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ABSTRACT

This master thesis focuses on improving underwater geo-localization by identifying
the most effective method of data pre-processing and point cloud registration. We
explore multiyear 3D point cloud dataset obtained through Structure from Mo-
tion (SfM) and compare different registration techniques. Our study reveals that
combining global registration method, RANSAC with local point-to-plane ICP
registration yields promising results. However, by dividing the point cloud into
smaller regions and applying per region RANSAC-+ICP registration, we achieve
even higher number of image feature correspondence with greater quality. The
selected registration method is integrated into our underwater geo-localization
dataset framework, demonstrating accurate correspondences in dynamic underwa-
ter environments. This research contributes to the understanding of point cloud
registration for improved underwater geo-localization, highlighting the potential
region based RANSAC-+ICP registration in enhancing accuracy and reliability.



SAMMENDRAG

Sammendrag Denne masteroppgaven fokuserer pa a forbedre geolokalisering under
vann ved & identifisere den mest effektive metoden for forbehandling av data og
registrering av punktskyer. Vi undersgker et flerarig 3D-punktsky-datasett innhen-
tet gjennom Structure from Motion (SfM) og sammenligner ulike registrering-
steknikker. Studien viser at kombinasjonen av den globale registreringsmetoden
RANSAC og lokal ICP-registrering fra punkt til plan gir lovende resultater. Ved
a dele punktskyen inn i mindre regioner og bruke RANSAC+ICP-registrering per
region, oppnar vi imidlertid enda hgyere antall bildefunksjonskorrespondanser
med bedre kvalitet. Den valgte registreringsmetoden er integrert i vart ram-
meverk for geolokaliseringsdatasett under vann, og viser ngyaktige korrespon-
danser i dynamiske undervannsmiljser. Denne forskningen bidrar til forstaelsen av
punktskyregistrering for forbedret geolokalisering under vann, og fremhever den
potensielle regionbaserte RANSAC+ICP-registreringen for a gke ngyaktigheten og
paliteligheten.
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CHAPTER
ONE

INTRODUCTION

Ocean covers almost 70% of Earth’s surface. The oceanic system has an immense
effect on the on going climate change problem. It produces at least 50% of the
planet’s oxygen while absorbing 30% of human produced carbon dioxide. It is
also an inhabitant of around 240,000 species with great diversity. In addition, the
ocean serves as the largest heatsink on the planet, absorbing a staggering 90% of
the heat generated by climate change.

Economically speaking, according to a report by the Organization for Economic
Co-operation and Development (OECD) around 40 million people (about twice
the population of New York) will be directly employed by ocean-based industries
by 2030. These sectors include, among others, shipping, fishing, tourism, and off-
shore oil and gas extraction businesses. In addition, they also have a considerable
amount of indirect impact on other economic sectors particularly in the supply
chain of different industries. A sustainable development of such coastal areas will
also benefit economic growth and improve the quality of life of the nearby popula-
tion. Moreover, it is of utmost importance to prevent man-made disasters caused
by system failures, such as oil rig malfunctions and explosions, which can result
in irreparable damage to the ocean environment.

Still with all these possible benefits, around 90% of the big-fish population along
with 50% coral reef has already undergone massive destruction. What is left is
endangered by frequent human intervention and rapid climate change. Thus, it
has become a topic of immense importance. And we must bring together scientific
and technological means towards revitalizing the ocean environment and restoring
natural balance.

Our project will provide scientific means to tackle some parts of this global prob-
lem. Through providing method for data creation and pre-processing for temporal
change detection in coral reef to better understand and study climate change effect
on ocean space. In addition, it will also provide tools for building more sustainable
underwater structures (Oil rig, Gas pipeline, windmills, electricity transportation,
underwater waste deposition etc.) through continuous monitoring of system fail-
ure and degradation over time. Such sustainable and safe structures will prevent
any future environmental disaster caused by unprecedented natural or artificial
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calamities. Our project will also influence how we localize autonomous systems
underwater without the availability of GPS (Global Positioning System) systems.
This will provide underwater vehicles with better collision avoidance capabilities
and most importantly greater navigational accuracy for long term missions.

1.1 Motivation

Motivation for this project can be divided in two challenges:

e Data Collection and Pre-processing: Geo-localizing areas with significant
temporal changes requires robust data collection and pre-processing meth-
ods. We aim to improve the detection of reliable features in dynamic envi-
ronments by focusing on feature based method for dataset curation.

e Robust Correspondence between Images: Establishing accurate correspon-
dences between images captured at different times in dynamic environments
is essential for precise geo-localization. Our goal is to develop methods that
can reliably establish correspondences using 3D point cloud information de-
spite some part of the image having temporal changes.

Both of these solutions will have tremendous effect in understanding the dynamic
nature of underwater habitat, causes and effect of environmental pollution, offshore
structure monitoring, aqua culture growth, navigation and seabed mapping.
Temporal change detection underwater is quite different compared to traditional
geo localization approaches in remote sensing domain. The dynamic characteris-
tics of ocean, in addition to lower light performance, lack of standard communica-
tion system (radio-wave, GPS) coupled with transitional change in water salinity,
temperature, phytoplankton presence provides significant complications in cre-
ating a robust underwater vision system. In addition, change of seafloor due to
ocean current, sediment deposition, seasonal changes will introduce more difficulty
in revisiting the same area after a certain period. Most importantly, our project
will focus on processing dataset and to create robust correspondence for detecting
temporal changes in benthic habitats underwater. The change in such habitat is
directly influenced by water quality, seasonal influence, and climate change. And
such temporal change detection requires accurate geo localization to compare with
previous surveys.

Benthic habitat observation is generally conducted at a height of 3-5 meters from
the ground. One significant challenge in this context is the potential impact of
parallax errors on the geolocalization model, even with relatively small motions.
Parallax errors arise due to the close proximity of the observation height to the
ground. As the camera moves or tilts slightly, the resulting parallax effect can
significantly affect the accuracy of the geolocalization model. This issue is partic-
ularly relevant in benthic habitat observation scenarios, where precise and reliable
geolocalization is essential for studying and monitoring underwater ecosystems.

In addition, for navigation and geo-localization, it is particularly challenging in
underwater domain due to limited GPS accessibility for depth beyond 20 centime-
ters (about 7.87 in). In addition, radio signal attenuates at a much higher rate
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underwater. On the other hand, acoustics sensors also suffer from many shortcom-
ings. For example: small bandwidth, low data rate, high latency, variable salinity
and water temperature and data loss. Which hinders the real time operation of
underwater vehicles and positioning of dynamic underwater structures.

Other frequent approaches such as USBL (Ultra Short Baseline), SBL (Short Base-
line), and LBL (Long Baseline) systems have their own drawbacks. The main
problem of these systems is they require a pre-deployed and localized infrastruc-
ture. Which limits the operational area and involves larger operational cost. In
addition, communication speed between AUV (Autonomous Underwater Vehicle)
and localized structure can suffer from acoustic sensor complications as mentioned
before. Dead Reckoning/Inertia based localization approach uses accelerometers
and gyroscopes for vehicle orientation and motion estimation. These systems pro-
duce cumulative error resulting unbounded errors over time.

Another popular solution is to use SLAM (Simultaneous Localization and Map-
ping) systems. These systems are very much capable of providing good estimates
of the map and vehicle positioning if The onboard sensors are perfectly accurate.
Which is not true in real life, sensors are never accurate enough and the under-
water environment is very dynamic. Different versions of SLAM are available for
underwater domain but with their own limitations. Real performance of a slam
system mostly depends on accurate loop closure. A single wrong loop closure will
catastrophically affect the localization and mapping performance. To accurately
use loop closure, SLAM system must collect robust features and do accurate fea-
ture matching.

1.2 Literature Review

Underwater Geo-localization is a challenging task that has garnered significant
research attention. While most geo-localization research has focused on aerial
images, there is a need to adapt and apply similar techniques to underwater en-
vironments. In this literature review, we will explore influential research works in
this domain and identify their limitations and dependencies.

One notable research paper, A seasonally invariant deep transform for visual
terrain-relative navigation by Fragoso et al. [1]|, proposes a deep learning model
that generates deep features from temporal image pairs. The authors train two
separate U-net models using datasets that only differ in their time stamps. They
evaluate the model using two loss functions: Area-based registration (NCC) [2]
and Feature-based registration (SIFT) [3]. The paper highlights that more train-
ing data improves the network’s performance, even when from different datasets.
However, limitations include the reliance on NCC for SIF'T matching, orientation
problems, and the detection of small features and unreliable deep features in heav-
ily shaded areas.

In a similar vein, the paper "Robust Multi-Temporal Underwater Mosaic Matching
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and Registration based on Deep Siamese Neural Network" introduces a Siamese
neural network for matching and registration [4]. The authors train the network
using positive and negative datasets, employing RANSAC for image registration.
Challenges addressed include orientation changes and obtaining accurate ground
truth from different timelines. However, significant changes can impact the quality
and quantity of SIFT features, and establishing robust underwater SIFT feature
matching remains a challenge.

To address the general orientation problem in geo-localization, Tian et al. [5] de-
velop an Orientation Normalization Network (ONN) that aligns query and refer-
ence imagery to a canonical orientation. This allows deep local features to depend
on patch overlap rather than alignment alone. The authors use a convolutional
neural network for deriving deep local features and employ a spatial transformer
for reorientation. Limitations include unwanted global features, ambiguity in spa-
tial transformer due to varying overlap, and challenges posed by homogenous areas
and high temporal differences between query and reference images.

A different approach to geo-localization is presented in the paper "Are These from
the Same Place? Seeing the Unseen in Cross-View Image Geo-Localization" by
Rodrigues et al. [6]. The authors propose a semantically driven data augmen-
tation technique for cross-view image geo-localization. Their model employs a
multiscale attentive embedding network and contrastive loss for training. While
the approach achieves promising results, it is not suitable for the underwater do-
main due to the lack of ground view and the difficulty of creating class masks.

Sattler et al. [7| discuss the limitations of CNN-based camera pose regression.

They find that CNN-based methods do not perform as well as structure-based

methods, even with substantial training data. The paper emphasizes that structure-
based localization remains the current standard and highlights the limitations of
camera-based absolute pose regression.

In summary, to address the limitations of CNN-based approaches and improve
feature detection, it is crucial to combine 2D and 3D information. This involves
creating a dataset that establishes robust SIFT-based matched features based on
descriptor distance and filters false matches using their 3D properties. By focusing
on detecting only robust features that satisfy structural constraints, we aim to
reduce false matching to zero. the reviewed literature highlights the challenges and
limitations of underwater geo-localization. By learning from existing research, we
can adapt data processing techniques, such as deep learning models and feature
matching algorithms, to overcome these challenges.

1.3 Project description
Our project is divided into two parts:

e Exploring Underwater Data: Develop effective techniques to process and
prepare the data for analysis.
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e Robust feature matching between image pairs with significant temporal
changes.

1.3.1 Exploring Underwater Data: Develop effective tech-
niques to process and prepare the data for analysis.

In the Data Collection section, our objective is to obtain a suitable dataset for
our problem. To leverage the previous data and their 3D characteristics, we re-
quire 3D point clouds of the same area from multiple years. We utilized Structure
from Motion (SfM) to generate the point clouds and reconstruct the scene, along
with the respective camera poses. For this purpose, we obtained a multiyear 3D
dataset from the University of Sydney, which encompasses all the necessary ele-
ment to take advantage of 3D information for underwater geo-localization. But
the 3D dataset gathered across multiple year suffers from error based on GPS geo-
referencing. Thus it is very important to register the dataset over a time period
so that we have an accurate alignment of identical structures.

The subsequent step involves pre-processing the dataset. Although we possess
multiyear data, it is crucial to determine if they originated from the same area
in subsequent years. To address this, we employed geo-reference points. Despite
using geo-reference points, there may still be errors in the calculation of the point
clouds for each year. Thus, we employed point cloud registration techniques to
align the position of the point clouds and camera poses to a common coordinate
system. By doing so, we can validate their true positions based on a common
global coordinate system.

We need positive image pair and negative image pair for training the deep learning
models to learn robust features. For such reason, the next task is to create positive
and negative pairings of images across multiple years.

