
Abstract

Recent results in single-hypothesis, multi-target tracking uses loopy belief propaga-
tion (LBP) to perform efficient, approximate marginalization of the association hypo-
thesis posterior with much success. In this work, we generalize this methodology to a
multi-cluster, multi-hypothesis setting by presenting four novel methods. The methods
are designed to marginalize and estimate the normalization constant of the novel multi-
cluster, multi-hypothesis association graph presented in this work. The normalization
constants are estimated with novel, specialized expressions for computing the Bethe
constant of the association graph.

All presented methods are based on LBP. One method uses specialized LBP mes-
sages that are optimized for efficient computation and memory management on the full
association graph. The three other methods are based on a novel cluster-conditioning
method also presented in this work that avoids reenumerating the prior hypotheses in
cases where clusters merge by having a marginalization step that reintroduces independ-
ence between the clusters. One of these methods uses single-cluster, multi-hypothesis
LBP to do inference on the single-cluster, multi-hypothesis association graph. The two
other methods marginalizes over the prior hypotheses to do inference on single-cluster,
single-hypothesis association graphs.

The motivation for developing these presented methods is to efficiently do marginaliz-
ation of the multi-cluster, multi-hypothesis association posterior to enable track recycling
in the Poisson Multi-Bernoulli Mixture (PMBM) and improve filter consistency. Res-
ults show that basing the normalization constant estimate on the Bethe constant shows
promise and that hypothesis-conditioned LBP gives more accurate and reliable marginal
estimates than multi-hypothesis LBP.
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Sammendrag

Nyere resultater innenfor målfølging av flere mål med kun én hypotese bruker “loopy
belief propagation” (LBP) for å utføre effektiv, tilnærmet marginalisering av hypotese-
posterioren med stor suksess. Denne avhandlingen generaliserer denne metoden til det
generelle målfølgingsscenarioet med flere samlinger av mål og flere hypoteser ved å
presentere fire nye metoder. Disse metodene er designet for å marginalisere og es-
timere normaliseringskonstanten til den nye assosiasjonsgrafen for flere samlinger av
mål og flere hypoteser som blir presentert i dette arbeidet. Normaliseringskonstantene
blir estimert ved hjelp av nye, spesialiserte uttrykk for beregning av Bethe-konstanten til
assosiasjonsgrafen.

En metode bruker spesialiserte LBP-meldingsdefinisjoner som er optimalisert for
effektiv beregning og minnehåndtering på den fulle assosiasjonsgrafen. De tre andre
metodene er basert på en ny betingelsesmetode over samlingene av mål som også blir
presentert i dette arbeidet. Denne metoden unngår å enumerere hypoteser på nytt i tilfelle
samlinger slås sammen ved å ha et marginaliseringstrinn som gjeninnfører uavhengighet
mellom samlingene. En av disse metodene bruker LBP på en assosiasjonsgraf for
en enkel samling av mål over flere hypoteser for inferens. De to andre metodene tar
marginalisering videre ved å marginalisere over hypotesene i målsamlingen for å gjøre
inferens på assosiasjonsgrafter for en enkel samling med en hypotese.

Motivasjonen for å utvikle disse metodene er å muliggjøre såkalt resirkulering av
målestimat i Poisson Multi-Bernoulli-mikstur (PMBM) filteret for å forbedre ytelsen til
filteret ved å effektivt approksimere assosiasjonsmarginaler. Resultatene viser at normal-
iseringskonstantestimat basert på Bethe-konstanten virker lovende, og at hypotesebetinget
LBP gir mer nøyaktige og pålitelige marginalestimater enn LBP over flere hypoteser.
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Introduction and preliminaries



1 | Introduction

Situational awareness is the ability for an autonomous system to understand its envir-
onment and enables it to operate truly autonomously by adapting to it. An example of
this in practice can be an autonomous ferry that shall cross a canal and needs to plan a
route that does not interfere with traffic. In this thesis we concern ourselves with target
tracking which involves detecting, estimating, and predicting the state of external targets,
which in general can be any object existing in the real world, both static and dynamic. In
practice we do this by constructing tracks, which are estimated trajectories for the targets
we track.

In this thesis we will focus on Multi-target tracking (MTT), the ability to track
multiple, interacting tracks simultaneously. A core part of any such system is data as-
sociation. In broad terms, this is the logic for determining whether detections received
from some exteroceptive sensor are of actual tracks, in which case which tracks if am-
biguous, or if some or all detections are false alarms, meaning they should be discarded.
Even with severe restrictions and assumptions, solving this problem exactly is in practice
intractable. This follows from the combinatorial complexity of the problem – to do exact
data association we have to enumerate all such ways of explaining the detections, called
association hypotheses. Without any pruning techniques, the number of association
hypotheses that can be made from the detections received over multiple timesteps grows
astronomically large. Therefore, approximations have to be made, and exploring such
approximations is the core content of this thesis.

In particular, the following thesis explores novel, approximate methods specialized
for MTT that utilize a specific structure in the data association problem. The structure
together with approximation techniques are what enables efficient data association to
perform MTT for online purposes, which is the main, overall goal of the presented work.
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1.1 Related work

This thesis is a continuation of the work done in a pre-master project in 2022 that ended
in a project report. The methods and results presented in this report has been accepted for
publication in the proceedings of the 2023 26th International Conference on Information
Fusion (FUSION) [1]. A copy of the accepted paper can also be found in Appendix C.

The pre-master project focused on a particular form of MTT called multi-hypothesis
MTT, where we keep the association hypotheses that are made in a timestep and uses
them to form the association hypotheses of the subsequent timesteps. This is contrary
to single-hypothesis MTT where approximations are used to combine the association
hypotheses into a single hypothesis at the end of each timestep.

There were three novel contributions presented in the pre-master project. The first
was a novel, graphical representation of the multi-hypothesis, single-cluster association
posterior that appears in multi-hypothesis MTT. Graphical models for probabilistic in-
ference has been widely used in robotics and intelligent systems for several decades.
Graphical modelling varies based on representation abilities of the underlying probabil-
ity density, and the first representations that saw use are Markov random fields [2]–[4]
and Bayesian networks [5], [6]. The pre-master project used a graphical representation
called factor graph, a representation first presented by Kschischang et. al in [7]. The
second novelty was a specialized formulation of Loopy belief propagation (LBP), called
Multi-hypothesis loopy belief propagation (MH-LBP), to perform full LBP directly on
the multi-hypothesis association to retrieve approximate association marginals from the
original, joint association posterior. The LBP method was first described by Pearl in
[5] who formulated the method for probabilistic graphs with tree structures, where the
method is exact. The LBP approach was a generalization based upon the work of Willi-
ams et. al in [8], which uses a similar approach to approximate the association marginals
in a single-hypothesis context. The last novelty was an alternative marginalization ap-
proach that performed LBP on hypothesis-conditioned association posteriors, where the
association graph was identical to the one in [8]. The approximated marginals were then
combined by total probability using suitable scaling from an approximated hypothesis-
conditioned likelihood. In the pre-master project, the approximation was calculated using
ideas from the Probability hypothesis density (PHD) filter [9] which is based upon Finite
set statistics (FISST) [9].

Factor graphs for inference in multi-target tracking has seen other use as well. The
initial usage of factor graphs was pioneered by Chen, Cetin et al [10]–[13]. In their work,
they employed the max-product algorithm, a variant of LBP, to determine the optimal
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association hypothesis by maximizing a joint distribution instead of marginalizing it.
Meyer, Braca et al. integrated the data association method proposed in [8] into a

factor graph representation of the joint track state posterior for multi-sensor scenarios.
They utilized LBP to approximate the marginal track state posteriors. Furthermore, they
extended their approach to include estimation of time-varying model parameters in [14]
and later handle an unknown number of targets in [15].

Finally, Gaglione et al. presented a method for multi-sensor, multi-target tracking in
the maritime domain, utilizing a specifically designed factor graph and employing LBP
for approximate inference [16]. Additionally, in [17], the same authors used LBP in order
to fuse radar and Automatic Identification System (AIS) data.

1.2 Problem description and main contributions

In the pre-master project, the main contribution was on approximate marginalization of
the multi-hypothesis association posterior. This was driven by the observation that data
association, and in particular marginalization, in previous works was primarily done in
a single-hypothesis setting. The main motivation for generalizing to multi-hypothesis
was to allow for better track management in multi-hypothesis tracking to achieve more
consistent and robust tracking. The pre-master project, however, restricted itself to
inference on a single-cluster scenario, i.e., where we only consider a single collection of
tracks that interact with each other.

In this thesis we first and foremost generalize this work for multi-cluster purposes, i.e.
where we have multiple, independent clusters of tracks at the same time. We motivate this
for the following reason. In a practical implementation of an MTT filter we might want
to regulate the number of hypotheses we keep. Mainly this is done for computational
reasons, but additionally we do not always require a large set of association hypotheses,
or even more than one, to maintain estimation accuracy. We do, however, in general
always track multiple clusters of tracks, and so inference for single-cluster tracking is not
particularly useful in practice. Generalizing for multi-cluster therefore allows for using
the inference methods in a practical implementation, which is the end goal.

In particular, a considerable challenge in multi-hypothesis, multi-cluster MTT is
cluster merging, which is when clusters, i.e. independent collections of tracks, interact
with each other. In general, this increases the number of hypotheses in the resulting cluster
enormously. Although efficient implementations exist that can enumerate posterior
hypotheses in the update step [18], they prune a large proportion of the hypothesis space,
discarding information. The methods presented in this work are formulated in such a way
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as to avoid hypothesis enumeration. This is intended to keep more information intact.
The following thesis presents four novelties, all in Part II:

• A factor graph representation of the multi-cluster, multi-hypothesis association
posterior, which is presented in Chapter 5. This novel formulation is necessary as
it lays the foundation for the presented methods.

• A generalization of the efficient LBP scheme from the preceding project report
for the multi-cluster scenario, called Multi-cluster, multi-hypothesis loopy belief
propagation (MCMH-LBP), which is presented in Chapter 6. The LBP method has
multiple times previously been seen to give good approximations in a large number
of cases for low computational costs, a property that is particularly desirable in an
MTT pipeline.

• In the same chapter we also present novel expressions for estimating the normal-
ization constant to the multi-cluster, multi-hypthesis association posterior, single-
cluster, multi-hypothesis association posterior and lastly, single-cluster, single-
hypothesis association posterior based on the Bethe approximation of the respect-
ive distributions using the corresponding, specialized LBP messages. We argue
why and how to use these estimates to improve filter consistency and robustness,
in particular when doing multi-hypothesis tracking.

• A completely novel overparameterization of the factor graph presented in Chapter 5
supplemented by a novel, flexible multi-cluster, multi-hypothesis marginalization
procedure adaptable to any exact or approximate marginalization scheme inten-
ded for single-cluster and single- or multi-hypothesis inference, is presented in
Chapter 7. Based on this framework we additionally describe in detail how to use
it for more efficient, exact multi-cluster, multi-hypothesis marginalization using
existing single-cluster, single-hypothesis solvers and also propose three different
variations for approximate inference using LBP.

1.3 Outline

The thesis is structured as follows. First, the theory of factor graphs and LBP is introduced
in Chapter 2 that forms the fundament for approximate inference in the present work.
In Chapter 3, a review of MTT concepts and modeling assumptions is provided, largely
based on the same review in the preceding project report. Then, in Chapter 4, we formally
introduce the Poisson multi-Bernoulli mixture (PMBM) filter in its most general form.
We also state the involved filtering equations used to later be able to build the required
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joint association posterior for data association. The main chapters of this thesis are
Chapters 5 to 7 where the novelties are presented. Then, in Chapter 8 we inspect how
MCMH-LBP in particular performs on a simple test case where the system parameters
are tweaked to try to better understand the dynamics of LBP and how the marginal
and normalization constant estimates are affected by different parameters. Chapter 9
introduces the large-scale, simulated dataset that the proposed methods are tested on,
with results and discussion in Chapter 10. Lastly, a conclusion with future work can be
found in Chapter 11.
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2 | Probabilistic inference in graph-
ical models

At the very core of the data association methods in the present thesis are graphical
representations of probability distributions and inference algorithms applied to such
models. The main benefit of doing this is to better encode and, crucially, exploit structure
between the variables of the underlying distribution. The following chapter will present
the main graphical representation used, the factor graph, and also briefly mention an
alternative representation called the Markov random field. Lastly, a central, approximate
inference algorithm, loopy belief propagation, is presented and discussed.

2.1 Probability distributions

In general, a probability distribution is either a probability density or a probability mass
function, and both are relevant for the present work.

Without loss of generality, a probability density is a function p(x1, . . . , xn) over the
real, continuous, stochastic variables xi ∈ R, i ∈ {1, . . . , n} that satisfies

p(x1, . . . , xn) ≥ 0,∀x1, . . . , xn, (2.1)
∫
· · ·
∫
p(x1, . . . , xn) dx1 . . . dxn = 1. (2.2)

Note that a probability density does not evaluate to a probability, but must instead be
integrated first.

Again, without loss of generality, a probability mass function Pr{x1, . . . , xn} is the
discrete counterpart for discrete variables over some alphabet X, xi ∈ X, i ∈ {1, . . . , n}.

Specifically, we will focus on categorical variables where the elements of X carry a
semantic meaning and are not intrinsically ordered. Contrary to probability densities, a
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probability mass function does evaluate to an actual probability. Additionally, it satisfies

0 ≤Pr{x1, . . . , xn} ≤ 1,∀x1, . . . , xn, (2.3)
∑

x1,...,xn

Pr{x1, . . . , xn} = 1, (2.4)

where
∑
x1,...,xn

is short-hand notation for the iterated sum
∑
x1∈X · · ·

∑
xn∈X.

2.1.1 Exploiting conditional independence

For the sake of argument, assume we have a system of latent, discrete variablesx1, . . . , xn.
When doing inference on such a system, we typically model the joint distribution
Pr{x1, . . . , xn} and either try to maximize this function or marginalize it to independ-
ent marginal distributions Pr{xi} for each xi. If we focus on the latter objective, the
procedure is in principle a matter of summing out the other variables, i.e.,

Pr{xi} =
∑

x1

· · ·
∑

xi−1

∑

xi+1

· · ·
∑

xn

Pr{x1, . . . , xn} . (2.5)

Unfortunately, performing the computation in (2.5) becomes prohibitively expensive
when the number of variables and the size of the alphabet X grows arbitrarily large. This
follows from the fact that the joint distribution is factorized according to the chain rule
of probability,

Pr{x1, . . . , xn} = Pr{xi}Pr{x1 | xi} · · · · · Pr{xn | x1, . . . , xi−1, xi−1, . . . , xn−1} .
(2.6)

Assuming we form Pr{xi} as a table of probabilities, the iterated sum must be computed
for each element of X, i.e. |X| times, in addition to, for each time we compute the iterated
sum, at most having to do a sum over the table Pr{xn | x1, . . . , xi−1, xi−1, . . . , xn−1}
which is O(|X|n−1) large, i.e., exponential in number of variables.

If now instead assume that e.g. we can write (2.6) as

Pr{x1, . . . , xn} = Pr{xi}Pr{x1 | xi} · · · · · Pr{xn | x1, . . . , xi−1, xi−1, . . . , xn−1}
= Pr{xi}
· Pr{xi+1 | xi}Pr{xi+2 | xi+1} · · · · · Pr{xn | xn−1}
· Pr{xi−1 | xi}Pr{xi−2 | xi−1} · · · · · Pr{x1 | x2} (2.7)

then this reveals a sparse dependence between the variables, in this case that the variables
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form a chain. For the factorization in (2.7), it can be shown that the marginalization can
be done in O(n|X|2) computations, a large improvement over the general exponential
complexity. This form of structure follows from what is called conditional independence.
More generally, consider the disjoint set of variables X, Y and Z. We say that X and Y

are conditionally independent of each other given Z if

Pr{X,Y,Z} = Pr{Z}Pr{X | Z}Pr{Y | Z,X} (2.8)

= Pr{Z}Pr{X | Z}Pr{Y | Z} (2.9)

and we write X⊥⊥Y | Z. In terms of graphs this is also called graph separation. In con-
clusion, our ability to perform efficient marginalization of joint probability distributions
hinges on such sparse structures.

2.2 Graphical models

The following section will introduce two graphical representations used for probability
distribution in this thesis, the factor graph representation and the Markov Random Field
(MRF) representation.

2.2.1 Factor graphs

A factor graph is a type of bipartite graph consisting of variable nodes and factor nodes,
i.e. edges are only between variable and factor nodes, and was first described in [7]. A
factor graph represents a function f(x1, . . . , xn) that can be factorized as

f(x1, . . . , xn) =
∏

a

fa(xN(a)) (2.10)

where the expression fa(xN(a)) denotes a factor of the function f , N(a) represents the
set of neighbors of the factor node a, and xN(a) represents the set of neighboring variable
nodes of the factor fa.

When used for inference, factor graphs will in general not model a true probability
distribution, but instead a function proportional to it, such that

f(x1, . . . , xn) ∝ p(x1, . . . , xn). (2.11)

The normalization constant or partition function, often denoted byZ when unambiguous,
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can then be computed from

Z =
∑

x1,...,xn

f(x1, . . . , xn). (2.12)

The function f will otherwise satisfy everything else that p must satisfy.
To illustrate a factor graph, consider the distribution p(x, y, z) = p(z)p(x|z)p(y|z).

A natural factorization is f(x, y, z) = f(z)f(x, z)f(y, z) which is illustrated in Fig-
ure 2.1.

zx y
f(x, z) f(y, z)

f(z)

Figure 2.1: Factor graph illustration of the function f(x, y, z) = f(z)f(x, z)f(y, z).

2.2.2 Markov random fields

We will here describe an alternative graphical representation called Markov random
fields (MRF). An MRF follows very much the same structure as a factor graph with the
distinction that we in general factorize the function into the maximal cliques of the MRF,
which can be written as

p(x1, . . . , xn) ∝
∏

C∈C

ψC(xC) (2.13)

where C denotes a maximal clique and C the set of maximal cliques. In terms of graphs,
a clique is defined as a set of nodes where all nodes are connected to all other nodes by
an edge. We will assume that we can further factorize the function into node potentials
and edge potentials, namely that we can write

p(x1, . . . , xn) ∝
∏

i∈V
ϕi(xi)

∏

(j,k)∈E
ψjk(xj , xk) (2.14)

where V denotes the index set of the nodes in the MRF, the vertex index set, and E
the edge index set. An illustrative example of the MRF equivalent of the factor graph
in Figure 2.1 can be found in Figure 2.2. A better illustrative example of how the two
representations differ can instead be found in Figure 2.3 where the variables x, y and z
form a clique. For a clique size of 3, this will be the case when there is no structure
between the variables to exploit.
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zx y

Figure 2.2: Markov random field illustration of the function f(x, y, z) = f(z)f(x, z)f(y, z).

z

x y x y

z

Figure 2.3: The difference between how an MRF and factor graph represent a clique of size 3.

2.3 Approximate marginal computation by loopy be-

lief propagation

As discussed in Chapter 2.1.1, we depend on exploitable structure between the latent
variables of our system for efficient inference. In particular, if the structure between
the latent variables allows us to graphically represent the dependencies as a tree, the
variables obey a specific local dependency between each other. In this case, we are able
to use a favorable algorithm called Belief propagation (BP). The BP algorithm was first
introduced and described by Pearl in [5].

In real-world scenarios, unfortunately, it is common to use probability distributions
that have cycles, thus violating the tree representation constraint. However, due to the
local dependency between the variables assumed by BP, it is still possible to perform BP
on such a “loopy” graph. Doing this we arrive at the method known as LBP, which was in
fact suggested by Pearl himself [5]. It has been remarkably successful in approximating
the exact solution for many problems, such as target tracking [8], [10], [12]–[17], [19],
[20]. One of the earliest examples of this success was in the context of error-correcting
turbo codes [21].

2.3.1 Iterative message passing

We will here elaborate on how the LBP works and how it is based on the local dependency
assumption exploited by the BP algorithm. Typically, in the application of LBP on
loopy graphs, exact computation of the true marginals of the original joint probability
distribution is not performed. Instead, what is computed are beliefs. The term “belief” is
used to describe these functions to distinguish them from ordinary marginals, as beliefs
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are not always the true, consistent marginals derived from a joint probability distribution.
However, they behave like marginals in the sense that they share similar properties,
such as being non-negative and adding up to 1. In this thesis, however, the two terms
“marginal” and “belief” will still be used interchangeably. The beliefs are given by the
messages between the variables in the graph. These messages are, for discrete factor
graphs, given by the iterative application of the equations

µa→i(xi)←
∑

xN(a)\{i}

fa(xN(a))
∏

j∈N(a)\{i}
µj→a(xj), (2.15)

µi→a(xi)←
∏

b∈N(i)\{a}
µb→i(xi) (2.16)

where N(i) and N(a) denotes the set of neighbors to variable i and factor a, respectively,∑
xN(a)\{i}

denotes the iterated sum over all values of x ∈ N(a) \ {i}, and the message
from factor a to variable i is denoted as µa→i(xi) while the message in the opposite
direction is denoted as µi→a(xi). Note that the equations in (2.15) and (2.16) are only
given up to scale, which will be relevant later.

