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Abstract

Evaluation of exams can be both challenging and time-consuming, and teachers dedicate a substan-
tial amount of their time to this task. Consequently, there is a consensus among researchers that
computer technology can be leveraged to automate this process. This thesis is a study into the field
of automatic evaluation and feedback generation of student short answers. Two datasets featuring
short answers written by students from a computer science course have been analyzed and utilized
to explore how Information Retrieval and Text Mining techniques can be applied to automatically
grade and generate feedback in the Norwegian language.

Research within the field of automatic grading has been explored for decades. However, automatic
grading of unstructured text remains a challenge and minimal work is present in the Norwegian
language. Hence, this thesis aims to answer what the state-of-the-art within automatic feedback
generation and grading of text-based answers is to this day. Moreover, Information Retrieval and
Text Mining techniques are explored to investigate how automatic grading and feedback systems
can be implemented, and what quality can be achieved.

A literature study in the field of automatic grading and feedback generation is presented, as well
as a summary of relevant Information Retrieval and Text Mining techniques. Two approaches for
automatic grading and feedback generation have been proposed and implemented. The first com-
pares Student Answers with Reference Answers by a similarity calculation, and the second utilizes
the k-means clustering algorithm to group similar responses. Automatic grading is attempted by
exploring achieved performance when applying various Information Retrieval techniques. Feedback
generation is proposed as providing keywords to students representing important concepts or themes
they might have missed in their responses to improve learning. Lastly, two evaluation metrics for
the proposed feedback technique are proposed and discussed.

This thesis presents valuable insights into how Norwegian and multi-lingual datasets can be cleaned
and processed, along with two promising approaches that may prove useful and could be utilized in
a full-scale automatic grading and feedback system in the future.
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Sammendrag

Evaluering av eksamener kan være både utfordrende og tidkrevende, og lærere bruker en betydelig del
av tiden sin på denne oppgaven. På dette grunnlaget er det enighet blant forskere at datamaskiner
kan brukes til å automatisere denne prosessen. Denne masteroppgaven er en studie av automatisk
vurdering og generering av tilbakemeldinger på korte elevsvar. To datasett med korte svar skrevet
av studenter i et informatikkurs har blitt analysert og brukt for å utforske hvordan informasjons-
gjenfinning (Information Retrieval) og tekstdatautviklingsteknikker (Text Mining techniques) kan
brukes til å automatisk vurdere og generere tilbakemeldinger på kortsvarsoppgaver på norsk.

Forskning innen automatisk vurdering har vært utforsket i flere tiår. Imidlertid forblir automatisk
vurdering av ustrukturert tekst en utfordring og lite arbeid finnes på det norske språket. På dette
grunnlaget er denne masteroppgaven et forsøk på å besvare hva som er det nyeste (state-of-the-art)
innen automatisk tilbakemeldingsgenerering og retting av tekstbaserte svar. I tillegg er det foretatt
en undersøkelse på om teknikker for informasjonsgjenfinning og tekstdatautvikling kan brukes til å
implementere et automatisk retting- og tilbakemeldingssystem, og hvilken kvalitet som kan oppnås.

En undersøkelse av eksisterende forskning om automatisk vurdering og generering av tilbakemeldinger
er gjennomført, sammen med en oppsummering av relevante teknikker for informasjonsgjenfinning og
tekstdatautvikling. To tilnærminger for automatisk vurdering og generering av tilbakemeldinger er
foreslått og implementert. Den første omfatter en referansesvar (Reference Answer) basert tilnærm-
ing som sammenlignes med elevsvar ved hjelp av en likhetsberegning, og den andre benytter k-means-
klynging (k-means clustering) algoritmen for å gruppere sammen like svar. Automatisk vurdering
er forsøkt ved å utforske hvilke resultater som kan oppnås ved å bruke flere forskjellige informasjon-
sgjenfinningsteknikker (Information Retrieval techniques). Tilbakemeldingsgenerering foreslås ved
å gi nøkkelord til elevene som representerer viktige begreper eller temaer de kanskje har utelatt i
svaret sitt for å forbedre læringen. Videre er to metoder for å evaluere tilbakemeldingsteknikken
foreslått og diskutert.

Denne oppgaven presenterer verdifull innsikt i hvordan norske og flerspråklige datasett kan renses
og behandles, sammen med to lovende tilnærminger som kan vise seg nyttige og som kan brukes i
et fullskala automatisk retting- og tilbakemeldingssystem i fremtiden.
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Chapter 1

Introduction

With the growing demand for higher education and the consequent increase in student enrollment,
there exists a corresponding rise in the workload associated with evaluating student work. Evalua-
tion of student text answers can be both challenging and time-consuming to perform, and teachers
dedicate a substantial amount of their time evaluating such answers. In addition, it is difficult to
ensure that all answers get evaluated fairly and in accordance with the evaluation criteria [38]. Fur-
thermore, the increased workload also entails higher costs. To tackle this issue, there is a consensus
among researchers that computer technology can be leveraged to aid in their assessment tasks [34].

The need for electronic assessment of student short answers grows as the replacements of hand-
written assignments with digital deliveries increase. Assessing the answers, in addition to providing
feedback to students, is beneficial to improve learning. These are key factors that have motivated
research into the fields of automatic grading and feedback generation.

This thesis is a study in the field of automatic assessment of student short answers, with the focus on
providing feedback to students to enhance learning. Two automatic grading and feedback generation
systems are proposed and implemented with Text Mining (TM) and Information Retrieval (IR)
techniques. Furthermore, they are applied and discussed on two Norwegian text-based exams.

1.1 Motivation/Background
The evaluation process can be time-consuming and mentally taxing for teachers. Maintaining con-
sistent focus and concentration over extended periods is challenging, and variations in mood and
attention can affect the grading process. As a result, answers of similar quality may receive dif-
ferent grades [38]. Furthermore, the order in which the teacher grades answers can cause discrep-
ancies. Multiple low-quality responses might receive higher scores if high-graded responses have
been graded beforehand, and similarly, high-grade responses might receive medium-quality scores if
medium-quality responses were recently graded. Consequently, the motivation for a computer-based
automatic evaluation system is evident, and this field of research is called Computer Assisted As-
sessment (CAA) [34]. Multiple CAA systems have been constructed and vary greatly in the way
they assess answers and implementation techniques, such as style and/or content. The most success-
ful approaches to text evaluation found in CAA systems are statistical, Latent Semantic Analysis
(LSA) and Natural Language Processing (NLP) [38]. Initially, CAA systems were statistical and
focused solely on the structural similarity of texts. LSA, however, introduced a comparison based on
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a corpus and an algebraic technique to calculate similarities between texts with various terms. The
more recent advancements in NLP techniques can also retrieve the semantic meaning of free-text
documents [38]. Presently, the advances within NLP have made the research in this field increase
greatly, and computers can now analyze text answers in a better, more detailed, and efficient way
than a teacher can without their corresponding biases [34]. However, since the techniques utilized
and evaluation criteria for text evaluation differ, it is difficult to compare CAA systems. There is
also a lack of common corpora and metrics within this field [34]. In addition, because the structure
of text answers varies greatly, the performance of such metrics can as well.

Within CAA, the need for not only assessing text answers but also providing feedback to students
to improve learning is important. It is a key factor in both learning and teaching. When students
receive feedback, strengths and weaknesses can be identified, and potentially improved. In addition,
this concept can help set realistic goals and develop strategies to achieve them. Additionally, it
enables students to identify and resolve misunderstandings and improve their understanding of the
subject. A well-performing CAA system should deliver quick, precise, and constructive feedback
that supplies students with concrete steps to improve their performance and knowledge. In sum-
mary, providing feedback to students plays a considerable role to help them understand subjects,
improve learning, and self-awareness [41].

Although grading text answers poses a time-consuming task for teachers, providing feedback presents
an additional bottleneck due to the necessity for it to be individualized for each student. This pro-
cess may prove complicated as it necessitates a thorough understanding and analysis of the student’s
answers [41]. Therefore, feedback generation should be integrated within a CAA system, whereas the
same techniques for grading may be utilized. One approach for such a system is employing the prin-
ciple of similarity between a Reference Answer (RA) and a Student Answer (SA). Such an approach
can calculate the distance between two texts to find misconceptions and weaknesses in student re-
sponses, which can further be utilized as feedback to students and assess their level of understanding.

The deployment of CAA systems has the potential to completely change how academic assessments
are conducted. As a result, teachers can grade a large number of responses simultaneously and
almost instantly offer results in an accurate and more objective manner than a human evaluator.
Consequently, the time needed for grading and assessing student responses shortens drastically when
utilizing such a system. Furthermore, it ensures consistency and fairness in the evaluation process.
Nevertheless, the absence of common metrics, corpora, and performance variations necessitates
further research within this domain.

1.2 Research Goals and Method
The overarching research goal of this thesis is to study how Information Retrieval and Text Mining
techniques can be utilized to evaluate short-text answers from students on two Norwegian exams
in computer science. Furthermore, it is to look at how such techniques can be applied to generate
feedback from answers to enhance learning in students. A thorough dataset analysis of the two
datasets (exams) is presented, and two approaches for implementing such a grading and feedback
system have been proposed, implemented, and evaluated. Furthermore, three following research
questions have been formulated:
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• RQ1 - What is state-of-the-art within automatic feedback generation and grading of text-based
answers?

• RQ2 - How can Information Retrieval and Text Mining techniques be applied to implement
an automatic grading and feedback system?

• RQ3 - How do automatic grading and feedback systems perform on real-world datasets?

To address the first research question, a literature study within the field of automatic feedback
generation and grading has been performed. This analysis is presented as Background and Related
Work chapters in this thesis and presents insights into earlier work and methods implemented within
this field. The analysis covers existing solutions on feedback generation and grading systems, as well
as explanations of important IR and TM techniques necessary to understand the existing solutions
and proposed approaches in this thesis. Addressing the research question in such a way will provide
vital knowledge to both perform and understand the dataset analysis presented. Furthermore, it will
optimally aid in designing high-quality approaches for an automatic grading and feedback system.

The second research question will mainly be discussed in the Background chapter of this thesis,
which covers several Text Mining and Information Retrieval techniques, as well as the preprocessing
pipeline. In addition, the proposed approaches for implementing a feedback and grading system
will be composed of such techniques. Exploring this research question will provide the reader of
this thesis with insights into the fields of Text Mining and Information Retrieval, including realistic
examples and approaches.

To approach the third research question, it is important that a dataset analysis is completed and
performed with high quality to ensure the proposed approaches can be evaluated with high-quality
data. Following the analysis, multiple experiments on different techniques must be carried out to
evaluate the feedback and grading system, and to determine which approach is the most effective.
Related work regarding other successful systems on this topic is highly relevant for this implemen-
tation. The goal will be to evaluate several Information Retrieval and Text Mining techniques on
grading and feedback generation to determine how they perform on two Norwegian text-based ex-
ams. Furthermore, it is important that the feedback generated from these approaches are of high
quality and measurable in some manner that supports the end goal, to enhance learning. Optimally,
the approach and implementation of such a system should be built and explained in a manner that
is easily understandable and utilized later.

1.3 Contributions
There is little to no work observed on feedback generation of text-based answers in the Norwegian
language. Existing work on automated grading in Norwegian is also minimal. Consequently, the
work presented in this thesis contributes to further research on feedback generation of text-based
answers in the Norwegian language, as well as proposed approaches and implementations of future
systems for feedback generation and grading. The main contributions of this thesis are listed below:

• A dataset analysis on two Norwegian text-based exams.

• An investigation into existing related work in the fields of automatic grading and feedback
generation.
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• Implementation and presentation of two proposed approaches for automatic grading and feed-
back generation.

• Performance evaluation of the two presented approaches on two Norwegian text-based exams.

1.4 Thesis Structure
The rest of this thesis is structured as follows:

Chapter 2 covers background information that is relevant for the reader of this thesis. This in-
cludes methods and technologies within Information Retrieval and Text Mining that are referenced
and utilized throughout this work.

Chapter 3 introduces related work within the field of automatic grading and feedback. This in-
cludes a timeline and history of relevant literature in addition to relevant approaches for automatic
grading and feedback.

Chapter 4 presents the two approaches for automatic grading and feedback. The chapter initiates
with the high-level goal of this thesis, followed by a high-level design and description of the two
approaches.

Chapter 5 covers an analysis of the two datasets. It introduces and explains the contents of the data
and summarizes it to provide an overview. Subsequently, the performed procedure of data cleaning
is explained, along with a discussion of vital decisions taken during this step. Various significant
issues regarding the datasets are also presented along with a feature analysis.

Chapter 6 covers the implementation and evaluation of two approaches for automatic grading and
feedback generation on the cleaned datasets. Furthermore, it elaborates on the relevance of these
approaches in the context of current research and established techniques in Information Retrieval
and Text Mining.

Chapter 7 discusses the findings from this thesis and the performance of the two proposed ap-
proaches on the datasets. In addition, possible pitfalls and limitations of these approaches are
presented.

Lastly, Chapter 8 initiates with revisiting the three research questions. Furthermore, it concludes
this thesis and provides suggestions for future work to improve or continue the work performed.

A preliminary project [42] was conducted prior to the construction of this thesis. Consequently,
sections in Chapters 2 and 3 have been conveniently reused and adapted to better fit the research
objectives of this thesis.
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Chapter 2

Background

2.1 CAA
The term CAA refers to all summative (tests that will contribute to academic qualifications) and
formative (tests that support the learning process but are not part of a course’s final grade) assess-
ments of students’ progress that are administered with the help of computers [11]. Online tests or
quizzes are one of the most popular types of CAAs. These systems are designed to streamline and
automate the assessment process, making it more efficient, scalable, and less subjective to human
biases. Such systems are can support a variety of assessment formats, including:

• Multiple-choice questions: These systems provide students with a list of questions and a
choice of answers for each question where only one option is correct.

• Short-answer questions: Such systems require the students to write a short and concise
response to a given question.

• Long-answer types: These systems require students to write longer and more detailed re-
sponses, such as a thesis, essays and reports

• Algorithmic problem-solving systems: Such systems provide students with a problem
that must be solved with the use of an algorithm the student must develop/solve.

The focus of this thesis is on short-answer responses. These responses are typically limited to a few
words, a sentence, or a brief paragraph depending on the context and the requirements set by the
assessment system or instructor.

In this thesis, we define a CAA system to include both grading and feedback generation. The grading
system encompasses evaluating Norwegian short answers from students and assigning a grade to the
given short answer. Giving grades in CAA systems often depends on how accurate and complete
the student’s response is. A common approach is to compare the student’s answer to a pre-defined
list of correct responses or teacher-provided Reference Answers. Such a system can employ different
techniques to compare the student’s answer with a Reference Answer, such as semantic similarity
matching or statistical methods [37]. Based on how closely the student’s response is to a Reference
Answer, the system gives a score, and this score is used to calculate a grade. A CAA system may
also consider additional features in the grading process, such as the length of the response or the
presence of specific concepts or ideas. Furthermore, it can be customized based on the learning goals
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of a subject and developed to provide immediate and objective feedback to students. Throughout
this thesis, the focus will be on two proposed approaches for grading and feedback generation in
a CAA system. One approach is based on finding the similarity between a Student Answer and a
Reference Answer, and the other is based on grouping similar responses, also known as clustering.

The feedback generation in such a system should be appropriate to the grade. There exist numer-
ous ways of presenting feedback. One such type is a text that provides information on the partial
correctness of the answer. For instance, the system can offer feedback on the specific part that is
correct and the part that needs improvement. Another type is feedback which focuses on helping
the students reflect on their learning process and strategies. This may be achieved by providing
feedback on the effectiveness of their response or by encouraging self-assessment, which can assist
the students in reflecting on their own strengths and weaknesses.

In the context of this thesis, the term ‘feedback’ is meant as presenting keywords to students based
on their responses to short-answer questions. These keywords are terms representing important
concepts or themes that are not present in their short-answer response. The goal is, in combination
with automatic grading, to present meaningful feedback in the form of keywords to enhance learning
and improve self-awareness in the students learning of short-text answers. Information Retrieval
techniques, data preprocessing, and ranking functions are essential parts of CAA systems that will
be applied in the attempt to achieve this goal.

2.2 Information Retrieval
Information Retrieval (IR) is the process of retrieving information from a collection of documents,
images, videos, or other forms of data. It is based on a user’s query, and encompasses developing
algorithms and methods for searching, manipulating and organizing large amounts of information
effectively and efficiently [49]. The goal of IR is to provide relevant and accurate information in
response to the user’s query, thus, making it a major area of research within computer science. IR
involves a range of techniques and algorithms such as text-based indexing and relevance feedback,
whereas the success of these systems depends on the accuracy of the algorithms, as well as the
quality of the data used. In the context of CAA systems, IR can be utilized to retrieve data from
various sources to support the assessment process. For instance, student records and test results can
be retrieved and manipulated for further learning and evaluation.

The applications of IR systems can be found in various domains, with web search engines standing
out as particularly intuitive. In today’s world, IR systems are essential due to the constantly growing
amount of information stored and generated. Consequently, the challenge of retrieving and finding
relevant information for users increases. The primary goal of an IR system is therefore to retrieve
all relevant documents from a collection whilst retrieving as few non-relevant documents as possible
[3]. Furthermore, ranking documents based on their relevancy to a user’s query is often employed
to determine their importance.

The queries given by a user in an IR system are usually strings containing keywords or phrases of
the information the user desires to retrieve. Several documents in the collection may match this
query, usually with varying degrees of relevance. This relevance is normally based on a similarity
calculation between the input query against all the documents in a collection. The similarity score is
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then used to rank these documents. Before such a similarity score is calculated, however, the query
and the documents need to be represented in a similar manner. This makes measuring similarity
possible. Figure 2.1 presents an illustration of how an IR system can retrieve documents from a
document collection based on a user’s query.

Figure 2.1: A simplified representation of retrieving matched documents

In CAA systems, Information Retrieval is one of the main parts utilized to compare Student Answers
(SAs) with one or more Reference Answers (RAs) to find potential similarities. The goal of an IR
system is, as mentioned, to retrieve relevant documents from a large corpus of text based on a query.
In the case of a CAA system, the large corpus of text can be a set of one or more RAs, and the
query is a SA that requires grading. One challenge in using IR for short-answer grading is the
issue of vocabulary mismatch, where the students select different words or phrases to describe the
same concept as the Reference Answers. To compensate for this issue, techniques such as synonym
matching and paraphrase detection can be applied to find semantically similar solutions.

2.3 Text Mining
Text Mining (TM) is a field that encompasses the automatic extraction of meaningful data from
large collections of unstructured or semi-structured text. It involves computational techniques that
extract such data. The goal is to retrieve valuable insights from data by using a range of techniques.
Such techniques may include text preprocessing, information extraction, and document clustering
[50]. By incorporating such techniques in the form of algorithms, it becomes possible to retrieve
facts, relationships, and assertions that would otherwise remain undiscovered in the mass of textual
big data. When this data is extracted, the information is usually converted into a structured format
for further analysis.
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TM techniques can be utilized in a wide variety of domains. In business, market trends and com-
petitor analysis can be constructed by the utilization of such techniques. Within social media, it
can be employed to precisely analyze the number of posts, followers, and likes from an individual.
Furthermore, TM techniques can be useful in scientific research to extract valuable research from
collections of scientific literature, such as publications, patents, and conference proceedings.

Although the fields of TM and IR are closely related, they appear as two distinct fields of study.
IR focuses on retrieving information from document collections or data sources, while TM focuses
on the automatic extraction of meaningful and useful information with a focus on transforming raw
text data into a structured and meaningful manner.

2.4 Data Preprocessing
In order to evaluate text answers automatically, it is important to translate the unstructured text
into a language that the computer can understand. The process of transforming text into a format
that can be fed into a model for further analysis is called text preprocessing and is often referred to
as Natural Language Processing (NLP). The goal of text preprocessing is to reduce the amount of
irrelevant information and noise from the text, as well as extract the relevant and specific information
that is needed for a certain task. It is a crucial step in NLP because the quality of the model for
analysis highly depends on the quality of the data it is given. Thus, a text preprocessing pipeline that
is well-designed can improve the performance of IR and TM systems. Several steps and techniques
exist to perform text preprocessing, and among the most popular are lemmatization, stemming, and
tokenization. Figure 2.2 illustrates what a text preprocessing pipeline could look like.

Figure 2.2: The NLP pipeline
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2.4.1 Case Folding
Case folding is a step where the text is changed to a standard case, generally lowercase. With case
folding, the vocabulary size can be reduced and, consequently, lead to a dimensionality reduction of
the data. This allows for better generalization of the NLP pipeline.

2.4.2 Tokenization
Tokenization is the process of breaking a stream of text into pieces, called tokens. Tokens are usually
a single term, or a sequence of terms that are grouped together, having a useful semantic meaning
for processing. It is a crucial step in the NLP pipeline as it allows for text to be represented as
meaningful units, causing it to be easier to process and analyze. Such tokens can be used directly as
a vector representing specific documents. It is normal to break down the stream of text by splitting
it on whitespace or into subwords (n-grams), whereas the choice of split depends on the task and
type of text that is being processed. The main goal of tokenization is to split the text into tokens
that preserve the meaning that was intended in the text.

2.4.3 Punctuation Removal
Punctuation removal is the process of removing punctuations, or special symbols. This process is
often performed together with the tokenization step. The punctuation removal process will aid in
treating each individual text equally. For example, the words ‘Food’ and ‘Food!’ are treated equally
after the punctuation removal process. It is important to select which punctuations to remove with
care in order to preserve the intended meaning of the text. Although this process generally increases
the performance of TM algorithms, the opposite can occur if the punctuations are not deliberately
selected. Periods, commas, semicolons, and colons are examples of often removed punctuations.

2.4.4 Stopword Removal
Stopword removal is one of the most commonly used preprocessing steps in NLP. The definition of
a stopword is a word that has little to no significant semantic context or is commonly used across
the corpus. Such words often have little contribution to the meaning of the text. Typically, articles
and pronouns are generally classified as such words. Examples are words like ‘the’, ‘a’, ‘an’ and ‘in’.
Usually, a list of stopwords for a given language is a hand-curated list of words that occur most
commonly across the corpus. The removal of stopwords can reduce the dimensionality of the data,
and consequently, the resulting text can be simpler to process.

2.4.5 Stemming
Stemming is the process of removing a part of a word to its ‘stem’, or root by removing its affixes.
This way, words with a common origin can be combined. As an example, assume the words: ‘write’,
‘wrote’, and ‘written’. These words are all different forms of the same word ‘write’. After stemming is
performed, three occurrences of the word ‘write’ is present. A handful of different algorithms are used
to decide how to ‘stem’ a word, and sometimes the algorithms will stumble into some complications.
These complications are called over-stemming and under-stemming. To put it simply, over-stemming
is the case where a much larger part of a word is chopped off than what is required. This causes two
or more distinct words to get reduced to the same root word incorrectly. For instance, ‘Anticlimax’
and ‘Antisocial’ are words of different meanings, but an algorithm that is subject to over-stemming
may replace both words with the same ‘stem’. Under-stemming occurs when two or more words
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are wrongly reduced to more than one root word when they ideally should be reduced to the same
root word. Overall, the point of stemming is to increase the performance of different NLP tasks by
reducing the number of words in the corpus. This way, words of the same meaning may be matched
together by their stem.

