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Abstract

The extensive amount of complex and heterogenous healthcare data in Electronic Health Records

(EHRs) presents a challenge for analysis, encouraging data mining techniques to derive meaningful

insights. Clustering, a reliable and efficient unsupervised data mining tool, is known for identifying

natural groupings and hidden relationships in large data sets. Despite extensive clustering research

in various domains, the application of clustering in mental health, particularly in the context of

hyperkinetic disorders, remains relatively unexplored. Hyperkinetic disorders, which represent 29%

of all mental health disorders among Norwegian children and adolescents, serve as the focal point

of this Master’s Thesis.

This thesis employs a cluster analytic approach to identify subgroups of hyperkinetic patient tra-

jectories within Child and Adolescent Mental Health Services (CAMHS) in Norway, using EHR

data collected at St. Olavs Hospital, Trondheim. The experiment consists of three sub-experiments

wherein each iteration utilises the k-prototypes algorithm to cluster Episodes of Care (EoCs) and

Episodes of Care Bundles (EoC Bundles) in a stepwise manner. The first cluster step identifies

subgroups of the EoC data. Then the next step includes these subgroups when clustering the EoC

Bundle data.

The final results distinguish patient trajectories by identifying three EoC subgroups and four

EoC Bundle subgroups. These subgroups differ in patient characteristics such as age and gender,

trajectory length, diagnoses given, clinical resources needed, and other trajectory aspects. In

short, some trajectories are distinguished by being more “typical” hyperkinetic trajectories based

on clinicians’ experiences. These are often longer EoC Bundles, including planned polycyclic EoCs.

Other trajectories are more varied in length and care and immediacy level.

The intermediate findings and final results are assessed through a combination of clustering val-

idation and clinical assessment. This evaluation process facilitates the interpretation of findings

and ensures their clinical relevance. Additionally, it enables ongoing improvements throughout the

iterative process, as the feedback is incorporated by modifying, adding and removing features. The

iterative clinical feedback and evaluation show an increase in the meaningfulness of the clustering

results.

This study pioneers the clustering of hyperkinetic patient trajectories within CAMHS in Norway,

contributing to the field of data mining within healthcare. The results reveal the presence of

distinct subgroups within these patient trajectories, characterised by unique factors. This evidence

supports the feasibility of clustering EHR data to identify clinically meaningful subgroups, opening

up new avenues for future research.



Abstrakt

Store mengder kompleks og heterogen helsedata i elektroniske pasientjournaler gjør dataen ut-

fordrende å analysere, og åpner for bruk av datautvinningsmetoder for f̊a innsikt. Dataklynging er

et p̊alitelig og effektivt verktøy for datautvinning, kjent for sin evne til å identifisere naturlige grup-

peringer og skjulte relasjoner i store datasett. Til tross for omfattende forskning p̊a dataklynging

i ulike domener, er bruken innen mental helse, spesielt i sammenheng med hyperkinetiske lidelser,

relativt lite forsket p̊a. Hyperkinetiske lidelser utgjør 29% av alle psykiske lidelser blant norske

barn og ungdommer og er fokuset for denne masteroppgaven.

Denne avhandlingen dataklynger data hentet fra St. Olavs hospital i Trondheim for å identifisere

undergrupper av hyperkinetiske pasientforløp innen psykisk helsevern for barn og unge. Eksperi-

mentet best̊ar av tre deleksperimenter, der hvert deleksperiment bruker k-prototypes algoritmen til

å dataklynge omsorgsepisoder og omsorgsperioder stegvis. Det første dataklyngesteget identifiserer

undergrupper av omsorgsepisoder. Deretter brukes disse undergruppene av omsorgsepisoder til å

dataklynge omsorgsperioder.

Sluttresultatene skiller hyperkinetiske pasientforløp ved å identifisere tre undergrupper av om-

sorgsepisoder og fire undergrupper av omsorgsperioder. Disse undergruppene differensieres av

pasientkarakteristikker som alder og kjønn, forløpslengde, diagnoser, kliniske ressurser og andre

forløpsaspekter. Kort oppsummert utpeker noen pasientforløp seg som “tradisjonelle” hyperkin-

etiske pasientforløp basert p̊a klinikeres erfaringer. Dette er ofte lengre omsorgsperioder med

planlagte, polikliniske omsorgsepisoder. Andre pasientforløp utpeker seg ved å ha variert om-

sorgsperiodelengde, behov for øyeklikkeling hjelp og omsorgsniv̊a.

Delresultatene og de endelige resultatene evalueres gjennom dataklyngevalidering og ved å presentere

resultatene til klinikere. Denne evalueringsprosessen muliggjør tolkning av resultatene og sikrer

klinisk relevans. I tillegg muliggjør evalueringen av delresultatene kontinuerlige forbedringer gjen-

nom den iterative prosessen, da variabelendringer blir gjort ut ifra tilbakemeldingene. Iterative

kliniske tilbakemeldinger og endelig evaluering av sluttresultatene viser at resultatene har blitt mer

meningsfylte i løpet av prosessen.

Denne studien er en pionér innenfor dataklynging av hyperkinetiske pasientforløp innenfor psykisk

helsevern for barn og unge. Resultatene avslører distinkte undergrupper av pasientforløp, kjen-

netegnet av unike faktorer. Dette åpner for fremtidig forsking innenfor omr̊adet.
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Chapter 1

Introduction

This chapter introduces the Master’s Thesis by first providing the background and motivation behind

the research. Following that, the goal and research questions are defined to establish the purpose of

the thesis. Subsequently, the research method is presented, outlining the approach used to address

the research questions. Finally, this chapter summarises the structure of the thesis, giving the

readers an overview of what to expect in the following chapters.

1.1 Background and Motivation

Today, Electronic Health Records (EHRs) offer extensive access to a large volume of healthcare

data. This data is complex and heterogenous due to its reliance on medical expertise combining

clinical guidelines, individual physician experiences, and patient-specific information and conditions

(Evans, 2016). Consequently, the analysis of healthcare data can be challenging. With this comes

a need for data mining to convert data into meaningful information. Clustering is a useful data

mining tool because of its consistency, speed, and reliability in discovering natural groupings and

hidden relationships in large data amounts (Berner, 2016). In recent years, clustering has been

subject to wide research in multiple domains, including the healthcare sector (Negi and Chawla,

2021). Although clustering techniques have shown use within the healthcare sector, clustering

within healthcare still lacks research and is not fully explored (Berner, 2016).

Hyperkinetic disorders is a group of disorders characterised by early onset, lack of persistence

in activities requiring cognitive engagement, and a tendency to move from one activity to an-

other without completing any of them. These disorders are also associated with disorganised,

ill-regulated, and excessive activity. Children with hyperkinetic disorders are often reckless and

impulsive making them prone to accidents and disciplinary trouble. These challenges stem from

unthinking rule violations rather than deliberate defiance. Impairment of cognitive functions is

common, and specific motor and language development delays are disproportionately frequent

(Direktoratet for e-helse, 2022).

Nearly 4% of all 12-year-olds in Norway have hyperkinetic disorders, and the disorders constitute

29% of all mental health disorders among Norwegian children and adolescents (IDDEAS, n.d.;

Young et al., 2013). Hyperkinetic disorders are some of Europe’s most neglected and misunder-

stood psychiatric conditions. Due to the lack of public awareness and the widespread social stigma

surrounding hyperkinetic disorders, very few people affected receive appropriate diagnoses and sup-

port. This lack of access to diagnoses and support often worsens the condition and may deteriorate

the quality of life (Young et al., 2013).
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CHAPTER 1. INTRODUCTION

This Master’s Thesis is written in collaboration with the IDDEAS team. The IDDEAS team is a

project group dedicated to improving patient care. Their primary objective is to provide healthcare

professionals with real-time access to data-driven and evidence-based guidelines, enabling earlier

and more precise decision-making. The team comprises various professionals, including developers,

researchers, health IT specialists, and clinicians. Specifically, the team is focused on developing

the Individualised Digital DEcision Assist System, the first decision support system implemented

within the Child and Adolescent Mental Health Services (CAMHS) in Norway. The IDDEAS

project’s current focus is preventive treatment, early intervention, early diagnosis, treatment, and

management of hyperkinetic disorders (IDDEAS, n.d.).

1.2 Goal and Research Questions

This Master’s Thesis aims to unite the field of data mining and child and adolescent mental health

by exploring the use of clustering to identify patient trajectories. The overall project goal is:

Goal Analyse patient trajectories of hyperkinetic disorders in child and adolescent

mental health using clustering of electronic health record data to identify subgroups.

Subgroups are divisions within a data set where data points within each subgroup exhibit distinct

characteristics compared to data points in other subgroups. The identification of subgroups en-

ables the discovery of united similarities within a subgroup while differentiating them from other

subgroups.

A fundamental part of this research goal is to obtain insight into and use CAMHS EHR data.

From this, the following research question is derived:

Research Question 1 How can hyperkinetic patient trajectories in an electronic

health record be identified?

Using a CAMHS EHR data to identify subgroups, it is important to question the implications of

the clustering. To evaluate this, clinicians having expertise within the mental health field should

be included. Therefore, the second research question is as follows:

Research Question 2 How can patient trajectory clusters be made meaningful to

clinicians?

This goal and the two research questions will provide a clear focus for this project, establishing a

direction for the research and guiding the experiment.

1.3 Research Method

This Master’s Thesis adopts a framework for understanding, executing, and evaluating a Design

Science Research (DSR). DSR is a problem-solving paradigm seeking to enhance knowledge by

using innovative solutions to real-world problems (Brocke et al., 2020). In alignment with this

framework, the initial steps in this research method involve identifying the problem, establishing

motivation, and defining the research objectives, as presented in the previous sections.
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The subsequent phase entails the design and development of the project artefact. First, this

phase includes building the necessary knowledge by exploring foundational concepts and meth-

odologies. In the context of this project, a crucial aspect involves exploring and extracting data

from an EHR. This necessitates reviewing clinical codes, systems, and procedures employed within

CAMHS in Norway. This exploration will be presented as the Theoretical Background in Chapter

2. Thereafter, the clustering methodology will be investigated and presented in Chapter 3. This

methodology will provide the framework for clustering the EHR data. To ground this clustering

methodology, relevant prior work is examined and presented in Chapter 4. This will facilitate an

understanding of mental health data clustering and existing research. Lastly, the data utilised in

this process will be presented in Chapter 5, giving an overview of the relevant data to achieve the

research goal and answer the research questions.

An experiment will be conducted to demonstrate the artefact, which is represented by the clustering

process. This experiment aims to showcase the use of a clustering methodology to identify patient

trajectories within CAMHS in Norway. The concrete steps for this experiment will be outlined in

Section 6.1.3.

The experiment will consist of three sub-experiments, each designed to achieve predetermined

experimental aims. These aims will be derived from the research questions stated to provide clear

guidance for the experiment. The sub-experiments will be performed to evaluate how well the use

of the artefact answers the research questions iteratively. Including clinical feedback throughout

these sub-experiments may improve the clustering outcomes.

Several criteria will be considered when selecting clinicians to participate in these sub-experiments.

First, including clinicians with years of experience treating patients in relation to hyperkinetic dis-

orders within CAMHS in Norway is essential. Their extensive experiences will enrich the analysis

of the cluster findings. Moreover, this may ensure the inclusion of clinicians having years of famili-

arity with EHR systems to ensure that their thoughts reflect real-world practices. Additionally,

including clinicians who hold or have held a leadership role is desired, as their input can draw upon

the experiences of other clinicians. Lastly, the clinicians should work at different clinics to offer a

broader clinical perspective.

Furthermore, professionals from the IDDEAS team will participate in the experiment to obtain

feedback from clinicians and domain experts familiar with this project’s goal and the EHR data.

The feedback from one sub-experiment will inform and enhance subsequent iterations to address

the research questions better.

After completing the final iteration, a concluding evaluation will be performed as presented in

Chapter 8. This evaluation will include cluster validation, result evaluation aligned with the

research aims and clinical assessment. Then, a discussion will be presented in Chapter 9 regarding

this research method and the results. This discussion will explore different factors influencing the

clustering process and its outcomes, along with limitations and recommendations. Finally, the

Master’s Thesis will conclude by answering the research questions and determining if the research

goal is met in Chapter 10.

3



CHAPTER 1. INTRODUCTION

1.4 Thesis Structure

The remaining of this Master’s Thesis is organised in the following manner:

• Chapter 2 presents the essential background theory to familiarise the reader with relevant

topics for this project.

• Chapter 3 describes the clustering methodology used during the experiment.

• Chapter 4 covers related work within CAMHS in Norway and a literature review regarding

clustering of EHR data.

• Chapter 5 presents the data used in this project, the environment and the tools used when

handling the data, and the agreements required to access the data.

• Chapter 6 details the experiment, including three iterations of the clustering process and the

intermediate findings.

• Chapter 7 presents the final results of the last clustering iteration.

• Chapter 8 evaluates the methodology followed and the obtained results.

• Chapter 9 discusses the methodology and results in light of research, knowledge, clinical

evaluation, and the project goal.

• Chapter 10 concludes the research and delivers final thoughts regarding the contributions of

this project.
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Chapter 2

Theoretical Background

This chapter introduces the foundational theory necessary for understanding the theoretical con-

cepts utilised in this project. It provides the reader with essential background information that

forms the basis of the project and offers an overview of the relevant fields studied prior to hand-

ling the EHR data and conducting the experiment. The chapter begins by introducing CAMHS

in Norway and then explains the process for establishing clinical diagnoses. Next, important ter-

minology is provided to ensure a shared understanding of hyperkinetic patient trajectories within

CAMHS in Norway. Finally, the theoretical information is contextualised to explain patient tra-

jectory guidelines followed.

2.1 CAMHS in Norway

CAMHS in Norway provides psychiatric assessment, counselling, treatment, and facilitation for

children and adolescents aged 18 and under. CAMHS is a specialist health service organised

as part of public hospitals. They serve municipal health services, schools, child protection, and

general practitioners acting as gatekeepers who can refer to CAMHS (Koochakpour et al., 2022).

The Norwegian Directorate of Health states that all children and adolescents in Norway with clear

signs or symptoms of mental difficulties or disorders should be offered the help they need from

the level of care required, either from the municipal health services or CAMHS (Helsedirektoratet,

2021). The predominance of referral reasons to CAMHS is due to externalising disorders, where

the biggest patient group is referred to CAMHS due to hyperkinetic disorders (Breivik, 2020).

CAMHS in Norway can be considered a pioneer in comprehensive and rich coding of patient data by

having the first EHR that reported individual patient treatment to the National Patient Register

(NPR) following national requirements. CAMHS Norway has since 1984 provided standardised

coding of patients’ conditions, progressions, and status, including diagnoses, interventions, activit-

ies, and clinicians’ notes, as well as patient demographics, family situations, and care collaborators.

The extensive data collected in this EHR system, called BUPdata, allowed for multi-diagnosis and

state-based encoding of diseases, and it can be considered the first secure patient portal in Norway.

By utilising BUPdata, CAMHS in Norway has managed to support clinical work, promote quality

in clinical practice, and ensure uniform quality of care across the country (Koochakpour et al.,

2022).
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2.2 Clinical Diagnoses

CAMHS in Norway gives clinical diagnoses to administer long-term collaborative treatments to

their patients and stores these in the EHR for future reference. The diagnoses are given using

the International Classification System of Diseases (ICD) and a multi-axial classification system

(WHO, n.d.; G̊ardvik, 2007). Understanding these two systems is crucial when analysing patient

trajectories.

2.2.1 ICD-10

To classify mental health conditions CAMHS in Norway employs the 10th version of the Inter-

national Classification of Diseases (ICD-10). ICD-10 is a worldwide standard for health data,

clinical documentation, and statistical aggregation. The main objective of ICD-10 is to ensure

that recorded data has semantic interoperability and reusability, catering to various uses beyond

mere health statistics, such as decision support, resource allocation, reimbursement, and guidelines

(WHO, n.d.).

As ICD-10 has been used in Norway since 1999, this project will rely on the ICD-10 guidelines for

health-related issues and information. ICD-10 consists of 21 chapters, including codes for various

health-related issues. To classify child and adolescent mental health disorders, relevant chapters

are Chapter F (also coded as V), Chapter R (also coded as XVII), and Chapter Z (also coded as

XXI). These codes are defined as follows by The Norwegian Directorate of eHealth:

• Chapter F presents a range of mental and behavioural disorders. This chapter includes

disorders of psychological development but excludes symptoms, signs, and abnormal clinical

and laboratory findings. Chapter F encompasses the subsequent categories of disorders:

– F00-F09: Organic, including symptomatic, mental disorders.

– F10-F19: Mental and behavioural disorders due to psychoactive substance use.

– F20-F29: Schizophrenia, schizotypal, and delusional disorders.

– F30-F39: Mood affecting disorders.

– F40-F48: Neurotic, stress-related, and somatoform disorders.

– F50-F59: Behavioural syndromes associated with physiological disturbances and phys-

ical factors.

– F60-F69: Disorders of adult personality and behaviour.

– F70-F79: Mental retardation.

– F80-F89: Disorders of psychological development.

– F90-F98: Behavioural and emotional disorders with onset usually occurring in child-

hood and adolescence.

– F99: Unspecified mental disorder.
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• Chapter R encompasses symptoms, signs, and abnormal clinical and laboratory findings, not

elsewhere classified. While there are R-codes covering all organs and their functions, the codes

R40-R46 are especially important in CAMHS in Norway. These codes are categorised under

“Cognition, perception, emotional state and behaviour”. Relevant codes in this category are:

– R40: Somnolence, stupor, and coma.

– R41: Other symptoms and signs involving cognitive functions and awareness.

– R42: Dizziness.

– R43: Disturbances of smell and taste.

– R44: Other symptoms and signs involving general sensations and perceptions.

– R45: Symptoms and signs involving emotional state.

– R46: Symptoms and signs involving appearance and behaviour.

• Chapter Z includes codes for special purposes. Relevant Z-codes for CAMHS in Norway

include:

– Z00-Z13: Persons encountering health services for examinations.

– Z55-Z65: Persons with potential health hazards related to socioeconomic and psychoso-

cial circumstances.

– Z70-Z76: Persons encountering health services in other circumstances.

– Z80-Z99: Persons with potential health hazards related to family and personal history

and certain conditions influencing health status.

(Direktoratet for e-helse, 2022)

2.2.2 The Multi-Axial Classification System

Since 2008, CAMHS in Norway has utilised a multi-axial classification system developed by the

World Health Organization (WHO) when registering and reporting patient diagnoses. This system

allows for a comprehensive classification of the different aspects of mental health conditions, which

are often complex and require a more extensive approach than other clinical conditions (Direktor-

atet for e-helse, 2023). The system includes six axes for coding diseases, with ICD-10 codes used

on axes 1 to 5.

To better understand the patient trajectories within CAMHS in Norway, it is necessary to un-

derstand the diagnoses given on each of the six axes. Referring to the Retningslinjer for koding

Multiaksial klassifikasjon i psykisk helsevern for barn og unge the six axes are described below

(Direktoratet for e-helse, 2023).

Axis 1: Clinical Psychiatric Syndrome

The first axis of the multi-axial classification system includes all necessary diagnoses to provide

a complete picture of the patient’s condition. The primary diagnosis, representing the patient’s

main condition, should be stated first. It is mandatory to include at least one code in the first

axis. The codes in this axis may include F-, R- and Z-codes.
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Axis 2: Specific Disorders of Psychological Development

The second axis should contain diagnoses that exhibit the following characteristics:

• Onset during childhood.

• Deficient of delayed development of functions related to the central nervous system’s biolo-

gical maturation.

• A stable course that does not involve relapses or remissions.

These characteristics frequently entail that the patient experiences difficulties with their language

skills, visuospatial skills, and motor coordination. To assign a diagnosis to Axis 2, it is required

to conduct a standardised psychological test, perform a comprehensive medical examination, or

undertake another reliable medical assessment. All codings on the second axis are F-codes.

Axis 3: Intellectual Level

The codes on the third axis should indicate potential developmental disabilities and their severity.

A separate classification on this axis should also describe the extent of behavioural problems. Only

one code may be assigned on Axis 3, and it must result from a standardised psychological test and

comprehensive evaluation of social maturity and adoption. All pertinent codes on the third axis

are from the F-chapter.

Axis 4: Co-existent Medical Conditions

The fourth axis includes codes corresponding to diseases, injuries, or causes of death / suicide

attempts. Only conditions pertinent to the treatment process should be coded on this axis. This

implies that the conditions coded are considered and addressed during the treatment process or

impact the examinations or treatment. Only physicians are authorised to assign codes on Axis 4.

The fourth axis comprises code from chapters A - T (excluding chapter F).

Axis 5: Associated Abnormal Psycho-Social Situations

Axis 5 includes codes referring to the patient’s family relationships, other close connections, and

the environment during the last six months of the patient’s life. It is possible to assign multiple

codes on this axis, and the codes may describe aspects such as the patient being raised in an

institution, family illness, or experiences of abuse. On Axis 5, all codes are numbered from 1-10,

corresponding to Z-codes.

Axis 6: Global Assessment of Disability

The sixth axis employs the Children’s Global Assessment Scale (CGAS). The CGAS ranges from

1 to 100 to characterise the patient’s level of disability, varying from “excellent function in all

areas” to “requires constant supervision”. The CGAS score is determined at the outset and may

be updated throughout a patient’s treatment. The code is assigned based on the most reduced

level of disability observed during the previous month.
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2.3 Terminology

Establishing a common understanding of key terminology is crucial to analyse hyperkinetic patient

trajectories in CAMHS in Norway effectively. Table 2.1 outlines official terminology presented in

Bupdata brukerh̊andbok (2009), Volven (2001), and other relevant terms for this project.

Term Definition

Patient Trajectories The assembling, scheduling, monitoring, and coordinating of all

steps necessary to complete the work of patient care. The term

trajectory refers not only to the pathophysiological process of a

patient’s disease state but also to the total organisation of work

done throughout all interactions and the impact of the patient

care processes (Direktoratet for e-helse, 2023).

Episodes of Care

Bundle (EoC Bundle)

A time period for contacts and admissions at healthcare institu-

tions for a condition’s assessment, treatment, and rehabilitation.

An EoC Bundle comprises one or more Episodes of Care (Direk-

toratet for e-helse, 2001).

Episode of Care (EoC) A continuous period of time during which a patient receives care

at one healthcare institution for one condition. An EoC have a

determined care and immediacy level and may involve multiple

contacts (Direktoratet for e-helse, 2001).

Contact An uninterrupted interaction between a patient and health per-

sonnel where the patient receives healthcare at one healthcare in-

stitution for one health issue. All contacts in CAMHS in Norway

are categorised as one of the following contact types:

• Therapy: Measures to cure, combat, alleviate, and prevent

discomfort, diseases, injury or disability based on science

and knowledge.

• Examination: Conversations and examinations to map a pa-

tient’s illness, situation, and need for treatment.

• Indirect contact: Work or activity related to the healthcare

provided to a patient without the patient’s participation.

• Planning: Work where only healthcare professionals are

present. Time spent planning the patient’s treatment / fu-

ture contacts with the patient.

• No-show: A planned contact that is not performed since the

patient did not show (Direktoratet for e-helse, 2001).

Diagnosis A diagnosis refers to the multi-axial classification system based

on ICD-10 codes, elaborated in Section 2.2.2. Within CAMHS

in Norway, clinicians have a general rule to register as many dia-

gnoses as needed to get a clear view of a patient’s health situation

(Direktoratet for e-helse, 2023). A diagnosis may be the patient’s

main diagnosis or not.

Continues on next page
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Term Definition

Care Level Organise the different levels of treatment given to the patient.

The care level may be one of the following three:

• Polyclinic: EoC at a healthcare institution that provides

assessment, treatment or rehabilitation without the patient

staying overnight or participating in activities other than

consultations.

• Outpatient: EoC where the examination or treatment is

more extensive than on the polyclinic care level but where

the patient does not stay overnight.

• Inpatient: EoC where the patient stays overnight at the

healthcare institution (Direktoratet for e-helse, 2001).

Immedicay Level Indicates how immediate the EoC is. The immediacy level may

be one of the following five:

• Acute: No waiting time before treatment.

• Non-acute: Treatment within 6 hours.

• 6-24 hour wait.

• Planned: Treatment is planned in advance.

• Return from another hospital: The patient returns after

treatment in another hospital.

(Direktoratet for e-helse, 2001)

Table 2.1: Terminology regarding patient trajectories within CAMHS in Norway.
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2.4 Hyperkinetic Disorders Patient Trajectories

After presenting an overview of CAMHS in Norway, encompassing a description of the organisa-

tion, clinical diagnoses offering, and important terminology, patient trajectories for patients with

hyperkinetic disorders within CAMHS in Norway can be introduced.

Once a patient is referred or admitted acutely to CAMHS in Norway, an EoC Bundle is started.

The two referral reasons in relation to hyperkinetic disorders are suspicion of defiance/behavi-

oural disorder and suspicion of hyperkinetic disorders. Upon an EoC Bundle start for the patient

referred, the Norwegian Directorate of Health has established a guideline for the patient traject-

ory (Helsedirektoratet, 2022). This guideline begins with the initial assessment of hyperkinetic

disorders. The diagnosis should be determined through the following procedures:

1. Assessment and documentation of the patient’s psychosocial, developmental, somatic, and

psychiatric history and status, and the patient’s strengths and interests. This assessment

should include the following:

• Use of diagnostic criteria stating that at least six symptoms of inattention, three symp-

toms of hyperactivity, and one symptom of impulsivity must be present. These symp-

toms must also have been persistent for at least six months.

• Conversation with the patient’s guardians.

• Conversation with the patient.

• Assessment of the patient’s developmental history.

• Assessment of symptoms and function in different areas.

• Assessment of concurring difficulties.

• Assessment performed by a doctor.

2. A physical and neurological examination.

3. Potential additional examinations such as laboratory testing.

(Helsedirektoratet, 2022)

From these procedures, the patient may get one of the following diagnoses in the hyperkinetic

disorders category (ICD-10 chapter F90) on the first axis of the multi-axial classification system:

• F900 - Disturbance of Activity and Attention

• F901 - Attention Deficit Hyperactivity Disorder (ADHD)

• F908 - Other Hyperkinetic Disorders

• F909 - Hyperkinetic Disorder, Unspecified

Additionally, the guideline emphasises the significance of considering other potential disorders

during the performance of these procedures, seeing that other conditions frequently accompany

hyperkinetic disorders. These diagnoses are based on the principles outlined in Section 2.2.2.

When a diagnosis is given, it is determined whether it is the patient’s primary diagnosis.

11



CHAPTER 2. THEORETICAL BACKGROUND

After the initial assessment, the treatment process for patients with hyperkinetic disorders begins.

CAMHS in Norway follows guidelines by the Norwegian Directorate of Health, including treatment

steps and principles, to ensure high-quality service. The guideline aims to establish proper priorities

in the service, address interaction challenges, and ensure comprehensive patient processes. For all

steps in the treatment plan, the following principles should be followed:

• All treatment measures should be determined by an assessment considering the individual

patient.

• All treatment measures should have a plan of action.

• Different healthcare institutions should collaborate to complete the treatment.

• When the symptoms of hyperkinetic disorders are severe, multiple measures should be con-

sidered simultaneously.

The following are the treatment steps recommended to include when treating the patient with

hyperkinetic disorders:

1. Explaining diagnoses, symptoms and the treatment plan to the patient, the guardians, and

the school.

2. Parent and child training programs.

3. Prescription of drugs. This includes the following steps:

(a) A four-week trial period.

(b) Evaluation of symptom improvement to decide the continuation of medication.

(c) Consideration of other treatment options if side effects are present and/or the patient,

is missing improvement.

4. Social skills training should be performed if the patient is experiencing difficulties interacting

with others.

5. Cognitive behavioural therapy.

6. Coaching: Providing patients with guidance, motivation, and training to support their per-

sonal development and enable them to make informed decisions.

7. Computer-based training program to improve concentration and working memory.

8. Neurofeedback: Method for creating changes in the brain’s activity to find relations between

observed brain waves and behaviour.

9. Nutritional interventions.

10. Facilitation and special education measures in kindergartens and schools.

All steps in the abovementioned guidelines include different types of patient contacts. The dia-

gnostic process normally includes mostly examinations, while the treatment process may consist of

all five contact types. The parent and child training program is an example of a therapy session.

Creating a plan of action is a typical planning contact, and if the patient does not show up to a

scheduled contact, this is an example of a no-show contact. If, for any of the contacts, the patient

is not present, but the healthcare professional work with, for instance, child protection services

speaking on behalf of the patient, this is an example of indirect contact.

12
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The diagnostic and treatment steps recommended may be separated into different EoCs within

one EoC Bundle, depending on where the patient is treated and the care and immediacy level.

Examples of separate EoCs within an EoC Bundle are:

• If the patient is transferred to a new healthcare institution between the diagnostic steps and

the treatment steps, a new EoC is started.

• If the level of immediacy changes during the treatment process, for instance, from acute to

non-acute, a new EoC is started.

• If the patient at a polyclinic needs to stay at a healthcare institution for 24 hours, a new

EoC is started.

Once treatment is completed, the patient or guardians cancel the process, the patient gets above

age, moves, dies, or the healthcare professionals determine that the patient should be rejected, the

ongoing EoC and EoC Bundle are closed. If the patient is referred to CAMHS in Norway again

later in life, a new EoC Bundle is started.

13



Chapter 3

Clustering Methodology

This chapter presents the clustering methodology implemented in this project, aiming to provide the

reader with the technical aspects employed in the experiment. This chapter first presents general

information on data mining, outlining the overall data analytic approach adopted for this pro-

ject. Subsequently, the clustering approach and relevant use cases are presented, detailing project

considerations and the specific clustering algorithm utilised in the experiment.

3.1 Data Mining

Data mining refers to the process of identifying valid, novel, and easily interpretable patterns

within a data set (Fayyad et al., 1996). The main goal of data mining is to convert data into

meaningful information. Given the significant volume of data generated in the healthcare sector,

data mining is highly suitable for providing decision support. There are two main categories of

data mining: supervised and unsupervised machine learning (Berner, 2016). Supervised machine

learning enables algorithms to learn from labelled cases and generalise knowledge to predict new

cases (Berry et al., 2020). Unsupervised machine learning leaves algorithms to discover patterns

and hidden structures from data without predefined outcomes (Peiffer-Smadja et al., 2020).

For this project the unsupervised machine learning approach clustering is utilised to identify hy-

perkinetic patient trajectory subgroups in CAMHS in Norway.

3.2 Clustering

The unsupervised machine learning technique clustering is used to group unlabeled data into

clusters containing data points “similar” to each other and “dissimilar” from data points in other

clusters (Ahmad and Khan, 2019). The clustering technique is helpful in data mining because

of its consistency, speed, and reliability (Huang, 1997b). Clustering organises objects into groups

whose members are similar according to, most often, some proximity criteria defined by introducing

distances. When utilising clustering, the aim is to derive a description that succinctly characterises

the elements of a cluster (Ahmad and Dey, 2007).
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Cluster analysis is widely used across various fields, serving as a vital tool for numerous applications

(Halkidi et al., 2001b). The following presents applications of clustering relevant to this project:

• Data compression: One of the key advantages of cluster analysis is its ability to com-

press information contained in the data by partitioning it into multiple clusters. Instead of

processing the entire data set as an entity, clustering enables using the identified clusters to

represent the data (Halkidi et al., 2001a).

• Natural classification: Clustering offers an evaluation of the data’s similarity degree based

on natural groupings. It can be considered a statistical classification technique that quant-

itatively compares multiple characteristics to determine whether individuals in a population

fall into different groups. As a result, clustering can be a valuable descriptive tool when one

wants to understand the general characteristics of high-dimensional data but does not have

pre-specified models or hypotheses (Jain, 2010).

When dealing with complex and heterogeneous data, combining the two mentioned clustering

applications in a stepwise manner can be beneficial. This implies first using clustering to compress

information before including this information in a second clustering that aims to characterise the

data by constructing and identifying higher-level subgroups. These clustering applications, utilised

stepwise, can discover underlying patterns or structures in unlabeled data sets, making it an ideal

solution for patient trajectory segmentation.

3.2.1 Clustering Considerations

While clustering analysis is a fundamental technique in data mining, it is important to consider

certain factors when applying this method. Following is a presentation of clustering considerations

pertinent to this project that should be considered when selecting a clustering algorithm and

carrying out the clustering process.

Large Data Sets

A fundamental data mining problem is efficiently partitioning large data sets into homogeneous

clusters (Huang, 1997b). Clustering algorithms can be broadly categorised as either hierarchical

or partitional, depending on how they partition a data set into clusters. Hierarchical cluster-

ing algorithms create clusters in succession based on previously formed clusters, while partitional

clustering algorithms determine all clusters simultaneously (Soni Madhulatha, 2012). Comparing

the two categorisations, partitional clustering algorithms are generally more computationally ef-

ficient than hierarchical clustering algorithms. Partitional clustering methods have a linear time

complexity with respect to the number of data points, whereas hierarchical clustering has a time

complexity of O(n3) (Soni Madhulatha, 2012). Given this computational advantage, partitional

clustering methods may be a more favourable choice for clustering large high-dimensional data in

data mining (Huang, 1997b).
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Mixed Data

Choosing the appropriate clustering algorithm heavily relies on the type of data that needs to

be clustered. When dealing with large data sets containing both numerical and categorical data,

partitioning the data into homogeneous clusters becomes particularly difficult (Ahmad and Dey,

2007). Such data sets can be referred to as mixed data and are common when using real-world

data sets (Ahmad and Khan, 2019). Clustering mixed data requires computing the similarity

between different types of data. Distance-based similarity measures compute the similarity between

numerical data, but computing the similarity between categorical data is more complex (Ahmad

and Khan, 2019). Since categorical data is inherently unordered, the distance between the features

cannot be directly computed. Therefore, a distance measure capable of adequately capturing

similarities within the data set is needed to cluster mixed data. Additionally, the distance measure

must be compatible with an efficient clustering algorithm to produce effective clustering results.

To overcome the challenge of clustering mixed data, the following three strategies may be con-

sidered:

1. Convert categorical values to numeric integer values and then apply numeric distance meas-

ures to compute the similarity between object pairs. This approach has limitations, such

as accurately assigning the appropriate numeric value to categorical variables (Ahmad and

Dey, 2007). Furthermore, this method may not yield meaningful results when dealing with

categorical domains that are not ordered (Huang, 1997a).

2. Discretise numeric attributes before applying a categorical clustering algorithm. This dis-

cretisation process tends to lead to loss of information, resulting in misleading outcomes

(Ahmad and Dey, 2007). Moreover, choosing a specific discretisation is not trivial; for some

variables, there is no obvious way of splitting a range of numerical variables (van de Velden

et al., 2019).

3. Consider numeric and categorical attributes separately by having a cost function that com-

putes the similarity between two elements in terms of two distance values - one for numeric

attributes and the other for categorical attributes (Ahmad and Dey, 2007).

High Dimensionality Data

Reducing the dimensionality of data prior to clustering is recommended, as high dimensionality

data can cause computational inefficiency for clustering algorithms, and the presence of irrelevant

features can hinder the identification of relevant underlying structures in the data (Boutsidis et

al., 2015). Dimensionality reduction is usually done by utilising feature selection and/or feature

extraction (Mladenić, 2006). While most clustering techniques assume that all features are equally

important, in reality, different features may have varying effects on the desired clustering result.

Irrelevant features can potentially blur the clusters, whereas essential features play a crucial role

in creating them (Dash and Liu, 2000). To address this issue, feature selection can be used to

reduce the data dimensionality by selecting only the relevant features for the clustering. Feature

extraction constructs new features to be used instead of the original features. The construction of

new features combines original features based on domain-specific calculations or statistical methods

(Mladenić, 2006).
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3.2.2 Clustering Algorithm

The k-prototypes algorithm was developed, alongside the k-modes algorithm, by Zahexue Huang.

The two algorithms are extensions of the k-means paradigm, specifically designed to handle categor-

ical and mixed attributes (He et al., 2005). By combining the k-modes and k-means algorithms,

the k-prototypes algorithm can effectively operate on mixed data, and it does so by defining a

dissimilarity measure that takes into account both numerical and categorical attributes (Huang,

1998). This makes the k-prototypes algorithm highly desirable for data mining and for this project

(Huang, 1998).

Since k-means and k-modes lay the foundation for k-prototypes, these two algorithms will first be

introduced before delving further into the details of the k-prototypes algorithm.

k-means

The k-means algorithm is the most widely recognised and utilised clustering technique (Sinaga and

Yang, 2020). The algorithm is well known for its efficiency in clustering large data sets (Huang,

1998). The clustering method falls under the category of partitional clustering methods. The

k-means algorithm divides a given data set into a predetermined number of clusters. The central

concept behind k-means is to establish k centroids, each representing a cluster. k-means has the

dual objective of making each cluster as compact and distinct from the others as possible (Ahmad

and Dey, 2007). Hence, the objective function J that aims to minimise the within groups sum of

squared errors can be expressed as:

J =

k∑
j=1

n∑
i=1

||x(j)
i − cj ||2 (3.1)

where ||x(j)
i − cj ||2 is the distance measure between a single data point x

(j)
i and a specific cluster

centre cj (Saxena et al., 2017).

The procedure of the k-means algorithm consists of the following steps:

1. Initial means selection: Once the number of clusters has been determined, the k-means

algorithm selects k distinct points from the data set to serve as the initial centroids for each

cluster. The means of the centroids are initially calculated and then updated during each

iteration of the algorithm before the clusters are finalised.

2. Initial allocation: Each point in the data set is assigned to the centroid whose mean is

nearest. Once a point is assigned to a centroid, the mean of that centroid is adjusted to

reflect the addition of the new data point. Thus at each stage, the k-means represent the

mean of each centroid.

3. Re-allocation: Step 2 is repeated until the centroids no longer move. This separates the

objects into groups from which the within groups sum of squared errors is minimised.

(MacQueen, 1967; Saxena et al., 2017)
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The k-means algorithm has the following important properties:

• It is efficient in processing large data sets.

• It often terminates at a local optimum.

• It works only on numeric values.

• The clusters have convex shapes.

(Huang, 1998)

k-modes

The k-modes algorithm overcomes k-means’ limitation in handling categorical data by implement-

ing the following modifications:

• A simple matching similarity measure to handle categorical objects is introduced. This

measure can be defined as the total matches between the corresponding attributes of two

objects. The smaller the number of mismatches, the more similar the two objects are.

• The means are replaced with modes. Like the k-means algorithm, the k-modes algorithm

assigns objects to the cluster with the nearest mode according to the dissimilarity measure.

After each allocation, the mode of each cluster is updated accordingly.

• A frequency-based method is used to update modes in the clustering process to minimise the

clustering cost function.

With these modifications, the k-modes algorithm enables the clustering of categorical data similar

to how k-means clusters numerical data (Huang, 1998). Additionally, k-modes enables easier

interpretations of the clustering results as the modes provide characteristic descriptions of the

resulting clusters (Huang, 1997a).

k-prototypes

The clustering process of the k-prototypes algorithm is similar to k-means since it utilises a distance

metric to assess the dissimilarity between observations. However, k-prototypes incorporates the k-

modes technique to update the categorical values of cluster prototypes. In essence, the k-prototypes

uses the mean values for numerical features and mode values for categorical features.