After the messages converge, the beliefs p̂(xi) can be calculated as

p̂(xi) ∝
∏

a∈N(i)

µa→i(xi) (2.17)

where the proportionality sign indicates we need to normalize the beliefs to ensure that
they indeed sum to 1 as required.

2.3.2 Loopy belief propagation as a variational inference method

The fact that message passing can be used on loopy graphs and, more importantly, that the
estimates we get often are useful, was initially unjustified from a theoretical point of view.
In the nominal work by Yedidia et. al [22], [23] they relate the LBP approximation to the
constrained optimization of the Bethe free energy function FB that occurs in statistical
mechanics. By rewriting our original probability distribution p(x1, . . . , xn) as

p(x1, . . . , xn) =
1

Z
e−E(x1,...,xn), (2.18)

E(x1, . . . , xn) = −
∑

a

ln fa(xa), (2.19)
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where Z denotes the normalization constant of the factor graph representation of p and
a denotes the factors of p, the Bethe free energy function FB takes the form

FB = UB −HB , (2.20)

UB = Eq[E(x1, . . . , xn)] (2.21)

HB = −Eq[ln q(x1, . . . , xn)] (2.22)

where q is the surrogate function for p, Eq[•] denotes the expectation under the density
q, UB denotes the variational average energy and HB the variational entropy.

The surrogate function q is supposed to approximate the original probability distribu-
tion p(x1, . . . , xn) as a function that also obeys a factorization which allows for efficient
marginalization. The Bethe approximation [24] that the Bethe free energy function uses
is that the surrogate function q can be factorized according to

q(x1, . . . , xn) =

∏
a qa(xN(a))∏n

i=1 qi(xi)
di−1

(2.23)

where the symbol
∏
a indicates the product over subsets of variables that constitute the

factors a of our original distribution p, and di represents the degree of node i, which refers
to the number of edges adjacent to it. This particular choice of factorization is exact for
probability distributions that allow for a tree representation. Thus, the surrogate function
q that solves the optimization can be interpreted as the closest “tree-like distribution”
of our original distribution. Note that, since the factorization in (2.23) is over the same
nodes and edges as in our original distribution, the surrogate function itself will not be
a proper probability distribution in general. We can show, however, that in the case that
q(x1, . . . , xn) indeed is a proper joint distribution, then [23]

FB = D(q||p) + FH (2.24)

=⇒ FB ≥ FH , (2.25)

whereD(q||p) is the Kullback-Leibler divergence between the distributions q and p. The
inequality in (2.25) follows from the fact that D(q||p) ≥ 0 and D(q||p) = 0 iff q = p.
The functions qa(xN(a)) and qi(xi) that appear in (2.23) will, on the other hand, in the
same way as the beliefs from LBP behave like probability distributions after introducing
the necessary constraints in the optimization to ensure consistent behavior. Namely, the
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constraints that are used is that each variable belief qi must sum to 1,

gi(xi) =
∑

xi

qi(xi)− 1, (2.26)

that each factor belief qa must sum to 1,

ga(xa) =
∑

xa

qa(xa)− 1, (2.27)

and that variable beliefs are retrievable by marginalization of the factor beliefs

ga→i(xi) =
∑

xa\xi

qa(xa)− qi(xi) (2.28)

where the notation xa \ xi is used to indicate all variables of factor a except xi. Strictly
speaking, the constraint that each belief has to be non-negative is also necessary. They
argue in [23] that this constraint is inactive at the fixed-point of LBP such that it makes no
difference to the optimization and is therefore neglected. The constrained optimization
problem can be solved by using the Lagrangian L [25] which augments the objective
function FB with the constraints in (2.26) to (2.28) and the corresponding Lagrangian
multipliers λi, λa and λa→i. The result is that the Lagrangian can be written as

L = FB −
∑

a

λaga(xa)−
∑

i

λigi(xi)

−
∑

i′

∑

a∈N(i′)

∑

xi′

λa→i′ga→i′(xi′). (2.29)

where i′ denotes the indices over all variable nodes with degree di ≥ 2, the constraints
ga and gi with corresponding multipliers λa and λi are called the node constraints and
λa→i and gai the edge constraints. The node constraint multipliers are scalars that are
normalized away in the end, and are of little interest. More importantly, the insight they
show in [23] is that the edge constraint multipliers λa→i on the other hand are related to
the messages µa→i as

λa→i(xi) = ln
∏

b∈N(i)\{a}
µb→i(xi) (2.30)

when evaluating the Lagrangian in (2.29) at a stationary point of the function, proving
that the LBP beliefs are the optimal solution to the Bethe approximation.

14



2.3.3 The Bethe constant and the Bethe pseudodual

Another useful aspect of the Bethe approximation is to estimate the normalization con-
stant of the original probability distribution. This follows from the fact that the Bethe
free energy function is based on the Helmholtz free energy FH which is defined as

FH = − lnZ. (2.31)

Analogous to (2.31), the Bethe constant ZB is then related to the Bethe free energy as

FB = − lnZB (2.32)

=⇒ ZB = exp(−FB). (2.33)

This implies that we can use the fixed-point messages from LBP to form q and insert it
appropriately into (2.33) to estimate the normalization constant Z. We note that this also
implies that, if the Bethe approximation is a true distribution such that the inequality in
(2.25) is satisfied, then

ZB ≤ Z, (2.34)

i.e., the Bethe constant is guaranteed to underestimate the true normalization constant.
A more exotic quantity to compute is the Bethe pseudodual function [26], [27]. This
function is the Lagrangian of the constrained optimization problem that LBP solves
where the optimal q is inserted and instead the Lagrangian multipliers are variables. The
fact that we are able to know this optimal q before-hand stems from the simple fact that
we know they are given by the LBP equations, specifically (2.17), which are exclusively
given by the LBP messages. Thus, when inserting the LBP messages for the LBP beliefs
together with the Lagrangian multipliers, we get a function entirely in terms of the factors
of our factor graph and the LBP messages. In the sequel we will use a slightly modified
Lagrangian where we only keep the edge constraints, as is done in [26]. We can justify
doing this by inserting normalized beliefs in the pseudodual, where we instead let the
normalization constants be functions of the LBP messages. We then get that the node
constraints ga(xa) are gi(xi) in (2.26) and (2.27) vanish for all iterations of LBP.

2.3.4 Properties of loopy belief propagation

The following section intends to summarize selected research results on the properties of
LBP, and in particular regarding data association in MTT. Firstly, there are no guarantees
for the accuracy of the approximate marginals, or that the algorithm even converges, a
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fact that had been dismissed previously. In the case where the LBP algorithm does not
converge it instead oscillates, i.e., the messages start oscillating.

Understanding LBP behavior theoretically is in the general case hard, and so most of
the results are either empirical or theoretical, but on specific graphs where assumptions
about the structure is made. In an empirical study by Murphy et. al [28], which was about
the first of its kind, they try to understand the behavior of LBP in a more general setting
outside of the already established error-correcting code context. Their findings are that
LBP seems to compute accurate marginals for the cases where it converges. When LBP
oscillates they are able to achieve convergence by introducing momentum in the message
update, meaning the messages are instead updated as a weighted average of the full
update and the previous message. Despite achieving convergence after this modification,
the beliefs remains inaccurate in general. What they do observe is that small priors and
weights for parameters in the graph affect the convergence. They speculate that this can
be related to how likely the observations are, but further testing seems to disagree with
this. Lastly, they state that in their results it seems that whether LBP estimates accurate
marginals or not is not related to the size of the loops in the graph.

In [29] by Ihler et. al, they do a theoretical study of convergence conditions based
on two different measures of error accumulation under LBP. In particular, they derive
sufficient convergence conditions for LBP convergence from the the largest ratio of the
factors in the graph, called the dynamic range, as long as it is finite.

Two particularly important references for the work in this thesis are those of Vontobel
[26] and Williams et. al [8]. In both references they inspect the use of LBP on a specific
bipartite graph. Although the underlying problem they try to solve are related, the
motivation for doing this in [26] is to estimate the permanent of certain matrices, while
in [8] it is to estimate association marginals in a single-cluster, single-hypothesis multi-
target tracking scenario. For these kind of graphs they both show guaranteed convergence
of LBP to a unique fixed-point, regardless of message initialization. Relating this to the
Bethe free energy function, [26] attributes this to the fact the Bethe free energy function
of the graph is indeed convex. In order to measure convergence they use in [8] a dynamic
range measure similar to the one defined in [29] as a distance metric between messages
in two different iterations, and terminate when this gets below some threshold. In [26]
they use the Bethe pseudodual function described previously in Chapter 2.3.3 evaluated
in two different iterations as the distance metric between messages. In the results of
[8] they observe that for tracking cases where the misdetection probability is low, i.e.
that there is a large Signal-to-noise ratio (SNR), LBP tends to struggle. This could be
related to similar observations in [28]. Another important result from [26] is the fact
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that they show that the Bethe approximation for this particular graph indeed is a proper
joint distribution, and so we are guaranteed that the associated Bethe constant always
underestimates the true normalization constant.

Lastly, in one of the latest works by Williams et. al [30] they present an approximate
marginalization method for association graphs similar to the one they present in [8]. The
difference is that the graph is generalized for multi-scan data association, i.e. where
they have multiple sets of measurements, either from multiple sensors or over multiple
timesteps. Due to the Bethe free energy function of the multi-scan association graph
being nonconvex, they experience that running LBP directly on this graph could have
undesirable effects in terms of e.g. convergence. Therefore, they instead modify the
Bethe free energy function by using the fractional free energy where they scale a certain
part of the free energy function to make it convex. They then derive an LBP-like algorithm
for this approximation to achieve better and more robust performance.
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3 | Concepts in multi-target track-
ing

In order to do multi-target tracking, as with all forms of estimation, a foundation of
concepts and mathematical models must be established. The following chapter intends
to provide an overview of the standard, general concepts and models that are common
in modern tracking literature [31]–[34] and properly define them. Before proceeding we
orient the reader that a major part of the material in the following chapter will be either
similar or equal to parts of the overview provided in the preceding project report.

3.1 Multiple measurements and hypothesis enumer-

ation

Perhaps the most fundamental concept in MTT is the notion of receiving multiple meas-
urements that can originate from different targets. The very reason we concern ourselves
with association hypotheses, which we so far only have introduced conceptually, is pre-
cisely because we have to consider all possible origins for the received measurements, at
least if we seek the optimal solution. The procedure of finding all possible origins for
the received measurements is called hypothesis enumeration, and is a serious bottleneck
in any MTT filter. In fact, this very reason is why we in general have two types of MTT
filters – single-hypothesis and multi-hypothesis. In single-hypothesis MTT filters we
approximate the estimated track states by marginalizing over the enumerated hypotheses
in a timestep. A classical example of such a filter is the celebrated Joint probabilistic
data association (JPDA) filter, first published by Fortmann et. al in [31]. This of course
trades accuracy for computational performance since a considerable amount of inform-
ation is lost in the marginalization procedure. As previously mentioned, in this work
we instead consider multi-hypothesis tracking, where we keep a collection of hypotheses
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across timesteps. Our motivation for doing this is to be able retain more information to
dynamically adapt to different scenarios for more reliable and robust tracking.

3.1.1 Extended object tracking and the at-most-one assump-
tion

While on the topic of hypothesis enumeration and measurement origin, a discussion about
the at-most-one assumption that is made is warranted. This assumption states that each
target at most generates one measurement and that each measurement at most originates
from one target. It is easy to imagine scenarios where this obviously does not hold,
for instance when a large vessel is passing by our sensor and the sensor returns a point
cloud of detections, or that two small vessels are sufficiently close enough to overlap
and return a single, merged detection. Making the assumptions, however, severely
reduces the hypothesis space, which amongst other things allows for significantly more
efficient marginalization. A tracker that integrates the fact that multiple measurement
may originate from the same target uses extended object tracking, and is an open-research
field. The topic is not explored further in this report and the reader is instead referred to
[35].

3.2 Definitions

In multi-hypothesis, multi-target tracking literature there are two concepts in particular
that vary in how they are defined, which is the notion of a track, and how it differs from
a target, and a hypothesis. The following section will give the formal, mathematical
definition that is used in this thesis. Additionally, we will define what is meant by a
cluster.

3.2.1 Track

We will define a track as a sequence of measurements, i.e. detections, or misdetections
over time. More mathematically, assume we have k consecutive sets of measurements
denoted by Z1 = {z1

1, . . . ,z
m1
1 }, . . . , Zk = {z1

k, . . . ,z
mk

k }. A track t can then be
represented as a vector

It = [i1, . . . , ik] (3.1)

where il ∈ {0, . . . ,ml, N} for each l ∈ {1, . . . , k}, where index il corresponds to
measurement zill for 0 < i ≤ ml, misdetection when i = 0 and nonexistence when
il = N to indicate a track that has not been detected yet, and as such “does not exist”.

19



To exemplify this, assume we have over three timesteps received the measurement sets

Z1 = {z1
1},

Z2 = {z1
2},

Z3 = {z1
3}.

In timestep 3, one possible set of tracks can then be

I1 = [1, 1, 0] ,

I2 = [N,N, 1] ,

which indicates the following. Based on the three measurements, we hypothesize that
we have two tracks. Track 1 was detected in the first two timesteps and misdetected in
the third. We were not aware that track 2 existed until timestep 3, but initialized it then
as the measurement was not associated to track 1.

Target and track distinction

We distinguish between a target and track by saying that a target remains semantically
exactly one object in the real world, while we can have multiple tracks for the same
target. Therefore, one can think of a track as a possible trajectory of a target given the
measurements we have, and that there are multiple ways of interpreting the measurements
we have, hence multiple tracks.

3.2.2 Association hypothesis

The full definition we use for an association hypothesis can be found in [1]. To summarize,
we notate a hypothesis in timestep k as θ1:k, where the subscript 1 :k indicates that the
hypothesis is based upon a sequence of measurement sets from timestep 1 through k. It
will be useful to indicate that a track t exists conditioned on the hypothesis θ1:k, and so
we will allow, based on the definition of a track in Chapter 3.2.1, the alternative definition
that a hypothesis can be represented as a subset of all the nk track indices that exist in
timestep k,

θr1:k ⊆ {1, . . . , nk}, (3.2)
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such that we write t ∈ θ1:k and say that track t exists in hypothesis θ1:k and conversely
for t ∈ θ1:k. If we consider the example in Chapter 3.2.1, the association hypothesis is

θ11:3 = {1, 2}

where we arbitrarily chose to enumerate the hypothesis as hypothesis 1. Note that we
will we will overload the superscript to either denote which hypothesis it is out of the
possible hypotheses or denote which cluster the hypothesis variable belongs to. Thus,
the symbol θl1:k can be used to indicate the lth hypothesis in a cluster of tracks, while
θc1:k indicates the set of hypotheses in cluster c. It will be clear from the context what is
meant and if not, explicitly stated.

3.3 Track dynamics model

We will keep the assumptions necessary to do track state estimation as general as possible
until otherwise required. We notate the state vector of a particular track by xtk to indicate
the state of track t in timestep k and usexk when it is not necessary to indicate a particular
track. The prior distribution for track t is denoted by ptk(xtk|Z1:k−1) and we assume the
state dynamics obey a Markov model given by the transition model px(xtk|xtk−1). Lastly,
we assume that targets depart from the surveillance region with some probability given
by the probability distribution PS(x).

3.4 Track measurement model

We assume the measurement model has the form pz(zk|xtk) for zk ∈ Zk. From this the
likelihood is given as

p(zk|Z1:k−1) =

∫
p(xk|Z1:k−1)pz(zk|xk) dxk. (3.3)

In particular, we use the notation

ljt =

∫
ptk(x

t
k|Z1:k−1)pz(z

j
k|xtk) dxtk (3.4)

to indicate the value of the likelihood when assuming a particular track and evaluating
it in a measurement zjk with j ∈ {1, . . . ,mk} for mk measurements in timestep k.
Lastly, we assume that each target is detected with a probability given by the probability
distribution PD(xk) and therefore misdetected with probability 1− PD(xk).
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3.4.1 Unassigned measurements

When considering the origin of a measurement, we have to consider the possibility that
a measurement does not originate from any existing track. We call these measurements
unassigned, and we consider here the two standard origins, clutter and undetected targets.

Clutter

Clutter in a measurement scan is also called false alarms, and as the name suggests
are measurements that shall be discarded as noise. In practice this can originate from
e.g. a sensor fault or a briefly passing object that we should not initialize a track for.
Mathematically, we assume that the number of clutter measurements φk in measurement
scan Zk can be modelled as a Poisson distribution, such that

Pr{φk} = e−ΛΛφk

φk!
(3.5)

where
Λ =

∫
λ(zk) dzk, (3.6)

and λ(z) is the intensity of the distribution. Since clutter is by definition random noise,
we assume it is independent of other undetected targets and target detections.

Undetected targets

As a natural consequence of doing multi-target tracking, we have to allow the possibility
that new targets enter our surveillance region. Because of this, there will in each
timestep be an unknown number of undetected targets that we can detect. Modelling
the distribution over undetected targets will be deferred to Chapter 4, but to facilitate
this we will here model the distribution for number of new targets βk that arrive in the
surveillance region. Namely, we assume βk to be Poisson distributed with distribution

Pr{βk} = e−MMβk

βk!
(3.7)

where
M =

∫
µ(xk) dx (3.8)

and µ(xk) is the intensity of the distribution over the state space of tracks.
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3.5 Gating of measurements

In practice we will not consider all measurements for each track t, but instead all gated
measurements zjk, for computational reasons. Theoretically speaking, this is a matter of
computing the associated likelihood ljt and setting it to 0 if it is below some threshold
g. In terms of hypothesis enumeration, this removes all hypotheses from the hypothesis
space where the track is associated to the measurement, which significantly reduces its
size. The region of valid measurements, be it the entire measurement space or the part
that passes the gating, is called the validation gate. We will see that the probability that
a track t should associated to measurement j becomes negligible for small ljt, and so
this is a justified design choice when comparing the accuracy loss to the computational
improvement. An example of gating can be found in Figure 3.1, which identical to the
illustration in Figure 3.1 in the preceding project report.
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Figure 3.1: An example with two tracks and two measurements, denoted by x1 and x2 and z1 and z2,
respectively. The validation gate for each track is visualized as an ellipsis, such that all measurements that
are outside the ellipsis are discarded as potential detections of the corresponding track. This means e.g. that
measurement z2 is not gated by track x1 and that both z1 and z2 are gated by x2.
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3.6 Cluster

A cluster in MTT is defined as a collection of tracks that are linked together by meas-
urements that lie in the intersection of their validation gates [31]. When multiple tracks
gate the same measurement, the data association problem has to be solved jointly as a
single cluster as the track associations become dependent on each other. Conversely,
this implies that two different clusters are by definition independent of each other. The
independence property means we can do data association for each cluster separately,
which is significantly more efficient than to solve the entire association problem jointly
for all tracks. We refer to data association problems that are strictly internal to one
cluster as single cluster while when we do it for all the clusters as multi-cluster. In a
multi-hypothesis setting, each cluster maintains its own hypothesis distribution where
each track in the cluster must exist in at least one of these hypotheses. A visualization of
two clusters can be found in Figure 3.2.
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Figure 3.2: Association case with two clusters. The left-most cluster is generated because tracks x1 and
x2 both gate measurement z1. The right-most cluster is generated because tracks x3 and x4 both gate
measurement z4 and tracks x4 and x5 both gate measurement z5. Notice that for the right-most cluster,
tracks x3 and x5 do not share any measurement, but are still dependent on each other through track x4.
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3.6.1 Cluster merging

An important part of any MTT pipeline is cluster management, and in particular cluster
merging which was mentioned in the introduction. We reiterate here this challenge in
slightly more technical detail.

Cluster merging happens when multiple clusters interact due to tracks in separate
clusters gating the same measurements. In multiple hypothesis tracking, a brute-force
approach to merge the clusters into one is to take the Cartesian product of the collections of
prior hypotheses. After cluster merging, the prior hypotheses will then be the members
of this Cartesian space, where the probability of each element is the product of the
probabilities of the combined elements.

In practice, this approach has a fatal flaw. Considering in a practical implementation
one typically keeps the 100 – 150 ∼ 102 most likely hypotheses from each timestep, the
size of the new prior hypothesis posterior space is in the magnitude∼ 102M elements for
M interacting clusters. Such a large prior hypothesis posterior space makes the posterior
hypothesis posterior cluster space in general astronomically large. Hence, keeping the
100 – 150 best hypotheses prunes almost all of the event space, potentially resulting in a
large loss of accuracy and more catastrophically, pruning the correct hypothesis.
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4 | The Poisson Multi-Bernoulli Mix-
ture filter

The most common and famous multi-target filters today are arguably JPDA, published
by Fortmann et. al in [31], and Multiple hypothesis tracker (MHT), published by Reid
in [36]. In particular, MHT was the first contribution towards an optimal solution for a
multi-hypothesis, multi-target tracking filter, contrary to JPDA which for each timestep
combines the posterior hypotheses into a single hypothesis.

