another. However, this required more points of information by syncing two

points in unity to two latitude-longitude coordinates, as well as more complex math to reach

the translation. This was changed to the AlvinXY method, which only needs one comparison of

latitude-longitude to unity coordinate conversion. AlvinXy is accurate as long as the distances

in use are not much longer than a few kilometers, and since the accuracy of translation matters

the most when the drone is close, this is acceptable.

The experiments were carried out in a controlled testing environment under predetermined

conditions. The absence of real-world environmental variations, such as varying sea states, un-

derwater currents, and weather conditions, may limit the generalizability of our results. The

performance of our system may differ when deployed in more dynamic and unpredictable en-

vironments.

To import the seabed, a multitude of processes and methods were tested. The final solution,

using the .tif file from GeoNorge in QGIS is a valid method as long as you are willing to do the

steps manually and then make a synchronisation point by hand. However, if a larger area is to

be used or the system is to be tested in a range of environments, then it is possible to improve

the workflow. One method would be to automate the process of extracting depth data and con-

verting it to a .gltf file on demand. This can be done using API calls to extract mapdata and file

conversion scripts such as Simblis Seacharts (Blindheim 2021) to generate a 3D file. However,

for this thesis and for most use cases where the target area is not too large, the manual method

is sufficient.

The resolution seabed bathymetry was set to 50m. This was the highest resolution i were able

to obtain with my access and need as a student and was for the most part enough for this the-

sis. Only when the drone was near the seabed or vertical walls did it sometimes appear beneath

the seabed. There is however a 5m resolution bathymetric scan available from GeoNorge that

requires the same steps for implementation. With the right clearence and usecase, this higher

resolution would give a more realistic view of the seeabed and give a clearer view of the drones

position in relation to the seabed and points of interest near the drone such as shipwrecks and

natural formations.
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Conclusions and further work

6.1 Conclusions

For this project, the objectives set was set in order to make a platform for further development of

a bridge between the internal setup of the LSTS toolchain and a AR system to be used for control

and monitoring. During this project the following objectives were achieved

• A literature revue was conducted explaining the basics of the project.

• An environment was set up to run simulations using the LSTS toolchain using Dune in-

stances and neptus.

• A pipeline method was set up to transfer data from the IMC format through ROS and then

to a Augmented Reality headset running Unity.

• A Unity program was created that could run natively in the headset, automatically connect

to the IMC-network, and display the drones simulated in Dune in real time.

• The resulting system was then tested as seen in case 1 and case 2, as well as the appended

video demoing the system. A.1

ROS connections were stable and gave continuous data on drone positions during case tests,

showing the stability of both the ROS-TCP connector bridge and the IMC-ROS bridge. The text

displaying information on the drones was at times hard to read, which could and should be

fixed by either dynamic color correction or the ability to set the color by user input. The setup is

shown to be functioning in the setup shown for the project. Even though the setup is of simple

form, the concept is shown to be functional and is a proof of concept for further work going

forward.

40
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6.2 Further Work

Further work is needed to make this solution a viable software for real use, however the basic

platform has been set up and is ready to be developed in the future. Concepts that could be

focused on could be:

• The current AR view is of a very simple, and all of the drones use the same LAUV model.

This could be fixed by adding a set of 3D models to the AR program and use the IMC ID to

select the proper drone model based on the vehicle_type parameter.

• The current version of the Unity software logs the movements that have been recorded

since the software started. It is however possible to at least also plot the plans of the indi-

vidual vehicles using the planDB IMC-message type. Using this type, the waypoints given

by the plan could be placed in the Area Projection model and connected to give a better

understanding of the vehicles current route.

• A method for controlling the drones using AR could also be implemented using the planDB

IMC message type. Using the Area Projection 3D model for reference, a new set of op way-

points could be selected on the projection which would then generate a new plan which

could be sent back to the Dune instance.

• Navigation Uncertainty Visualisation. For the tests running the older tests run by Jens,

the parameters NavigationUncertainty were given as a calculated uncertainty in the x and

y directions. This could be implemented in the Unity model as a coloured or otherwise

marked area surrounding the drone, representing the possible locations it could be with

the given uncertainty.

• There were times when the signal between LSTS and Unity was lost, either due to simula-

tion errors or net packet losses between the connectinos. This meant the drones in Unity

froze until contact was re-established. Applying State Estimation either in ROS environ-

ment or in Unity by implementing a Kalman filter using the input from the sensor models

to estimate future states in the event of signal loss or noise.

• When it comes to the transformation between WGS 84 and the NED frame, ideally for a

more general solution the middle of the seafloor 3D object would have a known latitude

and longitude, which would then be set to correspond to x = y = 0. But for this thesis, such

a generalisation was not prioritised.