2.4.6 Lemmatization
Lemmatization is the process of reducing words to their base or dictionary form, called lemma. It
involves determining the context of a word and from there deriving its base form. It differs from
stemming because it uses the context of a word to obtain its canonical form. Stemming, however,
only removes a word’s affixes to build a stem. As an example, consider the words ‘am’, ‘are’ and ‘is’.
these words would be lemmatized to the lemma ‘be’, but the stemming process might produce differ-
ent stems from the three words. In order to use or create a lemmatizer, a list of words or a lexicon is
required. Such a lemmatizer should contain as many words as possible to match the dictionary form.

The goal of both lemmatization and stemming is the same, to reduce words to a common form in
order to reduce the number of words in a corpus, and consequently, reduce the dimensionality. The
discussion of which process to use varies on the task. However, a combination of both has been
shown to give a high performance. Generally, lemmatization should be used in context analysis, and
stemming should be used when the context is not important [44].

2.4.7 Additional Steps
The preprocessing steps mentioned above are somewhat general and are widely utilized for a series
of tasks. However, additional steps can be taken to further preprocess the text. These steps are
dependent on the task and may include language identification, part-of-speech tagging, and further
text cleaning. Language identification encompasses attempting to identify the language in which
a document is written. For the majority of tasks, it is important that all documents are in the
same language for a TM algorithm to function properly. Thus, removing documents of an unwanted
language can be performed. Such a preprocessing step can be applied in language translation appli-
cations or multilingual search engines.

Part-of-speech tagging is the process of labeling each word in a text with its part-of-speech, for
example, noun, verb or adjective. This can be useful for understanding the grammatical structure
of the text. Further cleaning of a text can also be relevant if the text contains more unwanted
characters, such as non-alphabetic characters or HTML tags.

2.5 Text Representation
After the raw document is run through the pre-processing pipeline, the need for representing the text
in an understandable manner for computers comes into place. Natural Language Processing (NLP)
is a subfield of artificial intelligence and can make machines understand and process human language
[10]. Feature extraction is a general term that encompasses transforming the raw document into
numerical features that can be processed while preserving the information from the original dataset.
This is necessary so that machines can understand and identify human language.

Typically in an IR system, a document is represented by index terms. An index term may refer
to any word found within the document or to tokens generated after the preprocessing step. The
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set of distinct terms in a document collection is referred to as the vocabulary V of the collection.
This vocabulary is important as it identifies all index terms in the collection. It can grow quickly
depending on how big the document collection is, and consequently, preprocessing steps can be
performed to minimize this. Within Text Mining, text representation is one of the largest problems.
Multiple approaches have been proposed to model text in such a way that computers can understand
it, and this section presents some of the most relevant models as well as similarity and ranking
measures.

2.5.1 Bag-of-Words
Bag-of-words is one of the most popular and used text vectorization techniques. Furthermore, it is a
common approach to utilize IR in short-answer grading. Here, a document is represented as a ‘bag’
of words that describes the occurrence of each word in the document. It includes both a vocabulary
of all the words within the document and a count for each word’s occurrence. The reason that
this text representation method is called bag-of-words is that any information regarding the order
or structure of words in the document is ignored [7]. To sum it up, this model singularly provides
information about the words that are present in the document and their frequency with no regard
for word order or context. The result of such a technique is a vector of word counts used to represent
the text. Figure 2.3 provides an illustration of this text representation technique.

Figure 2.3: Bag-of-words
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2.5.2 N-Grams
N-grams and bag-of-words are similar in several ways. N-grams are essentially a collection of words
that frequently appear in a certain window. A group of N words, to put it another way. The value
of n is decided by the user. The term unigrams is used when N=1. Tokens in a unigram are basi-
cally individual words in the text. Bigrams and trigrams are the terms used when N=2 and N=3
respectively. N-gram models are often used to estimate the probability of the last word given the
previous words [27]. As an example, assume the text ‘Please drink your’. The probability of the
next word being ‘water’ is higher than the probability of the next word being ‘spoon’.

N-grams are also used in Information Retrieval with the aim of finding similar documents given a
single query and a set of documents. Some advantages of this are that the model is more capable
of capturing the semantic meaning of the sentence. If the user uses bigram or trigram which is a
sequence of words, it gets easier to find the word relationships. It is also easy to implement as it
requires few modifications from bag-of-words. However, one disadvantage when not using unigram
is that the model produces a larger, sparser feature set. Figure 2.4 illustrates how to use n-grams
to represent the text ‘We are two students trying to explain N-grams’.

Figure 2.4: N-grams text representation method

2.5.3 Term Weighting
Term weighting is a method of expressing the presence of a token or term in a corpus. The weight of
the term represents the importance of it in a document and is used to improve retrieval effectiveness.
There exist multiple methods of weighting terms, one of which is the boolean model. The boolean
model simply assigns a weight of 1 if the term is present in the document, and 0 if it is not present.
This causes all present terms to have the same weight, which might not be the best representation
because some terms could have bigger importance.

Term Frequency (TF) is another weighting method that counts the number of times a term occurs
in the document. This causes the term to have a higher weight the more it is mentioned in the
document. However, this method can be rather misleading and does not guarantee high retrieval
performance because there are very common words (like stopwords) that appear in the text, but
carry little meaning [24]. This approach also causes documents of longer length to be favored because
terms might appear more often in longer documents than in shorter ones. To tackle this, sublinear
tf scaling can be utilized.
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2.5.4 TF-IDF
To counter the drawbacks of only using the raw TF, each token can instead be assigned a weight
indicating the importance in the document (TF), as well as its relative importance in the whole
document collection (IDF). The Inverse Document Frequency (IDF) is a measure of the rareness
of a given term in a document collection. By combining the TF and IDF, a statistical measure
is constructed to evaluate the relevance of a term to a document in a document collection. The
TF-IDF approach is, according to Baeza-Yates et al. [3] the most popular term weighting model in
IR.

2.5.5 The Term-Document Matrix
The occurrence of a term in a document causes a relationship between them, and after representing
the text in some manner, the resulting model can be exploited using a matrix structure. The Term-
Document Matrix (TDM) represents the full document collection and all terms in the vocabulary.
Given a vocabulary V and a document collection D, the matrix can be described as in Figure 2.5
where wi,j represents the weight of term ki in document dj .

d1 d2[ ]
k1 w1,1 w1,2

k2 w2,1 w2,2

k3 w3,1 w3,2

Figure 2.5: Term-Document Matrix

2.5.6 Cosine Similarity
Once the Term-Document Matrix has been built, similarities can be calculated between documents.
The cosine similarity method is used to measure the similarity between two texts regardless of their
lengths. The equation is presented below:

cos(t, e) =
te

|t||e|
=

∑n
i=1 tiei√∑n

i=1 (ti)
2
√∑n

i=1 (ei)
2

(2.1)

2.5.7 Ranking Documents
Relevance ranking is one of the most important features of the Information Retrieval system. Ideally,
the user only wants to retrieve documents that are as close as possible to the initial query. To achieve
this, good ranking functions are essential. These ranking functions are explained in Sections 2.5.3,
2.5.4, and 2.5.6. The text representation models explained in Sections 2.5.1 and 2.5.2 together with
the ranking functions provide the necessary tools for creating ranking models and ranking documents
that are similar to a given query. The Vector Space Model (VSM) is one example of a ranking model
that can be utilized for this purpose.

2.5.8 Vector Space Model
The Vector Space Model (VSM) has been in the IR research field since the 1960s and 70s and
is still used frequently. It provides a simple and intuitive framework for implementing both term
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weighting, ranking, and relevance feedback. Both the documents and queries are viewed as vectors
in a 3-dimensional space. The process of transforming these queries and documents into vectors is
called text vectorization. The most popular text vectorizer is TF-IDF, which is explained in Section
2.5.4. The whole model is based on one basic idea: If document one is more similar to the query
than document two, then document one is more relevant than document two. The model computes
the similarity between the query and each document in the collection and based on this, the model
ranks the documents.

2.6 Latent Semantic Analysis
Latent Semantic Analysis (LSA) was first introduced as a technique for improving IR. The key
idea was to reduce the dimensionality problem in Information Retrieval. Most approaches to re-
trieving information are to do a lexical match between a user query and documents. This causes
a large amount of irrelevant information to be retrieved when searching. LSA features a statistical
approach to extract relations among words and documents. It analyzes the relationships between
documents and the terms they contain by producing concepts related to the documents and terms.
A Term-Document Matrix is built to find similarity structures, where rows are terms and documents
are columns, and each individual cell entry contains the frequency at which the term occurs in the
document. The matrix is often transformed in a sublinear fashion to provide a better performance,
usually an IDF or entropy-based score [12].

After the Term-Document Matrix is constructed, a dimensionality reduction on the matrix is nor-
mally performed. Singular Value Decomposition (SVD) is performed to retain the k largest values
in the matrix, and the remainder is set to 0. This creates an approximation from the original
matrix, and similarities are computed within this dimension-reduced space. In the matrix, since
both the terms and documents are represented as vectors, it is easy to calculate similarities between
document-document, term-term, and term-document. Clustering can also be performed within this
vector space by finding documents similar to a query and creating a new query vector built as a
centroid of the similar term/document vectors within the cluster. The cosine similarity calculation
between vectors is often used to measure the similarity in such an approach and has proven to be
effective in many Information Retrieval applications [12].

Although an LSA approach can be implemented purely statistically, a combination of LSA and
NLP techniques is often used to tackle the dimensionality problem in a better manner. Stemming,
explained in Section 2.4.5 is broadly used to convert words to their morphological root, and controlled
vocabularies are also an efficient way to limit variability in the query by having a requirement of
an indexed set of terms. Full-text indexing is also an alternative to controlled vocabularies because
assigning terms in a controlled vocabulary can be very time-consuming. However, a combination of
both is often used to increase performance.

2.7 Evaluation Metrics
CAA systems should be evaluated to determine how effectively the system performs. Evaluation
metrics are used to measure that statistical or machine-learning models are operating correctly and
optimally. It is also important to use multiple evaluation metrics to evaluate a model. This is because
a model may perform well when using one evaluation metric, but badly when using a different one.
A few popular metrics used in evaluating CAA systems are discussed in this section.
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2.7.1 Pearson Correlation
The statistical measure of Pearson correlation [43] indicates the strength and direction of the linear
relationship between two variables. It is a frequently used method for assessing the strength of the
connection between variables. The Pearson correlation coefficient ranges from -1 to +1. A value
of -1 depicts a fully negative correlation, 0 indicates no correlation, and a value of +1 indicates a
perfect positive correlation. This implies that the closer the correlation is to 1 or -1, the stronger the
linear relationship between the variables is. Interpretations of the relationship strength may vary
between disciplines, but there exist certain general rules of thumb [43]. This is illustrated in Table
2.1.

Table 2.1: Interpretation of Pearson correlation coefficient

Pearson correlation coefficient value Strength Direction
> 0.5 Strong Positive
0.3–0.5 Moderate Positive
0–0.3 Weak Positive
0 None None

−0.3–0 Weak Negative
−0.5–−0.3 Moderate Negative
< −0.5 Strong Negative

In a CAA system, the Pearson correlation can be utilized to calculate the strength of the linear
relationship between a cosine similarity (Section 2.5.6), which tells how similar a response is to a
Reference Answer, and the grades given by a teacher. The higher the Pearson correlation score is,
the more the CAA system agrees with a teacher, and an argument can be given that a Pearson
correlation score close to 1 or -1 may indicate a more accurate score provided by the CAA system.

2.7.2 Purity
Purity is a metric used to assess how well clustering algorithms perform. To calculate the purity of a
clustering result, a label is assigned to each cluster based on the most frequent class in it. The purity
is then calculated as the number of correctly matched class and cluster labels in each cluster divided
by the total number of data points [52]. Purity ranges from 0 to 1, with a value of 1 indicating
that all items in each cluster are members of the same class. Equation 2.2 presents how purity is
calculated for the entire clustering scheme. In this equation, N is the total number of data points,
k is the number of clusters, m is the number of classes, Ci is the ith cluster, and Tj is the jth class.
The formula determines the maximum number of items belonging to the same class in each cluster,
adds these maximums across all clusters, and then divides them by the total number of items to
determine the proportion of correctly assigned items.

Purity =
1

N

k∑
i=1

m
max
j=1

|Ci ∩ Tj | (2.2)

Purity is an easy-to-understand metric for clustering performance, but it has several drawbacks.
Purity can be misleading if the different classes in the dataset are unbalanced, and does not take
into account the structure or density of the data. In general, the purity score increases as the number
of clusters increases. For instance, the purity becomes one if a model that groups each observation
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into a separate cluster is used. Because of this, purity cannot be used as a trade-off between the
number of clusters and clustering quality [52]. As such, purity is best used together with other
metrics, such as silhouette score.

2.7.3 Silhouette Score
Silhouette score is also a metric used to evaluate the quality of clustering results. This metric mea-
sures how well each data point in a cluster fits with other data points in the same cluster compared
to data points in other clusters. The score ranges from -1 to 1, whereas a score of 1 indicates that
clusters are well apart from each other and clearly distinguished, while a score of 0 indicates that
clusters are indifferent, or the distance between the clusters is not significant. A score of -1 means
the clusters are assigned in the wrong way [5]. The calculation of the silhouette score is presented in
Equation 2.3. Here, i is the data point being evaluated, a(i) is the average distance between i and
all other data points in the same cluster (average intra-cluster distance), and b(i) is the minimum
average distance between i and all data points in any other cluster (average inter-cluster distance).
The average silhouette score for all the data points in a cluster determines the cluster’s silhouette
score, and the overall silhouette score for a clustering approach is the average silhouette score of all
data points in all clusters.

Silhouette(i) =
b(i)− a(i)

max[a(i), b(i)]
(2.3)

The silhouette score is a valuable metric for figuring out how many clusters are best suited for a
particular dataset as it offers an objective evaluation of the quality of clustering that can be used to
evaluate various clustering methods. However, a few limitations are present for this metric as well.
The silhouette score assumes that the data is well-clustered and functions poorly with overlapping
clusters or clusters with different densities. There also exist different distance metrics that can be
used in the silhouette score calculation, and the distance metric used can impact the results of the
score. Some of the most popular distance metrics are the Euclidean distance and the Manhattan
distance.

2.7.4 Chat-GPT
Chat-GPT, a language model developed by OpenAI is an artificial intelligence (AI) chatbot released
in November 2022. Chat-GPT is developed on top of the OpenAI’s GPT-3.5 and GPT-4 families
of large language models (LLMs). These language models consist of a state-of-the-art learning
model that employs a transformer-based architecture with self-attention mechanisms to process and
generate text [35]. GPT-3.5 is an extension of GPT-3, which is currently one of the most advanced
language models in the world with 175 billion parameters [2]. It can perform various NLP tasks
such as summarization, translation and composing emails and essays. GPT-4 was released in March
2023 and is even more powerful than GPT-3.5 with the number of parameters estimated to be in
trillions [2]. This means that chat-GPT is trained on a massive amount of text data which enables
the model to learn from diverse sources and from this generate contextually relevant responses in
real-time.
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Chat-GPT has gained much attention lately for its advanced text generation capabilities and ability
to engage in dynamic conversations. Both models have already had a significant impact on the
field of NLP and Artificial Intelligence (AI) area. Because of this, Chat-GPT can be used as a tool
in this thesis. Examples are asking about different programming difficulties, relevant theory, and
explanations of different functions and error messages. An example is presented in Figure 2.6 where
the user wants to know about Python libraries that can stem short answers in Norwegian. However,
it is also important to mention that there exist some concerns about the ethical implications, biases
and limitations of utilizing Chat-GPT.

Figure 2.6: Chat-GPT response when prompting on Python stemming libraries
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Chapter 3

Related Work

Research on automatic grading and feedback of natural text has attracted researchers for a long
time, and can be dated back to the early work done by Page in the 1960s [31]. Consequently, there
exists a vast amount of previous and related work done in this field. This chapter presents some of
the most relevant related work by providing a summary of the history of research in this field, as
well as the most relevant literature for this thesis. This chapter is primarily meant to describe the
state of the art within automatic grading and feedback generation to this date. Furthermore, it will
provide insight and knowledge to further understand the work performed in this thesis.

3.1 History
Two popular question types to address learning outcomes in tests and exams are simple multiple-
choice questions and questions requiring the learner to type in an answer in a natural language
format. Examples of such formats are short answers and essays. Automatic Short-Answer Grad-
ing (ASAG) encompasses assessing short natural language responses to objective questions using
computational methods [8]. The research regarding short-answer grading has increased rapidly over
the last decade, with over 80 papers fitting the definition of ASAG [8]. Grading natural language
responses and short-answer questions is more difficult than simply grading multiple-choice questions,
as an understanding of the natural language is required.

Some of the earliest research done in this field is the work done by Page in 1966 [31]. With 276 essays
submitted by high school students, Page conducted several experiments with automatic grading of
student essays. These essays were then judged by four English teachers for overall quality. The
ratings for each essay were added together and became the criterion of quality. Then, the computer
was given variables that had the highest correlation with the actual ratings given by the instructors.
These variables were identified by the teachers. Computer routines were written that analyzed these
variables, performed the appropriate transformations, and produced a set of scores for each essay.
The essays themselves had to be typed literatim on a key-punch machine for input into the com-
puter, and when this was done, the program was executed. Results showed that grades computed by
the computer were not distinguishable from human grades. With these results, Page observed that
computerized grading can lead to the possibility of automated grading systems for the evaluation of
essays in the future.

18



Since then, computerized grading of student responses has grown in popularity, and more substantial
research has been conducted as a result of computers becoming more potent and gaining significant
momentum in the 1990s and 2000s. Since Page’s work, the methods have also diverged according
to the type of question, such as short replies in comparison to essay answers. This thesis, however,
focuses on short answers.

3.2 Evolution of Automatic Grading
One can observe that the existing ASAG systems have a few similarities based on their time periods
of publication. In this section, different papers are divided into categories, or ‘era’s’ in the field of
ASAG. As stated by Burrows et al. [8], the historical papers can be divided into the four dominant
era’s ‘Concept mapping’, ‘information extraction’, ‘corpus-based methods’, and ‘machine learning’.
Furthermore, this section will present a clustering era where a set of clustering approaches will be
discussed. For each era, a summarization of the key ideas and presentation of some of the most
important papers will be conducted.

3.2.1 Concept Mapping
Concept mapping encompasses thinking that the students’ answers are made up of different con-
cepts, and the goal is to detect the presence or absence of each concept when attempting to grade.
However, there is one limitation to this approach: only questions that ask for a solution to a problem
plus a justification, or a question that asks for multiple explanations of a problem can be applied. In
other words, the questions must accommodate the possibility of presenting concepts in the answers.

Burstein
Some of the earliest research regarding this era is the work of Burstein [9] which considers hypothesis-
style questions. Here, multiple explanations must be given for a specific hypothesis. These expla-
nations were each considered as an individual concept. A domain-specific, concept-based lexicon
and a concept grammar were built to represent the response set using 200 of 378 responses from
the original dataset. From this, concept grammar rules were developed by mapping concepts from
the lexicon onto the concept-structure patterns present in a set of training responses. With this
approach, the system managed to achieve 81% accuracy when assessed on the test set.

Wang
The work of Wang [46] aims to improve the assessment of creative problem solving by employing
language technologies and computational-statistical machine learning methods to grade student an-
swers automatically. This is done by comparing three methods for grading earth science questions
in secondary education. These methods are based on concept mapping, machine learning, or both.
The first concept mapping method is based on calculating cosine similarity on TF-IDF (Section
2.5.4) weights of bag-of-words features (Section 2.5.1). The second concept mapping method uti-
lizes a Support Vector Machine (SVM) in addition to bag-of-words features. Furthermore, it is also
implemented with machine learning and is therefore considered a combination of concept mapping
and machine learning. The third method uses SVM regression with unigrams, bigrams, and part-
of-speech bigrams. This method is purely machine-learning based. In contrast to the preceding two
methods, the third method grades holistically and treats each concept as a single response.
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C-rater
C-rater [25] is an automated scoring engine that was developed by ETS Technologies to score content-
based short-answer responses in 2003, and is based on finding concepts within the students’ responses.
Prior to 2003, most research on automatic grading had focused on scoring essay-length responses
and not short-answer questions. C-rater differs from essay scoring systems in several fundamental
ways. It initiates with a model of the correct answer to a question that is created by an expert in
the corresponding field of the question. C-rater will then map the student’s response onto the model
to demonstrate the correctness or incorrectness of the answer. This mapping is a fully automated
process, unlike the construction of the model. Since C-rater utilizes a model that is designed to
accommodate questions with either a single correct response or a range of correct answers, the ques-
tions must have a single valid response or a range of correct responses. One drawback of this is that
open-ended questions, such as those that request examples from personal experience or opinions,
cannot be handled.

To score short-answer questions, the scoring engine must be able to recognize concepts in the answers.
C-rater analyzes responses using a range of NLP techniques and normalizes across the variety of
ways a single concept can be expressed by focusing on four primary sources of variation in sentences:
predicate-argument structure, pronominal reference, morphological analysis and synonyms. When a
student’s response has been normalized, C-rater will attempt to match the concepts it has identified
to the concepts that are represented in the model of the correct answer, and then assign a score
depending on the number of concepts that are matched. This system was tested and evaluated in
two large-scale assessment programs: National Assessment for Educational Progress (NAEP) and a
statewide assessment in Indiana. The C-rater system agreed with the human graders in both studies
84% of the time, which is a high correlation.

3.2.2 Information Extraction
In simple terms, Information Extraction (IE) involves taking data and extracting structured infor-
mation to use it for a variety of purposes. IE automatically retrieves structured information from
a set of unstructured documents or corpus [14]. In the context of this report, IE will encompass
extracting facts/information from students’ short answers. Usually, student answers contain specific
ideas and facts that are beneficial to extract and model.

AutoMark
AutoMark (Mitcell et al. [29]) employs techniques of Information Extraction to provide computerized
marking of short free-text student answers without penalizing the students in the case of errors in
spelling, typing syntax and semantics. It looks for specific content in the short-text answers. This
content is specified in the form of a number of mark scheme templates. Each template represents
one form of a valid or invalid answer. When AutoMark grades an answer, the student answer is
first parsed, then matched against each mark scheme template. Lastly, a mark for each answer
is computed. These templates are designed such that they can robustly be mapped to multiple
different variations of the input text. Two experiments were devised to evaluate the software of
the system, namely the ‘blind’ and ‘moderation’ experiments. The blind experiment was a fully
automated process, while the moderation experiment includes a step where humans could step in
and revise after grading has been done.
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eMax
eMax [39] is aimed at semi-automated assessment of short-text answers. The system initializes with
lecturers entering the question to be asked and the expected correct answers into the system. In the
freely formulated correct answer, the lecturer also needs to mark relevant semantic elements that are
expected to be included in student answers. Following this, eMax offers a set of synonyms for each
of the relevant semantic elements in the correct answer, and the teacher must then either accept or
reject the synonyms offered. Finally, the lecturer must provide a scoring scheme for student answers
by allocating weights to the semantic elements. With all these preconditions in place, eMax can
perform an evaluation of the student’s answers. Furthermore, the system also generates all possible
formulations for each answer type when evaluating, and each assigned score is additionally given a
confidence rating. This is performed so that challenging cases can be forwarded to a lecturer for
manual review.

Auto-Assessor
The primary focus of the Auto-Assessor [13] system is to determine the semantic meaning of student
responses, and a goal the developers of the system had in mind was that the students’ responses
could have a tremendous amount of flexibility in the way they were structured and worded. In
this system, the student responses must be free of spelling or grammatical errors and formulated
in a single sentence. The grading is based on bag-of-words coordinate matching and synonyms
are retrieved with WordNet [51]. Coordinate matching simply encompasses that each word in the
correct answer is compared to the corresponding word in the student’s response. Initially, each word
is checked for exact matches, which awards one point. If there is no match, the system will check
for related words from WordNet and if there is a match there, it will award partial credit. No credit
is awarded if there is no match.