The dissimilarity between two mixed-type objects X and Y can be measured by the following:

d(X,Y ) =

p∑
j=1

(xj − yj)
2 + γ

m∑
j=p+1

δ(xj , yj) (3.2)

with γ > 0 and where

δ(xj , yj) =

{
0 if xj = yj ,

1 if xj ̸= yj
(3.3)
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The first term in Equation 3.2 calculates the squared Euclidean distance for the numerical attrib-

utes. The second term measures the dissimilarity of the categorical attributes by looking at the

number of mismatches between objects and cluster prototypes. The weight parameter γ ensures

equal treatment of both attributes and prevents any favouring of either (Huang, 1998).

The procedure of the k-prototypes algorithm is built upon the following three steps:

1. Initial prototypes selection: k-prototypes selects k initial prototypes from a data set, one

for each cluster.

2. Initial allocation: The algorithm allocates each object in the data set to the cluster with

the nearest prototype, determined by equation 3.2. The prototype of a cluster is updated

after each allocation. The following three situations can occur when the algorithm determines

the nearest prototype:

(a) A data point is assigned to a cluster if the cluster’s prototype matches the data point’s

categorical and numerical values.

(b) A data point can be assigned to a cluster if the numerical distance between the cluster’s

prototype and the data point is long, provided that the data point’s categorical value

matches the prototype.

(c) A point can be assigned to a cluster if the cluster’s prototype has a different categorical

value, provided that the distance between the point and the cluster prototype is small

enough in the numerical space.

3. Re-allocation: Once all objects have been allocated to a cluster, the similarity of each

object is tested against the current prototypes. If an object’s nearest prototype belongs

to a different cluster than its current one, the object is reassigned to that cluster, and the

prototypes of both clusters are updated. This step is repeated until no object changes clusters

during a full cycle of the data set.

(Huang, 1997b)

The k-prototypes algorithm has the following important properties:

• It is efficient in processing large data sets.

• Like the k-means algorithm, k-prototypes produces local optimal solutions, which are affected

by the selection of the initial cluster prototypes.

• It can cluster a mixture of both numerical and categorical variables.

(Huang, 1997b)
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Limitations with k-prototypes

k-prototypes is a commonly used algorithm for clustering mixed data (Aschenbruck and Szepan-

nek, 2020). However, the following limitations should be considered when utilising this clustering

algorithm:

• Potential information loss when measuring dissimilarity of categorical attributes:

k-prototypes incorporates the k-modes technique to measure dissimilarity of categorical at-

tributes. However, this technique does not consider conceptual relations between the categor-

ical values to simplify the dissimilarity measure. Consequently, two closely related categorical

values are treated equally dissimilar as two categorical values in entirely different domains

(Huang, 1997a).

• Potential bias towards either numerical or categorical data: Selecting a suitable

weight to ensure equal treatment of numerical and categorical attributes is a challenging

aspect of k-prototypes. One approach to tackle this challenge is utilising the average standard

deviation of the numerical attributes as a reference for determining the weight. However, this

method lacks sufficient research to be considered a generally applicable rule. Alternatively,

weight assignment can be based on domain knowledge. Due to the absence of definitive

guidelines for determining the weight, there is a risk of bias towards one of the data types

(Huang, 1997a).
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Chapter 4

Related work

This chapter offers an overview of previous research conducted within this project’s field of interest,

aiming to provide valuable insight, inspiration, and a basis for comparison. The chapter begins by

briefly introducing research conducted by the IDDEAS team, highlighting its contributions and

relevance to this project. Subsequently, a review of international papers is presented, focusing on

studies that have employed similar clustering methods using EHRs or Electronic Medical Records

(EMRs). Including related work is crucial to highlight the existing research gap and position this

project within the field. Additionally, it aids in making informed methodological choices throughout

the study.

4.1 Related Work by the IDDEAS Team

Related work done within Norwegian borders and by the IDDEAS team is interesting to investigate.

The IDDEAS team is, as introduced in Section 1.1, a project dedicated to developing the first

decision support system within CAMHS in Norway. Their focus is preventive treatment, early

intervention, early diagnosis, treatment, and management of hyperkinetic disorders. This section

shortly presents key findings from their published papers to contextualise the IDDEAS team’s

current phase. Then, a master thesis written in collaboration with IDDEAS being the first to

cluster Norwegian EHR data is presented to give a foundation for this project. By examining this

work, this project can draw upon its strengths and learn from its shortcomings.

The previous studies conducted by the IDDEAS team have focused on different aspects of imple-

menting a Clinical Decision Support System (CDSS) and its potential benefits (IDDEAS, n.d.).

Their research has revealed that many individuals support sharing EHRs for both research and

clinical care purposes, demonstrating their awareness and endorsement of this practice (Bakken

et al., 2022). Furthermore, their research has shown that implementing a CDSS can enhance the

effectiveness and efficiency of healthcare delivery, leading to improved quality of care and clinical

outcomes within CAMHS in Norway (Clausen et al., 2020). Lastly, the research emphasises that

for the CDSS to be effective, it should integrate existing heterogeneous, geographically distinct,

current, and historical patient-specific and population-specific data to generate new information

and models for clinical decision support at the individual patient level. This facilitation should

leverage already existing informatics frameworks (Raballo et al., 2020).
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The first research done to utilise EHR data to generate new information regarding patients with

relation to hyperkinetic disorders within CAMHS in Norway is the master thesis written by Frida

Solheim (Solheim, 2022). Her work identified characteristics and a latent subgroup of patients,

and natural patterns and phenomena were uncovered. Specifically, Solheim focused on the first

period of patients’ EoC Bundles to identify patients’ situations more prone to rejection. Using

k-prototypes, she captured important aspects of the referral process, identified patient profiles

related to gender and rejection rates, and unanticipated referral and diagnostic phenomena. The

methodology used included one clustering experiment, using data related to patient features, care

situations, main diagnosis, and information regarding the end of an EoC Bundle. For every patient

in her experiment, she considered their first referral period within CAMHS in Norway.

Solheim identifies subgroups of patients more prone to rejection. However, her work does not

continue after this initial patient assessment. In her work, she states multiple areas for future work

and details how the thesis lays the foundation for further analysis.

4.2 Literature Review

A structured literature review is conducted to gain sufficient knowledge within the field of cluster

analysis applied to patient data derived from EHRs or EMRs. The method used for the liter-

ature review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA).

4.2.1 PRISMA Screening Process

A template from PRISMA is used to perform a systematic literature review. The PRISMA flow

diagram visually summarises the screening process. It initially records the number of articles found

and then makes the selection process transparent by reporting on decisions made at the various

stages of the systematic review (Page et al., 2021). The number of articles is recorded at the

different stages. When excluding articles at the full-text stage, including the reasons for exclusion

is essential.

The screening process is presented in Figure 4.1. The United States National Library of Medicine

(PubMed) and the Association for Computing Machinery (ACM) are used for the review. The

following queries are used to identify records from the libraries:

ACM query:

([Title: patient] )

OR [Title: patients]

AND ([Abstract: clustering]

OR [Abstract: cluster])

PubMed query:

([Title/Abstract: electronic medical records]

OR [Title/Abstract: electronic health records]

OR [Title/Abstract: EMR]

OR [Title/Abstract: EHR])

AND ([k-means]

OR [k-modes]

OR [k-prototypes])
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The following are the reasons for exclusion found relevant when screening the papers:

1. Not relevant to the research questions and outcomes.

2. Wrong population/setting/intervention.

Figure 4.1: Flow diagram of the PRISMA screening process

After completing the screening process, 10 articles are left to review. These will be further presented

in the following section.
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4.2.2 Papers Reviewed

From the screening process conducted, 10 papers are left to review. This section presents a synopsis

of the findings before a report concerning each paper’s aim, data, methodology, evaluation, and

conclusion is given in Table 4.1. The presented findings focus on the procedural aspects of the

related work to inspire and guide the methodology of this project.

The research aim to identify and characterise patient trajectory subgroups (Table 4.1, ID 2, 3, 5, 6,

7, 9, and 10) or disease subgroups (ID 1, 4, and 8). All the papers utilise k-means-based partitional

clustering algorithms, either exclusively or combined with other clustering algorithms, to identify

these subgroups. While most papers rely on k-means, suitable for clustering numerical data, ID 6

uses k-prototypes to cluster mixed data directly. The differentiation among these research is how

they preprocess the data before conducting the clustering analysis. Except for ID 10, the data

used in the different research is not solely numerical, as indicated in the “Data” column in Table

4.1.

It is important to mention that some of the research papers (ID 1, 4, and 9) compare k-means

clustering with other clustering algorithms. In contrast, ID 6 combines k-prototypes with another

clustering algorithm, and ID 7 applies k-means twice on the same data. Since Table 4.1 specifically

focuses on the k-means-based partitional clustering algorithm, the methodologies and evaluation

measures highlighted are directly relevant to this particular clustering approach.

Moreover, the experimental findings of the reviewed research papers are briefly summarised in

the “Conclusion” column of Table 4.1. However, it is important to emphasise that the primary

emphasis of this structured literature review is on the procedural aspects of the related work rather

than solely focusing on the final results.
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Nr. Title Year Author Aim Data Methodology Evaluation Conclusions

1 Identifying and evaluat-

ing clinical subtypes of

Alzheimer’s disease in

care electronic health re-

cords using unsupervised

machine learning

2021 Alexander,

Alexander,

Barkhof,

Denaxas

Examine the clin-

ical heterogeneity

of Alzheimer’s dis-

ease patients using

EHR to identify

and characterise

disease subgroups

using multiple

clustering methods.

Anonymised

patient EHR

from the

Clinical

Practice

Research

Datalink

Numerical

and

categorical

data

One-hot encoding

Multiple corres-

pondence analysis

(MCA)

Elbow plots,

Silhouette

coefficient,

Bayesian

information

criterion

k-means,

Kernel k-means,

Affinity propaga-

tion,

Latent class

analysis

Silhouette

coefficient

Jaccard

coefficient

Cluster

comparison

Each clustering

approach produced

substantially dif-

ferent clusters.

k-means performed

the best.

2 Multimorbidity patterns

with K-means nonhier-

archical cluster analysis

2018 Violán,

Roso-

Llorach,

Foguet-

Boreu,

Guisado-

Clavero,

Pons-Vigués,

Pujol-

Ribera,

Valderas

Ascertain mul-

timorbidity pat-

terns using a

non-hierarchical

cluster analysis

in adult primary

patients with

multimorbidity at-

tended in primary

care centres in

Catalonia

Information

System for

the Devel-

opment of

Research

in Primary

Care

Numerical

and

categorical

data

MCA

Calinski-Harabasz

index value

k-means

Jaccard

coefficient

Non-hierarchical

cluster analysis

identified mul-

timorbidity pat-

terns consistent

with clinical prac-

tice, identifying

phenotypic sub-

groups of patients.

Continues on next page

25



C
H
A
P
T
E
R

4.
R
E
L
A
T
E
D

W
O
R
K

Nr. Title Year Author Aim Data Methodology Evaluation Conclusions

3 Clinical and temporal

characterization of

COVID-19 subgroups

using patient vector em-

beddings of electronic

health records

2022 Ta,

Zucker,

Chiu,

Fang,

Natarajan,

Weng

Identify and char-

acterise clin-

ical subgroups

of hospitalised

Coronavirus Dis-

ease 2019 (COVID-

19) patients.

Patient

EHR from

Columbia

University

Irving Med-

ical Center

Medical

coding

sequences

Paragraph Vector

embedding models

Elbow method

k-means

Chi-square

test

Mann-

Whitney

U test

20 subgroups

of hospitalised

COVID-19 pa-

tients, labelled by

increasing severity,

were categorised by

their demograph-

ics, conditions,

outcomes, and

severity.

4 Identifying clinically

important COPD sub-

types using data-driven

approaches in primary

care population based

electronic health records

2019 Pikoula,

Quint,

Nissen,

Hemingway,

Smeeth,

Denaxas

Sought to dis-

cover, describe and

validate chronic

obstructive pul-

monary disease

(COPD) subtypes

using cluster ana-

lysis from EHR

data.

CALIBER

resource

EHR

Numerical

and

categorical

data

Paragraph Vector

models

MCA

Calinski-Harabasz

index value

k-means and

hierarchical

clustering

Jaccard coef-

ficient

Silhouette

coefficient

COPD patients can

be sub-classified

into groups with

differing risk

factors, comor-

bidities, and

prognosis. The

identified clusters

confirm previous

clustering studies

and draw atten-

tion to anxiety

and depression as

important drivers

of the disease in

young, female

patients.

Continues on next page
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5 Multimorbidity patterns

in the elderly: a prospect-

ive cohort study with

cluster analysis

2018 Guisado-

Clavero,

Roso-

Llorach,

López-

Jimenez,

Pons-Vigués,

Foguet-

Boreu,

Muñoz,

Violán

Identify multimor-

bidity patterns

and their variab-

ility over a 6-year

period in patients

older than 65 who

attended primary

health care.

EHR from

Catalan

Health In-

stitute’s

information

system

Numerical

and

categorical

data

Chi-square test

Mann-Whitney test

MCA

Calinski-Harabaz

index value

k-means with

random

initialisation

Jaccard

coefficient

Identified six

multimorbidity

patterns per group;

one non-specific

and five with a

specific pattern re-

lated to an organic

system. These

data are useful to

improve the clinical

management of

each specific sub-

group of patients

showing a particu-

lar multimorbidity

pattern.

6 A two-step approach for

mining patient treatment

pathways in administrat-

ive healthcare databases

2018 Najjar,

Reinharz,

Girouardc,

Gagnéa

Propose a meth-

odology allowing

the construction of

patient treatment

pathways from

administrative rela-

tional databases to

cluster them in ho-

mogenous clusters

and analyse and

describe them.

Administrative

health care

databases of

the RAMQ

and MSSS

Numerical,

categorical,

and

multivalued

data

Tree structure

categorisation

First k-prototypes,

then hierarchical

clustering

Hidden Markov

models

Not specified Designing, build-

ing, and clustering

treatment patient

pathways that

allow the differ-

entiation between

present patterns

in the data, even

if patients have

the same chronic

disease.

Continues on next page
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7 Weighting Primary Care

Patient Panel Size: A

Novel Electronic Health

Record-Derived Measure

Using Machine Learning

2016 Rajkomar,

Yim,

Grumbach,

Parekh

Characterise the

utilisation patterns

of primary care

patients and create

weighted panel

sizes for providers

based on work

required to care

for patients with

different patterns.

EHR from

Epic,

Madison,

WI, USA

Numerical

and

categorical

data

k-means per-

formed twice using

Hartigan-Wong

with random ini-

tialisation

Domain ex-

pert

evaluation

Adjusted

R-squared

criterion

Akaike

information

criterion

Individual patients’

health care utilisa-

tion may be useful

for classifying pa-

tients by primary

care work effort

and predicting

future primary care

usage.

8 Learning Clinical Work-

flows to Identify Sub-

groups of Heart Failure

Patients

2017 Yan,

Chen,

Li,

Liebovitz,

Malin

Introduce a method

to identify sub-

groups of heart

failure through a

similarity analysis

of event sequences

documented in the

clinical setting.

EMR from

North-

western

Memorial

Hospital

Event

sequences

k-means Domain

expert

evaluation

Identified 8 sub-

groups of heart

feailure, each as-

sociated with a

canonical workflow

inferred through an

inductive mining

algorithm. Each

subgroup was fur-

ther confirmed to

be affiliated with

specific comor-

bidities, such as

hyperthyroidism

and hypothyroid-

ism.

Continues on next page
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9 Effective Patient Similar-

ity Computation for Clin-

ical Decision Support Us-

ing Time Series and Static

Data

2020 Masud,

Hayawi,

Mathew,

Dirir,

Cheratta

Presents a tech-

nique for com-

puting patient

similarity using

time series data ef-

fectively combined

with static data.

Multi-

parameter

Intelligent

Monitoring

in Intensive

Care data-

base, MIT

Numerical,

categorical,

and times

series data

Dynamic time

warping,

Minhash,

DelMinhash

ANF,

Neighborhood pop-

ulation

k-means and

Spectral clustering

F1 score Effectively com-

bined different

types of clinical

data and developed

an efficient unsu-

pervised framework

for computing pa-

tient similarity for

CDSS.

10 Data-Driven Patient Seg-

mentation Using K-Means

Clustering: The Case of

Hip Fracture Care in Ire-

land

2017 Elbattah,

Molloy

Embraces a mere

data-driven ap-

proach for seg-

menting patients

with application to

hip fracture care in

Ireland.

Irish Hip

Fracture

Database

Numerical

data

Min-max normal-

isation

Principal com-

ponent analysis

k-means with

random

initialisation

Not specified Explored correl-

ations between

patient character-

istics, care-related

factors, and pa-

tient outcomes.

The findings can

benefit healthcare

executives in Ire-

land to develop

patient-centred

care strategies.

Table 4.1: Literature review papers
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Chapter 5

Data

This chapter provides an overview of the data used in this project, offering readers a comprehensive

understanding of the available data before delving into specific aspects of it during the experimental

phase. Firstly, the data set to be employed is presented, detailing the cohort of interest for this

project. Then, the environment and tools to be employed for accessing, exploring, and analysing

the data are presented, aiming to enhance comprehension of the software and facilitate future rep-

lication and expansion of the research. Finally, the specific authorisations and agreements required

for this project are outlined to inform readers of important considerations when handling sensitive

data.

5.1 St. Olav’s Data

The IDDEAS project utilises parts of BUPdata, presented in section 2.1, collected and stored by

St. Olav’s University Hospital in Trondheim. The database consists of interdisciplinary patient

medical records collected by Norsk forening for barn og unges psykiske helse (IDDEAS, n.d.). The

entries in the database are composed of therapeutic and diagnostics steps that together make up

patient trajectories. From this point, this database is referred to as St. Olavs data.

St. Olavs data comprises information on 22 643 patients referred to St. Olavs from 1982 to 2018.

Data was collected from 30 938 EoC Bundles involving 41 411 EoCs during this period. The data

includes records of 1 840 000 contacts and 222 165 registered diagnoses.

In this project, patients with relevance to hyperkinetic disorders are included. Of the 22 643

patients in the data, 3 856 are diagnosed on Axis 1 from the F90-group. Additionally, considering

the patients referred for referral reasons related to behavioural issues or hyperkinetic disorders, the

cohort of interest increased to 9 562 patients. The final cohort of interest includes 8 754 patients,

as ongoing EoC Bundles when the data was selected for the data set are excluded. These patients

were referred to St. Olavs Hospital between 1985 and 2018 and have had a total of 11 128 EoC

Bundles, comprising 15 026 EoCs.
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CHAPTER 5. DATA

5.2 Environment and Tools

The IDDEAS project employs Helseundersøkelsen i Trøndelag (HUNT) Cloud to ensure a secure

digital environment. HUNT Cloud is a cloud service provided by the HUNT Research Centre at the

Norwegian University of Science and Technology (NTNU) to elevate the collection, accessibility,

and exploration of large-scale biomedical data. The HUNT cloud environments are specifically

designed to analyse and store sensitive data (HUNT Cloud, n.d.-b).

The data stored in HUNT Cloud can be classified into two categories:

• Sensitive data: Data that can indirectly identify research participants, such as phenotype

or genotype data.

• Internal data: Data that can not identify research participants, such as figures, summary

statistics, computer code, or non-human data.

(HUNT Cloud, n.d.-a)

The IDDEAS lab in HUNT cloud contains sensitive and internal data. Nevertheless, the project’s

outcomes will be non-confidential through summarised visualisations or cluster descriptions. These

presentations will ensure that personal details are not revealed and that sensitive information

cannot be reconstructed. Before any potential public dissemination, the lab owner will thoroughly

review and approve all results.

The IDDEAS project also benefits from web-based access to analytical tools through the HUNT

Workbench, provided by HUNT Cloud. Among the various tools available, Jupyter Notebook and

Python will be the most frequently used (HUNT Cloud, n.d.-b). HUNT Workbench also includes

Conda, which will be utilised in this experiment as a package and environment manager (Conda,

n.d.).

Other relevant tools to be used in the experiment are the following:

• DBeaver: A database management tool to be used when exploring and retrieving relevant

data from the PostgreSQL database available for this project (DBeaver, 2021).

• NumPy: A Python library that provides a multidimensional array object and many math-

ematical operations to perform (NumPy, n.d.).

• Pandas: A useful Python library that provides a data frame object that will be used for

data loading, storing, cleaning, and manipulations (Pandas, 2023).

• Matplotlib: A Python library to be used to plot and visualise data (Hunter et al., n.d.).

• Seaborn: Another Python visualisation library based on matplotlib that will be utilised to

create informative statistical graphics (Waskom, 2021).

5.3 Data Approval

Since this Master’s Thesis is an NTNU project, it is necessary to ensure the correct NTNU author-

isations and approvals before initialising the experiment. The project is written in collaboration

with the IDDEAS team. Thus, the authorisation and approvals depend on the overall IDDEAS

project’s agreements. This section outlines the necessary authorisations and agreements that were

required before initiating this project.
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CHAPTER 5. DATA

As a health research project involving personal data, the IDDEAS project has to be approved by

both the Regional Committees for Medical and Health Research Ethics (REK) and Sikt (previously

the Norwegian Social Science Data Services) (NTNU, n.d.). Personal data refers to information

that can identify a person, either directly or indirectly. On October 9th, 2019, REK confirmed

the following: The project falls outside the scope of the Health Research Act, cf. § 2, and can

therefore be carried out without the approval of REK (IDDEAS, n.d.). In 2020, the IDDEAS

project was granted access to the St. Olavs data by the regional health authority at St. Olavs

Hospital (IDDEAS, n.d.).

To participate in the IDDEAS project as master students, additional agreements were necessary.

These include a non-disclosure agreement to get access to the St. Olavs data and a HUNT Cloud

user agreement to be granted access to the digital lab.
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Chapter 6

Experiment

This chapter outlines the conducted experiment, detailing the various steps to cluster patient tra-

jectories. It begins by informing the readers of the experimental aims, schedule, and steps. Then

the initial data preparation is presented to detail the investigation of available data and the se-

lection process and the cleaning performed. This initial data preparation lays the foundation for

conducting an exploratory data analysis, which facilitates understanding the feature distribution

within the cohort and identifies relevant relationships that inform subsequent clustering decisions.

Finally, this chapter describes the clustering phase, documenting the work conducted throughout

three iterations, including intermediary findings and feedback obtained during the process in all

three iterations.

6.1 Experiment Plan

Prior to commencing the experiment, a plan was developed to provide a systematic outline of the

steps to be completed. This plan was formulated in accordance with the research goal introduced

in Section 1.2, taking into account the available resources and time constraints.

6.1.1 Experimental Aims

To ensure a clear direction for the experiment and alignment with the overall project goal and

research questions, experimental aims have been defined. As a reminder, the research questions

are the following:

Research Question 1 How can hyperkinetic patient trajectories in an electronic

health record be identified?

Research Question 2 How can patient trajectory clusters be made meaningful to

clinicians?
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The defined experimental aims are:

1. Assess the feasibility of clustering for identifying patient trajectory subgroups.

2. Identify subgroups of EoCs that have similar characteristics.

3. Identify subgroups of EoC Bundles that have similar characteristics.

4. Identify similarities in patient characteristics.

5. Identify commonalities based on key characteristics defining the EoCs and EoC Bundles.

6. Identify similarities related to trajectory actions.

These aims will be explored during the experiment and used as a benchmark when evaluating the

experiment.

6.1.2 Experiment Schedule

Table 6.1 provides an overview of the project schedule, with an emphasis on the experiment. The

schedule encompasses six interim goals, namely, defining the experiment scope and aim, preparing

the data, clustering the data, analysing and evaluating the result, and delivering the thesis.

For all six parts presented in Table 6.1, potential challenges and changes may occur. Since it is

impossible to foresee all potential obstacles, the schedule may change as the experiment progresses.

Nonetheless, the objective is that this plan allows for enough time to complete all phases before

the predetermined deadline.

Deadline,

week

Task

7 Definition of experiment scope

and aim

10 Data preparation

15 Clustering

20 Result analysis and evaluation

22 Thesis delivery

Table 6.1: Planned experiment schedule.
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6.1.3 Experiment Steps

For this clustering experiment, the following are the steps included:

1. Data Preparation: Initial investigation, selection, and cleaning of the available data. The

initial preparation focuses on limiting the available data to ensure a sufficient starting point

for an initial exploratory analysis and the first iteration of the clustering process.

2. Exploratory Data Analysis: Initial investigation of the prepared data to better under-

stand the data used in the clustering.

3. Clustering Process: The clustering process consists of three iterations to pursue the re-

search aims effectively. This iterative clustering approach enables the collection of intermedi-

ate feedback and facilitates the exploration of various strategies. Each iteration will consist

of the following steps:

(a) Data Preparation: In the initial iteration, the data selection will be based solely on

initial data investigation, selection, and cleaning. In the two subsequent iterations, the

selection will comprise assessing the outcomes from the previous iteration and interim

feedback. In this phase, potential changes in the selected features may occur, leading

to improved clustering outcomes. This phase also includes scaling the selected features.

(b) Clustering: The k-prototypes algorithm will cluster the prepared data. Together

with the algorithm, an initialisation method is required to determine the initial cluster

centres, and the ideal number of clusters needs to be identified. Once the centres and

the number of clusters are established, k-prototypes will be applied to the data set. In

each iteration, clustering using the k-prototypes algorithm will be performed twice -

once for EoC level data and once for the EoC Bundle level data.

(c) Intermediate Cluster Findings: The findings from the first two cluster iterations

will be examined and visualised at the end of each iteration. This entails visualising

the features independently and displaying the distribution of feature values across each

cluster. In addition, simplified summaries of the clusters will be presented to provide

clinicians with an overview of the findings.

(d) Intermediate feedback: The final phase of each iteration will present the findings

to clinicians to determine potential adjustments that may enhance the quality of the

findings.

6.2 Data Preparation

The first step in the experiment is data preparation. This step aims to provide high-quality data

relevant to clinicians in CAMHS in Norway to ensure an effective clustering outcome. The data

preparation involves investigating the data set, selecting, and cleaning the data.

When utilising the available St. Olavs data, understanding its codes is necessary. The St. Olavs

data table Koder and NPR Kodeverk are employed to map the codes into insightful values (Direk-

toratet for e-helse, 2001). To interpret the codes correctly, the mapping is done in collaboration

with a university lecturer at NTNU, Odd-Sverre Westbye, and a psychologist at BUP poliklinikk

Klostergata, Sanja Prodanovic. The complete mappings are presented in Appendix A. Initial con-

sultation with Westbye also lay the foundation for the initial data selection.
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6.2.1 Data Selection

The data selection aims to identify the most informative features related to patient trajectories.

The St. Olavs data consists of 49 tables with over 3 million entries. Data selection focuses on

achieving a trade-off between the quantity of data required for clustering and the data quality. This

involves selecting an appropriate amount of data that ensures sufficient rows for clustering while

setting reasonable requirements and limitations to ensure high-quality, informative data (Zhang

et al., 2003).

Table Selection

To investigate patient trajectories, some tables from the St. Olavs data are more informative. EoC

Bundles form the basis of patient trajectories, and the St. Olavs data table Sak contains essential

details about these EoC Bundles. One EoC Bundle may include multiple EoCs. Data regarding

the individual EoCs are saved in the table Opphold. Within one EoC, a patient is potentially given

one or more diagnoses and potentially has one or more contacts. The tables Diagnose and Journal

include information regarding the two. Lastly, information regarding the patients in the Pasient

table is interesting. The selected St. Olavs data tables and the number of entries in these tables

are presented in Table 6.2. The tables selected are joined based on patient ID pasient.nr, EoC

Bundle ID sak.nr, and EoC ID opphold.id.

Table Name Nr. of Enteries

Pasient 22 643

Sak 30 938

Opphold 41 411

Journal 1 840 045

Diagnose 222 165

Table 6.2: Number of entries in the selected St. Olavs data tables.

Table Entries Selection

Not all EoC Bundles in the St. Olavs data are relevant for the experiment. To extract only relevant

data, the two following initial criteria are determined (referring to the meeting with Odd-Sverre

Westbye 16.02.2023):

1. Selection based on relation to hyperkinetic disorders

For this experiment, only patients with relation to hyperkinetic disorders are of interest. To

limit the data to EoC Bundles and EoCs regarding such patients, table entries based on the

diagnosis given to a patient at the beginning of an EoC Bundle and/or the patient’s referral

reason are selected. Therefore, the focus is on EoC Bundles where either one or both of the

following criteria are met:

• The patient has a diagnosis on Axis 1 from the F90-group. The specific diagnostic codes

in this group are as presented in Section 2.2.1. These are coded in sak.icd1.

• The patient was referred for referral reasons related to behavioural issues or hyperkin-

etic disorders. Patients’ referral reasons are stated in the features sak.henvgrunnb1,

sak.henvgrunnb2, and sak.henvgrunnb3 with mappings given in Koder 11.
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2. Selection based on whether an EoC Bundle is closed

Only closed EoC Bundles should be included in the experiment to compare the EoC Bundles

on a similar basis. When an EoC Bundle is closed, the EoC Bundle should have both a

closing date and a closing code. However, due to missing data, an EoC Bundle is presumed

closed if either of the two dates has a valid value. Data related to closing dates and codes

are presented in sak.avsdato and sak.avslkode.

From these criteria, the initial selection of EoC Bundles to be used when creating the tables for

the clustering process is as follows:

SELECT

*

FROM

sak

WHERE

(sak.henvgrunnb1 = '4'

OR sak.henvgrunnb1 = '3'

OR sak.henvgrunnb1 = '29'

OR sak.henvgrunnb1 = '30'

OR sak.henvgrunnb2 = '4'

OR sak.henvgrunnb2 = '3'

OR sak.henvgrunnb2 = '29'

OR sak.henvgrunnb2 = '30'

OR sak.henvgrunnb3 = '4'

OR sak.henvgrunnb3 = '3'

OR sak.henvgrunnb3 = '29'

OR sak.henvgrunnb3 = '30')

OR (sak.icd1 ='F900'

OR sak.icd1 ='F901'

OR sak.icd1 ='F908'

OR sak.icd1 ='F909'))

AND NOT (sak.avslkode = 0 AND sak.avsldato IS NULL)

;

Feature Selection

When selecting features from the chosen tables, the following criteria need to be met:

• Feature documentation in Koder, NPR Kodeverk, or given by CAMHS special-

ists: For a feature to be selected, it must be documented in either Koder or NPR Kodebok,

or a specialist has to provide the necessary explanation of the data. This is important to

ensure interpretable results.

• Not much missing/error-prone data: The St. Olav’s data consists of clinical data

created by professionals within CAMHS in Norway. The available data is messy, real-world

data with missing, error-prone, and outlying values. Columns with many such missing and/or

error-prone data should not be selected.

After considering these criteria, many columns are eliminated from further inspection. The re-

maining features are evaluated and chosen based on the experimental aims. Furthermore, this

evaluation was done in collaboration with clinicians to ensure the most informative features.
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6.2.2 Result of the Data Selection

After stating the initial data criteria, the remaining entries in the chosen five tables are presented

in Table 6.3.

Table Name Nr. Entries

Pasient 8 758

Sak 11 128

Opphold 15 026

Journal 779 776

Diagnose 83 256

Table 6.3: Number of entries in the St. Olavs data after the initial data selection criteria.

The chosen features for further data handling are presented in Table 6.4. One should note that

features might change during the experiment depending on the results and feedback.
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St. Olavs Data

Table

Column Name Description

Pasient

Id Patient ID to use when joining tables.

Fdtnr The patient’s date of birth.

Kjonn The patient’s gender.

Sak

Id EoC Bundle ID for joining the tables.

Opphold EoC ID for joining the tables.

Igangdato An EoC Bundle’s start date.

Icd1 ICD-10 code on Axis1 at the beginning of an EoC

Bundle.

Icd2 ICD-10 code on Axis2 at the beginning of an EoC

Bundle.

Icd3 ICD-10 code on Axis3 at the beginning of an EoC

Bundle.

Icd4 ICD-10 code on Axis4 at the beginning of an EoC

Bundle.

Icd5 ICD-10 code on Axis5 at the beginning of an EoC

Bundle.

Icd6 CGAS score on Axis6 at the beginning of an EoC

Bundle.

Opphold

Id EoC ID for joining the tables.

Igangdato An EoC’s start date.

Avsldato An EoC’s end date.

Omsniva Care level.

Ohjelp Immediacy level.

Journal

Opphold Journal ID for joining the tables.

Type1 Contact type.

Dato1 Date of a contact.

Diagnose

Opphold EoC ID for joining the tables.

Diagnose ICD-10 diagnosis.

Akse Number from 1-6 indicating which axis a diagnosis

is given.

Hoved Boolean, indicating if a diagnosis is the main dia-

gnosis.

Table 6.4: Selected St. Olavs data features.

6.2.3 Data Cleaning and Preprocessing

After the initial data selection, the next step is handling the selected features from the St. Olavs

data to obtain a data set suitable for the clustering experiment. For the experiment, it is desired

to have two initial feature tables: one for clustering the EoC data and the other for clustering

the EoC Bundle data. The selected features from the St. Olavs data will undergo a cleaning and

transformation process to obtain the two tables. The data cleaning aims to eliminate low-quality

data and ensure that the remaining data corresponds to the documentation given in Koder, without

excluding more data than necessary. The feature transformation aims to enhance the informat-

iveness and suitability of the features for the clustering experiment. This section explains the

transformation from the selected St. Olavs features into the experiment features if not identically

mapped.
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The data extracted from the St. Olavs data and the resulting features to be used in the experiment

are presented in Table 6.5 and Table 6.6. To transform the St. Olavs data into experiment features,

a thorough investigation was done using PostgreSQL and Python.

EoC Features

St. Olavs Data Feature Experiment Data Feature

opphold.igangdato

EoC lengthopphold.avsldato

journal.dato1

opphold.omsniv̊a Care level

opphold.ohjelp Immediacy level

journal.type1

Nr. of contacts

Nr. of therapy

Nr. of examination

Nr. of indirect contact

Nr. of planning

Nr. of no-shows

diagnose.diagnose

diagnose.akse1

Nr. of unique diagnoses 1

Nr. of unique diagnoses 2

Nr. of unique diagnoses 3

Nr. of unique diagnoses 4

Nr. of unique diagnoses 5

Nr. of unique diagnoses 6

diagnose.hoved Nr. main diagnoses

Table 6.5: Mapping from St. Olavs data features to experiment data features in the EoC table.

EoC Bundle Features

St.Olavs Data Feature Experiment Data Feature

pasient.fdt
Age at EoC Bundle start

sak.igangdato

pasient.kjonn Gender

sak.igangdato

EoC Bundle lengthsak.avsldato

journal.dato1

sak.icd1 Diagnosis Axis 1

sak.icd2 Diagnosis Axis 2

sak.icd3 Diagnosis Axis 3

sak.icd4 Diagnosis Axis 4

sak.icd5 Diagnosis Axis 5

sak.icd6 Diagnosis Axis 6

Table 6.6: Mapping from St. Olavs data features to experiment data features in the EoC Bundle

table.
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EoC Length

The St. Olavs data variables opphold.igangdato, opphold.avsldato, and journal.dato1 are trans-

formed into the experiment feature EoC length. The EoC length feature represents the duration

of a patient’s EoC in days. The St. Olavs data variables opphold.igangdato and opphold.avsldato

are intended to indicate the start and end date of an EoC. However, upon examination of these

variables, it was found that the start date was NULL in 2.45% of the EoCs, while the end date was

NULL in 7.44% of the EoCs. Additionally, for 4.5% of the EoCs the end date was recorded before

the start date. Consequently, 14.17% of the EoCs were affected by one or more errors related to

the EoCs’ length.

To handle these missing or error-prone EoC dates, the journal table is utilised. This table con-

tains information about all patient contacts made during an EoC. Each entry should include

a journal.dato1 field specifying the date of the contact (referring to the meeting with Westbye

16.02.2023). In EoCs where the start or end date is missing, the journal table entries can be used

to determine the start or end date of the EoC. Specifically, the maximum and minimum values

of “journal.dato1” are employed to determine the duration of an EoC if either the start or end

date is missing or if the start date occurs after the end date. As a result of this procedure, EoC

length contains 1.1% NULL values and 0.6% negative lengths. These NULL and negative values

are subsequently removed.

Care Level

The St. Olavs data feature opphold.omsniv̊a is transformed into the experiment feature Care level.

The Care level feature indicates the type of care provided, with possible values of “Polyclinic”,

“Outpatient”, or “Inpatient”. The opphold.omsniv̊a feature contains integer values mapped to the

corresponding categorical values using NPR Kodeverk 8406. Specifically, values 1, 2, and 3 are

transformed to “Polyclinic”, “Outpatient”, and “Inpatient”. However, 3.55% of the EoCs have

opphold.omsniv̊a values that do not have a mapping in the NPR Kodeverk, and these values are

changed to “Missing data”.

Immediacy Level

The St. Olavs data features opphold.ohjelp is transformed into the experiment feature Immediacy

level. Immediacy level details the level of urgency of a patient’s EoC. This feature can take on

one of five values: “Acute”, “Non-acute”, “6-24 hour wait”, “Planned”, or “Return from another

hospital”. Using Koder 13, integer values in the range 1-5 are mapped to corresponding categorical

values. 0.14% of the opphold.ohjelp values are found outside this range and changed to “Missing

data”.

Contacts

The St. Olavs data feature journal.type1 is transformed into several features regarding the number

of patient contacts. Based on the mapping in Koder 31 integer values in journal.type1, categorise

a contact as either “Therapy”, “Examinations”, “Indirect contact”, “Planning”, or “No-show”.

By categorising the contacts, the features Nr. of therapy, Nr. of examinations, Nr. of indirect

contact, Nr. of planning, and Nr. of No-Show are extracted, identifying the total number of a

contact type a patient has had within an EoC. 2.35% of journal entries contain values outside the

range of 1-5 for the journal.type1 features and are changed to “Missing data”.
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Diagnoses

The St. Olavs data features diagnose.akse, diagnose.diagnose, and diagnose.hoved are transformed

into features regarding the number of diagnoses given, the axes on which they are given, and

whether they are the patient’s primary diagnosis on one of the axes. The features Nr. of unique

diagnoses 1, Nr. of unique diagnoses 2, Nr. of unique diagnoses 3, Nr. of unique diagnoses 4, Nr.

of unique diagnoses 5, and Nr. of unique diagnoses 6 may be determined by looking at distinct

diagnoses on the corresponding axes. The feature Primary axis diagnosis may be extracted from

the total number of diagnoses where diagnose.hoved equals “1”. For all these features derived,

only rows with a specific diagnosis on the St. Olavs data feature diagnose.diagnose are valid.

Furthermore, rows in the diagnose table where diagnose.akse is not between 1-6 are excluded.

From these criteria, 0.75% of the diagnoses are excluded from the data set.

Gender

The St. Olavs data feature pasient.kjonn is transformed into the experiment feature Gender by

using Koder 13. Integer values “1” and “2” in pasient.kjonn are changed to “Male” and “Female”,

respectively. Other values are mapped to “Missing data”, as this should not be possible (referring

to mail from Tove Olse Aasbø 10.03.2023).