• For a future version of the software, the ability to change perspective would be benefi-

cial to gain a better view and understanding of the drones prospective. With the combi-

nation of a normal or a 360◦ camera, the feed can be sent to the user and displayed in

front/around the user to immerse the user further.
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Appendix

A.1 Video of Project Demo

A video made to display the capabilities of the system is shown here:

https://www.youtube.com/watch?v=2DMdZkv5JeQ
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A.2 Code

A.2.1 GitHub repository

The github repository used during the development of this master thesis:

https://github.com/SondreM-S/master_project.git

The project uses LSF for handling the large files of the Unity software and also requires the user

to install the components of the LSTS toolchain in the conventional manner prior to use. The

version of Ubuntu used is 20.04, with noetic as the ROS distribution version used. Unity devel-

opment was done on a Windows 10 machine, using Unity 2022.1.16f1.

A.2.2 Shader Code

1 // Original base script created by Mark Johns - https://twitter.com/Doomlaser
2 // Adapted to support multicolor shading and adjustable depth by Sondre

Mikalsen-Schwenke,→

3 Shader "Custom/HeightColorBlendRelative"
4 {
5 Properties
6 {
7 _Color ("Color", Color) = (1,1,1,1)
8 _SecondColor ("Secondary Color", Color) = (0.5, 0.5, 0.5, 0.5)
9 _MaxColor ("Color in Maxmal", Color) = (0, 0, 0, 0)

10 _GroundColor ("Color of ground above 1m depth", Color) = (0.5, 0.1, 0.02, 1)
11 _MinDistance ("Min Distance", Float) = 0
12 _MaxDistance ("Max Distance", Float) = -500
13 _MainTex ("Albedo (RGB)", 2D) = "white" {}
14 _Glossiness ("Smoothness", Range(0,1)) = 0.5
15 _Metallic ("Metallic", Range(0,1)) = 0.0
16 }
17 SubShader
18 {
19 Tags { "RenderType"="Opaque" }
20 LOD 200
21

22 CGPROGRAM
23 // Physically based Standard lighting model, and enable shadows on all light

types,→

24 #pragma surface surf Standard fullforwardshadows
25

26 // Use shader model 3.0 target, to get nicer looking lighting

https://github.com/SondreM-S/master_project.git
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27 #pragma target 3.0
28

29 sampler2D _MainTex;
30

31 struct Input
32 {
33 float2 uv_MainTex;
34 float3 worldPos;
35 float4 pos : POSITION;
36 float3 screenPos;
37 float4 color : COLOR;
38 };
39

40 half _Glossiness;
41 half _Metallic;
42 float _MaxDistance;
43 float _MinDistance;
44 fixed4 _Color;
45 float4 _SecondColor;
46 float4 _MaxColor;
47 float4 _GroundColor;
48

49

50 // Add instancing support for this shader. You need to check 'Enable Instancing'
on materials that use the shader.,→

51 // See https://docs.unity3d.com/Manual/GPUInstancing.html for more information
about instancing.,→

52 // #pragma instancing_options assumeuniformscaling
53 UNITY_INSTANCING_BUFFER_START(Props)
54 // put more per-instance properties here
55 UNITY_INSTANCING_BUFFER_END(Props)
56

57 void surf (Input IN, inout SurfaceOutputStandard o)
58 {
59 // float3 localPos = IN.worldPos - mul(unity_ObjectToWorld,

float4(0,0,0,1)).xyz;,→

60 float3 localPos = mul(unity_WorldToObject, float4(IN.worldPos,1)).xyz;
61 half4 dist = localPos.z;
62 float distFloat = localPos.z;
63

64 half4 weight = (dist - _MinDistance) / (_MaxDistance - _MinDistance);
65 float weightFloat = (distFloat - _MinDistance) / (_MaxDistance -

_MinDistance);,→

66 //Go through multiple colors based on weight, _Color to _SecondColor to
_MaxColor,→
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67 // Weight goes from 0 to 1, _Color to _SecondColor to _MaxColor
68 half4 distanceColor = lerp(_Color, _MaxColor, weight);
69 if (weightFloat < 0.5)
70 {
71 distanceColor = lerp(_Color, _SecondColor, weight*2);
72 }
73 else {
74 distanceColor = lerp(_SecondColor, _MaxColor, (weight - 0.5) * 2);
75 }
76 if (distFloat > -1) { // Color everything above 1m depth brown as ground

reference,→

77 distanceColor = _GroundColor;
78 }
79

80 // Albedo comes from a texture tinted by color
81 fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
82 o.Albedo = IN.color.rgb * distanceColor.rgb ;
83 // Metallic and smoothness come from slider variables
84 o.Metallic = _Metallic;
85 o.Smoothness = _Glossiness;
86 o.Alpha = c.a;
87 }
88 ENDCG
89 }
90 FallBack "Diffuse"
91 }
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