It is also essential to understand the coordinate systems used in each point cloud.
Notably, the point cloud and camera coordinate systems may differ in Metashape,
the software used for generating the point clouds. To address this, we meticulously
tracked all the coordinated changes and converted the positions of the point clouds
and camera poses to a single global coordinate system across the years. In our
case, we adopted the world coordinate system from dataset of 2014 as the global
coordinate system for all datasets. The final dataset utilized in this study consists
of positive image pairs, accompanied by their respective camera poses and 2D
correspondences, all based on reprojection errors. The training dataset includes
image pairs comprising one image from 2014 and its corresponding image from
2015. Conversely, the test dataset comprises image pairs from 2014 and 2016,
allowing for a comprehensive evaluation of the proposed method across multiple
years.
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1.3.2 Robust feature matching between image pairs with
significant temporal changes

Robust correspondence points are crucial in establishing links between images cap-
tured from different viewpoints. These points represent the same physical location
in the scene but appear differently in each image. To identify these correspon-
dences, we employ SIFT feature matching, selecting a total of 80,000 points from
multiple octave layers. This comprehensive selection ensures that no correspon-
dences are missed due to Gaussian noise response. We calculate SIF'T descriptors
and perform Brute force matching with a variable threshold (ranging from 0.74
to 0.9) to account for varying match quantities. Outliers are removed, and only
robust matches based on corresponding 3D points are considered.

To obtain the 3D points of the matched 2D points, we follow a series of steps. First,
we transform camera matrices from the local coordinate system to the global coor-
dinate system. Next, using the camera matrices for each image, we determine the
3D points of each 2D point. we further transform the 3D points using the trans-
formation matrices obtained from point cloud registrations for the years 2015 and
2016. To ensure the robustness of our 3D points, we compare corresponding 3D
points from image one to image two in the positive image pairs.

By carefully selecting this subset of points with minimal differences, we ensure
that our dataset comprises highly reliable and accurate 2D correspondences based
on their 3D characteristics. These robust points, immune to temporal changes,
are essential for training deep learning models for geo-localization.

1.4 Real world Applications

The potential for real world implementation for this work is immense. This section
will only highlight some the most important aspects:

1.4.1 Environmental Survey

Climate change has an enormous impact on the ocean life cycle. The change in
climate also changes how varied species live underwater. As most of the earth is
covered with ocean, it is particularly important to understand the temporal behav-
ior of our ocean with respect to climate change. Our proposed work will provide
great assistance in understanding such oceanic changes over time, particularly how
seabed habitat is evolving through time.

1.4.2 Seabed Mapping

The ability to determine what and where is safe is made possible by seabed map-
ping, which is a vital tool for searching underwater resources, controlling extrac-
tion, and laying down equipment. Seafloor maps also allow ships to safely navi-
gate around both naturally occurring and man-made structures on the ocean floor.
Such seabed mapping with accurate temporal information provided by our work
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will result in better understanding of where and how to build man-made struc-
tures (port, aqua culture, oil rig, gas rig, wind turbine etc.). The design can be
made more robust to temporal changes to seabed with this additional information,
which will reduce risk and increase the sustainability of those systems.

1.4.3 Structure Monitoring

Preventive maintenance is very crucial for underwater structures. It helps to
prevent unwanted disasters. It includes visual evidence of impending failure such
as water seepage, cracks, surface degradation. In addition, underwater electric
cables and optical fiber cables monitoring is also important for safe operation
of offshore structures. Most importantly, underwater gas and oil pipeline, oil
drilling structure maintenance must be precise and accurate to safely guard against
any substantial environmental disaster. Undoubtedly, robust temporal change
detection will be decisive in avoiding such catastrophe. Temporal monitoring can
also validate maintenance work done on the structure by comparing it with the
initial structural condition.

1.4.4 Benthic habitat study

Main motivation of our work is to understand how benthic habitat changes with
time. This understanding of changes will help researcher to develop technologies
in restoring natural balance. On top of that, temporal change detection can also
validate the effectiveness of these technologies through continuous monitoring of
concerned areas affected by those technologies. Benthic monitoring can provide
early warning indicators of decreasing fish stocks. Additionally, it can help to
ensure that fish will always be available as a food and income source.

1.4.5 Pollution Detection

The quantity of marine litter in the oceans is gigantic. The amount of research
done to evaluate and address the environmental impact of marine litter has in-
creased tremendously in recent years. But much of this research is concentrated
on floating or stranded litter. Whereas there is little knowledge on marine lit-
ter on the seafloor. Through temporal monitoring of seabed near shore, we can
identify which part of the country is contributing more to ocean pollution. It will
immensely help the government to implement necessary restrictions and develop
innovative technologies in those areas to tackle the growing problem.

1.4.6 Path following

If we can geo-localize our system accurately, then we can also follow predefined
path traversed before easily. Even with temporal changes, we will not require new
positioning modality to follow the same path before. Through matching robust
descriptors between image sets of different timelines we can accurately follow the
same motion pattern or generate new motion trajectories based on our needs.



CHAPTER
TWO

THEORY

2.1 Theory

3D computer vision deals with objects described in 3D space. In this section,
we will talk about topics of 3D computer vision directly relevant to this project.
Many of the fundamental concepts will not be discussed here. We will not go in
to details in this theory section but will highlight some basic concepts on what we
are working with.

2.1.1 3D Geometry

Three-dimensional geometry facilitates the depiction of a line or plane in a three-
dimension using the x, y, and z axes. The x, y, and z axes, which are all per-
pendicular to one another and share the same units of length on all three axes
resulting in a three-dimensional cartesian coordinate system. In three-dimensional
geometry, every point’s coordinates have three coordinates (x, y, z). These three
coordinates represent a point in 3D space. We can easily construct a 3D space if
we have x, y, z coordinates of all the elements of the scene. This is called point
cloud. Using RGB-D images we can easily create such point clouds. The resul-
tant point cloud will be more sparse structure compared to grid aligned RGB-D
images. If we want to fit the point cloud in a 3D grid, we can simply use voxel of
our preferred size and associate each voxel with group of points belonging to that
voxels area. Voxels are 3D equivalent of pixels. Voxel-based methods perform well
in deep-learning tasks. But they do lose a certain amount of information during
the point cloud to voxel transformation process.

2.1.2 Point Cloud from 2D images

There are multiple ways to capture 3D point cloud of an object. For example,
Active stereo vision, Laser triangulation, Structured light and Time-of-Flight and
mostly used. For this project we are concerned with image-based point cloud
creation, particularly stereo vision. The stereo vision method records two 2D
images of the target item from two distinct viewpoints using two cameras. With
known camera relative pose and camera intrinsic, we can identify the disparity
between two same points residing at different pixel location for each camera’s
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2D image plane through triangulation method. Which will give us the x, y, and
z coordinate of that pixel. it is only possible to use triangulation if we have
same point present in those image pairs. Thus, correct point correspondence
between images has a significant effect on point cloud accuracy. In addition,
smooth featureless surface provides little means to establish point correspondence
between image pairs. That causes difficulty in creating point clouds for that
featureless area which results in a sparsely populated point cloud.

2.1.3 Structure from Motion (SfM)

SfM is a popular method used to create a 3D point cloud from multiple 2D images
of different camera poses. The main principle is the same as stereo vision. In this
case the corresponding images in sequence act as stereo pairs. When we have the
matching locations of multiple points on two or more photos, there is usually just
one mathematical solution for where the photos were taken. Therefore, a singular
step known as “bundle adjustment" can be used to calculate individual camera
poses (positions and orientations), camera intrinsic (focal lengths, principal point
etc.), relative position corresponding features. The final optimization produces a
near accurate structure of the scene. Taking SfM points as ground control along
with known camera parameters, we can produce a dense model. All pixels of all
the images can be used to increase the resolution of the structure. This process
is also known as multi view stereo matching (MVS). A final georectification is
done to convert the local coordinate system of the point cloud into a georefer-
enced coordinate system either using ground control points (known geographical
coordinates) or with actual camera position and focal lengths. It has some im-
portant advantages over stereo image methods. SfM can be used with images of
different ranges of distance and angles without any prior knowledge of locations
or orientations. In addition, it does not require a stable platform with fixed ele-
vation (reduced operational cost). To increase the accuracy of point cloud, it is
important to have multiple views of same area from different camera poses and
significant overlap between image pairs for greater point correspondence.

2.1.4 Point cloud registration

Point cloud registration is a process of transforming one point cloud to correctly
align itself with another point cloud. For our case, we can simply say that we
are looking for an optimal homogenous transformation matrix that can convert
coordinates of all the points of our source point cloud to be similar with the
coordinates of the target point cloud. Traditional methods for registration are
based on minimizing geometric projection error, which is achieved by correspon-
dence searching and transformation estimation. Currently, there are multiple Deep
Learning based solutions. For our project we are more interested in traditional
methods compared to deep learning-based methods. The reason for this will be
discussed in the report’s result section. Instead of using RANSAC by Fischler and
Bolles [4] based global registration, fast global registration by Zhou, Park, and
Koltun [8] is implemented to get an initial transformation matrix estimate with
much lower computational cost. Now using this initial estimate, we can leverage
on the ICP (Iterative Closest Point)Rodrigues and Tani [6] based local registration
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to get an extremely high registration accuracy. We choose Point-to-Plane byChen
and Medioni [9] ICP which uses the following objective function:

E(T)= Y ((p—Tq)-ny)’ (2.1)

(p9)eK

Where n, is the normal point of p.

In addition, point-to-plane ICP has faster convergence speed than point-to-point
ICP. To remove outliers in the registration process, we can use different robust ker-
nels. which results in better registration performance as shown in Babin, Giguere,
and Pomerleau [10]. The main idea of a robust loss is to lower large residuals
resulting from outliers. This is achieved by optimizing E(T) as:

N

E(T)= Y ((p—Tq)-ny) =>_ p(ri(T)) (22)

() EK i=1

Where, p(r) is the robust loss or robust kernel

2.1.5 Machine Learning and Deep Learning Techniques

Machine learning helps computer to learn from data or experience and make pre-
dictions based on that learning. Machine learning provides an intelligent data
driven approach with out hard coding the solution for a particular problem. There
are mainly three types of machine learning domain depending how they leverage
on provided data.

e Supervised Learning: In supervised learning, Machine Learning algorithm
trains it self using labels data. The task is to map each inputs to their
corresponding true labels or ground truth. These systems are data hungry.
And often its expensive, time consuming to hand label those huge amount
of data. Efficiency lies on how well and accurately the data is labeled.

e Unsupervised Learning: Its a opposite notion to supervised learning. No
need of labeled data is required here to train the model. They often cluster
the data based on maximum similarity . Most of the traditional clustering
algorithms are based on unsupervised learning.

e Reinforcement Learning: RL or reinforcement learning learns from experi-
ence. Given an environment, it applies all possible actions and get rewards
based on put goal. The idea is to maximize the reward. With maximizing
the reward, system learns to take best actions in each possible state based
on previous experience. Thus the RL system provides optimal state action
pair for achieving the ultimate goal.

Self-supervised learning is an emerging domain in machine learning community.
Generally. this models are fed with unstructured data, and trained to generate
data labels automatically. Using these generated labels as ground truth , the
model trains it self.
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2.1.5.1 Deep Learning:

Deep Learning is a sub field of Machine Learning inspired from human brain
analogy. It is composed of closely connected neurons with variable weights. Which
significantly increases the number of parameters. This in general provides better
generalization of the objective function. Following 2.1.1 and 2.1.2 illustrates such
analogy:
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dendrites

axon

nucleus terminals

N impulses carried
away from cell body

cell body
(@)
o Wo
———___"@ synapse
axon from a neuron ik
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output axon
activation
function

(i)

Figure 2.1.1: (i) Human neuron (ii) Mathematical analogy of Neuron

Input data Parameters update (Computation units)

V"a ——> Output Class Score

Input layer Hidden layer Output layer

Figure 2.1.2: Simplified Deep Learning model based on brain analogy

Each deep learning model has following sets of basic function to train, update,
optimize and test the input data:
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e Forward Propagation: Forward propagation is the process of computing and

storing intermediate variables (including neural network outputs) for the
models in the order from input layer to output layer. Lets assume Z is a
linear function at i computation node. Then

7' =W'w + b (2.3)

Where W is a randomly initialized weight, x is the input matrix and b is a
randomly initialized bias vector. Now, we multiply the linear function with
a non liner activation function o which results to output:

a'=o(Z") (2.4)

Loss Function: Neural networks contain a crucial component called the loss
function that measures the discrepancy between the predicted value and the
ground truth. It is a non-negative variable where the robustness of the model
grows as the loss function’s value decreases.