EoC Bundle Length

The St. Olavs data features sak.igangdato, sak.avsldato, and journal.dato1 are used to derive the

experiment feature EoC Bundle length. The feature EoC Bundle length states the length of an

EoC Bundle in days. For entries where neither sak.igangdato nor sak.avsldato are NULL, these

are used to derive the EoC Bundle length. For the 9.5% of entries where sak.avsldato is NULL,

journal.dato1 is used to derive EoC Bundle length. There are no instances in the St. Olavs data

where both sak.avsldato and journal.dato1 are NULL.

Age at the Start of an EoC Bundle

The St. Olavs data features pasient.fdt and sak.igangdato are used to derive the experiment

feature Age at EoC Bundle start presenting a patient’s age at the beginning of an EoC Bundle. If

sak.igangdato is NULL, journal.dato1 is used as the EoC Bundle’s start date. pasient.fdt is never

NULL in the St. Olavs data.

Diagnoses on Axes 1-6

The St. Olavs data features sak.icd1, sak.icd2, sak.icd3, sak.icd4, sak.icd5, and sak.icd6 are used to

derive the six experiment features Diagnosis Axis 1, Diagnosis Axis 2, Diagnosis Axis 3, Diagnosis

Axis 4, Diagnosis Axis 5, and Diagnosis Axis 6 . These features present the diagnosis on the six

axes at the beginning of an EoC Bundle. The St. Olavs data features include error-prone values

not documented in the Directorate of e-health ICD-10 documentation. Based on feedback from

Westbye, these values are changed to valid ICD-10 diagnoses (referring to the meeting with West-

bye, 16.02.2023). Furthermore, similar codes are grouped to get a clearer result from the clustering.

This grouping is based on the the Directorate of e-health documentation (Helsedirektoratet, 2022).

Table 6.7 presents the cleaning done on the different ICD-10 codes in the six axes.
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Feature Name Value in the final EoC table Value in St.

Olavs data

Diagnosis Axis 1

Somnolence stupor coma. R400-R409

Symptoms associated with cognitive functions. R410-R419

Dizziness. R420-R429

Disturbances smell and taste. R430-R439

Symptoms associated general sensations and per-

ceptions.

R440-R449

Symptoms associated with emotional state. R450-R459

Symptoms associated with looks. R450-R459

Contact for examination and investigation. Z004, Z032, Z133,

Z134

Contact due to potential health risk socio-

economic and psychosocial conditions.

Z550-Z560

Contact for other circumstances. Z700-Z760

Contact due to information regarding potential

health risk family/personal history.

Z800-Z990

Organic including symptomatic psychological dis-

orders.

F000-F099

Mental / behavioral disorders caused by psycho-

active substances.

F100-F199

Schizophrenia / schizotypy / other mental dis-

orders.

F200-F299

Mood disorders. F300-F399

Neurotic or stress related or somatoform disorders. F400-F499

Behavioral syndromes associated with physiolo-

gical disturbances / physical factors.

F500-F599

Personality and behavioral disorders in adults. F600-F699

Intellectual disability. F840-F849

Hyperkinetic disorders. F900-F909

Other behavioural/emotional disorders usually oc-

curring in children and adolescents.

F910-F989

Missing information.
999

1999

No diagnose.
000

1000

None.
NULL

Other values

Diagnosis Axis 2

Speech and language. F80, F800, F801,

F802, F803, F808,

F809

Learning disabilities. F81, F810, F811,

F812, F813, F818,

F819,

Motor skills. F82

Specific skills. F83

Other. F82

Unspecified. F82

Missing information. 999, 2999

No diagnose. 2000, 000

None. NULL, other

Continues on next page
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Feature Name Value in the final EoC table Value in St.

Olavs data

Diagnosis Axis 3

Very high intelligence. 1

High intelligence. 2

Normal intelligence. 3

Slightly below average intelligence. 4

Slight intellectual disability. 5 , F7

Moderate intellectual disability. 6

Severe intellectual disability. 7

Profound intellectual disability. 8

Unspecified intelligence level. 9

Unknown intelligence level. 999

Missing information.
39

99

No diagnose. 30

None. NULL

Diagnosis Axis 4

Certain infectious diseases and parasitic diseases. A-chapter,

B-chapter.

Tumors. C-chapter,

D000-D489

Diseases of the blood and blood-forming organs

and certain conditions affecting the immune sys-

tem.

D500-D999

Endocrine diseases nutritional diseases and meta-

bolic disorders.

E-chapter

Diseases of the nervous system. G-chapter

Diseases of the eye or ear. H-chapter

Diseases of the circulatory system. I-chapter

Diseases of the respiratory system. J-chapter

Diseases of the digestive system. K-chapter

Diseases of the skin and subcutaneous tissue. L-chapter

Diseases of the musculoskeletal system and con-

nective tissue.

M-chapter

Diseases of the urinary and genital organs. N-chapter

Pregnancy birth and maternity. O-chapter

Certain conditions occurring in the perinatal

period.

P-chapter

Congenital malformations deformities chromo-

somal abnormalities.

Q-chapter

Symptoms / signs / abnormal clinical/laboratory

findings not elsewhere classified.

R-chapter

Factors impacting health status and contact with

the health service.

Z-chapter

Injuries / poisonings / other consequences of ex-

ternal causes.

S-chapter,

T-chapter

External causes of diseases/injuries/deaths. V-chapter,

W-chapter,

X-chapter,

Y-chapter

None. F-chapter, other

Continues on next page
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Feature Name Value in the final EoC table Value in St.

Olavs data

Diagnosis Axis 5

Missing information. 0.0, 99.0, 599.0

No diagnose. 000, 500.0

Deviant relationships. 1.0, 1.1, 1.2, 1.3,

1.4, 1.8

Mental illness/Deviations/Disability. 2.0, 2.1, 2.2, 2.8

Inadequate/disturbed communication. 3.0

Deviant aspects of upbringing. 4.0, 4.1, 4.2, 4.3, 4.8

Deviant environment. 5.0, 5.1, 5.2, 5.3, 5.8

Emergent life changes. 6.0, 6.1, 6.2, 6.3,

6.4, 6.5, 6.8

Social strain factors. 7.0, 7.1, 7.8

Chronic interpersonal strain at school/work. 8.0, 8.1, 8.2, 8.8

Straining events/conditions resulting from child

disorder/condition.

9.0, 9.1, 9.2, 9.8

Diagnosis Axis 6

Excellent function. 10.0

Good function. 9.0

Slight disturbance. 8.0

Difficulties in single area. 7.0

Varied function. 6.0

Moderate function social areas / severe disturb-

ance one area.

5.0

Severely impaired several areas. 4.0

Unable to function almost all areas. 3.0

Considerable supervision and care. 2.0

Constant supervision. 1.0

None. 0.0, Other

Table 6.7: Cleaning of the ICD-10 codes and CGAS scores on the six axes.

6.3 Exploratory Data Analysis

During the experimental stage, a preliminary examination of the data is conducted before pro-

ceeding with the clustering process. This initial investigation involves producing a visual rep-

resentation of the data so that its structure, the chosen features, and their distribution can be

understood easier. By exploring the data, complex relationships between items, trends, and anom-

alies might be identified, which in turn can potentially lead to more informed decisions during the

subsequent clustering process. Additionally, more knowledge of the selected features may imply

more informative clustering results (Chen et al., 2008).

Figure 6.1 provides an overview of the patient distribution based on their gender and age at the

start of their EoC Bundle. The graph highlights a greater proportion of males compared to females,

with a rough ratio of 70:30. Moreover, it is evident that the female patients consist of a significant

number of older individuals compared to the male patients, who tend to be generally younger.
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Figure 6.1: The cohort distribution of age and gender.

The patients in the cohort of interest all have an EoC Bundle related to hyperkinetic disorders.

Each EoC Bundle comprises at least one EoC. These EoCs can last from a few days to multiple

years. To visualise the distribution of the durations, the different EoC lengths are grouped as

shown in figure 6.2.

Figure 6.2: The cohort distribution of the EoC lengths.

Figure 6.3 presents the value distribution of the EoCs’ care levels. As illustrated, most EoCs in

the cohort are polyclinic.
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Figure 6.3: The cohort distribution of EoCs’ care levels.

Most EoCs in the cohort of interest are planned, followed by acute EoCs. This finding aligns with

the Norwegian Directorate of Health’s guidelines for patient trajectories related to hyperkinetic

disorders, presented in Section 2.1. The complete value distribution of immediacy levels is presented

in Figure 6.4.

Figure 6.4: The cohort distribution of the EoCs’ immediacy levels.

Figure 6.5 presents the total amounts of different contact types recorded for the cohort of interest.
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Figure 6.5: The cohort distribution of contact types.

Figure 6.6 illustrates the total count of diagnoses assigned within a patient’s EoC, across all six

axes, along with the count of diagnoses designated as the primary diagnosis on one of the axes.

These two counts are presented together to demonstrate the relationship between all diagnoses and

those given as primary diagnoses.

Figure 6.6: The cohort distribution of the number of diagnoses given and how many were given as

a primary diagnosis.

Figure 6.7 overviews the unique number of diagnoses recorded on each of the six axes within an

EoC. It offers insights into the diversity of diagnoses registered across these axes.
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Figure 6.7: The cohort distribution of the diagnoses given on the different axes.

Moving on to visualising the features designated on the EoC Bundle level, the distribution of EoC

Bundle lengths is visualised in Figure 6.8. The different lengths are again grouped to clarify the

visualisation.

Figure 6.8: The cohort distribution of the different EoC Bundle lengths.

Figure 6.9 depicts the diagnoses given to the cohort on Axis 1 at the beginning of an EoC Bundle.

The graph highlights that the most prevalent diagnosis on Axis 1 on the EoC Bundle level is

hyperkinetic disorders. This observation aligns with the project’s focus on patients related to

hyperkinetic disorders. It is worth noting the difference between “Missing information”, indicating

EoC Bundles where clinicians lacked sufficient data to make a diagnosis, and “Missing data”,

indicating the absence of recorded diagnoses on Axis 1. The substantial amount of missing data

raises concerns about the reliability and quality of the data, as it has the potential to introduce

bias and obscure potential patterns within the data. The category “Other diagnoses” is created

for this exploratory data analysis to collectively visualise diagnoses given in less than 100 EoC

Bundles.
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Figure 6.9: The cohort distribution of diagnoses given on Axis 1 at the beginning of an EoC

Bundle.

Figure 6.10 displays the distribution of the number of EoCs within an EoC Bundle. It provides

insights into how many EoCs are typically included within each EoC Bundle.

Figure 6.10: The cohort distribution of the number of EoCs within an EoC Bundle.
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To assess the correlation between the features used in the first clustering iteration, the heatmap

in Figure 6.11 is employed. The heatmap provides valuable insights, revealing a strong correlation

between contact types and between the features related to the number of diagnoses registered on

each axis. Specifically, the correlation among the features related to diagnoses suggests that EoCs

with more diagnoses registered on one axis are also likely to have more diagnoses registered on the

other axes.

Figure 6.11: The correlation between the different features to be used in the first clustering itera-

tion.

6.4 Clustering Process

The next step in the experiment is the clustering process. To ensure the quality and relevance of

the clustering results, it is performed in three iterations, with continuous feedback from clinicians

and technological evaluations provided at each stage. By incorporating feedback and evaluation,

modifications can continuously improve the findings. Each iteration consists of data preparation,

clustering, examination of intermediate cluster findings, and collection of intermediate feedback.

To effectively analyse the complex and heterogeneous data, a stepwise clustering approach is em-

ployed. First, the EoC level data is clustered into homogenous groups. Subsequently, the resulting

clusters are used to label the identified EoC subgroups before clustering at the EoC Bundle level,

which includes the categorised EoCs. This stepwise clustering methodology enables the potential

identification of subgroups representing higher-level patient treatment pathways. Following the

stepwise clustering, the resulting clusters are examined and visualised. Evaluation is then conduc-

ted from both a technological perspective and by clinicians who utilise their specific knowledge to

assess the relevance and quality of the results.

Figure 6.12 provides an overview of the clustering process and the following sub-experiments to

be performed three times. Appendix B.1.3 presents the code written for the third iteration to

demonstrate the work performed in this experiment.

51



CHAPTER 6. EXPERIMENT

Figure 6.12: Description of the clustering process.

6.4.1 First Clustering Iteration

The aim of the first clustering iteration is to perform the first stepwise clustering based on obtained

domain knowledge, data documentation, and initial consultations with clinicians. The findings

obtained in this iteration are evaluated from both a technological and clinical perspective and lay

the foundation for the second iteration.

Data Preparation

The features selected in the first iteration of the EoC clustering and the EoC Bundle clustering

are detailed in table 6.8 and 6.9, respectively. The tables also include a short description of the

features as a reminder of what each entails.
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EoC Table

Feature Description

EoC length Length of the EoC in days.

Care level The values in this field may be:

- Missing data

- Day

- 24-hour

- Polyclinic

Immediacy level The values in this field may be:

- Missing data

- Acute

- Non-acute

- 6-34 hour wait

- Planned

- Return from another hospital

Nr. of contacts The total number of contacts a patient had during an EoC.

Nr. of therapy

Number of contacts, of the different types, a patient had during

an EoC.

Nr. of examination

Nr. of indirect contacts

Nr. of planning

Nr. of no-shows

Nr. of diagnoses The total number of diagnoses given during an EoC.

Nr. of primary axis

diagnoses

The number of diagnoses given as the primary diagnosis.

Nr. of unique diagnoses 1

The number of unique diagnoses on the six axes during an EoC.

Nr. of unique diagnoses 2

Nr. of unique diagnoses 3

Nr. of unique diagnoses 4

Nr. of unique diagnoses 5

Nr. of unique diagnoses 6

Table 6.8: Description of the first iteration’s EoC features.

EoC Bundle Table

Feature Description

Age at EoC Bundle start The patient’s age at the beginning of the EoC Bundle.

Gender The patient’s gender, being of the following three:

- Missing data

- Female

- Male

EoC Bundle length Length of the EoC Bundle in days.

Diagnosis Axis 1

ICD-10 diagnoses declared at the beginning of an EoC Bundle,

grouped based on the Directorate of e-health documentation as

presented in Table 6.7.

Diagnosis Axis 2

Diagnosis Axis 3

Diagnosis Axis 4

Diagnosis Axis 5

Diagnosis Axis 6 CGAS score declared at the beginning of an EoC Bundle, ran-

ging from 1-10. The numbers correspond to CGAS integrals. For

instance, the value “1” corresponds to the integral 1-10.

Table 6.9: Description of the first iteration’s EoC Bundle features.
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The next step before clustering the EoCs and EoC Bundles is to scale the chosen features. Feature

scaling is a crucial data-mining preprocessing step when clustering numerical data. Scaling the

data through standardisation is necessary to control the data set’s variability, as features with large

sizes or great variability can strongly impact the clustering result (Johor Bahru et al., 2013). The

technique Power Transform standardises this iteration’s numerical features. Power Transform is a

Python library provided by Scikit-learn that can be applied to data to featurewise map the data

from any distribution to a more Gaussian-like distribution (Pedregosa et al., 2011).

Clustering

The first step of clustering is choosing an initialisation method to determine the initial cluster

centres. This step is crucial as it directly impacts the final clustering outcome. The chosen

initialisation method for this project is Cao. The Cao method chooses the initial prototypes by

considering the density of each data point and the distance between them. By evaluating both

density and distance, this method ensures that outliers are not chosen as the new cluster centres

and that multiple cluster centres are positioned in the surrounding of one centre (Cao et al., 2009).

The next step in clustering is choosing a method to find an optimal number of clusters (k). Choosing

an optimal number of clusters is a major challenge in cluster analysis as the effectivity of the

clustering depends on if a reasonable k can be estimated (Ankerst et al., 1999). The Elbow

method is used to find an optimal number of clusters. The Elbow method looks at the percentage

of within-cluster dispersion as a function of the number of clusters (Tibshirani et al., 2001).

With the Cao initialisation and Elbow methods chosen, they are initially employed to determine the

initial number of clusters for the EoC clustering. Using the Cao method with different values of k

ranging from 1-10, the elbow plot in Figure 6.13 was created. This plot illustrates how increasing

the number of clusters k contributes to separating the selected EoC features into meaningful

clusters. The optimal value of k is determined by identifying the point of maximum curvature on

the elbow plot, which is done using the Python repository called Kneed (Satopää et al., 2011). In

Figure 6.13, the maximum curvature on the elbow plot occurs when k equals 3.

Figure 6.13: First iteration’s elbow method for the EoCs.
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Using the k-prototypes algorithm, the EoC data is then grouped into three clusters named EoC

Type 0, EoC Type 1, and EoC Type 2. These clusters include 4 045, 4 574 and 6 594 EoCs.

SHapley Additive exPlanations (SHAP) is then used to highlight the impact and the importance

of the different EoC features on the clustering model’s decision-making process (Lundberg et al.,

2017). The SHAP values illustrated in Figure 6.14 is computed by a classifier model that is fitted

using the first iteration’s EoC clustering findings as labels.

Figure 6.14: SHAP plot of the first iteration’s EoC features.

The subsequent step in the clustering process involves incorporating the identified groups of EoC

clusters to perform the EoC Bundle clustering. Instead of considering the entire EoC data set as

an entity in the EoC Bundle clustering, the EoC data is incorporated using the three identified

EoC types. To integrate the EoC types, the EoC and EoC Bundle data are merged based on

their unique EoC IDs. This allows for counting the EoCs of each type within each EoC Bundle,

providing valuable insights into the distribution and composition of EoCs within the EoC Bundles.

With the same initialisation method as in the EoC clustering, the optimal number of clusters for

the EoC Bundle clustering is again identified using the Elbow method. The maximum curvature

detected in the elbow plot visualised in Figure 6.15 is 4.
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Figure 6.15: First iteration’s elbow method for the EoC Bundles.

Applying the k-prototypes algorithm to the EoC Bundle data, it is grouped into three clusters:

EoC Bundle Type 0, EoC Bundle Type 1, and EoC Bundle Type 2. These clusters comprise 5 714,

2 406 and 2 925 EoC Bundles.

A SHAP plot explaining the impact and the importance of the EoC Bundle features can be visu-

alised in Figure 6.16.

Figure 6.16: SHAP plot of the first iteration’s EoC Bundle features.
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Intermediate Cluster Findings

After completing the first iteration’s clustering, the next step involves investigating the findings.

The findings are visualised comprehensively to facilitate clinical interpretation, as visualisation is an

effective communication tool (Chen et al., 2008). The following findings visualisations represent

the ones presented to clinicians to discuss the findings. For the complete representation of all

visualisations made for the first iteration, refer to Appendix C.1

These visualisations describe the data points distributed in the three EoC clusters and the three

EoC Bundle clusters. To do so, the distribution of values of each feature included in both clustering

processes is presented, first the EoC features and then the EoC Bundle features. To better illustrate

the differences and similarities in the value distributions in each cluster, the percentage of the values

is given, not the total. A summary of the value distribution of each EoC and EoC Bundle clusters

is also presented.

EoC Cluster Findings

From the first iteration’s clustering on the EoC level, the clusters identified and their size are

presented in Table 6.10. Figures 6.17, 6.18, and 6.19 present the distribution of the different EoC

lengths and care and immediacy level. To give an example of how to use the visualisation, Figure

6.17 shows that of the EoCs within the EoC Type 0 cluster, almost 30% are shorter than a week

long.

Clusters Nr. of Data Points

EoC Type 0 4 045

EoC Type 1 4 574

EoC Type 2 6 594

Table 6.10: First iteration’s distribution of EoCs in the EoC clusters.

Figure 6.17: First iteration’s distribution of EoC lengths.
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Figure 6.18: First iteration’s distribution of care levels.

Figure 6.19: First iteration’s distribution of immediacy levels.

Figure 6.20 shows the distribution of the total number of contacts within an EoC in each cluster,

considering all contact types. Table 6.11 provides a more detailed breakdown of the number of

contacts for each contact type, highlighting the dominant number of contacts within each cluster

in bold text.
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Figure 6.20: First iteration’s distribution of the total number of contacts.

Contact Feature Values EoC

Type

0

EoC

Type

1

EoC

Type

2

Nr. of therapy

contacts

None 10% 13% 0%

1-5 contacts 38% 67% 1%

6-10 contacts 25% 9% 4%

11-20 contacts 19% 6% 21%

More than 20 contacts 8% 5% 74%

Nr. of planning

contacts

None 9% 13% 0%

1-5 contacts 53% 74% 2%

6-10 contacts 22% 8% 9%

11-20 contacts 14% 4% 29%

More than 20 contacts 1% 0% 60%

Nr. of examination

contacts

None 25% 52% 1%

1-5 contacts 57% 39% 20%

6-10 contacts 14% 6% 26%

11-20 contacts 4% 2% 32%

More than 20 contacts 0% 1% 21%

Nr. of no-show

contacts

None 22% 17 1%

1-5 contacts 70% 77% 25%

6-10 contacts 7% 4% 37%

More than 10 contacts 1% 2% 37%

Nr. of indirect

contacts

None 82% 90% 27%

1-5 contacts 17% 9% 59%

6-10 contacts 1% 1% 11%

11-20 contacts 0% 0% 3%

More than 20 contacts 0% 1% 0%

Table 6.11: First iteration’s distribution of the contact types.
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During an EoC, a patient may be given several diagnoses on all six axes. These diagnoses may

or may not be given as the patient’s primary diagnosis on a specific axis. The distribution of the

number of diagnoses in total is presented in Figure 6.21. In contrast, Figure 6.22 presents how

many of these diagnoses are given as the primary diagnosis on an axis. The detailed information

regarding the distribution of the number of unique diagnoses on all six axes is presented in Table

6.12.

Figure 6.21: First iteration’s distribution of the total number of diagnoses given.

Figure 6.22: First iteration’s distribution of the number of diagnoses given as a primary diagnosis

on one of the six axes.
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Diagnostic

Feature

Values EoC

Type

0

EoC

Type

1

EoC

Type

2

Nr. of unique

diagnoses on Axis 1

None 0% 83% 0%

1 diagnosis 72% 15% 45%

2 diangoses 20% 2% 39%

3 diagnoses 6% 0% 12%

More than 3 diagnoses 2% 0% 4%

Nr. of unique

diagnoses on Axis 2

None 2% 99% 2%

1 diagnosis 95% 1% 87%

2 diangoses 3% 0% 10%

3 diagnoses 0% 0% 1%

More than 3 diagnoses 2% 0% 0%

Nr. of unique

diagnoses on Axis 3

None 1% 99% 2%

1 diagnosis 96% 1% 88%

2 diangoses 3% 0% 10%

3 diagnoses 0% 0% 0%

More than 3 diagnoses 0% 0% 0%

Nr. of unique

diagnoses on Axis 4

None 5% 100% 5%

1 diagnosis 90% 0% 84%

2 diangoses 5% 0% 10%

3 diagnoses 0% 0% 1%

More than 3 diagnoses 0% 0% 0%

Nr. of unique

diagnoses on Axis 5

None 2% 99% 2%

1 diagnosis 76% 1% 68%

2 diangoses 12% 0% 19%

3 diagnoses 7% 0% 7%

More than 3 diagnoses 3% 0% 4%

Nr. of unique

diagnoses on Axis 6

None 7% 98% 3%

1 diagnosis 85% 2% 75%

2 diangoses 8% 0% 20%

3 diagnoses 0% 0% 2%

More than 3 diagnoses 0% 0% 0%

Table 6.12: First iteration’s distribution of the number of diagnoses on the different axes.
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When presenting these value distributions, the numerical features’ means and medians and the

categorical features’ modes may be interesting as a comparison. Table 6.13 was presented to

clinicians to provide a more detailed description for further comparing and discussing the cluster

distributions.

Feature Meassure EoC Type 0 EoC Type 1 EoC Type 2

EoC lenght
Mean 243 130 789

Median 96 2 637

Care level Mode Polyclinic Polyclinic Polyclinic

Immediacy level Mode Planned Planned Planned

Nr. of contacts
Mean 19 12 96

Median 17 6 32

Nr. of therapy contacts
Mean 8 5 41

Median 6 2 32

Nr. of planning contacts
Mean 6 3 26

Median 4 1 24

Nr. of examination

contacts

Mean 3 2 14

Median 2 0 11

Nr. of no-show contacts
Mean 2 2 11

Median 2 1 8

Nr. of indirect contacts
Mean 0 0 3

Median 0 0 2

Nr. of diagnoses
Mean 7.5 0.3 8.2

Median 6 0 7

Nr. of primary axis

diagnoses

Mean 5.6 0.2 5.7

Median 6.0 0.0 6.0

Nr. of unique diagnoses

on Axis 1

Mean 1.4 0.2 1.75

Median 1.0 0.0 2.0

Nr. of unique diagnoses

on Axis 2

Mean 1.0 0.0 1.1

Median 1.0 0.0 1.0

Nr. of unique diagnoses

on Axis 3

Mean 1.0 0.0 1.1

Median 1.0 0.0 1.0

Nr. of unique diagnoses

on Axis 4

Mean 1.0 0.0 1.1

Median 1.0 0.0 1.0

Nr. of unique diagnoses

on Axis 5

Mean 1.3 0.0 1.4

Median 1.0 0.0 1.0

Nr. of unique diagnoses

on Axis 6

Mean 1.0 0.0 1.2

Median 1.0 0.0 1.0

Table 6.13: First iteration’s EoC feature measurements.
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The EoC cluster distributions may be summarised to provide an overview of each EoC type. Table

6.14 summarises the most prominent feature value distributions across the three EoC clusters. This

does not give a complete picture of the clusters but can be instructive when further presenting the

EoC Bundle clusters, which include the distribution of each EoC type.

EoC Type 0 EoC Type 1 EoC Type 2

4 045 EoCs 4 574 EoCs 6 594 EoCs

• Medium length.

• Polyclinic.

• Planned.

• 25 contacts.

• 1-5 contacts of each

type.

• 4-9 diagnoses given with

more than 3 being the

primary axis diagnosis.

• The number of unique

diagnoses is equally dis-

tributed.

• Short.

• Polyclinic.

• Planned.

• Less than 25 contacts.

• 1-5 contacts of each

type.

• Less than three dia-

gnoses given and no

primary axis diagnosis.

• Longer.

• Polyclinic.

• Planned.

• 50-100 contacts.

• More than ten exam-

inations, planning and

therapy contacts.

• 7-9 diagnoses given with

more than 3 being the

primary axis diagnosis.

• The number of unique

diagnoses is equally dis-

tributed.

Table 6.14: First iteration’s EoC clusters summary.

EoC Bundle Cluster Findings

The first iteration’s clustering on the EoC Bundle level revealed three different clusters as presented

in Table 6.15. The EoC Bundle features’ value distribution is presented as bar charts with value

percentages. Figure 6.23 presents the distribution of the EoC Bundle lengths, while Figure 6.24

and 6.24 present the distribution of the age and gender of the patients.

EoC Bundle Cluster Nr. Data Points

EoC Bundle Type 0 5 714

EoC Bundle Type 1 2 406

EoC Bundle Type 2 2 925

Table 6.15: First iteration’s distribution of EoCs Bundles in the EoC Bundle clusters.
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Figure 6.23: First iteration’s distribution of EoC Bundle lengths.

Figure 6.24: First iteration’s distribution of patient’s age.
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Figure 6.25: First iteration’s distribution of patient’s gender.

Figures 6.26, 6.27, 6.28, 6.29, 6.30, and 6.31 illustrate the distribution of the diagnoses given at

the beginning of an EoC Bundle on each of the six axes. Only the most common diagnostic codes

on the six axes are included in the figures to enhance interpretability.

Figure 6.26: First iteration’s distribution of diagnoses on Axis 1 at the beginning of an EoC Bundle.
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Figure 6.27: First iteration’s distribution of diagnoses on Axis 2 at the beginning of an EoC Bundle.

Figure 6.28: First iteration’s distribution of diagnoses on Axis 3 at the beginning of an EoC Bundle.
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Figure 6.29: First iteration’s distribution of diagnoses on Axis 4 at the beginning of an EoC Bundle.

Figure 6.30: First iteration’s distribution of diagnoses on Axis 5 at the beginning of an EoC Bundle.
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Figure 6.31: First iteration’s distribution of diagnoses on Axis 6 at the beginning of an EoC Bundle.

An EoC Bundle includes one or more EoCs. The distribution of EoCs within EoC Type 0, EoC

Type 1, and EoC Type 2 are presented in Figures 6.32, 6.33, and 6.34, respectively.

Figure 6.32: First iteration’s distribution of the number of EoCs of type 0.
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Figure 6.33: First iteration’s distribution of the number of EoCs of type 1.

Figure 6.34: First iteration’s distribution of the number of EoCs of type 2.
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The numerical features’ medians and means and the categorical features’ modes are calculated on

the EoC Bundle level and presented in table 6.16.

Feature Meassure EoC Bundle

Type 0

EoC Bundle

Type 1

EoC Bundle

Type 2

EoC Bundle lenght
Mean 140 340 179

Median 1 272 727

Age at EoC Bundle start
Mean 11 11 10

Median 11 12 10

Patient gender Mode Male Male Male

Diagnosis on Axis 1 Mode Missing data Hyperkinetic

disorders

Hyperkinetic

disorders

Diagnosis on Axis 2 Mode Missing data Missing in-

formation

Missing in-

formation

Diagnosis on Axis 4 Mode Missing data No diagnose Missing in-

formation

Diagnosis on Axis 4 Mode Missing data Missing in-

formation

No diagnose

Diagnosis on Axis 5 Mode Missing data Missing in-

formation

Deviant envir-

onment

Diagnosis on Axis 6 Mode Missing data Difficulties in

single area

Varied func-

tion

Nr. EoC of type 0
Mean 0.0 1.2 0.2

Median 0 1 0

Nr. EoC of type 1
Mean 1.1 0.14 0.18

Median 1 0 0

Nr. EoC of type 2
Mean 0.0 0.1 1.1

Median 0 0 1

Table 6.16: First iteration’s EoC Bundle feature measurements.
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Table 6.17 summarises the distribution of EoC Bundles in the three EoC Bundle clusters based on

the first iteration’s findings. It provides a concise overview of the findings for easy comprehension.

For each cluster, the table also details the most frequently occurring EoC type as a brief reminder

of what it entails.

EoC Bundle Type 0 EoC Bundle Type 1 EoC Bundle Type 2

5 714 EoC Bundles 2 406 EoC Bundles 2 925 EoC Bundles

• Short EoC Bundles.

• All ages.

• 70:30 male-to-female ra-

tio.

• Missing data / no dia-

gnoses on most axes.

• No EoCs of type 0.

• One EoC of type 1.

– Short.

– Planned.

– Polyclinic.

– < 25 contacts.

– < 3 diagnoses.

• No EoCs of type 2.

• Short - medium long.

• All ages.

• 70:30 male-to-female ra-

tio.

• Missing data / no dia-

gnoses or missing in-

formation on axes 2-5.

• Most EoC Bundles have

a diagnosis on axes 1

and 6.

• One or, in some EoC

Bundles, multiple EoCs

of type 0.

– Medium length.

– Planned.

– Polyclinic.

– 25 contacts.

– 4-9 diagnoses.

• Very few have an EoC of

type 1.

• Few have an EoC of

type 2.

• Mix of all lengths, in-

cluding longer.

• All ages.

• 70:30 male-to-female ra-

tio.

• Missing data / no dia-

gnoses or missing in-

formation on axes 2-4.

• Most EoC Bundles have

a diagnosis on axes 1, 5,

and 6.

• Most EoC Bundles have

no EoC of type 0.

• Most EoC Bundles have

no EoC of type 1.

• One or, in some EoC

Bundles, multiple EoCs

of type 2.

– Longer.

– Planned.

– Polyclinic.

– 50-100 contacts.

– 7-9 diagnoses.

Table 6.17: First iteration’s EoC Bundle clusters summary.
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Cluster Exploration

After completing the clustering process and presenting the findings visually and interpretably,

the next step is to explore these findings. This is done by examining and evaluating the work

from a data perspective and collaborating with clinicians. By evaluating the findings from a data

perspective, the aim is to discover potential coding mistakes or choices that impact the findings.

Collaborating with clinicians is done to explore potential improvements before the second iteration.

The clustering outcomes are evaluated from a domain expert perspective through two meetings

with clinicians. The first meeting was held on April 13th 2023, with Odd-Sverre Westbye. Westbye

is a university lecturer at the Faculty of Medicine and Health Sciences at NTNU with a background

as a nurse director at RKBU Midt-Norge within CAMHS Norway. The second meeting, held on

April 14th 2023, was with Birgit Kleinau and Åsmund S. Bang. Kleinau is a senior physician at

Barne- og ungdomspsykiatrisk avdeling, Helse Nordtrøndelag, and Bang is an innovation advisor

at the same healthcare institution. During the meetings, the clustering findings were presented for

review and discussion.

From the examination of the clustering findings from a data and experts’ opinions perspective, the

following are reflections from the first iteration:

• Remove the total number of contacts and diagnoses The total numbers of both

diagnoses and contacts are imprecise features not giving valuable information regarding an

EoC. All three experts agreed this might give an inaccurate picture of the EoCs. Repres-

enting the contacts using the number of contacts of each type gave a more accurate picture.

Furthermore, Kleinau stated that giving a total of diagnoses without considering the axes

might give a wrong picture of an EoC, as the six axes largely differ. It was, therefore, advised

only to represent the number of diagnoses in combination with which axis the diagnoses were

given on.

• Focus on all diagnostic changes, not only unique diagnoses All three experts pointed

out that the changes back and forth between the same diagnoses should be included in the

analysis. Therefore, a recommendation was to change from unique diagnoses to including all

diagnostic changes.

• Focus on axes 1 and 6 at EoC Bundle level Both Kleinau andWestbye stated that axes

one and six are particularly interesting to analyse. The first axis represents a patient’s main

condition, while Axis 6 states the patient’s CGAS score, detailing the patient’s disability

level. When considering the different diagnoses given on axes 2-5 in an EoC Bundle, the

most used diagnoses were “No diagnose” or “Missing information”. Except for these two

alternatives, the number of recurrent diagnoses for the patients was very low. Consequently,

Westbye agreed that knowing only whether a diagnosis is given on one of the axes from 2-5

was sufficient information.

• Axis 6 on the EoC Bundle level should be a numerical value Based on the Dir-

ectorate of e-Health, the values in Axis 6 were transformed into corresponding categorical

values. However, after investigating the findings, one can see that grouping these diagnostic

categories is not very insightful. By presenting them as categorical values category “91-100

Excellent function” is as different to “81-90 Good function” as it is from “1-10 Constant

supervision”, giving an incorrect picture of the CGAS scale.
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• Investigate correlations between features A trend that one can see in the clustering

findings is that it looks like there is a correlation between the length of the EoCs, the number

of contacts patients have had, and the number of diagnoses given. According to Westbye, it

is self-explanatory that longer EoCs have more contacts and diagnoses. To ensure that this

trend is not covering any interesting findings, a suggestion was to change the contact types

and the diagnoses given on the axes from the total amount to the frequency based on the

length of the EoC. Westbye and Kleinau confirmed that they thought this was a good idea

and could yield more interesting findings.

• Adding the number of contacts before a main diagnosis is given Adding a feature

detailing the number of contacts a patient had before a diagnosis is given at a patient’s

main diagnosis could detail the resources used and give interesting information regarding the

patient trajectories.

6.4.2 Second Clustering Iteration

The second iteration aims to utilise the insights gained from the exploration and interpretation in

the first iteration to refine the clustering and improve the quality of the findings.

Data Preparation

The data preparation for the second iteration involves incorporating the feedback from the clinicians

and the exploration done in the first iteration to re-evaluate the initial feature selection. A detailed

explanation of the changes to the features used in the second clustering iteration follows.

• Removing unnecessary features All features included in the clustering process will

impact the results. Therefore, it is important only to include features giving valuable insight

to clinicians. From the feedback during the first iteration, the total number of contacts and

diagnoses are removed from the second iteration features.

• Including all diagnoses on the six axes After receiving feedback that all diagnostic

changes on the six axes are insightful, the number of diagnoses within an EoC is no longer

limited to unique diagnoses.

• Limiting the correlation between features Cluster analysis involves grouping data

points based on their similarity and dissimilarity to points in other clusters. However, when

highly correlated variables are included, there is a risk of increasing the influence of a partic-

ular variable in the cluster formation process. Figure 6.11 illustrates the correlation between

the features used in the first clustering iteration. One can see a high correlation between the

total number of contacts and the specific contact types. To avoid including highly correlated

features, the number of diagnoses and contacts within an EoC is divided by the length of the

EoC. This might also prevent the trend of longer EoCs generally including more contacts of

each type.

• Changing the values of the features representing diagnoses on axes 2-5 After

discussing with the clinicians and seeing that the feature values “Missing data” and “Miss-

ing information” dominated the diagnoses given on axes 2-5 the categorical values of these

features were changed to either “Yes” or “No”. “Missing data” and “Missing information”

correspond to “No” while the other values correspond to “Yes”.
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• Changing the feature Diagnosis Axis 6 to a numerical feature Seeing that numer-

ical and categorical values are treated differently by the k-prototypes algorithm, it makes

more sense to have the values on the sixth axis as a numerical variable to capture the nu-

merical differences between the CGAS scores. The CGAS score ranges from 1-10 on Axis

6, indicating a patient’s disability level. This change makes it necessary to handle the “0”

values differently than in the first iteration. The “0” value is invalid, most likely resulting

from missing registration on this axis (referring to the meeting with Westbye on 16.02.2023).

Here a decision was made to convert the “0” value to “5”, as this is the mean of this feature’s

values. Using a feature’s mean value represents one of the most traditional data mining

techniques for missing data (Theodoridis and Koutroumbas, 2008).

The number of contacts a patient has before getting a diagnosis on Axis 1 could be an interesting

feature to add. Due to time limitations and many changes already decided on, this feature addition

is not prioritised to include in the second iteration.

Table 6.18 and Table 6.19 summarise the features to be used in the second iteration of the EoC

and EoC Bundle clustering, respectively. The green shading in the tables indicates the added or

changed features from the first iteration. Red shading indicates that a feature included in the first

iteration is excluded from the second iteration.

EoC Table - Second Iteration

Feature Description of addition/change/removal

EoC length

Care level

Immediacy level

Nr. of contacts Deleted not to have repeating features impacting the clustering

twice.

Nr. of therapy per day

Nr. of examination

per day

Nr. of indirect contact

per day

Nr. of planning per day

Nr. of no-shows per day

Changed to the number of contact types per day to represent the

frequency instead of the count.

Nr. of diagnoses Not considered informative, and also deleted to not have repeating

features impacting the clustering twice.

Percentage of primary

axis diagnoses

The percentage of diagnoses given as the primary diagnosis on one

of the six axes.

Nr. of diagnoses on Axis 1

per day

Nr. of diagnoses on Axis 2

per day

Nr. of diagnoses on Axis 3

per day

Nr. of diagnoses on Axis 4

per day

Nr. of diagnoses on Axis 5

per day

Nr. of diagnoses on Axis 6

per day

Changed to consider the frequency of diagnoses given per day

instead of the count.

Table 6.18: EoC table features and feature description for the second iteration
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EoC Bundle Table - Second Iteration

Feature Description of addition/change/removal

Age at EoC Bundle start

Gender

EoC Bundle length

Diagnosis Axis 1

Diagnosis Axis 2

Diagnosis Axis 3

Diagnosis Axis 4

Diagnosis Axis 5

”Yes”/”No” value declaring whether the patient has a diagnosis

on the corresponding axes.