3.2.3 Corpus-Based Methods
The Corpus-Based era introduced the usage of statistical properties of large document corpora [8].
Statistical properties are particularly useful when interpreting synonyms in short answers. One of
the most known contributions in this field is the introduction of Latent Semantic Analysis (LSA),
which is presented in Section 2.6.

Atenea
Atenea (Alfonseca et al. [1]) compares the accuracy of several variations of the BLEU algorithm
when applied in automatic grading. The BLEU algorithm [33] originally encompassed evaluating
the quality of text that has been machine translated from natural language to another. The central
idea behind BLEU is that the closer a machine translation is to a professional human translation,
the better it is. Therefore, quality is considered as the similarity between a machine’s output and
the translation performed by a professional translator. In regard to Atenea, the BLEU algorithm
calculates an n-gram precision metric by finding the percentage of n-grams from the candidate trans-
lation that appears in any of the Reference Answers (answers written by teachers). Alfonseca et al.
consider that the students’ responses are the candidate translations, and the teacher writes a set of
correct answers with a different word choice to be taken as a reference. The authors worked with
a dataset that was made of seven questions and 885 Student Answers. All the answers were also
scored manually by two different human judges. These judges also wrote the Reference Answers. In
addition, Alfonseca et al. implemented a brevity penalty factor to ensure that translations that are
missing information do not get higher results than complete translations that are not fully accurate.
Furthermore, NLP was utilized as simple modifications to the original algorithm. Results from the
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project revealed that the correlation values between BLEU and the manual scores were better than
those obtained with other keyword-based evaluation metrics used in existing systems.

Mohler
Mohler et al. [30] explore unsupervised techniques for automatically grading short answers. The
main contribution here is that they individually compare eight knowledge-based measures of semantic
similarity and two corpus-based measures of semantic similarity. These knowledge-based measures
are shortest path, Leacock & Chodorow, Lesk, Wu & Palmer, Resnik, Lin, Jiang & Conrath, Hirst &
St. Onge [30], while the two corpus-based measures are LSA and ESA (Explicit Semantic Analysis)1.
When comparing the knowledge-based measures, Mohler et al. derive a text-to-text similarity metric
by using a methodology proposed in Mihalcea et al. [28]. In simple terms, this technique utilizes
each open-class word from one of the input texts to couple with each open-class word in the second
input text to get the highest level of semantic similarity possible. More specifically, for each word
W of part-of-speech class C in the instructor’s answer, they find maxsim(W, C):

maxsim(W,C) = maxSIMx(W,wi) (3.1)

where wi is a word in the Student Answer of class C, and the SIMx function is one of the knowledge-
based measures mentioned above [30]. All these word-to-word similarity scores were also summarized
and normalized with the length of the two input texts. Results from this methodology indicated
that regarding the knowledge-based measures, the shortest path measure gave the best correlation.
Corpus-based measurements are different from knowledge-based approaches in a way that they do
not require any encoded knowledge of a text language’s vocabulary or grammar. Mohler et al. ran
a Singular Value Decomposition (SVD) operation on several corpora like the BNC (British national
corpus) and the English Wikipedia. Results from the Corpus-based measures displayed that the LSA
BNC measure provided the highest correlation. In addition to comparing these measures, Mohler
and Mihalcea also considered incorporating the highest-scoring Student Answers with the teachers’
answers to increase the vocabulary of the teachers’ answers.

3.2.4 Machine Learning
Usually, a classification or regression model is used in machine learning systems to combine a vari-
ety of metrics taken from NLP and other sources into a single score/grade. A model can be built
using student responses and the corresponding instructor grades, with the objective being to predict
which score should be given to new answers [15]. An automatic short-response grading system can
be created and made ready to use with a certain level of confidence by gathering data, creating the
model, and then evaluating it. Decision trees and support vector machines are common learning
algorithms in this area, in addition to using bag-of-words (Section 2.5.1) and n-grams (Section 2.5.2).

e-Examiner
e-Examiner is a tool developed by Gütl [19] to support the assessment process by automatically
creating test items, assessing students’ answers, and then providing feedback. Gütl has put three
plugins into use for the automated evaluation task:

1. Using a vector space model, a COSIN Text Similarity plugin calculates the degree of similarity
between a candidate response and one or more reference replies. This plugin allows e-Examiner
to assess the similarity between the student’s written response and the reference or model
answers.

1Explicit Semantic Analysis (ESA) is a technique that represents the meaning of text in a high-dimensional space
using a vector representation.
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2. ’ROUGE measures plugin’ (Recall-Oriented Understudy for Gisting Evaluation) [26] is a set of
measures commonly used in natural language processing to evaluate the quality of automatic
text summarization. By comparing the student’s written response with the reference or model
responses, the ROUGE Measures plugin in e-Examiner makes use of these metrics to evaluate
the quality of the response. ROUGE measures calculate how similar the student’s response
and the reference responses are on the basis of how many n-grams (contiguous sequences of n
words) they overlap.

3. The Assessment Score Builder plugin determines an overall score for a student’s response
that can be used for grading and feedback. It takes various factors into account, such as the
similarity between the student’s response and the Reference Answers measured by the COSIN
Text Similarity plugin, the quality of the response evaluated using the ROUGE measures
plugin, and potentially other criteria or rules defined in the e-Examiner system.

For each of the experiment setups, the parameters for the linear combination are calculated by ap-
plying linear regression on the output of the training dataset. The majority of the work encompasses
the architecture of the system, which is focused around an open and flexible approach. A flexible
design is essential for ensuring that the system can be utilized independently or quickly integrated
with existing e-learning programs.

Hou
The work of Hou et al. [22] focuses on improving the interaction between students and teachers by
implementing an intelligent computer system that is capable of automatically evaluating Student
Answers. Hou et al. approach the assessment problem as a classification issue, classifying student
results into two classes, such as ‘good’ and ‘not good’ in the eyes of the teacher. This is performed
so that the teacher can quickly determine most students’ learning situations for a particular subject,
and then decide whether to continue teaching or stay to improve the material. Based on a collection
of Student Answers, Hou et al. present a method for extracting related information and then creating
a set of new features that represent each answer. This is executed in three parts:

1. Data preprocessing: removal of punctuation, decimal numbers and stemming.

2. Feature extraction: POS tagging, TF, TF-IDF, and entropy are utilized.

3. SVM classification: A Support Vector Machine (SVM) [16] classifier is applied to the assess-
ment task by grading each answer from zero to ten. The classifier divides the responses into
two categories: category +1 for those with six or more points and category -1 for those with
fewer.

With this approach, a precision rate of 65.28% was achieved when all the features (POS tagging, TF,
TF-IDF and entropy) were utilized. In comparison, the average precision rate was only 55.62% when
only the TF and part-of-speech tag were used as features. This indicates that the use of TF-IDF
and entropy as features have a positive influence on the precision rate.

3.2.5 Clustering
Later in the 21st century, the idea of grouping together similar responses was introduced. This
can be performed by clustering Student Answers into groups to explore if student replies have any
common characteristics. Such a method can reveal naturally occurring clusters of answers having
similar structures to how students frequently respond. A majority of the work done under this theme
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encompasses identifying groups of related responses, which are then analyzed using both computer-
ized and manual methods. One of the key benefits of this strategy is that it allows for a creation of
a new system that enables teachers to provide common feedback to students belonging to the same
cluster, and thus, the same characteristics. The teacher can accomplish this by choosing a prototype
solution or answer from each cluster. Cluster analysis involves grouping objects in a way that makes
them more similar to each other than to those in other clusters. Essentially, it is a collection of
objects based on their similarity and dissimilarity. One of the most popular clustering methods is
DBSCAN, which is a density-based algorithm. This encompasses that the algorithm looks at the
number of points within a particular radius of the point itself. Another popular clustering algorithm
is the k-means clustering algorithm which starts with a group of randomly selected centroids to act
as entry points for each cluster. Subsequently, repetitive calculations are performed to optimize the
position of the centroids. Typically, this is performed by calculating the mean of the points in the
cluster from the last iteration of the algorithm.

Powergrading
Basu et al. [4] introduced an approach referred to as ‘powergrading’. The goal of powergrading was
to simplify the human effort for short-answer grading. This was attempted by grouping responses
into clusters and sub-clusters, allowing teachers to grade multiple responses within a single action
and provide detailed feedback to groups of similar answers. They also focused on finding consistent
patterns of misunderstanding amongst students that went beyond the fraction of getting a question
right or wrong. When the system automatically found groupings and sub-groupings of similar an-
swers from a large set of answers to the same question, they found that answers for a particular
question often clustered into groups around different modes of understanding and misunderstanding.

Horbach
One proposed approach presented by Horbach et al. [21] investigates the potential of answering
clustering and label propagation as an approach to semi-automatic scoring. The focus here was
finding the trade-off between grading accuracy and the reduction of teacher workload. In addition,
their approach assumes that highly similar student responses are likely to receive the same grade
from a teacher, and thus, can be grouped and graded as a single unit. To achieve this, clustering
techniques based on surface features were used. Answers were clustered automatically, and the
teachers would then label/grade only one item per cluster. That label would then be propagated
to the other items in the same cluster. 1668 short answers to 21 questions were utilized together
with sample solutions provided by teachers for each question, as well as teacher-assigned grades for
each student response. This data came from a listening comprehension task for students learning
the German language. They extracted features based on word n-grams, character n-grams, and
keywords. For each item, cosine similarity between its feature vector and the centroid of each cluster
was calculated. Furthermore, Horbach Et al. evaluated three methods for labeling the questions
but concluded that the selection and grading of the closest item to the centroid of a cluster and
then propagating this label to all other members of the cluster led to the highest accuracy. With
this approach, they achieved a reduction in teachers’ workload to labeling only 40% of all different
answers for a question, while still maintaining a grading accuracy of more than 85%.
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3.3 Most Relevant Approaches
CAA systems can vary greatly in the way they evaluate text answers. Consequently, there exist
several different approaches to automatic grading and feedback retrieval. This section will cover
three present and more relevant existing approaches to automatic grading and feedback retrieval in
the context of this thesis.

3.3.1 Automatic Evaluation of Short Free-Text Answers
Multiple approaches to evaluate short free-text answers have been performed. An approach and
implementation for automatic assessment of short free-text answers are proposed by Rodrigues,
Fatima et al. [38]. This approach is based on Reference Answers (RA) and Student Answers (SA)
and is composed of four modules:

• A classification module that gives a teacher the possibility to classify each question and answer
into types. This module is used to have the teacher set requirements based on the question/an-
swer type, to increase overall evaluation performance.

• A preprocessing module, consisting of multiple steps to process the text for further evaluation.
The preprocessing steps taken here are similar to the steps described in Section 2.4.

• An evaluation module that evaluates student responses. This evaluation is based on correct
RAs, typically answered by teachers. The Vector Space Model (VSM) is used to apply term
weights, and each SA and RA is represented by vectors with the corresponding term weights.
The similarity between the teacher/Student Answer pairs is calculated using cosine similarity.

• A feedback module that provides comments to students based on the missing topics in the SA.
The feedback covers the student’s performance and errors, as well as hints for improvements.
Feedback is also given to the teacher on topics that are less covered by a group of students or
individuals. A word-matching algorithm is used to provide the feedback, where the canonical
form of RAs is compared with the canonical form of the SAs to look for similar words. Each
word from the SA is searched for in the RA, and if it is not found, the part-of-speech (POS)
tag for the word is searched for in the RA. If the tag is found, the word is searched for in a
list of synonyms associated with the tag in the RA. This is done as an effort to better match
the RA and SAs, and since both answers are in canonical form and it is performed on short
free-text answers, each word should be meaningful in the context of evaluation.

3.3.2 Automatic Short-Answer Grading And Feedback Using Clustering
Methods

The work conducted by Suzen et al. [41] presents a concept of automatic grading of short-answer
questions by employing a clustering approach. Standard data mining techniques are applied on
a corpus of SAs and similarity is calculated with RAs. The similarity is based on the number of
common words. Their text representation is based on a bag-of-words approach, which is described
in Section 2.5.1. Here, each SA is represented as a bag-of-words, where the idea is to extract unique
words from the collection of documents. Subsequently, the documents are vectorized and similarity
is calculated using Euclidian distance. K-means clustering is applied to cluster the documents into k
clusters, and the documents are assigned based on the distance to each cluster. This way, the docu-
ments that are similar, or have a short distance to each other get clustered together and assigned the
same grade. Similar feedback is also provided to each answer within a cluster. Three clusters named
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Excellent, Mixed and Weak were utilized. All documents in the same cluster were expected similar in
terminology and term usage, and the words in each cluster were compared to demonstrate that the
clusters were formed based on the number and selection of words from the RA that have been utilized.

All SAs were graded similarly by two graders, with a few inconsistencies. A high correlation was
calculated for the grades given by the graders and the distances between documents. This entails that
similarly graded SAs would have a low distance to each other and therefore be clustered together.
In addition to the clustering method, the work also showcases a description of how SAs correlate to
the grades based on words used. A basic calculation is used to calculate the number of similar words
used in a SA and a RA. In this case, Hamming distance was used. When the distance was 0, all
words in the RA were used in the SA. Note that this was performed after the preprocessing process
and that usage of a synonym list was not used, but the idea was clearly presented. Further on, the
use of Hamming distance to predict grades (or marks) in SAs was presented, including a hypothesis
that involves whether the number of similar words in a SA to a RA can be used to predict grades.
To sum it up, due to the high correlations between grades graded by graders, word similarity, and
clustering presented in this work, this idea for predicting grades and feedback in short-answer texts
can with high confidence be implemented for other scenarios and should be tested further.

3.3.3 Automatic Evaluation of Students’ Answers with LSA
Kanejiya et al. [23] present an approach for automatic evaluation of Student Answers using syntac-
tically enhanced LSA (SLSA). LSA is mainly a corpus, bag-of-words based NLP technique that is
used to find semantic similarities between texts. Typically, a Term-Document Matrix is constructed
and preprocessing steps are performed. From there, Singular Value Decomposition (SVD) is applied
to reduce the dimensionality of the matrix, and cosine similarity is used to calculate the similarity
between documents, or SAs and RAs. Kanejiya et al. argue that an obvious way of improving the
performance of LSA is to incorporate syntactic information into it. Using a part-of-speech (POS)
tag is such an incorporation, and a proposed approach for such an implementation is given by using
the preceding POS tag of a given word in the matrix. The matrix would then contain rows with
word-POS tag combinations and columns would be documents. An argument is given that by us-
ing the preceding POS tag, a syntactic neighborhood is made around the focus word, allowing two
documents to be compared based on their syntactic-semantic regularity and not only semantics.

This approach initializes by first running a POS-tagger to turn the corpus into a POS-tagged corpus
and then creating a matrix of word-tag pairs, where the tag is the tag of the preceding word. The
similarity between documents could now be calculated within this vector space by applying cosine
similarity. To predict the performance of this approach, correlations between this technique and
human evaluators were performed, as well as regular LSA techniques. The work concludes that
this innovative approach has slightly, limited improvements in relation to LSA, but leads to future
experiments in the syntactic neighborhood of terms and might be worth investigating further.
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Chapter 4

Design

Two approaches will be presented for automatic grading and feedback. This chapter first presents
the high-level goal of this thesis. In addition, it covers a high-level design of the two approaches and
potential use cases for them both, whereas the descriptive implementation and findings are covered
in Chapter 6. The first approach features a Reference Answer (RA)-based approach that will be
compared to Student Answers (SA) by means of a similarity calculation. The second features a
clustering approach, and is based on the k-means algorithm that optimally clusters together answers
of similar grades and provides feedback to whole clusters.

4.1 High-level Goal
The high-level goal of this work is to provide an initial blueprint for a comprehensive system that
can be employed for automatic grading and feedback generation to students. The system is made
with the goal to relieve work from teachers that spend considerable amounts of time grading and
giving feedback, as well as providing feedback to students to improve learning. Furthermore, the
biases in having a teacher evaluate answers will optimally be removed. Such a system can also
provide students with immediate feedback, enabling them to see where they can improve and take
appropriate steps to do so right away. Moreover, the feedback can also be used to help explain the
grade the particular student has been given. Automatic grading and feedback systems can also be
scalable, making them capable of grading large numbers of responses quickly and accurately. In a
full-scale solution, the data retrieved from the grading process can be utilized to generate valuable
insights into students’ performance and learning outcomes, which a teacher can use to improve the
learning effectiveness and experience for the students. The two approaches presented in this thesis
are intended to serve as a step in the process to develop such a system as well as test out and explore
various techniques that can be incorporated to improve grading and feedback performance. Figure
4.1 presents an overview of such a system.

27



Figure 4.1: High-level goal

The system would work by having a student’s short answer inputted into a system for automatic
grading and feedback generation. Instead of having the teacher evaluate all answers individually, the
system would aid in this process and the teacher would function as a quality assurance link. This
way, the teacher would spare time while increasing the grading and feedback quality due to limiting
the biases from manual grading. The main focus in this thesis, however, is on how an automatic
grading and feedback system can be implemented, and less on the teacher evaluation part.

Feedback
The feedback technique that will be addressed in this thesis encompasses, as explained in Section
2.1 the utilization of providing keywords to students. These keywords represent important concepts
or themes that are absent in a particular student response and could be beneficial feedback terms
for the student. To retrieve these keywords, the Student Answers will be compared to a set of terms
that are known, or is likely to be of high quality for that particular question and should be present in
a high-quality response. Figure 4.2 illustrates a simplified version of the feedback/keyword retrieval
technique.

Figure 4.2: High-level feedback technique

A set of already-known feedback terms are present, and these terms are looked for in a particular
student response. If the term is absent in the student response, it is a possible feedback term. This
idea for feedback generation also requires a type of evaluation method to measure the effectiveness of
the technique. Thus, methods for feedback evaluation will also be discussed throughout this thesis.
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4.2 Comparing Student Answers with Reference Answers
Since it has been found that the use of LSA-based approaches can perform as well as an intermediate
expert human evaluator to evaluate text and that such approaches are rather popular as well, it is
given that it would be interesting to test out such an approach in this case. However, it has not
been proven that LSA can perform as well as an accomplished expert of the domain [23]. On this
basis, at least assessing a similarity-based approach on the Norwegian datasets is highly relevant,
and optimally attempt to improve the performance found in earlier approaches. Consequently, this
approach features a combination of the work described in Section 3.3.1 and 3.3.3. Figure 4.3 show-
cases a high-level representation of how such an approach will look like.

Figure 4.3: High-level similarity approach

The approach is based on finding similarities between RAs and SAs. Firstly, preprocessing tech-
niques will be performed on a dataset and a Term-Document Matrix will be constructed. From this
construction, Reference Answers and Student Answers will be retrieved. Since the datasets cur-
rently only consist of SAs and no RAs, it would be an idea to either create model answers for each
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question featured in the datasets, or use some of the highly graded SAs, and have them act as RAs
for this approach. This is a process that would have to be done manually with care to pick/develop
a good enough model answer. Furthermore, the best solution here would have to be tested out on
the datasets. Another relevant proposal is using only the most common words across the datasets,
and having them act as a RA. The similarity measure would in this case be to calculate the SAs
against the most common words. These words can be handpicked or found by extracting the words
with the highest weights from the highest-graded answers (the most relevant in the datasets) above
a given threshold, and then computing the cosine similarity to RAs.

LSA is described in Section 2.6, and for this approach, the datasets consisting of all SAs will act
as our corpus. Appropriate preprocessing techniques described in Section 2.4 will be performed and
the resulting data will be put into a bag-of-words manner. From there, a Term-Document Matrix
will be constructed, where SAs will act as individual documents in columns and terms will be rows.
Each individual cell entry in the matrix represents a term weight of term i in document j. Generally,
TF-IDF weights will be used to weight the terms, but other weighting techniques will be explored.
Singular Value Decomposition is attempted to only retain the largest values (weights) in the matrix.
From there, cosine similarity will be used to calculate similarities between SA and RAs. If an ap-
proach of high performance results in multiple RAs for each question, similarities can be calculated
for each RA, and some type of weighted average can be performed on the similarity measure against
all RAs.

As for the feedback generation, a highly relevant approach is proposed by the work described in
Section 3.3.1. Such an approach can appropriately be implemented for our approach as well. Once
the SAs and RAs have been vectorized, word similarities can be identified between the two. For each
word in the RA(s), it can be looked for in the SAs. If the word does not exist, it is a potential word
to be used for feedback for that particular answer, as it may be a terminology word that identifies an
unanswered theme. However, if the word does exist, it would mean the SA contains a correct source
of information. Implementing a synonym list is also relevant for the feedback technique, as the RA
and SA may be using different words that mean the same. Hence, the same meaning can be achieved
with different terminology and must be identified to provide meaningful feedback. This way, specific
feedback is generated for each SA. It is important to note, however, that several preprocessing steps
have been performed along with Singular Value Decomposition, so the idea is that all words that
are left in the Term-Document Matrix are important or relevant. Hence, all words that are put into
the word-matching/feedback algorithm are of meaning and could be used as relevant feedback.

The feedback techniques that are implemented in this approach rely heavily on the performance
achieved by the grading algorithm. Using common words in the dataset, or multiple RAs would
result in and affect the feedback technique. Thus, a quality evaluation must be performed to identify
the particular feedback technique that performs the best. As an example, if the usage of common
words in the datasets provides high quality for grading, the same common words might be useful for
feedback generation. In such a case, the word matching would occur against SAs and the common
words.
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4.3 Clustering
Since grouping similar responses has grown in popularity during the 21st century, one of the proposed
approaches in this thesis will investigate possibilities regarding clustering. Related work in this field
of research can be read more about in Section 3.2.5. For this approach, clusters of similar answers
will be constructed based on the content of the SAs. One of the objectives here is to examine how
answers of various grades are represented in different clusters, meaning whether answers of similar
grades are grouped together or if the clusters comprise answers of all grades. The possibility to
create a feedback system that enables teachers to provide similar feedback to students in the same
clusters will also be examined. As future work, Basu et al. [4] provide a clear direction forward in
the clustering field of research. The authors state that there are still many questions regarding how
these capabilities can be best presented to a human operator, including how clusters and sub-clusters
are displayed and how feedback can be provided to students.

Sections 3.2 and 3.3 present three existing approaches in the clustering area. Suzen et al. [41]
introduce an approach that depends on the similarity between the SAs and RAs. Since the datasets
do not include Reference Answers, the clustering approach will focus on a similar approach to the
two works done by Basu et al. [4] and Horbach et al. [21]. These two papers focus on grouping
responses into clusters without the use of model answers (RAs). As a result, teachers are able to
grade multiple responses with a single action as well as provide detailed feedback to groups of sim-
ilar responses. The approach will also utilize the concepts of NLP (Section 2.4) to preprocess the
data before initiating the clustering process by employing the common k-means clustering algorithm.

A high-level illustration of this approach is presented in Figure 4.4. A dataset is first sent into the
NLP preparation pipeline where it is used to create a Term-Document Matrix for each question.
The k-means clustering algorithm will attempt to cluster together similar responses, assign grades,
and produce feedback for these groups of responses. This system is regarded as a semi-automated
grading system as it allows for teacher manipulation. A teacher can optimally enter the system
and display the groups of responses in a clear way. Then, the teacher can step in and modify the
common grading and feedback suggested by the system. After the teacher has approved the grading
and feedback given by the system or modified it, the grading and feedback may be displayed to the
students.