— Cross entropy Loss:

Contrastive Loss:

Reprojection error based loss:

— Pose based Loss:

Back Propagation: Back propagation from the work of Rumelhart, Hinton,
and Williams [11] refers to the method of calculating the gradient of neural
network parameters,in general, back propagation calculates and stores the
intermediate variables of an objective function related to each layer of the
neural network and the gradient of the parameters in order of the output
layer to the input layer according to the chain rule in calculus

Parameter Update: Updating procedure of the network now utilizes such
gradients achieved in previous step. It updates the weight and bias variable
using following analogy:

W™ =W" — Iy % dW" (2.5)

b" =0" — lr % db" (2.6)
Where Ir is the learning rate

Activation Function: The artificial neural networks’ activation functions are
a crucial component. In essence, they decide whether or not to activate a
neuron. The activation function is the non-linear transformation that we do
over the input signal. Some frequently used activation functions:

— Sigmoid: A sigmoid function is a mathematical curve that looks like the
letter "S." as shown in figure 2.1.3 In machine learning, we often use
the term "sigmoid function" to talk about the logistic sigmoid function.
The main job of a sigmoid function is to take input values and squash
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them into a smaller range. This makes it easier to interpret the values
as probabilities.

S(z) =1/(1+ ) (2.7)

Sigmoid Function

0.8

0.6

S(x)
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0.2
S(x)=1/(1+e™)

Figure 2.1.3: Sigmoid Function

— Tanh: The hyperbolic tangent function, tanh, shares a similar shape
with the sigmoid function. However, unlike sigmoid, tanh maps nega-
tive values to even more negative values and brings zero values closer
to zero. Equation 2.7 provides the description of a specific type tanh
activation function.

tanh(z) = (e* — e ) /(e + €7%) (2.8)

Hyperbolic Tangent Function
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X

Figure 2.1.4: Tanh Function

— ReLU: The ReLU (Rectified Linear Unit) function is an activation func-
tion commonly used in deep learning. It has gained popularity due to
its simplicity and effectiveness in neural networks.It returns the input



14

CHAPTER 2. THEORY

value x if it is greater than or equal to zero, and returns zero otherwise.
The ReLU function introduces non-linearity to the network, which is
essential for learning complex patterns and making the network more
expressive. 2.1.5 function introduces non-linearity to the network, al-
lowing it to model and learn complex relationships between inputs and
outputs. Linearity alone in the network’s activation functions would
result in a linear combination of linear functions, limiting its capacity
to represent more intricate patterns.

ReLU(z) = max(0, x) (2.9)

ReLU Function
10 T

RelLU(x) = max(0, x)

ReLU(x)

-10 -5 0 5 10

Figure 2.1.5: ReLU Function

— Leaky ReLU: The Leaky ReLU (Rectified Linear Unit) function is a

variations of the ReLLU function that addresses one of its limitations,
which is the "dying ReLU" problem. In comparison to the ReLU func-
tion, the LeakyReLU function allows a small gradient for negative in-
puts, preventing the neurons from becoming completely inactive. This
helps to alleviate the "dying ReLU" problem and promotes better learn-
ing in deep neural networks.

LeakyReLU (z) = max(z, alpha * x) (2.10)

where alpha = 0.1



CHAPTER 2. THEORY 15

. Leaky ReLU Function

Leaky RelLU(x)
B

Leaky ReLU(x) = max(x, 0.1*x)

-10 -5 0 5 10
X

Figure 2.1.6: Leaky ReLLU Function

Some common properties of these activation functions:

— Sigmoid functions and their combinations generally work better in the
case of binary classifiers

— Sigmoids and tanh functions are sometimes avoided due to the vanishing
gradient problem

— ReLU function is a general activation function and is used in most cases
these days

— If we encounter a case of dead neurons in our networks the leaky ReLU
function is the best choice

— Always keep in mind that ReLLU function should only be used in the
hidden layers

— As a rule of thumb, you can begin with using ReLU function and then
move over to other activation functions in case ReLU doesn’t provide
with optimum results

e Optimization Algorithms: Optimization algorithms helps us to minimize (or
maximize) an Objective function (another name for Error function), which is
simply a mathematical function dependent on the Model’s internal learnable
parameters which are used in computing the target values from the set of
predictors used in the model. Some of the most used optimizer are listed
below:

— Gradient Descent : It is an iterative first-order optimisation algorithm
used to find a local minimum/maximum of a given function. This
method is commonly used in machine learning (ML) and deep learn-
ing(DL) to minimise a cost/loss function. Gradient Descent Algorithm
iteratively calculates the next point using gradient at the current po-
sition, scales it (by a learning rate) and subtracts obtained value from
the current position (makes a step). It subtracts the value because we
want to minimise the function (to maximise it would be adding). This
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process can be written as:
0:=0—axVJ0) (2.11)

0 represents the parameters of the neural network (weights and biases),
a (alpha) is the learning rate, which determines the step size taken in
the direction of the gradients. It is a hyperparameter that needs to
be set manually. V.J(0) represents the gradient of the loss function J
with respect to the parameters . The gradient indicates the direction
and magnitude of the change needed to minimize the loss. The smaller
learning rate the longer GD converges, or may reach maximum iteration
before reaching the optimum point. If learning rate is too big the
algorithm may not converge to the optimal point (jump around) or
even to diverge completely.

Adam: Adam is an optimization algorithm that serves as an alterna-
tive to the conventional stochastic gradient descent (SGD) procedure
for iteratively updating network weights based on training data. Un-
like SGD, which uses a fixed learning rate throughout training, Adam
incorporates adaptive learning rates and other techniques to enhance
the optimization process.

m=pFxm+(1—p01)*g (2.12)

v=PFrxv+ (1 B)* (g% (2.13)

Where m represents the first moment estimate, which is the expo-
nentially decaying average of past gradients, v represents the second
moment estimate, which is the exponentially decaying average of past

squared gradients.
. m

TR
v
1— 04
Where m and v are bias-corrected versions of m and v, £, and [
are hyperparameters that control the exponential decay rates for the
moment estimates (0 < 51 < 1 and 0 < f5 < 1) and t represents the

time step or iteration number.

(2.14)

(2.15)

U=

__nxm
V() + e

Where w is model weights,n is the step size that determines the magni-
tude of weight updates. € is a small constant added to the denominator
for numerical stability.

w=w (2.16)

RMS Prop : It is an optimization algorithm commonly used in deep
learning for updating network weights during training. It is an ex-
tension of the classical gradient descent algorithm that addresses some
of its limitations, such as slow convergence and sensitivity to learning
rates.

v(t) = pxv(t—1)+ (1—p)* (grad®) (2.17)
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Where v(t) is the current value of the first moment estimate (squared
gradients). p is the decay rate that controls the contribution of previous
estimates. Typically, it is set to a value like 0.9. grad is the gradient of
the network weights at the current iteration. w(t) is the updated value
of the network weights.

w(t) =w(t—1)— * grad (2.18)

n
V() +e)

7 is the learning rate that determines the step size for weight updates.
epsilon is a small constant (e.g., le-8) added for numerical stability to
avoid division by zero.

Some common terms used in Deep Learning:

— Training, Test and Validation set: Division of the data set into training
and validation set for training phase, and testing set for testing phase.
There is no overlapping of sample in between the sub data sets.

— Batches: Instead of delivering the complete data set as an input at once
when training a neural network, we randomly partition the input into
many pieces of equal size feed it to the network. Model trained on these
batches of data is more generalized compared to full data set.

— Epochs: An epoch is defined as a single training iteration of all batches
in both forward and back propagation. This means 1 epoch is a single
forward and backward pass of the entire input data.

— Regularization: Method generally used for removing over-fitting. Reg-
ularization can be described as change we make to a learning system
that is designed to lower its generalization error but not its training
error.

— Dropout: Randomly dropping some neurons in the hidden layer to
protect against over-fitting. Dropout is one type of regularization tech-
nique.

— Batch Normalization:t, batch normalization is used to ensure that dis-
tribution of data is the same as the next layer hoped to get.

— Data Augmentation: Process of changing orientation, or color of images
to create more data sample or class sample with higher variance for
better system generalization ability.

— Vanishing Gradient: When the gradient of the activation function is
very small, the vanishing gradient problem occurs. The weights are
multiplied with these small gradients during back propagation, thus
they have a tendency to get smaller and "vanish" as they move deeper
into the network. As a result, the long-term dependency is forgotten
by the neural network. Exploding gradient is just opposite of vanishing
gradient

— Bias Variance Trade off:Bias is the difference between the average pre-
diction of our model and the correct value which we are trying to pre-
dict. Model with high bias oversimplifies the model. It always leads to
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high error on training and test data.Variance is the variability of model
prediction for a given data point or a value which tells us spread of our
data. Model with high variance does not generalize on the data which
it hasn’t seen before. As a result, such models perform very well on
training data but has high error rates on test data.

Transfer Learning: Utilizing already learned model and train it in a
new data set. It can be either feature extraction: only last layers are
updated during training. or Fine tuning: all the layers are updated
during training on new dataset. Transfer learning lowers training time
as its weight are already at a good initialized position.

2.1.5.2 Deep Learning Applications:

e Computer Vision: Deep Learning technique has revolutionized the field of
computer vision. With the introduction of convolutional neural network, we
achieved significant advancement in the field of computer vision. There a
diversified application in this domain. Some of the most important ones will
be mentioned here.

— Feature Extraction: Extracting useful information from an image or set

of images or even a video. Useful information can be defined by the end
user. Like edge detection, Feature point selection or color detection.

Image Classification: Classifying an image. It can be single image call
or bounded box multi-class classification in a single image. For example,
detection human, car, tree in a photo and locate them in pixel space.

Continuous Monitoring and Tracking: The use case is vast. From struc-
tural monitoring to security. Offshore structure monitoring, Manufac-
turing Fault detection, System failure detection, Bird tracking or eye
tracking for auto focusing in camera system, security against intruders
and anomaly detection.

Neural Rendering: Fast Deep learning based graphics rendering is be-
coming very popular. They are fast and fairly accurate compared to
traditional rendering techniques.

Generative Adversarial Network(GAN): A generative model’s objective
is to analyze a set of training examples and discover the probability
distribution that produced them. The estimated probability distribu-
tion is then used by Generative Adversarial Networks (GANs) from
Goodfellow et al. [12] to produce more realistic instances similar to the
training example. Deep Fake, Style transfer, Image enhancement are
some of the most common implementations of GANs.

Image Enhancement: Image resolution up scaling, down scaling, image
quality enhancement, noise removal, color restoration are most used
deep learning based techniques for image enhancement.

Localization and Mapping: Localization of an object or vehicle based on
visual surroundings, Mapping on the environment based on overlapping
visual features captured by cameras in motion.
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— Semantic Segmentation: Segmenting classified object and its are in the
images, detecting fault though segmentation of images.

— Pose Estimation and Action Recognition: Estimating human pose in
sports, or action detection in security cameras or human tracking sys-
tem.

— Change Detection: Determining temporal changes in diverse types of
objects for preventive monitoring and accident alarm.

e Robotics: The filed of robotics has been heavily influenced by deep learning,
particularly by deep reinforcement learning Mnih et al. [13]. Some of the
most used cases will be illustrated below:

— Motion Planing: Planning of vehicle motion based on changes in sur-
roundings. In addition industrial robot motion for doing particular
dynamic job.

— Path Planing: Dynamic environment path planning based on continu-
ous obstacle detection collision avoidance.

— Localization and Mapping: Mapping the environment and localize it
self in the environment by using multi modal(IMU, LASER, IMAGE)
SLAM.

— Job task optimization: Optimal state-action selection for achieving a

particular goal for each jobs.

e Data Analytic: The world is full of data. Intelligent data understanding and
utilizing will significantly improve human lifestyle and also technological
advancement and increased safety.

— Market Analysis and Stock exchange prediction: Trained on market
and stock exchange data, Deep learning can predict future outcome.

— Weather prediction: Weather prediction model can be greatly improved
by deep learning based prediction

— Biotechnology: Genome understanding and development of new bio
material can be done through deep learning based analysis.

— System monitoring: Predicting failure based on system and/or sensor
data.
e Natural Language Processing:
— Chatbot: Developing chatbot for intelligent machine conversation. for
example chatGPT
— Summarizing: Summarizing a topic or book through Al.

— Language Translation: Translating languages based on Deep Learning
models. For example, English to Norwegian.

— Speech Recognition: Understanding speech signature for bio metric
identification. Speech to word transformation

— Sentiment Analysis: Predicting human sentiment through words or
speech analysis.
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— Text Generation: Al generated text based on human given topics

Here only an overview of Deep Learning practices has been illustrated. It will
be beyond our scope to discuss each topic in deep due to vastness of the domain. In
depth description of loss function, activation function and optimization techniques
will be discussed in next chapter. That’s why a detailed description is skipped.
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METHODS

The focus of our thesis has primarily been on the dataset creation procedure,
specifically on dataset cleaning and pre-processing methodology. We have dedi-
cated a significant portion of our thesis to discuss these aspects, while compara-
tively less emphasis has been placed on how to utilize knowledge from the dataset
for designing models and training it. Since limited research has been conducted
on this topic, our thesis aims to provide valuable insights and tools for future
researchers in processing the dataset and evaluating models.