Diagnosis Axis 6 Changed from categorical to numerical values.

Table 6.19: EoC Bundle table features and feature description for the second iteration.

Once the features for the second clustering iteration have been selected, they are standardised

using the same approach as in the first iteration.

Clustering

Using a similar approach as the clustering performed in the previous clustering iteration, the

prepared data from Section 6.19 is clustered. The Cao method is employed as the k-prototypes’

initialisation method. By conducting the clustering analysis with varying values of k, ranging from

1-10, on the EoC data, the elbow plot in Figure 6.35 is generated. The plot shows that the elbow

point occurs when k equals 3, indicating that three clusters are the most suitable choice for the

EoC data clustering.

Figure 6.35: Second iteration’s elbow method for the EoCs.

Using the k-prototypes algorithm, the EoC data is clustered into three groups: EoC Type 0, EoC

Type 1, and EoC Type 2. These clusters consist of 2 768, 924 and 11 078 EoCs.

A SHAP plot explaining the impact and the importance of the EoC features is visualised in Figure

6.36.
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Figure 6.36: SHAP plot of the second iteration’s EoC features.

The next step in the clustering process involves incorporating the identified groups of EoC clusters

to perform the EoC Bundle clustering. Rather than considering the entire EoC data set as an

entity in the EoC Bundle clustering, the EoC data is incorporated using the three identified EoC

clusters.

Again, the optimal number of clusters for the EoC Bundle clustering is identified using the Elbow

method illustrated in Figure 6.37. The elbow plot indicates that the point of maximum curvature

occurs at 4 clusters.

Figure 6.37: Second iteration’s elbow method for the EoC Bundles.
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Applying the k-prototypes algorithm to the EoC Bundle data, it is grouped into four clusters

labelled: EoC Bundle Type 0, EoC Bundle Type 1, EoC Bundle Type 2, and EoC Bundle Type 3.

These clusters comprise 670, 1 945, 3 919, and 4 384 EoC Bundles.

Figure 6.38 visualises the impact and the importance of the EoC Bundle features using SHAP.

Figure 6.38: SHAP plot of the second iteration’s EoC Bundle features.

Intermediate Cluster Findings

Similar to the findings from the first iteration, the clustering outcomes from the second iteration

are presented. First, the feature value distribution of the EoC clusters is presented, and then the

distribution within the EoC Bundle clusters is presented. The complete findings from the second

iteration are presented in Appendix C.2.

EoC Cluster Findings

Clustering the data on the EoC level identified the clusters presented in Table 6.20. Figures 6.39,

6.40, and 6.41 present the distribution of the different EoC lengths and care and immediacy levels.

Clusters Nr. Data Points

EoC Type 0 2 768

EoC Type 1 924

EoC Type 2 11 078

Table 6.20: Second iteration’s distribution of EoCs in the EoC clusters.
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Figure 6.39: Second iteration’s distribution of EoC lengths.

Figure 6.40: Second iteration’s distribution of care levels.
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Figure 6.41: Second iteration’s distribution of immediacy levels.
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The frequency distribution of contacts of each contact type is presented in Table 6.21. The most

common frequency for each contact type is highlighted with bold text for each cluster.

Contact Feature Values EoC

Type

0

EoC

Type

1

EoC

Type

2

Frequency of

therapy contacts

Never. 7% 12% 6%

Less than once a year. 0% 0% 2%

Between once a year and once a month. 0% 0% 34%

Between once a month and once a week. 0% 1% 52%

Between once a week and once a day. 53% 22% 6%

More than once a day. 40% 65% 0%

Frequency of

planning contacts

Never. 7% 13% 6%

Less than once a year. 0% 0% 2%

Between once a year and once a month. 0% 1% 47%

Between once a month and once a week. 0% 2% 42%

Between once a week and once a day. 60% 32% 3%

More than once a day. 33% 52% 0%

Frequency of

examination

contacts

Never. 7% 12% 6%

Less than once a year. 0% 0% 2%

Between once a year and once a month. 0% 0% 34%

Between once a month and once a week. 0% 1% 52%

Between once a week and once a day. 53% 22% 6%

More than once a day. 40% 65% 0%

Frequency of

no-show contacts

Never. 11% 33% 10%

Less than once a year. 0% 0% 5%

Between once a year and once a month. 0% 0% 73%

Between once a month and once a week. 1% 2% 11%

Between once a week and once a day. 59% 39% 1%

More than once a day. 29% 26% 0%

Frequency of

indirect contacts

Never. 7% 12% 6%

Less than once a year. 0% 0% 1%

Between once a year and once a month. 0% 0% 34%

Between once a month and once a week. 0% 1% 52%

Between once a week and once a day. 53% 22% 6%

More than once a day. 40% 65% 0%

Table 6.21: Second iteration’s distribution of the frequency of the contact types.

Figure 6.42 presents the percentage distribution of how many diagnoses were given during the EoC

as the primary diagnosis on one of the six axes.
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Figure 6.42: Second iteration’s distribution of the number of diagnoses given as the primary

diagnosis on one of the six axes.
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The frequency distribution of diagnoses on the six axes is detailed in Table 6.22.

Diagnostic

Feature

Values EoC

Type

0

EoC

Type

1

EoC

Type

2

Frequency of

diagnoses on Axis 1

Never. 95% 0% 15%

Less than once a year. 0% 0% 34%

Between once a year and once a month. 1% 0% 50%

Between once a month and once a week. 0% 3% 1%

Between once a week and once a day. 3% 79% 0%

More than once a day. 1% 17% 0%

Frequency of

diagnoses on Axis 2

Never. 99% 2% 21%

Less than once a year. 0% 0% 43%

Between once a year and once a month. 1% 2% 36%

Between once a month and once a week. 0% 2% 0%

Between once a week and once a day. 0% 88% 0%

More than once a day. 0% 6% 0%

Frequency of

diagnoses on Axis 3

Never. 99% 2% 21%

Less than once a year. 0% 0% 43%

Between once a year and once a month. 1% 1% 36%

Between once a month and once a week. 0% 2% 0%

Between once a week and once a day. 0% 90% 0%

More than once a day. 0% 5% 0%

Frequency of

diagnoses on Axis 4

Never. 99% 6% 23%

Less than once a year. 0% 0% 42%

Between once a year and once a month. 1% 1% 35%

Between once a month and once a week. 0% 3% 0%

Between once a week and once a day. 0% 84% 0%

More than once a day. 0% 6% 0%

Frequency of

diagnoses on Axis 5

Never. 99% 2% 21%

Less than once a year. 0% 0% 38%

Between once a year and once a month. 1% 0% 40%

Between once a month and once a week. 0% 3% 1%

Between once a week and once a day. 0% 77% 0%

More than once a day. 0% 18% 0%

Frequency of

diagnoses on Axis 6

Never. 99% 6% 23%

Less than once a year. 0% 0% 39%

Between once a year and once a month. 1% 1% 38%

Between once a month and once a week. 0% 2% 0%

Between once a week and once a day. 0% 84% 0%

More than once a day. 0% 7% 0%

Table 6.22: Second iteration’s distribution of the frequency of diagnoses on the different axes.

82



CHAPTER 6. EXPERIMENT

Table 6.23 presents the second iteration’s EoC features’ calculated means, medians, and modes.

Feature Meassure EoC Type 0 EoC Type 1 EoC Type 2

EoC lenght
Mean 2 6 579

Median 0 3 452

Care level Mode Polyclinic Inpatient Polyclinic

Immediacy level Mode Planned Planned Planned

Nr. of therapy contacts

per day

Mean 2.24 4.36 0.05

Median 1.0 2.33 0.04

Nr. of planning contacts

per day

Mean 1.73 2.31 0.05

Median 1.0 1.25 0.03

Nr. of examination

contacts per day

Mean 0.78 2.01 0.04

Median 0.0 1.0 0.01

Nr. of no-show contacts

per day

Mean 1.30 0.96 0.03

Median 1.0 0.5 0.01

Nr. of indirect contacts

per day

Mean 2.24 4.36 0.05

Median 1.0 2.33 0.04

Percentage of primary

axis diagnoses

Mean 18% 73% 67%

Median 0% 83% 75%

Nr. of diagnoses on Axis

1 per day

Mean 0.03 1.02 0.01

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

2 per day

Mean 0.0 0.62 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

3 per day

Mean 0.0 0.63 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

4 per day

Mean 0.0 0.64 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

5 per day

Mean 0.0 1.04 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

6 per day

Mean 0.0 0.63 0.0

Median 0.0 0.5 0.0

Table 6.23: Second iteration’s EoC feature measurements.
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Table 6.24 presents an overview of the EoC clusters identified in the second iteration. This table

summarises the most prominent features and simplifies the findings.

EoC Type 0 EoC Type 1 EoC Type 2

2 768 EoCs 924 EoCs 11 078 EoCs

• Shorter than a week.

• Polyclinic.

• Planned.

• All contacts weekly to

daily.

• Seldom given a dia-

gnosis on any axis.

• Shorter than a week.

• Inpatient.

• Planned or acute.

• All contacts (except no-

show) multiple times a

day.

• Diagnoses given on all

axes weekly to daily.

• Longer than a week.

• Polyclinic.

• Planned.

• All contacts (except

no-show) yearly to

monthly.

• Diagnoses given on all

axes (except axis 1) less

than once a year.

Table 6.24: Second iteration’s EoC clusters summary.

EoC Bundle Cluster Findings

The clustering of the EoC Bundle data revealed four clusters, as illustrated in Table 6.25. Figures

6.43, 6.44, and 6.45 present the distribution of the different EoC Bundle lengths and the patients’

age and gender.

EoC Bundle Cluster Nr. Data Points

EoC Bundle type 0 670

EoC Bundle type 1 1 945

EoC Bundle type 2 3 919

EoC Bundle type 3 4 384

Table 6.25: Second iteration’s distribution of EoC Bundles in the EoC Bundle clusters.

Figure 6.43: Second iteration’s distribution of EoC Bundle lengths.
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Figure 6.44: Second iteration’s distribution of patients’ age.

Figure 6.45: Second iteration’s distribution of patients’ gender.

Figure 6.46 presents the distribution of the most common diagnoses given on the first axis on the

EoC Bundle level. The distribution of whether a diagnosis is given on Axis 2-5 is visualised in

Figure 6.47. Then, the distribution of the most common CGAS scores is given in Figure 6.48.

Note that the percentage of CGAS score equalling five is impacted by the choice to change the “0”

values to “5” as described in the data preparation in Section 6.19.
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Figure 6.46: Second iteration’s distribution of diagnoses on Axis 1 at the beginning of an EoC

Bundle.

Figure 6.47: Second iteration’s distribution of diagnoses on axes 2-5 at the beginning of an EoC

Bundle.
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Figure 6.48: Second iteration’s distribution of diagnoses on Axis 6 at the beginning of an EoC

Bundle.

The distributions of the number of EoCs of the three different EoC types are presented in Figures

6.49, 6.50, and 6.51.

Figure 6.49: Second iteration’s distribution of the number of EoCs of type 0.
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Figure 6.50: Second iteration’s distribution of the number of EoCs of type 1.

Figure 6.51: Second iteration’s distribution of the number of EoCs of type 2.
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For the EoC Bundle features included in the second iteration, the modes, medians, and means are

presented in Table 6.26.

Feature Meassure EoC

Bundle

Type 0

EoC

Bundle

Type 1

EoC

Bundle

Type 2

EoC

Bundle

Type 2

EoC Bundle

lenght

Mean 730 19 884 471

Median 455 0 727 366

Age at EoC

Bundle start

Mean 12 11 9 12

Median 12 11 8 13

Patients’

gender

Mode Male Male Male Male

Diagnosis

on Axis 1

Mode Hyperkinetic

disorders

Missing data Hyperkinetic

disorders

Hyperkinetic

disorders

Diagnosis

on Axis 2

Mode No No No No

Diagnosis

on Axis 3

Mode No No No No

Diagnosis

on Axis 4

Mode No No No No

Diagnosis

on Axis 5

Mode Yes No Yes No

Diagnosis on

Axis 6

Mean 4.8 5.1 3.9 5.6

Median 5 5 4 5

Nr. EoC of

type 0

Mean 0.4 1.0 0.1 0.1

Median 0 1 0 0

Nr. EoC of

type 1

Mean 1.4 0.0 0.0 0.0

Median 1 0 0 0

Nr. EoC of

type 2

Mean 1.7 0.0 1.3 1.1

Median 1 0 1 1

Table 6.26: Second iteration’s EoC Bundle feature measurements.

From all the findings presented in this section, a summarisation is created. As in the first iteration,

this summarisation is a simplification and starting point for feedback and discussion, not a complete

picture of the clustering findings. For the second iteration, the simplification is presented in Table

6.27. Keep in mind when examining the table, the key features of the identified EoC types, noted

again following the table.
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EoC Bundle Type 0 EoC Bundle Type 1

670 EoC Bundles 1 945 EoC Bundles

• All lengths.

• Mostly older than 7 years.

• 65:35 male-to-female ratio.

• Missing information on Axis 1

• Mostly no diagnoses on axes 2-4

• Moderate function in social areas /

severe disturbance in one area

• Few have an EoC of type 0.

• One or sometimes more EoC of type 1.

• One or often more EoC of type 2.

• Less than a week long.

• Mostly between 7 and 14 years.

• 70:30 male-to-female ratio.

• Missing data / no diagnoses on Axis 1.

• No diagnoses on axes 2-5.

• Varied function

• One EoC of type 0.

• No EoCs of type 1.

• No EoCs of type 2.

EoC Bundle Type 2 EoC Bundle Type 3

3 919 EoC Bundles 4 385 EoC Bundles

• Mostly longer than a year.

• Mostly younger than 10 years.

• 75:25 male-to-female ratio.

• Hyperkinetic disorders on Axis 1.

• Rarly diagnoses on axes 2-4.

• Moderate function.

• No EoC of type 0.

• No EoC of type 1.

• One or sometimes more EoC of type 2.

• Mostly longer than six months.

• All ages, but very few from 7 to 10 years.

• 65:35 male-to-female ratio.

• Hyperkinetic disorders on Axis 1.

• Rarly diagnoses on axes 2-5.

• Moderate function.

• No EoC of type 0.

• No EoC of type 1.

• One EoC of type 2.

Table 6.27: Second iteration’s EoC Bundle clusters summary.

• EoC type 0: Shorter than a week, planned polyclinic EoCs with contacts on a weekly to

daily basis and seldom diagnoses given.

• EoC type 1: Shorter than a week, planned inpatient EoCs with many contacts daily and

diagnoses given weekly to daily.

• EoC type 2: Longer than a week, planned polyclinic EoCs with contacts yearly to monthly

and diagnoses are given less than once yearly.
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D) Cluster Exploration

The findings from the second iteration are explored similarly as in the first iteration. However, for

this iteration, the findings were presented to the IDDEAS team on April 21st, 2023 and Odd-Sverre

Westbye on April 28th, 2023. From the second iteration exploration, the following reflections are

made:

• Identify diagnostic patterns Westbye described that an interesting factor when investig-

ating patient trajectories is the changes throughout an EoC and an EoC Bundle. Investigating

potential patterns in the changes made to the diagnoses on the different axes is a topic he

found particularly interesting. Westbye and the IDDEAS team found information regarding

axes one and six changes worth investigating. A suggestion was to include the difference in

the CGAS score given on Axis 6 from the beginning to the end of an EoC Bundle.

• Add information regarding the first main diagnosis given The IDDEAS team and

Westbye suggested adding information regarding the period before a main diagnosis is given

on the first axis. This concurs with the feedback from Kleinau in the first iteration (referring

to the meeting with Birgit Kleinau 14.04.23). Adding the number of days or contacts before

the main diagnosis is given could inform about clinical resources spent and how difficult the

diagnostic process was.

• Focus more on the “typical” hyperkinetic disorders patients The IDDEAS team

and Westbye noted that including rejected patients might impact the findings. They men-

tioned that including these patients in the first two iterations might have contributed to

identifying differences between the more “typical” hyperkinetic disorders trajectories and

other trajectories. Specifically, they pointed out that EoC Type 2 might identify more “typ-

ical” EoCs for patients with hyperkinetic disorders. Removing rejected patients from the last

iteration could yield more detailed findings regarding typical hyperkinetic disorders traject-

ories.

• Add more information regarding a patient Including more patient features could be

interesting to get a more detailed view of the patients. The IDDEAS team hypothesised that

life situations often impact the patient trajectories and, therefore, could be interesting to

include. A suggestion given was to include patients’ care situation.

6.4.3 Third Clustering Iteration

Utilising the knowledge and feedback from the two prior iterations, the third and final iteration

is performed. For this iteration, the data preparation and clustering process is presented in this

section, while the results are presented separately in Chapter 7. The feedback is given as a part of

the final evaluation, presented in Chapter 8.

Data Preparation

Considering the findings and exploration in the second iteration, changes regarding the data set

are made. Following is a presentation of all changes made:
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• Exluding rejected patients To potentially obtain more detailed findings regarding tra-

jectories of “typical” hyperkinetic disorders patients, the inclusion of rejected patients is

evaluated. To do so, multiple features from the St. Olavs data are investigated. Firstly, the

feature sak.tattimot is investigated to study the initial assessment of the patients. Here, it

is decided to exclude the EoC Bundles and the corresponding EoCs, where the assessment

is either “Rejected due to capacity” or “Rejected due to professional reasons” (using Koder

13).

Additionally, the closing code for an EoC Bundle is investigated using the St. Olavs value

sak.avslkode (using Koder 22 ). Here the values “Rejected” or “Did not get started” are

excluded. This decision was made in cooperation with psychologist Sanja Prodanovic who

explained that the “Rejected” value represents patients who were rejected during their EoC

Bundle, indicating that these EoC Bundles can be considered incomplete. The value “Did not

get started” may indicate that a patient initially accepted a treatment offer from CAMHS but

later rejected it or did not attend the appointments (referring to the meeting with Prodanovic

05.05.2023).

Applying these criteria eliminates 2 209 distinct EoC Bundles and 2 298 corresponding EoCs.

• Including EoC Bundles’ closing codes The feature Cloding Code is included on the EoC

Bundle level to include the possible reasons to close an EoC Bundle that is not “Rejected”

or “Did not get started” (based on Koder 22 ). This feature inclusion aims to detail how

the patient trajectories ended. The distribution of the cohort’s different closing codes can be

visualised in Figure 6.52.

• Including more information regarding diagnostic changes and first main diagnosis

For the third iteration, diagnostic changes on the first and sixth axes are investigated. This

investigation is done with the new data set, excluding rejected patients, containing 8 919

EoC Bundles and 12 728 corresponding EoCs. Investigating diagnoses on Axis 1, one can see

that only 30% of the EoCs have more than one diagnosis on the first axis, and only 0.3% of

the EoCs include more than one main diagnosis. From this, one can conclude that including

changes in the patient’s main diagnosis almost completely would consist of missing values.

Similarly, investigating the CGAS scores given on Axis 6, only 13% of the scores have been

changed. Therefore, also this value is excluded from the third iteration.

Although most EoCs have few diagnostic changes, 68% of the EoCs have at least one main

diagnosis given that is neither “Missing information” nor “No diagnosis”. Therefore, the

feature Nr contacts before the main diagnosis is extracted using the date of the first main

diagnosis given and counting all contacts up until this date. For the 32% of the EoCs not

having a main diagnosis during an EoC, or only “Missing information” or “No diagnosis”,

the diagnosis on the EoC Bundle level on Axis 1 is investigated. If an EoC does not have a

main diagnosis, but there is a main diagnosis on the EoC Bundle level, the Nr contacts before

the main diagnosis feature is converted to “0”, indicating that the patient started out having

a main diagnosis. If the patient does not have a diagnosis on Axis 1 on the EoC Bundle level,

Nr contacts before the main diagnosis is converted to “1 000” to indicate that no diagnosis

is ever given. This number is decided to distinguish this value from values representing an

actual number of contacts before the main diagnosis is given. The distribution of the number

of contacts the cohort had before getting a main diagnosis on Axis 1 is visualised in Figure

6.53.

• Including patients’ care situations Considering the feedback to include more inform-

ation regarding the patients’ life situations, the feature Care Situation was included in the

third iteration. This was decided after investigating multiple possible patient features and

concluding that this was the most insightful feature, including the least error-prone data. To

include this feature, Koder 7 is used. In the EoC Bundles where the St. Olavs value equals

“0”, the value is changed to “Missing data”. The distribution of the cohort’s care situations

can be visualised in Figure 6.54.

92



CHAPTER 6. EXPERIMENT

Figure 6.52: The distributions of the different closing codes.

Figure 6.53: The distribution of the number of contacts a patient had before getting a main

diagnosis on Axis 1.
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Figure 6.54: The distribution of the different care situations.

Tables 6.28 and 6.29 present the chosen features for the third iteration.

EoC Table - Third Iteration

Feature Description of addition/change/removal

EoC length

Care level

Immediacy level

Nr. of therapy per day

Nr. of examination

per day

Nr. of indirect contact

per day

Nr. of planning per day

Nr. of no-shows per day

Percentage of primary

axis diagnoses

Nr. of diagnoses on Axis 1

per day

Nr. of diagnoses on Axis 2

per day

Nr. of diagnoses on Axis 3

per day

Nr. of diagnoses on Axis 4

per day

Nr. of diagnoses on Axis 5

per day

Nr. of diagnoses on Axis 6

per day

Nr. of contacts before the

main diagnosis is given

The number of contacts a patient had before the first primary

diagnosis is given on Axis 1.

Table 6.28: EoC table features and feature description for the third iteration.
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EoC Bundle Table - Third Iteration

Feature Description of addition/change/removal

Age at EoC Bundle start

Gender

Care situation The patient’s care situation, being one of the following:

- Missing data

- Both parents

- Commutes between both parents

- One parent

- One parent and partner

- Grandparents / other family

- Fostercare

- Institution

- Alone

- Other

EoC Bundle length

Diagnosis Axis 1

Diagnosis Axis 2

Diagnosis Axis 3

Diagnosis Axis 4

Diagnosis Axis 5

Diagnosis Axis 6

Closing code The reasons for closing a patient’s EoC Bundle:

- Missing data

- Assignment completed

- Patient cancelled

- Parent(s) cancelled

- Guardian(s) cancelled

- Above age

- Moved / wrong district

- Death

- Other

Table 6.29: EoC Bundle table features and feature description for the third iteration.

The selected features for the last iteration are then standardised using the same approach as the

former two iterations. Code written for this data preparation is given in Appendix B.1.1.

Clustering

Using a similar approach as the two previous clustering iterations, the prepared data for the third

iteration is clustered. The code written for the clustering is elaborated in Appendix B.1.2. The

elbow plot in Figure 6.55 is generated by employing the Cao method as the initialisation technique

for the k-prototypes algorithm and considering k values ranging from 1-10. The plot reveals that

the elbow point is observed when k equals 3, indicating an optimal number of clusters for the third

iteration’s EoC data is 3.
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Figure 6.55: Third iteration’s elbow method for the EoCs.

Using the k-prototypes algorithm, the EoC data is clustered into three groups: EoC Type 0, EoC

Type 1, and EoC Type 2. These clusters consist of 872, 1 340 and 10 448 EoCs.

A SHAP plot explaining the impact and the importance of the EoC features on the EoC clustering

result is visualised in Figure 6.56.

Figure 6.56: SHAP plot of the third iteration’s EoC features.
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Once the three subgroups of EoCs have been identified, the subgroups are incorporated into the

EoC Bundle clustering and the Elbow method is used for the last time to find the optimal number

of clusters. As indicated in the elbow plot in Figure 6.57, the optimal number of clusters for

k-prototypes is when k equals 4.

Figure 6.57: Third iteration’s elbow method for the EoC Bundles.

Applying the k-prototypes algorithm to the EoC Bundle data, it is clustered into four groups: EoC

Bundle Type 0, EoC Bundle Type 1, EoC Bundle Type 2, and EoC Bundle Type 3. These clusters

comprise 4 031, 733, 3 503 and 636 EoC Bundles.

Finally, Figure 6.58 is included to inform the impact and the importance of the different features

on the EoC Bundle clustering results.
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Figure 6.58: SHAP plot of the third iteration’s EoC Bundle features.

For the third iteration, the findings are presented as the final experiment results in Chapter 7.

These results are then evaluated more in detail, as presented in 8.
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Results

This chapter presents the results obtained from the third and final iteration, following the same

approach as the previous two iterations. The code written to present these results and additional

bar charts are presented in Appendices B.1.3 and C.3. The presentation of results begins with the

EoC data clustering, followed by the results pertaining to the EoC Bundle clustering.

7.1 EoC Clustering Results

For the last iteration, the EoCs distribution in the identified clusters is presented in Table 7.1.

Figures 7.1, and 7.2, 7.3 present the distributions of EoC lengths and care and immediacy levels

Clusters Nr. Data Points

EoC Type 0 1 340

EoC Type 1 872

EoC Type 2 10 448

Table 7.1: Third iteration’s distribution of EoCs in the EoC clusters.

Figure 7.1: Third iteration’s distribution of EoC lengths.
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Figure 7.2: Third iteration’s distribution of care levels.

Figure 7.3: Third iteration’s distribution of immediacy levels.
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Table 7.2 presents the value distribution of the five different contact types for each EoC cluster.

Contact Feature Values EoC

Type

0

EoC

Type

1

EoC

Type

2

Frequency of

therapy contacts

Never. 14% 13% 5%

Less than once a year. 0% 0% 2%

Between once a year and once a month. 0% 0% 33%

Between once a month and once a week. 0% 0% 54%

Between once a week and once a day. 36% 21% 6%

More than once a day. 50% 66% 0%

Frequency of

planning contacts

Never. 13% 13% 5%

Less than once a year. 0% 0% 2%

Between once a year and once a month. 1% 1% 47%

Between once a month and once a week. 3% 1% 43%

Once a week and once a day. 34% 32% 3%

More than once a day. 49% 53% 0%

Frequency of

examination

contacts

Never. 37% 23% 12%

Less than once a year. 0% 0% 4%

Between once a year and once a month. 0% 0% 64%

Between once a month and once a week. 3% 1% 19%

Between once a week and once a day. 32% 32% 1%

More than once a day. 28% 44% 0%

Frequency of

no-show contacts

Never. 21% 34% 9%

Less than once a year. 0% 0% 5%

Between once a year and once a month. 0% 0% 74%

Between once a month and once a week. 7% 1% 11%

Between once a week and once a day. 41% 39% 0%

More than once a day. 31% 26% 0%

Frequency of

indirect contacts

Never. 14% 13% 5%

Less than once a year. 0% 0% 1%

Between once a year and once a month. 0% 0% 34%

Between once a month and once a week. 0% 0% 54%

Between once a week and once a day. 36% 21% 6%

More than once a day. 50% 66% 0%

Table 7.2: Third iteration’s distribution of the frequency of the contact types.

Figure 7.5 visualises the feature Nr contacts before the main diagnosis added in the third iteration.

Successive, Figure 7.4 presents the value distribution of the percentage of primary axis diagnoses.

The frequency distribution of diagnoses on the six axes during an EoC is presented in 7.3.
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Figure 7.4: Third iteration’s distribution of the number of contacts had before a primary diagnosis

is given on Axis 1.

Figure 7.5: Third iteration’s distribution of the percentage of diagnoses given as the primary

diagnosis on one of the six axes.
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Diagnostic

Feature

Values EoC

Type

0

EoC

Type

1

EoC

Type

2

Frequency of

diagnoses on Axis 1

Never. 84% 0% 13%

Less than once a year. 0% 0% 35%

Between once a year and once a month. 6% 0% 51%

Between once a month and once a week. 2% 2% 1%

Between once a week and once a day. 7% 80% 0%

More than once a day. 1% 18% 0%

Frequency of

diagnoses on Axis 2

Never. 93% 1% 18%

Less than once a year. 0% 0% 45%

Between once a year and once a month. 7% 1% 37%

Between once a month and once a week. 0% 1% 0%

Between once a week and once a day. 0% 90% 0%

More than once a day. 0% 7% 0%

Frequency of

diagnoses on Axis 3

Never. 93% 1% 18%

Less than once a year. 0% 0% 46%

Between once a year and once a month. 7% 1% 36%

Between once a month and once a week. 0% 1% 0%

Between once a week and once a day. 0% 92% 0%

More than once a day. 0% 5% 0%

Frequency of

diagnoses on Axis 4

Never. 84% 0% 12%

Less than once a year. 0% 0% 35%

Between once a year and once a month. 6% 0% 51%

Between once a month and once a week. 2% 2% 1%

Between once a week and once a day. 8% 80% 0%

More than once a day. 1% 19% 0%

Frequency of

diagnoses on Axis 5

Never. 92% 2% 19%

Less than once a year. 0% 0% 40%

Between once a year and once a month. 6% 0% 40%

Between once a month and once a week. 1% 2% 1%

Between once a week and once a day. 1% 78% 0%

More than once a day. 0% 18% 0%

Frequency of

diagnoses on Axis 6

Never. 92% 6% 20%

Less than once a year. 0% 0% 42%

Between once a year and once a month. 7% 1% 38%

Between once a month and once a week. 0% 1% 0%

Between once a week and once a day. 1% 85% 0%

More than once a day. 0% 7% 0%

Table 7.3: Third iteration’s distribution of the frequency of diagnoses on the different axes.
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Table 7.4 presents the categorical features’ modes and the numerical features’ medians and means

on the EoC level.

Feature Meassure EoC Type 0 EoC Type 1 EoC Type 2

EoC lenght
Mean 10 4 602

Median 0 3 455

Care level Mode Polyclinic Inpatient Polyclinic

Immediacy level Mode Planned Planned Planned

Nr. of therapy contacts

per day

Mean 4.00 4.47 0.05

Median 1.02 2.5 0.04

Nr. of planning contacts

per day

Mean 2.22 2.34 0.04

Median 1.0 1.29 0.03

Nr. of examination

contacts per day

Mean 1.40 2.07 0.03

Median 0.51 1.0 0.01

Nr. of no-show contacts

per day

Mean 1.28 0.97 0.032

Median 1.0 0.3 0.01

Nr. of indirect contacts

per day

Mean 3.0 4.47 0.05

Median 1.03 2.5 0.04

Nr. contacts before

primary Axis 1 diagnosis

Mean 272 99 193

Median 4 10 32

Percentage of primary

axis diagnoses

Mean 34% 73% 69%

Median 0% 83% 75%

Nr. of diagnoses on Axis

1 per day

Mean 0.07 1.04 0.01

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

2 per day

Mean 0.0 0.63 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

3 per day

Mean 0.0 0.65 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

4 per day

Mean 0.0 0.65 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

5 per day

Mean 0.01 1.06 0.0

Median 0.0 0.5 0.0

Nr. of diagnoses on Axis

6 per day

Mean 0.01 0.63 0.0

Median 0.0 0.5 0.0

Table 7.4: Third iteration’s EoC feature measurements.

An overview of the dominating feature values for each of the identified EoC clusters is presented

in Table 7.5.
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EoC Type 0 EoC Type 1 EoC Type 2

872 EoCs 1 340 EoCs 10 448 EoCs

• Shorter than a week.

• Polyclinic.

• Planned.

• All contacts mostly

multiple times per day,

or some weekly to daily.

• Either starting with a

diagnosis or never being

given one.

• Seldom given a dia-

gnosis on any axis.

• Shorter than a week.

• Inpatient.

• Planned or acute.

• All contacts (except no-

show) multiple times a

day.

• Main diagnosis is

normally given with

between 1-25 contacts.

• Diagnoses given on all

axes weekly to daily.

• Longer than a week.

• Polyclinc.

• Planned.

• Mostly contacts yearly

to monthly.

• Varying number of con-

tacts before the first

main diagnosis is set.

• Diagnoses given on all

axes less than once a

year or between once a

year and once a month.

Table 7.5: Third iteration’s EoC clusters summary.

7.2 EoC Bundle Clustering Results

The four identified EoC Bundle clusters for the third iteration are presented in Table 7.6.

EoC Bundle Cluster Nr. Data Points

EoC Bundle Type 0 636

EoC Bundle Type 1 733

EoC Bundle Type 2 3 503

EoC Bundle Type 3 4 031

Table 7.6: Third iteration’s distribution of EoC Bundles in the EoC Bundle clusters.

Figure 7.6 presents the distribution of EoC Bundle lengths. Then figure 7.7, 7.8, and 7.9 visualises

the value distributions of the features age, gender, and care situation.
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Figure 7.6: Third iteration’s distribution of EoC Bundle lengths.

Figure 7.7: Third iteration’s distribution of patients’ age.
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Figure 7.8: Third iteration’s distribution of patients’ gender.

Figure 7.9: Third iteration’s distribution of patients’ care situation.

The diagnostic information on the EoC Bundle level is visualised in Figures 7.10, 7.11, and 7.12.
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Figure 7.10: Third iteration’s distribution of diagnoses on Axis 1 at the beginning of an EoC

Bundle.

Figure 7.11: Third iteration’s distribution of diagnoses on axes 2-5 at the beginning of an EoC

Bundle.
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Figure 7.12: Third iteration’s distribution of diagnoses on Axis 6 at the beginning of an EoC

Bundle.

The value distribution of the number of EoCs of the three EoC types identified in the third iteration

is presented in Figures 7.13, 7.14, and 7.15.

Figure 7.13: Third iteration’s distribution of the number of EoCs of Type 0.
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Figure 7.14: Third iteration’s distribution of the number of EoCs of Type 1.

Figure 7.15: Third iteration’s distribution of the number of EoCs of Type 2.

Lastly, the distribution of closing codes of the EoC Bundles is presented in Figure 7.16
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Figure 7.16: Third iteration’s distribution of the closing codes.
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For all EoC Bundle features the modes, medians, and means are calculated and presented in Table

7.7.

Feature Meassure EoC

Bundle

Type 0

EoC

Bundle

Type 1

EoC

Bundle

Type 2

EoC

Bundle

Type 2

EoC Bundle

lenght

Mean 760 275 997 437

Median 465 92 821 365

Age at EoC

Bundle start

Mean 12 11 8 12

Median 12 12 8 13

Patient Gender Mode Male Male Male Male

Care situation Mode Both parents Both parents Both parents Both parents

Diagnosis on

Axis 1

Mode Hyperkinetic

disorders

Missing data Hyperkinetic

disorders

Hyperkinetic

disorders

Diagnosis on

Axis 2

Mode No No No No

Diagnosis on

Axis 3

Mode No No No No

Diagnosis on

Axis 4

Mode No No No No

Diagnosis on

Axis 5

Mode Yes No Yes No

Diagnosis on

Axis 6

Mean 4.7 5.1 3.9 5.5

Median 5 5 4 5

Nr. EoC of

EoC type 0

Mean 1.4 0.0 0.0 0.0

Median 1 0 0 0

Nr. EoC of

EoC type 1

Mean 0.5 1.1 0.1 0.0

Median 0 1 0 0

Nr. EoC of

EoC type 2

Mean 1.8 0.5 1.3 1.1

Median 1 0 1 1

Closing code Mode Assignment

completed

Assignment

completed

Assignment

completed

Assignment

completed

Table 7.7: Third iteration’s EoC Bundle feature measurements.
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A summarising table describing the key feature distributions in the third iteration’s four EoC

Bundle clusters is presented in Table 7.8. Following the table is a reminder of important factors

in the identified EoC types.

EoC Bundle Type 0 EoC Bundle Type 1

636 EoC Bundles 733 EoC Bundles

• All lengths.

• Mostly older than 7 years.

• 65:35 male-to-female ratio.

• Both or one parent.

• Hyperkinetic disorders on Axis 1.

• Mostly no diagnoses on axes 2-5.

• Moderate function in social areas /

severe disturbance in one area.

• Few have an EoC of type 0.

• One or sometimes more EoC of type 1.

• One or often more EoC of type 2.

• Assignment completed.

• All lengths.

• Mostly older than 7 years

• 70:30 male-to-female ratio.

• Both or one parent.

• Missing data / no diagnoses or hyper-

kinetic disorders on Axis 1.

• Mostly no diagnoses on axes 2-5.

• Varied function.

• One EoC of EoC type 0.

• No EoCs of EoC type 1.

• Some have an EoC of type 2.

• Assignment completed.

EoC Bundle Type 2 EoC Bundle Type 3

3 503 EoC Bundles 4 031 EoC Bundles

• Mostly longer than a year.

• Mostly younger than 10 years.

• 75:25 male-to-female ratio.

• Both or one parent.

• Hyperkinetic disorders on Axis 1.

• Mostly no diagnoses on axes 2-5.

• Moderate function in social areas /

severe disturbance in one area.

• No EoC of type 0.

• No EoC of type 1.

• One or sometimes more EoCs of type 2.

• Assignment completed.

• Mostly longer than six months.

• Mostly older than 7 years.

• 65:35 male-to-female ratio.

• Both or one parent.

• Hyperkinetic disorders.

• Mostly no diagnoses on axes 2-4 and

only some on Axis 5.

• Varied function.

• No EoC of type 0.

• No EoC of type 1.

• One EoC of type 2.

• Assignment completed.

Table 7.8: Third iteration’s EoC Bundle clusters summary.
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• EoC type 0: Shorter than a week, planned polyclinic EoCs with contacts weekly to daily.

Either starting with or never getting a main diagnosis and seldom diagnoses given on the

axes.

• EoC type 1: Shorter than a week, planned or acute inpatient EoCs with many contacts

daily. The main diagnosis is given before 25 contacts are had, and diagnoses are given weekly

to daily.

• EoC type 2: Longer than a week, planned polyclinic EoCs with contacts yearly to monthly

and diagnoses are given less than once a year.
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Evaluation

This chapter aims at evaluating the clustering performed in this project, assessing the effectiveness,

validity, and reliability of the conducted research. The evaluation process begins by analysing the

cluster partitioning of the final results using quantitative and objective measures. Subsequently, a

result evaluation is presented to determine the degree to which the experimental aims have been

achieved. Finally, a clinical evaluation is conducted to complement the quantitative analysis and

provide a more thorough evaluation of the clustering performance.

8.1 Clustering Validation

Cluster validation refers to formal procedures that evaluate cluster analysis results quantitatively

and objectively, and it is recognised as a vital issue essential to the success of the clustering

application (Liu et al., 2010; Vazirgiannis, 2009). For this project, clustering validity is crucial for

two reasons. Firstly, the absence of prior knowledge of partitions and structures in this project’s

data means the absence of a solid reference point to judge the quality of the clustering model

(Burkov, 2019). Secondly, most clustering algorithms behave significantly differently depending

on the selected features and the initial assumptions for defining the partitions (Halkidi et al.,

2002). Therefore, validating the completed clustering process is essential to secure the quality of

the results.

To validate the clustering, one separates between external, internal, and relative cluster validity.