Figure 4.4: High-level clustering approach
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K-means clustering is a well-known unsupervised learning algorithm that is used to divide a dataset
into k clusters. Here, each data point (student responses) is assigned to a cluster such that the
distance between the data point and the centroid of the cluster is minimized. The method seeks
to group together data points that are similar to each other while at the same time keeping data
points in different clusters as dissimilar as possible. The k-means algorithm is a well-known cluster-
ing technique in many fields, including computer science, engineering and social sciences. It can be
applied in a variety of domains, including Information Retrieval, image processing, and Text Mining.

The k-means algorithm can be broken down into four main steps:

1. Randomly initialize k cluster centroids: These initial centroids are selected by randomly se-
lecting k data points from the dataset.

2. Allocate data points to clusters: Measure the distance between each centroid and each data
point in the dataset. This is usually done by utilizing the Euclidian distance metric. Assign
each data point to the cluster whose centroid is nearest.

3. Update the centroids: Set the new centroid of each cluster to be the mean of the data points
in each cluster.

4. Repeat step 2 and 3 until convergence: Re-assign all data points to the clusters based on
the updated centroids and recalculate the centroids. Quit when the centroids and cluster
assignments converge to stable values.

Although being a strong and popular clustering technique, the k-means algorithm has a few limi-
tations. The algorithm assumes that the clusters are spherical and equal in size which may not be
true for all datasets. Another drawback is that the user must choose the number of clusters k, which
is a hyperparameter1. This hyperparameter might have an impact on the clustering performance.
K-means clustering is nevertheless a useful and popular method for grouping data.

1A hyperparameter is a parameter that is chosen before a learning algorithm is trained and is used to control the
learning process
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Chapter 5

Dataset

The datasets utilized to explore different approaches originate from two exams in the course IT2810
- Web Development. This course is currently being taught at the Norwegian University of Science
and Technology (NTNU) and the exams are from the years 2018 and 2019. The course covers tech-
nology and methods used for web development, including frameworks, architecture, languages, and
formats exercised for standard web applications. For both exams, the same professor was responsi-
ble for grading, meaning that all answers received one grade from the same sensor ranging from 0
to 5, where 0 is the lowest and 5 is the highest. Furthermore, all answers are mostly answered in
Norwegian, either in Norwegian Bokmål or Norwegian Nynorsk, but a subset were also answered in
English. The whole dataset consists of short answers, however, the answer length for each answer,
or the average answer length for one exam might differ greatly and should be taken into consideration.

The 2018 dataset (D18) has 16 questions and 164 students participated, whereas the 2019 (D19)
dataset has 8 questions and 185 participants. An overview of the questions can be found in Appendix
B. These exam questions were meant to test the knowledge of the students throughout one whole
semester of learning in the course. Most questions and answers are written in natural language.
However, some answers contain code examples in addition to text, and a few questions specifically
asked to use examples. Certain questions were also pure programming questions, and because this
work focuses on automatic grading and feedback generation of short answers, it might be an idea
to exclude such questions. Performing evaluation of code, as well as short-answer text would fall
outside the scope of this thesis.

The grading process operates in a way that all question responses were given a grade ranging from 0
to 5. These grades were not given directly to the students. Instead, they were given an overall grade
calculated from all the question grades. Each question in the datasets had a weight assigned to them
indicating the importance of the question, and the overall grade was calculated by adding together
the sub-grades multiplied by the weight. In these two datasets, however, all question weights were
set to 1.

The datasets contain some noise. Not every student has answered every question, and some answers
contain unrelated answers. Such answers are common on exams and an argument can be made that
a realistic grading- and feedback system should manage such noise. Hence, these answers should
probably stay in the dataset and not be excluded.
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Although this course and the datasets are mostly written in Norwegian, the course content contains
a high degree of English terminology which is included in all answers. Such words are important
because they are typical for the topic, and should be handled in the system. Potentially, the lack
of these words in Student Answers might be a good indication of the student’s knowledge level and
could function as meaningful feedback for the student.

The two exams were taken in Inspera, which is a digital assessment platform utilized by NTNU.
Consequently, the datasets include some unnecessary attributes that should be cleaned before ap-
plying IR techniques. These attributes include general Inspera data that is irrelevant to this project,
as well as candidate IDs for all the students and the duration spent answering each question. The
most relevant attributes for this project are the Student Answers along with their final course grades
and a set of attributes that uniquely identify each exam question. In addition to this, all attributes
are written as nested JSON objects. These objects should first and foremost be normalized and the
relevant attributes should be selected. Another notable element in the datasets is that the answers
were stored with HTML tags from Inspera. Optimally, only pure text written by students is valuable
to investigate, and it is therefore uncertain how a potential system would react if HTML tags are
kept. On this basis, removing them from all text answers would be beneficial.

An important aspect of analyzing such datasets is looking at the grade distribution. Based on the
distribution, it can be determined to some degree which techniques might not perform well. If the
grade distribution of the dataset is unbalanced, it can affect the performance or provide implications
related to automatic assessment. An example of this could be within a machine learning approach
where you have a test and training set. The training set is used to train or learn a pattern to predict
grades in the test set, and consequently, an unbalanced dataset could provide biases toward grading.
Hence, an analysis of the grade distribution in the two datasets is performed in Section 5.2.1

5.1 Data Cleaning
During the data-cleaning process, a plan was constructed to keep track of what needed to be done
with the datasets. This plan included a number of problems/obstacles that were discovered during
the data exploration phase. Table 5.1 lists these obstacles.

Table 5.1: List of obstacles in the datasets

Id Obstacle
1 Inspera formatted text
2 Presence of programming questions
3 Presence of programming snippets in responses
4 Responses answered in different languages
5 Presence of tables and images in responses
6 Special characters
7 Responses not answered
8 Typos in responses
9 English terminology in Norwegian responses
10 Size of datasets
11 Grade distribution
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The original datasets were, as mentioned, written in a nested JSON format and include 33 proper-
ties that contain metadata about the exam, candidates, responses, and other essential exam data.
Therefore, the first step in the data-cleaning process was to extract the relevant attributes for the use
case of this thesis and construct a new processed JSON file only containing the attributes needed.
These attributes included IDs to uniquely identify candidates and questions for both exams. The
Manualscores (the grade given by a teacher on each SA) and complete SAs were also retrieved. The
new, processed JSON file was then saved with the HTML encoding ’utf-8’, causing the Norwegian
letters ’ÆØÅ’ to be displayed properly in the file.

Every exam was conducted online and completed utilizing the Inspera platform. On this platform,
students are given the option to format their responses. The students can incorporate bold text,
lists, equations and titles in their responses. Consequently, the responses were noted with various
HTML and markup language tags that described the metadata of the text. This challenge is listed
as Challenge 1 in Table 5.1, and could be handled with a regex function that removed such markup
language. However, given that these exams cover the subject of web development, several candidates
also included HTML elements as part of their solutions. Ergo, deleting the HTML tags would also
delete portions of the student responses. The solution here became removing all markup and HTML
from the text, including HTML constructed by the students. This can be justified by the fact that
the text was overflowing with Inspera-generated HTML and markup, and because it does not exist
any openly available overview over which HTML tags Inspera uses, causing filtering them out to
prove problematic.

The students had the option to add tables and images to their responses. These were also marked
with HTML tags. Because of the way HTML structures tables, deleting the tags and keeping the
text would leave a text structure without a way of identifying which cell content goes to which col-
umn. In addition, only seven responses from D18 and nine answers in D19 contained tables. Hence,
the datasets would not be significantly affected by removing them. Therefore, the decision to remove
the tables with the same regex function utilized to remove the other Inspera markup language was
made. The regex function applied was manually constructed for this specific task.

One answer in D19 and eleven answers in D18 included images. It was determined that removing all
responses that included image tags would be the simplest approach to take. This was achieved by
detecting if the answer had an HTML image tag and removing these responses from the datasets. It
is important to note that removing only the images from these replies were discussed, but that would
remove only a part of these responses and could cause the grading to be inaccurate. Furthermore,
keeping the images in the datasets would encompass evaluating them as well, which would make the
proposed approaches substantially more complex, and is outside the scope of this thesis.

Challenge 2, the presence of programming questions was also taken care of in the data-cleaning
process. As question 8 in D18 was a pure programming question, asking students to write the code
for a React component that included an H1-element with the text ‘Hello World’, this question was
dropped in the processed JSON file. Such questions are not covered in this thesis as it focuses on
natural language short-answer responses in Norwegian. An example of the processed JSON file with
one candidate and one response is presented in listing 5.1.
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1 {
2 "candidates": [
3 {
4 "candidateId": "10090",
5 "questions": [
6 {
7 "questionId": "38102438",
8 "questiontitle": "Web storage",
9 "maxQuestionScore": "1",

10 "Manualscore": "5",
11 "response": "At en har mulighet til å lagre state asynkront
12 lokalt på maskinen/mobilen."
13 },
14 ...

Listing 5.1: Snippet from processed JSON file

A subset of the students chose to not answer some questions, which is referred to as Challenge 7
in Table 5.1. Such unanswered responses would contain a string with the text ‘None’. In addition,
a portion of students chose to write a simple explanation about why they could not answer that
question. Some examples of this are responses such as ‘Denne var tricky’ which can be translated
to ‘This one was tricky’, and ‘Beklager men dette er et spørsmål jeg ikke kan svare uten å google.’,
meaning ‘Sorry but this is a question I can’t answer without googling.’ in English.

The inclusion or exclusion of these responses in the datasets had to be decided. To achieve a more
realistic grading result, the decision to keep these responses in the datasets was made. Consequently,
a set of responses that received a score of zero were kept. As a result, this caused the datasets to
represent a more realistic response collection.

The next step in the data-cleaning process involved normalizing the data and creating a dataframe.
The Python library ‘pandas’ was utilized for this process. This is a library specifically made for
data analysis [32]. Such a dataframe is arranged in rows and columns as a two-dimensional data
structure, allowing for easy manipulation of the data. The normalization process was utilized using
the ‘json_normalize’ function from pandas1, and functions by taking a JSON structure as input and
converts it into a two-dimensional dataframe.

Another issue involved handling the responses in different languages, referred to as Challenge 4 in
Table 5.1. Although Norwegian Bokmål was used for the majority of the replies, English and Norwe-
gian Nynorsk were also utilized in some responses. As a result, words with the same meaning would
not be immediately regarded equal in a straightforward vector similarity technique. As this thesis
prioritizes short-answer grading and feedback generation in the Norwegian language, a decision to
singularly keep the Norwegian Bokmål answers and remove those in English and Norwegian Nynorsk
was made. Additionally, due to the exam’s subject ‘Web development’, several questions answered in
Norwegian Bokmål also contained English terminology (Challenge 9 in Table 5.1), causing a poten-
tial multi-lingual dataset issue. These terminology words include words like ‘grid’, ‘arrow’, ‘props’,
‘layout’ and ‘state’. A Python library called Polyglot was utilized to address the language issue.

1https://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html
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The Polyglot library [48] is an NLP toolkit for Python. It provides support for various tasks such as
language detection, part-of-speech tagging, named entity recognition and sentiment analysis. The
library utilizes various language models and algorithms to perform these tasks, making it an all-in-
one solution for a wide range of NLP requirements. Polyglot’s language detector can detect both
English, Norwegian Bokmål and Norwegian Nynorsk, making it well suited for the language issue.
The language detector can identify which language appears most frequently in the text, as well as
the confidence level for each response. This level is an approximation of how confident the detector
is of the suggested language.

The language detector was run on each response. Subsequently, the most probable language and the
degree of confidence were added to their own new columns in the dataframe. The resulting dataframe
showed that the detector was not entirely accurate. One of the main issues was that many of the
Norwegian responses contained English terminology which resulted in a subset of responses being
marked as English, but were in fact Norwegian bokmål. To effectively resolve this issue, it was
decided to only keep all the Norwegian answers and the English answers that had a confidence level
lower than 85. The idea behind this was that English responses with a confidence level lower than
85 were with a high probability Norwegian Bokmål answers, containing some English terminology.
Conversely, English responses with a confidence level higher than 85 were most likely English re-
sponses and were therefore removed.

With this approach, the English responses were removed and most Norwegian responses were kept
in the datasets. This implies that the method may not always be 100% accurate, but ought to
ensure that the majority of the responses were properly classified. The number of replies that were
identified in each language for each dataset is presented in Tables 5.2 and 5.3. Confidence levels over
85 are marked as ‘High confidence’, and under 85 as ‘Low confidence’.

Table 5.2: Languages in responses data D18

Language Answers
English 129
High Confidence (English) 67
Low Confidence (English) 62
Norwegian Nynorsk 84
Norwegian 2242
Responses kept 2304

Table 5.3: Languages in responses data D19

Language Answers
English 111
High Confidence (English) 58
Low Confidence (English) 53
Norwegian Nynorsk 12
Norwegian 1357
Responses kept 1410
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The size of the datasets is to be regarded as somewhat low, stated as Challenge 10 in Table 5.1.
This is an obstacle that is not unusual in the field of short-answer grading, and is one of the core
constraints of it [6]. The lack of data can cause the diversity of student grades to be relatively small,
which can lower performance or cause approaches to perform inaccurately. Furthermore, selecting
terminology words in a small dataset may prove difficult because there may be an imbalance in the
datasets, causing a disproportionate number of answers of one particular type. Consequently, the
choice of terminology words for feedback generation may be biased.

5.2 Feature Analysis
After the data-cleaning process, a feature analysis of the two datasets was performed to get a deeper
insight into the two datasets. Feature analysis is important to perform to fully understand the
data, and spot patterns, trends and outliers. Such an analysis can lead to spotting any biases and
limitations. Furthermore, it can aid in making the right decisions for further data processing and
modeling. Table 5.4 provides an overview of the most important features in the two datasets after
the data-cleaning process was conducted. All grades and word count calculations were performed
after the preprocessing step involving the removal of stopwords and only on the Norwegian Bokmål
answers. The stopword removal process is elaborated on in Section 6.2.2.

Table 5.4: Feature analysis overview

Feature Exam 2019 Exam 2018
Students participating 182 162
Number of Questions 8 15
Mean Grade 3.48 3.62
Median Grade 4 4
Standard deviation Grade 1.3 1.4
Answers graded 0 38 137
Answers graded 1 61 65
Answers graded 2 240 183
Answers graded 3 277 630
Answers graded 4 431 418
Answers graded 5 362 870
Mean Word Count 61 37
Median Word Count 52 31
Standard deviation Word Count 39 25
Min Word Count 1 1
Max Word Count 293 218

As depicted in Table 5.4, the mean grades are almost identical for the two datasets. The word
count standard deviation for both datasets is also quite high, suggesting that the word counts in the
responses are relatively spread out from the mean. A standard deviation of 1.3 and 1.4 for the grade
indicates that the majority of the data points are within 1.3 units of the mean (above or below),
however, some may be further away. The mean word count is also a bit higher in the D19 dataset
compared to D18. This may connect with the fact that there are more questions in the 2018 exam,
while both exams were given the same amount of time to be completed. The D18 exam also stated
in the introduction that ‘Short and precise answers are rewarded in the assessment’. The standard
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deviation for the word counts for both datasets is also high, indicating that the answer lengths are
also relatively spread out widely from the mean.

5.2.1 Grade Distribution

(a) Grade distribution D18 (b) Grade distribution D19

Figure 5.1: Grade distributions

Figure 5.1 contains two plots of the grade distributions in the two datasets. Based on the plots,
it can be seen that both datasets are not normally distributed. With most of the data centered
around the mean and few data points at the extremes, a normal distribution has a distinctive bell
shape. However, these plots illustrate that higher grades are more common than lower grades in the
datasets. The skewed distributions are summarized in Table 5.5.

Table 5.5: Skewness and Kurtosis of datasets

D18 D19
Kurtosis -1.2 -1.41
Skewness -0.79 -1.19

Skewness is a metric that represents the asymmetry of a probability distribution. A distribution has
zero skewness if it is symmetric. Positive skewness means the distribution is skewed to the right,
and negative skewness implies it is skewed to the left [17]. Both datasets have negative skewness,
indicating that the tail of the distribution is longer on the left side, and the bulk of the data is
located towards the right side of the distribution.

The measure of Kurtosis refers to the tailedness of a distribution [17]. The tailedness reflects the
frequency of the outliers. The kurtosis in both datasets is also negative, meaning that the distribu-
tion is platykurtic. In comparison to a normal distribution, a platykurtic kurtosis is flatter and has
thinner tails. This implies that, compared to a normal distribution, the data contains more values
in the center of the distribution and fewer extreme values.
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In the D18 dataset, the most common grade is 5, while in the D19 dataset, the most common grade
is 4. The occurrence of 0 and 1 graded answers are low in both datasets. Handling this unbalance
is essential to provide accurate and unbiased grading. In this case, the model might not generalize
effectively and be biased towards the dominant classes, which are answers graded 4 and 5. This would
cause an issue in a supervised machine-learning approach because the model is given access to the
class labels in the training set and attempts to learn from that. If this training set contains mostly
high grades, the model may become biased. However, because the k-means clustering algorithm
is an unsupervised clustering approach, the datasets are not required to be normally distributed.
Unsupervised clustering is a type of exploratory data analysis that seeks to group similar data points
together only based on their features. K-means clustering is only based on the distance between
data points and therefore can be used with both normally and non-normally distributed data. In
addition, the unbalanced datasets are not a major problem in the RA-based approach either. This
is because the methods utilized can handle both normally and non-normally distributed data since
it makes no assumptions about the data’s distribution.

5.2.2 Answer Length
The feature of answer length is also an important consideration in an automatic short-answer grading
system. The length of the responses can be an indicator of the degree of detail the student offered in
their answer and may also affect the grade that is given. However, especially in the D18 dataset, the
instructor favored short and precise answers, entailing that a longer answer should hypothetically
not give a higher score. It is nevertheless important to look at how the grades correlate with answer
lengths. Table 5.6 and 5.7 provide an overview of the answer lengths for all grades in the two
datasets after the data-cleaning process was performed. The ‘answered’ row represents the number
of answers for each grade in the datasets.

Table 5.6: Word Count Statistics by Grade D18

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Answered 137 65 183 630 418 870
Mean 14.85 18.35 25.54 35.75 39.91 43.54
Median 13.00 15.00 23.00 30.00 33.50 36.00
Min 1 2 4 3 3 4
Max 53 74 76 121 170 218
Std 11.74 14.01 13.31 20.65 24.16 28.62

Table 5.7: Word Count Statistics by Grade D19

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Answered 38 61 240 277 431 362
Mean 13.68 29.74 45.39 68.60 63.91 70.49
Median 5.0 17.00 36.00 56.00 58.00 62.0
Min 1 4 9 11 10 13
Max 65 141 190 293 238 262
Std 16.89 32.54 29.70 42.57 35.80 38.93
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It can be observed that the mean and median word counts increase gradually for all grades in the
D18 dataset. This can indicate that word counts positively correlates with grades. The minimum
word count is generally the same for all grades in the D18 dataset, and the maximum word count
increases gradually for each grade in the D18 dataset. Again, this suggests that the word count cor-
relates with the given grade and can be incorporated as a feature in the grading process. However,
the minimum word counts in the D18 dataset for grades 4 and 5 are low and can imply that answers
of low word count can receive high grades as well.

For the D19 dataset, the mean word counts increase for all grades except from grade 3 to 4. The
minimum word count is approximately the same for the grades in intervals 0 to 1 and 2 to 5. How-
ever, grade 5 has the highest minimum word count, indicating that there are no significant answers
with a low word count that were graded 5. The maximum word count is also the highest for grade
3, suggesting that a high word count does not automatically give the highest score.

An argument can be made that standard deviations of word count per grade can reveal within what
range of word count the majority of answers for each grade are in. This can be utilized to observe
which grade range a new response is within and to further use that as a part of the grade prediction.
By scaling up the correlation score depending on word counts and corresponding standard devia-
tions, a more accurate grading calculation may be achieved. A smaller standard deviation suggests
that answers of the same grade have similar word counts. Conversely, a greater standard deviation
indicates varying word counts for responses of the same grade.

(a) Grade 0 (b) Grade 1 (c) Grade 2

(d) Grade 3 (e) Grade 4 (f) Grade 5

Figure 5.2: Word counts per grade in responses D18
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Figures 5.2 and 5.3 showcase histogram plots for the word counts for each grade in the two datasets.
A histogram is a type of graph that shows how a set of continuous data is distributed [36]. It is made
up of a set of bars that represent the frequency distribution of the data. In these figures, the x-axis
represents the range of values for the word counts, while the y-axis represents the frequency at which
each value (number of SAs) occurs within that word count. The mean and standard deviations are
also marked in the plots with dotted lines colored green and red respectively. From these figures,
it can be observed that the standard deviations are high in relation to the means. This indicates
that the word frequency in the responses can overlap between the mean and standard deviations for
multiple grades, making it difficult to use answer length as a part of the grading scheme.

(a) Grade 0 (b) Grade 1 (c) Grade 2

(d) Grade 3 (e) Grade 4 (f) Grade 5

Figure 5.3: Word counts per grade in responses D19
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Chapter 6

Implementation and Evaluation

This chapter covers the proposed approaches of two automatic grading and feedback systems with
Information Retrieval (IR) and Text Mining (TM) techniques. Furthermore, two suggested im-
plementations of these approaches are present and tested on the Norwegian datasets described in
Section 5.1. The focus will be on the implementation and experimenting with the possible perfor-
mance that can be achieved on these approaches on the Norwegian datasets by testing out several
preprocessing and feedback generation techniques. The main experiment is to evaluate the perfor-
mance of the grading and feedback implementations on the datasets, and the goal will be to look at
the possibilities for these approaches.

6.1 Tools and Environments
The two approaches were implemented in Python1. Python is the most suitable programming
language for this work because of its big leap in the Natural Language Processing (NLP) field. In
addition, Python provides a simple and easy-to-use syntax, making it easier for developers to write
code. Visual Studio Code2 was chosen as the code editor to be used in the development of these
approaches. This was chosen because it is one of the most popular IDEs, and includes several handy
development and environment features like a debugger, syntax highlighting and integrated Git3.
Visual Studio Code also allows users to fully customize the editor with extensions that expand the
functionality of the IDE. Users can choose between numerous Python-specific extensions, such as
code formatters and linters. Additionally, GitLab4 was utilized for source code management. This
was chosen since it is NTNU’s official source code management provider.

6.2 Dataset Preparation
During the exploration face of the datasets described in Section 5.1, a list of obstacles that occurred in
the datasets was described. To prepare the datasets for the two approaches that were implemented,
however, a series of tests were conducted on multiple preprocessing and cleaning techniques to figure
out how to prepare the datasets for optimal performance on the algorithms. Thus, this section

1https://www.python.org/
2https://visualstudio.microsoft.com
3https://git-scm.com/
4https://gitlab.stud.idi.ntnu.no/
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describes and covers the process of selecting the appropriate preprocessing techniques and cleaning
methods.

6.2.1 Lexical Analysis
Firstly, to handle the obstacles found in the datasets, the proposed solutions to these obstacles that
were explained in Section 5.1 were applied. From there, the first step in preparing the datasets was
lexical analysis. The lexical analysis consists of first tokenizing all answers in the datasets, perform
case folding and punctuation removal. The process included handling characters such as digits,
hyphens and punctuation marks. This was performed by utilizing the NLP regex tokenizer5 which
utilizes regular expressions to recognize words, and at the same time remove punctuation marks
and other unimportant characters. This is a more efficient way to tokenize in comparison to other
tokenizers which simply splits text based on whitespace. Additionally, the choice of only keeping
tokens that did not start with a number and were longer than three letters was made. This was
because the two datasets consist of answers in the field of computer science and some responses
contained programming snippets. Such snippets, when tokenized, resulted in a series of tokens that
had few letters and contained no semantic meaning on their own. These tokens only contributed to
an unnecessary amount of dimensions and were therefore chosen to be removed. The casing of the
letters was also set to lowercase. This entailed that words like ‘Function’ and ‘function’ was treated
as equal strings, and thereby equal tokens.