There are two factors that contribute to the complexity of our thesis problem
statement. Firstly, collecting and pre-processing the data is an expensive and
time-consuming process. Secondly, even after obtaining clean data, it is challeng-
ing to establish similarities between places revisited in different years. This is often
due to significant changes in image features over time and the presence of invasive
species expansion over some areas. As a result, there may be no similar landmarks
or reference points available between images from same area over different time
period.

In this section, we will provide a detailed methodology for cleaning and pre-
processing of the existing raw data. Additionally, we will also look into different
architectures that can use our dataset for effectively solving geo-localization prob-
lem in underwater environments.

This chapter is divided into three principal components:
e Data collection and pre-processing
e Fine-tuning point cloud registration

e Utilizing dataset knowledge for designing deep learning-based geo-localization
model

3.1 Data Collection and Pre-processing

In our thesis, the primary focus is on utilizing 3D information from the dataset to
enhance the model’s geo-localization capabilities. Traditional 2D image matching

21
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models rely on finding similar features in images, which may not be applicable
in real-life underwater scenes, especially in benthic habitats. These habitats have
lower visibility and undergo significant changes over time due to variations in
species abundance, invasive species impact, pollution, and climate change. To
address these challenges, we aim to investigate the potential of leveraging 3D in-
formation to mitigate such issues.To utilize such multi year data data and their
3D characteristics, we require 3D point clouds of the same area from multiple years

Firstly, let’s delve into the specific 3D information we are referring to. In our
model, we employed Structure-from-Motion (SfM) techniques to construct a com-
prehensive 3D map of the underwater environment for a given year. This approach
provided us with a detailed and reasonably accurate interpretation of the scene in
three dimensions. Instead of relying solely on 2D information, which includes the
x and y coordinates based on the camera frame, we now have a global representa-
tion of the underwater site. This representation encompasses x, y, and z values in
a global coordinate system that remains consistent over time as oppose to image
coordinate system. This global representation is crucial when comparing dataset
from the same location across different time periods.

The dataset we are working with is collected as described in Pizarro et al. [14].
They have conducted multiple visits to the same location in 2014, 2015, and 2016,
creating maps of the area. To establish precise positioning, they utilized prior
pose and depth based on GPS data. By employing these ground references, they
generated a 3D representation of the scene using full bundle adjustment.

Data Collection and pre-processing section consists of following subsection:
e 3D Model Creation
e Data Pre-processing
e Camera Pairing

An overview of each section is illustrated in the figure 3.1.1

3.1.1 3D Model Creation

The 3D model was constructed by capturing a series of overlapping images of
the underwater environment. The dataset from 2014, 2015 and 2016 consists of
1600, 1234 and 1348 images respectively. To achieve a dense and accurate recon-
struction, the Full Bundle Adjustment technique was applied using Metashape.
This technique involves optimizing the camera parameters and 3D structure to
minimize the reprojection error and ensure precise alignment of the images in the
model.

The Metashape works primarily based on the following principle of 3D reconstruc-
tion:
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Figure 3.1.1: Data collection and pre-processing flow chart
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Epipolar Plane II

Left epipolar line Right epipolar line

Figure 3.1.2: 3D point triangulation

e Computation of Fundamental Matrix using corresponding points: The Fun-

damental matrix is computed by considering corresponding points in the
images. It satisfies the equation 3.1 for all points involved. With the known
values of z, =, The elements of the matrix F can be expressed as linear
equations. When there are at least 8 point correspondences, it is possible to
solve the F matrix values linearly, up to a scale factor. In cases where there
are more than 8 correspondences, a least squares solution can be determined.

cFz =0 (3.1)

Computation of camera matrix from the fundamental matrix: The camera
matrices(internal and external) can be derived by decomposing the essential
matrix.

Computing 3D Points: The 3D points in space are computed based on cor-
responding matched points between two images using triangulation. The in-
tersection of back-projected lines from these points, which lie on the common
epipolar plane, determines the 3D point. However, 3D point correspondence
cannot be established for points that lie in the baseline between two images,
as they are co-linear.

In Metashape, these processes are automated and user-friendly. The steps followed
to create a dense reconstruction from given images are as follows:

e Step One (Alignment):This step involves triangulation and Bundle Block

Adjustment (BBA). Metashape generates tie points, which are matched fea-
ture points across the images. It also calculates the camera pose for each
image, including the estimation and refinement of camera orientation pa-
rameters. This step results in a sparse point cloud model and per-camera
pose estimation, which are essential for dense map creation and further 3D
reconstruction in Metashape. This was done using Metashape GUI software.
First we chose the preferred longitude and units (Degree, Minute, second and
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Coordinate system unit) from the Preference option at Tools menu. Then
we add the image folder from the "Workflow" menu. Then we used " Aligned
Photos" option from the same "Workflow" menu(takes around 8 hr on rtx
3070 GPU). This process finds similar features, create tie points and find
camera matrices/orientations. We manually assigned markers in the images
where ground control points are present. We edit the marker values based
on the GPS data. Now based on the marker data, the model will provided
a more accurate tie points.

e Step Two (Surface Creation): The second step focuses on creating 3D sur-
faces, such as meshes or 2.5D representations like Digital Elevation Models
(DEMs). Metashape uses polygonal models (meshes) that can be textured
for realistic digital representations. Tiled models can be generated for effi-
cient visualization and smooth scene navigation. Metashape utilizes dense
stereo matching techniques and the anticipated camera locations to create a
dense point cloud, enhancing the level of detail in the model.W e can create
the dense point cloud using Build Point cloud Method from the same menu.

e Step Three (Orthomosaic Generation): The final step involves generating an
orthomosaic, which serves as a geo-referenced base layer for various types of
maps. The images are projected onto a chosen surface (DEM or mesh) using
their Exterior Orientation/Interior Orientation (EO/IO) data. By aligning
and adjusting the images based on positional and orientation information,
a high-resolution and distortion-free orthomosaic is generated. This geo-
referenced orthomosaic is crucial for creating accurate and detailed maps,
facilitating effective visualization and analysis of geographic data. In similar
way as previous steps, we can Build DEM and Build orthomosaic using the
workflow menu.

e Step Four (Saving Point Cloud in Appropriate Coordinate system): The
generated point cloud from Metashape is in WGS 84 (EPSG::4326). So we
first determine the projected coordinate system for our region. Based on
the GPS longitude and Latitude, The underwater survey region falls under
UTM zone 55S. Now we export the point cloud to WGS 84/UTM zone 555
(EPSG::32755) coordinate system. It is also important keep in mind to
save X,v,z shifting value from the year 2014 point cloud and use them for
year 2015 and 2016 point clouds. For us, the shifting value was [x, vy, 7|
= [-332400, -8375600, 0] Finally, Metashape automatically does everything
about the coordinate conversion based on the user input while exporting
the point cloud. After the coordinate conversion, the point clouds for year
14,15,16 look like figure 3.1.3, figure 3.1.4 and figure 3.1.5 respectively:

e Step Five (Exporting Camera Pose, reference, Local to Global transforma-
tion Matrix, Camera Intrinsics): In this step we first converted the camera
reference coordinate system to WGS 84/UTM zone 555 (EPSG::32755) co-
ordinate system using the transformation pan in reference toolbox. After
that we exported the camera in Metashape xml format. In the same time,
we also exported the camera intrinsic in OpenCV format.
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Figure 3.1.3: Dense Point cloud of dataset14
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Figure 3.1.4: Dense Point cloud of dataset15
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Figure 3.1.5: Dense Point cloud of dataset16
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Step Six (Tie Point selection): Tie points are the image pixels that has
multiple correspondence among other images. These correspondences are
done using SIFT feature matching inside the Metashape module when the
alignment command is running. We have collected tie points per images
using the Metashape python API.

After all these steps, now we have a complete 3D representation of the scene
in following formats:

A dense 3D point cloud of the Scene
Tie points of each images

Optimized Camera Intrinsic and Extrinsic (Internal and External Orienta-
tion)

Known Coordinate Systems(Global, Local) used to define the cameras and
point clouds

Transformation matrix for conversion between Global and Internal coordi-
nate system

3.1.2 Data Pre-processing:

Point cloud of the scene itself is not suitable to use for cross year evaluation. This
is because of the following reasons:

Misalignment: It is not possible to replicate the exact path or motion of
the vehicle while travelling to the same place over different time periods.
There will be differences in camera position, orientation of the cameras, path
trajectory and depth. Just by observing how different numbers of photos
(1600, 1234, 1348 images for the year 2014,2015 and 2016 respectively) were
used to reconstruct the same scene from different years, we can validate this
analogy.

The local coordinate system or internal coordinate system that is used by
Metashape to represent the camera pose is based on the size and shape of the
point cloud. That means internal coordinate systems with also differ among
3D scenes from different years as the shape and size of the point clouds are
not identical for each year.

Thus, to make the dataset usable for deep learning models for comparison through
extracting features, it must be processed and cleaned. This will result in correct
camera correspondence over multiple years. Now the main part of the thesis, that
is the methods used to pre-process and clean the dataset will the discussed below
in the following steps:

3.1.2.1 Step One (Point Cloud Registration):

Point cloud registration is a crucial process that involves aligning the source point
cloud with a target point cloud to maximize their overlap. The objective is to
find a transformation matrix that accurately maps one point cloud onto another,
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minimizing the spatial differences between them. But one key assumption has to
be made before using the registration process. The point cloud must have areas
with same or non modified structures over the years. That means, the temporal
changes must not be dominant. Several methods are available for point cloud
registration, each with its own approach and characteristics. These methods can
be broadly classified into two classes of algorithms:

e Global Registration: This class of Registration does not require any initial
alignment. As a result, they produce coarse alignment between point clouds
compared to the local registration method. They are well-suited for situa-
tions where the differences in camera position, orientation, and trajectory
between the point clouds are significant.

e Local Registration: On the contrary, local registration methods utilize initial
alignments and typically result in a much tighter alignment of the point
clouds. These methods leverage the initial estimates to refine the registration
iteratively, aiming for a more accurate alignment.

Our approach involves the combination of both local and global registration meth-
ods as in figure 3.1.6 due to the following reasons:

e Lack of Initial Alignment: The point clouds from different years, such as
2014, 2015, and 2016, do not have a good initial alignment. The camera
positions, orientations, and paths may vary significantly between these time
periods. By incorporating both local and global registration techniques, we
can compensate for the lack of initial alignment and achieve a more accurate
alignment.

e Improved Results with Combination: Combining global and local registra-
tion methods has been shown to yield better results in most cases. Global
registration methods can provide a coarse alignment and help establish an
initial transformation estimation. However, they may not capture fine de-
tails or handle significant local variations. On the other hand, local registra-
tion methods excel at refining the alignment locally and capturing intricate
details. By combining both approaches, we can leverage their respective
strengths and achieve a more comprehensive and precise alignment.

e Low computational cost: Both local and global registration methods can in-
deed be computationally efficient when optimized algorithms and techniques
are employed. The computational time required for registration depends on
factors such as the size and complexity of the point clouds and the specific
registration algorithm used. In the context of our approach, it is important
to note that there is no trade-off between computation time and precision
(small point cloud and availability of powerful GPU). This means that we can
achieve high precision without having a higher computational cost. This is
advantageous because it allows us to obtain accurate alignment results while
keeping the registration process efficient.
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Figure 3.1.6: Point Cloud Registration Flow Chart

Firstly, in case of global registration, there are two widely used global registra-
tion methods: RANSAC-based global registration and FAST global registration
by Zhou et al. (2016). The choice between these methods depends on our specific
problem requirements.

FAST global registration offers good results with lower computational cost, mak-
ing it an attractive option in many scenarios. However, it may not perform well
when there are significant scale differences between the point clouds. In cases
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where scale differences are prominent, FAST global registration may fail to pro-
vide accurate alignment.

On the other hand, RANSAC-based point cloud registration is known for its ro-
bustness to outliers and its effectiveness in dealing with scale differences. RANSAC
handles outliers by iteratively selecting minimal sets of correspondences and esti-
mating the transformation matrix that best aligns the point clouds based on these
samples. This robustness makes RANSAC particularly suitable for noisy data,
where variations and outliers may be present. Although RANSAC may require a
bit more computational time (typically in minutes), the robustness it offers against
outliers and, more importantly, scale differences is crucial for our multiyear data
analysis.