External validation implies comparing a clustering algorithm’s results with a pre-specified data

structure (Halkidi et al., 2002). Since the obtained clustering structure was unknown before the

experiment was conducted, this validation approach was irrelevant to this project. Internal cluster

validation evaluates whether the clustering structure produced by a clustering algorithm fits the

data without reference to any external information. Relative validation compares different cluster-

ing structures resulting from the same algorithm but with different parameter values (Theodoridis

and Koutroumbas, 2008). For this project, internal and relative clustering validation is completed.
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An internal cluster validation technique used was measuring the data’s clustering tendency. This

was done to ensure that the data were predisposed to cluster into natural groups without identifying

the groups themselves. This precaution was made because clustering algorithms tend to find

clusters in the data irrespective of whether or not any clusters are present. To measure the

clustering tendency, Hopkins statistics was used. Hopkins statistics is a well-known estimator of

randomness in a data set (Banerjee and Davé, 2004). To this date, no Python implementation of

Hopkins statistics directly supports mixed data. Therefore, the get dummies function provided by

Pandas was leveraged to convert categorical values into dummy or indicator variables (Pandas,

n.d.). From this function, the Python toolkit pyclustertend was utilised to calculate the data’s

Hopkins scores for the EoC and EoC Bundle data across all three iterations (pyclustertend, n.d.).

These scores are presented in Table 8.1 and Appendix B.2 presents the implementation. A score

gravitating to 0 indicates that the data has a high cluster tendency, while a score above 0.3 indicates

that the data has a low cluster tendency (Banerjee and Davé, 2004). Given the low Hopkins scores

obtained in all three iterations for both the EoC and EoC Bundle data, it can be inferred that the

data exhibits natural clusters. Hence, using clustering to facilitate the predictive analysis based

on groupings is reasonable from a technical perspective.

Iteration EoC Data’s Hopkins Score EoC Bundle Data’s Hopkins

Score

First iteration 0.018 0.008

Second iteration 0.008 0.003

Third iteration 0.013 0.012

Table 8.1: Assessing the clusterability of the data by calculating the Hopkins scores.

Internal and relative clustering validation may be used separately or in combination to evaluate the

optimal number of clusters. This evaluation is important since the number of clusters (k) largely

impacts the quality of the clustering results. If the wrong number of clusters is assigned to the

algorithm, the clustering results in a partitioning scheme that is not optimal, which may lead to the

wrong grouping of objects (Halkidi et al., 2002). This project used the well-known Elbow method

to find and evaluate the optimal number of clusters (Burkov, 2019). The Elbow method evaluates

the sum of the square distances between the data points and the cluster centroids as a function

of the total number of clusters. As the number of clusters increased, the percentage of within-

cluster dispersion decreased. This was visualised using plots, and the optimal cluster number was

chosen where the graphs changed from rapidly decreasing to more or less being parallel with the

x-axis (Tibshirani et al., 2001). The different elbow representations of finding an optimal k in

the experiment (referring to the Figures 6.13, 6.15, 6.35, 6.37, 6.55, and 6.57) are shaped more or

less as elbows, verifying the clustering tendency indicated by the Hopkins score (Theodoridis and

Koutroumbas, 2008).

Various internal clustering validation techniques can be used to validate obtained cluster parti-

tioning. However, since these are mostly based on statistical tests, the mathematical operations

cannot be applied directly to mixed data (Aschenbruck and Szepannek, 2020). Hence, these in-

ternal validation techniques were not applied in this project.
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8.2 Result Evaluation

The following section assesses the experimental aims to evaluate the findings from the three cluster-

ing iterations. Further details regarding the findings’ interpretation, implications, and limitations

are presented in Section 9.2.4.

1. Assess the feasibility of clustering for identifying patient trajectory subgroups

This first experimental aim entails the ability to use a clustering approach to identify subgroups. As

detailed in the subsequent evaluation, the application of clustering successfully yielded subgroups

of patient trajectories highlighting both similarities and differences. Additionally, as described in

Section 8.1, the evaluation confirmed the data’s distinguishability.

Through the clustering process, subgroups were identified, indicating the achievement of the first

aim. After three iterations, the features exhibited reduced redundancy, leading to more insight-

ful results. Notable, altering certain categorical features to numerical features and modifying the

categorisation of some categorical features resulted in a clearer clustering outcome. This demon-

strates that the iterative approach and the repetitive feature selection enhanced the feasibility of

identifying patient trajectory subgroups through clustering.

2. Identify subgroups of EoCs that have similar characteristics

The three iterations could all distinguish the EoCs into three EoC subgroups. In the first iteration,

the clustering process grouped the EoCs into three relatively equal-sized subgroups compared to

the last two iterations. However, the EoCs in the first iteration were impacted by the EoC lengths,

which resulted in less informative results. The last two iterations grouped EoCs in three unequally

sized subgroups. However, these results were more insightful when interpreted by clinicians. Com-

pared to the results from the first iteration, the results obtained in the last two iterations can be

considered better as unnecessary features were removed.

In the third iteration, the clustering identified three subgroups that consisted of 1 340, 872 and 10

448 EoCs. The distributions of various feature values distinguish these subgroups. In short, the

EoC subgroups identified had the following characteristics. The first subgroup, EoC Type 0, is

characterised by shorter, planned, polyclinic EoCs dominated by high-frequency contacts but few

diagnoses. The second subgroup, EoC Type 1, is also characterised by shorter lengths. However,

these EoCs are often inpatient, and for some EoCs, the immediacy level is “acute”. These EoCs

also include frequent contacts, and diagnoses are given on each axis weekly to daily. The third

subgroup, EoC Type 2, largely varies from the prior two by being longer, planned, polyclinic EoCs.

The frequency of contacts and diagnoses for these EoCs is much lower. Further interpretations of

the EoC clusters are presented in the result discussion in Section 9.2.4.

Similarities can be observed within the three EoC subgroups identified in the final results. How-

ever, it is noteworthy that one of these subgroups was larger than the other two. This led to a

comparatively less comprehensive representation of this larger subgroup’s details. To address this

limitation, feature modifications were made during the final iteration to obtain a more compre-

hensive outcome differentiating the EoCs within this subgroup. Unfortunately, this objective was

not accomplished. Further insights regarding the reason for this outcome are presented in the

result discussion.
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3. Identity subgroups of EoC Bundles that have similar characteristics

Throughout all three iterations, distinguishable subgroups of EoC Bundles were successfully iden-

tified. Three EoC Bundle subgroups were identified in the first iteration, but the subgroups did not

reveal many informative differences. More interesting results emerged in the last two iterations,

with four distinct EoC Bundle subgroups identified. The outputs in these two iterations were quite

similar.

In the final iteration, the resulting EoC Bundle subgroups comprise 636, 733, 3 503 and 4 031

EoC Bundles. Several features can distinguish these subgroups. In short, the key distinguishing

features in the cluster subgroups are the following:

• EoC Bundle Type 0: These EoC Bundles exhibit varying lengths, predominantly involving

patients older than 7 years with “Moderate function in social areas”. This subgroup has the

highest percentage of females. The EoC Bundles within this subgroup typically include at

least one EoC of type 1 (short, inpatient and sometimes acute EoCs with frequent contacts

and diagnoses) and often one or more EoCs of type 2 (longer, planned polyclinic EoCs with

low frequency of contacts and diagnoses).

• EoC Bundle Type 1: This subgroup primarily consists of patients older than 7, with many

EoC Bundles where “Missing data” or “No diagnosis” on the first axis. The EoC Bundles

in this subgroup always include at least one EoC of type 0 (short, planned polyclinic EoCs

with frequent contacts but low frequency of diagnoses) and sometimes an EoC of type 2.

• EoC Bundle Type 2: This subgroup includes mostly patients younger than 14 and exhibits

the highest percentage of males. This subgroup also has the highest amount of “Severely

impaired patients in many social areas”. Almost all EoC Bundles of type 2 only include one

EoC of type 2.

• EoC Bundle Type 3: This subgroup includes the largest percentage of patients older than

11 and a CGAS score above 60. These EoC Bundles exclusively include EoCs of type 2.

Considering these distinguishing features, it is possible to differentiate between the various EoC

Bundle subgroups. However, one should note that the EoC Bundle clusters are also affected by

the large EoC subgroup, making it challenging to distinguish EoC Bundle subgroups, including

this EoC type, on a detailed level. Despite this, it is evident that subgroups of EoC Bundles

with similar characteristics have been identified. Therefore, the overall findings demonstrate the

successful identification of EoC Bundle subgroups exhibiting similar characteristics.

4. Identify similarities in patient characteristics.

The patient characteristics, age and gender, were included in all three iterations. In the initial iter-

ation, the gender and age distribution among the cluster were almost identical. The distributions

were similar to the overall cohort description provided in Section 6.3. However, in the second and

third iterations, the age and gender distribution were more varied.

Upon consultation with clinicians, the initial assumption was that patient trajectories would be

noticeably differentiated based on gender and age. However, this assumption did not hold, which

is an interesting result. It suggests that the patients’ age and gender do not substantially indicate

distinct trajectories.

The Care situation feature was added in the last iteration in the hope of detailing more patient

information. However, the value distribution of this feature is not showing large differences. This

result is also intriguing, as it reveals that the care situation perhaps is not key in identifying patient

trajectories.

118



CHAPTER 8. EVALUATION

Overall, while similarities regarding patient characteristics were found, they emerged differently

than anticipated, and there were limited distinguishing differences between the EoC Bundle sub-

groups. These findings highlight that age, gender, and care situation might not hold significant

predictive power when identifying patient trajectories.

5. Identify commonalities based on key characteristics defining the EoCs and EoC

Bundles

Key characteristics defining EoCs and EoC Bundles include EoC length, care level, immediacy

level, EoC Bundle length, and diagnoses on the six axes at the beginning of an EoC Bundle. The

EoC length significantly impacted the results in the first iteration, rendering the other features

less influential. This can be visualised in the first iteration’s EoC SHAP plot in Figure 6.14.

The commonalities regarding care and immediacy level were much clearer in the second and third

iterations. One subgroup had a much higher percentage of acute inpatient EoCs, while the other

two consisted of planned polyclinic EoCs.

The EoC Bundle lengths were distinguishable in all three iterations. The average EoC Bundle

length in the final iteration varied from 365 to 997 days. There might be a relation between the

EoC lengths and the CGAS score given on Axis 6. Upon examining the means, the EoC Bundle

subgroup with the longest EoC Bundles tends to have the EoC Bundles with the lowest CGAS

score. However, evaluating the EoC Bundle length in conjunction with the diagnoses becomes

challenging. Referencing the discussion section will provide further insights into the potential

implications of EoC length.

In the first iteration, all diagnoses given on the six axes were included as categorical values.

Although this approach provided more detailed diagnostic findings than the subsequent iterations,

the details lacked informative value, and several diagnostic codes had a low occurrence. Therefore,

a modification in the second iteration specifies whether axes 2-5 have diagnoses rather than which

specific diagnoses are given. This adjustment resulted in a clearer separation between EoC Bundles

with or without diagnoses and revealed a trend of EoC Bundles not having diagnoses on axes 2-4.

The diagnosis on Axis 6 at the beginning of an EoC Bundle was converted to a numerical value

after the first iteration, facilitating a more realistic comparison. In iterations two and three, these

features greatly impacted the model output. The Diagnosis Axis 6 feature’s impact on each of

the three iterations’ model output can be visualised in the following plots: Figures 6.16, 6.38, and

6.58. However, it is worth noting that changing all missing values to “5” in these iterations made it

more challenging to find true commonalities and differences among EoC Bundles, as many values

ended up being “5” on Axis 6.

6. Identify similarities related to trajectory actions

Actions within a patient trajectory are captured by including features related to contacts and

diagnoses. The total count of diagnoses and contacts and a breakdown of the individual contact

types and diagnoses across the different axes were included in the first iteration. It was observed

from the SHAP plot in Figure 6.14 that these features impacted the results. Due to a strong

correlation between the total count of diagnoses and contacts and the individual types of these,

the two total count features were removed. Additionally, due to an identified correlation between

the action features and the length of the EoCs, the features were changed to be presented as

frequencies instead of counts. This made it possible to identify more distinct similarities between

the individual types of contacts and diagnoses.
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Comparable similarities concerning the trajectory actions are observed in the last two iterations.

Looking at the final iteration, EoC Type 0 has frequent contacts but a lower frequency of diagnoses,

EoC Type 1 has both frequent contacts and diagnoses, and EoC Type 2 has a low frequency of both.

Additionally, the last two iterations include the Percentage of primary axis diagnoses feature. This

feature demonstrates no clear relation between the frequency of diagnoses given and the percentage

of these being primary diagnoses on one of the axes. Notably, EoC Type 0 and EoC Type 2, which

have low frequencies of diagnoses set, differ largely in the percentage of primary diagnoses. This

discrepancy suggests the possibility that no diagnoses are given in EoC Type 0, although further

exploration is necessary.

The feature Number of contacts before primary Axis 1 diagnosis is introduced in the third iteration.

This feature shows a difference between the subgroups ranging from EoC type 0 that either has a

diagnosis at the beginning of the EoC or never gets one, to EoC type 1, getting a diagnosis before

25 contacts and EoC type 2 displaying a more varied amount of contacts before diagnosis.

8.3 Clinical Evaluation

The results from the final cluster iteration were presented to clinicians to obtain a professional

evaluation of the experiment conducted. Recognising that evaluation solely based on data can be

challenging, the objective was to gather insights and feedback based on human judgement (Burkov,

2019). During the presentations, no interpretations were provided. This was done to ensure that

the professionals’ evaluations remained unbiased. The individuals involved were encouraged to

express their thoughts, provide remarks, and raise concerns from their professional standpoint,

considering clinical practice and their knowledge derived from previous research. The aim of

involving clinicians and other domain experts was to gain valuable insights and perspectives that

could further enhance the evaluation. The feedback obtained is also utilised in Section 9.2.4 to

discuss the final results.

The expert evaluation was conducted through the following series of meetings:

• May 16th, 2023: Meeting with Odd-Sverre Westbye.

• May 26th, 2023: Meeting with the IDDEAS team.

• May 26th, 2023: Meeting with Birgit Kleinau.

The specific structure of the meetings varied depending on the expertise and preference of the

individuals involved. However, a consistent aspect was the visualisations presented, detailed in

Chapter 7. This evaluation will present key elements derived from the meetings, starting with

evaluating the EoC subgroups and the associated features. It then delves into the identified EoC

Bundle subgroups and discusses features involved on this level. Finally, some concluding clinical

evaluation thoughts are presented.

The initial feedback regarding the EoC clustering from all clinicians was the meaningfulness of the

division of three EoC clusters. The EoC Type 2 cluster was considered representative of “typical”

hyperkinetic EoCs, characterised by being longer, planned polyclinic. Separating these EoCs from

the shorter EoCs in EoC Type 0 and EoC Type 1 was deemed clinically logical. According to the

experts, typical hyperkinetic EoCs would include initial diagnoses on the six axes and then regular

appointments for therapy sessions and examinations to re-evaluate the diagnoses. They also note

that it is reasonable that these EoCs run over many years.
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An important aspect discussed by all experts was the desire for more detailed information regarding

these typical hyperkinetic EoCs. This aligns with the feedback obtained during the second iteration

of the clustering process. The experts noted in this final feedback round that it is intriguing that

after removing rejected patients, the clustering process did not succeed in further differentiating the

subgroups. This finding suggests adding more features to achieve a more detailed EoC separation.

Looking at specific features, experts deem the correlation between acute and inpatient EoCs reas-

onable, and categorising them into a separate cluster confirms that these EoCs are distinct and

treated differently. The EoCs in the EoC Type 1 group exhibit the highest frequency of contacts

and diagnoses compared to the other EoC types. This finding is considered logical by clinicians

since these EoCs are more severe, and inpatient clinics often follow a more systematic approach in-

volving multiple contacts and numerous diagnoses. The experts highlight that admitting a patient

to an inpatient EoC is rare. Hence, it is expected that they require more resources.

It is also interesting to note that EoCs shorter than a week but not classified as inpatient or acute,

often identified in EoC Type 0, have fewer diagnoses. According to the experts, this could be

attributed to the EoCs being polyclinic visits without the same strict, systematic approach or

that these are patients who may not meet the diagnostic requirements. Furthermore, the experts

observe that if it is true that many of the patients in this group never received diagnoses on the

six axes, it is surprising that they are not rejected from further treatment. They speculate that

this may be attributed to human or system errors or possibly differences in approaches over the

years. Clinical experts emphasise that it is seldom for a patient without any diagnosis to continue

their treatment.

The experts acknowledge that the contact frequency being mostly yearly to monthly for EoCs

belonging to EoC Type 2 is reasonable. However, they expressed an interest in more detailed

information regarding the timing of the contacts. They believe that most contacts occur during

the initial period of an EoC to diagnose a patient. The clinicians suggest that relying solely on

the frequency of contacts for the whole EoC may provide a misleading indication for longer EoCs.

Experts also state that they have experienced that polyclinic EoCs have similar frequencies of

contacts during the initial phase, but this cannot be discerned from the current results.

The final EoC feature presented is the number of contacts had before a main diagnosis is assigned.

The experts find this feature interesting but are concerned that many EoCs have a “No main

diagnosis set” value. “No main diagnosis set” is represented by the numerical value “1 000”,

assigned during the preprocessing when a patient does not have an Axis 1 diagnosis at the EoC

Bundle level and never receives a main diagnosis throughout the EoC. The experts question giving

this value since most EoC Bundles should have a main diagnosis, and the error may lay elsewhere.

However, the experts acknowledge that for certain EoCs, the missing value may be because the

patients have gotten a main diagnosis in a different EoC Bundle than the one this EoC is a part

of.

During the evaluation of the Contacts before a main diagnosis feature, an error was identified in

which Z-codes were included as a main diagnosis. The experts communicated that these codes

should not be considered as a main diagnosis. Consequently, the method for determining the

timing of a main diagnosis should be revised to exclude Z-codes.

When presenting the overall EoC Bundle cluster distribution, the clinicians express that the di-

vision into four EoC Bundle subgroups is logical. They find it particularly interesting that the

EoC Bundle Type 2 and 3 clusters exclusively consist of typical hyperkinetic EoCs. Here, the ex-

perts are interested in determining which other features distinguish the two EoC Bundle clusters.

Additionally, they express curiosity about obtaining more information regarding the two smaller

groups: EoC Bundle Type 0 and EoC Bundle Type 1, to investigate how valuable these clusters

are for further research into trajectories related to hyperkinetic disorders.
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Among the EoC Bundle features, the experts find the gender and age distributions intriguing,

as they do not demonstrate any apparent differences. However, they note that small differences

between the four EoC Bundle clusters warrant discussion. EoC Bundle Type 0 have the highest

proportion of females, followed by EoC Bundle Type 3. EoC Bundle Type 2 has the lowest ratio.

The experts point out that EoC Bundle Type 0 and EoC Bundle Type 3 primarily comprise patients

older than 7. EoC Bundle Type 2 mainly includes younger patients, aligning with previous clinical

experiences stating that males are treated for hyperkinetic disorders at a younger age.

Furthermore, the experts note a relationship between gender, age, and CGAS score assigned at the

beginning of an EoC Bundle. They observe that the EoC Bundle subgroup with the highest ratio

of younger males (EoC Bundle 2) also has the lowest CGAS scores, which suggests a higher level

of disability. This finding aligns with clinicians’ previous experiences and provides data analytic

evidence supporting these.

When further evaluating the diagnoses on the six axes, the experts note that setting the CGAS

score to “5” when no value is given may introduce a data bias. However, they acknowledge that

using numerical values when comparing CGAS scores is more informative than categorical ones.

Thus, they understand the need to remove the missing values and agree it was a good solution.

Additionally, the experts state that although it may be misinformative to analyse the distribution

of CGAS value “5”, examining other values provides more insightful information. By focusing on

the extreme values, they can better understand the patient trajectories.

The experts expected that the care situation would have a greater influence on the patient tra-

jectories than what was uncovered. The results are intriguing, prompting a reevaluation of their

assumption and a need to reassess the relationship between care situations and observed traject-

ories.

Lastly, the distribution of EoCs within the EoC Bundle clusters is evaluated. First, the experts

observe that EoC Type 0 and 1 only occur in the first two EoC Bundle clusters, while EoC Type

2 is present in varying frequencies across all four EoC Bundle clusters, either in combination with

EoC Type 0 and 1 or alone. They note the significance of evaluating EoC Bundle Type 2 and

3 together since both exclusively contain EoC Type 2 EoCs. Compared with other findings, the

experts emphasise that these clusters are distinguishable. EoC Bundle Type 2 include more males,

younger patients, lower CGAS scores, and longer EoCs than the ones comprising EoC Bundle Type

3.

The experts state some interesting thoughts, focusing on EoC Bundle Type 0, which contains most

of the EoC of type 1 (short, inpatient, and acute EoCs). First, they state that when investigating

the EoC types within these EoC Bundles, the low CGAS scores concur with the EoC being the

acute ones. The experts also state that this coincides with their experience that EoCs of type

1 are more severe and that this impact the severity of the EoC Bundles (as seen by the CGAS

scores). Furthermore, the clinicians state that it is interesting to note that the EoC Bundles of

Type 0 often include both an EoC of type 1 and one or more “typical” hyperkinetic EoCs. This

is interesting to the clinicians because it shows that changes occur within trajectories resulting in

more acute and severe EoCs.

Looking at EoC Bundle Type 1, the EoC Bundles mainly include EoCs of type 0 (short, planned and

polyclinic EoCs with few diagnoses). Additionally, almost half of the EoC Bundles of type 1 also

include a “typical” hyperkinetic EoC. This surprises the clinicians because it may contradict the

suggestion that patients with an EoC of type 1 should have been rejected. However, further detailed

information is needed to evaluate the reason behind this combination of EoCs and understand the

contributing factors.
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Ending the meetings, the clinicians all state that they find the results interesting. They express

curiosity regarding certain similarities found and distributions that emerge within the results. The

experts note that distinguishable features have shown intriguing combinations, either confirming

previous experiences or raising new ideas and questions. Overall, their keen interest and exploration

of various aspects indicate that they find the results engaging and thought-provoking. They also

note that many similarities and differences are starting points for new questions and areas for

further research. Lastly, the clinicians highlight their enthusiasm for using EHR data to obtain

insight regarding complete patient trajectories.
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Chapter 9

Discussion

The discussion critically analyses the research methodology and results, considering the choices

made during this project. It begins by presenting the methodology discussion, followed by a detailed

examination of the results obtained. This chapter highlights the challenges encountered and suggests

areas for improvement.

9.1 Method Discussion

This project adhered to the research method outlined in Section 1.3. A key component of this

method was the clustering methodology followed in the experiment. To discuss this methodo-

logy, the implications of the k-prototypes algorithm are presented. Furthermore, the challenges

encountered during the clustering validation, conducted as a part of the evaluation, are discussed.

This method discussion also addresses the implications of specific clustering techniques employed

in the experiment. Furthermore, another important factor of this method was the incorporation

of clinical evaluation throughout the experiment and in the concluding evaluation. The final part

of this section elaborates on the implications of this inclusion.

9.1.1 Implications of the Clustering Algorithm

The choice of the clustering algorithm in this project was made considering the factors presented in

Section 3.2.1. As presented, this choice mainly depended on this project’s data. To cluster mixed

data, there were two possible options; either clustering the mixed data directly or converting the

values to either numerical or categorical values and choosing a suitable algorithm for the chosen

type. For this project, the mixed data was directly clustered to avoid potential information loss

associated with data conversion. Consequently, the chosen clustering algorithm for this project was

k-prototypes. Using k-prototypes, the project resulted in distinct clusters identifying similarities

and differences in patient trajectories. However, one should note that other approaches also could

have been used.

The choice of directly clustering mixed data differentiates from the data conversion performed in

the reviewed papers presented in Section 4.1. These research converted the data and then applied

k-means algorithm. Considering internal validation, converting the data is advantageous since

indices can be more easily applied. However, the data conversion techniques used in these papers

are complex and time-consuming. Therefore, in this project, it is considered beneficial to have

chosen a less complex approach due to the limited time scope. This decision allowed for more time

to interpret and evaluate intermediate findings and results in collaboration with clinicians.
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The choice of directly clustering the mixed data using the k-prototypes algorithm has influenced

the validation of this clustering project and the selection of specific techniques employed during

the clustering process.

9.1.2 Implications of the Clustering Validation

The clustering validation was conducted as outlined in Section 8.1. Both the internal and relative

validations were challenging due to the choice to cluster mixed data directly. The discussion that

follows delves into the difficulties encountered due to this approach.

An important step in the clustering validation was assessing whether the available data possesses

a clusterable structure. This assessment was carried out using Hopkins statistics to evaluate the

clustering tendency. However, since the data used for this validation first underwent a temporary

conversion, it is important to consider the extent to which these Hopkins scores accurately reflect

the original data. It can be argued that the temporarily converted data deviates from the original

data used in the clustering process, raising concerns about its representativeness for drawing ac-

curate conclusions about the clustering tendency of the original data. However, gaining insight

into the clustering tendency of slightly modified data may still be considered sufficient to confirm

the presence of a clusterable structure in this project’s data. While the converted data may not

perfectly reflect the original data, it can provide valuable indications and insights into its clus-

tering behaviour. Therefore, even with the conversion-induced modifications, the analysis of the

converted data can still offer meaningful information regarding the clusterability of the original

data.

In an ideal clustering scenario, the cluster partitioning should demonstrate similarity among data

points within the same cluster and dissimilarity to data points in other clusters. To assess the

extent to which this characteristic was achieved in the clustering structures of this project, internal

validation indices should have been employed to evaluate the clustering results. It is worth noting

that many existing cluster validation indices are not suitable for handling mixed data. The possible

adoption of clustering validation techniques to work on mixed data was investigated to address

this challenge. However, it was determined upon closer examination that these adaptations were

not incorporated into the project.

The subsequent discussion aims to provide insight into the reasons behind these adaptations’

exclusion and demonstrate the potential impact such adoptions could have had on the validation

process and the overall validity of the project’s results.

The following indices were investigated to evaluate an adaption to work on mixed data by adjusting

the distance metric presented in Section 3.2.2, Equation 3.2 (Aschenbruck and Szepannek, 2020):

• Gamma index, Gplus index and Tau index : Indices where every within-cluster distance is

compared with every between-cluster distance. These indices have shown promise in being

adapted to work with mixed data. However, it is important to note that these indices

require high computational costs, as each within-cluster distance must be compared with

every between-cluster distance.

• Dunn index : Index adaptable to mixed data as its only requirement is the distance between

two clusters.

• Silhouette index : Index transferable to mixed data as it considers the average within-cluster

distance for each cluster. Compared to the abovementioned indices, this performed the best.

(Aschenbruck and Szepannek, 2020)
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A search for pre-existing code or libraries was done to adapt these indices for validating k-prototypes

clustering on mixed data. The R package clustMixType was discovered in this search (Szepannek,

2019). This R package enables utilising the mentioned internal validation indices on a k-prototype

object and getting an index value rating the cluster partition in return. This package can also

be used to find an optimal value of k by specifying the search range for the optimal number of

clusters (Aschenbruck and Szepannek, 2020). Unfortunately, no equivalent package implemented

in Python was found during the search. Therefore, the possibility of implementing these indices

from scratch as an extension to the Python implementation of the k-prototypes algorithms was

evaluated. However, due to the project’s limited time scope, it was not feasible to undertake this

implementation from scratch.

Including similar validation indices in the Python implementation of the k-prototypes algorithm

could have impacted the performance and analysis of this project’s clustering results. These val-

idation indices would have provided a quantitative and objective measure of the resulting cluster

partitions, enabling a comparison of the effects of various decisions on the clustering outcomes.

However, the unavailability of a Python implementation of these validation indices prevented their

incorporation into this project’s clustering validation.

9.1.3 Implications of the Clustering Techniques

When completing this clustering process, many techniques that impacted the results were used

(Theodoridis and Koutroumbas, 2008). The techniques considered to have the most important

impact on the clustering results are presented in the following discussion.

Feature Selection

Due to the high-dimensional real-world data used in this project, feature selection was a crucial part

of the clustering process. The feature selection aimed to select the features that encode as much

relevant information regarding patient trajectories as possible. However, including more features

did not necessarily make the clustering outcome more informative and made the results harder

to interpret. Irrelevant features blurred the clusters, making it increasingly difficult to pinpoint

the features responsible for the observed differences. Balancing the trade-off between including

informative features and limiting their number for interpretability was crucial for this project. It

required consideration of which features could comprehensively describe the distinguishing factors

among EoCs and EoC Bundles.

The feature selection included evaluating the features from a domain expert and a technological

perspective to obtain optimal results across all three experiments. The SHAP plots, visualised in

Figures 6.14, 6.16, 6.36, 6.38, 6.56, and 6.58, played a crucial role in analysing the impact and

importance of the various features on the decision-making processes of the clustering models. By

exploiting the insights provided by the SHAP method and incorporating the feedback from do-

main experts, adjustments were made to the selected features throughout the clustering iterations.

Notably, significant changes were made to the features used in iteration 1, which substantially

impacted the clustering results obtained in iteration 2.
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Feature Scaling

The feature scaling method is another aspect that impacted the results. Features scaling was an

important part of the data preparation since the numerical data utilised had varying ranges of

units and measurements. Before clustering, the numerical data had to be converted into a uniform

scale because the similarity between data points was determined by their distance from each other.

This data transformation was also beneficial in reducing the impact of the outliers and improving

the model’s performance (Shalabi et al., 2006).

Both normalisation and standardisation were considered when choosing the feature scaling method

since no definitive answer exists on when to use one over the other (Burkov, 2019). To choose

between the two methods, considering outliers was particularly important. Standardisation scaled

the features to a common scale without altering the value range, while normalisation compressed

the data into a smaller range, making distinguishing between the values challenging. This aligned

with the recommendation that unsupervised learning algorithms, like clustering, typically benefit

more from standardisation than normalisation (Burkov, 2019). Therefore, the preferred feature

scaler for this project was standardisation, and specifically, Power Transformer was utilised to

transform the numerical data. This feature scaler was selected because it is well-suited for data

sets containing outliers (Pedregosa et al., 2011).

After selecting standardisation as the preferred feature scaling technique and identifying Power

Transformer as a promising method, a logical next step would have been to compare it with other

standardisation techniques, such as Standard Scaler. This comparison would aim to observe and

evaluate the data implications of each technique. However, without any straightforward internal

validation index to rate the clustering outcomes, it was difficult to determine which technique

produced the best results. Thus, Power Transformer was chosen without delving further into its

impact on the project’s specific data, which may have limited the clustering results.

Initialisation Method for k-prototypes

Another important aspect of the clustering process was the initialisation method. The initialisation

method was used to find the initial centres for the clusters and directly impacted the formation of

the final clusters.

Therefore, the initialisation method had to be carefully chosen. Since there is limited research

on selecting initial cluster centres for mixed data, and no universally accepted method exists, the

choice was not straightforward (Cao et al., 2009). The initialisation methods considered for this

project’s clustering algorithm were random initialisation, Huang, and Cao.

First, random initialisation was considered. k-prototypes can be initialised by randomly selecting

an initial set of cluster centres and then iteratively refining this set. Although this method is

commonly used for its simplicity, it required multiple reruns of the clustering algorithm with

different initial prototypes to identify a good starting point (Cao et al., 2009). Therefore, this

initialisation method was decided early not to be used in this project.
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The next initialisation method examined was the Huang method. This method was the proposed

initialisation method when Huang developed k-modes and k-prototypes. Initialising k-prototypes

with the Huang method entails using the most frequent categorical data as initial prototypes to

increase diversity among the prototypes. Huang conducted an experiment where he compared

initialising k-modes with the Huang method and with random initialisation using real-world data.

The results showed that initialising k-modes with Huang yielded significantly better results than

random initialisation. However, when Huang was used with k-prototypes on the same real-world

data set, the results were not enhanced much from randomly initialising the cluster centres (Huang,

1998). The difference in using the Huang method with k-modes and k-prototypes lies in the

initialisation approach, which fails to account for both numerical and categorical features when

selecting the most common categories as initial prototypes (Huang, 1998).

The third initialisation method examined was the Cao method. Cao, presented in Section 6.9,

is a frequency-based initialisation method proven superior to the random initialisation method.

The Cao method, similar to the Huang method, chooses the first initial cluster centre based on

the assumption that the more objects around a data point, the more possible it is for this data

point to be a cluster centre. When selecting the rest of the initial cluster centres, the Cao method

distinguishes from Huang by considering both the density of objects and the distance between

them (Cao et al., 2009).

An explicit evaluation comparing Huang and Cao as the initialisation method for k-prototypes

when clustering a real-world data set lacks. Therefore, the first iteration of the EoC clustering

was conducted twice to decide whether Huang or Cao was the optimal initialisation method for

this experiment. Once again, the issue of not having any internal validation indices to rate the

performance of the two clustering outcomes was raised. However, while determining the optimal

number of clusters and subsequently clustering the data using this number, both methods identi-

fied the same cluster count, and the resulting clustering centroids were quite similar. Given this

resemblance, Cao was selected as the preferred initialisation method. Refer to Appendix B.3.1 to

see the code written when deciding the initialisation method and the comparison of the resulting

cluster centroids obtained when using Huang and Cao.

Finding an Optimal k

Since the number of clusters (k) in the data set was now known beforehand, finding the optimal

number of clusters was crucial for accurate clustering results. This process relied on making

an “educated guess” based on visualisation or metrics to determine the appropriate value for k

(Burkov, 2019). While various techniques are available for finding k when clustering numerical

data, the number of techniques suitable for mixed data is limited and is considered a challenging

problem (Ahmad and Khan, 2019). The following discussion presents the exploration of methods

for finding k to contextualise the “educated guess” made and demonstrates how identifying an

optimal k was complicated with multiple possible solutions.

First, visualisation techniques were examined and tested to find an optimal number of clusters.

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) was the first

to be tested. UMAP reduced the dimensionality of the features selected for the first clustering

iteration to two dimensions and visually represented the data structure (McInnes et al., 2018).

The visualisations did not indicate clear EoC or EoC Bundle data groupings. Thus, UMAP was

not further used to determine an optimal number of clusters in this project. Refer to Appendix

B.3.2 to see the implementation of the UMAP technique using the first iteration’s EoC and EoC

Bundle data and the resulting visual representations.
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Another visualisation technique that was tested is the Elbow method. Two plots displaying an

elbow-shaped graph were generated by applying the Elbow method to the EoC and EoC Bundle

data from the first iteration (referring to Figure 6.13 and Figure 6.15). This outcome suggested

that the Elbow method performed well with the available data in this project. Consequently, the

Elbow method was utilised to determine the optimal number of clusters for both the EoC and EoC

Bundle data in each of the three iterations conducted throughout the experiment (referring to the

Plots 6.13, 6.15, 6.35, 6.37, 6.55, and 6.57).

Then, an investigation of methods that determine the optimal number of clusters based on a

validation index was conducted. By utilising both visualisation and a validation index, the goal

was to ensure that the number of clusters identified was optimal. Although numerous established

distance-based clustering validation indices are available for numerical data, the options are limited

for mixed data. However, research has shown that numerical validation indices can be adapted for

mixed data by modifying the distance metric (Aschenbruck and Szepannek, 2020). Nonetheless,

these modified validation indices have not yet been implemented in Python and thus were not

employed for this project.

9.1.4 Implications of Clincans Involvment

Choosing the features to cluster, the scaling method, the initialisation method, and determining

the optimal number of clusters are all choices that could have led to significantly different clustering

outcomes. According to the book Pattern Recognition in the context of clustering as a data mining

tool, it is stated that Subjectivity is a reality we have to live with from now on. (Theodoridis and

Koutroumbas, 2008, p. 597). The book emphasises that in terms of clustering, multiple clustering

results might exist that can all be considered valid. In light of this, involving domain experts has

been crucial to obtaining meaningful clustering results. While expert evaluation provides valuable

insights, including quantitative validation indices could have added an extra layer of objectivity

and rigour to the evaluation process.

The selection of clinicians in this experiment has impacted the project. Incorporating feedback and

evaluations from domain experts influenced the modifications made throughout the experiment and

the subsequent evaluation. It is important to acknowledge that opinions are subjective and can be

influenced by personal biases, leading to individual variations. To mitigate the subjectivity of the

feedback and the evaluation, an effort was made to include clinicians with extensive experiences and

diverse backgrounds. The aim was to minimise individual biases and provide a more comprehensive

perspective. However, it should be recognised that other clinicians may have offered different

opinions. This could have influenced the experimental choices and potentially led to different

results. This aspect should be considered when presenting the interpretations in the next section.

9.2 Result Discussion

Interpretations, implications, limitations, and recommendations are presented to discuss the res-

ults obtained. The interpretations utilise the evaluation done and the knowledge gained. Then,

the limitations found are summarised to provide a critical project analysis. The implications will

detail the significance of the experiment performed. Lastly, the recommendations highlight po-

tential directions for further research, suggested modifications or improvements and unanswered

questions requiring additional exploration. This discussion aims to contribute to understanding

the experiment performed and guide future research.
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9.2.1 Interpretations

The initial interesting interpretation from the results suggests that most patient EoCs can be

categorised as “typical” EoCs for individuals with hyperkinetic disorders. The evaluation revealed

that this outcome did not surprise the clinicians. However, it provides empirical evidence through

data analysis supporting existing experiences within the field. Furthermore, these results could be

attributed to hyperkinetic treatment guidelines followed by CAMHS in Norway. The objective of

these guidelines, presented in Section 2.4, is to minimise undesired variation in patient treatment,

uphold treatment quality, and assist in resource allocation prioritisation (Helsedirektoratet, n.d.).

Based on the clustering results, one can infer that the prevalence of EoC Type 2 may be due to the

procedure guidelines fostering a similar treatment and diagnostic approach for most hyperkinetic

patients. While it is impossible to prove this from the results, the similarity among EoCs could

indicate an effective procedure.

EoCs belonging to EoC Type 1 are observed in all four EoC Bundle clusters. However, EoC

Bundle Type 2 and 3 predominantly consist of one or more EoCs of type 2. Interpreting the

difference between these two EoC Bundle clusters is intriguing. EoC Bundle Type 2 comprises

younger patients and a higher percentage of males than EoC Bundle Type 3, concurring with

the clinicians’ previous experiences of females often being treated for hyperkinetic disorders later

in life. Additionally, EoC Bundles of type 2 are normally longer. This can be interpreted as a

result of regular follow-up until the patients reach a certain age where they are no longer eligible

for treatment. Therefore, when hyperkinetic disorders are identified earlier, the treatment period

tends to be longer. Another notable difference between the two EoC Bundle clusters is that the

cluster with a higher ratio of younger male patients exhibits lower CGAS scores. This discrepancy

warrants further analysis to understand if this difference is gender- or age-related.

Upon consulting with clinicians, it has been established that there are many requirements to fulfil

for a patient’s EoC to be classified as acute and inpatient, which is uncommon for hyperkinetic

patients. Multiple criteria are often met to classify an EoC as an EoC Type 1. This EoC type’s

frequency of contacts can be an indicator of a more severe EoC. Comparing the EoC clusters, EoC

Type 1 has the highest frequency of diagnoses on all six axes. Furthermore, these EoCs also have

the highest percentage of diagnoses given as the primary axis diagnosis. This diagnostic profile

indicates that EoCs of type 1 involve more severely impacted patients requiring more extensive

treatments. However, it should be noted that the high frequency of diagnoses may also be influenced

by other procedures implemented in an inpatient clinic.

When observing the EoC Bundles of type 0, including the most EoCs of type 1, these EoC Bundles

often have significantly lower CGAS scores. This indicates a higher level of disability, which aligns

with these EoC Bundles having at least one inpatient, acute EoC during the EoC Bundle. Ad-

ditionally, it is interesting to note that EoC Bundle Type 0 is the EoC Bundle cluster with the

highest percentage of females. This observation may imply that females diagnosed with hyperkin-

etic disorders experience severe issues or face other challenges in combination with hyperkinetic

disorders requiring greater attention. However, this interpretation needs more detailed findings to

validate.