6.2.2 Stopword Removal
After lexical analysis, the removal of stopwords was performed. These words have little meaning
to the context of the text and are therefore not necessary to have in the datasets. To remove
these stopwords, the NLTK library was used. NLTK provides support for the removal of Norwegian
stopwords by providing a corpus that includes a stopword list in Norwegian, and it functions by
checking if each token matches the words in the list of stopwords. If the token matches a stopword,
the word is removed. A visual inspection of the data revealed that not all stopwords were removed
in this process. To further improve the stopword removal process, a list of Norwegian stopwords
was manually constructed and applied as an algorithm to remove additional stopwords. Three open-
source lists of Norwegian stopwords were found and utilized. The full list of stopwords utilized can
be found in Appendix A.

6.2.3 Stemming
Stemming was performed after stopword removal. By employing stemming, words that contained
the same root were grouped, and the dimensionality got reduced. The NLTK snowball stemmer6 was
utilized for Norwegian text, which is an iterative algorithm that takes an input word, converts it to
lowercase and removes any diacritical marks. From there, the algorithm checks and removes common
suffixes from the word. If the stem ends with a double consonant or the words are of a certain type,
additional checks are performed. The stemming step resulted in a dimensionality reduction, and the
majority of words (or tokens) were stemmed correctly. However, after a visual inspection of the two
datasets, it was obvious that the stemming technique did not perform optimally in the Norwegian
language.

5https://www.nltk.org/api/nltk.tokenize.regexp.html
6https://www.nltk.org/api/nltk.stem.snowball.html
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6.2.4 Lemmatization
As with stemming, lemmatization was performed after the stopword removal step in an attempt to
reduce the dimensionality. This was performed by loading a Norwegian language model that had
been trained on Norwegian news and media text7. The model was able to utilize different functions
on Norwegian text, such as lemmatization8. As a result, the words were grouped by their dictionary
form, and thus, improved dimensionality. This corresponds well with relevant literature, as it is
found that lemmatization has higher accuracy than stemming [44]. A combination of applying both
stemming and lemmatization on the datasets was attempted to check if the performance increased.
Performing both of these preprocessing techniques on the text has been shown to provide a slight
increase in performance, where it is normal to perform lemmatization before stemming. However,
in the case of these two datasets, lemmatization was found to perform the best singularly.

6.2.5 Synonym List
The usage of a synonym list was tested to group together words of the same meaning. This list was
retrieved by an open-source GitHub repository containing a list of common Norwegian synonyms
[40]. The repository retrieved synonyms from ‘Norske synonymer blå ordbok’ [18], and the file was
structured by one headword with a list of synonyms beneath it. Stated differently, the synonyms
were ‘grouped’ by the common headword. A function was implemented to check for synonyms in
the two datasets and replace them with their corresponding headword in the synonyms file. This
hypothesis would optimally group together words of the same meaning and further increase perfor-
mance. The function loops through all terms in the two datasets, checks if the term is present in
the synonym list, and replaces the term with its headword if the term is present in the list. Listing
6.1 presents pseudocode of this function:

def find_synonyms(text):
# Load the norwegian synonyms from JSON
synonyms = open(’norwegian -synonyms.json’, encoding=’utf -8’)
textlist = text.copy()
synonyms_data = json.load(synonyms)
for i, word in enumerate(text):

if word in synonyms_data:
textlist[i] = synonyms_data[word ][0]

return textlist

Listing 6.1: Find synonyms function

The results of this implementation gave minor changes. The two datasets contain a combination of
Norwegian language and English terminology, causing important terms to not get grouped together
due to the English language. The implementation of an English synonym list was also attempted.
However, this caused Norwegian words to be assigned as English words, changing their meaning and
further decreasing performance.

7https://spacy.io/models/nb
8https://spacy.io/api/lemmatizer
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6.2.6 Spell Correction
Spell correction was attempted to further group words of the same meaning. The data exploration
phase revealed that several answers contained words of wrong spelling, causing the lemmatization
and stemming steps to function inefficiently. Since the responses contain words in both English and
Norwegian, an approach involving detecting what language the misspelling was in before suggesting
the correct spelling was attempted implemented. This was performed by first defining a Norwegian
and an English dictionary using the Python library ‘Phunspell’9. ‘Phunspell’ is a Python library
that provides a Pythonic API for communicating with the Hunspell spellchecker engine. Hunspell,
however, is an open-source spellchecker engine that is widely used in several popular applications10.
By offering a Pythonic API for communicating with the Hunspell engine, ‘Phunspell’ enables Python
developers to quickly implement spellchecking capabilities into their Python projects. This makes
‘Phunspell’ a powerful and efficient spellchecking library for Python, with support for multiple lan-
guages including English and Norwegian.

The spell correction approach first checks if a word is in the Norwegian or English ‘Phunspell’ dic-
tionary. If it is, the word is spelled correctly and is not changed. If the word is not in either of
these dictionaries, the language detector ‘Langdetect’11 is applied. ‘Langdetect’ is a Python library
for language detection based on statistical analysis of character n-gram frequencies. Almost 55
languages, including English and Norwegian are supported for language detection. The detector
attempts to detect which language the misspelled word is in. If the misspelling is in Norwegian, the
‘Phunspell’ function ‘suggest()’ is used to return a suggested spelling of the misspelled word based
on the Norwegian dictionary. If the misspelling is in English, the ‘suggest()’ function proposes a
spelling based on the English dictionary. The word is not changed if no detection is present. This
is to ensure that the algorithm suggests spellings in the correct language.

When evaluating the spellchecked tokens, it was discovered that they had little to no beneficial
effect on the performance because the proposed spell checking algorithm contained some limitations.
Norwegian words such as ‘funksjonsscope’ got changed to ‘funksjonsperiode’, which is a different
word than intended. Furthermore, the implementation was not able to detect the languages of the
misspelled words perfectly, most probably because of short inputs (one and one token separately) to
the detect function. This made the approach not able to correct a misspelled Norwegian word like
‘uvikle’, because the ‘Langdetect’ library thought this word was in the language Lithuanian.

Feature Matrix

The input in the Reference Answer and k-means clustering approaches is a feature matrix, in other
words, a Term-Document Matrix, which has each row representing TF-IDF weights in a SA and
each column representing a feature (a term present in the response collection). The approaches can
then calculate the distance between data points and centroids by using the Euclidian distance12. An
example of how the Term-Document Matrix appears is presented in Listing 6.2.

1 Akkurat Bruke Jquery
2 0 0 0.16
3 0 0.16 0.16
4 0 0.33 0.16

9https://pypi.org/project/phunspell/
10https://github.com/hunspell/hunspell
11https://pypi.org/project/langdetect/
12https://www.cuemath.com/euclidean-distance-formula/
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5 0 0 0
6 0 0.41 0.14
7 0.34 0 0.25
8 0 0 0.09
9 0 0 0

Listing 6.2: Example of Term-Document Matrix

The TfIdfVectorizer13 from Scikit-learn is used to create the Term-Document Matrix. This vectorizer
is adaptive and gives the user various options like ignoring terms that have a document frequency
strictly lower or higher than a given threshold. In addition, the user can specify attributes like max
features, if the term counts should be binary, and if the vectorizer should use n-grams. Therefore,
when constructing the Term-Document Matrix, different approaches for the term representation were
attempted, like n-grams of lengths 1-3. However, using n-grams lead to overly sparse matrices, which
can lead to the matrixes consuming a large amount of memory and the computational efficiency may
be affected. A solution to this is to ignore words that appear in less than 10% of the documents. This
can simply be performed by setting the min_df parameter to 10% of the length of the dataframe in
the ‘TfIdfVectorizer’. In addition, the ‘TfIdfVectorizer’ automatically performs normalization on the
feature weights by default, so there is no need to perform additional normalization on the matrices.
This is done by applying L2 normalization on the matrices. L2 normalization is a technique used to
normalize a vector by dividing it by its Euclidian norm [47]. The L2 norm of a vector X is defined
as the square root of the sum of the squares of its components. Equation 6.1 illustrates how the L2
normalization is represented mathematically.

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n (6.1)

6.2.7 Dimensionality Reduction
A dimensionality reduction was performed on a subset of tests on the two approaches in an attempt
to further increase performance. TF-IDF weights were generally used, and consequently, a large set
of words in the datasets would have low weights. Therefore, some words have lower relevance than
others, and by removing such words, the performance might improve. This was performed by simply
removing all words with TF-IDF weights under a given threshold.

6.3 Reference Answer Approach: Grading Results
The Reference Answer (RA) based approach was described in a high-level format in Section 4.2. For
all tests and ideas utilized in this approach, the following Python libraries were used for the imple-
mentation: Pandas14, Polyglot15 and Scikit-learn16. The results of the first approach vary greatly
with the choice of Reference Answers utilized and different preprocessing techniques. Consequently,
to explore what quality can be achieved with such an approach, multiple choices of Reference An-
swers along with different preprocessing techniques had to be tested out. Thus, the results presented
in this section are categorized as tests with varying choices of Reference Answers. All tests are sep-
arated by Reference Answers (RAs) and Student Answers (SAs), and the performance is computed
by a Pearson correlation coefficient between the grades assigned by a teacher (Manualscore) on a

13https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.
html

14https://pandas.pydata.org/docs/
15https://polyglot.readthedocs.io/en/latest/
16https://scikit-learn.org/stable/user_guide.html
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given SA and the average cosine similarity score that is calculated from the SA and RA(s). A further
descriptive computation of the performance calculation is given for each test.

6.3.1 Test 1: All Highest-Graded Answers
Initially, an idea of an approach was to have the highest-graded answers in the datasets act as RAs.
The rest of the datasets (answers graded 4 and under) would act as Student Answers. After all
preprocessing steps and construction of the Term-Document Matrix were done, similarities could
be calculated between the SAs and RAs. Since multiple RAs were used, a weighted average was
performed on the similarities computed on one SA. This way, the average similarity of all the RAs
was computed.

Naturally, the performance of such an approach can vary depending on the preprocessing steps that
were performed. The performance, consequently, differed when lemmatization, stemming, spell cor-
rection and synonym lists all were performed individually and in combination with each other. A list
of all preprocessing techniques that were performed and tested on different approaches is presented
in Section 6.2.

A dimensionality reduction was performed in this test to further increase the performance of the
algorithm. A threshold was set to remove words that had TF-IDF weights lower than 0.2. This way,
the dimensionality was reduced substantially and the similarity measure became more accurate by
removing irrelevant words.

A simple check to evaluate the performance of such an approach is to compare the average cosine
similarity measure on one SA with the Manualscore a teacher has given on the answer. The Pearson
correlation method was utilized for this purpose. After the algorithm was performed on a dataset
and average cosine similarities were computed, correlations could get calculated between the cosine
similarities and the Manualscore columns. Table 6.1 presents the correlation coefficients for all com-
binations of preprocessing steps that were tested for this approach on both datasets.

Table 6.1: Performance on all highly graded answers as Reference Answers

Preprocessing combination D18 performance D19 performance
Stemming 0.36309 0.42804
Lemmatization 0.36999 0.42133
Lemmatization + stemming 0.36979 0.42531
Lemmatization + synonym list 0.37311 0.41924
Spell correction + lemmatization 0.37391 0.42579
Spell correction + lemmatization +
synonym list

0.37737 0.42098

As presented in the table above, all combinations of preprocessing techniques were very similar in
performance. In addition, all correlations for this approach are regarded as rather low, varying from
0.36309 to 0.42804. The average performance across the two datasets was approximately 0.396 for
all preprocessing combinations, with negligible variance. The reasons for this low correlation can be
many, but the quality and the reliability of the two datasets are to be regarded as the main source.
The datasets contain a combination of Norwegian language and English terminology. Furthermore,
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questions and answers that contain programming may cause the similarity and correlation scores to
drop, simply because there are multiple ways of expressing oneself when two languages are combined.
In addition to programming, it makes it hard for the preprocessing techniques to identify similar
languages correctly. The two datasets’ reliability and analysis are discussed in Section 7.1.

Another bias is the distribution of the datasets. Using all of the highest-graded answers as RAs
causes only answers graded 4 and below to be evaluated. This may cause a skewed distribution of
the data because there are no highly graded answers to be evaluated. Consequently, high similarity
scores may not be present because all high-quality answers are used as RAs.

6.3.2 Test 2: Top 10 of the Highest-Graded Answers
Instead of employing all of the highest-graded answers as RAs, an idea was discovered to utilize only
ten of the highly graded answers. This way, the distribution of grades in the SAs would increase
because they would consist of a set of answers graded five. Additionally, employing ten of the highly
graded answers would theoretically grant a variety of terms used in highly graded answers to be
utilized as reference terms. If fewer highly graded answers were to be utilized as RAs, however,
the variations of terms to be compared with would be smaller and the similarity calculations would
hypothetically become more strict.

As with the first test, the performance varies depending on the preprocessing steps taken. Further-
more, a dimensionality reduction was also performed here, by removing all words with a TF-IDF
weight lower than 0.2. Table 6.2 presents the results achieved on this test when utilizing various
preprocessing tasks.

Table 6.2: Performance on ten highly graded answers as Reference Answers

Preprocessing combination D18 performance D19 performance
Stemming 0.36670 0.43502
Lemmatization 0.37107 0.43930
Lemmatization + stemming 0.36837 0.43387
Lemmatization + synonym list 0.37467 0.43875
Spell correction + lemmatization 0.37361 0.44569
Spell correction + lemmatization +
synonym list

0.37453 0.44317

The performance on this test improved from the previous test in Section 6.3.1 with an average per-
formance of 0.41, where the combination of spell correction and lemmatization performed the best.
However, the correlation is still to be regarded as somewhat low, although a Pearson correlation of
0.41 can be regarded as moderately high.

For this approach, a bias might occur where some questions in the datasets have a varying amount
of highly graded answers. Selecting ten of the highly graded answers may not be a good pick for
some of the questions because the questions might not have ten, or a low amount of highly graded
answers. Thus, the variations of performance on the questions might be high.
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6.3.3 Test 3: Half of the Highest-Graded Answers
The number of answers graded five on each question varies, as explained in Section 5.2.1. Conse-
quently, the number of highly graded answers to be used as Reference Answers should also vary from
question to question depending on the number of highly graded answers existing on that question.
This way, the number of Reference Answers used would vary dynamically per question. The idea was
that the grade distribution in the Student Answers would be more evenly distributed if the same
proportion of highly graded answers are left as Student Answers per question. The performance
would also hypothetically improve this way.

To dynamically change the number of Reference Answers used in each question, a decision was made
to utilize half of the highly graded answers as Reference Answers per question and leave the rest of
the highly graded answers as SAs. Table 6.3 presents the results from this test.

Table 6.3: Performance on half of the highly graded answers as Reference Answers

Preprocessing combination D18 performance D19 performance
Stemming 0.38019 0.44346
Lemmatization 0.38230 0.44111
Stemming + lemmatization 0.38260 0.44411
Lemmatization + synonym list 0.38545 0.43755
Lemmatization + spell correction 0.38101 0.44843
Lemmatization + spell correction +
synonym list

0.38296 0.44314

The performance on this test gave a slight increase from the two former tests. The 2018 dataset
performance increased to an average of 0.38274 and the 2019 dataset to 0.44239. The total averages
0.41051, which is a slight increase from the former approach. The reason for this slight increase
might be that the number of RAs differs dynamically. In addition, the number of highly graded
answers to be used as SAs also varies depending on the question. Consequently, the grades on the
SAs might become more evenly distributed.

6.3.4 Test 4: Most Common Terms in the Corpus
Instead of simply choosing Reference Answers from the two datasets, an interesting test would be
to have a set of important terms act as RAs. Here, a set of the most common terms across the
responses for each question is chosen to act as a reference. This is performed by extracting n terms
with the overall highest TF-IDF weights across the corpus for each question. The performance here
would differ on the number of words extracted, along with the preprocessing techniques performed
on the data.

For this test, two vectors will be correlated with each other per SA. One vector contains the n common
terms in the corpus, while the other is a vector of equal length containing a binary representation of
which of the common terms appear in the SA. A choice was made to use a binary weight approach
for this test instead of representing the words in the two vectors as TF-IDF weights. Hence, the
SA vector would consist of 0 and 1’s, where 1 indicates that the term is occurent in the SA. This
approach simply wishes to check how many common words in the corpus are apparent in the SA and
generate a similarity score, and not take into consideration how often they occur. Table 6.4 presents
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the performance on this test with varying preprocessing combinations. Furthermore, the number of
most common terms used in the vector varies from 60, 80, and 100.

Table 6.4: Performance on most common words in the corpus used as reference

Preprocessing combination D18 D19
No. of terms 60 80 100 60 80 100
Stemming 0.47151 0.46946 0.46705 0.51413 0.50790 0.50632
Lemmatization 0.46962 0.47834 0.46789 0.50669 0.50241 0.50106
Stemming + lemmatization 0.46594 0.47219 0.46432 0.51675 0.50610 0.50389
Lemmatization + synonym list 0.47125 0.47589 0.46381 0.50220 0.49913 0.50117
Lemmatization + spell correction 0.46810 0.48131 0.46940 0.50889 0.50615 0.50195
Lemmatization + spell correction + synonym list 0.46783 0.47634 0.46444 0.50481 0.50188 0.50252

The performance on this test has overall increased from the three former tests. For the 2018 dataset,
using 80 common words gave the highest average performance of 0.47 across all preprocessing steps.
The same occurred for the 2019 dataset, with an average of 0.50 with 80 common words.

6.3.5 Honorable Mention
The four tests described in the sections above are the RA tests that gave the highest performance
on this approach. Multiple other tests have also been performed but resulted in a lower performance
than the ones presented above. One of these was to use one suggested solution answer as RA. The
idea was to have one thorough, well-written, and descriptive suggested solution for each question.
This way, all highly graded answers would be kept as SAs, providing a better grade distribution, and
the suggested solution would be descriptive enough to give a wide variety of terms for comparison.
However, the results gave an average performance of less than 0.4 on all combinations of preprocessing
steps, causing the test to underperform in comparison to the other tests.

6.4 Reference Answer Approach: Feedback Generation Re-
sults

The goal of the feedback generation approach is to generate as high-value feedback as possible to im-
prove learning for students. The Reference Answer approach described in Section 6.3 utilizes highly
graded answers or the most common words in the corpus as RA’s to compute similarity to SA’s.
Similarly, the words used in the RA’s can be used to generate feedback for students, depending on
what is missing in their responses. The RA’s are always answers or words of high value, featuring
important terminology and concepts that should be contained in a high-value SA. An idea is that the
most common words used in the RA’s will work as possible feedback words to students. Regardless
of what text is used as RA’s, the most common words in these responses can be extracted. Table 6.5
presents an extraction of a subset of common words from the first question in the 2018 dataset. 20
of the most common words in the RA’s have been chosen to be extracted, along with common words
from three SA’s with varying grades. This table is an illustration of the terms that can be utilized
as feedback. The terms have been retrieved by employing the most common words in the corpus to
act as RAs, elaborated on in Section 6.3.4, and with lemmatization as preprocessing technique.
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Table 6.5: Feedback terms and Student Answers From Q1 on the 2018 dataset

Candidate Terms

Top 20 words from RA’s
scope, deklarert, variable, funksjon, gjelde, blokk, global, definere,
variabel, utenfor, block, bruke, tilgjengelig, console, nøkkelord,
inne, endre, innenfor, lokal, deklarere

Student 1
block, blocke, console, definere, deklarert, error, funciton, func-
tion, funksjon, gjelde, inne, scope, scopefor, test, tilgjenlig, vari-
abe, variable

Student 2 avhengig, blokk, deklarert, enten, funksjon, funskjon, gjelde,
global, inne, javascrip, løkke, scope, settning, utenfor, variable

Student 3
blokk, brack, curly, deklarert, funksjon, funksjonsscope, gjelde,
hel, igjen, initialisere, inne, iterere, løkk, løkke, nær, omvendt,
scope, tilgjengelig, ulik, utenfor, variabel

Once common terms have been extracted from the RA’s, they can be used to compare with SA’s.
An algorithm can simply check for the presence of common words in the SAs. If a word is not
present, it might be a useful feedback term to the student. To improve the effectiveness of such an
algorithm, the SAs should naturally be preprocessed and, perhaps, important words be extracted
for comparison. Listing 6.3 presents the pseudocode of the feedback generation/word matching
algorithm.

def get_feedback_terms(high_grade_terms , candidate_terms ):
feedback_terms = []
for term in high_grade_terms:

if term not in candidate_terms:
feedback_terms.append(term)

return feedback_terms

Listing 6.3: Feedback generation function

The algorithm takes a set of high-value terms from the RAs that can possibly be employed as feed-
back as a parameter. These words are in this case the most common terms derived from the set of
RAs, but the function would work on any set of high-value terms sent as parameters. The second
parameter is composed of candidate terms that are present in one SA. These words could either be
high-value terms, terminology or simply the whole SA. As an illustration, two rows from Table 6.5
consisting of RA and SA terms can be utilized as parameters. The algorithm simply checks for the
presence of RA words in the set of SA words. If the word is absent in the SA, it will be appended to
a list and possibly used as feedback to the student. Naturally, SAs vary in the way they are written
and the type of words they use. Therefore, sufficient preprocessing steps must be taken beforehand
to limit the variety of words and synonyms as much as possible for the algorithm to work optimally.

When the algorithm is applied to a set of SAs, the result is a list of terms that are possible feedback
terms. Table 6.6 illustrates the results when the algorithm is applied to the three before-mentioned
Student Answers.
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Table 6.6: Terms retrieved from feedback

Top 20 words from RA Candidate Candidate terms Retrieved feed-
back terms

scope, deklarert, variable,
funksjon, gjelde, blokk,
global, definere, variabel,
utenfor, block, bruke,
tilgjengelig, console,
nøkkelord, inne, endre,
innenfor, lokal, deklarere

Student 1

block, blocke,
console, definere,
deklarert, error,
funciton, function,
funksjon, gjelde,
inne, scope, scope-
for, test, tilgjenlig,
variabe, variable

blokk, global, uten-
for, bruke, tilgjen-
gelig, nøkkelord,
endre, innenfor,
lokal, deklarere

Student 2

avhengig, blokk,
deklarert, enten,
funksjon, funskjon,
gjelde, global, inne,
javascrip, løkke,
scope, settning,
utenfor, variable

definere, vari-
abel, block, bruke,
tilgjengelig, con-
sole, nøkkelord,
endre, innenfor,
lokal, deklarere

Student 3

blokk, brack, curly,
deklarert, funksjon,
funksjonsscope,
gjelde, hel, igjen,
initialisere, inne,
iterere, løkk, løkke,
nær, omvendt,
scope, tilgjengelig,
ulik, utenfor, vari-
abel

variable, global, de-
finere, block, bruke,
console, nøkkelord,
endre, innenfor,
lokal, deklarere

The performance of this feedback approach greatly depends on the word usage of the students. Hence,
appropriate preprocessing techniques to reduce the vocabulary of the students might increase the
performance of the feedback algorithm. As seen in Table 6.6, a portion of feedback terms retrieved
mean the same as the terms that the candidates actually used. The terms ‘blokk’ and ‘block’
mean the same but are in different languages. Therefore, the feedback the students receive might
be biased, and an evaluation measure must be applied. Furthermore, not all terms represent an
important concept of what should be in a high-quality answer. Thus, calculating the precision of the
feedback algorithm is one way of evaluating the performance. This can be achieved by comparing
the number of correct feedback terms generated to the total number of feedback terms retrieved by
the algorithm. A choice was made to define a correct feedback term as a term that (1) represents
an important concept that is relevant to the question and (2) has no synonymous meaning from
any other term in the SA. By utilizing these criteria, a manual inspection can be performed to
calculate the precision for the three candidates in Table 6.6. The precision of the three candidates
is showcased in Table 6.7.
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Table 6.7: Feedback precision

Candidate Precision
Student 1 3/12
Student 2 4/13
Student 3 6/11

This method of evaluating the feedback is fairly straightforward and can be performed on a larger
scale across the whole dataset. The manual inspection enables a method of clearly investigating
which words actually fulfill the criteria for a feedback term. However, the goal of providing feed-
back to students was to improve learning, and it is hard to evaluate the learning outcome of this
technique without gathering data from these students. To investigate how the feedback generation
of this approach may increase learning, further evaluation should be performed. User testing of the
implementation, conducting interviews, or a questionnaire to gather quantitative data may help in
the evaluation task.