Another breakthrough in multi-target tracking came with the PHD filter by Mahler
[9] which built upon FISST that extends probability theory to sets of random vectors,
where also the cardinality of the set is a stochastic variable. A full introduction is outside
the scope of this thesis, and the reader is instead referred to references like [9], [33].
Formulated in the FISST framework, Williams derived in [32] what has later become
known as the PMBM filter, which aims to provide a general, optimal solution to the
standard multi-target tracking scenario under certain, standard model assumptions. The
following chapter intends to explain the building blocks of the PMBM filter. Doing
this will yield the necessary expressions for later forming the joint association posterior
that we require to perform inference. Additionally, this introduction is a more natural
stepping stone to motivate one of the main uses for efficient marginalization in a practical
application, track recycling, which will be discussed in more detail in Chapter 4.6. The
intent of this chapter is therefore not to give a thorough deep-dive into the theory that
PMBM builds upon, but rather state the necessary results.

The following will present the PMBM in its Probability generating functional (PGFL)
form, which builds upon the theory of FISST. The main purpose of formulating the
multi-object Bayes filter in terms of PGFLs is that the PGFL representation of a given set
density is in general more compact and tangible to work with than the set density itself,
and so instead we can derive the necessary prediction and update equations we require
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by formulating them with PGFLs and then do functional derivatives.

4.1 Probability generating functionals

In traditional probability theory, a Probability generating function (PGF) is a transform-
ation of a discrete probability distribution over nonnegative numbers to a function that
return the probability of events by differentiation. For a discrete probability distribution
Pr{x} for the stochastic variable X , its corresponding PGF GX(h) is given by

GX(h) =

∞∑

x=0

hxPr{x} . (4.1)

The probability Pr{X = k} of event x = k, k ∈ {0, 1, . . . } is then

Pr{k} = dk

dhk
GX(h)

∣∣∣∣
h=0

. (4.2)

From (4.1) we can show that for two independent stochastic variables X and Y with
PGFs GX(h) and GY (h), respectively, the PGF of their sum Z = X + Y is simply

GZ(h) = GX(h)GY (h). (4.3)

The probability distribution Pr{Z} becomes a convolution over Pr{X} and Pr{Y },
which often times is more complicated to compute and use than the simple product in
(4.3), showing the main strength of the representation

Before generalizing this notion to set densities and set integrals, let us briefly introduce
what is meant by a Random finite set (RFS) for the purpose of this text. Let X be an RFS
withRd as its base space. This means that a realizationX ofX can beX = {x1, . . . ,xn}
with xi ∈ Rd, i ∈ {1, . . . , n} and each xi distributed according to some distribution
p(x). Additionally, the cardinality n is also a stochastic variable with a distribution that
can be found from the set density f(X) to X. With this, we define the PGFL GX[h] for
the RFS as

GX[h] =

∫
hXf(X)δX (4.4)

where we use the bracket notation [h] in GX[h] to emphasize that GX[h] is a functional
that operates on some test function h(x) : Rd → [0,∞), the notation hX is defined as

hX =
∏

x∈X
h(x) (4.5)
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with h∅ = 1, f(X) is the set density for X evaluted in the set X and
∫
f(X)δX is

the set integral of f(X) from FISST theory where we use X instead of X to indicate
that we evalute the function in all possible realizations X when doing the integral. For
independent RFSs X and Y, the PGFL of their union Z = X ∪ Y is given as

GZ[h] = GX[h]GY[h], (4.6)

analogous to (4.3).
Lastly, we will state the functional derivative of the PGFL G[h] with respect to

X = {x1, . . . ,xn} as
δG

δX
=

δnG

δx1 . . . δxn
(4.7)

where each derivative with respect to an element of X is defined as

δG

δx
= lim
ε→0+

G[h+ εδx]−G[h]
ε

(4.8)

where δx is the Dirac-delta function centered at x, and we define δG
δ∅ = G[h]. Notice

also that we indicate the realizationX in (4.7) as the recursion depends on its cardinality.
From (4.7) we can derive the fundamental theorem of multi-object calculus

f(X) =
δG

δX
[0] (4.9)

where a proof can be found in [9]. The result in (4.9) is what allows us to derive tangible
expressions for achieving multi-target filtering based on FISST, and will play a central
role in the sequel.

4.2 Constructing the prior

In the following, we will drop indications of what timestep we are in for notational
simplicity. Constructing the PGFL prior in PMBM is based on two arguments. The first
argument is that we can model the tracks as Bernoulli sets, which obeys the distribution

f(Xt) =





1− rt, Xt = ∅,
rtpt(xt), Xt = {xt},
0, otherwise

(4.10)
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with PGFL
Gb[h] = 1− rt + rtpt[h] (4.11)

where pt[h], more generally f [h] for some function f and test function h, is the linear
functional

f [h] =

∫
f(x)h(x) dx, (4.12)

rt is the existence probability of track t and pt(xt) is the track state distribution. We can
form a Multi-Bernoulli (MB)-component by taking the union over all such tracks that
are tracked, which makes the PGFL of the resulting distribution simply the product over
their PGFLs

Gmb[h] =

n∏

t=1

Gb[h] (4.13)

forn independent tracks. If we now generalize the PGFL in (4.13) for multiple hypotheses
θl, l = 1, . . . , L forL hypotheses defined as in Chapter 3.2.2, the resulting PGFL becomes
a mixture, or a Multi-Bernoulli Mixture (MBM), and has the form

Gmbm[h] =

L∑

l=1

wlGmb[h] (4.14)

where we introduced the hypothesis weight wl with the only requirement that it is related
to the hypothesis distribution Pr

{
θl
}

by

Pr
{
θl
}
∝ wl (4.15)

and omit the hypothesis index l in Gmb[h] for notational simplicity as it should be clear
from context, and rather explicitly state it later if ambiguous. In PMBM, however, we
write (4.14) in a slightly different form. Consider some particular hypothesis θl. We
substitute the hypothesis weight wl with a product over weights for each track existing in
the hypothesis

wl =

nl∏

t=1

wlt (4.16)

for nl tracks in θl, where the weights wlt are given by what associations we make for a
given track. The resulting MBM PGFL we use is therefore

Gmbm[h] =

L∑

l=1

∏

t∈θl
wlt
(
1− rlt + rltplt[h]

)
(4.17)
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where rlt indicates the existence probability of track t under the association made in
hypothesis l and similarly for the linear functional of the track state distribution plt[h].

The PGFL in (4.17) only accounts for detected targets that we actively track. In
Chapter 3.4.1 we mentioned that we deferred modelling undetected targets, which we
model now. We assume they obey a Poisson point process with set density

f(X) = e−ν[1]
∏

x∈X
ν(x), (4.18)

where ν(x) is the intensity of the process and

ν[1] =

∫
ν(x) dx. (4.19)

The corresponding PGFL is

Gp[h] = exp(ν[h− 1]). (4.20)

In conclusion, the PGFL prior that PMBM does filtering on, for all timesteps k, is

Gpmbm
k [h] = Gp

k[h]G
mbm
k [h] (4.21)

where we have assumed independence between the detected and undetected targets to
write the prior as a product. Although we have argued that the PGFL in (4.21) is sound
and consistent with our assumptions in Chapter 3, it remains to determine whether it is
useful. Namely, we desire that the PGFL form is closed under both the prediction and
update step, a property called conjugacy. Rest assured, as we will see, this is indeed the
case for the PGFL in (4.21), further justifying it. The interested reader is referred to [32],
[37] for a more elaborate introduction and justification to the above PGFL.

4.3 The prediction step

The prediction step in the PGFL formulation of the Bayes filter is given by [9], [33]

Gk|k−1[h] =

∫
GXk|Xk−1

[h|Xk−1]fk−1(Xk−1)δXk−1 (4.22)

where GXk|Xk−1
[h|Xk−1] is the PGFL of the transition distribution fX(Xk|Xk−1) and

fk−1(xk−1) is the posterior distribution ofXk−1. By the assumptions in Chapter 3.3, we
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get that the transition distribution for a Bernoulli target Xt is also Bernoulli with PGFL

G[h|Xt
k−1] = 1− PS(xk−1) + PS(xk−1)px[h|xk−1] (4.23)

where PS(xk−1) is the departure probability for a track with state xk−1 and px[h|xk−1]

is the linear functional of the transition model with respect to xk,

px[h|xk−1] =

∫
px(xk|xk−1)h(xk) dxk. (4.24)

For independent tracks, we then get that

GXk|Xk−1
[h|Xk−1] =

∏

xt
k−1∈Xk−1

G[h|Xt
k−1] (4.25)

=
∏

xt
k−1∈Xk−1

(1− PS(xtk−1) + PS(x
t
k−1)px[h|xtk−1]). (4.26)

such that the prior PGFL over surviving tracks in timestep k is given by

Gsurviving
k|k−1 [h] = Gk−1[GXk|Xk−1

[h|Xt
k−1]] (4.27)

which follows from inserting (4.25) into (4.22) and using the definition in (4.4).
In order to obey the assumption that we have new, undetected targets arriving in the

surveillance region according to a Poisson point process, we additionally need the PGFL
Gnew[h] which with intensity µ(xk) from Chapter 3.4.1 is

Gnew[h] = exp(µ[h− 1]). (4.28)

Assuming new targets arriving are independent from the surviving tracks, the final prior
PGFL is becomes the product of (4.28) and (4.27), yielding

Gk|k−1[h] = Gsurviving
k|k−1 [h]Gnew[h]. (4.29)

The final step is to verify that (4.29) can be written on the form in (4.21), which we will
here take for granted. Verifying it involves moving the Poisson PGFL Gnew[h] into the
Poisson component for surviving, undetected targets in Gsurviving

k|k−1 [h] by the principle of
superposition. This is a property we will use later when we discuss track recycling in
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Chapter 4.6. We can use (4.7) to show that (4.29) reduces to the tangible functions

νk|k−1(xk) = µ(xk) +

∫
px(xk|xk−1)PS(xk−1)νk−1(xk−1) dxk−1 (4.30)

wltk|k−1 = wltk−1 (4.31)

rltk|k−1 = rltk−1p
lt
k−1[PS(xk−1)] (4.32)

pltk|k−1(xk) =

∫
px(xk|xk−1)PS(xk−1)p

lt
k−1(xk−1) dxk−1

pltk−1[PS(xk−1)]
(4.33)

where pltk−1(xk−1) is the posterior state distribution for track t in hypothesis l from the
previous timestep k − 1.

4.4 The update step

The posterior is constructed by first defining the joint PGFL

F [g, h] =

∫
hXkGk[g|Xk]fk|k−1(Xk)δXk (4.34)

where
Gk[g|Xk] =

∫
gZkfZ(Zk|Xk)δZk (4.35)

is the PGFL of the set measurement model fZ(Zk|Xk) and Zk denotes the specific
measurement set in timestep k. First, notice that the PGFL in (4.34) can interpreted as
the PGFL of the joint set distribution f(X,Z). It should therefore be reasonably clear that
we retrieve the set posterior f(Xk|Zk) in timestep k as proportional to δF [0, h]/δZk, i.e.
the joint posterior evaluated in Zk, and where the proportionality constant is given from
the set likelihood

∫
fZ(Z|Xk)f(Xk)δXk = f(Z) which can be shown to have PGFL

Gk[g] =

∫
gZkf(Zk)δZk (4.36)

=
δF [0, 1]

δZk
. (4.37)

Hence, the update in PGFL form is therefore given by

Gk[h] =

δF [0, h]

δZk
δF [0, 1]

δZk

(4.38)
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where indeed the result from (4.38) is of the same form as (4.21), i.e. it is a product
of a Poisson component and MBM component. It can then be shown that the resulting
non-PGFL equations are given by [32]

νk(xk) = (1− PD(xk))νk|k−1(xk) (4.39)

for the Poisson component, while the equations for the MBM component are given by
four cases, depending on the posterior hypothesis each track can participate in.

No target

In case a target does not exist in the hypothesis, we get that only wltk is defined and
wltk = 1.

New target

If a measurement zltk is declared as a new target with index t, it is initialized by the
equations

wltk = λ(zltk ) +

∫
νk|k−1(xk)pz(z

lt
k |xk)PD(xk) dxk (4.40)

rltk =

∫
νk|k−1(xk)pz(z

lt
k |xk)PD(xk) dxk

λ(zltk ) +
∫
νk|k−1(xk)pz(z

lt
k |xk)PD(xk) dxk

, (4.41)

pltk (xk) =
νk|k−1(xk)pz(z

lt
k |xk)PD(xk)∫

νk|k−1(xk)pz(z
lt
k |xk)PD(xk) dxk

, (4.42)

where zltk denotes the measurement zjk that was associated to track t under hypothesis l.

Misdetection

In case we declare a target as misdetected we update its state space by

wltk = wltk|k−1

(
1− rltk|k−1 + rltk|k−1p

lt
k|k−1[1− PD(xk)]

)
(4.43)

rltk =
rltk|k−1p

lt
k|k−1[1− PD(xk)]

1− rltk|k−1 + rltk|k−1p
lt
k|k−1[1− PD(xk)]

(4.44)

pltk (xk) =
(1− PD(xk))pltk|k−1(xk)

pltk|k−1[1− PD(xk]
(4.45)
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Detection of existing target

Lastly, in case we declare the measurement zltk a detection of an existing target xtk, we
perform the update

wltk = wltk|k−1r
lt
k|k−1

∫
pltk|k−1(xk)pz(z

lt
k |xk)PD(xk) dxk (4.46)

rltk = 1 (4.47)

pltk (xk) =
pz(z

lt
k |xk)PD(xk)pltk|k−1(xk)∫

pz(zltk |xk)PD(xk)pltk|k−1(xk) dxk
(4.48)

4.5 Model simplifications

The equations in Chapters 4.3 and 4.4 are highly abstract in nature, and to make them
useful for implementation purposes some model simplifications are necessary. Specific-
ally, we will focus on the track weights wltk as they are required in Chapter 5 when we
construct the multi-hypothesis factor graph.

We assume the misdetection probability PD(xk) to be constant, such that

PD(xk) = PD, 0 ≤ PD ≤ 1. (4.49)

We will also assume a constant clutter intensity λ. Finally, recall that we use ljt as
symbol for the likelihood, which from (3.4) was given as

ljt =

∫
ptk(x

t
k|Z1:k−1)pz(z

j
k|xtk) dxtk

where we below instead use the notation llt for ljt to indicate that the likelihood is
constructed from the association between track t and measurement j in hypothesis l.

With these simplifications, the updated track weights for misdetection of existing
tracks in (4.43) reduces to

wltk = wltk|k−1

(
1− rltk|k−1 + rltk|k−1p

lt
k|k−1[1− PD]

)
(4.50)

= wltk|k−1

(
1− rltk|k−1 + rltk|k−1(1− PD)pltk|k−1[1]

)
(4.51)

= wltk|k−1

(
1− rltk|k−1PD

)
(4.52)
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where we have used that

pltk|k−1[1] =

∫
pltk|k−1(xk) dxk (4.53)

= 1 (4.54)

since pltk|k−1(xk) is a proper distribution. For detection we get

wltk = wltk|k−1r
lt
k|k−1

∫
pltk|k−1(xk)pz(z

lt
k |xk)PD dxk (4.55)

= wltk|k−1r
lt
k|k−1PD

∫
pltk|k−1(xk)pz(z

lt
k |xk) dxk (4.56)

= wltk|k−1r
lt
k|k−1PDl

lt. (4.57)

Unfortunately, the weights for new tracks are not as straight-forward to simplify. We first
rewrite the weights to

wltk = λ+

∫
νk|k−1(xk)pz(z

lt
k |xk)PD dxk (4.58)

= λ+ PD

∫
νk|k−1(xk)pz(z

lt
k |xk) dxk (4.59)

and see that we are still required to compute
∫
νk|k−1(xk)pz(z

lt
k |xk) dxk which is in

general infeasible. A common assumption to make is that νk|k−1(xk) can be approxim-
ated as a Gaussian mixture over Gaussians linear in xk, such that the integral becomes
a sum over solvable Gaussian integrals. This is done in e.g. [37]. Assuming this is the
case, we call the result simply ν̃ltk . Hence, the new-track weight becomes

wltk = λ+ PDν̃
lt
k . (4.60)

4.6 Recycling of tracks and conservation of track

cardinality

A large bottleneck to multiple hypothesis tracking, and in particular in PMBM, is man-
aging the ever-growing number of hypotheses and the resulting number of tracks. The
following section will discuss how to mitigate this problem by pruning tracks by recycling
and keeping the filter consistent by arguing about track cardinality balancing.
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4.6.1 Enumerating the M best hypotheses with Murty’s method

Before going into the problem of conservation of track cardinality, we first set the stage
by presenting the same introduction to Murty’s method as in the preceding project report.
Since enumerating all possible, valid association hypotheses is in practice infeasible, a
common heuristic for approximating the marginals is to enumerate only theM hypotheses
with the highest probability, as usually the remaining hypotheses will have negligible
probability [38]. The algorithm that makes this possible is called Murty’s method, named
after its inventor [39] which published the method back in 1968. The method was later
adopted into the MTT community by Cox, Miller et. al in [40] which optimized the
algorithm for use in MHT. Later, by Danchick and Newnam in [41], Reid’s MHT method
was reformulated to incorporate Murty’s method.

Embedded in Murty’s method is a linear assignment solver that solves the underlying
mutual exclusion assignment problem between tracks and measurements which follows
from the at-most-one assumptions discussed in Chapter 3.1.1. Common choices [18]
are the Hungarian method [42], the auction method [43] and the Jonker-Volgenant (JV)
algorithm [44]. In [40] they used the JV algorithm to accelerate Murty’s by using the
dual variables from the JV algorithm as bounds for choosing an order to solve the most
promising problems first and what parent tracks to process first [18].

A multi-cluster, multi-hypothesis generalization of Murty’s method based on the
branch-and-bound optimization method [45] is described in [18], where the notion of
multi-cluster was introduced in Chapter 3.6. In particular, one of the main strengths with
this implementation is that it allows for efficient, approximate hypothesis enumeration
even in the presence of cluster merging.

4.6.2 Preserving track cardinality with track recycling

Even though we only keep the M best hypotheses after every time step, we are still
interested in approximating the association marginals for the posterior tracks for the
following reason. When pruning hypotheses after every time step, we want to keep our
filter consistent. For the purpose of this text, it suffice to say that a filter is consistent if
the output of the filter on average describes its errors well [33]. Intuitively, one can think
of this as the filter “knowing” if its correctly estimating what it tries to estimate or not and
assigning a reasonable uncertainty to this estimate. A more rigorous introduction to filter
consistency can be found in [34]. In PMBM, one way to improve filter consistency is to
conserve the expected track cardinality. We illustrate what we mean by first decomposing
the PMBM posterior mixture in some timestep k over L posterior hypotheses into the
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posterior hypotheses from Murty’s method, denoted Mk, and the remaining hypotheses,
denoted Rk,

Gmbm
k [h] =

L∑

l=1

wlkG
mb
k [h] (4.61)

=
∑

l∈Mk

wlkG
mb
k [h] +

∑

l∈Rk

wlkG
mb
k [h] (4.62)

where we must have that Mk ∪ Rk = θ1:k and M ∩ Rk = ∅, i.e. that the sets of
hypotheses Mk and Rk make up all the posterior hypotheses θ1:k exactly and disjointly.
We then calculate the PHD of the distribution, which is defined as [9]

β(x) =
δG

δx
[1] (4.63)

and has the property that its integral over any region S ⊆ Rd with x ∈ Rd is equal to
the expected number of targets in S. Using the fact that the PHD is indeed linear from
(4.63), we get the result that

βmbm(x) =
∑

l∈Mk

wlkβ
mb(x) +

∑

l∈Rk

wlkβ
mb(x) (4.64)

which we can interpret as follows. The functions βmb(x) effectively denote the expected
number of targets under the hypothesis l, which we weigh by wlk. Thus, in order to
keep expected track cardinality, at least approximately, when using Murty’s, we need the
partial sum over remaining hypotheses to get negligible. Usually, this happens because
Murty’s finds the M best hypotheses, i.e. with the largest weights wlk, and so the partial
sum over hypotheses from Murty’s dominates the other partial sum when the hypothesis
distribution is sufficiently peaked.

However, should the total number of posterior hypotheses be very large, such that
L >> M , and the corresponding hypothesis distribution more flat, then we end up
pruning a non-negligible amount of track mass, effectively removing relevant information
from the system. A practical scenario where this can be a problem is where we have a
lot of targets densely packed, little clutter and association ambiguity. Initially, we are
inclined to initialize tracks with high confidence to be from true targets. This makes
the number of tracks and hypotheses grow quickly, and we eventually start pruning
hypotheses and tracks when using Murty’s. Deleting track cardinality this way makes
the filter believe there are less targets present than there really are, making it more hesitant
to initialize tracks with possibly catastrophic consequences.
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A more favorable approach would therefore be to instead actively prune hypotheses
and tracks in a way that let the filter still quickly initialize new tracks confidently in such
an environment. We call this concept aggressive recycling. The idea of track recycling
as a way of achieving cardinality balance was first described by Williams in [46] for the
Poisson multi-Bernoulli (PMB) filter, the single-hypothesis relative of the PMBM filter.
They propose to recycle Bernoulli components of low quality, i.e. tracks with either
low existence probability or large covariance, by inserting them back into the Poisson
component as a pruning technique that reuses information. This hinges on the fact that
any point process can be approximated with a best-fit Poisson process by using its PHD
as the intensity [9]. We can translate this method to the multi-hypothesis case by using
the recycled Poisson component of track t with Poisson intensity

λt(xk) = qtkp
t
k(x

t
k|Z1:k) (4.65)

where ptk(xtk|Z1:k) is the posterior state distribution to track t and qtk is the total track
probability [47], defined as

qtk = rtk
∑

θ1:k : t∈θ1:k
Pr{θ1:k | Z1:k} (4.66)

= rtkπ
t
k (4.67)

where rt is the existence probability of track t,
∑
θ1:k : t∈θ1:k denotes the sum over all

posterior hypotheses θ1:k containing track t and

πtk =
∑

θ1:k : t∈θ1:k
Pr{θ1:k | Z1:k} (4.68)

is a temporary notation for the association marginal to track t, a quantity we will become
all too familiar with in the sequel.