Further interpreting the EoC Bundles including EoC Type 1, it becomes apparent that these

EoC Bundles frequently include one or more of the EoCs of Type 2 referred to as the “typical”

hyperkinetic disorders EoCs. This observation suggests an occurrence within an EoC Bundle,

leading to a modification in the immediacy and care level of the consecutive EoCs. Due to limited

information regarding the timing of these changes, no definitive interpretations have been made.

However, it would be interesting to investigate the underlying cause of this alteration.
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An interpretation made by the experts was that the EoCs of type 1 include patients that should

have been rejected. This interpretation stems from the diagnostic profile of these EoCs. Most of

these EoCs rarely include diagnoses given on the six axes. Furthermore, these EoCs often start with

a main diagnosis on the EoC Bundle level that never changes during the EoC, or they start without

a diagnosis on the EoC Bundle level and never receive one during the EoC Bundle. Iteration three

excluded all the EoC Bundles and belonging EoC entries where the EoC Bundle had been assessed

to be rejected or its closing code was either “Rejected” or “Did not get started”. By doing this,

the aim was to eliminate all patients rejected. However, the interpretation that some patients still

should be classified as rejected implies that the data might not be logged correctly or that further

investigation into other features is necessary to eliminate all rejected patients. Another input from

the clinicians was that some patients do not receive diagnoses during the EoCs of type 0 because

they already have gotten a diagnosis on Axis 1 in a previous EoC Bundle. This interpretation

and clinicians’ comments suggest a need to explore this EoC subgroup further to obtain a clearer

picture.

Examining the EoC Bundles, including EoCs of type 0, it is evident that these predominantly are

represented in EoC Bundle Type 1. Many of these EoC Bundles last less than a week, suggesting

that these EoC Bundles consist of a single EoC of type 0, where the patients do not receive

diagnoses. No further treatment is likely determined to be necessary for these patients, as suggested

by the clinicians. However, almost half of the EoC Bundles of type 1 are longer than six months,

indicating that the treatments included more EoCs than a single EoC of type 0. Many EoC Bundles

of type 1 also include a typical hyperkinetic EoC. Once again, further information is necessary to

interpret the factors contributing to the separation of EoCs within these EoC Bundles.

9.2.2 Limitations

Numerous limitations have been highlighted in the experiment, interpretation, and evaluation.

Primarily, the limited amount of data introduced multiple challenges. Firstly, one can note that

the limited data and considerations done because of this limitation may have led to the uneven

partitioning of clusters. The resulting clusters consist of two smaller and one larger EoC cluster

and two smaller and two larger EoC Bundle clusters. These uneven cluster divisions limited the

detailed information one could extract from the EoC and EoC Bundle clustering.

Another potential limitation related to the limited amount of data is that the clustering analysis

might have captured random patterns in the data resulting from outliers instead of actual mean-

ingful patterns (Theodoridis and Koutroumbas, 2008). This may be evident in the result, as the

clusters were unevenly divided into EoC and EoC Bundle subgroups. With this limited amount of

data, such outliers might have impacted the reliability of the clustering results. With more data,

the clustering would have been more robust, and the impact of outliers and noise would have been

reduced.

Another limitation regarding the limited amount of data is that the experiment is based on data

collected solely from one hospital in Norway. This limitation implies that the results may not

represent the entire country’s full spectrum of patient trajectories within CAMHS. Therefore,

caution should be exercised when attempting to generalise this project’s findings beyond the context

of the St. Olavs Hospital.
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The options to exclude entries were also limited when conducting the clustering process with this

limited data set. Recognising the importance of preserving information, the aim was to retain as

many entries as possible without including error-prone values. The goal was to have the largest

data set feasible to obtain the deepest exploration of clusters and relationships between data points,

resulting in meaningful and interpretable results. Wanting to include many entries impacted the

choice of features and the data preparation. The feature selection was constrained to features

with minimal occurrence of error-prone values. However, handling missing values was necessary

for the included features. The ratio of missing data for each feature varied, but for many features,

this made up a significant portion. The missing values were replaced with “Missing data” for

categorical values. Regarding numerical features, the missing values had to be transformed into

specific numerical values. As evaluated in the clinical valuation, this might have introduced data

bias.

In the third iteration, a decision was made to exclude all rejected patients from the data set after

careful consideration and consultation with experts. This was done after considering the pros

and cons of reducing the data set size. For further research, this will continue being a limitation

impacting the choice of, for instance, investigating only the EoCs including “typical” hyperkinetic

EoCs. Additionally, the experts suggested exploring the clustering analysis separately for a data

set that includes only females and only males, as well as dividing the data set based on age

groups. While these suggestions are intriguing, the current limitations may restrict the feasibility

of conducting these analyses.

The clustering process was completed using a data set from numerous legacy systems spanning

an extended period. This posed challenges for several reasons. Firstly, heterogeneous system

usage may limit consistency. Each legacy system has been designed and implemented differently,

impacting how data is collected. Not having direct access to the systems made investigating their

functionality and data entered difficult. Additionally, the terminology employed in the system

might have varied, leading to inconsistencies in the data interpretation. This was experienced when

consulting with experts who interpreted the feature values differently. The feature understanding

was a time-consuming process that included eliminating features from further analysis due to a

lack of understanding. Furthermore, due to the systems’ long duration of use, inconsistent data

quality, including errors and missing data, and discrepancies were prevalent. This largely impacted

the data preparation part of this project. Overall, working to understand these systems and their

resulting data required us to be “data archaeologists”. This involved meticulous investigation,

clinical investigation to acquire domain knowledge, and consultations with experts and systems

users to understand the data.

A timeline of actions was condensed into count-based features to capture the activity level regarding

contacts and diagnoses during patient EoCs. By doing this, data dimensionality was reduced,

making the data easier to interpret. The count-based features also facilitated analysis of the

intensity of contacts and diagnoses within an EoC. This helped distinguish EoCs with frequent

and infrequent contacts and diagnoses. However, this simplification has certain limitations. The

expert evaluation suggests that temporal information may be lost as it becomes difficult to identify

specific timing patterns regarding contacts and diagnoses. To address this, dividing the count into

smaller, time-specific counts could capture different aspects of the data and enhance the clustering

analysis. Still, there is always a possibility that a simplification may lead to a loss in valuable

temporal patterns and dynamics present in the data set.
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9.2.3 Implications

The experiment conducted to identify clusters of EoC and EoC Bundles within the context of hy-

perkinetic disorders in CAMHS in Norway carries several implications. Identifying distinct clusters

provides insights into the characteristics of patient trajectories, shedding light on different patterns

and variations within the data set. In short, the results provide information regarding patients’

characteristics, contacts, diagnoses, and overall trajectories related to hyperkinetic disorders. The

project contributes to understanding the disorder’s treatment and potential differences separating

the trajectories. Furthermore, the insights lay a foundation for further research and raise multiple

questions to evaluate.

Considering the theoretical implications of this Master’s Thesis, the experiment conducted is the

first to consider these features and CAMHS patient trajectory aspects within Norwegian research.

A previous IDDEAS research has used the same data but limited the analysis to patients’ referral

to CAMHS in Norway (Solheim, 2022). As the first to analyse patient trajectory similarities

using a cluster-analytic approach, this research holds the potential to serve as a stepping stone for

future research within the same field. The hope is that this work establishes a solid foundation for

subsequent research by encompassing comprehensive data preprocessing and analysis, evaluation

and raised important questions.

Furthermore, using clustering, the experiment resulted in subgroups of EoCs and EoC Bundles. By

doing this, this master thesis has demonstrated how clustering mixed data retrieved from an EHR

can identify similarities and differences in a data set. The thesis has also shed light on challenging

aspects of clustering mixed data and proposed possible ways to handle these. By evaluating and

discussing the choices made, one can get information regarding potential successful outcomes of

the clustering and limitations experienced during the experiment. All this can be useful to consider

in coming clustering research.

9.2.4 Recommendations

From the Discussion and evaluation, several avenues for research have emerged. These recom-

mendations encompass both areas that require further detailed analysis and new approaches to

investigating patient trajectories. Following is a summary of the main recommendations:

1. Condict separate analyses on different subsets of the data set: One suggestion is to

analyse the “typical” hyperkinetic EoCs and the more unconventional EoCs separately. This

approach could cluster these subsets of data into new subgroups identifying more details

regarding each subgroup and revealing new insights about patient trajectories. Similarly,

dividing the data set based on age and gender and performing individual clustering processes

for each group can help identify their similarities and differences. For this recommendation,

it is important to note the limitation of the data set size.

2. Explore features capturing differences within a trajectory: As identified in this

Master’s Thesis, many EoCs come in a sequence in an EoC Bundle. Identifying the order of

these EoCs and the changes occurring between them could yield future interest. Here one

must be prepared to handle missing data, making comparing subsequent EoCs more difficult.

3. Break down count-based features into smaller time periods: Analysing contacts

and diagnoses in smaller intervals is recommended to gain more insights into the patient

trajectories. For example, separating an EoC’s first week or month from the remaining

time period may help identify differences. This approach allows for identifying patterns or

spontaneous changes within the EoC. A limitation impacting this avenue of research is the

missing and error-prone date values of both contacts and diagnoses.
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In short, these recommendations provide a starting point for further investigation into patient tra-

jectories. All relevant code used in the experiment is mentioned throughout the Master’s Thesis

and included in the appendices, which can help guide future research. By building upon the theor-

etical background, preprocessing steps, clustering experimental setup, evaluation, and discussion

conducted in this Master’s Thesis, future research can benefit from a stronger foundation.
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Conclusion and Contributions

This chapter first concludes the work done in this Master’s Thesis in light of the research questions

introduced in Chapter 1. Then the chapter concludes with a presentation of the contributions to

the field of clustering within CAMHS in Norway.

10.1 Conclusion

The following conclusion presents final thoughts on how the work done in this project answers the

research questions derived in Section 1.2.

Research Question 1 How can hyperkinetic patient trajectories in an electronic

health record be identified?

The theoretical investigation gave insight into the patient treatment guidelines for hyperkinetic

disorders and highlighted important factors within patient trajectories. Specifically, the breakdown

of patient trajectories into individual Episode of Care Bundles (EoC Bundles) containing one or

more Episodes of Care (EoCs) was demonstrated. Then, the clustering methodology showcased

the potential of employing a cluster analytic approach to identify natural subgroups within the

data, drawing from relevant prior research that similarly utilised Electronic Health Record (EHR)

data.

Using EHR data collected at St. Olavs Hospital, important characteristics regarding EoC Bundles

and EoCs were extracted. The data was prepared for clustering analysis after carefully selecting

data based on the data quality and feature importance. Subsequently, the clustering process was

conducted stepwise using the k-prototypes algorithm. The first cluster step identified subgroups of

the EoC data. Then, clustering of the EoC Bundle data, including the compressed EoC data, was

performed to characterise higher-level subgroups. Consequently, patient trajectory subgroups were

successfully identified, each characterised by distinguishing factors. In short, one could distinguish

the EoCs based on duration, care level, and immediacy level. Furthermore, the frequency of con-

tacts and diagnoses helped to distinguish the three EoC subgroups. These clusters were evaluated

in collaboration with clinicians, who confirmed that one subgroup identified the “typical” hyper-
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kinetic EoCs. The other two subgroups were differentiated by their shorter duration, with one

subgroup including most of the inpatient and acute EoCs with frequent contacts and diagnoses,

while the other subgroup consisted of planned polyclinic EoCs with frequent contacts but a low fre-

quency of diagnoses. By including the identified EoC subgroups when clustering the EoC Bundles,

four EoC Bundles subgroups were identified. The EoC Bundles were also distinguished based on

duration. Furthermore, gender, age, and CGAS score showed distinguishing factors between the

clusters. The EoC Bundle subgroups were further differentiated by the EoCs included within the

EoC Bundles. Two EoC Bundle subgroups were dominated by including “typical” hyperkinetic

EoCs, either in combination with other EoCs or alone. The other two EoC Bundle subgroups

included either the shorter, acute inpatient EoCs or the shorter, planned polyclinic EoCs.

To conclude, this master thesis addressed the first research question by demonstrating how clus-

tering the St. Olavs EHR data could identify subgroups of hyperkinetic patient trajectories. The

theoretical background, methodology, and analysis of the EHR data provided valuable insights and

enabled differentiation of the subgroups based on key characteristics and clinical evaluation.

Research Question 2 How can patient trajectory clusters be made meaningful to

clinicians?

Important factors within patient trajectories were identified by official guidelines within Child

and Adolescent Mental Health Services (CAMHS) in Norway and by involving clinicians through-

out the experiment. This ensured that the features used in the clustering process were clinically

relevant and informative. Continuously presenting the findings and modifying, adding, and re-

moving features based on clinical feedback allowed for continuous improvement of the clustering

outcomes. These modifications involved changing categorical features to numerical, when this was

more informative, changing from sum to frequency of contacts and diagnoses, and adapting the

presentation of the different diagnoses on the six axes to reflect the amount of data registered on

the axes. These changes all made the clustering findings more meaningful for clinicians.

The findings could be interpreted by visualising the clustering results, showing these to clinicians,

and involving clinicians in the evaluation. Clinicans’ experiences could be confirmed from the EoC

and EoC Bundle subgroups identified by clustering patient trajectories. These experiences confirm

the differentiation between longer, planned polyclinic EoCs and shorter ones. Furthermore, the

EoC Bundle subgroups could be distinguished by patients’ gender, age, and CGAS scores set. This

separation between the EoC Bundle clusters confirmed that more females are starting their EoC

Bundle at an older age. It also showed that younger boys often have a lower CGAS score, indicating

a more severe level of disability. From the evaluation, the clinicians also confirmed that the clusters

showcased the resources used for different patient trajectories by stating the difference in frequency

of contacts and diagnoses. Lastly, the clusters identified clinical questions and areas for further

research that could provide information to clinicians. This includes separating the trajectories to

gain even more insightful results, investigating the sequence of EoCs within an EoC Bundle, and

breaking down the count-based features.

From this, one can state that the clusters were made meaningful by involving clinicians and

guidelines when deciding the features and by clinically evaluating and interpreting the results.
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CHAPTER 10. CONCLUSION AND CONTRIBUTIONS

10.2 Contributions

This thesis has presented the work done to analyse patient trajectories of patients related to

hyperkinetic disorders in CAMHS in Norway by using clustering of EHR data to identify subgroups.

Through three iterations, the clustering process was conducted using the k-prototypes algorithm,

identifying distinct clusters of patient trajectories. These clusters exhibited features that could be

further analysed by examining the distribution of relevant characteristics within each subgroup.

Using the k-prototypes algorithm to compress information and identify natural subgroups demon-

strated its potential in effectively clustering patient trajectories using EHR data. The thesis dis-

cussed all the considerations made throughout the clustering experiment and highlighted the poten-

tial impact of these choices. The methodology employed in the research successfully clusters patient

trajectories into meaningful subgroups, thus showcasing the applicability of using k-prototypes to

cluster mixed data directly. Furthermore, the acknowledged limitations of cluster validity and

methodology choices shed light on crucial considerations and areas of improvement.

Involving clinicians in this data analysis process enhanced the interpretability and relevance of

the findings. Their expertise and evaluation provided valuable insights throughout the experiment

iterations, confirmed the results, and aligned findings with their experiences within the field. Col-

laborating with clinicians improved the overall analysis and identified potential avenues for future

research.

Based on the aforementioned contributions, it can be affirmed that this work accomplishes the

primary goal of the Master’s Thesis:

Goal Analyse patient trajectories of hyperkinetic disorders in child and adolescent

mental health using clustering of electronic health record data to identify subgroups.
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Appendix A

CAMHS in Norway Code

Mappings

This appendix presents all data features from the St. Olavs database used in the experiment.

Each feature is presented with the corresponding mapping to informative values. The mappings

are based on BUPdata to NPR code mappings described in internal system documentation by

AS, later Visma Unique (last updated 24.03.2010), the table Koder in the database and dialogue

with RKBU Midt-Norge Odd-Sverre Wetbye and psychologist at BUP poliklinikk Klostergata Sanja

Prodanovic. In this appendix, the features are presented in the order described in the Koder table.

A.1 Gender

Code Henvisningsgrunn Referral Reason

1 Jente Female

2 Gutt Male

Table A.1: Mapping between code and patient gender (referring to Koder 1 ).

A.2 Care Situation

Code Omsorgssituasjon Care Situation

1 Hos begge foreldrene Both parents

2 Pendler mellom mor og far Commutes between both parents

3 Bor hos en av foreldrene One parent

4 En foreldre og samboer One parent and partner

5 Hos besteforeldre/andre Grandparents / other family

6 Bor i fosterhjem Fostercare

7 Bor p̊a institusjon Institution

8 Alene Alone

9 Annet Other

Table A.2: Mapping between code and patients’ care situation (referring to Koder 7 ).
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A.3 Referral Reason

Note that all codes above 20 are old codes for referral reasons. These have been mapped to new

codes when possible.

Code Henvisningsgrunn Referral Reason

1 Alvorlig bekymring for barn under 6 år Serious concern for children under 6

years

2 Mistanke om gjennomgripende utvik-

lingsforstyrrelse (autimse)
Suspicion of Autism

21 Autistiske trekk

3 Mistanke om trasslidelse/adferdsfor-

styrrelse
Suspicion of defiance/conduct disorder

29 Atferdsvansker

4 Mistanke om hyperkinetisk forstyrrelse

(ADHD)

Suspicion of hyperkinetic disorder

(ADHD)

30 Hyperaktiv/konsentrasjonsvansker

5 Mistanke om Tourettes syndrom Suspicion of Tourette’s syndrome

6 Skolevegring School refusal

7 Mistanke om angstlidelse
Suspicion of anxiety)

25 Angst/fobi

8 Mistanke om tvangstanker-

/tvangshandlinger
Suspicion of obsession)

26 Tvangstrekk

9 Mistanke om spiseforstyrrelse
Suspicion of eating disorder)

36 Spiseproblemer

10 Mistanke om depresjon
Suspicion of depression)

27 Tristhet/Depresjon/sorg

11 Mistanke om bipolar lidelse Suspicion of bipolar disroder

12 Vedvardende of alvorlig selskading Suspicion of severe self harm

13 Mistanke om psykose
Suspicion of psychosis)

22 Psykotiske trekk

14 Alvorlige psykiske reaksjoner etter

traumer, kriser eller katastrofer

Severe psychological reactions after

trauma, crises or disasters

15 Alvorlige psykiske symptomer sekun-

dært til somatisk sykdom

Severe mental symptoms secondary to

somatic illness

16 Annet

Other reasons

31 Rusmiddelmisbruk

32 Asosial/kriminalitet

34 Spr̊ak/talevansker

35 Syn/hørselsproblem

37 Andre somatiske symptomer

38 Annet

20 Ikke fylt ut av henviser
Not set by referrer

39 Ingen

23 Suicidalfare Suicide risk

24 Hemmet atferd Inhibited behavior

28 Skolefravær Absence from school

33 Lærevansker Learning difficulties

Table A.3: Mapping between code and referral reason (referring to Koder 11 ).
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A.4 Immediacy Level

Code Type øyeblikkelig hjelp Assessment

1 Akutt = uten opphold / venting Acute

2 Ikke Akutt (behandling innen 6 timer) Non-acute

3 Venting mellom 6 og 24 timer 6-24 hours

4 Planlagt Planned

4 Tilbakeføring av pasient fra annet syke-

hus

Return from another level

Table A.4: Mapping between code and EoC immediacy level (referring to Koder 13 ).

A.5 Assessment

Code Tatt imot Assessment

1 Tatt imot Accepted

2 Avlsag pga kapasitet Rejected due to capacity

3 Avslag faglig grunn Rejected due to professional reasons

4 Foreløpig vurdering Assessment so far

Table A.5: Mapping between code and EoC Bundle assesment (referring to Koder 19 ).

A.6 Closing Code

Code Avslutningskode Closing code

1 Fullførst oppdrag Assignment completed

2 Pasienten avbrød Patient cancelled

3 Foresatte avbrød Guardians cancelled

4 Over aldersgrensen Above age

5 Flyttet / feil disrtrikt Moved / wrong district

6 Død Death

7 Avslag Rejected

8 Kom ikke i gang Did not get started

9 Annet Other

Table A.6: Mapping between code and EoC Bundle closing code (referring to Koder 22 ).

A.7 Contact Type

Code Kontakt type Contact type

1 Terapi/samtale Therapy

2 Undersøkelse/observasjon Examination

3 Indirekte pasient arbeid / r̊adgivning Indirect contact

4 Intern beh. planlegging Planning

5 Ikke møt No-show
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Table A.7: Mapping between code and contact type (referring to Koder 31 ).

A.8 Care Level

Code Omsorgsniv̊a Care level

1 Døgnopphold Therapy

2 Undersøkelse/observasjon Examination

3 Indirekte pasient arbeid / r̊adgivning Indirect contact

4 Intern beh. planlegging Planning

5 Ikke møt No-show

Table A.8: Mapping between code and contact type (referring to NPR kodeverk 8406 and mapping

from Westbye).
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Code

B.1 Experiment Code

To ensure conciseness in the appendix, only the code corresponding to the final iteration of the

clustering process will be included. This code contains all the necessary implementation details to

understand the clustering process. By focusing on the final iteration, the essential information is

captured without unnecessary duplication of code.

B.1.1 Data Preparation Code

The following sections present the data preparation code written for the final iteration.

Third Iteration EoC PostgreSQL Query

The following code presents the PostgreSQL Query for the EoC data in the third iteration.

SELECT

opphold.nr AS eoc_id,

opphold.igangdato AS start_date,

opphold.avsldato AS end_date,

min_journal_date,

max_journal_date,

opphold.omsniva AS care_level,

opphold.ohjelp AS immediacy_level,

nr_contacts,

nr_therapy,

nr_planning,

nr_examination ,

nr_no_show,

nr_indirect_contact,

nr_diagnoses_1,

nr_diagnoses_2,

nr_diagnoses_3,

nr_diagnoses_4,

nr_diagnoses_5,

147



APPENDIX B. CODE

nr_diagnoses_6,

nr_main_diagnoses,

nr_diagnoses,

sak.icd1 AS axis1_start,

beforediagnose.count AS contacts_Before_Primary_axis1_diagnosis

FROM

sak

INNER JOIN (

SELECT

*

FROM

opphold

)AS opphold

ON opphold.sak = sak.nr

LEFT JOIN (

SELECT

journal.opphold,

COUNT(distinct journal.nr) AS nr_contacts ,

SUM(CASE WHEN journal.type1 = 1 THEN 1 ELSE 0 end) AS nr_therapy,

SUM(CASE WHEN journal.type1 = 2 THEN 1 ELSE 0 end) AS nr_planning,

SUM(CASE WHEN journal.type1 = 3 THEN 1 ELSE 0 end) AS nr_examination,

SUM(CASE WHEN journal.type1 = 4 THEN 1 ELSE 0 end) AS nr_no_show,

SUM(CASE WHEN journal.type1 = 5 THEN 1 ELSE 0 end) AS nr_indirect_contact,

min(journal.dato1) AS min_journal_date,

max(journal.dato1) AS max_journal_date

FROM

journal

WHERE

journal.type1=1

OR journal.type1=2

OR journal.type1=3

OR journal.type1=4

OR journal.type1=5

GROUP BY

journal.opphold) AS journal ON

opphold.nr = journal.opphold

LEFT JOIN (

SELECT

diagnose.opphold,

COUNT(CASE WHEN diagnose.akse = 1 THEN diagnose.diagnose end) AS nr_diagnoses_1,

COUNT(CASE WHEN diagnose.akse = 2 THEN diagnose.diagnose end) AS nr_diagnoses_2,

COUNT(CASE WHEN diagnose.akse = 3 THEN diagnose.diagnose end) AS nr_diagnoses_3,

COUNT(CASE WHEN diagnose.akse = 4 THEN diagnose.diagnose end) AS nr_diagnoses_4,

COUNT(CASE WHEN diagnose.akse = 5 THEN diagnose.diagnose end) AS nr_diagnoses_5,

COUNT(CASE WHEN diagnose.akse = 6 THEN diagnose.diagnose end) AS nr_diagnoses_6,

SUM(CASE WHEN diagnose.hoved = 1 THEN 1 ELSE 0 end) AS nr_main_diagnoses,

COUNT(distinct diagnose.nr) AS nr_diagnoses

FROM

diagnose

WHERE

diagnose.diagnose is NOT null

AND ( diagnose.akse=1

OR diagnose.akse=2
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OR diagnose.akse=3

OR diagnose.akse=4

OR diagnose.akse=5

OR diagnose.akse=6)

GROUP BY diagnose.opphold

)AS diagnose

ON opphold.nr = diagnose.opphold

/*Adding the nr of contacts before diagnose on axis one WHERE hoved=1*/

LEFT JOIN (

SELECT

opphold.nr AS opphold,

d.dato,

COUNT(distinct j.nr)

FROM

sak

INNER JOIN (

SELECT

*

FROM

opphold

)AS opphold

ON opphold.sak = sak.nr

LEFT JOIN (

SELECT

t.dato,

t.diagnose,

t.opphold,

t.sak

FROM (

SELECT

*,

ROW_NUMBER() OVER (PARTITION BY diagnose.opphold

ORDER BY diagnose.dato AS C) AS row_number

FROM diagnose

WHERE akse = 1 AND hoved = 1

) t

WHERE

t.row_number = 1

/*Main diagnose should not be any of the following codes*/

AND NOT ( t.diagnose ='999'

OR t.diagnose ='f99'

OR t.diagnose ='1999'

OR t.diagnose ='1000'

OR t.diagnose ='000')

) AS d ON d.opphold= opphold.nr

LEFT JOIN (

SELECT

journal.nr,

journal.dato1,

journal.opphold

FROM

journal

WHERE
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(journal.type1=1

OR journal.type1=2

OR journal.type1=3

OR journal.type1=4

OR journal.type1=5) )AS j ON j.opphold = opphold.nr

WHERE

/*Adding the same WHERE clauses here to optimise the code*/

((sak.henvgrunnb1 = '4'

OR sak.henvgrunnb1 = '3'

OR sak.henvgrunnb1 = '29'

OR sak.henvgrunnb1 = '30'

OR sak.henvgrunnb2 = '4'

OR sak.henvgrunnb2 = '3'

OR sak.henvgrunnb2 = '29'

OR sak.henvgrunnb2 = '30'

OR sak.henvgrunnb3 = '4'

OR sak.henvgrunnb3 = '3'

OR sak.henvgrunnb3 = '29'

OR sak.henvgrunnb3 = '30')

OR (sak.icd1 ='F900'

OR sak.icd1 ='F901'

OR sak.icd1 ='F908'

OR sak.icd1 ='F909'))

AND NOT (sak.avslkode = 0 AND sak.avsldato is null)

AND NOT (sak.tattimot = 2 OR sak.tattimot = 3)

AND j.dato1 <= d.dato

GROUP BY

opphold.nr,

d.dato

) AS beforediagnose ON beforediagnose.opphold = opphold.nr

WHERE

((sak.henvgrunnb1 = '4'

OR sak.henvgrunnb1 = '3'

OR sak.henvgrunnb1 = '29'

OR sak.henvgrunnb1 = '30'

OR sak.henvgrunnb2 = '4'

OR sak.henvgrunnb2 = '3'

OR sak.henvgrunnb2 = '29'

OR sak.henvgrunnb2 = '30'

OR sak.henvgrunnb3 = '4'

OR sak.henvgrunnb3 = '3'

OR sak.henvgrunnb3 = '29'

OR sak.henvgrunnb3 = '30')

OR (sak.icd1 ='F900'

OR sak.icd1 ='F901'

OR sak.icd1 ='F908'

OR sak.icd1 ='F909'))

AND NOT (sak.avslkode = 0 AND sak.avsldato is null)

AND NOT (sak.tattimot = 2 OR sak.tattimot = 3)

AND NOT (sak.avslkode = 7 OR sak.avslkode = 8)

ORDER BY

sak.nr,

opphold.nr
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Third Iteration EoC Bundle PostgreSQL Query

The following code presents the PostgreSQL Query for the EoC Bundle data in the third iteration.

SELECT

sak.nr AS eoc_bundle_id,

sak.igangdato AS eoc_bundle_start_date,

sak.avsldato AS eoc_bundle_end_date,

pasient.fdt AS birth_date,

pasient.omsorg1 AS care_situation ,

min_journal_date,

max_journal_date,

pasient.kjon n AS gender,

sak.icd1 AS diagnose_axis_1,

sak.icd2 AS diagnose_axis_2,

sak.icd3 AS diagnose_axis_3,

sak.icd4 AS diagnose_axis_4,

sak.icd5 AS diagnose_axis_5,

sak.icd6 AS diagnose_axis_6,

sak.avslkode AS closing_code,

opphold.nr AS eoc_id

FROM pasient

INNER JOIN (

SELECT

*

FROM

sak

WHERE

((sak.henvgrunnb1 = '4'

OR sak.henvgrunnb1 = '3'

OR sak.henvgrunnb1 = '29'

OR sak.henvgrunnb1 = '30'

OR sak.henvgrunnb2 = '4'

OR sak.henvgrunnb2 = '3'

OR sak.henvgrunnb2 = '29'

OR sak.henvgrunnb2 = '30'

OR sak.henvgrunnb3 = '4'

OR sak.henvgrunnb3 = '3'

OR sak.henvgrunnb3 = '29'

OR sak.henvgrunnb3 = '30')

OR (sak.icd1 ='F900'

OR sak.icd1 ='F901'

OR sak.icd1 ='F908'

OR sak.icd1 ='F909'))

and not (sak.avslkode = 0 and sak.avsldato is null)

and not (sak.tattimot = 2 OR sak.tattimot = 3)

and not (sak.avslkode = 7 OR sak.avslkode = 8)

)AS sak ON pasient.nr = sak.pasient

INNER JOIN (

SELECT

*

FROM
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opphold

)AS opphold

ON opphold.sak = sak.nr

LEFT JOIN (

SELECT

journal.sak,

min(journal.dato1) AS min_journal_date,

max(journal.dato1) AS max_journal_date

FROM

journal

WHERE

journal.type1=1

OR journal.type1=2

OR journal.type1=3

OR journal.type1=4

OR journal.type1=5

GROUP BY

journal.sak) AS journal ON

sak.nr = journal.sak

ORDER BY

sak.nr,

opphold.nr

Third Iteration’s EoC Preprocessing

The following code presents the preprocessing of the third iteration’s EoC Data.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 pd.set_option('display.max_columns ', 30)

5 df = pd.read_csv("../../ Data/Third_iteration_vol2/EoC.csv")

6

7 df = df.drop(['nr_contacts '], axis = 1)#removing total number of contacts

8

9 # Changing to categorical values , adding 0 = "missing data" to handle errorprone

values

10 values_list = [1,2,3]

11 df.loc[~df["care_level"].isin(values_list), "care_level"] = "Missing_data"

12 df.loc[ df["care_level"] == 1, "care_level"] = "Polyclinic"

13 df.loc[ df["care_level"] == 2, "care_level"] = "Outpatient"

14 df.loc[ df["care_level"] == 3, "care_level"] = "Inpatient"

15

16 values_list = [1,2,3,4,5]

17 df.loc[~df["immediacy_level"].isin(values_list), "immediacy_level"] = "Missing_data

"

18 df.loc[ df["immediacy_level"] == 1, "immediacy_level"] = "Acute"

19 df.loc[ df["immediacy_level"] == 2, "immediacy_level"] = "Non_acute"

20 df.loc[ df["immediacy_level"] == 3, "immediacy_level"] = "6-24 _hour_wait"

21 df.loc[ df["immediacy_level"] == 4, "immediacy_level"] = "Planned"

22 df.loc[ df["immediacy_level"] == 5, "immediacy_level"] = "

Return_from_another_hospital"

23

24 # Cleaning the icd1 codes set on axis 1 at beginning of the coresponding EoC_Bundle

to determine the change og NULL values for the

nr_contacts_before_primary_axis1_diagnosis

25

26 df['axis1_start '] = df['axis1_start ']. astype(str)
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27

28 def conditionsICD1F(f):

29 x = (f[1:])

30 if ((x == '21') | (x == '28') | (x == '29')):
31 return 'Schizophrenia/schizotypy/other_mental_disorders '
32 elif (x =='89'):
33 return 'Missing_data '
34 elif (x=='54'):
35 return 'Behavioral_syndromes_associated_with_physiological_disturbances/

physical_factors '
36 elif (x=='99'):
37 return 'Unspecified '
38 else:

39 y = int(x[:2])

40 if (y <=9):

41 return 'Organic_including_symptomatic_psychological_disorders '
42 elif ((y >= 10) & (y <= 19)):

43 return 'Mental/behavioral_disorders_caused_by_psychoactive_substances '
44 elif ((y >= 20) & (y<= 29)):

45 return 'Schizophrenia/schizotypy/other_mental_disorders '
46 elif ((y >= 30) & (y <= 39)):

47 return 'Mood_disorders '
48 elif ((y >= 40) & (y<= 48)):

49 return 'Neurotic/stress -related/somatoform_disorders '
50 elif ((y >= 50) & (y <= 59)):

51 return 'Behavioral_syndromes_associated_with_physiological_disturbances
/physical_factors '

52 elif ((y >= 60) & (y<= 69)):

53 return 'Personality_and_behavioral_disorders_in_adults '
54 elif ((y >= 70) & (y<= 79)):

55 return 'Missing_data '
56 elif ((y >= 80) & (y<= 89) &(y!=84) ):

57 return 'Missing_data '
58 elif (y==84):

59 return 'Intellectual_disability '
60 elif (y==90):

61 return 'Hyperkinetic_disorders '
62 elif ((y >= 91) & (y <= 98)):

63 return 'Other_behavioral/
emotional_disorders_usually_occuring_in_children_and_adolescents '

64 else:

65 return f

66

67 def conditionsICD1(icd1):

68 if (icd1 =='nan'):
69 return 'Missing_data '
70 elif ((icd1 =='1999') | (icd1 =='999')):
71 return 'Missing_information '
72 elif ((icd1 =='1000') | (icd1 =='000')):
73 return 'No_diagnosis '
74 elif (icd1 =='Z00.4'):
75 return 'Contact_for_examination_and_investigation '
76 else:

77 if(icd1 [:1]== 'R'):
78 #Only interested in if a diagnosis is set or not

79 return icd1

80 elif(icd1 [:1]== 'Z'):
81 #Only interested in if a diagnosis is set or not

82 return icd1

83 elif(icd1 [:1]== 'F'):
84 #investigate if a diagnosis is set or if it is F999

85 return conditionsICD1F(icd1)

86 else:

87 return icd1

88

89 func = np.vectorize(conditionsICD1)
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90 axis1 = func(df['axis1_start '])
91 df["axis1_start"] = axis1

92

93 # If the code on axis 1 at the beginning of the EoC Bundle is missing_data ,

missing_information , unspecified or no_diagnosis and no diagnosis is set as the

primary axis diagnosis during the EoC (therefore the value

contacts_before_primary_axis1_diagnosis is NULL),

contacts_before_primary_axis1_diagnosisshould be set to 1000

94

95 # If there is a code given on axis 1 at the beginning of the EoC Bundle , but no

code is set during the EoC , the contacts_before_primary_axis1_diagnosis should

be set to 0

96

97 values_list = ['Missing_data ', 'Missing_information ','No_diagnosis ','Unspecified ']
98 df.loc[df["axis1_start"].isin(values_list) & df["

contacts_before_primary_axis1_diagnosis"]. isnull () , "

contacts_before_primary_axis1_diagnosis"] = "1000"

99 df.loc[~df["axis1_start"].isin(values_list) & df["

contacts_before_primary_axis1_diagnosis"]. isnull (), "

contacts_before_primary_axis1_diagnosis"] = "0"

100

101 df[['nr_therapy ', 'nr_planning ', 'nr_examination ', 'nr_no_show ', '
nr_indirect_contact ', 'nr_diagnoses_1 ', 'nr_diagnoses_2 ','nr_diagnoses_3 ', '
nr_diagnoses_4 ', 'nr_diagnoses_5 ', 'nr_diagnoses_6 ','nr_main_diagnoses ', '
nr_diagnoses ']] = df[['nr_therapy ', 'nr_planning ', 'nr_examination ', '
nr_no_show ', 'nr_indirect_contact ', 'nr_diagnoses_1 ', 'nr_diagnoses_2 ', '
nr_diagnoses_3 ', 'nr_diagnoses_4 ', 'nr_diagnoses_5 ', 'nr_diagnoses_6 ','
nr_main_diagnoses ', 'nr_diagnoses ']]. fillna (0)

102

103

104 # Setting the EoC length based on start date and enddate or journal date1 based on

missing values

105 df[['max_journal_date ']] = df[['max_journal_date ']]. replace(dict.fromkeys (['
2916 -03 -30'], '2017 -04 -06')) # Changing an out out bounce error value to the

end date of this specific EoC

106

107 # Set all dates to datetime to enable calculations with them

108 df['start_date '] = pd.to_datetime(df['start_date '])
109 df['end_date '] = pd.to_datetime(df['end_date '])
110 df['min_journal_date '] = pd.to_datetime(df['min_journal_date '])
111 df['max_journal_date '] = pd.to_datetime(df['max_journal_date '])
112

113

114 # Calculating the EoC length based on the four dates , depending on NULL values

115 def conditionsLength(start , end , minJournal , maxJournal):

116 if (str(start) != 'NaT') & (str(end)!='NaT') :

117 if (int(str(pd.Timedelta(end - start)).split(' ' ,1)[0]) < 0) & (str(

minJournal) != 'NaT') & (str(maxJournal)!='NaT'):
118 return pd.Timedelta(maxJournal - minJournal).days

119 else : return str(pd.Timedelta(end - start)).split(' ' ,1)[0]
120 elif (str(start) == 'NaT') & (str(end)=='NaT') & (str(minJournal)!='NaT')& (str

(maxJournal)!='NaT') :

121 return pd.Timedelta(maxJournal - minJournal).days

122 elif (str(start) == 'NaT') & (str(end)!='NaT') & (str(minJournal)!='NaT') :

123 return pd.Timedelta(end - minJournal).days

124 elif (str(start) != 'NaT') & (str(end)=='NaT') & (str(minJournal)!='NaT'):
125 return pd.Timedelta(maxJournal - start).days

126 else: return pd.NaT

127

128

129 func = np.vectorize(conditionsLength)

130 LengthNew = func(df["start_date"], df["end_date"], df["min_journal_date"], df["

max_journal_date"])

131 df["EoC_length"] = LengthNew

132

133 # Remove values that are NULL after calculations
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134 df = df[df.EoC_length != "NaT"]

135

136 # Changing all EoC lengths to integer values

137 df = df.astype ({'EoC_length ':'int'})
138

139 # Removing all dates used to derive the EoC lengths

140 df = df.drop(['start_date ', 'end_date ', 'min_journal_date ', 'max_journal_date '],
axis = 1)

141

142 # Contacts per day

143 def conditionsContact(contact , EoClength):

144 if (contact == 0):

145 return float (0)

146 elif (EoClength == 0 ):

147 return float(contact)

148 else:

149 return float(contact/EoClength)

150

151 func = np.vectorize(conditionsContact)

152

153 therapyNew = func(df["nr_therapy"], df["EoC_length"])

154 nrplanningNew = func(df["nr_planning"], df["EoC_length"])

155 nrexaminationNew = func(df["nr_examination"], df["EoC_length"])

156 nrnoshow = func(df["nr_no_show"], df["EoC_length"])

157 nrindirectcontactNew = func(df["nr_therapy"], df["EoC_length"])

158

159 df["nr_therapy_per_day"] = therapyNew

160 df["nr_planning_per_day"] = nrplanningNew

161 df["nr_examination_per_day"] = nrexaminationNew

162 df["nr_no_show_per_day"] = nrnoshow

163 df["nr_indirect_contact_per_day"] = nrindirectcontactNew

164

165 # Diagnoses per day

166 def conditionsDiagnose(diagnose , EoClength):

167 if (diagnose == 0):

168 return float (0)

169 elif (EoClength == 0 ):

170 return float(EoClength)

171 else:

172 return float(diagnose/EoClength)

173

174 func = np.vectorize(conditionsDiagnose)

175

176 nrdiagnoses1New = func(df["nr_diagnoses_1"], df["EoC_length"])

177 nrdiagnoses2New = func(df["nr_diagnoses_2"], df["EoC_length"])

178 nrdiagnoses3New = func(df["nr_diagnoses_3"], df["EoC_length"])

179 nrdiagnoses4New = func(df["nr_diagnoses_4"], df["EoC_length"])

180 nrdiagnoses5New = func(df["nr_diagnoses_5"], df["EoC_length"])

181 nrdiagnoses6New = func(df["nr_diagnoses_6"], df["EoC_length"])

182

183 df["nr_diagnoses_1_per_day"] = nrdiagnoses1New

184 df["nr_diagnoses_2_per_day"] = nrdiagnoses2New

185 df["nr_diagnoses_3_per_day"] = nrdiagnoses3New

186 df["nr_diagnoses_4_per_day"] = nrdiagnoses4New

187 df["nr_diagnoses_5_per_day"] = nrdiagnoses5New

188 df["nr_diagnoses_6_per_day"] = nrdiagnoses6New

189

190 # Percentage primary axis diagnose

191 def conditionsMainDiagnose(diagnosetotal , main):

192 if (main == 0):

193 return float (0)

194 elif (diagnosetotal == 0 ):

195 return float(main)

196 else:

197 return float(main/diagnosetotal)

198
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199 func = np.vectorize(conditionsMainDiagnose)

200

201 mainNew = func(df["nr_diagnoses"], df["nr_main_diagnoses"])

202

203 df["percentage_primary_axis_diagnose"] = mainNew

204

205 # Removing the columns not to be included in the experiment

206 df = df.drop(['nr_therapy ','nr_planning ', 'nr_examination ', 'nr_no_show ','
nr_indirect_contact ', 'nr_diagnoses_1 ', 'nr_diagnoses_2 ', 'nr_diagnoses_3 ', '
nr_diagnoses_4 ', 'nr_diagnoses_5 ', 'nr_diagnoses_6 ', 'nr_main_diagnoses ', '
nr_diagnoses ','axis1_start ' ], axis = 1 )

207

208 # Saving the preprocessed data to file

209 df.to_csv('EoC_preprocessed.csv', index=False)

Listing B.1: EoC Preprossesing (Third Iteration).