6.5 Clustering Approach
The clustering approach encompassed employing the k-means algorithm on the two datasets. The
Python library Scikit-learn was utilized for this purpose17. This library is mainly developed for
machine learning and provides various algorithms and tools for classification, regression, clustering
and dimensionality reduction tasks. Scikit-learn offers a consistent and user-friendly interface for
handling machine learning models, which is one of the main reasons for this selection. Furthermore,
it integrates well with other popular Python libraries for scientific computing, such as NumPy18,
Pandas19 and Matplotlib20. This enables the users to import, modify and display data quickly and
simply using standard tools and processes.

Splitting the Dataset

Before applying k-means clustering, it could be beneficial to divide the Term-Document Matrix into
a test and train set. This is to evaluate how well the k-means clustering algorithm performs on new
unseen data, by having it trained on one portion of the datasets and tested on another. By splitting
the data into a test and a train set, the performance can be evaluated based on the trained data,
providing a better sense of how well the algorithm will generalize to new data.

Another reason to split the data is to prevent overfitting. This may occur when the algorithm
is trained on the whole Term-Document Matrix, leading to weak performance on new data. By
separating the data, the train set may be leveraged to determine the optimal value for k (number
of clusters), and then use the test set to assess the algorithm’s effectiveness. This can help avoid
overfitting and improve the performance of the algorithm when new data is added.

The k-means algorithm learns from the train set by calculating the optimal centroid locations for
the clusters that exist in a particular training set. These clusters are found under the training of
the algorithm and can be utilized to predict cluster labels for new unseen data points (data points

17https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
18https://numpy.org/doc/stable/
19https://pandas.pydata.org/docs/
20https://matplotlib.org/stable/users/index
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in the test set) based on which centroid they are closest to. This implies that the algorithm does
not recalculate the centroids when operating on the test dataset, as it is only assigned to the cluster
with the closest centroid based on cluster distances from the training phase.

Fitting the Model

The model utilized for clustering is an unsupervised k-means machine learning model. When fitting
(constructing matrixes) the model, it is necessary to keep the training and test sets separate. This
means that only the training data should be utilized for any preprocessing operations, such as fitting
a TF-IDF vectorizer. This is because the model should only learn from the training data, whereas
the test data should only be employed for performance evaluation. If a subset of the test data is
preprocessed, the model learns about the test data before it is ready to predict its labels, which
may cause overfitting and poor generalization of new unseen data. The ‘fit_transform()’ from the
aforementioned ‘TfIdfvectorizer’ is only applied to the training data to fit the vectorizer onto the
training set, in order to transform it into a numerical representation. This representation is then
utilized to train the k-means model. Then, the test data is transformed into the same numerical
format as the training data by utilizing the ‘transform()’ method from the ‘TfIdfvectorizer’ without
refitting the vectorizer. This ensures that the test data is represented in the same manner as the
training data, without leaking any information about the test data to the model. To sum it up, data
leakage and overfitting may occur if the vectorizer is fitted to the entire dataset, as the vectorizer
would incorporate information from the test set, which can lead to biased results.

The ‘TfIdfVectorizer’ recalculates the TF-IDF weights of the words in the test set based on the
document frequencies of each word in the train set. However, it does not re-fit the IDF (inverse
document frequency) weights because the purpose of IDF weighting is to reflect the importance of a
term in the context of the entire corpus or dataset used for training. In other words, the vectorizer
only needs to learn the vocabulary of the training data and calculate IDF values for the train set.
Then, these values are applied to the test set with its corresponding TFs to construct TF-IDF
weights.

Finding Optimal Numbers of Clusters

Before applying the k-means clustering approach, a function that calculates the optimal number
of clusters to separate the responses as much as possible was developed. This function is applied
prior to the clustering approach itself. It initiates by receiving a dataframe that contains already
preprocessed SAs. Next, the function iterates over a selected range of cluster values that are to be
tested. For each cluster, the function splits the data into a test and train set, fits the vectorizer
on the train data, and transforms both sets into numerical features. It then constructs a k-means
model with the current number of clusters and fits the model onto the training matrix. Subsequently,
the function predicts cluster labels for each row in the test matrix using the fitted k-means model
and then calculates the average silhouette score for that particular cluster. The function ends by
outputting each cluster and the corresponding silhouette score, along with the optimal number of
clusters highlighted in the output. Listing 6.4 presents simplified pseudocode for this function.

def find_optimal_num_clusters(df):
for n_clusters in range(2, 12):

X_test = vectorizer.transform(test_df[’lemmatized ’])
kmeans = KMeans(n_clusters=n_clusters , random_state =52)
kmeans.fit(X_train)
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test_labels = kmeans.predict(X_test)
silhouette_avg = silhouette_score(X_test , test_labels)
silhouette_scores.append(silhouette_avg)

best_n_clusters = silhouette_scores(max(silhouette_scores )) + 2
print("Best number of clusters:", best_n_clusters)

Listing 6.4: Find optimal number of clusters function

Overview

An overview of the clustering approach is presented in Figure 6.1. The figure initiates with a dataset
being passed into the NLP preprocessing pipeline. From there, a Term-Document Matrix for each
question in the dataset is constructed. Then, the clustering algorithm trains on 70% of a matrix in
order to find the optimal cluster centroids for the data. Based on this, the algorithm clusters new
responses that originate from the last 30% of the dataset. The top N most common words in each
cluster can be extracted, for then to be compared against common words in a RA to investigate
which terms or concepts a group of responses has forgotten to mention. Based on this, the system
can suggest common feedback for the given group of responses. Such a system is to be regarded as
semi-automatic, where the suggested cluster feedback can provide an indication of what grade the
responses in a given cluster are in. In a full-scale solution and after the feedback generation step, a
teacher should be able to display groups of responses in a clear way. Then, step in and modify the
common grading and feedback suggested by the system, as mentioned in Section 4.3.

Figure 6.1: Overview of the clustering approach
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6.5.1 Grading Results
Before the k-means clustering was utilized, the dataset was split (30% - 70%) using the train_test_split
function from Scikit-learn21. Then, the vectorizer was fitted on the training set. The vectorizer was
designed to ignore words that appear in less than 10% of the responses and to incorporate unigrams,
bigrams and trigrams. The test data was transformed into the same numerical representation as
the training data, but without refitting the vectorizer, as explained in Section 6.5. After this, the
k-means algorithm was run and the labels for the test data were predicted. As mentioned, this
approach is to be regarded as semi-automatic. The common feedback in a cluster can be used as
an indication of the grade, or manually chosen by a teacher. More specifically, by comparing the
common cluster terms with potential Reference Answer terms, an indication of the common grade
in a given cluster can be made. With this said, the main focus of this approach is on the feedback
generation part.

One question was chosen for each dataset to evaluate the results of the clustering approach. More
specifically, question one from D18 and question six from D18. Furthermore, one possible RA are
listed for each question. These questions and RAs are listed below:

D18 Q1: Forklar kort hvilket scope som gjelder for variabler som er deklarert med nøkkelordet var
og hvilket scope gjelder for variabler deklarert med nøkkelordet let?

D18 Q1 RA: Var har funksjons-scope og er synlig innen hele funksjonen de er deklarert i. let
har blokk-scope og er kun synlig innenfor blokken de er deklarert i. Begge er globale hvis de
deklareres utenfor en blokk.

D18 Q6: Forklar hva funksjonen groupBy gjør og gi et eksempel på bruk gitt cars-variabelen? Vi
er ute etter overordnet funksjonalitet og bruk – og ikke detaljene i kallet til reduce.

D18 Q6 RA: Funksjonen lar deg gruppere objekter basert på en navngitt property/key. Dette er
implementert som en funksjon som tar key som input og returnerer en funksjon som tar en
array av objekter som input. Førstnevnte brukes for å «sette opp» grupperingsfunksjonen.
Sistenevnte brukes for å kjøre selve grupperingen.

Figures 6.2 and 6.3 present the frequency of each student response’s Manualscore in each cluster when
ran with six clusters on the two aforementioned questions. Six clusters were chosen since there exist
six different scores. The frequency of Student Answers is shown on the y-axis and the cluster ID’s
on the x-axis. The different colors in the bars represent the different Manualscores given by the sen-
sors, and an explanation for the different colors can be seen in the labels on the right side of the plots.

21https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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Figure 6.2: Manualscores in different clusters D18 Q1

Figure 6.3: Manualscores in different clusters D18 Q6

The purity scores (Equation 2.2) were calculated to see how well the clusters match the Manu-
alscores. Table 6.8 presents an overview of the purity scores for each cluster in the two plots. From
these tables, it can be seen that the k-means algorithm does not perform very well in separating the
different Manualscores. Only three clusters have a purity score of 0.75 or higher, while the overall
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purity for both questions is 0.5 and 0.62. Two clusters also have a purity score under 0.5. This
indicates that the algorithm may perform poorly in separating different Manualscores into separate
clusters.

Table 6.8: Purity scores for D18 Q1 and D18 Q6

Clusters D18 Q1 D18 Q6
Overall Purity 0.50 0.62
0 0.57 0.55
1 0.43 0.55
2 0.75 0.5
3 0.5 0.88
4 0.33 0.5
5 0.43 0.75

It is also important to look at more than just the purity when evaluating the clustering. This is
because the purity only looks at how well the clusters match the ground truth labels (Manualscores).
It does not take into consideration the structure of the clusters, like how well separated or overlapped
the clusters are. Purity is also sensitive to class imbalances, where one class is more represented
than the others. This is the case for these datasets as they contain a substantially larger amount
of highly graded answers than lower graded answers. Additionally, the purity scores increase if the
clustering algorithm is run with a higher number of clusters, even if the number of clusters does
not make sense for the context of the task. Because of this, the silhouette score (Equation 2.3) was
also investigated during the evaluation phase of the approach. The silhouette score can tell more
about the structure of the clustering, meaning how well separated or overlapped the clusters are.
From Table 6.9, it is seen that the silhouette scores are above 0, indicating that the objects in the
clusters are more similar to their own clusters than to other clusters. Additionally, these silhouette
scores indicate that the clusters are somewhat distinct and meaningful, and the scores are decent
considering the issues in the datasets.

Table 6.9: Overall silhouette scores for clustering D18 Q1 and D18 Q6.

Clustering Silhouette Score (6 clusters)
D18 Q1 0.138
D18 Q6 0.097
Clustering Silhouette Score (optimal num clusters)
D18 Q1 0.17
D18 Q6 0.13

In general, the overarching goal is not necessarily to cluster together responses with the same Manu-
alscores in a grading and feedback system. One may assume that a grading system ideally wishes to
cluster together similar responses before grades have been set. This way, a system can automatically
find the optimal number of clusters utilizing the function described in Section 6.5. Then, the system
and teacher can cooperate to provide general feedback to the clustered responses, regardless of how
many clusters there are. When the ‘find_optimal_num_clusters’ algorithm runs on D18 Q1 and
D18 Q6, the function suggests that 9 clusters are best on D18 Q1 and only 2 clusters for D19 Q6.
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With these numbers of clusters, the silhouette score increases as seen in Table 6.9. This indicates
that the data tends to be more separated and less overlapping when the number of clusters suggested
by the ‘find_optimal_num_clusters’ function is applied, which is preferred in such a system.

The clusters can be visualized using a TSNE plot22. TSNE is a tool to visualize high-dimension
data. In such a plot, the x and y values represent the two-dimensional embeddings of the data
points. The TSNE algorithm reduces the high-dimensional data into two dimensions, which can
be plotted on a 2D scatter plot. Each response is represented by a point in the scatter plot, and
each point’s location on the plot is defined by its own dimensional embedding obtained from the
TSNE algorithm [20]. Points that are close to each other on the scatter plot are more similar to
each other than points that are far apart. In the scatter plots, the points (responses) in each cluster
are color-coded based on their assigned cluster labels. Figures 6.4 and 6.5 illustrate the TSNE plots
for D18 Q1 and D19 Q6 when the optimal numbers of clusters are chosen.

Figure 6.4: TSNE plot D18 Q1

22https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Figure 6.5: TSNE plot D19 Q6

These scatter plots reveal that, in general, most of the clusters are well-defined but a few outliers
exist. For the D18 Q1 TSNE plot (Figure 6.4), it can be seen that clusters one, two, four and eight
are well-defined without any outliers far away. This is highlighted in Figure 6.6. Cluster 3 is spread
out around clusters two and eight, while clusters zero, five, six and seven are somewhat well-defined,
but contain one outlier far away from the well-defined clusters. This indicates that the similarities
in clusters one, two, four and eight are probably higher than in the remaining ones. In the D19 Q6
TSNE plot, the two clusters can easily be spotted. Only one outlier is present for cluster 0 which
is far more to the right than the cluster itself. Silhouette scores for each cluster are summarized in
Table 6.10.

Figure 6.6: TSNE plot D18 Q1 clusters highlighted
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Table 6.10: Silhouette scores for each cluster in D18 Q1 and D18 Q6

Clusters D18 Q1 D19 Q6
0 0.157 0.023
1 0.157 0.388
2 0.279 -
3 0.01 -
4 0.076 -
5 0.095 -
6 0.303 -
7 0.374 -
8 0.206 -

6.5.2 Feedback Generation Results
One method to generate feedback to students clustered together in the same clusters was developed
for the clustering approach. Providing automatic common feedback on responses that are clustered
together might be a useful technique for providing efficient and consistent feedback to students.
In this approach, top N frequent words are extracted from each cluster of student responses and
compared against common terms in Reference Answers (RAs). By identifying the overlap between
two sets of terms, the system can generate automated feedback that highlights areas where students
may be struggling or making common mistakes. The system may offer targeted feedback to address
this issue, for instance, if a set of students in a cluster use the same incorrect term or concept. This
method can spare time for teachers and provide students with feedback more efficiently. However, it
is essential that the RAs are correct and that the clustering algorithm has been correctly calibrated
to prevent false positives or negatives. Furthermore, it is important to utilize human grading/e-
valuators to overlook the grading and feedback generated by the clustering algorithm to guarantee
accuracy and fairness in the grading and feedback process.

Common terms are extracted from each cluster by first sorting the terms in the cluster centers in
descending order so that the highest-scoring terms are listed first. Listing 6.5 showcases pseudocode
for the top N terms extraction in N clusters. These terms are sorted using the Numpy ‘argsort()’
function23, and the indices are saved in a variable called order_centroids. Then, the actual terms
associated with those indices are retrieved using the ’get_feature_names_out’ function from the
vectorizer. This way, the top N terms for each cluster can easily be retrieved.

N=10
order_centroids = kmeans.cluster_centers_.argsort ()[:, ::-1]
terms = vectorizer.get_feature_names_out ()
for i in range(num_clusters ):

top_N_words = [terms[term] for term in order_centroids[i, :N]]
print("Cluster {}: {}".format(i, top_N_words ))

Listing 6.5: Top N term extraction function

The top 10 most frequent terms in each cluster for D18 Q1 and D18 Q6 are presented in Tables 6.11
and 6.12 respectively. From the D18 Q1 terms, it can be seen that some of the same terms appear
in different clusters, such as ‘global’, ‘scope’, and ‘variable’. This can indicate that these terms are

23https://numpy.org/doc/stable/reference/generated/numpy.argsort.html
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important and may also exist in the question text. In addition, the clusters have unique terms that
differentiate them. Examples of such terms are ‘console’ in cluster six and ‘løkke’ in clusters three
and five. It can also be observed that clusters zero, three, four, five, seven and eight contain the same
term ‘funksjon’, and that clusters zero, one, two, four, six, seven and eight contain the same terms
‘blokk’ or ‘block’. ‘Funksjon’ and ‘blokk’ are important terms in this question and an essential part
of a high-scoring response. Only clusters zero, four, seven and eight contain both terms, indicating
that the responses in these clusters are not far away distance-wise from the RA.

Table 6.11: 10 most frequent terms in each cluster D18 Q1

Clusters Features

0 ‘definere’, ‘scope’, ‘deklarert’, ‘variable deklarert’, ‘variable’,
‘global’, ‘blokk’, ‘funksjon’, ‘lokal’, ‘global scope’

1 ‘deklarert’, ‘variable deklarert’, ‘variable’, ‘scope’, ‘block’, ‘innen-
for’, ‘block scope’, ‘global’, ‘gjelde’, ‘global scope’

2 ‘gjelde’, ‘global’, ‘scope’, ‘variable’, ‘global scope’, ‘hel’, ‘lokal’,
‘blokk’, ‘eksempel’, ‘block scope’

3 ‘tilgjengelig’, ‘deklarere’, ‘variable’, ‘global’, ‘deklarert’,
‘funksjon’, ‘inne’, ‘scope’, ‘løkke’, ‘lokal’

4 ‘block’, ‘funksjon’, ‘scope’, ‘utenfor’, ‘block scope’, ‘gjelde’, ‘in-
nenfor’, ‘bruke’, ‘inne’, ‘global’

5 ‘variabel’, ‘scope’, ‘eksempel’, ‘utenfor’, ‘løkke’, ‘funksjon’,
‘deklarert’, ‘hel’, ‘innenfor’, ‘tilgjengelig’

6 ‘console’, ‘blokk’, ‘global’, ‘scope’, ‘inne’, ‘bruke’, ‘definere’,
‘løkke’, ‘innenfor’, ‘global scope’

7 ‘bruke’, ‘variable’, ‘variabel’, ‘innenfor’, ‘funksjon’, ‘løkke’, ‘ek-
sempel’, ‘global’, ‘scope’, ‘block scope’

8 ‘blokk’, ‘scope’, ‘funksjon’, ‘deklarert’, ‘bruke’, ‘variable deklar-
ert’, ‘gjelde’, ‘variable’, ‘utenfor’, ‘løkke’

For the 10 most frequent terms in each cluster for D18 Q6 (Table 6.12), it can be observed that
only the terms ‘brand’ and ‘audi’ are common in both clusters. Cluster zero contains more general
terms related to arrays, objects, functions and grouping of data. Examples are ‘array’, ‘objekt’,
‘liste’, ‘funksjon’ and ‘groupby’. Conversely, cluster one includes more general terms related to the
example code in the exam question text such as ‘brand’ and ‘color’. This may indicate that the
responses in cluster zero have succeeded in explaining the main part of the question to a greater
degree, namely explaining the overall functionality and usage of the ‘groupby’ function.

Table 6.12: 10 most frequent terms in each cluster D18 Q6

Clusters Features

0 ‘array’, ‘objekt’, ‘liste’, ‘funksjon’, ‘groupby’, ‘cars’, ‘audi’, ‘verdi’,
‘brand’, ‘farge’

1 ‘color’, ‘brand’, ‘color white’, ‘white’, ‘audi color’, ’brand audi
color’, ‘brand audi’, ‘audi’, ‘white brand’, ‘color white brand’
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When the clustering algorithm has finished and these terms have been extracted, common feedback
can be presented to students. To evaluate the feedback provided to students based on common terms
in the clusters, a test may be performed by employing a sample set of student replies. This can be
achieved by comparing the common terms in the clusters to top N terms in the high-graded (scored
5) responses to generate feedback for each cluster. This way, we outsource the highest quality terms
in each cluster based on highly graded answers. When the difference between the top N terms in the
high-graded answers versus the common terms in the clusters are retrieved, the rest of the student
responses can be compared against this difference. The resulting terms from this test can be divided
into four sub-groups depending on the relevance of the term and used to evaluate the effectiveness
of the algorithm:

• True Positive (TP): When the feedback mentions that the cluster mentions an important term,
and the response also does so.

• False Positive (FP): When the feedback mentions that the cluster mentions an important term,
but the response does not.

• False Negative (FN): When the feedback mentions that the cluster is missing an important
term, but the response includes this term.

• True Negative (TN): When the feedback mentions that the cluster is missing an important
term, and the response also does so.

Showing what similar responses have been written about as feedback to students can have several
benefits. First, it can identify common mistakes by identifying frequent errors done by students and
deliver targeted feedback to help them correct these errors. It can identify additional comments or
find patterns that the instructor might have missed. Furthermore, it can encourage self-reflection
and improvement in students. Students may be motivated to reflect on their work and find areas
where they can improve by seeing what other students have done well and what mistakes they have
made. This can also give students a sense of how well they understand the subject compared to
other students. This technique would help evaluate the effectiveness of the feedback part of the
system. The feedback also includes, at the end of the feedback, the terms that are missing in the
specific student’s response in comparison with the high-grade terms.

To sum it up, the proposed student feedback can be separated into two main parts, both having
convenient use cases for the students. Firstly, high-grade terms from the same cluster that the
student is placed in are presented. These are terms that similar responses include, along with terms
that these responses are commonly missing. Secondly, terms retrieved from highly graded answers
that are not present in the response are also presented, independent of the cluster formation. This
way, the student would hypothetically receive three lists of terms that could be useful. An example
is presented below of how such feedback could look like:

Similar answers like yours have written about important concepts like this: [Scope, funksjon,
variable]. Similar answers like yours are commonly missing this: [block, innenfor]. You might
have missed this: [deklarert, innenfor].