Considering the robustness requirements of our problem, including the need to
handle outliers and significant scale differences, RANSAC-based point cloud reg-
istration is the more suitable choice. Its ability to robustly align the point clouds
despite these challenges outweighs the slightly higher computational cost. By
selecting RANSAC-based global registration, we can ensure the accuracy and reli-
ability of our registration process for the multiyear dataset. Following steps were
taken to implement RANSAC based global registration using Open3D framework.

e Step One: Visualize unaligned point clouds: First, lets see the point clouds
initial alignment. The figure 3.1.7 and figure 3.1.8 are the visual represen-
tation of the three point clouds from two different view point. We can see
they have good amount of deviation in X, Y and some deviation in Z coordi-
nate. As previously stated in step five of section 3.1.1 "3D Model Creation",
all the point clouds are in global coordinate system WGS 84/UTM zone
558 (EPSG::32755) with same amount of shifting. Thus they are directly
comparable without any need of coordinate system adjustment.

oooooo

Figure 3.1.7: Top view of point clouds from years 2014(Red), 2015(Green),
2016(Blue)
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Figure 3.1.8: Side view of point clouds from years 2014(Red), 2015(Green),
2016(Blue)

e Step Two: Now, we will begin the process of down sampling the point cloud.
The purpose of this down sampling step is to accelerate the RANSAC process
while still achieving a satisfactory initialization for the registration. Addi-
tionally, down sampling also addresses scaling differences. For this purpose,
we have chosen a voxel size of 0.025 meters which is small enough to provide
a very good registration result without any significant increase in compu-
tation time. The figures below illustrate the down sampled point cloud.
Moreover, we estimate the normals for this new down sampled point cloud
using hybrid KDTsearch with radius of 0.05 m and maximum neighbour of
30 as the search parameter to enhance the registration process. By down
sampling the point cloud and estimating normals, we can effectively speed
up the subsequent RANSAC process while ensuring a good initialization for
the registration.Following figures represent the down sampled point clouds.

nnnnnn

Figure 3.1.9: Top view of down sampled point clouds from years 2014(Red),
2015(Green), 2016(Blue)
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Figure 3.1.10: Side view of down sampled point clouds from years 2014(Red),
2015(Green), 2016(Blue)

e Step Three: We are using feature based RANSAC global registration. So we
have to represent each voxel into a feature. A 33-dimensional FPFH feature
space(Fast Point Feature Histogram by Rusu [15]) for each down-sampled
voxel that has been created. We search and compute the FPFH. using hybrid
KDTsearch with a radius of 0.25 m and neighbour size of 100 as the search
parameter.

e Step Four: Now we will use RANSAC based registration on feature match-
ing to approximate the transformation matrix for point cloud alignment.

In Open3D registration _ransac_based _on__feature matching function
takes following parameters:

source: Down-sampled source point cloud
target: Down-sampled target point cloud

source feature: Set of FPFH features of down sampled source point
cloud

target feature: Set of FPFH features of down sampled target point
cloud

mutual filter: Set to "True". We ensure that each point in the source
point cloud has a corresponding point, which refers to itself, by setting
the self-correspondence to True. This enables a more comprehensive
correspondence set and guarantees that no point is missed during reg-
istration.

max _correspondence distance: Maximum correspondence points-pair
distance. We set a value of voxel _size*8.5 or 0.2125 m. We put a higher
value to increase the search radius. this is due to using down-sampled
version of the point cloud.

estimation method: Here, "TransformationEstimationPointToPoint"
method of Open3D is used to estimate the transformation matrix,
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which is based on minimizing the point-to-point distances between cor-
responding points in two point clouds. We also set scaling factor "True"
to take care of point cloud scaling difference. This method provides bet-
ter result in the presence of scale difference between point clouds.

— ransac_ n: We used the default value of 3. That means the model uses
RANSAC with 3 correspondences.

— checker: To check if aligned point clouds are close (less than specified
threshold). In our case, We used both correspondence checker based
on edge length (threshold 0.9) and correspondence checker based on
distance(voxel _size*8.5).

— criteria: We set max RANSAC iteration to 1000000, and confidence to
.99999.

To visually demonstrate this, Figure 3.1.11 showcases the result of the RANSAC-
based point cloud registration of the 2015 point cloud to the 2014 point cloud.

(a) Top view of unaligned point clouds (b) Side view of unaligned point clouds

(c) Top view of aligned point clouds (d) Side view of aligned point clouds

Figure 3.1.11: RANSAC based global registration from 2015 to 2014 (Red:2014,
Green:2015)

Similarly, Figure 3.1.12 presents the corresponding result for the registration
of the 2016 point cloud to the 2014 point cloud.
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(a) Top view of unaligned point clouds (b) Side view of unaligned point clouds

(c) Top view of aligned point clouds (d) Side view of aligned point clouds

Figure 3.1.12: RANSAC based global registration from 2016 to 2014 (Red:2014,
Blue:2016)

It is not possible ti understand which registration method is performing well.
To compare them quantitatively, in the results section, we present a comprehen-
sive performance comparison between two feature-based global registration algo-
rithms: FAST and RANSAC. Upon conducting the initial registration step, it was
observed that RANSAC produced highly similar point clouds even in the initial-
ization step. By performing a detailed analysis of the registration outcomes, we
found that RANSAC consistently outperformed FAST in terms of accuracy and
robustness. RANSAC exhibited a higher degree of correspondence between the
matched features in the two point clouds, leading to a more precise alignment.
Furthermore, RANSAC demonstrated superior resistance to outliers and noise
compared to FAST, resulting in more reliable and consistent registration results.

Now, after establishing an initial alignment between the point clouds using
global registration, we can proceed to finely adjust and enhance the registration
through the utilization of a local registration method. In this case, we will be us-
ing an effective and popular Iterative Closest Point (ICP) algorithm. ICP enables
us to refine the alignment and achieve a more accurate registration of the point
clouds. In general there are two versions of ICP, Point-to-point with objective
function as in equation 3.2 and Point-to-plane with objective function in equation
3.3 . We will be using the extended version of ICP known as Point-to-plane ICP.
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E(T)= > llp—TqlP (3.2)

(p9)EK

E(T)= )Y ((p—Tq)n,) (3.3)

(p.9)EK

Where, E(T) is the transformation matrix (7") estimation, p (target point) and
q (source point) are from the correspondence set K. n, is the normal of point p.
Point-to-plane ICP improves registration accuracy compared to point-to-point ICP
by considering the surface geometry of the point clouds. Here are a few reasons
why we choose point-to-plane ICP rather than point-to-point ICP:

e Surface geometry: Point-to-plane ICP considers the local surface geometry
by aligning points with respect to the tangent planes of the target point
cloud. This is particularly beneficial when dealing with non-rigid deforma-
tions or surfaces with varying curvatures. By aligning points to the tangent
planes, it can handle local deformations and non-uniform surface structures
more effectively.

e Noise robustness: Point-to-plane ICP tends to be more robust to noise
compared to point-to-point ICP. Since the distances are computed between
points and tangent planes rather than point-to-point distances, it reduces the
influence of noisy or outlier correspondences. By incorporating the normal
information, point-to-plane ICP can discard outliers that do not conform to
the local surface structure.

e Non-uniform point densities: Point-to-point ICP assumes a uniform dis-
tribution of points in the surfaces being aligned. However, in real-world
scenarios, the density of points can vary across the surfaces. Point-to-plane
ICP handles non-uniform point densities more gracefully because it aligns
points based on the tangent planes, which can compensate for the variations
in point densities.

e Convergence speed: In some cases, point-to-plane ICP may converge faster
than point-to-point ICP. By using the orthogonal distances between points
and tangent planes, the optimization problem can be solved more efficiently,
leading to faster convergence and improved runtime performance.

For implementing point-to-plane ICP, we need a good initialization. We used

the output of global registration as the initial alignment for the point-to-plane
ICP algorithm to work on. Following steps and parameters were taken, provided
we have the initial alignment from the global optimization.
We are using multi _scale icp instead of a single scale icp. The multi _scale _icp
function in Open3D offers notable advantages compared to single-scale ICP. By
adopting a multiscale approach, the algorithm begins with a higher voxel size and
progressively refines the registration by iteratively transitioning to lower voxel
sizes. This approach brings two significant benefits to the registration process.

Firstly, the multiscale strategy employed by mult: scale icp yields exceptional
accuracy. Starting with a higher voxel size allows for a more coarse alignment,
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effectively capturing large-scale correspondences between the point clouds. As the
algorithm proceeds to lower voxel sizes, it refines the alignment on finer scales,
capturing intricate details and achieving highly accurate registration results. This
multiscale progression ensures that the registration process adapts to the varying
levels of details present in the point clouds, leading to improved overall accuracy.

Secondly, the use of progressively lower voxel sizes significantly reduces the com-
putational time required for registration. Rather than solely relying on a single,
fine-grained voxel size, the algorithm leverages the coarse-to-fine approach to ef-
ficiently converge towards the optimal alignment. By starting with larger voxel
sizes, which encompass larger point neighborhoods, the algorithm can initially
identify correspondences at a faster pace. As the voxel size decreases, the algo-
rithm shifts its focus to smaller point neighborhoods, narrowing down the search
space and refining the alignment. This hierarchy of voxel sizes allows for a more
efficient use of computational resources, enabling accurate registration without
using excessive processing time.

The multi _scale icp takes following parameters:

e Source: Source point cloud (point clouds from the year 2015, 2016)
e Target: Target point cloud (point clouds from the year 2014)

e Voxel size: The hierarchical approach of the voxel sizes used in the reg-
istration process begins with an initial voxel size of 0.1. Subsequently,
the voxel sizes are successively halved in two additional steps, resulting in

[0.1,0.05,0.025].

e Criteria_list: Similarly, the hierarchical criteria list comprises of three dif-
ferent values corresponding to the voxel sizes: relative fitness = [0.000001,
0.0000001, 0.00000001], relative rmse = [0.000001, 0.0000001, 0.00000001],
and max_iter = [50, 20, 10].

e Max correspondence distances = [.1, .05, 0.025] meters

e Initial transformation matrix: We used the output of our global registration
as the initial transformation matrix.

e Estimation: To estimate the transformation, we utilized the Transforma-
tionEstimationPoint ToPlane class with a robust kernel. For computing the
residuals and Jacobian matrices of the objective function, we employed the
TransformationEstimationPoint ToPoint class. To enhance the algorithm’s
robustness against outliers, we incorporated the tukey loss as suggested by
Open3D. This robust kernel works by down-weighting large residuals that
are likely caused by outliers. By reducing their influence on the solution,
the tukey loss optimizes the objective function E(T) to mitigate the impact
of outliers. If r;(T) is i'" the residual, for a given pair of correspondences
(p,q) € K we can convert the objective function as in equation 3.3 to equa-

tion 3.4
N

E(T)= Y pllp—Ta)n)* = p(riT)) (3.4)

(9K i=1
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Where p(r) is the robust kernel.

The optimization problem above can also be solved by using the itera-
tively reweighted least-squares (IRLS) approach, which solves a sequence
of weighted least squares problems as:

7’.
i=1

B(T) = 3 s (4(T)) (3.5)
By using the aforementioned steps, we increased the precision of our point cloud
alignment through a synergistic blend of Global and Local point cloud registration
algorithms. The combination of these two methods produces a refined outcome,
which can be seen in the following figures 3.2.2 and 3.1.14. Using both global and
local registration methods results in more consistent alignment of point clouds.
From the figure we can observe a more homogeneous distribution of colors/point
clouds compared to relying solely on local registration. While the visual improve-
ments may not be immediately obvious, the statistical findings also demonstrate
a slight increase in registration accuracy when employing the combined local and
global registration approach.