Third Iteration’s EoC Bundle Preprocessing

The following code presents the preprocessing of the third iteration’s EoC Bundle Data.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 df = pd.read_csv("../../ Data/Third_iteration_vol2/EoC_Bundle.csv")

5 pd.set_option('display.max_columns ', 30)

6 pd.set_option('display.max_rows ', 200)

7

8 #EoC Bundle Length and Age at EoC Bundle Start

9 #Setting the EoC Bundle length based on the start date and end date or journal

date1 based on missing values

10 Set all dates to datetime to enable calculations with them

11

12 # Changing an out -of-bounce error value to the end date of this specific EoC

13 df[['max_journal_date ']] = df[['max_journal_date ']]. replace(dict.fromkeys (['
2916 -03 -30'], '2017 -04 -06'))

14

15 df['EoC_Bundle_start_date '] = pd.to_datetime(df['EoC_Bundle_start_date '])
16 df['EoC_Bundle_end_date '] = pd.to_datetime(df['EoC_Bundle_end_date '])
17 df['min_journal_date '] = pd.to_datetime(df['min_journal_date '])
18 df['max_journal_date '] = pd.to_datetime(df['max_journal_date '])
19 df['birth_date '] = pd.to_datetime(df['birth_date '])
20

21 #Calculating the EoC length based on the four dates , depending on NULL values

22 def conditionsLength(start , end , minJournal , maxJournal):

23 if (str(start) != 'NaT') & (str(end)!='NaT') :

24 if (int(str(pd.Timedelta(end - start)).split(' ' ,1)[0]) < 0) & (str(

minJournal) != 'NaT') & (str(maxJournal)!='NaT'):
25 return pd.Timedelta(maxJournal - minJournal).days

26 else : return str(pd.Timedelta(end - start)).split(' ' ,1)[0]
27 elif (str(start) == 'NaT') & (str(end)=='NaT') & (str(minJournal)!='NaT')& (str

(maxJournal)!='NaT') :

28 return pd.Timedelta(maxJournal - minJournal).days

29 elif (str(start) == 'NaT') & (str(end)!='NaT') & (str(minJournal)!='NaT') :

30 return pd.Timedelta(end - minJournal).days

31 elif (str(start) != 'NaT') & (str(end)=='NaT') & (str(maxJournal)!='NaT'):
32 return pd.Timedelta(maxJournal - start).days

33 else: return pd.NaT

34

35 func = np.vectorize(conditionsLength)

36 Length = func(df["EoC_Bundle_start_date"], df["EoC_Bundle_end_date"], df["

min_journal_date"], df["max_journal_date"])

37 df["EoC_Bundle_length"] = Length

38

39 #Remove values that are NULL after calculations
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40 df = df[df.EoC_Bundle_length != "NaT"]

41

42 #Changing all EoC Bundle lengths to integer values

43 df = df.astype ({'EoC_Bundle_length ':'int'})
44

45 #Removing all negative lengths

46 df = df[df.EoC_Bundle_length >= 0]

47

48 #Age at EoC Bundle Start

49 def conditionsAge(start , minJournal , birth):

50 if (str(start) != 'NaT') & (str(birth)!='NaT') :

51 return (pd.Timedelta(start - birth).days / 365.25) //1

52 elif (str(start) == 'NaT') & (str(minJournal)!='NaT')& (str(birth)!='NaT') :

53 return (pd.Timedelta(minJournal - birth).days / 365.25) //1

54 else: return pd.NaT

55

56 func = np.vectorize(conditionsAge)

57 Age = func(df["EoC_Bundle_start_date"], df["min_journal_date"], df["birth_date"])

58 df["age_EoC_Bundle_start"] = Age

59 df = df.astype ({'age_EoC_Bundle_start ':'int'})
60

61 df.loc[df['age_EoC_Bundle_start ']==47] #Investigating the one age outlier

62 df = df[df.age_EoC_Bundle_start != 47] #removing this outlier

63

64 #Remove data values

65 df = df.drop(['EoC_Bundle_start_date ', 'EoC_Bundle_end_date ', 'min_journal_date ', '
max_journal_date ', 'birth_date '], axis = 1)

66

67 #Gender

68 values_list = [1,2]

69 df.loc[~df["gender"].isin(values_list), "gender"] = "Missing_data"

70 df.loc[ df["gender"] == 1, "gender"] = "Female"

71 df.loc[ df["gender"] == 2, "gender"] = "Male"

72

73 #Closing code

74 values_list = [1,2,3,4,5,6,9]

75 df.loc[~df["closing_code"].isin(values_list), "closing_code"] = "Missing_data"

76 df.loc[ df["closing_code"] == 1, "closing_code"] = "Assignment_completed"

77 df.loc[ df["closing_code"] == 2, "closing_code"] = "Patient_cancelled"

78 df.loc[ df["closing_code"] == 3, "closing_code"] = "Parents_cancelled"

79 df.loc[ df["closing_code"] == 4, "closing_code"] = "Above_age"

80 df.loc[ df["closing_code"] == 5, "closing_code"] = "Moved/wrong_district"

81 df.loc[ df["closing_code"] == 6, "closing_code"] = "Death"

82 df.loc[ df["closing_code"] == 9, "closing_code"] = "Other"

83

84

85 #Diagnoses

86

87 #Axis 1

88 df['diagnosis_axis_1 '] = df['diagnosis_axis_1 ']. astype(str)
89 def conditionsICD1R(r):

90 x = (r[1:])

91 y = int(x[:2])

92 if (y ==40):

93 return 'Somnolence_stupor_coma '
94 elif (y ==41):

95 return 'Symptoms_assosiated_with_cognitive_functions '
96 elif (y ==42):

97 return 'Dizziness '
98 elif (y ==43):

99 return 'Disturbances_smell_and_taste '
100 elif (y ==44):

101 return 'Symptoms_assosiated_general_sensations_and_perseptions '
102 elif (y ==45):

103 return 'Symptoms_assosiated_with_emotional_state '
104 elif (y ==46):
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105 return 'Symptoms_assosiated_with_looks '
106 else:

107 return r

108 def conditionsICD1Z(z):

109 x = (z[1:])

110 y = int(x[:2])

111 if (y <=13):

112 return 'Contact_for_examination_and_investigation '
113 elif ((y >= 55) & (y <= 65)):

114 return 'Contact_due_to_potential_health_risk_socio -
economic_and_psychosocial_conditions '

115 elif ((y >= 70 )&( y <= 76)):

116 return 'Contact_for_other_circumstances '
117 elif ((y >= 80) & (y <= 99)):

118 return 'Contact_due_to_information_regarding_potential_health_risk_family/
personal_history '

119 else:

120 return z

121 def conditionsICD1F(f):

122 x = (f[1:])

123 if ((x == '21') | (x == '28') | (x == '29')):
124 return 'Schizophrenia/schizotypy/other_mental_disorders '
125 elif (x =='89'):
126 return 'Missing_data '
127 elif (x=='54'):
128 return 'Behavioral_syndromes_associated_with_physiological_disturbances/

physical_factors '
129 elif (x=='99'):
130 return 'Unspecified '
131 else:

132 y = int(x[:2])

133 if (y <=9):

134 return 'Organic_including_symptomatic_psychological_disorders '
135 elif ((y >= 10) & (y <= 19)):

136 return 'Mental/behavioral_disorders_caused_by_psychoactive_substances '
137 elif ((y >= 20) & (y<= 29)):

138 return 'Schizophrenia/schizotypy/other_mental_disorders '
139 elif ((y >= 30) & (y <= 39)):

140 return 'Mood_disorders '
141 elif ((y >= 40) & (y<= 48)):

142 return 'Neurotic/stress -related/somatoform_disorders '
143 elif ((y >= 50) & (y <= 59)):

144 return 'Behavioral_syndromes_associated_with_physiological_disturbances
/physical_factors '

145 elif ((y >= 60) & (y<= 69)):

146 return 'Personality_and_behavioral_disorders_in_adults '
147 elif ((y >= 70) & (y<= 79)):

148 return 'Missing_data '
149 elif ((y >= 80) & (y<= 89) &(y!=84) ):

150 return 'Missing_data '
151 elif (y==84):

152 return 'Intellectual_disability '
153 elif (y==90):

154 return 'Hyperkinetic_disorders '
155 elif ((y >= 91) & (y <= 98)):

156 return 'Other_behavioral/
emotional_disorders_usually_occuring_in_children_and_adolescents '

157 else:

158 return f

159

160 def conditionsICD1(icd1):

161 if (icd1 =='nan'):
162 return 'Missing_data '
163 elif ((icd1 =='1999') | (icd1 =='999')):
164 return 'Missing_information '
165 elif ((icd1 =='1000') | (icd1 =='000')):
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166 return 'No_diagnosis '
167 elif (icd1 =='Z00.4'):
168 return 'Contact_for_examination_and_investigation '
169 else:

170 if(icd1 [:1]== 'R'):
171 #Alternative

172 #return 'Symptoms/signs/
abnormal_clinical_findings_and_laboratory_findings '

173 return conditionsICD1R(icd1)

174 elif(icd1 [:1]== 'Z'):
175 #Alternative

176 #return '
Factors_impacting_health_status_and_contact_with_health_service '

177 return conditionsICD1Z(icd1)

178 elif(icd1 [:1]== 'F'):
179 return conditionsICD1F(icd1)

180 else:

181 return icd1

182

183 func = np.vectorize(conditionsICD1)

184 axis1 = func(df['diagnosis_axis_1 '])
185 df["diagnosis_axis_1"] = axis1

186

187 df["diagnosis_axis_1"]. fillna('Missing_data ', inplace=True)

188

189 #Axis 2

190 df['diagnosis_axis_2 '] = df['diagnosis_axis_2 ']. astype(str)
191 def conditionsICD2(icd2):

192 #Missing information

193 if ((icd2 == '999') | (icd2 == '2999')):
194 return "No"

195 #No diagnosis

196 elif ((icd2 == '000') | (icd2 =='2000')):
197 return "No"

198 #Nan or invalid diagnosis

199 elif ((icd2 == 'nan') | (icd2 == 'F84')):
200 return "No"

201 else:

202 return "Yes"

203

204 func = np.vectorize(conditionsICD2)

205 icd2 = func(df['diagnosis_axis_2 '])
206 df["diagnosis_axis_2"] = icd2

207 df["diagnosis_axis_2"]. fillna('No', inplace=True)

208

209 #Axis 3

210 df['diagnosis_axis_3 '] = df['diagnosis_axis_3 ']. astype(str)
211 def conditionsICD3(icd3):

212 #Missing information

213 if ((icd3 == '99') | (icd3 == '39')):
214 return "No"

215 #No diagnosis

216 elif ((icd3 == '30')):
217 return "No"

218 #Nan or invalid diagnosis

219 elif ((icd3 == 'nan')):
220 return "No"

221 else:

222 return "Yes"

223

224 func = np.vectorize(conditionsICD3)

225 icd3 = func(df['diagnosis_axis_3 '])
226 df["diagnosis_axis_3"] = icd3

227 df["diagnosis_axis_3"]. fillna('No', inplace=True)

228

229 #Axis 4
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230 df['diagnosis_axis_4 '] = df['diagnosis_axis_4 ']. astype(str)
231 def conditionsICD4(icd4):

232 #Missing information

233 if ((icd4 == '4999') | (icd4 == '999')):
234 return "No"

235 #No diagnosis

236 elif ((icd4 == '4000') | (icd4 =='000')):
237 return "No"

238 #Nan or invalid diagnosis

239 elif ((icd4 == 'nan')):
240 return "No"

241 else:

242 return "Yes"

243

244 func = np.vectorize(conditionsICD4)

245 icd4 = func(df['diagnosis_axis_4 '])
246 df["diagnosis_axis_4"] = icd4

247 df["diagnosis_axis_4"]. fillna('No', inplace=True)

248

249 #Axis 5

250 df['diagnosis_axis_5 '] = df['diagnosis_axis_5 ']. astype(str)
251 def conditionsICD5(icd5):

252 #Missing information

253 if ((icd5 == '99.0') | (icd5 == '599.0 ') | (icd5 == '0.0')):
254 return "No"

255 #No diagnosis

256 elif ((icd5 == '000') | (icd5 =='500.0 ')):
257 return "No"

258 #Nan or invalid diagnosis

259 elif ((icd5 == 'nan') | (icd5 =='1.5')):
260 return "No"

261 else:

262 return "Yes"

263

264 func = np.vectorize(conditionsICD5)

265 icd5 = func(df['diagnosis_axis_5 '])
266 df["diagnosis_axis_5"] = icd5

267 df["diagnosis_axis_5"]. fillna('No', inplace=True)

268

269 #Axis 6

270 df['diagnosis_axis_6 ']. median ()
271 df['diagnosis_axis_6 '].mean()
272 df['diagnosis_axis_6 ']. fillna(5, inplace=True)

273

274 #Save the preprocessed data

275 df.to_csv('EoC_Bundle_preprocessed.csv', index=False)

Listing B.2: EoC Bundle Preprossesing (Third Iteration).

B.1.2 Clustering

Finding k for the Third Iteration’s EoC Clustering

The following code finds an optimal number of clusters, k, for the third iteration’s EoC data.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 from kmodes.kprototypes import KPrototypes

5 from sklearn.preprocessing import PowerTransformer

6 from tqdm import tqdm

7 import plotly.graph_objs as go

8 from plotnine import *

9 import plotnine
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10 from kneed import KneeLocator

11

12 # Format scientific notation from Pandas

13 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

14

15 # Importing data from a CSV file and saving it as a data frame

16 df = pd.read_csv('EoC_preprocessed.csv')
17

18 # Remove EoC ID in order to prepare for the clustering

19 df_cluster = df.drop(['EoC_id '], axis = 1)

20 df_cluster.head()

21

22 # Find the optimal number of clusters using the elbow method

23 kprot_data = df_cluster.copy()

24 for c in df_cluster.select_dtypes(exclude='object ').columns:
25 pt = PowerTransformer ()

26 kprot_data[c] = pt.fit_transform(np.array(kprot_data[c]).reshape(-1, 1))

27

28 # Get the position of categorical columns

29 categorical_columns = [df_cluster.columns.get_loc(col) for col in list(df_cluster.

select_dtypes('object ').columns)]
30 print('Categorical columns : {}'.format(list(df_cluster.select_dtypes('

object ').columns)))
31 print('Categorical columns position : {}'.format(categorical_columns))
32

33 # Finding k using the Elbow method , using the k-prototypes algorithm initialised

with Cao

34 costs = []

35 n_clusters = []

36 clusters_assigned = []

37

38 for i in tqdm(range(1, 11)):

39 try:

40 kproto = KPrototypes(n_clusters= i, init='Cao', verbose =2)

41 clusters = kproto.fit_predict(kprot_data , categorical=categorical_columns)

42 costs.append(kproto.cost_)

43 n_clusters.append(i)

44 clusters_assigned.append(clusters)

45 except:

46 print(f"Can't cluster with {i} clusters")

47

48 fig = go.Figure(data=go.Scatter(x=n_clusters , y=costs ))

49 fig.show()

50

51 # Converting the results into a data frame and plotting them

52 df_cost = pd.DataFrame ({'Cluster ':range(1, 11), 'Cost':costs})
53

54 plotnine.options.figure_size = (8, 4.8)

55 (

56 ggplot(data = df_cost)+

57 geom_line(aes(x = 'Cluster ',
58 y = 'Cost'))+
59 geom_point(aes(x = 'Cluster ',
60 y = 'Cost'))+
61 geom_label(aes(x = 'Cluster ',
62 y = 'Cost',
63 label = 'Cluster '),
64 size = 11,

65 nudge_y = 1000) +

66 labs(title = 'Optimal number of cluster with Elbow Method ')+
67 xlab('Number of Clusters k')+
68 ylab('Cost')+
69 theme_minimal ()

70 )

71
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72 # Confirm visual clue of the elbow plot using the KneeLocator class to detect

elbows if the curve is convex

73

74 cost_knee_c3 = KneeLocator(

75 range (1,11),

76 costs ,

77 S=0.1, curve="convex", direction="decreasing", online=True)

78

79 K_inertia_b3 = cost_knee_c3 .elbow

80 print("elbow at k =", f'{K_inertia_b3 :.0f} clusters ')

Listing B.3: Find k for the EoC clustering (third iteration).

Cluster the EoC data

The following code cluster the third iteration’s EoC data using k-prototypes with the identified

optimal number of clusters.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 from kmodes.kprototypes import KPrototypes

5 from sklearn.preprocessing import PowerTransformer

6 import matplotlib.pyplot as plt

7 import seaborn as sns

8 from tqdm import tqdm

9 import plotly.graph_objs as go

10 import plotnine

11 from lightgbm import LGBMClassifier

12 import shap

13 from sklearn.model_selection import cross_val_score

14

15 # Format scientific notation from Pandas

16 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

17

18 # Importing data from a CSV file and saving it as a data frame

19 df = pd.read_csv('EoC_preprocessed.csv')
20

21 # Prepare the data for clustering

22 df_cluster = df.drop(['EoC_id '], axis = 1)

23 df_cluster.head()

24

25 # Transform the continuous data to prepare for the clustering

26 kprot_data = df_cluster.copy()

27 for c in df_cluster.select_dtypes(exclude='object ').columns:
28 pt = PowerTransformer ()

29 kprot_data[c] = pt.fit_transform(np.array(kprot_data[c]).reshape(-1, 1))

30

31 # Get the position of categorical columns

32 categorical_columns = [df_cluster.columns.get_loc(col) for col in list(df_cluster.

select_dtypes('object ').columns)]
33 print('Categorical columns : {}'.format(list(df_cluster.select_dtypes('

object ').columns)))
34 print('Categorical columns position : {}'.format(categorical_columns))
35

36 # Cluster using the k-prototypes algorithm with k=3 and 'Cao' as initialisation

method

37 kprototype = KPrototypes(n_jobs = -1, n_clusters = 3, init = 'Cao', random_state =

0)

38 kprototype.fit_predict(kprot_data , categorical = categorical_columns)

39

40 # Print the cluster centroids

41 kprototype.cluster_centroids_

42
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43 # Check the iteration of the clusters created

44 kprototype.n_iter_

45

46 # Check the cost of the clusters created

47 kprototype.cost_

48

49 # Add the labels resulting from the clustering to the data frame

50 df_clustered = df.copy()

51 # Add the cluster to the dataframe

52 df_clustered['EoC_cluster '] = kprototype.labels_

53

54 # Save the clustered EoC data to a CSV file to be used for the visualisation

55 df_clustered.to_csv('EoC_clustered.csv', index=False)

56

57 # Visualise the clusters

58 clusters = pd.DataFrame(df_clustered['EoC_cluster ']. value_counts ())
59 clusters

60

61 # Plot the three clusters to illustrate the distribution of data points in the

different clusters

62 sns.barplot(x=clusters.index , y=clusters['EoC_cluster '])
63

64 # To see how the different EoC features affect the clustering result , this can be

visualised using a SHAP summary plot

65 data = kprot_data.copy()

66

67 for i in data.select_dtypes(include='object '):
68 data[i] = data[i]. astype('category ')
69

70 clf_kp = LGBMClassifier(colsample_by_tree =0.8)

71 cv_scores_kp = cross_val_score(clf_kp , data , df_clustered['EoC_cluster '], scoring=

'f1_weighted ')
72 print(f'CV F1 score for K-Prototypes clusters is {np.mean(cv_scores_kp)}')
73

74 clf_kp.fit(data , df_clustered['EoC_cluster '])
75

76 explainer_kp = shap.TreeExplainer(clf_kp)

77 shap_values_kp = explainer_kp.shap_values(data)

78

79 shap.summary_plot(shap_values_kp , data , plot_type="bar", plot_size =(15, 10), show=

False)

Listing B.4: Using the identified clustering number to cluster the EoC data (third iteration).

Finding k for the Third Iteration’s EoC Bundle Clustering

The following code finds an optimal number of clusters, k, for the third iteration’s EoC Bundle

data.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 from kmodes.kprototypes import KPrototypes

5 from sklearn.preprocessing import PowerTransformer

6 from tqdm import tqdm

7 import plotly.graph_objs as go

8 from plotnine import *

9 import plotnine

10 from kneed import KneeLocator

11

12 # Format scientific notation from Pandas

13 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

14

15 # Importing the EoC Bundle data from a CSV file and saving it as a data frame
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16 df_EoC_Bundle = pd.read_csv('EoC_clustered.csv')
17

18 # Importing the clustered EoC data from a CSV file and saving it as a data frame

19 df = pd.read_csv('EoC_preprocessed.csv')
20

21 # Joining the EoC data and the EoC Bundle data to get the EoC clusters together

with the EoC Bundle data

22 df_joined = df_EoC_Bundle.set_index('EoC_id ').join(df_EoC.set_index('EoC_id '), how=

'inner ')
23 df_joined

24

25 # Removing most of the columns related to EoC since we are only interested in the

EoC Bundle data and the EoC clusters

26 df_joined = df_joined.drop(["care_level" ,"immediacy_level", "

contacts_before_primary_axis1_diagnosis", "EoC_length", "nr_therapy_per_day", "

nr_planning_per_day", "nr_examination_per_day", "nr_no_show_per_day", "

nr_indirect_contact_per_day", "nr_diagnoses_1_per_day", "nr_diagnoses_2_per_day

", "nr_diagnoses_3_per_day", "nr_diagnoses_4_per_day", "nr_diagnoses_5_per_day"

, "nr_diagnoses_6_per_day", "percentage_primary_axis_diagnoses"], axis = 1)

27

28 df_joined = df_joined.reset_index('EoC_id ')
29

30 # Since one EoC Bundle can have multiple EoCs , we first group by EoC Bundle ID and

then count the number of EoC types for each of the three EoC types each EoC

Bundle has

31 df_count_EoC_cluster0 = df_joined.groupby('EoC_Bundle_id ')['EoC_cluster '].apply(
lambda x: (x==0).sum()).reset_index(name='nr_EoC_type_0 ')

32 df_count_EoC_cluster1 = df_joined.groupby('EoC_Bundle_id ')['EoC_cluster '].apply(
lambda x: (x==1).sum()).reset_index(name='nr_EoC_type_1 ')

33 df_count_EoC_cluster2 = df_joined.groupby('EoC_Bundle_id ')['EoC_cluster '].apply(
lambda x: (x==2).sum()).reset_index(name='nr_EoC_type_2 ')

34

35 # Create a new data frame where each row has a unique EoC Bundle ID

36 df_unique_EoC_Bundles = df_joined.copy()

37

38 # Remove the EoC cluster feature from the data frame and the EoC id to change the

data frame to only include unique EoC Bundles and a count of each EoC cluster.

Then drop the rows with duplicated EoC Bundle IDs.

39 df_unique_EoC_Bundles = df_unique_EoC_Bundles.drop(["EoC_id" ,"EoC_cluster"], axis

= 1)

40

41 df_unique_EoC_Bundles = df_unique_EoC_Bundles.drop_duplicates(subset =["

EoC_Bundle_id"], keep='last')
42

43 # Integrate the number of EoC clusters in the data frame

44 df_cluster = df_count_EoC_cluster1.set_index('EoC_Bundle_id ').join(df_cluster.
set_index('EoC_Bundle_id '), how='inner ')

45

46 df_cluster = df_count_EoC_cluster0.set_index('EoC_Bundle_id ').join(
df_unique_EoC_Bundles.set_index('EoC_Bundle_id '), how='inner ')

47

48 df_cluster = df_count_EoC_cluster3.set_index('EoC_Bundle_id ').join(df_cluster , how=

'inner ')
49

50 df_cluster = df_cluster.reset_index('EoC_Bundle_id ')
51

52 # Save the preprocessed data in a CSV file

53 df_cluster.to_csv('EoC_Bundle_ready_clustering.csv', index=False)

54

55 # Remove "EoC_Bundle_id" to prepare for the EoC Bundle clustering

56 df_cluster = df_cluster.drop(['EoC_Bundle_id '], axis = 1)

57

58 df_EoC_Bundle_cluster = df_cluster.copy()

59

60 # Making sure the different columns have the correct data type before clustering
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61 df_EoC_Bundle_cluster['nr_EoC_type_2 '] = df_EoC_Bundle_cluster['nr_EoC_type_2 '].
astype(float)

62 df_EoC_Bundle_cluster['nr_EoC_type_1 '] = df_EoC_Bundle_cluster['nr_EoC_type_1 '].
astype(float)

63 df_EoC_Bundle_cluster['nr_EoC_type_0 '] = df_EoC_Bundle_cluster['nr_EoC_type_0 '].
astype(float)

64 df_EoC_Bundle_cluster['age_EoC_Bundle_start '] = df_EoC_Bundle_cluster['
age_EoC_Bundle_start ']. astype(float)

65 df_EoC_Bundle_cluster['care_situation '] = df_EoC_Bundle_cluster['care_situation '].
astype(str)

66 df_EoC_Bundle_cluster['closing_code '] = df_EoC_Bundle_cluster['closing_code '].
astype(str)

67 df_EoC_Bundle_cluster['gender '] = df_EoC_Bundle_cluster['gender ']. astype(str)
68 df_EoC_Bundle_cluster['diagnose_axis_1 '] = df_EoC_Bundle_cluster['diagnose_axis_1 '

]. astype(str)

69 df_EoC_Bundle_cluster['diagnose_axis_2 '] = df_EoC_Bundle_cluster['diagnose_axis_2 '
]. astype(str)

70 df_EoC_Bundle_cluster['diagnose_axis_3 '] = df_EoC_Bundle_cluster['diagnose_axis_3 '
]. astype(str)

71 df_EoC_Bundle_cluster['diagnose_axis_4 '] = df_EoC_Bundle_cluster['diagnose_axis_4 '
]. astype(str)

72 df_EoC_Bundle_cluster['diagnose_axis_5 '] = df_EoC_Bundle_cluster['diagnose_axis_5 '
]. astype(str)

73 df_EoC_Bundle_cluster['diagnose_axis_6 '] = df_EoC_Bundle_cluster['diagnose_axis_6 '
]. astype(float)

74 df_EoC_Bundle_cluster['EoC_Bundle_length '] = df_EoC_Bundle_cluster['
EoC_Bundle_length ']. astype(float)

75

76 # Find the optimal number of clusters using the Elbow method

77 kprot_data = df_cluster.copy()

78 for c in df_cluster.select_dtypes(exclude='object ').columns:
79 pt = PowerTransformer ()

80 kprot_data[c] = pt.fit_transform(np.array(kprot_data[c]).reshape(-1, 1))

81

82 # Get the position of categorical columns

83 categorical_columns = [df_cluster.columns.get_loc(col) for col in list(df_cluster.

select_dtypes('object ').columns)]
84 print('Categorical columns : {}'.format(list(df_cluster.select_dtypes('

object ').columns)))
85 print('Categorical columns position : {}'.format(categorical_columns))
86

87 # Finding k using the elbow method , using the k-prototypes algorithm initialised

with Cao

88 costs = []

89 n_clusters = []

90 clusters_assigned = []

91

92 for i in tqdm(range(1, 11)):

93 try:

94 kproto = KPrototypes(n_clusters= i, init='Cao', verbose =2)

95 clusters = kproto.fit_predict(kprot_data , categorical=categorical_columns)

96 costs.append(kproto.cost_)

97 n_clusters.append(i)

98 clusters_assigned.append(clusters)

99 except:

100 print(f"Can't cluster with {i} clusters")

101

102 fig = go.Figure(data=go.Scatter(x=n_clusters , y=costs ))

103 fig.show()

104

105 # Converting the results into a dataframe and plotting them

106 df_cost = pd.DataFrame ({'Cluster ':range(1, 11), 'Cost':costs})
107

108 plotnine.options.figure_size = (8, 4.8)

109 (

110 ggplot(data = df_cost)+
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111 geom_line(aes(x = 'Cluster ',
112 y = 'Cost'))+
113 geom_point(aes(x = 'Cluster ',
114 y = 'Cost'))+
115 geom_label(aes(x = 'Cluster ',
116 y = 'Cost',
117 label = 'Cluster '),
118 size = 11,

119 nudge_y = 1000) +

120 labs(title = 'Optimal number of cluster with Elbow Method ')+
121 xlab('Number of Clusters k')+
122 ylab('Cost')+
123 theme_minimal ()

124 )

125

126 # Confirm visual clue of the elbow plot using the KneeLocator class to detect

elbows if the curve is convex

127

128 from kneed import KneeLocator

129 cost_knee_c3 = KneeLocator(

130 range (1,11),

131 costs ,

132 S=0.1, curve="convex", direction="decreasing", online=True)

133

134 K_inertia_b3 = cost_knee_c3 .elbow

135 print("elbow at k =", f'{K_inertia_b3 :.0f} clusters ')

Listing B.5: Find k for the EoC Bundle clustering (third iteration).

Cluster the EoC Bundle data

The following code cluster the third iteration’s EoC Bundle data using k-prototypes with the

identified optimal number of clusters.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 from kmodes.kprototypes import KPrototypes

5 from sklearn.preprocessing import PowerTransformer

6 import matplotlib.pyplot as plt

7 import seaborn as sns

8 from tqdm import tqdm

9 import plotly.graph_objs as go

10 import plotnine

11 from lightgbm import LGBMClassifier

12 import shap

13 from sklearn.model_selection import cross_val_score

14

15 # Format scientific notation from Pandas

16 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

17

18 # Importing data from a CSV file and saving it as a data frame

19 df = pd.read_csv('EoC_Bundle_ready_clustering.csv')
20

21 # Prepare the data for clustering

22 df_cluster = df.drop(['EoC_id '], axis = 1)

23 df_cluster.head()

24

25 # Transform the continuous data to prepare for the clustering

26 kprot_data = df_cluster.copy()

27 for c in df_cluster.select_dtypes(exclude='object ').columns:
28 pt = PowerTransformer ()

29 kprot_data[c] = pt.fit_transform(np.array(kprot_data[c]).reshape(-1, 1))

30

166



APPENDIX B. CODE

31 # Get the position of categorical columns

32 categorical_columns = [df_cluster.columns.get_loc(col) for col in list(df_cluster.

select_dtypes('object ').columns)]
33 print('Categorical columns : {}'.format(list(df_cluster.select_dtypes('

object ').columns)))
34 print('Categorical columns position : {}'.format(categorical_columns))
35

36 # Cluster using the k-prototypes algorithm with k=4 and 'Cao' as initialisation

method

37 kprototype = KPrototypes(n_jobs = -1, n_clusters = 4, init = 'Cao', random_state =

0)

38 kprototype.fit_predict(kprot_data , categorical = categorical_columns)

39

40 # Print the cluster centroids

41 kprototype.cluster_centroids_

42

43 # Check the iteration of the clusters created

44 kprototype.n_iter_

45

46 # Check the cost of the clusters created

47 kprototype.cost_

48

49 # Add the labels resulting from the clustering to the data frame

50 df_clustered = df.copy()

51 df_clustered['EoC_Bundle_cluster '] = kprototype.labels_

52

53 # Save the clustered EoC Bundle data to a CSV file to be used for the visualisation

54 df_clustered.to_csv('EoC_Bundle_clustered.csv', index=False)

55

56 # Visualise the clusters

57 clusters = pd.DataFrame(df_clustered['EoC_Bundle_cluster ']. value_counts ())
58 clusters

59

60 # Plot the three clusters to illustrate the distribution of data points in the

different clusters

61 sns.barplot(x=clusters.index , y=clusters['EoC_Bundle_cluster '])
62

63 # To see how the different EoC Bundle features affect the clustering result , this

can be visualised using a SHAP summary plot

64 data = kprot_data.copy()

65

66 for i in data.select_dtypes(include='object '):
67 data[i] = data[i]. astype('category ')
68

69 clf_kp = LGBMClassifier(colsample_by_tree =0.8)

70 cv_scores_kp = cross_val_score(clf_kp , data , df_clustered['EoC_Bundle_cluster '],
scoring='f1_weighted ')

71 print(f'CV F1 score for K-Prototypes clusters is {np.mean(cv_scores_kp)}')
72

73 clf_kp.fit(data , df_clustered['EoC_Bundle_cluster '])
74

75 explainer_kp = shap.TreeExplainer(clf_kp)

76 shap_values_kp = explainer_kp.shap_values(data)

77

78 shap.summary_plot(shap_values_kp , data , plot_type="bar", plot_size =(15, 10), show=

False)

Listing B.6: Using the identified clustering number to cluster the EoC Bundle data (third iteration).
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B.1.3 Visualisation

Visualising the identified EoC clusters

The following code visualises the obtained EoC results from the third clustering iteration.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import seaborn as sns

6

7 # Importing the already clustered EoC data

8 df_EoC = pd.read_csv('EoC_clustered.csv')
9

10 # Copy the data frame to visualise the results without changing the original data

frame

11 df_result = df_EoC.copy()

12

13 # Visualise the EoC length for each of the EoC clusters

14 # less than a week , a week to half a year , half a year to a year , 1-3 years , more

than 3 years

15 bins = pd.IntervalIndex.from_tuples ([(-1, 7), (7, 182), (182, 365), (365, 1095),

(1095, 6500)])

16 df_result["EoC_length"] = pd.cut(df_result["EoC_length"], bins=bins)

17 df_result["EoC_length"]. value_counts ()

18 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("EoC_length"), data=df_result)

19 # ax.bar_label(ax.containers [0])

20

21 # Visualise the distribution of care level for each of the EoC clusters

22 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("care_level"), data=df_result)

23 # ax.bar_label(ax.containers [0])

24

25 # Visualise the distribution of immediacy level for each of the EoC clusters

26 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("immediacy_level"), data=

df_result)

27 # ax.bar_label(ax.containers [0])

28

29 # Visualise the number of therapy contacts per day for each of the EoC clusters

30 # none , none to once a month , once a month to twice a month , twice a month to once

a week , once a week to multiple times a week , multiple times a week to multiple

times a day

31 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

32 df_result["nr_therapy_per_day"] = pd.cut(df_result["nr_therapy_per_day"], bins=bins

)

33 df_result["nr_therapy_per_day"]. value_counts ()

34 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_therapy_per_day"), data=

df_result)

35 # ax.bar_label(ax.containers [0])

36

37 # Visualise the number of planning contacts per day for each of the EoC clusters

38 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

39 df_result["nr_planning_per_day"] = pd.cut(df_result["nr_planning_per_day"], bins=

bins)

40 df_result["nr_planning_per_day"]. value_counts ()

41 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_planning_per_day"), data=

df_result)

42 # ax.bar_label(ax.containers [0])

43

44 # Visualise the number of examination contacts per day for each of the EoC clusters

45 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

46 df_result["nr_examination_per_day"] = pd.cut(df_result["nr_examination_per_day"],

bins=bins)
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47 df_result["nr_examination_per_day"]. value_counts ()

48 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_examination_per_day"), data

=df_result)

49 # ax.bar_label(ax.containers [0])

50

51 # Visualise the number of no-show contacts up per day for each of the EoC clusters

52 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

53 df_result["nr_no_show_per_day"] = pd.cut(df_result["nr_no_show_per_day"], bins=bins

)

54 df_result["nr_no_show_per_day"]. value_counts ()

55 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_no_show_per_day"), data=

df_result)

56 # ax.bar_label(ax.containers [0])

57

58 # Visualise the number of indirect contacts per day for each of the EoC clusters

59 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

60 df_result["nr_indirect_contact_per_day"] = pd.cut(df_result["

nr_indirect_contact_per_day"], bins=bins)

61 df_result["nr_indirect_contact_per_day"]. value_counts ()

62 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_indirect_contact_per_day"),
data=df_result)

63 # ax.bar_label(ax.containers [0])

64

65 # Visualise the number of contacts before a primary Axis 1 diagnosis is set for

each of the EoC clusters

66 # no contacts , 1-25, 26-50, 51-100, 101-999, no diagnosis given

67 bins = pd.IntervalIndex.from_tuples ([(-1, 0), (0, 25), (25, 50), (50, 100), (100,

999), (999, 1000)])

68 df_result["contacts_before_primary_axis1_diagnosis"] = pd.cut(df_result["

contacts_before_primary_axis1_diagnosis"], bins=bins)

69 df_result["contacts_before_primary_axis1_diagnosis"]. value_counts ()

70 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("
contacts_before_primary_axis1_diagnosis"), data=df_result)

71 # ax.bar_label(ax.containers [0])

72

73 # Visualise the percentage of diagnoses set as primary axis diagnosis

74 # 0%, 0-50%, 51-75%, 76-99%, 100%

75 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.5), (0.5, 0.75), (0.75 , 0.99),

(0.99, 1)])

76 df_result["percentage_primary_axis_diagnose"] = pd.cut(df_result["

percentage_primary_axis_diagnosis"], bins=bins)

77 df_result["percentage_primary_axis_diagnose"]. value_counts ()

78 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("
percentage_primary_axis_diagnosis"), data=df_result)

79 # ax.bar_label(ax.containers [0])

80

81 # Visualise the number of diagnoses set on Axis 1 per day for each of the EoC

clusters

82 # none , none to once a month , once a month to twice a month , twice a month to once

a week , once a week to multiple times a week , multiple times a week to multiple

times a day

83 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

84 df_result["nr_diagnoses_1_per_day"] = pd.cut(df_result["nr_diagnoses_1_per_day"],

bins=bins)

85 df_result["nr_diagnoses_1_per_day"]. value_counts ()

86 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_diagnoses_1_per_day"), data

=df_result)

87 # ax.bar_label(ax.containers [0])

88

89 # Visualise the number of diagnoses set on Axis 2 per day for each of the EoC

clusters

90 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])
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91 df_result["nr_diagnoses_2_per_day"] = pd.cut(df_result["nr_diagnoses_2_per_day"],

bins=bins)

92 df_result["nr_diagnoses_2_per_day"]. value_counts ()

93 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_diagnoses_2_per_day"), data

=df_result)

94 # ax.bar_label(ax.containers [0])

95

96 # Visualise the number of diagnoses set on Axis 3 per day for each of the EoC

clusters

97 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

98 df_result["nr_diagnoses_3_per_day"] = pd.cut(df_result["nr_diagnoses_3_per_day"],

bins=bins)

99 df_result["nr_diagnoses_3_per_day"]. value_counts ()

100 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_diagnoses_3_per_day"), data

=df_result)

101 # ax.bar_label(ax.containers [0])

102

103 # Visualise the number of diagnoses set on Axis 4 per day for each of the EoC

clusters

104 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

105 df_result["nr_diagnoses_4_per_day"] = pd.cut(df_result["nr_diagnoses_4_per_day"],

bins=bins)

106 df_result["nr_diagnoses_4_per_day"]. value_counts ()

107 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_diagnoses_4_per_day"), data

=df_result)

108 # ax.bar_label(ax.containers [0])

109

110 # Visualise the number of diagnoses set on Axis 5 per day for each of the EoC

clusters

111 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

112 df_result["nr_diagnoses_5_per_day"] = pd.cut(df_result["nr_diagnoses_5_per_day"],

bins=bins)

113 df_result["nr_diagnoses_5_per_day"]. value_counts ()

114 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_diagnoses_5_per_day"), data

=df_result)

115 # ax.bar_label(ax.containers [0])

116

117 # Visualise the number of diagnoses set on Axis 6 per day for each of the EoC

clusters

118 bins = pd.IntervalIndex.from_tuples ([(-1,0), (0 ,0.0027) , (0.0027 ,0.03288) ,

(0.03288 , 0.14247) , (0.14247 , 1), (1, 1000) ])

119 df_result["nr_diagnoses_6_per_day"] = pd.cut(df_result["nr_diagnoses_6_per_day"],

bins=bins)

120 df_result["nr_diagnoses_6_per_day"]. value_counts ()

121 ax = sns.countplot(x='EoC_cluster ', hue='{}'.format("nr_diagnoses_6_per_day"), data

=df_result)

122 # ax.bar_label(ax.containers [0])

Listing B.7: Visualisation of the identified EoC clusters (third iteration).