Table 6.13 showcases responses from three students in question 1 in D18, all in different clusters
and received different Manualscores. In addition, proposed feedback is given and each term from
the feedback is categorized into the evaluative sub-groups described above.
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Table 6.13: Feedback test

Cluster Scored Response Feedback Test result

0 1

[‘scope’, ‘deklarert’,
‘innover’, ‘kode’,
‘nøstinge’, ‘loope’,
‘mistenke’, ‘bruke’,
‘utenfor’, ‘klasse’,
‘funksjon’,
‘definere’, ‘usikke’,
‘forskjell’, ‘bruke’,
‘hverandre’,
‘problem’]

Liknende svar som ditt har
skrevet om viktige aspekter
som dette: [‘scope’,
‘funksjon’, ‘deklarert’,
‘blokk’, ‘variable’, ‘variable
deklarert’, ‘definere’],
men mangler å skrive om:
[‘block’, ‘utenfor’,
‘innenfor’]
Dette bør du kanskje
skrive mer om: [‘blokk’,
‘variable’, ‘variable
deklarert’, ‘block’,
‘innenfor’]

block = true negative
utenfor = false negative
innenfor = true nega-
tive
scope = true positive
funksjon = true posi-
tive
deklarert = true posi-
tive
blokk = false positive
variable = false positive
variable deklarert =
false positive
definere = true positive

1 5

[‘variable’,
‘deklarert’,
‘function’, ‘scope’,
‘variable’,
‘deklarert’, ‘block’,
‘scope’, ‘bruke’,
‘utenfor’,
‘funksjon’, ‘global’,
‘variabel’,
‘funksjon’, ‘block’,
‘scope’]

Liknende svar som ditt har
skrevet om viktige aspekter
som dette: [‘scope’,
‘deklarert’, ‘variable’,
‘variable deklarert’, ‘block’,
‘innenfor’],
men mangler å skrive om:
[‘funksjon’, ‘blokk’,
‘utenfor’, ‘definere’]
Dette bør du kanskje
skrive mer om: [‘blokk’,
‘variable deklarert’,
‘definere’, ‘innenfor’]

funksjon = false nega-
tive
blokk = false negative
utenfor = false negative
definere = true negative
scope = true positive
deklarert = true posi-
tive
variable = true positive
variable deklarert =
true positive
block = true positive
innenfor = false posi-
tive

5 2

[‘global’, ‘scope’,
‘lokal’, ‘block’,
‘variabel’, ‘lag’,
‘endre’, ‘hel’,
‘endre’, ‘datatype’]

Liknende svar som ditt har
skrevet om viktige aspekter
som dette: [‘scope’,
‘funksjon’, ‘deklarert’,
‘utenfor’, ‘innenfor’],
men mangler å skrive om:
[‘blokk’, ‘variable’,
‘variable deklarert’, ‘block’,
‘definere’]
Dette bør du kanskje
skrive mer om: [‘funksjon’,
‘deklarert’, ‘blokk’,
‘variable’, ‘variable
deklarert’, ‘utenfor’,
‘definere’, ‘innenfor’]

blokk = false negative
variable = true nega-
tive
variable deklarert =
true negative
block = false negative
definere = true negative
scope = true positive
funksjon = false posi-
tive
deklarert = false posi-
tive
utenfor = false positive
innenfor = false posi-
tive
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The ‘Test results’ column in Table 6.13 can be inspected to evaluate the feedback generation. It can
be seen from the first response that the test results consist of six true and four false test results.
This response was given a score of one by the grader. The response addressed several important
terms such as ‘scope’, ‘funksjon’, ‘deklarert’, and ‘definere’ as the similar responses in this cluster
also do. However, the response missed mentioning terms like ‘block’ and ‘innenfor’ which are impor-
tant terms for a high-graded response. These were also mentioned by the feedback of what similar
responses like this response was missing. Additionally, the feedback mentions that terms like ‘blokk’,
’variable’, and ‘variable deklarert’ exist in similar answers, but are not mentioned in the response.
The term ‘blokk’ can be ignored, as it exists in the response, but in another language. Overall, the
response is rather similar to the cluster it belongs to, and the student can take inspiration from the
terms ‘variable’ and ‘variable deklarert’ to improve their response.

For the second response, which got a score of five, the ‘Test result’-column depicts five negative
and five positive terms. The feedback mentions that the cluster is missing terms like ‘funksjon’
and ‘blokk’, but the response includes these terms in another language, indicating some language
problems in the system. Furthermore, only one false positive and one true negative is present in
this response, implying that the response includes most of the terms that the cluster includes. This
indicates that this student may not take so much inspiration from the common terms in the cluster
feedback. However, considering that the student got a grade of five on this response, it suggests that
less inspiration is to be taken from the feedback.

The third response got a score of two, and the test results include four false positive terms. These
terms are ‘funksjon’, ‘deklarert’, ‘utenfor’ and ‘innenfor’. These terms are all important for a high-
graded response and were left out. Therefore, the student can utilize these terms to improve his
response. The test results also include three true negative terms: ‘variable’, ‘variable deklarert’ and
‘definere’. These are terms that similar answers also missed and may be beneficial feedback terms
for the student.

Lastly, it is important to note that in an ideal clustering grading and feedback system, a teacher/e-
valuator should check the feedback retrieved by the system, and perhaps write their own common
feedback to the clusters if they disagree with the system or the system functions poorly.

6.6 Code Quality
The implementation of the two approaches presented in this chapter is built with the idea of scala-
bility and reusability. Hence, if other datasets of the same structure were to be utilized on the two
implementations, the code would function without requiring significant modifications or rewriting.
This encompasses code for the two approaches, data cleaning, and data preprocessing. The idea is
that datasets containing exam answers of unstructured text generated by the online Inspera platform
would work with minimal modifications. Thus, other datasets containing text of various lengths and
themes could also be used with the same code to test these approaches. Furthermore, parts of the
code could be used singularly as modules for other tasks, such as only cleaning Inspera data or
performing a few preprocessing techniques. Specific algorithms for single actions (such as finding
synonyms and removing stopwords) are built in a way that they can be performed on any type of
unstructured text that is sent as a parameter, independent of the textual context. Additionally,
code for adding Reference Answers manually has also been implemented since both approaches rely
on Reference Answers. Lastly, note that all code implemented is available upon request.
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Chapter 7

Discussion

In order to further understand the results presented in Section 6, a discussion has to be made.
This chapter first discusses the aspects of the datasets used in this thesis and their reliability, as it
plays a considerable role in the results. Secondly, the chapter discusses the results presented by the
Reference Answer and clustering approaches. Lastly, a few limitations regarding the work of this
thesis are discussed.

7.1 Dataset Reliability
In order to evaluate the quality of automatic grading and feedback systems, it is important that the
data that is fed into the system is appropriate and of high quality. Naturally, the data that gets fed
into a system is a factor that determines the quality achieved by such systems. Thus, the reliability
of the two datasets utilized in this thesis must be discussed.

One of the main differences that is present on the two datasets in contrast to datasets found in
earlier work, is that they are mostly written in Norwegian. Furthermore, a combination of Norwe-
gian language and English terminology were used in most of the answers. This, consequently, is an
occurring problem that has not been identified by earlier work. A choice was made that only Norwe-
gian Bokmål answers were to be utilized in this thesis, although the datasets contained Norwegian
Nynorsk and English answers. By only utilizing Norwegian Bokmål answers, issues might occur
when the system is applied in other languages. Furthermore, the combination of Norwegian answers
and English terminology may cause several preprocessing techniques to underperform compared to
a single-language dataset. Synonym lists and spell checking algorithms can struggle to understand
multi-language answers and therefore cause translations that are incorrect and thus, decrease per-
formance.

In the dataset analysis step, several features were investigated. It was found that the grades in the
datasets, ranging from 0-5, were skewed in their distribution. Most answers were graded 3-5, while
a subset was graded 0 and 1. Such a skewed distribution may cause the performance to differ, as
it may provide a lack of graded answers to successfully train a clustering model, or too few answers
to be used as a reference for comparison. The datasets also initially included code snippets by
students. This was chosen to be removed and not be a part of the answers, as it complicates the
evaluation of Student Answers significantly. This decision can be regarded as rather drastic as it
might manipulate a set of Student Answers causing highly graded answers to be under-evaluated,
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or oppositely. Furthermore, the length of the answers was also investigated. It was found that
the answer length increased slightly by grade on both datasets. Automatic grading and feedback
systems may perform differently depending on the length of the answers. Thus, big differences in
answer length may provide a bias in the grading and feedback system depending on the data that
is being fed into the system.

Several preprocessing steps along with choices to remove parts of the datasets were performed.
These steps are described in Sections 5.1 and 6.2. A choice was made to take a closer look at the
lemmatization step and combine it with both synonym lists and spell correction. However, the
stemming technique was not combined with any other technique other than stopword removal. This
was because the stemming technique underperformed in comparison to lemmatization, and the fact
that lemmatization is regarded as an overall better performing technique with higher accuracy than
stemming in earlier work [45]. Other preprocessing techniques, combinations and critical choices
regarding the dataset could therefore provide a better performance.

The aim of this thesis was to explore how an automatic grading and feedback system could be
implemented with the use of Text Mining (TM) and Information Retrieval (IR) techniques, and
what quality could potentially be achieved. With this in mind, the focus has been on Norwegian
short answers from two exams in computer science. A list of obstacles in the datasets was presented
in Section 5.1 which included Inspera formatted text, the presence of programming questions and
special characters. With datasets containing such a variety of answers, it is hard to evaluate what
quality that can be achieved in the two approaches implemented in this thesis. However, by focusing
solely on natural text and trying to reduce or remove the amount of programming code, spelling
mistakes and synonym words, an attempt to increase the quality of the two approaches on these
datasets has been performed. It is hard to conclude whether the quality would increase if the
programming questions were kept in the datsets, evaluated separately, or if fewer data-cleaning
steps were taken.

7.2 Reference Answer Approach
The Reference Answer based approach encompassed calculating a similarity score on a Student An-
swer (SA) and a Reference Answer (RA) to predict a grade. In addition, a feedback generation
technique based on the content of RAs was proposed. The quality of this approach is highly depen-
dent on what was used as RAs and the preprocessing techniques applied. Thus, several variations
of RAs were tested along with combinations of preprocessing techniques. The results varied more
when different choices of RAs were chosen and less when variations of preprocessing techniques were
utilized.

On all four tests performed on changing the type of RAs, the choice of preprocessing combination
had little impact on the overall performance. The difference in performance when applying stem-
ming, lemmatization, or both can be regarded as negligible. This may be because stemming and
lemmatization are two very similar preprocessing techniques with the same goal. Stemming reduces
a word to its canonical form, while lemmatization changes the word to its dictionary form. However,
lemmatization gave a minor average increase in performance on all tests. Other combinations of
preprocessing techniques varied slightly in performance, and these variances can also be regarded
as negligible because the changes are too small to produce a significant impact. Moreover, these
small differences are based on the two datasets used in this thesis, and the performance may slightly
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differ when using other datasets. Hence, concluding with one optimal preprocessing combination for
all tests cannot be done because there is no combination that significantly outperforms the others.
However, an optimal combination of preprocessing techniques might exist, but that requires further
testing.

The first test in Section 6.3.1 utilized all highly graded answers as RAs. The idea was that this
would provide a high variation of words to be used as references to the remaining SAs. However, the
distribution of grades in the SAs got skewed by using all answers graded five as SAs. Consequently,
the average performance came down to 0.4. By utilizing all the highly graded answers as RAs, the
similarity score calculated would naturally perform poorly because there were no highly graded SAs
left to calculate similarity against. Thus, splitting up the highly graded answers was proposed.

Section 6.3.2 presents the second test. Here, only ten of the highly graded answers were used as
RAs in an attempt to average out the grade distribution in the datasets while remaining a high
variation of words in the RAs. This slightly increased the performance from the first test, especially
on the 2019 dataset. The main reason for this is that the SAs consisted of a larger amount of highly
graded answers to be compared to RAs. This, consequently, caused the similarity score to vary to
a larger degree based on the quality of the SA. Thus, increasing the correlation of the Manualscore
and similarity measure. It is also worth mentioning, however, that the 2018 dataset had a very
negligible difference in performance on the two tests.

The third test presented in Section 6.3.3 proposed a dynamic change in the number of highly graded
answers to be utilized as RAs based on the number of highly graded answers present on the current
question in the datasets. More specifically, half of the answers graded five in the datasets were to
be used as RAs. This way, the number of highly graded answers remaining as RAs would always be
the same proportion in each question. The performance of this test improved on both datasets in
comparison to the former tests. The average performance on the 2019 dataset came out to 0.443.
The reason for this increase in performance might be that on average, all questions got the same
amount of highly graded answers, causing the grade distribution to change dynamically per question
and therefore provide a better fit in highly graded answers and variations in word usage. The 2018
dataset performance increased slightly on all preprocessing combinations in comparison to the two
former tests.

Instead of having existing SAs act as RAs, the fourth test elaborated on in Section 6.3.4 utilized the
most common words across the corpus per question as RAs. This way, all highly graded answers
were kept as SAs, and a set of the most commonly used words was employed as a reference against
the SAs. The performance of this test significantly improved compared to the former, with the
highest performance found at 0.5167. The performance varied slightly when using 60, 80, or 100 of
the most common words in the corpus. However, all variations of this test performed better than
the other tests. One reason for this is that all highly graded answers were kept as SAs. Furthermore,
the most common words used as reference exist in the SAs. Thus, the performance would naturally
increase when the same words are used to compare.

Overall, the fourth test in Section 6.3.4 outperformed the others, with the highest performance
found at 0.5167 on the 2019 dataset, utilizing stemming and lemmatization, and 60 common words
in the corpus as reference. This Pearson correlation is to be regarded as moderately strong, in-
dicating a strong linear relationship between the variables (the cosine similarity computation and
Manualscore). Such a performance is not unusual in earlier work described in Section 3. However,
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based on related work, one can conclude that better performance has been achieved in the evalua-
tion of short-text answers. It is worth mentioning, regardless, that this performance was achieved
on Norwegian text-based answers with a large amount of English terminology. Furthermore, there
is little work to be found on such datasets, and therefore hard to compare these findings with work
utilizing different techniques and other datasets.

The feedback generation approach proposed encompassed providing relevant keywords to students
based on the missing themes, or concepts in their answers. The feedback was generated by a simple
word-matching algorithm that extracted keywords from RAs and compared them to SAs. From
there, keywords representing important concepts that the student did not have in his answer were
retrieved and delivered as feedback terms.

The performance of the feedback approach is highly dependent on the word-matching algorithm.
This is because the algorithm is responsible for extracting the correct feedback terms that are de-
livered to the students. Consequently, there exist multiple ways to improve the feedback algorithm.
One such improvement could be to implement a synonym list or a pos-tag checker into the algo-
rithm to check if the student is not using any synonymous term, or explanations that cover the same
concept. That would not only aid in providing more precise feedback but also remove unwanted
terms from the feedback generation. Furthermore, the word-matching algorithm utilizes terms from
Reference Answers in this approach. One issue with this is that it is not certain that the full corpora
of terms, or all concepts are covered in these Reference Answers for all questions. Thus, implement-
ing some type of quality assurance, to ensure that all concepts are present in the word-matching
algorithm as Reference Answers could be done.

The goal of the feedback approach was to generate as high-quality keywords as possible for feedback
to the students to enhance learning. Thus, evaluating the feedback approach by looking at the
retrieved feedback terms was necessary. The evaluation technique proposed in Section 6.4 was based
on calculating the precision of the retrieved feedback terms. This was done by counting the number
of correctly retrieved feedback terms divided by the total number of feedback terms retrieved. It is
a rather simple approach that requires a manual inspection of the feedback generation algorithm.
Furthermore, it is an evaluation technique that is based on certain criteria for what defines a correct
feedback term. These criteria can change based on the evaluator, and might not be the best solution.

Another way of evaluating the feedback generation is to perform a quantitative study, as mentioned
in Section 6.4. In this approach, participants could hypothetically get asked if the feedback terms
retrieved from the algorithm based on a question and response were meaningful, helpful, or repre-
sented an important concept in some manner. This approach would generate opinions from a larger
amount of people, which could make it easier to determine the overall performance of the feedback
generation algorithm presented.

7.3 Clustering Approach
This approach, including splitting the dataset and finding the optimal numbers of clusters may
function in real situations in schools or universities, but it depends on several factors to function
optimally. An important factor is the centroid initialization. In this approach, the k-means++
initialization technique was utilized. This method aims to distribute the initial centroids evenly
across the data space, which helps avoid the algorithm to converge to a suboptimal solution. The
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random_state parameter was also used to ensure that the random part of the k-means++ initial-
ization, including randomly selecting the first centroids from the data points, was the same across
multiple runs of the algorithm with the same data and parameters. This makes the results repro-
ducible and easier to compare the algorithm with varying parameters.

Another significant factor is the number of K clusters. If the number of clusters is too small, the
algorithm may not capture the underlying patterns in the data. Conversely, if the number of clus-
ters is too high it may result in overfitting or small and meaningless clusters. For this approach, a
function to find the optimal number of clusters was developed and is described in Section 6.5. The
function utilizes the silhouette scores to find the best separation of the data and the optimal number
of clusters. Based on Section 6.5.1, it can be seen that the overall silhouette scores increased by
about 0.03 for both questions when the optimal number of clusters was chosen. This indicates that
running such a function that finds the optimal number of clusters can help, but for these datasets
and questions, the silhouette scores are not very high. The silhouette scores of 0.17 and 0.13 can
be considered as a moderate clustering quality, suggesting that the clusters may not be very well
separated, but not unseparated either.

In this case, the dataset contains some noise and overlapping patterns. Therefore, it can be said
that a score of 0.17 and 0.13 is acceptable considering the structure of the datasets. It is also seen
in Section 6.5.1 that the algorithm did not split the Manualscores very well. This is not necessarily
a big problem, as the most important factor in this approach is how well the algorithm separates
different responses. Therefore, the silhouette scores are the most important to look at.

Additionally, the chosen distance metric for the algorithm plays a considerable role. The metric used
in this approach is the Euclidian distance. Other possible distance metrics are squared Euclidian
distance, Manhattan distance and chi-square distance. It is important that the choice of distance
metric corresponds with the characteristics of the dataset and the problem at hand. Euclidian
distance is one of the most popular distance metrics used in k-means clustering and measures the
straight-line distance between two points in a multi-dimensional space. Euclidian distance works
well when the data is continuous, and the attributes are of a similar scale which is the case in the
datasets used in this approach. Thus, the Euclidian distance was chosen as the distance metric for
this approach.

L2 normalization was also applied when vectorizing the documents. This technique scales each vector
to have a unit norm, meaning that the sum of the squared values of the vector equals one. This helps
in addressing the issue of different scales along different dimensions and can assure that all dimen-
sions equally contribute to the similarity or distance calculations in the k-means clustering algorithm.

The data distribution also plays a considerable role in the clustering results. The outcome of the
clustering can be influenced by the underlying distribution of the data and the existence of noise or
outliers. In the context of this approach, the data distribution is a bit skewed to the right, which
may affect the centroid’s final placement and the formation of the clusters.

The feedback generation presented for the clustering approach featured two main sections for feed-
back. Firstly, the top N high-grade terms within each cluster the specific SA belonged to were given.
Secondly, terms occurring in highly graded answers that the response is missing independent of the
cluster were presented. The argument for giving two forms of feedback was that the student could
use these two parts in different ways to improve their answer. The top N high-grade terms in the
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clusters were given to identify common errors done by students. These terms could also identify
additional patterns that a teacher might have missed, and students could encourage self-reflection by
seeing what other students had done well and what mistakes they had made. As for the high-graded
answer terms, they could be utilized as insights into concepts that the individual student might
have missed, inspiration to improve learning, or simply an explanation of the grade that the specific
student was given. Other alternative ways to generate the feedback could be to only present the top
N cluster terms or only present the highly graded terms that the response is missing. However, this
would affect the quality of the feedback in a negative way.

The feedback generation approach initializes with finding the top N words associated with each
cluster. This function sorts the terms in the cluster centers based on their distance from the center
of the cluster and returns the indices of the top N terms in each cluster. Once these indices are
obtained, top N terms can be retrieved. This algorithm offers a simple and effective way to retrieve
the top N terms in each cluster. It provides useful insights into the content of the responses within
each cluster, which is an essential part of the generated feedback.

The feedback first suggests what important concepts the cluster mentions and what important con-
cepts the cluster is missing. Alternative ways to provide feedback in a clustering system could be
feedback that is more detailed and explanatory. Such type of feedback could include an explanation
of the different terms that the cluster and the specific response are missing. For example, for a
response that is grouped under a cluster that is missing important terms like ‘Scope’ and ‘block’,
possible feedback could be:

Similar answers yours are commonly missing this: scope, block. A variable that is declared with
the keyword let has block-scope which means that the variable is only visible inside the block that it
is declared in. Your response would offer a more comprehensive understanding of which scopes that
applies for variables declared with var and let in JavaScript if you mention this.

This would lead to somewhat longer feedback and could lead to students becoming disengaged and
finding it difficult to extract the most important information from the feedback. Because of this, the
developed feedback focuses on clear, concise and well-organized feedback that highlights the most
important areas for improvement while avoiding irrelevant details. Students could also research the
terms mentioned in the feedback themselves. This could engage the students more actively with the
learning material, allowing them to develop their own understanding of the relevant terms.

7.4 Limitations
The work conducted in this thesis is based on two datasets featuring Student Answers related to
computer science. Furthermore, it is in the Norwegian language. These criteria, consequently, gener-
ate a set of limitations related to the work of this thesis, and a discussion related to these limitations
is in order.

First of all, Norwegian NLP is a few steps behind the English NLP field. This is mainly because there
are more resources accessible for NLP development in the English language, such as large amounts of
text data and well-established libraries. Norwegian, however, has a significantly smaller pool of text
data, and less research has been conducted on the Norwegian language. Consequently, this leads to
the Norwegian NLP field missing NLP resources, like an open synonym API for Norwegian text. The
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proposed solution for the work of this thesis encompassed utilizing an open-source GitHub repository
containing a list of Norwegian synonyms that were retrieved from a Norwegian book called ‘Norske
synonymer blå ordbok’ [18]. This is not an ideal resource for collecting synonyms, especially for
grading computer science exams. A more appropriate approach could be to retrieve synonyms from
multiple sources to build a common synonym list. Furthermore, it could be beneficial to develop a
synonym list specified for computer science terms in this case. However, such a synonym list would
be difficult to realize currently due to the lack of open synonym API’s for Norwegian text.

Another limitation was the time frame for this thesis. Multiple improvements for the systems were
dropped due to this, such as a proper user test of the feedback generation. It was initially planned
to conduct a questionnaire to evaluate the systems. This could provide valuable insights into how
the feedback would be interpreted by the user, including whether it was helpful for the student or not.

Lastly, the fact that the approaches are only based on two datasets/exams is a limitation. For the
clustering approach that groups similar student responses together, the accuracy can be affected by
the amount of training data available. If ten exams had been utilized instead of two, the size of
the training set would have been tremendously larger, potentially resulting in a much more accurate
clustering algorithm. Similarly, for the Reference Answer approach, a bigger dataset including more
exams could help the system to identify common patterns and themes with the use of a wider range
of possible Reference Answers. This would help the system understand what a correct answer should
include. Having a larger dataset would also help make the results of the Reference Answer approach
more generalizable.
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Chapter 8

Conclusion

The aim of this thesis was to explore techniques for implementations of automatic evaluation and
feedback systems using Information Retrieval and Text Mining. Two Norwegian datasets featuring
short-text answers have been utilized to evaluate these techniques and figure out what quality could
potentially be achieved. Furthermore, two approaches for such systems have been proposed. This
chapter covers a conclusion to the work. In addition, the contributions related to automatic grading
and feedback this thesis presents will be summarized. Lastly, a discussion regarding future work in
automatic grading and feedback generation will be presented.

8.1 Conclusion
Much research on automatic grading and feedback generation has been done, and it can be dated
all the way back to the work performed by Page in the 1960s [31]. The majority of earlier work has
focused on English answers, and little to no work is present on the Norwegian language. Thus, an
investigation into automatic grading and feedback techniques in the Norwegian language can be seen
as a new contribution within this field. For this thesis, three research questions were formulated in
Section 1.2, and have been addressed throughout this thesis. This section will revisit these questions
and attempt to formulate conclusions to them.