(a) Top view of aligned point clouds using (b) Side view of aligned point clouds using
RANSAC RANSAC

(c) Top view of aligned point clouds using (d) Side view of aligned point clouds using
RANSACHICP RANSACHICP

Figure 3.1.13: RANSAC based global registration (a, b) and RANSAC based
Global + Point-to-plane ICP based Local registration (c, d) from 2015 to 2014
(Red:2014, Green:2015)
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(a) Top view of aligned point clouds using (b) Side view of aligned point clouds using
RANSAC RANSAC

(c) Top view of aligned point clouds using (d) Side view of aligned point clouds using
RANSAC+ICP RANSAC+ICP

Figure 3.1.14: RANSAC based global registration (a, b) and RANSAC based
Global + Point-to-plane ICP based Local registration (c, d) from 2016 to 2014
(Red:2014, Blue:2016)

3.1.2.2 Step Two (Camera Registration and Pose transformation):

Once we have obtained a transformation matrix to align all the point clouds to
a single coordinate system, it is necessary to align the cameras based on their
orientation in each respective coordinate system to a unified reference. However,
this process is more complex than simply using the transformation matrix obtained
from the point cloud registration for aligning the camera orientations. This is due
to the following reasons:

e The camera orientations are described in internal coordinate system. In-
ternal coordinate systems are local coordinate system that depends on the
point cloud characteristics. This means that the camera coordinate system
differs from one point cloud to another.

e [t is important to note that coordinate shifting was applied during the visu-
alization and registration of the point clouds. However, the internal or local
coordinate values of the cameras do not consider this shifting. Consequently,
before applying the transformation obtained from point cloud registration,
it is necessary to manually adjust the camera poses to account for the coor-
dinate shifting.
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To address these challenges, we begin by converting the camera orientations
from the local coordinate systems to align with the point cloud’s coordinate sys-
tem. Additionally, a coordinate shift, similar to the one employed during the
export process in Metashape, needs to be applied. Metashape conveniently pro-
vides a transformation matrix for converting the local coordinate system to the
global coordinate system. The entire process involves the following steps:

e Local to global coordinate conversion: The camera orientation is described
in local coordinate systems which depends on point cloud structural char-
acteristics. To convert the local camera orientation to global coordinate
system, we multiplied the camera pose with the coordinate transformation
matrix provided in the Metashape camera.xml file.

e Shift coordinates: Now that we have the camera pose in Geographic coordi-
nate system (WGS 84 (EPSG::4326)), we converted them to the projected
coordinate system (WGS 84/UTM zone 55S (EPSG::32755) similar to point
cloud conversion during Metashape point cloud exporting process. Then we
shifted the coordinate by [x, y, z| = [-332400, -8375600, 0]

e Camera Position Alignment: we get an aligned camera orientation by simply
multiplying the transformation matrix from point cloud registration. Figure
3.1.15 and 3.1.16 refer to initial and registered position of cameras for the
year 2014, 2015 and 2016

camera 14
camera 15
camera 16

Figure 3.1.15: Initial unaligned camera position for the year 2014, 2015, 2016
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Transformed camera 14
Transformed camera 15
Transformed camera 16

Figure 3.1.16: Aligned camera positions for the year 2014, 2015, 2016

3.1.2.3 Step Three (Tie Point coordinate system conversion):

In order to utilize the 3D information within deep learning model, we need to
convert the coordinate system of the 3D points to an aligned point cloud coordinate
system. This process is facilitated through the use of the Metashape software and
the Pyproj library. The detailed steps for this transformation will be discussed in
the Camera Pairing section.

3.1.3 Camera Pairing:

To finalize the dataset, we have to create positive image pair and negative image
pair. Generally, negative image pair is only used to train the model. For such
reason there is no need for creating negative image pair for our test dataset. There
are three parts in this section. First, we have to pair images and secondly we
have to find correspondence point between positive image pairs from two different
years. Finally, we have to select the robust correspondence points based on their
similarity in 3D space(Are they pointing to same or near 3D points or not?). We
will not find any correspondence point/tie point in negative image pairs as they
do not share any common 3D points between them.

3.1.3.1 Step One: Positive and Negative image pairs:

We carefully established pairs of positive and negative images by considering the
differences in camera positions within a 3D space. The cameras were all looking
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straight down, so we didn’t have to worry about if they are looking upward or side
wise. Instead, we focused on the variations in the x, y, and z values of the cameras.

When it comes to the z values, more higher above the surface provides a wider
field of view compared to a lower position closer to the surface. We took this into
account when setting a threshold for the x and y values, which determine whether
the cameras overlap or not.

Initial threshold train and threshold test values are determined based on min
max 7z values for all the 3D points of each year rather than two cameras. It helps
to create balanced number of test and train image pairs. For determining this
dataset balancing threshold we used equation 3.6, 3.7 and 3.8

max_z _test —min_z test

ratio_global = , , , (3.6)
max_z_train —min_z_train

threshold _train = 0.2 % (ratio_global 4 0.1) (3.7)

threshold _test = 0.2 (3.8)

Where, max _z test,min_z test are maximum and minimum z values for
point cloud 2016. Similarly, max 2z train,min_z train are maximum and min-
imum z values for point cloud 2015

Now for comparing between two images, following equation 3.9 to 3.11 for deter-

mining x, y threshold based on z ratio was used for positive pairing between two
cameras and 3D points present in them:

—0.10 % (max_depth — z_dif f)

ratio__image pair =

for z _diff <0

max__depth | (3.9)
_ 010« (max_depth — z _dif f) for = diff >0
max_depth
threshold _train = 1.2 x threshold _train — ratio _image_pair (3.10)
threshold test = threshold _test — ratio _image pair (3.11)

Where, max _depth is the maximum depth among all the 3D points present in
two cameras we are comparing, z dif f is the difference of z value between two
cameras,one from 2014, and the other from 2015 for train set and one from 2014,
and the other from 2016 for test set.

To create positive image pairs, we compared the positions of each camera from
2014 with the cameras from 2015. If the difference in the x and y values was
lower than the threshold we determined, we considered them as a positive pair.
We applied a similar approach to create positive image pairs for the test dataset,
using cameras from 2014 and 2016.
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(a) Positive sample from 14 (b) Positive sample from 15 (c) Positive sample from 16

(a) Positive sample from 14 (b) Positive sample from 15 (c) Positive sample from 16

In the above figures, from the first row we can see that positive image sample from
overlapping area have little temporal changes. Whereas, the second row positive
image sample also from overlapping areas has significant temporal changes.

On the other hand, for negative image pairs, we wanted to select images that were
far apart. To achieve this, we used a higher threshold value and only considered
camera pairs where the differences in x and y values were greater than the thresh-
old. For the negative dataset pairs, we only used cameras from 2014 and 2015, as
they were specifically intended for training purposes.

(a) Negative sample from 14 (b) Negative sample from 15 (¢) Negative sample from 16

The above illustrated figures show negative samples with non overlapping camera
images.

By establishing both positive and negative image pairs, we aimed to create a com-
prehensive dataset that covers different camera positions and their relationships,
enabling effective training and testing of our models.

3.1.3.2 Correspondence Point Selection:

e Correspondence Points: These are points that establish correspondences be-
tween two or more images captured by different cameras. They represent
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the same physical point in the scene but appear differently in each image
due to the varying viewpoints. By identifying these correspondence points,
we can link the 2D image information to their corresponding 3D points.

e First, we have to obtain the 2D correspondence between the image pair
using SIFT feature matching. We are selecting a total of 80000 points from
3 octave layers. The reason for taking so many points is to ensure that we
are not missing any correspondence that may get neglected during point
selection based on gaussian noise response. We then calculate the SIFT
descriptor of all these points and do point correspondence using Brute force
matching with threshold value from 0.74 to 0.9. This threshold value is set to
an lower and upper limit rather than a constant value as number of matches
can be very low for lower threshold depending on the image pairs. After we
get the good point correspondence, we will remove the outliers and only take
robust matches based on their corresponding 3D points.

e Now to get the 3D points of the matched 2D points we took following steps.

— Transform camera matrices from local coordinate system to global co-
ordinate system

— Then we find the 3D points of each 2D points using camera matrices
of each image respectively.

— We determined the tie points (3D points of matched 2D points) coordi-
nate system. We found out that it uses EPSG 4978 as tie point global
coordinate system.

— Transform 3D points from EPSG 4978 to EPSG 32755 (aligned point
cloud’s coordinate system) and apply coordinate shift of [x, y, z| =
[-332400, -8375600, 0]

— Finally, We transformed the 3D points using the transformation matri-
ces we got from point cloud registrations for the year 2015, 2016

3.1.3.3 Robust 3D point selection:

Creating robust 3D points is a straightforward process. We compare each corre-
sponding 3D points obtained from previous section based on comparing image one
to image two in the positive image pairs. By calculating the differences between
these points, we sort them accordingly. We used a difference threshold of 10 cm
x,y and z axis to declare that the point correspondence are robust. The reason to
choose 10 cm is to compensate for error accumulated during 3D reconstruction,
point cloud registration and coordinate conversion. We also chose the value 10 cm
as the images are 1-1.3 meter in height and width. This 10 cm difference gives
us with a good estimate of where the temporal changes are not present in the image

By carefully selecting these subset of points with minimal differences, we ensure
that our dataset consists of highly reliable and accurate 2D correspondence based
on their 3D characteristics . These robust points between positive image pairs are
immune to temporal changes and essential for deep learning based geo-localization
model training.
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3.2 Fine-tuning point cloud registration:

Theoratically, the point cloud registration should provide us means to compare
3D points associated to images. from different years. But in reality, the transfor-
mation matrix obtained from the point cloud doesn’t perform well in every part
of the point cloud. And it significantly reduces number of robust 3D points. More
importantly, it creates a lot of wrong correspondence which is what we are trying
to avoid. To solve this, we repeated the registration process But this time, with
the output of previous registration as its initial transformation matrix and most
importantly the registration was done for a much smaller subsections of the point
clouds or chunks. During doing this, There are two things to consider here:

e Selection of chunks: It is important to decide how we want to divide the
point cloud into multiple chunks. More importantly we have to select the
center/location and radius/area for such fragmentation. In our case, it is
only beneficial that we have good registration for the image we are working
on.So it is obvious that the center of each fragmentation should be the same
location as each camera center. In addition, one image covers around 1.1
meter of area. thus we have taken a square of 2 meter length per side for
creating a chunk of area 4 meter square. Now we have a total of 1234 chunks
for 2015 and 1348 for 2016. This number was for the source point cloud.
Similarly we have fragmented the target point cloud based on its closest
point to the corresponding source point cloud’s chunk center, also with an
area of 4m?2.

(a) Center chunk (b) Side chunk (c) Side chunk

Figure 3.2.1: Point cloud chunks of size 4m? from 3 different position of the point
cloud

e Registration of Chunks: The registration process for the chunks followed
a similar approach to the registration of the entire point cloud. First, we
performed RANSAC-based global registration using the output from the
previous registration process. Then, we refined the registration further using
point-to-plane ICP for local registration. Given the large number of chunks,
it is not feasible to show all of them. Instead, we will display a representative
sample of the chunks, ensuring a homogeneous distribution across the point
cloud.

e Robust Correspondence based on chunk Registration: Finally, we
determine the 2D correspondence based on similar images from each camera
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year. Then we perform 2D to 3D mapping and ultimately compare them by
using chunk transformation matrix.

Most importantly, we found out that, using chunk registration we are getting
higher number of robust matches and no wrong matches at all. This means, mul-
tiple chunk registration approach solves all the problem that raised due to the
generalization error during whole point cloud registration.

Finally, we have a dataset that has:

e Per Camera Point cloud Registration Matrix across multiple years

e Robust 2D and 3D correspondence with minimal temporal changes

e Image mask illustrating areas with minimal changes using region growing
algorithm at robust 2D points. For example look at following figures:

(a) Positive image from year 2014 (b) Positive image from year 2015

200 200
400
600

600

800

1000

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

(c) Robust mask extracted from positive im- (d) Robust mask extracted from positive
age from 2014 image from 2015

Figure 3.2.2: Top row: overlapping images from different years. Bottom row:
masks with white regions indicating minimal temporal changes for the image (a)
and (b) respectively
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3.3 Utilizing our dataset knowledge for designing
deep learning-based geo-localization model

Now, we will discuss what kind of deep learning models can best use our dataset:

e Model with pose-based loss function: In this model, our dataset will
provide robust correspondence to establish accurate relative pose between
two images without the need of using RANSAC loop for outlier rejection. It
is more robust against outliers than RANSAC is.

e Model based on semantic segmentation: The mask created using region
growing around robust key-points can work as a ground truth for models to
produce image masks that only shows areas with minimal temporal changes.
For example, it can be used in a UNET Based Siamese network for creating
temporal image masks.

e Model which needs 3D information as an input: The close alignment
of smaller chunks obtained by our proposed system can provided better and
accurate 3D structural information for models that take images and their
3D models as inputs for image comparison tasks.
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RESULTS

The primary motivation behind this thesis was to develop a system that enables
researchers to leverage both 3D information and image data by preprocessing and
cleaning the dataset, ensuring precise and accurate information for analysis. Our
work focused on two key objectives:

e Comparing Point Clouds Across Multiple Years: We aimed to address the
challenge of comparing point clouds with temporal changes over different
years. This objective involved developing methods to effectively analyze and
identify differences between point clouds acquired at different time intervals.

e Establishing Robust Correspondence Between Images: Another objective
was to establish robust correspondences between pairs of images. We sought
to develop techniques that enable accurate alignment and matching of fea-
tures across images, facilitating subsequent analysis and comparison.

Additionally, we highlight specific systems or applications where our proposed
methodology can excel.

Based on our comprehensive analysis and results, we have successfully achieved
the intended objectives outlined above. In the following sections, we will discuss
the results obtained for each step of the process, starting with the reconstruction
phase.