Visualising the identified EoC Bundle clusters

The following code visualises the obtained EoC Bundle results from the third clustering iteration.

1 # Import necessary packages

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import seaborn as sns

6

7 # Importing the already clustered EoC data

8 df_EoC_Bundle = pd.read_csv('EoC_Bundle_clustered.csv')

170



APPENDIX B. CODE

9

10 # Copy the data frame to visualise the results without changing the original data

frame

11 df_result = df_EoC_Bundle.copy()

12

13 # Visualise the EoC Bundle length for each of the EoC Bundle clusters

14 # less than a week , a week to half a year , half a year to a year , 1-3 years , more

than 3 years

15 bins = pd.IntervalIndex.from_tuples ([(-1, 7), (7, 182), (182, 365), (365, 1095),

(1095, 6500)])

16 df_result["EoC_Bundle_Length"] = pd.cut(df_result["EoC_Bundle_Length"], bins=bins)

17 df_result["EoC_Bundle_Length"]. value_counts ()

18 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("EoC_Bundle_Length"),
data=df_result)

19 # ax.bar_label(ax.containers [0])

20

21 # Visualise the age distribution at EoC Bundle start for each of the EoC Bundle

clusters

22 bins = pd.IntervalIndex.from_tuples ([(-1, 6), (6, 10), (10, 14), (14, 18), (18, 22)

])

23 df_result["age_EoC_Bundle_start"] = pd.cut(df_result["age_EoC_Bundle_start"], bins=

bins)

24 df_result["age_EoC_Bundle_start"]. value_counts ()

25 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("age_EoC_Bundle_start"),
data=df_result)

26 # ax.bar_label(ax.containers [0])

27

28 # Visualise the gender distribution for each of the EoC Bundle clusters

29 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("gender"), data=

df_result)

30 # ax.bar_label(ax.containers [0])

31

32 # Visualise the distributions of care situations for each of the EoC Bundle

clusters

33 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("care_situation"), data=

df_result)

34 # ax.bar_label(ax.containers [0])

35

36 # Visualise the diagnosis set on Axis 1 at the beginning of an EoC Bundle for each

of the EoC Bundle clusters

37 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("diagnoses_axis_1"),
data=df_result)

38 # ax.bar_label(ax.containers [0])

39

40 # Visualise the number that has a diagnosis on Axis 2 at the beginning of an EoC

Bundle for each of the EoC Bundle clusters

41 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("diagnosis_axis_2"),
data=df_result)

42 # ax.bar_label(ax.containers [0])

43

44 # Visualise the number that has a diagnosis on Axis 3 at the beginning of an EoC

Bundle for each of the EoC Bundle clusters

45 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("diagnosis_axis_3"),
data=df_result)

46 # ax.bar_label(ax.containers [0])

47

48 # Visualise the number that has a diagnosis on Axis 4 at the beginning of an EoC

Bundle for each of the EoC Bundle clusters

49 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("diagnosis_axis_4"),
data=df_result)

50 # ax.bar_label(ax.containers [0])

51

52 # Visualise the number that has a diagnosis on Axis 5 at the beginning of an EoC

Bundle for each of the EoC Bundle clusters

53 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("diagnosis_axis_5"),
data=df_result)
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54 # ax.bar_label(ax.containers [0])

55

56 # Visualise the distribution of different CGAS scores set on Axis 6 at the

beginning of an EoC Bundle for each of the EoC Bundle clusters

57 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("diagnoses_axis_6"),
data=df_result)

58 # ax.bar_label(ax.containers [0])

59

60 # Visualise the number of EoC Type 0 for each of the EoC Bundle clusters

61 bins = pd.IntervalIndex.from_tuples ([(-1, 0), (0, 1), (1, 3), (3, 15)])

62 df_result["nr_EoC_type_0"] = pd.cut(df_result["nr_EoC_type_0"], bins=bins)

63 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("nr_EoC_type_0"), data=

df_result)

64 # ax.bar_label(ax.containers [0])

65

66 # Visualise the number of EoC Type 1 for each of the EoC Bundle clusters

67 bins = pd.IntervalIndex.from_tuples ([(-1, 0), (0, 1), (1, 3), (3, 15)])

68 df_result["nr_EoC_type_1"] = pd.cut(df_result["nr_EoC_type_1"], bins=bins)

69 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("nr_EoC_type_1"), data=

df_result)

70 # ax.bar_label(ax.containers [1])

71

72 # Visualise the number of EoC Type 2 for each of the EoC Bundle clusters

73 bins = pd.IntervalIndex.from_tuples ([(-1, 0), (0, 1), (1, 3), (3, 15)])

74 df_result["nr_EoC_type_2"] = pd.cut(df_result["nr_EoC_type_2"], bins=bins)

75 ax = sns.countplot(x='EoC_Bundle_cluster ', hue='{}'.format("nr_EoC_type_2"), data=

df_result)

76 # ax.bar_label(ax.containers [2])

Listing B.8: Visualisation of the identified EoC clusters (third iteration).

B.2 Evaluation Code

The Hopkins score is calculated for the EoC and EoC Bundle data for all three iterations in this

appendix section.

1 import pandas as pd

2 import numpy as np

3 from sklearn.preprocessing import PowerTransformer

4 from pyclustertend import hopkins

5

6 # Importing the finished preprocessed EoC data from the tree iterations

7

8 df_EoC1 = pd.read_csv('1_EoC_preprocessed.csv')
9 df_EoC2 = pd.read_csv('2_EoC_preprocessed.csv')

10 df_EoC3 = pd.read_csv('3_EoC_preprocessed.csv')
11

12 # Preparing the EoC data by removing EoC_id. Then , temporarily convert the

categorical features to numerical features. It is preferable to scale the data

before calculating the Hopkins score , as the distance between the data points

is used. The scaled data must be converted from a Pandas Dataframe to a Numpy

Array.

13

14 def prepareEoCForHopkins(df_EoC):

15 df_EoC = df_EoC.drop(['EoC_id '], axis =1)

16 df_converted = pd.get_dummies(

17 df_EoC , columns =['care_level ', 'immediacy_level '])
18

19 scaled_data = df_converted.copy()

20 for c in df_converted.select_dtypes(exclude='object ').columns:
21 pt = PowerTransformer ()

22 scaled_data[c] = pt.fit_transform(

23 np.array(scaled_data[c]).reshape(-1, 1))
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24 return scaled_data.values

25

26 df_EoC_converted1 = prepareEoCForHopkins(df_EoC1)

27 df_EoC_converted2 = prepareEoCForHopkins(df_EoC2)

28 df_EoC_converted3 = prepareEoCForHopkins(df_EoC3)

29

30 # Assess the clusterability of the data using the Hopkins test. The sampling size

is set to approximately 10% of the contained data points , as this is

recommended to avoid any small sample problems with the distributions of the

statistics.

31

32 hopkins_EoC1 = hopkins(df_EoC_converted1 , 1500)

33 hopkins_EoC2 = hopkins(df_EoC_converted2 , 1500)

34 hopkins_EoC3 = hopkins(df_EoC_converted3 , 1500)

35

36 # Importing the preprocessed EoC Bundle data from the three iterations

37 df_EoC_Bundle1 = pd.read_csv('1_EoC_Bundle_preprocessed.csv')
38 df_EoC_Bundle2 = pd.read_csv('2_EoC_Bundle_preprocessed.csv')
39 df_EoC_Bundle3 = pd.read_csv('3_EoC_Bundle_preprocessed.csv')
40

41 # Preparing the EoC Bundle data by removing EoC_id and EoC_Bundle_id. Then ,

temporarily convert the categorical features to numerical features. It is

preferable to scale the data before calculating the Hopkins score , as the

distance between the data points is used. The scaled data must be converted

from a Pandas Dataframe to a Numpy Array.

42

43 def prepareEoC_BundleForHopkins1(df_EoC_Bundle):

44 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id ', 'EoC_id '], axis =1)

45 df_converted = pd.get_dummies(

46 df_EoC_Bundle , columns =['gender ', 'diagnose_axis_1 ', 'diagnose_axis_2 ', '
diagnose_axis_3 ', 'diagnose_axis_4 ', 'diagnose_axis_5 ', 'diagnose_axis_6 '])

47

48 scaled_data = df_converted.copy()

49 for c in df_converted.select_dtypes(exclude='object ').columns:
50 pt = PowerTransformer ()

51 scaled_data[c] = pt.fit_transform(

52 np.array(scaled_data[c]).reshape(-1, 1))

53

54 return scaled_data.values

55

56 def prepareEoC_BundleForHopkins2(df_EoC_Bundle):

57 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id ', 'EoC_id '], axis =1)

58 df_converted = pd.get_dummies(

59 df_EoC_Bundle , columns =['gender ', 'diagnose_axis_1 ', 'diagnose_axis_2 ', '
diagnose_axis_3 ', 'diagnose_axis_4 ', 'diagnose_axis_5 '])

60

61 scaled_data = df_converted.copy()

62 for c in df_converted.select_dtypes(exclude='object ').columns:
63 pt = PowerTransformer ()

64 scaled_data[c] = pt.fit_transform(

65 np.array(scaled_data[c]).reshape(-1, 1))

66

67 return scaled_data.values

68

69 def prepareEoC_BundleForHopkins3(df_EoC_Bundle):

70 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id ', 'EoC_id '], axis =1)

71 df_converted = pd.get_dummies(

72 df_EoC_Bundle , columns =['care_situation ', 'gender ', 'diagnose_axis_1 ', '
diagnose_axis_2 ', 'diagnose_axis_3 ', 'diagnose_axis_4 ', 'diagnose_axis_5 ', '
diagnose_axis_6 ', 'closing_code '])

73

74 scaled_data = df_converted.copy()

75 for c in df_converted.select_dtypes(exclude='object ').columns:
76 pt = PowerTransformer ()

77 scaled_data[c] = pt.fit_transform(

78 np.array(scaled_data[c]).reshape(-1, 1))
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79

80 return scaled_data.values

81

82 df_EoC_Bundle_converted1 = prepareEoC_BundleForHopkins1(df_EoC_Bundle1)

83 df_EoC_Bundle_converted2 = prepareEoC_BundleForHopkins2(df_EoC_Bundle2)

84 df_EoC_Bundle_converted3 = prepareEoC_BundleForHopkins3(df_EoC_Bundle3)

85

86 hopkins_EoC_Bundle1 = hopkins(df_EoC_Bundle_converted1 , 1500)

87 hopkins_EoC_Bundle2 = hopkins(df_EoC_Bundle_converted2 , 1500)

88 hopkins_EoC_Bundle3 = hopkins(df_EoC_Bundle_converted3 , 1500)

Listing B.9: Exploring the data’s cluster tendency using the Hopkins statistics

The Hopkins score is calculated for the EoC and EoC Bundle data for all three iterations in this

appendix section.

1 import pandas as pd

2 import numpy as np

3 from sklearn.preprocessing import PowerTransformer

4 from pyclustertend import hopkins

5

6 # Importing the finished preprocessed EoC data from the tree iterations

7

8 df_EoC1 = pd.read_csv('1_EoC_preprocessed.csv')
9 df_EoC2 = pd.read_csv('2_EoC_preprocessed.csv')

10 df_EoC3 = pd.read_csv('3_EoC_preprocessed.csv')
11

12 # Preparing the EoC data by removing EoC_id. Then , temporarily convert the

categorical features to numerical features. It is preferable to scale the data

before calculating the Hopkins score , as the distance between the data points

is used. The scaled data must be converted from a Pandas Dataframe to a Numpy

Array.

13

14 def prepareEoCForHopkins(df_EoC):

15 df_EoC = df_EoC.drop(['EoC_id '], axis =1)

16 df_converted = pd.get_dummies(

17 df_EoC , columns =['care_level ', 'immediacy_level '])
18

19 scaled_data = df_converted.copy()

20 for c in df_converted.select_dtypes(exclude='object ').columns:
21 pt = PowerTransformer ()

22 scaled_data[c] = pt.fit_transform(

23 np.array(scaled_data[c]).reshape(-1, 1))

24 return scaled_data.values

25

26 df_EoC_converted1 = prepareEoCForHopkins(df_EoC1)

27 df_EoC_converted2 = prepareEoCForHopkins(df_EoC2)

28 df_EoC_converted3 = prepareEoCForHopkins(df_EoC3)

29

30 # Assess the clusterability of the data using the Hopkins test. The sampling size

is set to approximately 10% of the contained data points , as this is

recommended to avoid any small sample problems with the distributions of the

statistics.

31

32 hopkins_EoC1 = hopkins(df_EoC_converted1 , 1500)

33 hopkins_EoC2 = hopkins(df_EoC_converted2 , 1500)

34 hopkins_EoC3 = hopkins(df_EoC_converted3 , 1500)

35

36 # Importing the preprocessed EoC Bundle data from the three iterations

37 df_EoC_Bundle1 = pd.read_csv('1_EoC_Bundle_preprocessed.csv')
38 df_EoC_Bundle2 = pd.read_csv('2_EoC_Bundle_preprocessed.csv')
39 df_EoC_Bundle3 = pd.read_csv('3_EoC_Bundle_preprocessed.csv')
40
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41 # Preparing the EoC Bundle data by removing EoC_id and EoC_Bundle_id. Then ,

temporarily convert the categorical features to numerical features. It is

preferable to scale the data before calculating the Hopkins score , as the

distance between the data points is used. The scaled data must be converted

from a Pandas Dataframe to a Numpy Array.

42

43 def prepareEoC_BundleForHopkins1(df_EoC_Bundle):

44 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id ', 'EoC_id '], axis =1)

45 df_converted = pd.get_dummies(

46 df_EoC_Bundle , columns =['gender ', 'diagnose_axis_1 ', 'diagnose_axis_2 ', '
diagnose_axis_3 ', 'diagnose_axis_4 ', 'diagnose_axis_5 ', 'diagnose_axis_6 '])

47

48 scaled_data = df_converted.copy()

49 for c in df_converted.select_dtypes(exclude='object ').columns:
50 pt = PowerTransformer ()

51 scaled_data[c] = pt.fit_transform(

52 np.array(scaled_data[c]).reshape(-1, 1))

53

54 return scaled_data.values

55

56 def prepareEoC_BundleForHopkins2(df_EoC_Bundle):

57 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id ', 'EoC_id '], axis =1)

58 df_converted = pd.get_dummies(

59 df_EoC_Bundle , columns =['gender ', 'diagnose_axis_1 ', 'diagnose_axis_2 ', '
diagnose_axis_3 ', 'diagnose_axis_4 ', 'diagnose_axis_5 '])

60

61 scaled_data = df_converted.copy()

62 for c in df_converted.select_dtypes(exclude='object ').columns:
63 pt = PowerTransformer ()

64 scaled_data[c] = pt.fit_transform(

65 np.array(scaled_data[c]).reshape(-1, 1))

66

67 return scaled_data.values

68

69 def prepareEoC_BundleForHopkins3(df_EoC_Bundle):

70 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id ', 'EoC_id '], axis =1)

71 df_converted = pd.get_dummies(

72 df_EoC_Bundle , columns =['care_situation ', 'gender ', 'diagnose_axis_1 ', '
diagnose_axis_2 ', 'diagnose_axis_3 ', 'diagnose_axis_4 ', 'diagnose_axis_5 ', '
diagnose_axis_6 ', 'closing_code '])

73

74 scaled_data = df_converted.copy()

75 for c in df_converted.select_dtypes(exclude='object ').columns:
76 pt = PowerTransformer ()

77 scaled_data[c] = pt.fit_transform(

78 np.array(scaled_data[c]).reshape(-1, 1))

79

80 return scaled_data.values

81

82 df_EoC_Bundle_converted1 = prepareEoC_BundleForHopkins1(df_EoC_Bundle1)

83 df_EoC_Bundle_converted2 = prepareEoC_BundleForHopkins2(df_EoC_Bundle2)

84 df_EoC_Bundle_converted3 = prepareEoC_BundleForHopkins3(df_EoC_Bundle3)

85

86 hopkins_EoC_Bundle1 = hopkins(df_EoC_Bundle_converted1 , 1500)

87 hopkins_EoC_Bundle2 = hopkins(df_EoC_Bundle_converted2 , 1500)

88 hopkins_EoC_Bundle3 = hopkins(df_EoC_Bundle_converted3 , 1500)

Listing B.10: Exploring the data’s cluster tendency using the Hopkins statistics.
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B.3 Discussion Code

B.3.1 Comparing Initialisation Method

In this Appendix, the initialisation methods Huang and Cao are compared. First, the optimal

number of k is identified and used to cluster the first iteration’s EoC Data with k-prototypes

initialised with Huang. Then, the same approach is completed again, with Cao as the initialisation

method. Finally, the clustering centroids obtained from the two approaches are presented.

k-prototypes initialised with Huang on First Iteration’s EoC Data

1 # Importing the necessary packages

2 import pandas as pd

3 import numpy as np

4 from kmodes.kprototypes import KPrototypes

5 from sklearn.preprocessing import PowerTransformer

6 import plotly.graph_objs as go

7 from plotnine import *

8 import plotnine

9 from kneed import KneeLocator

10

11 # Format scientific notation from Pandas

12 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

13

14 # Importing the finished preprocessed EoC data

15 df = pd.read_csv('EoC_preprocessed.csv')
16

17 # Remove EoC ID to prepare for the clustering

18 df_cluster = df.drop(['EoC_id '], axis = 1)

19 df_cluster.head()

20

21 # Transform the continous features

22 kprot_data = df_cluster.copy()

23 for c in df_cluster.select_dtypes(exclude='object ').columns:
24 pt = PowerTransformer ()

25 kprot_data[c] = pt.fit_transform(np.array(kprot_data[c]).reshape(-1, 1))

26

27 # Get the position of categorical columns

28 categorical_columns = [df_cluster.columns.get_loc(col) for col in list(df_cluster.

select_dtypes('object ').columns)]
29 print('Categorical columns : {}'.format(list(df_cluster.select_dtypes('

object ').columns)))
30 print('Categorical columns position : {}'.format(categorical_columns))
31

32 # Converting the data frame to a matrix

33 dfMatrix = kprot_data.to_numpy ()

34

35 # Finding k using the elbow method with Huang as the initialisation method

36 cost_huang = []

37 for cluster in range(1, 11):

38 try:

39 kprototype_huang = KPrototypes(n_jobs = -1, n_clusters = cluster , init = '
Huang ', random_state = 0)

40 kprototype_huang.fit_predict(dfMatrix , categorical = categorical_columns)

41 cost_huang.append(kprototype_huang.cost_)

42 print('Cluster initiation: {}'.format(cluster))
43 except:

44 break

45

46 # Converting the results into a data frame and plotting them

47 df_cost_huang = pd.DataFrame ({'Cluster ':range(1, 11), 'Cost':cost_huang })
48 df_cost_huang.head (10)
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49

50 # Visualise the elbow plot using Huang as initialisation method

51 plotnine.options.figure_size = (8, 4.8)

52 (

53 ggplot(data = df_cost_huang)+

54 geom_line(aes(x = 'Cluster ',
55 y = 'Cost'))+
56 geom_point(aes(x = 'Cluster ',
57 y = 'Cost'))+
58 geom_label(aes(x = 'Cluster ',
59 y = 'Cost',
60 label = 'Cluster '),
61 size = 10,

62 nudge_y = 1000) +

63 labs(title = 'Optimal number of cluster with Elbow Method ')+
64 xlab('Number of Clusters k')+
65 ylab('Cost')+
66 theme_minimal ()

67 )

68

69 # Confirm visual clue of elbow plot

70 # KneeLocator class will detect elbows if curve is convex; if concavem will detect

knees

71 cost_knee_c3 = KneeLocator(

72 range (1,10),

73 cost_huang ,

74 S=0.1, curve="convex", direction="decreasing", online=True)

75

76 K_inertia_b3 = cost_knee_c3 .elbow

77 print("elbow at k =", f'{K_inertia_b3 :.0f} clusters ')
78

79

80 # Using the identified optimal number of clusters to cluster the EoC data

81 kprototype = KPrototypes(n_jobs = -1, n_clusters = 3, init = 'Huang ', random_state

= 0)

82 kprototype.fit_predict(kprot_data , categorical = categorical_columns)

83

84 # Print the obtained clustering centroids

85 kprototype.cluster_centroids_

86

87 # Check the iteration of the clusters created

88 kprototype.n_iter_

89

90 # Check the cost of the clusters created

91 kprototype.cost_

Listing B.11: Cluster the first iteration’s EoC data using k-prototypes with Huang as initialisation

method.

k-prototypes initialised with Cao on First Iteration’s EoC Data

1 # Importing the necessary packages

2 import pandas as pd

3 import numpy as np

4 from kmodes.kprototypes import KPrototypes

5 from sklearn.preprocessing import PowerTransformer

6 import plotly.graph_objs as go

7 from plotnine import *

8 import plotnine

9 from kneed import KneeLocator

10

11 # Format scientific notation from Pandas

12 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

13
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14 # Importing the finished preprocessed EoC data

15 df = pd.read_csv('EoC_preprocessed.csv')
16

17 # Remove EoC ID to prepare for the clustering

18 df_cluster = df.drop(['EoC_id '], axis = 1)

19 df_cluster.head()

20

21 # Transform the continous features

22 kprot_data = df_cluster.copy()

23 for c in df_cluster.select_dtypes(exclude='object ').columns:
24 pt = PowerTransformer ()

25 kprot_data[c] = pt.fit_transform(np.array(kprot_data[c]).reshape(-1, 1))

26

27 # Get the position of categorical columns

28 categorical_columns = [df_cluster.columns.get_loc(col) for col in list(df_cluster.

select_dtypes('object ').columns)]
29 print('Categorical columns : {}'.format(list(df_cluster.select_dtypes('

object ').columns)))
30 print('Categorical columns position : {}'.format(categorical_columns))
31

32 # Finding k using the elbow method

33 costs = []

34 n_clusters = []

35 clusters_assigned = []

36

37 for i in tqdm(range(1, 11)):

38 try:

39 kproto = KPrototypes(n_clusters= i, init='Cao', verbose =2)

40 clusters = kproto.fit_predict(kprot_data , categorical=categorical_columns)

41 costs.append(kproto.cost_)

42 n_clusters.append(i)

43 clusters_assigned.append(clusters)

44 except:

45 print(f"Can't cluster with {i} clusters")

46

47 fig = go.Figure(data=go.Scatter(x=n_clusters , y=costs ))

48 fig.show()

49

50 # Converting the results into a dataframe and plotting them

51 df_cost = pd.DataFrame ({'Cluster ':range(1, 11), 'Cost':costs})
52

53 plotnine.options.figure_size = (8, 4.8)

54 (

55 ggplot(data = df_cost)+

56 geom_line(aes(x = 'Cluster ',
57 y = 'Cost'))+
58 geom_point(aes(x = 'Cluster ',
59 y = 'Cost'))+
60 geom_label(aes(x = 'Cluster ',
61 y = 'Cost',
62 label = 'Cluster '),
63 size = 11,

64 nudge_y = 1000) +

65 labs(title = 'Optimal number of cluster with Elbow Method ')+
66 xlab('Number of Clusters k')+
67 ylab('Cost')+
68 theme_minimal ()

69 )

70

71 # Confirm visual clue of elbow plot KneeLocator class will detect elbows if curve

is convex; if concavem will detect knees

72

73 from kneed import KneeLocator

74 cost_knee_c3 = KneeLocator(

75 range (1,11),

76 costs ,
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77 S=0.1, curve="convex", direction="decreasing", online=True)

78

79 K_inertia_b3 = cost_knee_c3 .elbow

80 print("elbow at k =", f'{K_inertia_b3 :.0f} clusters ')
81

82 # Using the identified optimal number of clusters to cluster the EoC data

83 kprototype = KPrototypes(n_jobs = -1, n_clusters = 3, init = 'Cao', random_state =

0)

84 kprototype.fit_predict(kprot_data , categorical = categorical_columns)

85

86 # Print the obtained clustering centroids

87 kprototype.cluster_centroids_

88

89 # Check the iteration of the clusters created

90 kprototype.n_iter_

91

92 # Check the cost of the clusters created

93 kprototype.cost_

Listing B.12: Cluster the first iteration’s EoC data using k-prototypes with Cao as initialisation

method.

179



APPENDIX B. CODE

Clustering Centroids obtained using Huang

array([['0.8994676158198726', '0.9278223948675354', '0.8336980087794877',

'0.8611961619179367', '0.7336897373909423', '0.6348944446497196',

'0.6354331670513417', '0.643940303325123', '0.6135411307586467',

'0.598455477861984', '0.6572174978938633', '0.6552908284289688',

'0.7597795837626988', '0.9534380138590786', '0.6385446656256897',

'Polyclinic', 'Planned'],

['-0.40614895872001316', '-0.43134634021099616',

'-0.3679464314854653', '-0.5569999737571355',

'-0.4494214207871815', '0.3319810207858752', '0.530689543935265',

'0.5257514065527068', '0.5092460209346316', '0.5287054547097749',

'0.4133598110473474', '0.5178438727433178',

'-0.25297598895286366', '-0.42654342622900615',

'0.5800664848785415', 'Polyclinic', 'Planned'],

['-0.8496839464078503', '-0.8653686946048286',

'-0.7951717642241827', '-0.6629430442289482',

'-0.587279776970226', '-1.153860590144894',

'-1.3325607094654397', '-1.339614650095579',

'-1.2838207625965203', '-1.2808978972761622',

'-1.2568630501335798', '-1.3478450014402688',

'-0.7984234000276745', '-0.9042278766197227',

'-1.380982831822819', 'Polyclinic', 'Planned']], dtype='<U32')

Clustering Centroids obtained using Cao

array([['-0.40614895872001333', '-0.431346340210998',

'-0.36794643148546874', '-0.5569999737571358',

'-0.449421420787183', '0.3319810207858775', '0.5306895439352637',

'0.5257514065527', '0.5092460209346313', '0.5287054547097861',

'0.4133598110473469', '0.5178438727433112',

'-0.25297598895286477', '-0.42654342622900626',

'0.5800664848785491', 'Polyclinic', 'Planned'],

['-0.8496839464078747', '-0.8653686946048276',

'-0.7951717642242988', '-0.6629430442289285',

'-0.5872797769702602', '-1.153860590144448',

'-1.3325607094655538', '-1.3396146500956951',

'-1.2838207625966618', '-1.28089789727641',

'-1.2568630501331124', '-1.3478450014404793',

'-0.7984234000276443', '-0.9042278766197224',

'-1.3809828318228976', 'Polyclinic', 'Planned'],

['0.8994676158198069', '0.9278223948675327', '0.8336980087793757',

'0.8611961619179515', '0.7336897373909547', '0.6348944446495994',

'0.6354331670513493', '0.643940303325143', '0.6135411307586524',

'0.5984554778620194', '0.6572174978937421', '0.6552908284290205',

'0.7597795837626956', '0.9534380138590732', '0.6385446656256867',

'Polyclinic', 'Planned']], dtype='<U32')
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B.3.2 Finding the Optimal Number of Clusters Using UMAP

This appendix section used UMAP to find the optimal number of clusters for the first iteration’s

EoC and EoC data. First, the code used to implement UMAP on the EoC and EoC Bundle data

is provided before presenting the obtained results.

Implementation of UMAP on the EoC and EoC Bundle Data

1 # Importing the necessary packages

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from kmodes.kprototypes import KPrototypes

6 from sklearn.preprocessing import PowerTransformer

7 import umap

8

9 # Format scientific notation from Pandas

10 pd.set_option('display.float_format ', lambda x: '%.3f' % x)

11

12 # Importing the finished preprocessed EoC data

13 df_EoC = pd.read_csv('EoC_preprocessed.csv')
14

15 # Prepare the data by removing the EoC ID

16 df_cluster = df.drop(['EoC_id '], axis = 1)

17 df_cluster.head()

18

19 # Transforming the numerical EoC features to be on the same scale

20 numerical = df_EoC.select_dtypes(exclude='object ')
21 for c in numerical.columns:

22 pt = PowerTransformer ()

23 numerical.loc[:, c] = pt.fit_transform(np.array(numerical[c]).reshape(-1, 1))

24

25 # Convert categorical EoC features into dummy/indicator variables

26 categorical = df_EoC.select_dtypes(include='object ')
27 categorical = pd.get_dummies(categorical)

28

29 # The percentage of categorical columns is used as a weight parameter in embeddings

later

30 categorical_weight = len(df_EoC.select_dtypes(include='object ').columns) / df_EoC.

shape [1]

31

32 # Embedding the preprocessed numerical & categorical features

33 fit1 = umap.UMAP(metric='l2').fit(numerical)
34 fit2 = umap.UMAP(metric='dice').fit(categorical)
35

36 # Printing the categorical weight

37 categorical_weight

38

39 # Augmenting the numerical embedding with categorical

40 intersection = umap.umap_.general_simplicial_set_intersection(fit1.graph_ , fit2.

graph_ , weight=categorical_weight)

41 intersection = umap.umap_.reset_local_connectivity(intersection)

42 embedding = umap.umap_.simplicial_set_embedding(fit1._raw_data , intersection , fit1.

n_components ,

43 fit1._initial_alpha , fit1._a, fit1.

_b,

44 fit1.repulsion_strength , fit1.

negative_sample_rate ,

45 200, 'random ', np.random , fit1.

metric ,

46 fit1._metric_kwds , False ,

densmap_kwds ={}, output_dens=False)

47

48 print(embedding)
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49 plt.figure(figsize =(20, 10))

50 plt.scatter (*np.array(embedding)[0].T, s=2, cmap='Spectral ', alpha =1.0)

51 plt.show()

52

53 # Importing the finished preprocessed EoC data

54 df_EoC_Bundle = pd.read_csv('EoC_Bundle_preprocessed.csv')
55

56 # Prepare the data by removing EoC Bundle ID

57 df_EoC_Bundle = df_EoC_Bundle.drop(['EoC_Bundle_id '], axis = 1)

58 df_EoC_Bundle.head()

59

60 # Transforming the numerical EoC Bundle features to be on the same scale

61 numerical_EoC_Bundle = df_EoC_Bundle.select_dtypes(exclude='object ')
62 for c in numerical_EoC_Bundle.columns:

63 pt = PowerTransformer ()

64 numerical_EoC_Bundle.loc[:, c] = pt.fit_transform(np.array(numerical_EoC_Bundle

[c]).reshape(-1, 1))

65

66 # Convert categorical EoC_Bundle features into dummy/indicator variables

67 categorical_EoC_Bundle = df_EoC_Bundle.select_dtypes(include='object ')
68 categorical_EoC_Bundle = pd.get_dummies(categorical_EoC_Bundle)

69

70 # The percentage of categorical columns is used as a weight parameter in embeddings

later

71 categorical_weight_EoC_Bundle = len(df_EoC_Bundle.select_dtypes(include='object ').
columns) / df_EoC_Bundle.shape [1]

72

73 # Embedding the preprocessed numerical & categorical features

74 fit1_EoC_Bundle = umap.UMAP(metric='l2').fit(numerical_EoC_Bundle)
75 fit2_EoC_Bundle = umap.UMAP(metric='dice').fit(categorical_EoC_Bundle)
76

77 # Printing the categorical weight

78 categorical_weight_EoC_Bundle

79

80 # Augmenting the numerical embedding with categorical

81 intersection_EoC_Bundle = umap.umap_.general_simplicial_set_intersection(

fit1_EoC_Bundle.graph_ , fit2_EoC_Bundle.graph_ , weight=

categorical_weight_EoC_Bundle)

82 intersection_EoC_Bundle = umap.umap_.reset_local_connectivity(

intersection_EoC_Bundle)

83 embedding_EoC_Bundle = umap.umap_.simplicial_set_embedding(fit1_EoC_Bundle.

_raw_data , intersection_EoC_Bundle , fit1_EoC_Bundle.n_components ,

84 fit1_EoC_Bundle._initial_alpha ,

fit1_EoC_Bundle._a, fit1_EoC_Bundle._b,

85 fit1_EoC_Bundle.repulsion_strength ,

fit1_EoC_Bundle.negative_sample_rate ,

86 200, 'random ', np.random ,

fit1_EoC_Bundle.metric ,

87 fit1_EoC_Bundle._metric_kwds , False

, densmap_kwds ={}, output_dens=False)

88

89 print(embedding_EoC_Bundle)

90 plt.figure(figsize =(20, 10))

91 plt.scatter (*np.array(embedding_EoC_Bundle)[0].T, s=2, cmap='Spectral ', alpha =1.0)

92 plt.show()

Listing B.13: Using UMAP to find the optimal number of clusters for the first iteration’s EoC and

EoC Bundle data.
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The Resulting UMAP Plots

Figure B.1: Dimentionality reduction of EoC data using UMAP.

Figure B.2: Dimentionality reduction of EoC Bundle data using UMAP.
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Additional Visualisations

C.1 First Iteration Visualisations

The following present additional visualisations presented to the clinicians when they asked for more

details regarding contacts of diagnoses.

Figure C.1: First iteration’s distribution of therapy contacts.
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Figure C.2: First iteration’s distribution of examination contacts.

Figure C.3: First iteration’s distribution of planning contacts.
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Figure C.4: First iteration’s distribution of no-show contacts.

Figure C.5: First iteration’s distribution of examination contacts.
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Figure C.6: First iteration’s distribution of the unique number of diagnoses on Axis 1.

Figure C.7: First iteration’s distribution of the unique number of diagnoses on Axis 2.
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Figure C.8: First iteration’s distribution of the unique number of diagnoses on Axis 3.

Figure C.9: First iteration’s distribution of the unique number of diagnoses on Axis 4.
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Figure C.10: First iteration’s distribution of the unique number of diagnoses on Axis 5.

Figure C.11: First iteration’s distribution of the unique number of diagnoses on Axis 6.
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C.2 Second Iteration Visualisations

Figure C.12: Second iteration’s distribution of therapy contacts.

Figure C.13: Second iteration’s distribution of examination contacts.
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Figure C.14: Second iteration’s distribution of planning contacts.

Figure C.15: Second iteration’s distribution of no-show contacts.
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Figure C.16: Second iteration’s distribution of examination contacts.

Figure C.17: Second iteration’s distribution of the frequency of diagnoses set on Axis 1.
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Figure C.18: Second iteration’s distribution of the frequency of diagnoses set on Axis 2.

Figure C.19: Second iteration’s distribution of the frequency of diagnoses set on Axis 3.
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Figure C.20: Second iteration’s distribution of the frequency of diagnoses set on Axis 4.

Figure C.21: Second iteration’s distribution of the frequency of diagnoses set on Axis 5.
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Figure C.22: Second iteration’s distribution of the frequency of diagnoses set on Axis 6.

C.3 Third Iteration Visualisations

This appendix includes all the additional visualisations shown to clinicians if they asked for further

details regarding contacts or diagnoses.

Figure C.23: Third iteration’s distribution of therapy contacts.
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Figure C.24: Third iteration’s distribution of examination contacts.

Figure C.25: Third iteration’s distribution of planning contacts.
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Figure C.26: Third iteration’s distribution of no-show contacts.

Figure C.27: Third iteration’s distribution of examination contacts.
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Figure C.28: Third iteration’s distribution of the frequency of diagnoses set on Axis 1.

Figure C.29: Third iteration’s distribution of the frequency of diagnoses set on Axis 2.
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Figure C.30: Third iteration’s distribution of the frequency of diagnoses set on Axis 3.

Figure C.31: Third iteration’s distribution of the frequency of diagnoses set on Axis 4.
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Figure C.32: Third iteration’s distribution of the frequency of diagnoses set on Axis 5.

Figure C.33: Third iteration’s distribution of the frequency of diagnoses set on Axis 6.
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