The first research question addressed the state of the art within automatic grading and feedback
generation of short-text answers. The related work presented in Chapter 3 categorizes existing Au-
tomatic Short-Answer Grading (ASAG) systems into era’s depending on the time of publication and
implementation. These era’s are Concept Mapping, Information Extraction, Corpus-Based Meth-
ods, Clustering and Machine Learning, each featuring different techniques for automatic grading of
short-text answers. However, the common denominator for the systems of these era’s is that they
are based on the English language. The most relevant approaches for the goals of this thesis are
also presented. These approaches feature systems for both automatic grading and feedback genera-
tion. One approach proposed by Rodrigues, Fatima et al. [38] is based on calculating the similarity
between Reference Answers (RAs) and Student Answers (SAs). Furthermore, a feedback module
is presented based on finding similar words in the RA and SAs. Another approach by Suzen et
al. [41] is based on a clustering approach that clusters together similar answers into three clusters
labeled Excellent, Mixed and Weak. Here, all answers in the same cluster received the same feedback.
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The second research question encompassed how Information Retrieval and Text Mining techniques
could be utilized to implement an automatic grading and feedback system. Chapters 2 and 3 cover
a series of IR and TM techniques. Furthermore, they are applied for grading short-answer questions
in a series of earlier works. Examples of such appliances are Natural Language Processing (NLP),
Latent Semantic Analysis (LSA) and Term Frequency-Inverse Document Frequency (TF-IDF) which
is used to evaluate a document to a query.

The third research question addressed how an automatic grading and feedback system could perform
on real-world datasets. To answer this, two approaches for automatic grading and feedback systems
were proposed and implemented. Furthermore, they were tested on two Norwegian exams featuring
short-answer questions. The first approach was based on a similarity calculation between Reference
Answers and Student Answers. It was found that the performance of this approach varied with the
preprocessing techniques applied on the two exams and the choice of Reference Answers utilized.
For this approach, the feedback technique encompassed giving keywords to students about concepts
or themes that the students might have missed in their responses. An evaluation metric for the feed-
back generation algorithm was also proposed by calculating the precision of the given feedback terms.

The second approach for an automatic grading and feedback system was based on a clustering
method. Here, the k-means clustering technique was applied to cluster together similar student
responses. To achieve optimal grading performance, techniques such as splitting the dataset and
finding the optimal number of clusters were applied. The proposed approach for grading responses in
this approach encompassed comparing the most common terms in a cluster to some type of Reference
Answer to get an indication of what grade the group of responses was in. The feedback generation
method encompassed giving feedback terms in two forms:

1. Firstly, terms that similar student responses had in common and were part of the high-grade
terms, and high-grade terms that the cluster was missing were given. In other words, high-
value terms that occurred in the same cluster as the student response and high-value terms
that the cluster did not mention.

2. Secondly, terms that the specific student response was missing in relation to high-grade terms
were given.

The argument for providing two types of feedback terms was that they were beneficial for the students
in different ways. Terms the specific student was missing could be beneficial to explain the grade a
given student had been given. Terms from similar responses could be beneficial for inspiration and
finding out what concepts the specific student had missed. Lastly, an evaluation method for the
feedback approach was proposed by identifying the relevance of each feedback term retrieved. The
terms could be divided into four sub-groups based on their relevance: true positive, false positive,
false negative, and true negative.

8.2 Contributions
This thesis contributes to the field of automatic grading and feedback generation in the Norwegian
language. Furthermore, two approaches for implementing such a system have been proposed and
tested on two Norwegian exams in computer science.

First of all, a dataset analysis was performed on the two Norwegian exams. This analysis can be
looked at as inspiration for analyzing, cleaning and processing other Norwegian text-based datasets
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or exams. The proposed use cases within this analysis and the steps taken in this study can provide
insights into further text analysis. In addition, the methods for data preprocessing and cleaning uti-
lized in this study can be performed and generalized to other types of unstructured text. Cleaning of
multi-lingual datasets can also appear troublesome, and the techniques utilized in this analysis may
prove useful. In particular, the implementation of a Norwegian synonym list and a multilingual spell
correction algorithm are important contributions in this field that can be used as a starting point
for further development. Furthermore, Text Mining and Information Retrieval techniques have been
described and applied as a means to extract and evaluate text. Inspiration can be taken from these
appliances.

A review of related work within this field is presented in Chapter 3. This review can prove bene-
ficial for others seeking information or conducting further research. In addition to the background
information presented in Chapter 2, these chapters can be utilized as an introduction to the fields of
Information Retrieval and Text Mining, as well as some of the most relevant literature in these fields.

The main contributions of this thesis are the two proposed approaches for automatic grading and
feedback generation. Information Retrieval and Text Mining techniques have been applied on two
Norwegian text-based exams to investigate the possibility of a full-scale grading and feedback system.
The proposed approaches, techniques and performance results can aid in the construction of such a
system. Although the performance achieved on the two datasets in this study may not be sufficient,
the results and techniques utilized are still highly relevant for further research and investigation. The
main goal of this thesis was to explore techniques for automatic grading and feedback generation
to investigate whether a full-scale system could be implemented with such techniques. Based on
related work and the methods applied in this thesis, the possibility for such a system utilizing
similar methods is highly relevant. Thus, the approaches and techniques presented in this study
may be useful and can be utilized in a full-scale automatic grading and feedback system.

8.3 Future Work
This study has shown varying results with two different approaches in grading and providing feed-
back to Student Answers. However, there exists a lack of research on handling a mix of Norwegian
and English languages in student responses for such systems. In order to further develop and im-
prove automatic grading and feedback systems in different languages, especially in Norwegian, more
research is necessary.

Further Testing on other Datasets and Subjects
The two datasets utilized in this work are from a computer science course that contained a mix of
both Norwegian and English terminology, including code snippets. More testing on other Norwegian
datasets could be done to provide a better understanding of how well the two proposed approaches in
this thesis perform. Since the two approaches do not singularly focus on computer science datasets,
additional testing could be performed on other topics to see if the exclusion of code snippets affects
the performance positively. Furthermore, it would be interesting to see how the two approaches
presented perform on datasets containing longer answers, such as answers of essay length.
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Conduct a User Test along with Designing a Graphical User Interface (GUI) or Full-
Scale Solution
In this research, the methods used for evaluating the generated feedback are performed manually.
The goal of giving feedback to students is mainly to improve learning, and this is hard to evaluate
without further evaluation of the two approaches. One way to do this is to conduct user tests. Such
a user test could consist of conducting interviews, questionnaires, or developing a graphical user
interface (GUI) of the two approaches that users could use to test the systems. Furthermore, it
would be interesting to see how the two approaches proposed would work in a full-scale solution
with a GUI. Such a user-friendly interface could make it easier for teachers and students to interact
with and test the system. Additional capabilities that a GUI can offer include visualizations of a stu-
dent’s performance, progress over time, and options for customizing grading criteria and feedback.
This can be of significant help for teachers to better understand their students’ learning patterns.
Moreover, a GUI could make it easier for non-technical users to use the system. This can improve
the system’s usability, making it more widely applicable in different areas of education.

Incorporate more Advanced Natural Language Processing (NLP) Techniques
The effectiveness and accuracy of an automatic short-answer grading system are highly dependent
on the NLP techniques used. In this research, lexical analysis, stopword removal, stemming, and
lemmatization were implemented, along with grouping together terms of the same meaning using
a synonym list and spell correction. However, the implementation of the two latter techniques had
almost no beneficial effect on the performance. Therefore, further research in these areas could be
beneficial along with the incorporation of other advanced NLP techniques. Part-of-speech (POS)
tagging is an important technique in NLP that can be leveraged to improve such systems. With POS
tagging, each word in a sentence is given a unique part-of-speech such as a noun, verb, adjective, or
adverb. By utilizing these techniques, the system can gain a deeper understanding of the meaning
and structure of Student Answers, enabling it to identify errors that might otherwise go unnoticed.

Experiment with other Algorithms
Further testing of other algorithms is an important aspect of developing a better-performing grading
and feedback system. There exist many different types of clustering algorithms that can be applied
in such systems. Some of them are hierarchical clustering, spectral clustering, and density-based
clustering. Each of these algorithms has the potential to increase the precision and efficiency of
short-answer grading systems by grouping together more similar responses. Artificial intelligence
methods, such as deep learning are also important concepts that can be utilized instead of similarity
calculation. Such models can be trained on large datasets of human-graded short answers to build
models that can recognize and interpret complex patterns in text and, furthermore, learn how to
grade answers themselves. It would be interesting to see how the two datasets utilized in this study
perform with these aforementioned approaches.

Support Multilingualism
As the datasets contained responses from different languages and a mix of both English and Nor-
wegian in the same responses, handling this multilingualism is important for the performance of the
system. In this research, English and Norwegian Nynorsk responses were excluded, as this thesis
only focuses on Norwegian Bokmål answers. One possible approach for handling multiple languages
in future systems can be to utilize machine translation algorithms to translate the student responses
into one common language, e.g. English, before grading the response. However, this method can be
challenging due to different languages having varied grammar, syntax and vocabulary. Pre-trained
word embeddings can also be used to recognize the meaning of a word in different languages. This
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is done by providing a way to represent words in a high-dimensional vector space based on their
semantic and syntactic properties. This method is also dependent on languages having common
roots or similar grammatical structures to perform well.

Explore the Possibilities of Utilizing the GPT Models on Automatic Grading
The latest GPT models (3.5 and 4) are one of the most advanced language models in the world, as
stated in Section 2.7.4. These models have had a significant impact on the field of NLP already.
However, not much research has yet been conducted on how these models perform on grading and
giving feedback to short-text answers. To utilize a GPT model for grading short-text answers, it
would be a good idea to fine-tune the model on a specific dataset of short-text answers and their
corresponding scores given by a teacher. Fine-tuning the model involves adjusting its parameters to
optimize the grading performance. This is a big advantage, as it makes the model understand the
patterns and features of the given datasets better. After training, the model can be leveraged to
grade and offer feedback on student replies by taking the replies as input, followed by outputting a
predicted grade and feedback to the user.
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List of stopwords
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NLTK corpus Norwegian stopwords: 

• alle 

• at 

• av 

• bare 

• begge 

• ble 

• blei 

• bli 

• blir 

• blitt 

• både 

• båe 

• da 

• de 

• deg 

• dei 

• deim 

• deira 

• deires 

• dem 

• den 

• denne 

• der 

• dere 

• deres 

• det 

• dette 

• di 

• din 

• disse 

• ditt 

• du 

• dykk 

• dykkar 

• då 

• eg 

• ein 

• eit 

• eitt 

• eller 

• elles 

• en 

• enn 

• er 

• et 

• ett 

• etter 

• for 

• fordi 

• fra 

• før 

• ha 

• hadde 

• han 

• hans 

• har 

• hennar 

• henne 

• hennes 

• her 

• hjå 

• ho 

• hoe 

• honom 

• hoss 

• hossen 

• hun 

• hva 

• hvem 

• hver 

• hvilke 

• hvilken 

• hvis 

• hvor 

• hvordan 

• hvorfor 

• i 

• ikke 

• ikkje 

• ingen 

• ingi 

• inkje 

• inn 

• inni 

• ja 

• jeg 

• kan 

• kom 

• korleis 

• korso 

• kun 

• kunne 

• kva 

• kvar 

• kvarhelst 

• kven 

• kvi 

• kvifor 

• man 

• mange 

• me 

• med 

• medan 

• meg 

• meget 

• mellom 

• men 

• mi 

• min 

• mine 

• mitt 

• mot 

• mykje 

• ned 

• no 

• noe 

• noen 

• noka 

• noko 

• nokon 

• nokor 

• nokre 

• nå 

• når 

• og 

• også 

• om 

• opp 

• oss 

• over 

• på 

• samme 

• seg 

• selv 

• si 

• sia 

• sidan 

• siden 



• sin 

• sine 

• sitt 

• sjøl 

• skal 

• skulle 

• slik 

• so 

• som 

• somme 

• somt 

• så 

• sånn 

• til 

• um 

• upp 

• ut 

• uten 

• var 

• vart 

• varte 

• ved 

• vere 

• verte 

• vi 

• vil 

• ville 

• vore 

• vors 

• vort 

• være 

• vært 

• vår 

• å 

Open-source list one (https://gist.github.com/kmelve/8869818): 

• alle 

• andre 

• at 

• av 

• bare 

• begge 

• ble 

• blei 

• bli 

• blir 

• blitt 

• bort 

• bra 

• bruke 

• både 

• båe 

• da 

• de 

• deg 

• dei 

• deim 

• deira 

• deires 

• dem 

• den 

• denne 

• der 

• dere 

• deres 

• det 

• dette 

• di 

• din 

• disse 

• dit 

• ditt 

• du 

• dykk 

• dykkar 

• då 

• eg 

• ein 

• eit 

• eitt 

• eller 

• elles 

• en 

• ene 

• eneste 

• enhver 

• enn 

• er 

• et 

• ett 

• etter 

• for 

• fordi 

• forsøke 

• fra 

• fram 

• før 

• først 

• få 

• gjorde 

• gjøre 

• god 

• gå 

• ha 

• hadde 

• han 

• hans 

• har 

• hennar 

• henne 

• hennes 

• her 

• hit 

• hjå 

• ho 

• hoe 

• honom 

• hoss 

• hossen 

• hun 

• hva 

• hvem 

• hver 

• hvilke 

• hvilken 

• hvis 

• hvor 

• hvordan 

• hvorfor 

• i 

• ikke 

• ikkje 

• ingen 

• ingi 

• inkje 

• inn 

• innen 

• inni 



• ja 

• jeg 

• kan 

• kom 

• korleis 

• korso 

• kun 

• kunne 

• kva 

• kvar 

• kvarhelst 

• kven 

• kvi 

• kvifor 

• lage 

• lang 

• lik 

• like 

• man 

• mange 

• me 

• med 

• medan 

• meg 

• meget 

• mellom 

• men 

• mens 

• mer 

• mest 

• mi 

• min 

• mine 

• mitt 

• mot 

• mye 

• mykje 

• må 

• måte 

• ned 

• nei 

• no 

• noe 

• noen 

• noka 

• noko 

• nokon 

• nokor 

• nokre 

• ny 

• nå 

• når 

• og 

• også 

• om 

• opp 

• oss 

• over 

• på 

• rett 

• riktig 

• samme 

• seg 

• selv 

• si 

• sia 

• sidan 

• siden 

• sin 

• sine 

• sist 

• sitt 

• sjøl 

• skal 

• skulle 

• slik 

• slutt 

• so 

• som 

• somme 

• somt 

• start 

• stille 

• så 

• sånn 

• tid 

• til 

• tilbake 

• um 

• under 

• upp 

• ut 

• uten 

• var 

• vart 

• varte 

• ved 

• verdi 

• vere 

• verte 

• vi 

• vil 

• ville 

• vite 

• vore 

• vors 

• vort 

• være 

• vært 

• vår 

• å 

Open-source list two (https://www.ranks.nl/stopwords/norwegian): 

• alle 

• at 

• av 

• bare 

• begge 

• ble 

• blei 

• bli 

• blir 

• blitt 

• både 

• båe 

• da 

• de 

• deg 

• dei 

• deim 

• deira 

• deires 

• dem 

• den 

• denne 

• der 

• dere 

• deres 

• det 

• dette 



• di 

• din 

• disse 

• ditt 

• du 

• dykk 

• dykkar 

• då 

• eg 

• ein 

• eit 

• eitt 

• eller 

• elles 

• en 

• enn 

• er 

• et 

• ett 

• etter 

• for 

• fordi 

• fra 

• før 

• ha 

• hadde 

• han 

• hans 

• har 

• hennar 

• henne 

• hennes 

• her 

• hjå 

• ho 

• hoe 

• honom 

• hoss 

• hossen 

• hun 

• hva 

• hvem 

• hver 

• hvilke 

• hvilken 

• hvis 

• hvor 

• hvordan 

• hvorfor 

• i 

• ikke 

• ikkje 

• ingen 

• ingi 

• inkje 

• inn 

• inni 

• ja 

• jeg 

• kan 

• kom 

• korleis 

• korso 

• kun 

• kunne 

• kva 

• kvar 

• kvarhelst 

• kven 

• kvi 

• kvifor 

• man 

• mange 

• me 

• med 

• medan 

• meg 

• meget 

• mellom 

• men 

• mi 

• min 

• mine 

• mitt 

• mot 

• mykje 

• ned 

• no 

• noe 

• noen 

• noka 

• noko 

• nokon 

• nokor 

• nokre 

• nå 

• når 

• og 

• også 

• om 

• opp 

• oss 

• over 

• på 

• samme 

• seg 

• selv 

• si 

• sia 

• sidan 

• siden 

• sin 

• sine 

• sitt 

• sjøl 

• skal 

• skulle 

• slik 

• so 

• som 

• somme 

• somt 

• så 

• sånn 

• til 

• um 

• upp 

• ut 

• uten 

• var 

• vart 

• varte 

• ved 

• vere 

• verte 

• vi 

• vil 

• ville 

• vore 

• vors 

• vort 

• være 

• vært 

• vår 



• å 

Open-source list three (https://github.com/xiamx/node-nltk-

stopwords/blob/master/data/stopwords/norwegian): 

• alle 

• at 

• av 

• bare 

• begge 

• ble 

• blei 

• bli 

• blir 

• blitt 

• både 

• båe 

• da 

• de 

• deg 

• dei 

• deim 

• deira 

• deires 

• dem 

• den 

• denne 

• der 

• dere 

• deres 

• det 

• dette 

• di 

• din 

• disse 

• ditt 

• du 

• dykk 

• dykkar 

• då 

• eg 

• ein 

• eit 

• eitt 

• eller 

• elles 

• en 

• enn 

• er 

• et 

• ett 

• etter 

• for 

• fordi 

• fra 

• før 

• ha 

• hadde 

• han 

• hans 

• har 

• hennar 

• henne 

• hennes 

• her 

• hjå 

• ho 

• hoe 

• honom 

• hoss 

• hossen 

• hun 

• hva 

• hvem 

• hver 

• hvilke 

• hvilken 

• hvis 

• hvor 

• hvordan 

• hvorfor 

• i 

• ikke 

• ikkje 

• ikkje 

• ingen 

• ingi 

• inkje 

• inn 

• inni 

• ja 

• jeg 

• kan 

• kom 

• korleis 

• korso 

• kun 

• kunne 

• kva 

• kvar 

• kvarhelst 

• kven 

• kvi 

• kvifor 

• man 

• mange 

• me 

• med 

• medan 

• meg 

• meget 

• mellom 

• men 

• mi 

• min 

• mine 

• mitt 

• mot 

• mykje 

• ned 

• no 

• noe 

• noen 

• noka 

• noko 

• nokon 

• nokor 

• nokre 

• nå 

• når 

• og 

• også 

• om 

• opp 

• oss 

• over 

• på 



• samme 

• seg 

• selv 

• si 

• si 

• sia 

• sidan 

• siden 

• sin 

• sine 

• sitt 

• sjøl 

• skal 

• skulle 

• slik 

• so 

• som 

• som 

• somme 

• somt 

• så 

• sånn 

• til 

• um 

• upp 

• ut 

• uten 

• var 

• vart 

• varte 

• ved 

• vere 

• verte 

• vi 

• vil 

• ville 

• vore 

• vors 

• vort 

• være 

• være 

• vært 

• vår 

• å 
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Exam 2018 

1. Variabler deklarert med var og let  

Forklar kort hvilket scope som gjelder for variabler som er deklarert med nøkkelordet var og hvilket scope 

gjelder for variabler deklarert med nøkkelordet let? 

2. Arrow-funksjoner 

Forklar kort hvordan arrow-funksjoner skiller seg fra vanlige funksjoner i Javascript, med tanke på this 

3. CSS-grid og Flexbox 

Forklar kort hva CSS-grid er og CSS-flexbox er. Beskriv hvilket problem/behov de løser og hva som skiller 

disse to løsningene. 

4. SVG og HTML5 Canvas 

SVG og HTML5 Canvas kan begge brukes til å lage interaktiv grafikk på websider. Forklar kort hva begge er 

og gi et eksempel på (og argument) for en anvendelse hvor SVG er godt egnet og en anvendelse hvor HTML5 

Canvas er godt egnet. 

5. jQuery 

Hva er selector-mekanismen i jQuery. Gi et eksempel og en kort forklaring. 

6. Single Page Application 

Hva kjennetegner en SPA (Single Page Application)? 

7. Responsiv webdesign 

Hva er responsiv web design? Nevn forskjellige teknikker som brukes for å implementere responsiv 

webdesign. 

8. React (dropped) 

Lag en React-komponent kalt HelloWorld for et H1 element med teksten "Hello World!". 

Komponenten skal ha følgende import-statement 

import React, { Component } from 'react’; 

og skal kunne importeres av andre javascript-filer. 

9. React props og state  

Forklar kort hva props og state er i React. 

10.  React dataflyt 

Forklar hvordan du må implementere dataflyt oppover i et React komponenthierarki. 

11.  Web storage 

Hvilken funksjonalitet tilbys gjennom HTML5 Web storage api'et (og det tilsvarende AsyncStorage api'et i 

React native)? 



12.  React vs. React native 

Beskriv hva som typisk kan gjenbrukes og hva som typisk ikke kan gjenbrukes hvis du skal gjøre om en React 

for web applikasjon til React native. 

13.  State management 

Hva er og hvorfor bruker vi state management som Redux og Mobx? Gi eksempel på hvordan disse brukes i 

implementasjonen (dvs. vis litt kode). 

14.  Snapshot-testing 

Forklar hva snapshot-testing er? 

15.  REST/GraphQL 

Forklar kort hva REST er eller hva GraphQL er (velg en av disse). Vis eksempel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exam 2019 

1. Responsiv web-design 
1. Hva er responsiv web design?  

2. Nevn forskjellige teknikker som brukes for å implementere responsiv webdesign. 

2. Interaktiv grafikk 

Hvordan implementeres interaktivitet på "figurnivå" i henholdsvis SVG/DOM og med Canvas API'et?  

Med interaktivitet på figurnivå menes at bruker skal kunne klikke på enkeltelementer og utføre handliger på 

disse (f.eks. flytte en sirkel, endre farge på et rektangel etc). 

3. REST vs. GraphQL 

REST og GraphQL er to forskjellige løsninger for klient-server kommunikasjon i webapplikasjoner. Beskriv og 

diskuter disse kort (legg vekt på å sammenligne). 

4. Testing 

Forklar kort hva følgende former for testing er (og hva de brukes til å teste).  

• Cross-browser testing 

• Enhetstesting 

• Snapshot-testing 

• End-to-end testing 

5. Kodeforståelse I 

Hva er de to viktige forskjellene mellom en variabel som er deklarert med const i Javascript ES6 og en variabel 

som er deklarert med var (pre ES6)? 

6. Kodeforståelse II 

const groupBy = key => array =>  

array.reduce((objByKeyValue, obj) => {  

const value = obj[key];  

objByKeyValue[value] = (objByKeyValue[value] || []).concat(obj);  

return objByKeyValue; 

}, {});  

const cars = [ 

  { brand: 'Audi', color: 'black' },  

{ brand: 'Audi', color: 'white' },  

{ brand: 'Ferarri', color: 'red' },  

{ brand: 'Ford', color: 'white' },  

{ brand: 'Peugot', color: 'white' }  

]; 



Forklar hva funksjonen groupBy gjør og gi et eksempel på bruk gitt cars-variabelen? Vi er ute etter overordnet 

funksjonalitet og bruk -- og ikke detaljene i kallet til reduce. 

7. Design av søkeapplikasjon 

Du skal være med å utvikle en søkeapplikasjon for en samling av vitenskapelige artikler. Det skal være mulig å 

søke på forfatter, emne, tidsskrift, år, tittelord og databasen inneholder omtrent 1 million artikler. Det skal være 

mulig å filtrere og sortere resultatsettet som returneres fra et søk. 

Lag en punktliste med opp til 5 gode råd for design og arkitekturen til systemet og argumenter etterpå kort for 

hvorfor disse er viktige. 

8. Global state management 

Hva er hensikten og fordelene med global state management i React applikasjoner? 
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