4.1 3D Reconstruction:

Although 3D reconstruction was not the primary focus or objective of our problem
statement, we will provide a brief overview in this section. For a more detailed
understanding, interested readers can refer to the reconstruction report provided
in the appendices with all the information parameters are given there including
camera calibration matrix. During the reconstruction phase, we evaluated the
performance using the following performance measures for each year:

Please note that while reconstruction results will be briefly discussed, the subse-
quent sections will primarily focus on addressing our main objectives of comparing
point clouds from multiple years and establishing robust correspondence between
images.
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Table 4.1.1: Reconstruction Report

Year N images Tie points Projections Reprojection error Area

2014 1,600 984,417 3,917,915 0.560 pix 189 m?
2015 1,234 1,075,143 3,887,739 0.501 pix 206 m?
2016 1,348 730,467 4,127,915 0.570 pix 185 m?

4.2 Point Cloud Registration:

The main part of our thesis was totally devoted to this section. We have compared
different registration methods and have already discussed in methodology section
regarding our selection of the combination of both global and local registration. Or
by name, RANSAC based Local and Point to Plane based ICP local registration.
Following table illustrated our findings among all the registration methods tasted:

Table 4.2.1: Registration Result: Source Point cloud 2016 to Target Point cloud
2014

Method Fitness Max RMSE (m) Min RMSE (m) Avg RMSE (m) Time (s)
RANSAC 0.9034 2.3425 0.00001951 0.09476 3641
FAST 0.8525 2.0265 0.0000185 0.1166 1074
RANSAC + ICP 0.5241 1.9757 0.0000189 2802

Table 4.2.2: Registration Result: Source Point cloud 2016 to Target Point cloud
2014

Method Fitness Max RMSE (m) Min RMSE (m) Avg RMSE (m) Time (s)
RANSAC 0.9402 1.0963 0.00001844 0.08476 4931
FAST 0.8887 1.0554 0.0000181 0.8913 1294
RANSAC + ICP 0.4084 1.064 0.0000242 4781

It is hard to tell which model is creating the best alignment. Initially observing the
table 4.2.1 and 4.2.2, Global RANSAC + Local ICP is better with lower average
RMSE of 0.0932 and 0.05913 for point clouds from 2015 and 2016 respectively. In
addition, it is to be noted that, we cannot decide each method’s performance just
by looking at fitness value as we are working with point clouds having temporal
changes, the fitness value will be lower naturally. FAST is the worst performing
among all the methods as it does not take scale difference in account during the
registration process as expected.

There are few things to consider before you can say that the model works well:

e [ts not our goal to consider all the points as our inlier. This is due to the
fact that some of the area has naturally changed a lot thus they should have
more spatial difference than the threshold we used for registration.

e [ts is always good to lower the inlier RMSE value. But the inlier should be
the places with minimal temporal changes.
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The figures 4.2.1 and 4.2.2 illustrate the distance distribution of each point of
source point cloud to the nearest point of target point cloud after RANSAC +
ICP based global registration for point clouds from the the year 2014 and 2015.

1.0 1
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0.6 1

0.4 1
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RMSE Error in meters(for 1000 bins)

Figure 4.2.1: point cloud distance RMSE histogram for registration of point cloud
2015 to point cloud 2014(normal scale)
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Figure 4.2.2: point cloud distance RMSE histogram for registration of point cloud
2015 to point cloud 2014(log scale)

Similarly, The figures 4.2.3 and 4.2.4 illustrate the distance distribution of each
point of source point cloud to the nearest point of target point cloud after RANSAC
+ ICP based global registration for point clouds from the the year 2014 and 2016.
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By looking at the histogram, particularly the log ones, we can see around 10000
points are not closely aligned having RMSE value more that 0.25 meters. In
particular, we also observe that the histogram of 2016 is left shifted. That means,
2016 and 2014 point clouds are more closely aligned to each other compared to
2015 and 2014 ones. In addition, 2015 point cloud suffers from more misalignment
with greater distance compared to 2016 point cloud (having bigger x axis values).
This tells that 2016 and 2014 point cloud are more comparable and closely aligned
that 2015 and 2014 ones.
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Figure 4.2.3: point cloud distance RMSE histogram for registration of point cloud
2016 to point cloud 2014(normal scale)
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Figure 4.2.4: point cloud distance RMSE histogram for registration of point cloud
2016 to point cloud 2014(log scale)
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We have shown the histogram for RANSAC + ICP registration method in this
section. Now we will see, how many inliers and outliers are there for a threshold
value of 0.05 RMSE based on distance between closet point between two point
clouds.

nnnnnn

Figure 4.2.5: Inlier and outlier spatial distribution for point cloud 2015 and point
cloud 2014 registration using RANSAC -+ ICP. (Green: Inliers, Red: Outliers)

eeeeee

Figure 4.2.6: Inlier and outlier spatial distribution for point cloud 2016 and point
cloud 2014 registration using RANSAC + ICP. (Green: Inliers, Red: Outliers)
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4.2.1 Chunk Registration

In this section we will illustrate why per chunk registration outperforms RANSAC
+ ICP registration which is still showing best result up to this point. To start,
lets talk about criteria we can best use to compare which method produces best
point cloud alignment. One way to decide the accuracy of point cloud alignment
is to look at how close robust correspondence are in 3D space. In this part we
will also show how per chunk registration outperforms other methods. To do so,
we took 5 cameras spatially distributed homogeneously and compare how many
robust features (point correspondence) they have and if the RMSE is less than the
threshold (10 cm) or not. The following table shows such results.

Table 4.2.3: Registration Result: Per chunk registration vs RANSAC+ICP regis-
tration

Chunk ID Method Avg RMSE (m) N Correspondence(Corr) Corr. diff (m)
Chunk one Chunk 0.04026 116

Chunk one RANSACHICP 0.1405 54 0.0577
Chunk two Chunk 0.0891 31

Chunk two RANSACH+ICP 0.0999 44 0.0685
Chunk three Chunk 0.0791 37

Chunk three RANSAC-+ICP 0.0791 26 0.0822
Chunk four Chunk 0.0791 25

Chunk four RANSAC-+ICP 0.1379 23 0.9982
Chunk five Chunk 0.0791 23 0.0975
Chunk five RANSAC-+ICP 0.1015 28

Finally, from table 4.2.3, we can clearly observe that in almost all cases we
have much higher number of robust correspondence with lower difference between
3D representation of those points for the per chunk registration method (Green
values). This confirms that, to create a dataset which can provide robust cor-
respondence between multiyear data, per chunk based registration is the way to

go.
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DISCUSSION AND CONCLUSIONS

5.1 Discussion and Conclusion

In conclusion, this thesis has addressed the challenges of creatin underwater geo-
localization in the presence of significant temporal changes. Through our explo-
ration of data collection and pre-processing techniques, we have highlighted the
importance of obtaining accurate and aligned datasets for robust underwater geo-
localization models. Our robust feature matching approach has demonstrated
promising results in establishing correspondences between images captured at dif-
ferent times, providing a foundation for precise geo-localization in dynamic under-
water environments.

The evaluation of different point cloud registration methods has led to the identi-
fication of per-chunk RANSAC-+ICP as a superior technique for achieving higher
correspondence accuracy. This method has proven effective in mitigating the ef-
fects of temporal changes and improving the reliability of underwater geo-localization
models. However, further research is needed to optimize and refine the registration
process for more complex underwater scenes.

Overall, this thesis contributes to the advancement of underwater geo-localization
methodologies by addressing the challenges posed by significant temporal changes.
It provides valuable insights into data collection, pre-processing, feature matching,
and point cloud registration techniques specific to underwater environments.

5.2 Future work

There are several avenues for future research and improvement in the field of
underwater geo-localization. In this section, we outline some potential areas that
can be explored to further enhance the accuracy and robustness of underwater
geo-localization systems:

e Integration with State-of-the-Art Systems: An important future direction is
to evaluate our dataset and methodologies using state-of-the-art underwater
geo-localization systems. By comparing our results with established systems,
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we can validate the effectiveness of our approach and identify areas for fur-
ther improvement. However, due to the limited availability of such systems,
we propose creating a similar setup as an underwater node and adapting it
for our dataset. This would involve modifications and adaptations specific
to underwater conditions. We plan to undertake this as a summer project
this year to bridge the gap between our research and existing underwater
geo-localization systems.

Collaboration with Biologists: Collaborating with marine biologists can pro-
vide valuable insights into species behavior and their changing patterns in
underwater environments. By incorporating biological knowledge into the
data curation process, we can create more accurate and informative datasets.
This collaboration can help refine our understanding of underwater ecosys-
tems and contribute to the development of comprehensive underwater geo-
localization models. In particular, species identification and tracking can be
integrated into the process of mask creation for feature extraction.

Validation on Different Datasets: To further validate the effectiveness of
our methodologies, it would be beneficial to test our approach on differ-
ent datasets captured from various underwater environments. This would
involve collecting additional data from different locations with diverse con-
ditions and underwater scenes. Comparing the performance of our methods
across different datasets can provide insights into the generalizability and
adaptability of our approach.

Comparison with Ground-Based Data: In addition to validating our meth-
ods on different underwater datasets, it would be valuable to compare our
results with ground-based data. This would involve collecting data from
above-water or near-water perspectives using techniques such as aerial im-
agery or ground-based lidar. Comparing the geo-localization results from
both underwater and above-water perspectives can provide a comprehensive
understanding of the challenges and limitations specific to underwater geo-
localization. It can also help identify potential areas of improvement and
inspire the development of integrated multi-modal geo-localization systems.

These future research directions have the potential to advance the field of
underwater geo-localization and contribute to its practical applications in
various domains such as marine research, underwater exploration, and under-
water asset management. By addressing these areas, we can further enhance
the accuracy, robustness, and applicability of underwater geo-localization
models, ultimately facilitating a deeper understanding of underwater envi-
ronments and their dynamic nature.

As we conclude this thesis, we recognize that the field of underwater geo-localization
is dynamic and ever-evolving. Our work lays the groundwork for future studies
to build upon, with the aim of achieving even higher accuracy and robustness in
underwater geo-localization models. We hope that our findings contribute to the
broader body of knowledge in this field and inspire researchers to continue pushing
the boundaries of underwater geo-localization capabilities
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APPENDICES

All the codes can be found here:

Github repository link

e https://github.com/ashiqulalamkhan/long_term_underwater_vision
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Survey Data

Number of images:
Flying altitude:
Ground resolution:
Coverage area:

Fig. 1. Camera locations and image overlap.

1,600

2.46 m

1.55 mm/pix
189 m2

Camera stations:
Tie points:
Projections:
Reprojection error:

m>9

1,600
984,417
3,917,915
0.56 pix

Camera Model

Resolution

Focal Length | Pixel Size

Precalibrated

unknown

1360 x 1024

10.67 mm 6.45 x 6.45 pm

Yes

Table 1. Cameras.

Page 2




Camera Calibration
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Fig. 2. Image residuals for unknown.
unknown
1600 images, precalibrated
Type Resolution Focal Length Pixel Size
Frame 1360 x 1024 10.67 mm 6.45 x 6.45 pm
Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2
F 1718.02 0.056 1.00 | 0.04 | -0.44 | -0.08 | -0.06 | -0.09 | 0.17 | -0.15 [0.15 | 0.02 [ -0.39
Cx | 3.88789 0.021 1.00 { 0.02 | -0.05(0.07 [0.01 |-0.00(0.00 [0.00 [0.93 |0.03
Cy | 28.8893 0.025 1.00 | -0.02 | -0.12 | -0.02 | -0.03 | 0.03 | -0.05 | 0.02 | 0.93
B1 | 0.78335 0.0048 1.00 | -0.01 | 0.00 | -0.01 | 0.01 |-0.00 | -0.06 | 0.04
B2 | -0.0854703 0.0048 1.00 (-0.01 [ 0.01 (-0.01 [0.01 [ -0.00 [-0.12
K1 | 0.158685 0.00034 1.00 | -0.97 | 0.93 |-0.88 | 0.00 | -0.02
K2 | 0.75509 0.0065 1.00 | -0.99 | 0.96 | -0.00 | -0.02
K3 | -0.858679 0.05 1.00 [-0.99 [ 0.00 [ 0.02
K4 | 4.14514 0.13 1.00 | -0.00 | -0.03
P1 | -0.000199402 | 8.5e-06 1.00 | 0.03
P2 | -0.00175075 9.4e-06 1.00

Table 2. Calibration coefficients and correlation matrix.
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Camera Locations
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Fig. 3. Camera locations and error estimates.
Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.
Estimated camera locations are marked with a black dot.