Let us for the time being assume we have access to the exact marginals πt from some
oracle. We are still interested in doing track recycling for real-time estimation as it is
computationally cheaper to keep tracks in the Poisson component rather than the MBM
component. The exact details are outside the scope of this thesis, but the main idea is
that data association is significantly cheaper for tracks in the Poisson component as they
are propagated using the PHD filter which avoids explicit hypothesis enumeration [9].
We recall from (4.15) that the hypothesis posterior distribution is given up to scale from
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the hypothesis weights wlk,

Pr{θ1:k | Z1:k} =
1

Z
wlk

∝ wlk.

We also assume we have access to the exact normalization constant Z from some oracle.
Track recycling can then be done as follows. The total track mass a track contributes
with is given from the marginal πt, which involves a sum over all hypotheses. Rewriting
(4.68) into the partial sums over Murty’s hypotheses Mk and the remaining Rk gives

πt =
∑

θ1:k : t∈θ1:k
Pr{θ1:k | Z1:k} (4.69)

=
∑

θ1:k : t∈Mk

Pr{θ1:k | Z1:k}+
∑

θ1:k : t∈Rk

Pr{θ1:k | Z1:k} (4.70)

=
∑

θ1:k : t∈Mk

wlk
Z

+
∑

θ1:k : t∈Rk

Pr{θ1:k | Z1:k} (4.71)

=
∑

θ1:k : t∈Mk

wlk
Z

+ πtR (4.72)

where the weights wlk in
∑
θ1:k : t∈Mk

wlk/Z are found by Murty’s and we define the
remaining marginal πtR =

∑
θ1:k : t∈Rk

Pr{θ1:k | Z1:k}. The track mass enumerated
from Murty’s is put in the MBM component. Thus, we use the remaining marginal πtR
in the total track probability in (4.67) for the recycled Poisson component to maintain
track cardinality balance, which we compute from

πtR = πtk −
∑

θ1:k : t∈Mk

wlk
Z
. (4.73)

We see by looking at (4.73) that we can maintain exact track cardinality balance by having
access to the association marginal πtk and normalization constant Z, which we in general
do not. This motivates us to develop methods for efficiently estimating them, which we
do in Part II.
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II

Multi-cluster,
multi-hypothesis association

methods



5 | Constructing the association factor
graph

In [1] we developed two algorithms for calculating marginal track probabilities in multiple
hypothesis tracking. Here, we generalize these to a multi-cluster scenario. Furthermore,
we present novel equations for estimating the normalization constant of the joint associ-
ation posterior by the Bethe pseudodual function. A copy of the article [1] is available in
Appendix C

The following section will review the multi-hypothesis factor graph presented in [1]
through the lens of PMBM and also generalize it to the multi-cluster scenario.

5.1 Deriving the joint association posterior

To start, we will use the fact that the joint association posterior Pr{θ1:k|Z1:k} evaluated
in posterior hypothesis θl1:k can be written as proportional to the product over the track
weights of tracks that exist in the hypothesis,

Pr
{
θl1:k|Z1:k

}
∝ wlk =

∏

t∈θl1:k

wltk . (5.1)

Now, since the tracks existing in hypothesis θl1:k either are new tracks or existing tracks
that are misdetected or detected, the product in (5.1) can be written as

n∏

t=1

wltk =
∏

t∈Bl
k

wltk
∏

t∈M l
k

wltk
∏

t∈Dl
k

wltk (5.2)

where Dl
k denotes the set of existing tracks that were detected, M l

k the set of existing
tracks that were misdetected and Blk the set of new tracks.
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Combining this with the recursive definition of the weights, we arrive at

Pr
{
θl1:k|Z1:k

}
∝
∏

t∈θl
wltk (5.3)

=
∏

t∈Bl
k

(
λ+ PDν̃

lt
k

)

︸ ︷︷ ︸
New tracks

·
∏

t∈M l
k

wltk|k−1

(
1− rltk|k−1PD

)

︸ ︷︷ ︸
Misdetection

·
∏

t∈Dl
k

wltk|k−1r
lt
k|k−1PDl

lt

︸ ︷︷ ︸
Detection

. (5.4)

We now collect the prior weights wltk|k−1 from the detected and misdetected tracks
products into its own product

∏
t∈Dl

k∪M l
k
wltk|k−1 which we recognize as proportional to

the parent hypothesis probability Pr
{
θp1:k−1 | Z1:k−1

}
since we must have that

θp1:k−1 = Dl
k ∪M l

k (5.5)

exactly since Dl
k ∪M l

k is the set of existing tracks from θp1:k−1 and

wltk|k−1 = wltk−1. (5.6)

In total, this means that the joint association posterior can be written as

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈Bl
k

(
λ+ PDν̃

lt
k

) ∏

t∈M l
k

(
1− rltk|k−1PD

)

·
∏

t∈Dl
k

rltk|k−1PDl
lt. (5.7)

We make one final trick to get (5.7) on a common form. We multiply by 1 in the following
way

∏

t∈Bl
k

(
λ+ PDν̃

lt
k

)
=
∏

t∈Bl
k

(
λ+ PDν̃

lt
k

)
·
∏
t∈Dl

k

(
λ+ PDν̃

lt
k

)
∏
t∈Dl

k

(
λ+ PDν̃ltk

) (5.8)

=
∏

t∈Bl
k∪Dl

k

(
λ+ PDν̃

lt
k

)
· 1∏

t∈Dl
k

(
λ+ PDν̃ltk

) (5.9)

∝ 1∏
t∈Dl

k

(
λ+ PDν̃ltk

) (5.10)
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where we move the
∏
t∈Bl

k∪Dl
k

product into the proportionality sign in (5.10) since the
product is over the factors λ+PDν̃

lt
k for each measurement in Zk, which is constant and

the same for all hypotheses. Thus, the joint association posterior that is used is

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈M l
k

(
1− rltk|k−1PD

) ∏

t∈Dl
k

rltk|k−1PDl
lt

λ+ PDν̃ltk
.

(5.11)

5.2 Single-cluster multi-hypothesis factor graph

We here proceed by showing how we can rewrite the joint single-cluster, multi-hypothesis
association distribution in (5.11) in an overparameterized form for use in a factor graph
as is done in [8] originally for single-hypothesis and described in [1] for multi-hypothesis
purposes. Firstly, we drop all references to a particular timestep k and sequences in time
1:k−1 and 1:k for notational simplicity. We denote the prior hypothesis variable by θ as
seen previously, only we now drop the reference to a particular parent hypothesis. The
posterior hypothesis will be denoted by θ1:k to distinguish it from the prior hypothesis θ.
The prior distribution will in the sequel be referred to by φ(θ) such that

φ(θ) = Pr{θ1:k−1 | Z1:k−1} . (5.12)

We introduce at as the track association variable to indicate the measurement index that
track t is associated with, where at = 0 indicates misdetection, atk = j, j ∈ {1, . . . ,m}
indicates detection by measurement j out of mk measurements and at = N indicates
nonexistence. Nonexistence is necessary as we can only declare tracks as misdetected
or detected for hypotheses where the track exists, and so we need to be able to assign
probability to the event that no assignment is possible. To enforce the constraint that a
track at is only declared misdetected or detected when considering a parent hypothesis θ
where it exists, and otherwise nonexistent, we use the consistency factor ζt(θ, at) defined
as

ζt(θ, at) =





1,
t ∈ θ ∧ atk ̸= N

∨ t /∈ θ ∧ atk = N

0, otherwise

(5.13)

where the expressions t ∈ θ and t /∈ θ are used as a logical statements to indicate true
if t ∈ θ and false if t /∈ θ, respectively. We also need to consider the products over the
associations that can be made for each track. To achieve this we can define the unary
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factor ψt(at) for each track t = 1, . . . , n such that we get

ψt(at = 0) = 1− rtPD, (5.14a)

ψt(at = j) =
rtPDl

jt

λ+ PDν̃jt
(5.14b)

ψt(at = N) = 1 (5.14c)

to be consistent with (5.11). The definition in (5.14c) follows fromwltk = 1 for tracks that
do not exist in the hypothesis θl and is conveniently reintroduced here. Although the para-
meterization above is sufficient, we overparameterize the distribution by introducing the
measurement association variables bj for each measurement j. We let bj ∈ {0, 1, . . . , n}
where bj = 0 indicates false alarm and bj = t, t ∈ {1, . . . , n} indicates that measure-
ment j is a detection of track t. In [8] they argue that this is useful to ensure that LBP will
have a unique fixed point, as discussed in Chapter 2.3.4. In order to assign 0 probability to
invalid assignments, i.e. where a track and measurement are not associated to each other
simultaneously, equivalently the at-most-one assumption mentioned in Chapter 3.1.1, we
introduce the consistency factor γjt(at, bj) with definition

γjt(at, bj) =





0,
at = j ∧ bj ̸= t

∨ at ̸= j ∧ bj = t

1, otherwise

. (5.15)

With the factors introduced in (5.12) to (5.15), we rewrite (5.11) as follows. Under
the consistency factors ζt and γjt we can safely consider all tracks and measurements
collectively. In the first step we only consider tracks to get

Pr{θ1:k|Z1:k} ∝ Pr{θ1:k−1|Z1:k−1}︸ ︷︷ ︸
φ(θ)

∏

t∈M l
k

(
1− rtPD

) ∏

t∈Dl
k

rtPDl
lt

λ+ PDν̃lt

︸ ︷︷ ︸∏
t∈θ ζ

t(θ,at)ψt(at)

(5.16)

= φ(θ)
∏

t∈θ
ζt(θ, at)ψt(at) (5.17)

= φ(θ)
∏

t∈θ
ζt(θ, at)ψt(at)

∏

t/∈θ
ζt(θ, at)ψt(at) (5.18)

= φ(θ)

n∏

t=1

ζt(θ, at)ψt(at) (5.19)
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where we used that
∏
t/∈θ ζ

t(θ, at)ψt(at) = 1 since ψt(at = N) = 1 and ζt(θ, at =
N) = 1 for t /∈ θ. We then add a product over all bj for each track at to finally arrive at

Pr{θ1:k|Z1:k} ∝ φ(θ)
n∏

t=1


ζt(θ, at)ψt(at)

m∏

j=1

γjt(at, bj)


 . (5.20)

An illustration how such a factor graph can look like can be found in Figure 5.1,
which is the same example as in the preceding project report.

θ

φ

a2

a1

ψ2

ψ1

a3

ψ3

b1

b2

ζ1

ζ2

ζ3

γ11

γ12

γ13

γ21

γ22

γ23

Figure 5.1: An illustrative example of a multi-hypothesis association factor graph with three tracks a1, a2 and
a3 and two measurements b1 and b2.

5.3 Generalizing to multiple clusters

The multi-hypothesis association posterior in (5.20) is for a single cluster. Given the
way we define clusters in Chapter 3.6, generalizing the distribution to multiple clusters
is trivial as we assume that clusters are independent, meaning the multi-cluster posterior
is nothing more than a product over the single-cluster posteriors

Pr{Θ1:k|Z1:k} =
C∏

c=1

Pr{θc1:k|Z1:k} . (5.21)

where Θ1:k denotes the joint set over all prior hypotheses θc1:k and the superscript c
here indicates that θc1:k belongs to cluster c. An example of how such a multi-cluster,
multi-hypothesis factor graph could look like can be found in Figure 5.2
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θ1 a2

a1
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a4θ2

a5

b1

b2
Cluster 1

Cluster 2

Figure 5.2: Multi-cluster factor graph of test case with two clusters, five tracks and two measurements.
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6 | Marginals and normalization con-
stant by LBP

6.1 Multi-cluster, multi-hypothesis LBP

In the preceding project report, novel LBP messages were derived to compute approxim-
ate association marginals on a single-cluster, multi-hypothesis factor graph with factoriz-
ation given in (5.20). We repeat the argumentation made in the preceding project report
here. The work was based upon [8] where the authors made the observation that the LBP
messages in a single-hypothesis, single-cluster association graph have a particular struc-
ture to them which allows for clever normalizations that reduce computation complexity
and yields simpler expressions. This holds for the multi-hypothesis association graph
as we can show that, although the messages above are strictly speaking functions of at,
bt and θ, we can use the structure of the graph to reduce the messages to scalar values
instead of tables of values. This takes less resources to compute and store in memory,
which has great benefits when implementing and executing the algorithm.

In this thesis, we generalize the LBP message equations to the novel multi-cluster
messages. A large motivating factor for doing this is to be able to compute association
marginal approximations even in the presence of cluster merging, which we briefly
discussed in Chapter 3.6.1.

We use four different types of messages. The message sent from a track t to a
measurement j is denoted by µt→j , the message sent from a measurement j to a track t
is denoted by νj→t, the message from the prior hypothesis θc to a track tc, both in cluster
c, is denoted by σtc and finally, the message from a track t to the prior hypothesis θc

in cluster c is denoted by ρt. Note that we only need to explicitly state what cluster c a
track tc belongs to for the hypthesis-to-track message σtc , as will be made clear below.
The message definitions are summarized in Table A.1 and their directions illustrated in
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Figure A.1. The resulting Theorem with proof can be found in Theorem 1.

θ1

at1

at
′
1

θ2

at2

at
′
2

bj

bj
′

σt1
ρt1

σt′1

ρt′1

ρt2σt2

σt′2

ρt′2

µt1→j′

νj′→t1

νj→t1

µj→t1

µt′1→j′

νj′→t′1

νj→t′1

µj→t′1

µt2→j

νj→t2

νj′→t2

µt2→j′

µt′2→j

νj→t′2

νj′→t′2

µt′2→j′

Figure 6.1: Message direction example for multi-cluster scenario with two clusters.

Name Notation Direction

Track-to-measurement µt→j at → bj

Measurement-to-track νj→t bj → at

Hypothesis-to-track σtc θc → atc

Track-to-hypothesis ρt at → θc

Table 6.1: Message types in multi-cluster, multi-hypothesis association graph.
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Theorem 1 (The message definitions for multi-cluster, multi-hypothesis LBP).
Given an association graph of the same structure as in Figure 5.2 where the factors
are defined as in (5.12) to (5.15), the normalized messages used in multi-cluster,
multi-hypothesis LBP are given as

µt→j =
ψt(j)

ψt(0) +
∑
j′ ̸=j,j′>0 ψ

t(j′)νj′→t + σt
, (6.1a)

νj→t =
1

1 +
∑
t′ ̸=t,t′>0 µt′→j

, (6.1b)

σtc = ρtc ·

∑

θc : tc /∈θc
φ(θc)

∏

t′c∈θ
ρt′c

∑

θc : tc∈θc
φ(θc)

∏

t′c∈θc
ρt′c

, (6.1c)

ρt = ψt(0) +

mk∑

j=1

ψt(j)νj→t (6.1d)

where
∑
j′ ̸=j,j′>0 denotes the sum over all values j′ = 1, . . . ,mk except for j

for mk measurements,
∑
t′ ̸=t,t′>0 denotes the sum over all values t′ = 1, . . . , nk

except for t for nk tracks,
∑
θc : tc∈θc denotes the sum over all prior hypotheses θc

in cluster c where track tc exists and vice versa for
∑
θc : tc /∈θc and

∏
t′c∈θc denotes

the product over all tracks tc that exist in the prior hypothesis θc in cluster c.

Proof. See Appendix A. ■

Assuming the LBP algorithm converges, we can compute the approximate association
marginals from

p̂(at|Z1:k) ∝





ψt(0), at = 0

ψt(j)νj→t, at = 1, . . . ,mk

σt, at = N

(6.2)

where we in σt drop the indication of cluster since it is unambiguous given a track t. The
measurement marginals can be computed with

p̂(bj |Z1:k) ∝




1, bj = 0,

µt→j , bj = 1, . . . , nk
(6.3)
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and the prior hypothesis posterior with

p̂(θ|Z1:k) ∝ φ(θ)
∏

t∈θ
ρt (6.4)

6.2 Normalization constant estimation by Bethe ap-

proximation

As an alternative approach to full LBP in [1], a hypothesis-conditioned approach was
also proposed in [1] that allowed for using the LBP in [8] which has been proved
to have many desirable properties discussed in Chapter 2.3.4. This approach, however,
depended on estimating the hypothesis-conditioned likelihood p(Zk|Z1:k−1, θ). In [1] the
likelihood was approximated using FISST and approximating the Binomial distribution
over measurements as a Poisson distribution, similarly to what is done in the PHD filter
[9]. The results showed that this gave acceptable performance, but that the accuracy of
the likelihood was the main reason for inaccuracies.

In the present work we therefore derive novel equations for computing the Bethe
constant based on the Bethe pseudodual, discussed in Chapter 2.3.3. We motivate using
the Bethe pseudodual for two reasons. The first is, as already mentioned, that the
pseudodual evaluates exactly to Bethe free energy function at the fixed point of LBP.
The other is implementation-wise, as this provides us with sensible metric to measure
convergence when using LBP as in [26]. In particular, however, we can also use it with
the messages in a multi-hypothesis factor graph, which is useful as both [26] and [32]
only present convergence metrics for single-cluster, single-hypothesis factor graphs.

In Theorem 2 we prove the pseudodual of the single-cluster, multi-hypothesis asso-
ciation distribution. In practice, however, we are more interested in the multi-cluster
case. A particular structure will become evident from the single-cluster case which
makes generalizing to multi-cluster straight-forward. Concerning ourselves with the
single-cluster case makes the proof slightly less involved. Additionally, we present the
Bethe pseudodual for the single-cluster, single-hypothesis case to estimate the same
hypothesis-conditioned likelihood as discussed above.
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Theorem 2 (The pseudodual of the Bethe free energy function for the single-cluster,
multi-hypothesis association graph). Given the factors of the single-cluster, multi-
hypothesis association graph and the LBP messages in [1], the pseudodual of the
corresponding Bethe free energy function is given as

F#
B = (n−1) lnZθ+m

n∑

t=1

lnZt+(n−1)
m∑

j=1

lnZj−
n∑

t=1

lnZtθ−
n∑

t=1

m∑

j=1

lnZtj

(6.5)
where n denotes the number of targets t, m the number of measurements j and
Zθ, Zt, Zj , Ztθ and Ztj are the LBP belief normalization constants and can be
computed with the equations

Zθ =
∑

θ

φ(θ)
∏

t∈θ
ρt, (6.6)

Zt = ψt(0) +

m∑

j=1

ψt(j)νj→t + σt, (6.7)

Zj = 1 +

n∑

t=1

µt→j , (6.8)

Ztθ =
ψt(0) +

∑m
j=1 ψ

t(j)νj→t

ρt

∑

θ:t∈θ
φ(θ)

∏

t′∈θ
ρt′ +

∑

θ:t/∈θ
φ(θ)

∏

t′∈θ
ρt′ , (6.9)

Ztj =


1 +

n∑

t′=1
t′ ̸=t

µt′→j





ψ

t(0) +

m∑

j′=1
j′ ̸=j

ψt(j′)νj′→t + σt


+ ψt(j) (6.10)

Proof. See Appendix B. ■

Based on Theorem 2 we present two corollaries for the Bethe pseudodual in the mul-
ticluster case and the single-cluster, single-hypothesis case in Corollary 1 and Corollary 2,
respectively.
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Corollary 1 (The pseudodual for multi-cluster, multi-hypothesis). From the result
in Theorem 2 it should be reasonably clear that we can generalize the result to
multi-cluster by stating the pseudodual as

F#
B,MC =

C∑

c=1

(nc − 1) lnZθc +m

n∑

t=1

lnZt + (n− 1)

m∑

j=1

lnZj

−
L∑

l=1

nc∑

tc=1

lnZtlθl −
n∑

t=1

m∑

j=1

lnZtj , (6.11)

where θc denotes the hypothesis variable of cluster c with in total C clusters, tc is a
track in cluster c and nc is the number of tracks in cluster c such that

∑C
c=1 nc = n

and the normalization constant Zθc is given as

Zθc =
∑

θc

φ(θc)
∏

tc∈θc
ρtc (6.12)

and the edge normalization constant Ztcθc is given as

Ztcθc =
ψtc(0) +

∑m
j=1 ψ

tc(j)νj→tc

ρtc

∑

θc:tc∈θc
φ(θc)

∏

t′c∈θc
ρt′c+

∑

θc:tc /∈θc
φ(θc)

∏

t′c∈θc
ρt′c .