X error (cm) | Y error (cm) | Z error (cm) | XY error (cm) | Total error (cm)
9.30188 12.5802 8.32054 15.6456 17.7205

Table 3. Average camera location error.
X - Longitude, Y - Latitude, Z - Altitude.
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Camera Orientations
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Fig. 4. Camera orientations and error estimates.
Arcs represent yaw error estimates.

Yaw error (°) | Pitch error (°) | Roll error (°) | Total error (°)
0.541962 1.88169 1.96362 2.77313

Table 4. Average camera rotation error.
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Digital Elevation Model

Fig. 5. Reconstructed digital elevation model.

Resolution: 3.09 mm/pix
Point density: 10.5 points/cm?2
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Processing Parameters

General
Cameras
Aligned cameras
Coordinate system
Rotation angles
Tie Points
Points
RMS reprojection error
Max reprojection error
Mean key point size
Point colors
Key points
Average tie point multiplicity
Alignment parameters
Accuracy
Generic preselection
Reference preselection
Key point limit
Tie point limit
Adaptive camera model fitting
Matching time
Alignment time
Optimization parameters
Parameters
Optimization time
File size
Point Cloud
Points
Point attributes
Color
Normal
Point classes
Created (never classified)
Depth maps generation parameters
Quality
Filtering mode
Processing time
Point cloud generation parameters
Processing time
File size
DEM
Size
Coordinate system
Reconstruction parameters
Source data
Interpolation
Processing time
File size
Orthomosaic
Size

1600

1600

WGS 84 (EPSG::4326)
Yaw, Pitch, Roll

984,417 of 1,204,101
0.143 (0.560489 pix)

0.73999 (15.4653 pix)
3.6448 pix

3 bands, uint8

No

5.29197

High

Yes

Yes

80,000

4,000

Yes

1 hours 15 minutes
1 hours 43 minutes

f, b1, b2, cx, cy, ki-k4, p1, p2
49 seconds
123.42 MB
39,712,554

3 bands, uint8

39,712,554

High
Mild
4 hours 54 minutes

1 hours 9 minutes
537.00 MB

7,218 x 7,219
WGS 84 (EPSG::4326)

Point cloud
Enabled
1 minutes 54 seconds

95.68 MB

8,497 x 8,276
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Coordinate system WGS 84 (EPSG::4326)

Colors 3 bands, uint8
Reconstruction parameters
Blending mode Mosaic
Surface DEM
Enable color correction No
Enable hole filling Yes
Processing time 6 minutes 23 seconds
File size 885.28 MB
System
Software name Agisoft Metashape Professional
Software version 2.0.2 build 16334
0os Windows 64 bit
RAM 15.31 GB
CPU AMD Ryzen 7 5800U with Radeon Graphics
GPU(s) None
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Survey Data

W

Number of images:
Flying altitude:
Ground resolution:
Coverage area:

Fig. 1. Camera locations and image overlap.

1,234

241 m

1.49 mm/pix
206 m?

Camera stations:
Tie points:
Projections:
Reprojection error:

m>9
mo
m8

me

m2
mi1

1,233
1,075,143
3,887,739
0.501 pix

Camera Model

Resolution

Focal Length | Pixel Size

Precalibrated

unknown

1360 x 1024

10.67 mm 6.45 x 6.45 pm

Yes

Table 1. Cameras.
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Camera Calibration
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Fig. 2. Image residuals for unknown.

unknown

1234 images, precalibrated

AL

Type Resolution Focal Length Pixel Size
Frame 1360 x 1024 10.67 mm 6.45 x 6.45 pm
Value Emmor |F [Cx |Ccy |B1 |B2 |Ki1 |K2 |k3 |k4 |P1 [P2
F |1713.34 0.079 | 1.00 |-0.06 |-0.20 | -0.03 [ 0.03 | 0.01 |0.13 [-0.10 | 0.10 |-0.08 |-0.18
Cx | 22.6097 0.021 1.00 |0.02 |-0.04 |0.03 |-0.00 |-0.02 |0.03 |-0.04 |0.93 |0.01
Cy | 25.0146 0.022 1.00 | -0.00 |-0.10 | -0.01 | -0.03 | 0.03 | -0.03 | 0.01 |0.93
B1 | 0.796136 0.0033 1.00 [0.01 [0.01 |-0.02 |0.01 |-0.00 |-0.07 |0.03
B2 | 0.00747811 | 0.0033 1.00 [0.00 |0.00 |-0.00 |0.00 |-0.01 |-0.13
K1 | 0.159102 0.00032 1.00 | -0.96 | 0.92 |-0.87 |-0.00 |-0.01
K2 | 0.666182 0.0059 1.00 |-0.99 | 0.96 |-0.02 |-0.02
K3 |-0.340271 | 0.044 1.00 |-0.99 | 0.03 |0.02
K4 | 3.07592 0.11 1.00 | -0.04 |-0.03
P1 | -0.0019739 | 8.4e-06 1.00 |0.01
P2 | -0.00124616 | 8.5¢-06 1.00
Table 2. Calibration coefficients and correlation matrix.
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Camera Locations
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Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.
Estimated camera locations are marked with a black dot.

X error (cm) | Y error (cm)

Z error (cm)

XY error (cm)

Total error (cm)

7.34502 5.81798

1.95879

9.37007

9.57262

Table 3. Average camera location error.
X - Longitude, Y - Latitude, Z - Altitude.
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Camera Orientations
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Fig. 4. Camera orientations and error estimates.
Arcs represent yaw error estimates.

Yaw error (°) | Pitch error (°) | Roll error (°) | Total error (°)
0.204265 0.644811 0.460692 0.818378

Table 4. Average camera rotation error.
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Digital Elevation Model

Fig. 5. Reconstructed digital elevation model.

Resolution: 2.98 mm/pix
Point density: 11.3 points/cm?2
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Processing Parameters

General
Cameras
Aligned cameras
Coordinate system
Rotation angles
Tie Points
Points
RMS reprojection error
Max reprojection error
Mean key point size
Point colors
Key points
Average tie point multiplicity
Alignment parameters
Accuracy
Generic preselection
Reference preselection
Key point limit
Tie point limit
Adaptive camera model fitting
Matching time
Alignment time
Optimization parameters
Parameters
Optimization time
File size
Point Cloud
Points
Point attributes
Color
Normal
Point classes
Created (never classified)
Depth maps generation parameters
Quality
Filtering mode
Processing time
Point cloud generation parameters
Processing time
File size
DEM
Size
Coordinate system
Reconstruction parameters
Source data
Interpolation
Processing time
File size
Orthomosaic
Size

1234

1233

WGS 84 (EPSG::4326)
Yaw, Pitch, Roll

1,075,143 of 1,262,637
0.133673 (0.500962 pix)
0.491792 (12.1894 pix)
3.43269 pix

3 bands, uint8

No

4.30879

High

Yes

Yes

80,000

40,000

Yes

47 minutes 48 seconds
1 hours 48 minutes

f, b1, b2, cx, cy, ki-k4, p1, p2
1 minutes 23 seconds

111.40 MB

42,312,793

3 bands, uint8

42,312,793

High
Mild
6 hours 40 minutes

31 minutes 46 seconds
573.98 MB

5,944 x 6,151
WGS 84 (EPSG::4326)

Point cloud
Enabled
1 minutes 32 seconds

108.00 MB

8,221 x 8,195
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Coordinate system WGS 84 (EPSG::4326)

Colors 3 bands, uint8
Reconstruction parameters
Blending mode Mosaic
Surface DEM
Enable color correction No
Enable hole filling Yes
Processing time 3 minutes 42 seconds
File size 792.27 MB
System
Software name Agisoft Metashape Professional
Software version 2.0.2 build 16334
0os Windows 64 bit
RAM 15.31 GB
CPU AMD Ryzen 7 5800U with Radeon Graphics
GPU(s) None
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Survey Data
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Fig. 1. Camera locations and image overlap.
Number of images: 1,348 Camera stations: 1,348
Flying altitude: 2.51m Tie points: 730,467
Ground resolution: 1.54 mm/pix Projections: 3,078,298
Coverage area: 185 m2 Reprojection error: 0.57 pix
Camera Model | Resolution | Focal Length | Pixel Size Precalibrated
unknown 1360 x 1024 | 10.67 mm 6.45 x 6.45 um | Yes

Table 1. Cameras.
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Camera Calibration
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Fig. 2. Image residuals for unknown

unknown

1348 images, precalibrated

Type Resolution Focal Length Pixel Size
Frame 1360 x 1024 10.67 mm 6.45 x 6.45 pm
Value Emmor |F [Cx |Ccy |B1 |B2 |Ki1 |K2 |k3 |k4 |P1 [P2
F |1714.41 0.095 | 1.00 |-0.19 | -0.47 |-0.03 | 0.04 | 0.00 |0.13 |-0.10 | 0.11 |-0.18 |-0.42
Cx | 22.6281 0.024 1.00 |0.15 |0.01 |0.09 [-0.01|-0.02|0.02 |-0.03|0.91 |0.13
Cy | 25.8888 0.028 1.00 | -0.04 |-0.10 | -0.04 | -0.03 | 0.02 | -0.04 | 0.13 |0.90
B1 | 0.887803 0.0053 1.00 |-0.03 | 0.01 |-0.01 |0.01 |-0.00 | -0.04 |0.02
B2 | 0.035763 0.0054 1.00 [0.01 |0.00 |-0.00 | 0.00 |-0.01 |-0.19
K1 | 0.157345 0.00037 1.00 | -0.96 | 0.92 | -0.87 | -0.02 |-0.05
K2 | 0.734164 0.0071 1.00 |-0.99 | 0.96 |-0.02 |-0.02
K3 | -0.788889 | 0.054 1.00 |-0.99 | 0.02 |0.02
K4 | 4.13651 0.14 1.00 | -0.03 |-0.03
P1 | -0.00224485 | 9.3¢-06 1.00 |0.15
P2 | -0.00130631 | 1e-05 1.00
Table 2. Calibration coefficients and correlation matrix.
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Camera Locations
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Fig. 3. Camera locations and error estimates.
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Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.
Estimated camera locations are marked with a black dot.

X error (cm)

Y error (cm)

Z error (cm)

XY error (cm)

Total error (cm)

6.37829

6.48373

4.50712

9.09513

10.1506

Table 3. Average camera location error.
X - Longitude, Y - Latitude, Z - Altitude.
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Camera Orientations

Fig. 4. Camera orientations and error estimates.
Arcs represent yaw error estimates.

Yaw error (°) | Pitch error (°) | Roll error (°) | Total error (°)
0.160236 0.966203 0.630548 1.16482

Table 4. Average camera rotation error.
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Digital Elevation Model

Fig. 5. Reconstructed digital elevation model.

Resolution: 3.07 mm/pix
Point density: 10.6 points/cm?2
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Processing Parameters

General
Cameras
Aligned cameras
Coordinate system
Rotation angles
Tie Points
Points
RMS reprojection error
Max reprojection error
Mean key point size
Point colors
Key points
Average tie point multiplicity
Alignment parameters
Accuracy
Generic preselection
Reference preselection
Key point limit
Tie point limit
Adaptive camera model fitting
Matching time
Alignment time
Optimization parameters
Parameters
Optimization time
File size
Point Cloud
Points
Point attributes
Color
Normal
Point classes
Created (never classified)
Depth maps generation parameters
Quality
Filtering mode
Processing time
Point cloud generation parameters
Processing time
File size
DEM
Size
Coordinate system
Reconstruction parameters
Source data
Interpolation
Processing time
File size
Orthomosaic
Size

1348

1348

WGS 84 (EPSG::4326)
Yaw, Pitch, Roll

730,467 of 917,351
0.143266 (0.569521 pix)
0.88457 (11.8382 pix)
3.74281 pix

3 bands, uint8

No

5.60407

High

Yes

Yes

100,000

4,000

Yes

52 minutes 32 seconds
2 hours 46 minutes

f, b1, b2, cx, cy, ki-k4, p1, p2
41 seconds

97.96 MB

36,352,159

3 bands, uint8

36,352,159

High
Mild
6 hours 5 minutes

46 minutes 3 seconds
489.92 MB

6,954 x 6,938
WGS 84 (EPSG::4326)

Point cloud
Enabled
1 minutes 37 seconds

91.86 MB

7,715 x 7,885
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Coordinate system WGS 84 (EPSG::4326)

Colors 3 bands, uint8
Reconstruction parameters
Blending mode Mosaic
Surface DEM
Enable color correction No
Enable hole filling Yes
Processing time 4 minutes 3 seconds
File size 760.82 MB
System
Software name Agisoft Metashape Professional
Software version 2.0.2 build 16334
0os Windows 64 bit
RAM 15.31 GB
CPU AMD Ryzen 7 5800U with Radeon Graphics
GPU(s) None
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