(6.13)

Corollary 2 (The pseudodual for single-cluster, single-hypothesis). When we have
an association case as in [8], the pseudodual takes the form

F#
B,SH = (m− 1)

n∑

t=1

lnZt + (n− 1)

m∑

j=1

lnZj −
n∑

t=1

m∑

j=1

lnZtj , (6.14)

Additionally, we normalize ψt(at) by ψt(0) and do not have any σt or ρt messages,
so we use the equations

Zt = 1 +

m∑

j=1

ψt(j)νj→t, (6.15)

Zj = 1 +

n∑

t=1

µt→j , (6.16)

Ztj =


1 +

n∑

t′=1
t′ ̸=t

µt′→j





1 +

m∑

j′=1
j′ ̸=j

ψt(j′)νj′→t


+ ψt(j). (6.17)
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To build confidence that the above expressions are correct, we will test them on a
simple single-cluster, single-hypothesis case with two tracks a1 and a2 that both gate a
single measurement b1. See Figure 6.2 for reference.

a1

b1

a2

µ1→1

µ2→1

ν1→1

ν1→2

Figure 6.2: Very simple single-cluster, single-hypothesis association case with two tracks and one measurement.
The messages µ1→1, µ2→1, ν1→1 and ν1→1 are also indicated.

In this case, the association graph is a tree, and so we expect the solution from LBP
to be exact. To verify this, let us compute the exact normalization constant by hypothesis
enumeration and compare it with the value we get with LBP and the Bethe pseudodual
in Corollary 2.

Let ψ1(a1) and ψ2(a2) denote the unary factors for a1 and a2, respectively. Since
this is a single-hypothesis case, both tracks have to exist, and so the nonexistence state
at = N vanishes. Additionally, we need to do the same as in [8] and normalize the unary
factors by the misdetection probability, i.e. ψ1(a1 = 0) = ψ2(a2 = 0) = 1, such that
the expressions in Corollary 2 remain correct. Since the unary factors therefore either
are ψt(at = 0) = 1 or ψt(at = 1), we use the short-hand notation ψt = ψt(at = 1) for
simplicity.

We have three association hypotheses, which are that both tracks are misdetected or
that exactly one of them is detected by b1. Thus, the exact normalization constant is

Z = f(a1 = 0, a2 = 0) + f(a1 = 1, a2 = 0) + f(a1 = 0, a2 = 1) (6.18)

= 1 · 1 + ψ1 · 1 + 1 · ψ2 (6.19)

= 1 + ψ1 + ψ2 (6.20)

where f(a1, a2) is the underlying function of the association graph.
Let us now do the same with LBP. First, we must have that σ1 = σ2 = 0, which we
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see from (6.1c) as the sum in the numerator is over all hypotheses that do not contain
the track, which there are none of since this is single-hypothesis. We therefore get
the empty sum which equals 0 by convention. This is also consistent with (6.2) as
p̂(at = N |Z1:k) = 0 only for σt = 0, which we expect as the nonexistence association
event should have probability 0. Secondly, since we only have one measurement, the
sum

∑
j′ ̸=j,j′>0 ψ

t(j′)νj′→t = 0 again since it becomes the empty sum. Thus, the
track-to-measurement messages µ1→1 and µ2→1 become

µ1→1 = ψ1, (6.21)

µ2→1 = ψ2. (6.22)

Since m = 1, the sum (m− 1)
∑n
t=1 lnZt = 0. The second sum in (6.14) becomes

(n− 1)

m∑

j=1

lnZj = ln

(
1 +

n∑

t=1

µt→j

)

= ln(1 + µ1→1 + µ2→1)

= ln(1 + ψ1 + ψ2) (6.23)

where we substituted Zj with (6.16) and inserted (6.21) and (6.22) for the messages
µ1→1 and µ2→1. Lastly, the edge sum becomes

n∑

t=1

m∑

j=1

lnZtj =

n∑

t=1

m∑

j=1

ln





1 +

n∑

t′=1
t′ ̸=t

µt′→j





1 +

m∑

j′=1
j′ ̸=j

ψt(j′)νj′→t


+ ψt(j)




= ln
[
(1 + µ2→1)(1 + 0) + ψ1

]
+ ln

[
(1 + µ1→1)(1 + 0) + ψ2

]

= ln(1 + µ2→1 + ψ1) + ln(1 + µ1→1 + ψ2)

= 2 ln(1 + ψ1 + ψ2) (6.24)

where we substituted Ztj with (6.17) and the messages in (6.24) with (6.21) and (6.22).
From (6.23) and (6.24) we therefore get that the Bethe pseudodual is

F#
B,SH = (m− 1)

n∑

t=1

lnZt + (n− 1)

m∑

j=1

lnZj −
n∑

t=1

m∑

j=1

lnZtj

= ln(1 + ψ1 + ψ2)− 2 ln(1 + ψ1 + ψ2)

= − ln(1 + ψ1 + ψ2). (6.25)
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Finally, from our definition of the Bethe constant in (2.33), ZB = exp(−FB), if we use
the Bethe pseudodual F#

B,SH as the Bethe free energy FB and negate and exponentiate
(6.25), we see that the Bethe constant ZB is

ZB = exp(−F#
B,SH)

= exp(ln(1 + ψ1 + ψ2))

= 1 + ψ1 + ψ2

which is equal to the expression we found for the exact normalization constant in (6.20),
as expected.

6.2.1 Purpose for estimating the normalization constant

The present work delves deeper into the normalization constant than was done in [1] and
the preceding project report for the following reasons. A central algorithm in current
implementations is Murty’s method which we discussed in Chapter 4.6.1. Perhaps the
biggest draw-back to Murty’s is that is only finds the scores of the posterior hypotheses,
which are proportional to the probability of the posterior hypothesis. Therefore, after
finding the N best hypotheses we have no guarantee that we have found a sufficiently
large portion of the true probability distribution, although this is often the case. The
worst case scenario is that the posterior hypotheses are uniformly distributed. In this
case, approximating the posterior hypothesis distribution with theN best hypotheses will
prune a prohibitively large portion of the posterior hypotheses, possibly with catastrophic
consequences.

However, an accurate estimate of the normalization constant would provide us with a
measure of how much of the probability mass we can represent with the posterior hypo-
theses enumerated by Murty’s. This would allow us to adapt to cases where the posterior
distribution is significantly “flat”. It could also be used to terminate the algorithm early
if we are confident that we can represent enough of the posterior distribution with the
hypotheses enumerated thus far. In particular, for the last point, it is desirable to estimate
an underestimate of the normalization constant, as we can then compare the sum over
posterior hypotheses scores to the estimated constant and use the sum as our estimate
of the true normalization constant if it is larger. If the estimate is larger than the true
constant, then comparing the values gives little meaningful information about how well
we represent the true distribution with the hypotheses found with Murty’s.
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7 | Efficient cluster marginalization

Multi-hypothesis trackers are required to prune the hypotheses that are kept to keep the
computational load bounded [36]. In many cases, this removes negligible information
from the system, as a relatively small proportion of the hypotheses holds most of the
probability mass. The main basis for the use of Murty’s method in multi-hypothesis
trackers was precisely that enumerating theM most likely hypotheses suffices to capture
the entire hypothesis distribution.

However, in case we have cluster merging, the resulting prior hypothesis space in
general becomes so large that the assumption that the M best enumerated hypotheses
from the posterior hypothesis space suffices becomes questionable.

Thus, if such a hypothesis enumeration scheme was instead used on the unmerged
clusters, this would in principle cause considerably less information loss.

We can achieve this by exploiting the insight that in practice, in terms of probabilistic
graphs, the dependency structure between the clusters is sparse. We can therefore avoid
enumerating the merged hypothesis space by using a clever marginalization scheme,
which is the topic of the following chapter.

7.1 Delegating variables

The key insight to achieve a much more light-weight marginalization is to utilize the
fact that the prior clusters are independent conditioned on the shared, gated measure-
ments. Such a shared, gated measurement will in the following be referred to as a linking
measurement. We start by further overparameterizing the association factor graph by
defining the delegating variable dlk for each linking measurement blk with l ∈ Lk where
Lk ⊆ {1, . . . ,mk} is the linking measurement index set containing the global meas-
urement index of each linking measurement linking together clusters, all in timestep
k. Define also the per-cluster linking measurement index set Lck containing the global
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measurement indices that links cluster c to other clusters where it follows that

Lk =

C⋃

c=1

Lck. (7.1)

The purpose of introducing the delegating variable dlk is, as its name suggests, to delegate
the measurement to exactly one cluster, or none of them. Additionally, define for each
cluster c with a linking measurement the dummy measurement bclk as the cluster local
measurement that is delegated to the cluster. In practice, the variable dlk ensures that
exactly one such local measurement bclk exists, or none. As an example, consider the
graphs in Figure 7.1 based upon Figure 5.2. We can identify measurement b2 as the
linking measurement, as it is gated by both track 3 in cluster 1 and track 4 and 5 in cluster
2. By now introducing d2 as a variable delegating b2 to either cluster 1 or 2 or none of
them, we explicitly split the clusters. This way, when conditioning on d2, the two clusters
become independent, and so we avoid reenumerating the prior hypothesis space.

θ1 a2

a1

a3

a4θ2

a5

b1

b2

θ1 a2

a1

a3

b1

b12

d2

b22a4θ2

a5

Figure 7.1: Simplified multi-cluster association graph with and without the delegating variable d2 for linking
measurement b2. The left figure shows the original association problem, while the right graph shows the
overparameterized representation.
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7.2 The conditional marginalization procedure

Having set the stage in Chapter 7.1 for how to avoid reenumerating the prior hypotheses,
we derive here the used equations. We will follow a divide-and-conquer approach,
where we first break down the expression and then explain how to combine the pieces
again to the full multi-cluster, multi-hypothesis marginals and normalization constant.
A simplified diagram showing the full computation flow can be found in Figure 7.2 for
reference.

Multi-cluster Pr{ak|Z1:k}

. . .Cluster conditioned
Pr{ak|Z1:k, d}

Cluster conditioned
Pr{ak|Z1:k, d}

Cluster conditioned
Hypothesis conditioned

Pr{ak|Z1:k, d, θ}
. . .

Cluster conditioned
Hypothesis conditioned

Pr{ak|Z1:k, d, θ}
. . .

Figure 7.2: Simplified illustration of how the cluster conditioning method can be visualized as a tree. We first
start with the full multi-cluster posterior in the root node. By conditioning on the linking measurements, we
restore independence between clusters which let us delegate the computation one level down to each cluster.
Each cluster can then either compute the desired marginals and normalization constant at this level or further
delegate the computation another level down by conditioning on the prior hypotheses. After each leaf node is
finished, the results are propagated upwards the tree and combined in the root.

For a given track t existing in prior cluster c, where we will allow the notation
t ∈ c, we seek the posterior marginal Pr{atk | Z1:k}. First, we will properly define the
event space of dlk. Consider the linking measurement assignment variable blk that the
corresponding dlk is related to with event space blk ∈ Bk and where Bk is given as

B = {0} ∪
C⋃

c=1

T ck (7.2)

= {0, 1, . . . , nk}, (7.3)
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T ck is the track-in-cluster index set given by

T ck = {t | t ∈ c}. (7.4)

and blk = 0 signifies a new track. The event space of dlk is then a disjoint partitioning of
Bk such that

dlk = {{0}} ∪
C⋃

c=1

{T ck }. (7.5)

More concretely, in the example in Figure 7.1, we would have

b2 ∈ {0, 1, 2, 3, 4, 5}, (7.6)

d2 ∈ {{0}, {1, 2, 3}, {4, 5}}, (7.7)

or, more compactly with gating,

b2 ∈ {0, 3, 4, 5}, (7.8)

d2 ∈ {{0}, {3}, {4, 5}}. (7.9)

In other words, the possible outcomes of dlk are that the measurement is a new track
or that some cluster has to assign it to an existing track in the cluster. Finally, define
the Cartesian product over linking measurement indices of cluster c in the set Lck as
Dck =

∏
l∈Lc

k
dlk such that an element d ∈ Dck is a tuple of elements from each dlk ∈ Dck

and unique. By total probability and Bayes’ rule, the desired marginal can then be
rewritten as

Pr
{
atk | Z1:k

}
=
∑

d∈Dc
k

Pr
{
atk | Z1:k, d

}
Pr{d | Z1:k} (7.10)

∝
∑

d∈Dc
k

Pr
{
atk | Z1:k, d

}
p(Zk | d, Z1:k−1)Pr{d | Z1:k−1} (7.11)

∝
∑

d∈Dc
k

Pr
{
atk | Z1:k, d

}
p(Zk | d, Z1:k−1) (7.12)

where we use in (7.12) that a prioriPr{d | Z1:k−1} ∝ 1 is uniform, and can be moved into
the proportionality sign. We argue that Pr{d | Z1:k−1} is uniform as, conditioned only
on the previous measurement sets Z1:k−1, we have no information on the measurement
set Zk. Thus, we also have no information about how the linking measurements blk ∈ Lk
should be delegated, and therefore all outcomes of d are equally likely.
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7.2.1 Direct single-cluster, multihypothesis marginalization

At this point we have two options for how to proceed. The first option is that we have
access to a single-cluster, multi-hypothesis solver which then can be applied directly
to (7.12). We compute the conditioned marginals for each cluster independently due
to independence to form Pr{atk | Z1:k, d}. The conditioned multi-cluster normalization
constant p(Zk | d, Z1:k−1) is given as simply the product over the conditioned single-
cluster normalization constants,

p(Zk | d, Z1:k−1) =

C∏

c=1

p(Zck | d, Z1:k−1) (7.13)

again due to conditional independence between the clusters, where we use the notation
p(Zck | d, Z1:k−1) to indicate the normalization constant of cluster c for in totalC clusters.

7.2.2 Marginalization by total probability over hypotheses

It is, however, more common to have access to a single-hypothesis, single-cluster solver,
e.g. a solver used in a JPDA filter. The second option is therefore that we further condition
the marginals to sum over all prior hypotheses θ, which, again by total probability and
Bayes’ rule, yields

Pr
{
atk | Z1:k, d

}
=
∑

θ

Pr
{
atk | Z1:k, d, θ

}
Pr{θ | Z1:k, d} (7.14)

∝
∑

θ

Pr
{
atk | Z1:k, d, θ

}
p(Zk | Z1:k−1, θ, d)Pr{θ | Z1:k−1, d}

(7.15)

=
∑

θ

Pr
{
atk | Z1:k, d, θ

}
p(Zk | Z1:k−1, θ, d)Pr{θ | Z1:k−1}

(7.16)

where we have used that θ is independent of d a priori such that Pr{θ | Z1:k−1, d} =

Pr{θ | Z1:k−1}. This follows from the fact that d only contains information about which
clusters should be assigned the linking measurements. Specifically, internal to a cluster,
there is no information about which track gets the measurements, which implies there is
no information in d about which hypothesis θ that is correct.

The marginalPr{atk | Z1:k, d, θ}with associated normalization constantp(Zk | Z1:k−1, θ, d)

can be computed with a single-cluster, single-hypothesis solver. From (7.16) we recog-
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nize the conditioned single-cluster normalization constant p(Zck|d, Z1:k−1) as

p(Zck|d, Z1:k−1) =
∑

θc

p(Zck | Z1:k−1, θ
c, d)Pr{θc | Z1:k−1} . (7.17)

7.3 Improving performance with dynamic program-

ming

The astute reader will notice that the sum in (7.12) is over |Dck| terms, which in gen-
eral could make the repeated computation of Pr{atk | Z1:k, d} infeasible for practical
purposes. However, this is not the case. Since the clusters are independent given dlk,
for some cluster c, knowing exactly which other cluster c′ got a linking measurement
blk is irrelevant, only whether c got it or not. Hence, we can significantly improve the
performance of the method with dynamic programming.

The cluster c can perform a binary look-up of which measurements are delegated and
not delegated to it and do the computation only if that particular configuration has not
been seen previously. The cluster can then cache the result and return it immediately
if the marginal for an equal configuration is requested at a later point. This also holds
for the estimated normalization constant. In terms of Figure 7.2, we can think of the
naive, repeated computation as visiting all the leaf nodes of the computation tree. By
using result caching we effectively prune most of the leaf nodes, reducing the number of
computations.

As an example, consider the association scenario in Figure 7.3 where three single-
track, single-hypothesis clusters are merging because of a single measurement b1.

b1

a1

a2 a3

Figure 7.3: Example scenario where caching results improve performance.
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In this case, the delegating variable d1 has event space

d1 = {{0}, {1}, {2}, {3}} (7.18)

and the augmented association graph can be visualized as in Figure 7.4.

d1

b11 a1

b21 b31a2 a3

Figure 7.4: Augmented association graph for result caching example.

Let us focus on the cluster with track a1, and consider the two first terms in the
marginalization sum in (7.12). This corresponds to conditioning on d1 = {0} and
d1 = {1}, which results in the two conditional association graphs in Figure 7.5.

a1

a2 a3

(a) The first term, where d1 = {0}.

a1

b11

a2 a3

(b) The second term, where d1 = {1}.

Figure 7.5: The conditional association graphs in the two first terms of the marginalization.

In this case, the association cases relative a1 are clearly different, as in the first case
we have no detections while in the second we do. Consider now the two next terms,
where d1 = {2} and d1 = {3}, which are visualized in Figure 7.6.

Relative a1, we see that the association cases in Figure 7.6 are identical to the
first case it solved, i.e. the association case where d1 = {0}. This follows from the
fact that the clusters are independent when we condition on d1, and so the association
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a1

a2 b21 a3

(a) The third term, where d1 = {2}.

a1

a2 a3b31

(b) The fourth term, where d1 = {3}.

Figure 7.6: The conditional association graphs in the second two terms of the marginalization.

for a1 is independent of a2 and a3. This then implies that the computed marginals and
normalization constant must also be equal to the case where d1 = {0}, and so the number
of required computations is reduced from the naive 4 to just 2, halving the number of
computations. In general, the number of required computations is 2|Lc

k|, where we recall
that Lck is the set of linking measurement indices for cluster c in timestep k. In the
example above L1 = {1} so cluster 1 is required to perform 21 = 2 computations, as we
previously concluded with.

7.4 Computing the exact solution by problem trans-

position

We will now concern ourselves with how we can adapt the above method to compute the
exact solution with traditional single-cluster, single-hypothesis hypothesis enumeration.
In typical implementations that compute the exact association marginals, we treat the as-
sociation problem as figuring out what measurement to associate to the track association
variables at. We can, of course, equivalently consider the association problem as asso-
ciating measurements to tracks, i.e. figuring out what track to associate to measurement
association variable bj , which we will call transposing the association problem. This
will be useful to do when we want to enforce that a measurement is associated to a track.
Transposing the problem can be done the following way. Recall the joint association
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posterior in (5.11), repeated here for convenience

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈M l
k

(
1− rltk|k−1PD

) ∏

t∈Dl
k

rltk|k−1PDl
lt

λ+ PDν̃ltk

= Pr
{
a1, . . . , an, θ1:k−1 | Z1:k

}
(7.19)

that we derived using the track weights from the PMBM filter, and where the form in
(7.19) is to emphasize the dependence on at. Normally we do marginalization on (7.19)
to retrieve each Pr{at | Z1:k}. Let us now derive an expression for the joint distribution
Pr
{
b1, . . . , bm, θ1:k−1 | Z1:k

}
, for m measurements, by rewriting (7.19) into

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈M l
k

(
1− rltk|k−1PD

) ∏

t∈Dl
k

rltk|k−1PDl
lt

λ+ PDν̃ltk
(7.20)

= Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈M l
k

(
1− rltk|k−1PD

) ∏
t∈Dl

k

(
1− rltk|k−1PD

)

∏
t∈Dl

k

(
1− rltk|k−1PD

)

·
∏

t∈Dl
k

rltk|k−1PDl
lt

λ+ PDν̃ltk
(7.21)

= Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈M l
k∪Dl

k

(
1− rltk|k−1PD

)

·
∏

t∈Dl
k

rltk|k−1PDl
lt

(
λ+ PDν̃ltk

) (
1− rltk|k−1PD

) (7.22)

= K(θl1:k−1)Pr
{
θl1:k−1|Z1:k−1

} ∏

t∈Dl
k

rltk|k−1PDl
lt

(
λ+ PDν̃ltk

) (
1− rltk|k−1PD

)

(7.23)

where we introduced the hypothesis-dependent constant

K(θl1:k−1) =
∏

t∈M l
k∪Dl

k

(
1− rltk|k−1PD

)
. (7.24)

This constant disappears into the proportionality sign when computing hypothesis-
conditioned marginals. Only when we compute the measurement-oriented, hypothesis-
conditioned normalization constant Zb which we want to convert back to the track-
oriented, hypothesis-conditioned normalization constant Za do we need K(θl1:k−1) be-
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cause of the relation
Za = K(θl1:k−1)Zb. (7.25)

With the measurement-oriented assocation posterior in (7.23) we define the unary factors
ψ̃j(t) for bj in the modified factor graph as

ψ̃j(bj = t) =





rltk|k−1PDl
lt

(λ+PD ν̃lt
k )

(
1−rlt

k|k−1
PD

) , t = 1, . . . , n

1, t = 0

, (7.26)

where bj = 0 denotes that the measurement is a false alarm. When we enforce that
some measurement j has to be associated to a track we simply use ψ̃j(0) = 0 to assign
0 probability to the event that the measurement is a false alarm, which implies that it is
a detection of an existing track with probability 1.

Doing this transposing of the hypothesis-conditioned association problem will in turn
give us the marginals Pr

{
bj | Z1:k, θ, d

}
. These can then easily be converted back to the

desired track marginals Pr{at | Z1:k, θ, d} by using

Pr
{
at = j | Z1:k, θ, d

}
= Pr

{
bj = t | Z1:k, θ, d

}
, j = 1, . . . ,m (7.27)

Pr
{
at = 0 | Z1:k, θ, d

}
= 1−

m∑

j=1

Pr
{
at = t | Z1:k, θ, d

}
. (7.28)

7.5 Alternative event space definition

Transposing the problem in order to disallow false alarms will work when using an exact
solver, as hypothesis enumeration becomes the same regardless of whether the association
problem is solved with respect to at og bj . However, a critical fault when using LBP
to approximate the marginals is that when we enforce the association of a measurement
to a track we in practice turn the SNR for a measurment infinitely large. As previously
mentioned, in [8] they experienced inaccurate estimates with LBP when the SNR was
excessively large, which we also experienced. In addition, the convergence guarantees
they make do not hold any longer. Thus, we propose the following approximation that
gives more stable LBP estimates.

Instead of using the disjoint event space defined in (7.5) we choose the overlapping
partitioning of the event space

dlk = {{0}} ∪
C⋃

c=1

{{0} ∪ T ck }. (7.29)

65



In this case, the example in (7.9) becomes instead

b2 ∈ {0, 3, 4, 5}, (7.30)

d2 ∈ {{0}, {0, 3}, {0, 4, 5}}. (7.31)

Although it is still possible to perform the exact summation over the entire event space
with this partitioning, we now need to compensate for overlap, meaning we have to
do summation by the inclusion-exclusion principle. This follows from the fact that
each cluster now contributes to the misdetection event. Consider the sum in (7.12).
When we have overlap between the events in the tuple dlk, we need to, by the inclusion-
exclusion principle, perform increasingly larger intersections of the events and alternate
between adding and subtracting the computed marginals and likelihoods. To put it more
concretely, we will here sketch out how the computation can be done for a simple test
case. See Figure 7.7 for illustration of the association case.

θ1 a1

b1

a2θ2

Figure 7.7: Test case for showcasing the inclusion-exclusion principle.

In this case, we get that the event space of d1 is given as

d1 = {{0}, {0, 1}, {0, 2}}. (7.32)

Since we are summing over the entire event space of d1, which is nothing more than
the union of the different outcomes, the sum in (7.12) will be denoted for simplicity as
Pr{{0} ∪ {0, 1} ∪ {0, 2}} before partitioning. For the first “stage” of the summation,
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we do the same sum as in (7.12), i.e. we sum over the events

{0}
{0, 1}
{0, 2}.

In the next step we subtract the overlap, which is done by subtracting the intersections of
the events. We have

(
3
2

)
= 3 different combinations, which are the events

{0} ∩ {0, 1} = {0}
{0} ∩ {0, 2} = {0}
{0, 1} ∩ {0, 2} = {0}.

We have one final stage to do before the entire event space is exhausted, which is adding
again the intersection of all the events. This corresponds to the

(
3
3

)
= 1 way

{0} ∩ {0, 1} ∩ {0, 2} = {0}.

In conclusion, the sum becomes

Pr{{0} ∪ {0, 1} ∪ {0, 2}} = Pr{{0}}+ Pr{{0, 1}}+ Pr{{0, 2}}
− Pr{{0} ∩ {0, 1}} − Pr{{0} ∩ {0, 2}} − Pr{{0, 1} ∩ {0, 2}}
+ Pr{{0} ∩ {0, 1} ∩ {0, 2}}
= Pr{{0}}+ Pr{{0, 1}}+ Pr{{0, 2}} − 2Pr{{0}} .

The above procedure was tangible as we could manually enumerate all the intersections of
each inclusion-exclusion stage. In the general case, however, such enumeration becomes
exponentially complex to do. We note that due to the structure of the problem, when we
intersect two or more events, either the events have to be identical to become the same,
e.g. {0, 1} ∩ {0, 1} = {0, 1} or they become {0}. This structure arises from the fact
that tracks are exclusive to a single cluster, so intersecting events across clusters must
reduce to the false alarm event. Utilizing this insight should allow for more efficient
enumeration. Coming up with an expression or algorithm for doing this enumeration
efficiently by utilizing the structure of the problem is left as future work. Instead, in
this work we approximate the sum by only using the first stage, such that in the example
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above we approximate it as

Pr{{0} ∪ {0, 1} ∪ {0, 2}} ≈ Pr{{0}}+ Pr{{0, 1}}+ Pr{{0, 2}}

and then run LBP internally for each conditional outcome, for example {0}, {0, 1} and
{0, 2}.

7.5.1 Approximation errors from Bonferroni inequalities

The approximation errors from removing “stages” from the inclusion-exclusion sum can
be described by the Bonferroni inequalities [48]. In particular, the inequalities state that,
for an odd number of stages, we always overestimate, while for an even number we always
underestimate. In the example above, this means that we are guaranteed that

Pr{{0} ∪ {0, 1} ∪ {0, 2}} ≤ Pr{{0}}+ Pr{{0, 1}}+ Pr{{0, 2}}

since we only add one stage, i.e. an odd number of stages. How this affects the estimated
marginals is unclear since we always normalize them in the end anyway. However, this
means that we will consistently overestimate the true Bethe constant when using this
approximation. Intuitively, we interpret this error as keeping the overlap between the
events, thus overcounting by adding extra probability mass to our unnormalized marginals
and normalization constant.

As a last note, the Bonferroni inequalities say nothing about how large the error is
and does not relate the error from using an odd number of stages to the error when using
an even number. It does, however, guarantee us a decreasing error as we add more stages
of the same parity. As an example, using five stages accumulates less error than three
which accumulates less than using one. However, we are not guaranteed that using six
stages accumulates less error than using five.

7.6 Three novel variations using LBP

We now present three novel variations of how to use LBP with cluster conditioning.
The first method is to use single-cluster, multi-hypothesis LBP directly to compute
Pr{atk | Z1:k, d} with the message definitions in Lemma 1 on the corresponding factor
graph. Given the messages at the fixed point we approximate the cluster-conditioned nor-
malization constant p(Zck|Z1:k−1, d) by using the Bethe pseudodual given in Theorem 2.

The two other variations are based on hypothesis conditioning, where we perform
LBP on the single-cluster, single-hypothesis association graph in the same way as was
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done in [8] to estimate the association marginals. In this case we are required to compute
the hypothesis-conditioned normalization constant p(Zck|Z1:k−1, θ

c, d). The first way
we propose is the same as was done in the preceding project report and [1], where we use
a Poisson approximation for the true, Binomial likelihood p(Zck|Z1:k−1, θ

c) similarly to
what is done in the PHD filter. The exact derivation details are outside the scope of this
text, and the result is that we can use the approximation

p(Zk|θ, Z1:k−1) ≈ K exp

(
−

nk∑

t=1

rtkPD

)
mk∏

j=1

[(
nk∑

t=1

rtkPDl
jt

λ+ PDν̃
jt
k

)
+ 1

]
(7.33)

where we recognize rtkPDljt/(λ+ PDν̃
jt
k ) as the detection weight from the association

posterior in (5.11), rtkPD = 1− (1− rtkPD) as related to the misdetection weight also in
(5.11), and K is some constant that is the same across all hypotheses θ and is therefore
eventually cancelled out. The other approach is estimating the hypothesis-conditioned
normalization constant with the Bethe pseudodual in Corollary 2.
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III

Results



8 | Method evaluation on simple test
case

Before delving into the results of running the proposed methods on a large dataset, the
following chapter will test the MCMH-LBP method on selected, simple test cases in order
to better assess the dynamics of LBP on the factor graphs that we encounter in practice.
Although multiple methods for inference have been presented so far, for brevity and also
focus on the dynamics of LBP, the following will concern itself with only MCMH-LBP
as the approximate method.

8.1 Definition of data structures used

Before proceeding with our discussion, and later present results, we first need to define
two central data structures used in the implementations for data association.

8.1.1 The reward matrix

The first is the reward matrix R. We will use the convention that the reward matrix is a
real matrix with shape nk× (mk+1), i.e. that R ∈ Rnk×(mk+1). Each row corresponds
to a track at and each element on that row corresponds to either the logarithm of
detection likelihood when associating the track with a measurement bj or the logarithm
of the misdetection probability. We use the first column to stack the log misdetection
probabilities and the remaining columns for detection loglikelihoods. Therefore, the
element Ruv at row u and column v is defined as

Ruv =




ln(1− rjtk|k−1PD), v = 1

ln(rjtk|k−1PDl
jt)− ln(λ+ PDν̃

jt
k ), v = 2, . . . ,mk + 1

(8.1)

71



where t = u and j = v − 1 for u = 1, . . . , nk and v = 1, . . . ,mk + 1.

8.1.2 Prior hypotheses distribution

The second data structure is how the prior hypotheses are structured. Each hypothesis
denotes the tracks existing conditioned on it, which can be none, together with the
probability. As an example, for a simple case of two tracks a1 and a2 existing in each
their hypothesis together with an empty hypothesis, all with uniform probability, we will
use a table as

θ1 = 1 [1] 1/3

θ1 = 2 [2] 1/3

θ1 = 3 [ ] 1/3

.

Lastly, marginals are given as tables also, where each row is the marginal distribution
for a track at, the first probability is misdetection, the last is nonexistence and the middle
are detection. An example for two tracks and one measurement might be

0 1 N

a1 0.339 0.661 0.000

a2 0.280 0.321 0.399

8.2 Analysis strategy and options

Since many results have already been established for a single-hypothesis association
graph in previous literature [8], [26], the following will test different perturbations of
the hypothesis parameters to test how the estimates from MCMH-LBP react to different
configurations.

We have some options available in this regard. Choosing a uniform prior hypothesis
distribution gives the association problem a stronger multi-hypothesis flavor. The oppos-
ite would be if a single hypothesis has probability 1, in which case the problem reduces
to single-hypothesis.

Additionally, each track can in the multi-hypothesis formulation take the nonexistence
value at = N . The marginal probability for this event is related to how the tracks are
distributed in the different prior hypotheses. As an example, if a track exists in all prior
hypotheses then we can immediately conclude that Pr{at = N | Z1:k} = 0, i.e. the
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track has to exist. Testing how estimates are affected by varying the track distribution
across prior hypotheses will therefore be interesting to do.

Lastly, evidence that favors a particular prior hypothesis should depend on if a
track in that prior hypothesis is detected. If a track has a large likelihood for being
detected, then we expect the probability of the prior hypotheses where it exists to increase.
Testing this can be done by changing the values of the reward matrix. Changing the
detection likelihoods would also introduce more loops into the association graph, which
is interesting as well from a more general LBP perspective.

8.3 Testing and discussion on test case

We first inspect how LBP performs on the association graph given in Figure 8.1, same
as the example in Figure 5.2.

θ1 a2

a1

a3

a4θ2

a5

b1

b2

Figure 8.1: Simplified association graph of test case with two clusters, five tracks and two measurements.

We arbitrarily choose the following parameters to do inference on. The reward matrix
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is given as

R =




−0.6 3.0 −∞
−0.56 3.2 −∞
−0.46 −3.0 1.2

−0.62 −∞ 3.0

−0.55 −∞ −0.4




(8.2)

and the prior hypotheses are

θ1 = 1 [1, 2] 0.5

θ1 = 2 [1, 3] 0.5

θ2 = 1 [4] 0.5

θ2 = 2 [5] 0.5

.

With these parameters, the exact marginals are given as

0 1 2 N

a1 0.341 0.659 0.000 0.000

a2 0.282 0.322 0.000 0.396

a3 0.312 0.001 0.084 0.604

a4 0.063 0.000 0.842 0.096

a5 0.067 0.000 0.028 0.904

with exact normalization constant Z = 228.528. In this case, the LBP marginals are

0 1 2 N

a1 0.339 0.661 0.000 0.000

a2 0.281 0.321 0.000 0.399

a3 0.310 0.000 0.088 0.601

a4 0.066 0.000 0.859 0.075

a5 0.071 0.000 0.004 0.925

with Bethe constant ZB = 222.945, in other words underestimating the true normal-
ization constant. We see that in this case, LBP is a more than satisfactory estimate of
the true distribution, with a strong correlation between estimated and exact marginal
probabilities.

Interestingly, if now modify the hypothesis distribution of cluster 1 such that we
instead have
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θ1 = 1 [1, 2, 3] 0.5

θ1 = 2 [ ] 0.5

θ2 = 1 [4] 0.5

θ2 = 2 [5] 0.5

.

the exact marginals become

0 1 2 N

a1 0.520 0.433 0.000 0.047

a2 0.445 0.508 0.000 0.047

a3 0.751 0.001 0.201 0.047

a4 0.117 0.000 0.734 0.150

a5 0.125 0.000 0.024 0.850

with normalization constant Z = 116.075. The LBP marginals, however, become

0 1 2 N

a1 0.246 0.468 0.000 0.286

a2 0.211 0.503 0.000 0.286

a3 0.556 0.001 0.157 0.286

a4 0.097 0.000 0.793 0.110

a5 0.105 0.000 0.006 0.890

with Bethe constant ZB = 177.565, i.e. in this case significantly overestimating the nor-
malization constant. We are able to identify that indeed the prior cluster, cluster 1, where
we have an empty hypothesis is the culprit, as LBP is able to estimate the marginals for
tracks in cluster 2 well. When we test the opposite case, i.e.

θ1 = 1 [1, 2] 0.5

θ1 = 2 [1, 3] 0.5

θ2 = 1 [4, 5] 0.5

θ2 = 2 [ ] 0.5

.

we get the exact marginals
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0 1 2 N

a1 0.318 0.682 0.000 0.000

a2 0.261 0.299 0.000 0.440

a3 0.289 0.001 0.150 0.560

a4 0.079 0.000 0.743 0.179

a5 0.798 0.000 0.023 0.179

and constant 149.413. With LBP we get marginals

0 1 2 N

a1 0.323 0.677 0.000 0.000

a2 0.266 0.304 0.000 0.430

a3 0.294 0.000 0.136 0.570

a4 0.071 0.000 0.720 0.209

a5 0.722 0.000 0.068 0.209

and constant 157.234. It is interesting to see that we in this case also overestimate the
normalization constant, but not by much. Also, the marginals are much better behaved.
This observation suggests that it is not empty hypotheses in itself that makes LBP ill-
behaved. Our first suspicion is that this is related to the fact that track a3 links together
the clusters. This is because the we can either think of the last perturbation as generating
an empty hypothesis or moving the particular track a3 into a different prior hypothesis.
If generating an empty hypothesis is not the reason then this suggests it is instead related
to track a3, which happens to be the track that links the two prior clusters. We therefore
change the reward matrix to

R =




−0.600 3.000 −∞
−0.560 3.200 −∞
−0.460 −3.000 −∞
−0.620 −∞ 3.000

−0.550 1.000 −0.400




which corresponds to the graph in Figure 8.2.
Doing the same tests again reveals that we get the same behavior as before, i.e. that

cluster 2 is more or less unaffected by how the tracks are distributed over hypotheses, but
that cluster 1 is heavily affected by it. We speculate therefore that instead the estimation
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θ1 a2

a1

a3

a4θ2

a5

b1

b2

Figure 8.2: Simplified association graph of test case with two clusters, five tracks and two measurements. This
alternative has changed where the link across the two prior clusters occur.

accuracy is related to the fact that in cluster 1 we have three tracks competing for a
measurement, inducing more loops in the graph. For cluster 2 there is only one loop
internally,

θ2 → a5 → b2 → a4 → θ2,

while we strictly speaking have three loops for cluster 1,

θ1 → a3 → b1 → a2 → θ2,

θ2 → a3 → b1 → a1 → θ2,

θ2 → a2 → b1 → a1 → θ2.

At this point, we make the following postulate based on our observations so far. When
assuming only the tracks [1, 2] or [1, 3] exist, we only have two competing tracks, which
reduces the number of loops. This then improves approximated marginals. To test
our postulate, we return to our original association case, but use the prior hypotheses
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distribution

θ1 = 1 [1, 2] 0.5

θ1 = 2 [3] 0.5

θ2 = 1 [4] 0.5

θ2 = 2 [5] 0.5

.

The rational for doing this is that we for cluster 1 either have a single loop, in hypothesis
θ1 = 1, or no loop, in hypothesis θ1 = 2. The results we get are the exact marginals

0 1 2 N

a1 0.528 0.440 0.000 0.033

a2 0.452 0.516 0.000 0.033

a3 0.024 0.002 0.006 0.967

a4 0.028 0.000 0.912 0.060

a5 0.030 0.000 0.030 0.940

and constant 142.710, with LBP giving

0 1 2 N

a1 0.289 0.467 0.000 0.244

a2 0.247 0.509 0.000 0.244

a3 0.190 0.000 0.054 0.756

a4 0.051 0.000 0.892 0.058

a5 0.054 0.000 0.003 0.942

and constant 195.921. Evidently, removing loops by placing tracks in specific prior hy-
potheses does not seem to help, as the results are similar to the case where all tracks were
placed in the same prior hypothesis.

Lastly, we inspect tweaking the reward matrix. Specifically, we have so far only
inspected a multi-cluster scenario with a single link. If we repeat the previous example,
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but with the reward matrix

R =




−0.600 3.000 3.000

−0.560 3.200 3.200

−0.460 −3.000 1.200

−0.620 3.000 3.000

−0.550 −0.400 −0.400



,

then all tracks compete for all measurements. In other words, the association graph
between tracks and measurement is maximally dense, inducing a large number of loops.
Curiously, this results in the marginals

0 1 2 N

a1 0.261 0.347 0.347 0.044

a2 0.224 0.366 0.366 0.044

a3 0.012 0.000 0.032 0.956

a4 0.243 0.255 0.226 0.276

a5 0.260 0.008 0.008 0.724

and constant 575.868 for the exact case, and marginals

0 1 2 N

a1 0.225 0.333 0.328 0.114

a2 0.196 0.348 0.342 0.114

a3 0.100 0.000 0.014 0.886

a4 0.202 0.285 0.282 0.231

a5 0.217 0.007 0.007 0.769

and constant 556.944 for LBP, meaning that, arguably, forming a more dense graph actu-
ally improved the overall accuracy in this case. We note in particular that track a3 seems
to have the weakest estimates and that the Bethe constant is much more accurate than
previously, now just barely underestimating the true constant rather than overestimating
it. This is in particular strange considering LBP should in general be more accurate for
sparser graphs, as the variables are less correlated with each other. This warrants further
investigation.
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8.4 Summary of observations

In this example we inspected a simple two-cluster example with three tracks in one
cluster and two in the other and two measurements. We discovered that for the initial
configuration of prior hypotheses and reward matrix parameters, LBP and the Bethe
constant were suitable approximations to the exact marginals and normalization constant,
respectively. However, tweaking just slightly the distribution of tracks over the prior
hypotheses in cluster 1 drastically changed the estimated marginals from LBP due to
overestimating the nonexistence probabilities. The Bethe constant also overestimated the
true normalization constant. It was speculated that this had to do with having an empty
hypothesis, but this seemed to not be the case when testing with an empty hypothesis in
cluster 2. It was then believe that it could be related to the track 3 in cluster 1 that caused
the link between the clusters. This, however, did also not seem to be the case as changing
the link to a different track made no significant difference. Lastly, it was speculated that
it could be related to the number of competing tracks and more importantly, the number
of loops in the cluster graph. Distributing the tracks to remove loops conditioned on the
prior hypothesis did not seem to help either. In the last test we inspect how increasing
the number of links between prior clusters affect the estimation accuracy. Spectacularly,
for the case it was tested on, this improved accuracy, warranting further testing.

In conclusion, it is hard to draw any consistent conclusion from the presented obser-
vations. It is clear that mainly cluster 1 is the root of the estimation problems. Since
cluster 2 seems more robust to estimation errors despite trying to provoke the same faults
as for cluster 1, it could be simply related to the difference in number of tracks in the two
clusters.
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9 | Introduction to the dataset used
for testing

The methods proposed to approximate marginals, as discussed in Chapters 6 and 7, were
evaluated on a large simulated dataset. This dataset, named "9 ravens," consists of 1397
radar scans in 2 dimensions. In this scenario, there are 8 actual targets, while the radar
is installed on a separate vehicle. To test data association, the association cases were
generated using several Monte Carlo simulations on the same radar scans, resulting in
a total of 9188 association cases. More detailed information about this dataset can be
found in [49].

The following chapter intends to introduce statistics about the dataset used for testing
in order to better understand the data association scenarios that the proposed methods
are expected to handle.

9.1 Overview of track clusters statistics

An interesting metric for data association, and in particular when using LBP, is the
number of tracks competing for the same measurement. This is first and foremost because
it is when tracks compete for measurements that we experience the true combinatorial
complexity of the problem. In addition, from a graphical point of view, we close loops in
the association graph when multiple tracks compete for the same measurement, and so we
expect LBP to perform worse the more measurement contention we have. In Figure 9.1
we present a histogram over the number of competing tracks in the same hypothesis. We
choose to measure contention this way as two tracks that gate the same measurement,
but does not exist in the same hypothesis, are in some sense not aware of each other, and
so they only indirectly compete for the measurement. From Figure 9.1 we see that the
number is of competing tracks is moderately low, and so we expect LBP to not be too
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affected by it.
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Figure 9.1: Histogram over number of tracks in the same hypothesis competing for a measurement. Note the
logscale on the y-axis.

Since most of the proposed methods are based on more efficiently to compute mar-
ginals when clusters merge, we will in this section inspect some relevant statistics for the
cluster merging scenarios. A summary of selected metrics can be found in Table 9.1.

Metric Quantity

Total number of posterior clusters 81439
Total number of superclusters 14623

Average number of linking measurements 2.663
Average number of prior clusters in supercluster 3.081

Average number of prior hypotheses in superclusters 5566.104
Average number of prior hypotheses in prior cluster in supercluster 23.395

Table 9.1: Table summarizing selected metrics from the cluster merging cases in the dataset.

In Figure 9.2 we provide a scatter plot between the number of prior hypotheses after
cluster merging and the corresponding average number of tracks in the prior hypotheses.
The main take away from this plot is that there is a considerable number of cases where
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the number of prior hypotheses explodes, further emphasizing the point that enumerating
the posterior hypotheses from so many prior hypotheses is unfeasibly costly.

Figure 9.2: Scatter plot displaying the distribution over number of hypotheses in a cluster and the corresponding
average number of tracks in each hypothesis. The pruning limit is an implementation parameter that determines
how many hypotheses that are kept to the next timestep. In other words, all points above this line must necessarily
be from superclusters where the reenumerated number of prior hypotheses is greater than this threshold. Note
the logscale on the y-scale.

Since the computational complexity in the cluster-conditioning methods is bounded
by the number of linking measurements for each prior cluster in the supercluster, we
have in Figure 9.3 provided a histogram over the number of linking measurements that
a cluster in a merging scenario has. The main take away here is that, at least for this
dataset, the number of computations is more than feasible with an average of 2.663.

The histogram in Figure 9.4 shows the distribution of numbers of prior clusters in
a supercluster. From this figure it is clear that we in practice do not expect too many
clusters to combine into a supercluster each timestep, which also significantly bounds
the computational complexity of doing cluster-conditioned marginalization.
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Figure 9.3: Histogram over number of linking measurements that linked a cluster to others in a merging
scenario.

9.2 The methods compared

We compare four different methods in the following results. The first, main method is the
multi-cluster, multi-hypothesis LBP method directly on the full association graph called
MCMH-LBP, presented in Chapter 6. Based on the cluster-conditioning method presen-
ted in Chapter 7, and in particular the approximated version described in Chapter 7.5, we
then also test three variations. The first is called “Efficient MHLBP” and uses MH-LBP
to do inference on the conditioned, single-cluster, multi-hypothesis association posterior.
The cluster normalization constants are approximated using the Bethe pseudodual in
Theorem 2. The two last methods are “Approx Efficient PHD” and “Approx Efficient
Bethe” which both do further hypothesis conditioning of the marginals and approximates
them using the same LBP approach as described in [8]. The hypothesis-conditioned
likelihood in “Approx Efficient PHD” uses the PHD approximation while in “Approx
Efficient Bethe” the Bethe pseudodual in Corollary 2 is used.

The main two methods of interest are MCMH-LBP and “Approx Efficient Bethe”.
The method MCMH-LBP is interesting as it is one of the main results of this thesis, but
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Figure 9.4: Histogram over number of prior clusters in the superclusters in the dataset.

also because it would be promising to use in a real tracker because of its computational
efficiency and relatively easy implementation. We are also interested in understanding
better LBP dynamics, especially when used in a multi-hypothesis setting. The other
method, “Approx Efficient Bethe”, is interesting in particular from a more theoretical
point of view. Since the cluster and hypothesis conditioning are exact operations, disreg-
arding the inclusion-exclusion approximation, the only approximate part of the algorithm
is the single-cluster, single-hypothesis LBP. Because of the analysis and proofs from [8]
and [26] with regard to e.g. convergence of LBP on the single-cluster, single-hypothesis
association graph, this method therefore offers more guarantees and is expected to be
more robust in a practical implementation. Additionally, contrary to the PHD variation,
we expect the Bethe constant to be a better approximation of the true normalization
constant as it is computed from a function we expect to be closer to the true distribution
than the Poisson distribution.

Due to the novelties of the presented work, no true benchmark exists that the methods
can be compared to. We therefore choose as a bona-fide benchmark to use Murty’s method
that we introduced in Chapter 4.6.1. Let the set M c

k denote the posterior hypotheses
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enumerated by Murty’s in some cluster c and timestep k. Let l denote the hypothesis
index for some posterior hypothesis θl1:k. We allow the notations l ∈M c

k and θl1:k ∈Mk

to both denote the same as the indices are unique. Let also wlk ∝ Pr
{
θl1:k | Z1:k

}
denote

the hypothesis weight. The Murty constant ZcM for cluster c is then calculated as

ZcM =
∑

l∈Mc
k

wlk (9.1)

and the multi-cluster constant ZM

ZM =

C∏

c=1

ZcM . (9.2)

Each Murty association marginal p̃M (at) for track t in cluster c is calculated as

p̃M (at = j) =
∑

l∈Mc
k : alt=j

wlk
ZcM

(9.3)

where
∑
l∈Mc

k : alt=j denotes the sum over all hypotheses where the association at = j

is made for j ∈ {0, 1, . . . ,mk} with mk measurements. We then set the nonexistence
probability to

p̃M (at = N) = 1−
mk∑

j=0

p̃M (at = j). (9.4)

Lastly, an important parameter in Murty’s is the maximum number of posterior hypo-
theses to enumerate. We denote this number by K and call the method for different
parameter choices “K-Murty”. If no K is indicated we use K = 150 for computational
reasons.
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10 | Results and discussion

The following chapter will present and discuss the results of running the different marginal
estimation methods on the dataset introduced in Chapter 9.

10.1 Normalization constant estimation accuracy

A comparison of the different ways to estimate the normalization constant is found in
Figure 10.1.

We see that all the methods are able to somewhat estimate the normalization constant
well, with MCMH-LBP performing the best. Not only do we observe that it has the lowest
variance out of all the methods, but that it consistently underestimates the normalization
constant, which the preferable behavior as discussed in Chapter 6.2.1. In fact, in our
results MCMH-LBP only overestimates the true normalization constant in 21 cases out
of the 9138. It is interesting to see that largest errors in the estimated normalization
constant from MCMH-LBP are the cases where it overestimates it. This must be related
to similar observations made in Chapter 8.3.

Murty’s method, here with 150 posterior hypotheses enumerated, performs the best.
This is probably due to the sheer number of cases where we properly capture the true
hypothesis distribution with just 150 posterior hypotheses.

The error induced by the approximation discussed in Chapter 7.5.1 can be seen in
all the cluster-conditioning based method estimates, in particular for “Approx Efficient
Bethe”. We know from the discussion in Chapters 2.3.2 and 2.3.4 that for the hypothesis-
conditioned single-cluster association graph, the Bethe free energy upper-bounds the true
free energy function. We therefore would expect, from ZB ≤ Z, i.e. (2.34), that the
normalization constant estimates underestimate the true normalization constants, since
the method is otherwise exact. As the estimates clearly overestimate instead, this must
follow from the approximation we made according to the discussion in Chapter 7.5.1
regarding Bonferroni inequalities, i.e. that only adding a single stage of inclusion-
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Figure 10.1: Two plots visualizing the estimation accuracy of the estimated normalization constants. The top
plot shows a boxplot of the relative error of the estimates, computed as, with Z as exact constant and Z̃ the
approximate, (Z − Z̃)/Z. The bottom plot shows a scatter plot of the different estimates relative the exact
value.

exclusion indeed gives us an overestimate. We do not have the same guarantees about the
true estimated normalization constant when using the PHD constant or multi-hypothesis
Bethe, but we see especially in the boxplot that they indeed are heavily overestimated.

The normalization constant estimated by “Approx Efficient PHD” seems to be correl-
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ated to the true normalization constant, although we do observe a tendency to overestimate
small constants and underestimate large constants. This is a natural consequence do to
the Poisson approximation we make, as the Poisson distribution indeed is flatter than the
true Binomial distribution.

10.2 Approximate marginals accuracy

Heatmap correlation plots of the approximated marginals for each of the tested methods
can be found in Figure 10.2.
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Figure 10.2: Heatmap correlation plots of the different approximate marginalization methods.
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In particular two patterns in Figure 10.2 deserves attention. The first can be seen from
comparing “Approximate Efficient Bethe”, “Approximate Efficient PHD” and “Efficient
MH-LBP”, as they are all display the same variance ellipsis around the correlation
line, which speculate is because they are all affected by approximation in the cluster-
conditioning sum. Additionally, “Approximate Efficient PHD” features a slightly larger
variance, which is probably due to use the PHD constant instead of Bethe.

The second pattern is that we can observe the effects of multi-hypothesis margin-
alization by comparing MCMH-LBP with “Efficient MH-LBP”. In these two plots the
marginals are distributed in a transposed “S”-shape, where this shape is superimposed
on top of the inclusion-exclusion variance for “Efficient MH-LBP”. Perhaps the most
important consequence of this is that this means that multi-hypothesis LBP tends to
make radical estimates, i.e. that the true marginals are pushed towards the extreme
points 0 and 1. We can identify a line on both the left and right side of the correlation
plots indicating that there is a significant portion of the estimates that are close to 0

or 1 when the true probability can be anywhere in between. As an example, we see
the line on the right side of the MCMH-LBP plot stops at about 0.2 on the exact axis,
indicating that exact probabilities as low as 0.2 were estimated to be close to 1. For
the hypothesis-conditioned methods “Approximate Efficient Bethe” and PHD we do not
see the same behavior, which strongly favors such approaches for more robust marginal
estimation. In particular, the “Approximate Efficient Bethe” method seems to perform
the best out of the presented methods.

The Murty’s method, here also with 150 as maximum number of posterior hypotheses
enumerated, is again the overall best method. This is consistent with how well it estimates
the normalization constant. Again, this is probably due to the sheer number of association
cases where the distribution is so peaked that finding the 150 most likely hypotheses
suffices to capture the entire distribution.

10.3 Survival function of marginal errors

The survival function to the empirical distribution of the different marginal errors can
be found in Figure 10.3. We quickly describe how to interpret such a plot. For a given
point at a curve, the y-value indicates the remaining proportion of the data that is larger
than the corresponding x-value. Therefore, since these are errors, the most desirable is
to have the curve hit the x-axis the earliest possible and also be below the other curves.
The x-value at which the curve hits the x-axis is the largest error in the data, which we
want to bound. Also, when the curve of a method is below the curve of another method,
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this implies that the former method has less large errors than the latter method.
Overall, we see that the errors of the most of the methods seem to be similar,

with the largest deviations for misdetection. In fact, all the presented methods except
“Approximate Efficient Bethe” exhibit nearly identical behavior for all marginal errors
except for misdetection. In particular, notice that the “MCMH-LBP” method, the only
method that does not do cluster conditioning, catches up with “Approximate Efficient
Bethe”. There is a reasonable explanation for this. Recall from our overlapping definition
of the event space of the delegating variable d that we duplicate the false alarm event for
each cluster in addition to the null event where no cluster gets any linking measurement.
The detection probabilities are much more well-behaved as they are only counted once
for each track in each cluster. The misdetection probability, however, accumulates more
error as each cluster accounts for the event that a linking measurement is a false alarm,
which propagates into the misdetection probability.

By comparing “Max errors” to “Nonexistence errors”, we see that the curves for
the three methods in question are almost identical in the two plots. This suggests that
the similar errors are related to the estimation of the nonexistence probability, as the
large error seemingly distorts the distributions similarly for the three methods. The fact
that “MCMH-LBP” and “Efficient MH-LBP” are so similar is reasonable as they both
perform LBP on a multi-hypothesis association graph.

Considering the marginals are computed almost identically in “Approximate Efficient
Bethe” and “Approximate Efficient PHD”, it is interesting that the accuracy is so different.
Considering the normalization of marginals is done after marginalization over the prior
hypotheses for the two methods, it is definitively clear that the largest source of error is
in that step. This shows that the Bethe constant indeed is a better approximation of the
true hypothesis-conditioned likelihood than the PHD constant.

Lastly, it is important to note that “Approximate Efficient Bethe” performs signific-
antly better than all the other methods, as we can tell from the fact that its curve hits
the x-axis first. This fact further supports to use a hypothesis-conditioned method for
marginal estimation. It still does not beat Murty, which still performs the best.

10.4 Inspection of the prior hypotheses posteriors

One significant observation made so far is how the marginal errors of “Approx Efficient
Bethe” are clearly better than “MCMH-LBP” and “Efficient MH-LBP”. This is interesting
because they are all LBP and Bethe constant-based, but “Approx Efficient Bethe” does
hypothesis-conditioned LBP, i.e. LBP does not marginalize over the prior hypothesis
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Figure 10.3: Survival function for different marginal errors comparing the different methods tested. All plots
show the absolute value of the marginal errors. The “Max errors” plot is over the maximum error for each
estimated track marginal distribution. The “Abs errors” plot contains all errors. The “Misdetection errors”
plot contains only the misdetection errors, and similarly for “Detection errors” and “Nonexistence errors”.
The symlog scaling is used on the x-axis, with a linear threshold of 10−6. The y-axis is logscale.
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variable, while both “MCMH-LBP” and “Efficient MH-LBP” do. One observation in
particular was the similarity between the “Max errors” and “Nonexistence errors” curves
in Figure 10.3 that seemed to suggest that the estimation of the nonexistence probability
is a large source of error.

Therefore, to investigate this discrepancy we will in the following section try to
evaluate how the prior hypothesis posteriorPr{θ1:k−1 | Z1:k} is estimated by the different
methods. This is because of the deep connection between the prior hypothesis posterior
and the nonexistence marginals. As an example to build intuition, if a track is assigned a
high nonexistence probability, then we have evidence that the track should not existence,
and we are inclined to assign low probability to prior hypotheses that contain that
particular track.

By inspecting the estimation accuracy of the prior hypothesis posterior we hope in
particular to shed light on what failure modes LBP suffers from when used in a multi-
hypothesis setting, as we have observed so far that hypothesis-conditioned methods
seem to be more accurate and robust. See Figure 10.4 for correlation plot for the prior
hypotheses posterior, Pr{θ1:k−1 | Z1:k}, for the different methods tested.

The main observation we can make from Figure 10.4 is that they in large terms behave
the same as the track association marginals. An important observation is that for the
multi-hypothesis-based methods, they tend to overestimate the true probability, which we
can tell from the fact that there is a larger density of points below the correlation line than
above, particularly for exact probabilities above 0.5. We can see clear lines, especially
on the right of the plot, for both “MCMH-LBP” and “Efficient MH-LBP”. Thus, multi-
hypothesis LBP favors overestimating the probabilities. The hypothesis-conditioned
methods does not seem to exhibit the same behavior. Specifically, “Approximate Efficient
Bethe” seems to be doing a particularly good job at estimating the prior hypothesis
posterior with little variance. These observations support our suspicion that the prior
hypothesis posterior indeed has a significant influence on the overall track association
marginal estimation accuracy.

In order to better understand how the errors are distributed we provide a histogram and
boxplot showing the signed error distribution for the prior hypotheses posterior estimates
in Figure 10.5. Clearly, the two methods “Efficient MH-LBP” and MCMH-LBP have a
bias towards overestimation, consistent with what we saw in the correlation plots. Again,
we also see that the hypothesis-conditioned methods are unbiased in their estimates,
where “Approximate Efficient Bethe” has the lowest variance.

It is clear from the above results that multi-hypothesis LBP suffers from overestim-
ation of probabilities in the prior hypotheses posterior, and that this propagates into the
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Figure 10.4: Correlation plot for the prior hypotheses posterior Pr{θ1:k−1 | Z1:k} for the different methods
tested.

track association marginals. Since these probabilities are related to the nonexistence
probability for the track association marginals, it would seem this is the largest source
of error when estimating the association marginals with a multi-hypothesis-based LBP
method.

We make one final remark on the matter with regard to MCMH-LBP. Despite the
marginals being affected by the poor prior hypothesis posterior estimate, the estimated
normalization constant seems not, considering MCMH-LBP by far is the most accurate
at estimating the constant. This suggests that the inclusion-exclusion approximation
we made is a larger source of error than first anticipated. This shows promise for
“Approximate Efficient Bethe” to reliably estimate the normalization constant if the
inclusion-exclusion sum can be performed exactly and efficiently.
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Figure 10.5: Two plots visualizing the same data distributions over signed error for the estimates of the prior
hypothesis posterior. With p denoting the exact posterior and p̃ an estimate, the error is computed as p − p̃.
Note that the y-axis on the histogram is logscaled.

10.5 Relating LBP to K-Murty for different K

Another important observation we have made so far is that Murty’s method withK = 150

performs very well, retrieving an almost perfect solution in most situations. However, this
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does not automatically mean we should discard the presented methods. Enumerating up
to 150 is done to be more confident we actually propagate sufficient hypothesis probability
mass to make sure we properly represent the multi-hypothesis probability distribution.
Therefore, without recycling or any track cardinality balance, we are in practice required
to use e.g. K = 150.

Enumerating fewer hypotheses, on the other hand, is preferable for several reasons.
Firstly, it is cheaper for Murty’s to enumerate fewer hypotheses. Secondly, keeping
fewer hypotheses in the MBM component is cheaper to propagate under the prediction
and update step. Thirdly, keeping more hypotheses in the MBM component means in
general we have more tracks in the MBM component as well, which takes more memory
resources. Therefore, it is relevant to investigate the benefits of using LBP for other
values of K.

To investigate we have calculated marginals and normalization constants for K ∈
{10, 20, 50, 100, 150}. We compare the results to the normalization constant estimates
to “MCMH-LBP” and the association marginals to “Efficient Approx Bethe”, as these
are the best results we have with LBP. In Figure 10.7 is a survival function plot over the
different marginal errors for the Murty configurations. In Figure 10.6 there is a boxplot
over the relative errors of the estimated normalization constants for the Murty methods
and “MCMH-LBP”.
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Figure 10.6: Boxplot showing relative error of the estimated normalization constants. Relative error is
computed as (Z− Z̃)/Z where Z and Z̃ are the exact and approximate normalization constants, respectively.
The different configurations of Murty, i.e. the maximum number of hypotheses that Murty’s is allowed to
enumerate, is indicated by K in K-Murty.
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It is clear from Figure 10.6 that the posterior hypothesis distribution is often very
peaked, which we can tell from the fact that even 10-Murty is able to very accurately
approximate the normalization constant in most cases. We also see that all the K-Murty
methods outperform “MCMH-LBP”.

The main observation from Figure 10.7 is that Murty’s is estimating the marginals
well in a large number of cases, even for small K. The marginal errors from “Efficient
Approx Bethe” seems to overall be bounded by the marginal errors of “10-Murty”, except
for misdetection. Overall, “Efficient Approx Bethe” is comparable to K-Murty, but in
most cases, K-Murty performs the best. From these results, it would seem that more
work is necessary to beat Murty’s method.

10.5.1 Artificially peaked hypothesis distributions

Before we end this discussion, one important point regarding the performance of the
Murty methods needs to be elaborated on. The fact that all of the Murty methods
performed this well hinged on the fact that the posterior hypothesis distribution was suf-
ficiently peaked, such that theK best posterior hypotheses held almost all the probability
mass. The dataset that was used had already pruned the hypothesis space from the previ-
ous timestep with precisely Murty’s method, and so no prior cluster contained more than
150 prior hypotheses. When unenumerated probability mass is pruned, the enumerated
probability mass must be scaled up to sum to 1. This scaling makes existing peaks
more peaked. Therefore, it is plausible that this scheme introduces bias towards some
hypotheses, which then makes the posterior hypothesis distribution artificially peaked.
If we had access to the true posterior hypothesis distribution, it might be more flat, such
that the performance of Murty’s method is more comparable to LBP.

As a simple example to show this bias, assume we have three true posterior hypotheses
with weights 3, 2 and 1. The normalized probabilities are then 1/2, 1/3 and 1/6. The
difference between the most and second most probable hypotheses is then 1/6. If we
were to prune the last hypothesis, the pruned distribution instead becomes 3/5 and 2/5

where the difference is now 1/5, i.e. larger than the actual difference 1/6. In general,
the difference between any two peaks in the original distribution is scaled by the ratio
of the true normalization constant and the approximated, which necessarily always must
be greater than 1, and equal iff we do no pruning. Thus, this example shows how
accumulated pruning of hypotheses can in principle cause the hypothesis distribution to
become artificially peaked.
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Figure 10.7: Survival function plots over marginal errors comparing “Efficient Approx Bethe” to the different
configurations of Murty’s. All plots show the absolute value of the marginal errors. The “Max errors” plot
is over the maximum error for each estimated track marginal distribution. The “Abs errors” plot contains all
errors. The “Misdetection errors” plot contains only the misdetection errors, and similarly for “Detection
errors” and “Nonexistence errors”. The symlog scaling is used on the x-axis, with a linear threshold of 10−6.
The y-axis is logscale. The different configurations of Murty, i.e. the maximum number of hypotheses that
Murty’s is allowed to enumerate, is indicated by K in K-Murty.
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10.6 Convergence results for MCMHLBP

To finish we will briefly present results concerning convergence of MCMH-LBP. An
analysis of a single case where the messages started to oscillate in MH-LBP can be found
in [1], and it is reasonable to assume the same mechanics hold for MCMH-LBP.

Denote a metric that measures convergence by ε such that when ε < ∆ for some
threshold ∆, we terminate. To investigate different metrics to measure convergence, two
different metrics were used. The first is the message norm from [8], specifically in our
implementation

εM = d(νk, νk−1) (10.1)

= max
i,j

∣∣∣∣∣log
νki→j

νk−1
i→j

∣∣∣∣∣ , (10.2)

where we use νk to indicate the set of measurement-to-track messages at iteration k and
similarly for νk−1. We use this message in particular because it is the only message in the
multi-cluster, multi-hypothesis factor graph that is defined the same as in [8]. It therefore
has the same domain and range such that we can be certain that the values it takes are
well-behaved and bounded, which is useful to check convergence. The other metric is
the absolute difference of the Bethe pseudodual between two consecutive iterations,

εB =
∣∣∣F#
i − F#

i−1

∣∣∣ (10.3)

where F#
i denotes the Bethe pseudodual in iteration i. The parameters used to determine

convergence can be found in Table 10.1.

Parameter name Symbol Value

Maximum number iterations Nmax 10000
Bethe pseudodual threshold ∆B 10−7

Message norm threshold ∆M 10−5

Table 10.1: Convergence parameters used in the implemention of MCMHLBP.

In only 2 cases out of all 9188 did MCMH-LBP not converge, which means that the
number of iterations reach the maximum Nmax before both εM < ∆M and εB < ∆B

simultaneously. In Table 10.2 the value of the convergence metrics can be found when
the algorithm terminated. In both cases, MCMH-LBP messages settled at oscillations.
However, for the first failed case, it seems like MCMH-LBP was close to convergence,
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as the distance between the messages is relatively small. Although the Bethe pseudodual
strictly speaking is only equal to the Bethe free energy at a stationary point, we can for
intuition consider the difference between two Bethe pseudodual values the log-ratio of
the corresponding normalization constants. In other words, if we define the pseudodual
constant Z#

i such that
F#
i = − lnZ#

i (10.4)

then

εB =
∣∣∣F#
i − F#

i−1

∣∣∣ (10.5)

=
∣∣∣− lnZ#

i + lnZ#
i−1

∣∣∣ (10.6)

=

∣∣∣∣∣ln
Z#
i−1

Z#
i

∣∣∣∣∣ (10.7)

=

∣∣∣∣∣ln
Z#
i

Z#
i−1

∣∣∣∣∣ . (10.8)

Thus, for the first failed case, the ratio in (10.8) is exp(0.00500995) ≈ 1.005, and so we
expect at least the normalization constant to have converged to some value. Doing the
same for the message norm we get exp(0.15219049) ≈ 1.164, which seems to indicate
that the marginals also have converged toward some value. This is, however, harder to
say since the marginals depend on all the messages in the graph. Doing the same for
the second case gives a normalization constant ratio of approximately 1.49 and message
norm ratio of 60.937, which indicates that this case is much farther from convergence
than the first one, since the ratios are much larger.

Failed case 1 Failed case 2

Bethe pseudodual error εB 0.00500995 0.4000705
Message norm εM 0.15219049 4.109838

Table 10.2: The value of the convergence metrics at the two cases where MCMHLBP failed to converge.

For the cases where MCMH-LBP converged, a plot over the number of iterations
until convergence and the corresponding convergence metric value at convergence can be
found in Figure 10.8. Most cases seems to converge before 100 iterations, considerably
less than the threshold of 10000. Perhaps the most interesting observation we can make
is that the Bethe pseudodual converges faster than the message norm despite having a
stricter threshold, as it converges in less iterations than the message norm.
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Figure 10.8: The top plot shows number of iterations until convergence for the two convergence metrics used
while the bottom plot shows the value of the metric at convergence. Note that only convergent cases are plotted.
Additionally, the y-axis on the bottom plot is logscale. Lastly, the legend is the same for both plots.

We end our discussion on the convergence of MCMH-LBP here. Future work is to
further delve into the accuracy of MCMH-LBP marginals and normalization constant
when only using one of the metrics and for different thresholds. It would seem from our
results that the normalization constant estimate converges faster than the messages and
therefore the estimated marginals. This is a useful observation if only a normalization
constant estimate is wanted, as the algorithm can be terminated earlier without loss of
accuracy.
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IV

Closing remarks



11 | Conclusion

The main contributions presented in this thesis are different methods for efficient mar-
ginalization and estimation of the normalization constant of the multi-cluster, multi-
hypothesis association graph. This was mainly motivated to enable track recycling in
PMBM, which will allow for a more sparse MBM component with less hypotheses while
still maintaining track cardinality balance. Four approaches were presented and tested
that all build upon the LBP algorithm. Additionally, novel equations based on the spe-
cialized LBP messages were presented that uses the Bethe pseudodual to compute the
Bethe constant as an estimate for the true normalization constant.

The first approach uses LBP on the full association graph and was called MCMH-LBP.
The three other methods embeds LBP into a novel cluster-conditioning marginalization
method that avoids prior hypothesis enumeration by conditioning on the linking meas-
urements between prior clusters. One of the methods, called MH-LBP, uses LBP on the
resulting single-cluster, multi-hypothesis association graphs. The two last methods, “Ef-
ficient Approx Bethe” and “Efficient Approx PHD”, further marginalizes over the prior
hypotheses to perform LBP on single-cluster, single-hypothesis association graphs. The
two methods differs in how the hypothesis-conditioned likelihood is estimated, where
“Efficient Approx Bethe” uses the Bethe pseudodual and “Efficient Approx PHD” uses a
Poisson approximation of the likelihood based on ideas from the PHD filter.

The MCMH-LBP method was tested on a simple test case where the data association
parameters were manipulated to explore the dynamics of LBP in a multi-hypothesis
setting. The main observation was that the accuracy of the estimated marginals and nor-
malization constant seems to be related to the track distribution across prior hypotheses.

All four methods were tested on a large dataset and compared with a benchmark
based on Murty’s method. From the results, we saw that MCMH-LBP estimated the
normalization constant significantly better than the other presented methods. This illus-
trated the accuracy of the Bethe constant to estimate the true normalization constant. The
other methods showed a much larger variance, which we explained as coming from the
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inclusion-exclusion approximation that is made. The “Efficient Approx Bethe” method
estimated the association marginals considerably better than the other methods, except
for the misdetection probability. We explained this by the overcounting of the false alarm
event that is done by the inclusion-exclusion approximation.

A consistent pattern was observed in the marginal errors from the multi-hypothesis
LBP methods that does not appear in the hypothesis-conditioned methods. To inspect the
reason for this pattern, the prior hypothesis posterior estimates of the different methods
were compared. It was then revealed that multi-hypothesis LBP has a tendency to
overestimate the posterior probabilities, while the hypothesis-conditioned methods does
not. This led to the conclusion that hypothesis-conditioned LBP is a more reliable
estimator for marginals in the general case.

11.1 Future work

There are several topics to consider for future work in this thesis. The results from
“Efficient Approx Bethe” suggested that a large source of error in the cluster-conditioning
methods is from the inclusion-exclusion approximation made to get more stable LBP
estimates. Therefore, one should make a potentially suboptimal implementation that
computes this sum exactly to verify whether this indeed is the case. If so, developing
a method for computing the inclusion-exclusion sum efficiently and exactly should be
possible given the structure of the problem, which would greatly improve the accuracy.

The motivation for developing the presented methods was to enable track recycling in
PMBM to improve filter consistency. This should be verified by integrating the methods
presented into an actual PMBM implementation. In particular, one should compare the
filter output from a PMBM filter with track recycling against an implementation that uses
Murty’s method internally to properly test whether Murty’s method actually is better and
more reliable.

Another important motivation for the presented methods was the efficiency improve-
ments they provide. However, due to implementation details, this comparison was never
made in the present work. Implementing the presented methods in a way that makes
comparing e.g. runtime fair should therefore also be done.

There are multiple, useful theoretical results about the single-cluster, single-hypothesis
LBP method that makes it favorable for reliability. However, no such theoretical results
exist for the generalized MH-LBP and MCMH-LBP methods. Based on the results in
Chapters 8 and 10 it would seem like multi-hypothesis LBP, in particular the multi-
hypothesis Bethe free energy, does not exhibit the same favorable properties as the
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single-hypothesis equivalent. Because of this, at least three different routes forward are
possible.

Firstly, it might be possible to improve the multi-hypothesis LBP methods by instead
taking the approach in e.g. [30] where they used fractional free energy to improve the
inference accuracy.

Secondly, exploring different inference methods on the multi-hypothesis association
graph, e.g. the closely related variation inference method mean field approximation [50],
can be useful.

Lastly, one can consider delving deeper into the theoretical aspect of the multi-
hypothesis Bethe free energy. This can shed light on the dynamics of multi-hypothesis
LBP and reveal its failure modes.
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A | Derivation of MH-LBP messages

Due to the similarities between the single-cluster and multi-cluster association graphs,
the following section will first prove in Lemma 1 the single-cluster, multi-hypothesis
LBP messages that was proved in the preceding project report, for then to argue about
how they generalize to the multi-cluster case in the end.

Lemma 1 (The message definitions for single-cluster, multi-hypothesis LBP).
Given an association graph of the same structure as in Figure 5.1 where the factors
are defined as in (5.12) to (5.15), the normalized messages used in single-cluster,
multi-hypothesis LBP are given as

µt→j =
ψt(j)

ψt(0) +
∑
j′ ̸=j,j′>0 ψ

t(j′)νj′→t + σt
, (A.1a)

νj→t =
1

1 +
∑
t′ ̸=t,t′>0 µt′→j

, (A.1b)

σt = ρt ·

∑

θ : t/∈θ
φ(θ)

∏

t′∈θ
ρt′

∑

θ : t∈θ
φ(θ)

∏

t′∈θ
ρt′
, (A.1c)

ρt = ψt(0) +

mk∑

j=1

ψt(j)νj→t. (A.1d)

where
∑
j′ ̸=j,j′>0 denotes the sum over all values j′ = 1, . . . ,mk except for j

for mk measurements,
∑
t′ ̸=t,t′>0 denotes the sum over all values t′ = 1, . . . , nk

except for t for nk tracks,
∑
θ : t∈θ denotes the sum over all prior hypotheses θ

where track t exists and vice versa for
∑
θ : tc /∈θ and

∏
t′∈θc denotes the product

over all tracks t that exist in the prior hypothesis θ.

Proof. The following proof is taken from the preceding project report of this thesis
and is original work by the author. In principle, doing LBP is matter of computing the
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messages

µa→i(xi)←
∑

xN(a)\{i}

fa(xN(a))
∏

j∈N(a)\{i}
µj→a(xj), (A.2)

µi→a(xi)←
∏

b∈N(i)\{a}
µb→i(xi) (A.3)

repeatedly until convergence, where the equations (A.2) and (A.3) are the same as in
(2.15) and (2.16) and repeated here for convenience. There are four types of messages
that are sent in the graph. The message sent from a track t to a measurement j is denoted
by µt→j , the message sent from a measurement j to a track t is denoted by νj→t, the
message from the prior hypothesis θ to a track t is denoted by σt and finally, the message
from a track t to the prior hypothesis θ is denoted by ρt. The message definitions are
summarized in Table A.1 and their directions illustrated in Figure A.1.

By inserting the factors (5.12) to (5.15) that we defined in Chapter 5 into (A.2)
and (A.3) and using the message notation from Table A.1, the general LBP equations
take the form

µt→j(b
j) =

∑

at

ψt(at)γtj(a
t, bj)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

i), (A.4)

νj→t(a
t) =

∑

bj

γjt(at, bj)
∏

t′ ̸=t
µt′→j(b

j), (A.5)

σt(a
t) =

∑

θ

ζt(θ, at)φ(θ)
∏

t′ ̸=t
ρt′(θ), (A.6)

ρt(θ) =
∑

at

ζt(θ, at)ψt(a
t)
∏

j

νj(a
t), (A.7)

where
∑
bj denotes the sum over all values bj ∈ {0, 1, . . . , nk},

∑
at denotes the sum over

all values at ∈ {0, 1, . . . ,mk, N},
∑
θ denotes the sum over all values θ ∈ {θ1, . . . , θL}

for L prior hypotheses,
∏
j′ ̸=j denotes the product over all measurements except for the

jth,
∏
t′ ̸=t denotes the product over all tracks except for the tth and

∏
j is the product

over all measurements.
We will first simplify the track-to-measurement message µt→j as much as possible

at this point. The sum is over all values of at, j included, so we first explicitly separate
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Figure A.1: Simplified illustraion of message directions in association graph.

Name Notation Direction

Track-to-measurement µt→j at → bj

Measurement-to-track νj→t bj → at

Hypothesis-to-track σt θ → at

Track-to-hypothesis ρt at → θ

Table A.1: Message types in association graph.

the sum into the term where at = j and a partial sum over the remaining at as

µt→j(b
j) = ψt(a

t = j)γtj(a
t = j, bj)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

t)

+
∑

at ̸=j
ψt(a

t)γtj(a
t ̸= j, bj)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

t). (A.8)

By now inserting bj = t, we see that

∑

at ̸=j
ψt(a

t)γtj(a
t ̸= j, bj = t)

∏

j′ ̸=j
νj′→t = 0 (A.9)

and

ψt(a
t = j)γtj(a

t = j, bj)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

t) = ψt(a
t = j)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

t)

(A.10)
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as γtj(at ̸= j, bj = t) = 0 and γtj(at = j, bj = t) = 1, respectively, by the way it was
defined in (5.15). Doing the same for bj ̸= t gives

ψt(a
t = j)γtj(a

t = j, bj ̸= t)
∏

j′ ̸=j
νj′→t(a

t)σt(a
t) = 0 (A.11)

and

∑

at ̸=j
ψt(a

t)γtj(a
t ̸= j, bj = t)

∏

j′ ̸=j
νj′→t =

∑

at ̸=j
ψt(a

t)
∏

j′ ̸=j
νj′→t (A.12)

for similar reasons. Thus, we get that the message value reduces to two distinct values,

µt→j(b
j) =




ψt(a

t = j)
(∏

j′ ̸=j νj′→t(a
t = j)

)
σt(a

t = j), bj = t
∑
at ̸=j ψt(a

t)
∏
j′ ̸=j νj′→t(a

t)σt(a
t), bj ̸= t.

(A.13)

Since messages in LBP are only given up to scale, we can normalize them. Namely, by
normalizing µt→j by its value when bj ̸= t, we get that

µt→j(b
j = t) =

ψt(a
t = j)

∏
j′ ̸=j νj′→t(a

t)σt(a
t)∑

at ̸=j ψt(a
t)
∏
j′ ̸=j νj′→t(at)σt(at)

, (A.14)

µt→j(b
j ̸= t) = 1. (A.15)

For now, these are the simplifications we can do. The expression in (A.14) will be further
simplified later.

We now consider the measurement-to-track message νj→t. We start by doing the
same as for µt→j above by explicitly separating the sum into the term where bj = t and
the partial sum where bj ̸= t to get

νj→t(a
t) = γtj(a

t, bj = t)
∏

t′ ̸=t
µt′→j(b

j = t)

+
∑

bt ̸=t
γtj(a

t, bj)
∏

t′ ̸=t
µt′→j(b

j). (A.16)

We can then reduce the message value to the two distinct values

νj→t(a
t) =





∏
t′ ̸=t µt′→j(b

j = t), at = j
∑
bt ̸=t

∏
t′ ̸=t µt′→j(b

j), at ̸= j.
(A.17)

by following a similar line of reasoning as for µt→j . We choose to normalize by
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νj→t(a
t ̸= j) to get

νj→t(a
t = j) =

∏
t′ ̸=t µt′→j(b

j = t)∑
bt ̸=t

∏
t′ ̸=t µt′→j(bj ̸= t)

, (A.18)

νj→t(a
t ̸= j) = 1. (A.19)

If we now insert (A.15) into (A.18) we get that the numerator reduces to

∏

t′ ̸=t
µt′→j(b

j = t) =
∏

t′ ̸=t
1 (A.20)

= 1 (A.21)

and the denominator becomes

∑

bt ̸=t

∏

t′ ̸=t
µt′→j(b

j ̸= t) =
∏

t′ ̸=t
µt′→j(b

j = 0) +
∑

t′′>0
t′′ ̸=t

∏

t′ ̸=t
µt′→j(b

j = t′′) (A.22)

=
∏

t′ ̸=t
1 +

∑

t′′>0
t′′ ̸=t


µt′′→j(b

j = t′′)
∏

t′ ̸=t
t′ ̸=t′′

1


 (A.23)

= 1 +
∑

t′′>0
t′′ ̸=t

µt′′→j(b
j = t′′), (A.24)

which, after changing back the dummy variable t′′ to t′ in (A.24), gives the final expres-
sion

νj→t =
1

1 +
∑
t′ ̸=t,t′>0 µt′→j

, (A.25)

which is the same as in (6.1b).
Next we turn to the hypothesis-to-track message σt. If we first rewrite the sum in

(A.6) as the sum of two partial sums,

σt(a
t) =

∑

θ: t∈θ
φ(θ)ζt(θ, a

t)
∏

t′ ̸=t
ρt′(θ) +

∑

θ: t/∈θ
φ(θ)ζt(θ, a

t)
∏

t′ ̸=t
ρt′(θ), (A.26)

where the notation θ : t ∈ θ and θ : t /∈ θ means all prior hypotheses θ containing and
not containing the track t, respectively. We again apply a similar procedure as for µt→j

and νj→t, only this time ζt(θ, at) takes the role of γtj(at, bj). For at ∈ {0, 1, . . . ,mk}
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and t ∈ θ ∑

θ: t/∈θ
φ(θ)ζt(θ, a

t)
∏

t′ ̸=t
ρt′(θ) = 0 (A.27)

and ∑

θ: t∈θ
φ(θ)ζt(θ, a

t)
∏

t′ ̸=t
ρt′(θ) =

∑

θ: t∈θ
φ(θ)

∏

t′ ̸=t
ρt′(θ) (A.28)

as ζt(θ, at) = 0 and ζt(θ, at) = 1, respectively, by the way it was defined in (5.13).
Similarly, when at = N and t ∈ θ,

∑

θ: t∈θ
φ(θ)ζt(θ, a

t)
∏

t′ ̸=t
ρt′(θ) = 0 (A.29)

and ∑

θ: t/∈θ
φ(θ)ζt(θ, a

t)
∏

t′ ̸=t
ρt′(θ) =

∑

θ: t/∈θ
φ(θ)

∏

t′ ̸=t
ρt′(θ), (A.30)

Thus, σt reduces to the two cases

σt(a
t) =





∑
θ: t∈θ φ(θ)

∏
t′ ̸=t ρt′(θ), at = 0, 1, . . . ,mk

∑
θ: t/∈θ φ(θ)

∏
t′ ̸=t ρt′(θ), at = N.

(A.31)

We choose to normalize by σt(at ̸= N) to get the values

σt(a
t = N) =

∑

θ: t/∈θ
φ(θ)

∏

t′ ̸=t
ρt′(θ)

∑

θ: t∈θ
φ(θ)

∏

t′ ̸=t
ρt′(θ)

, (A.32)

σt(a
t ̸= N) = 1. (A.33)

We will return to (A.32) soon. First, we will return to the expression for the track-to-
measurement message µt→j , as we have all the pieces we need to simplify the message
in (A.14). Inserting (A.19) and (A.33) into (A.14) makes the numerator

ψt(a
t = j)


∏

j′ ̸=j
νj′→t(a

t = j)


σt(a

t = j) = ψt(a
t = j)


∏

j′ ̸=j
1


 · 1 (A.34)

= ψt(a
t = j) (A.35)
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and the denominator

∑

at ̸=j
ψt(at)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

t) = ψt(at = 0)


∏

j′ ̸=j
νj′→t(a

t = 0)


σt(a

t = 0)

+

mk∑

at=1
at ̸=j

ψt(at)


∏

j′ ̸=j
νj′→t(a

t)


σt(a

t)

+ ψt(at = N)


∏

j′ ̸=j
νj′→t(a

t = N)


σt(a

t = N)

(A.36)

= ψt(at = 0)


∏

j′ ̸=j
1


 · 1

+

mk∑

at=1
at ̸=j

ψt(at)νat→t(a
t)



∏

j′ ̸=j
j′ ̸=at

1


 · 1

+ 1 ·


∏

j′ ̸=j
1


σt(a

t = N) (A.37)

= ψt(0) +
∑

j′ ̸=j,j′>0

ψt(j′)νj′→t + σt (A.38)

where we used that ψt(at = N) = 1 from (5.14c). Putting it back together we get

µt→j =
ψt(j)

ψt(0) +
∑
j′ ̸=j,j′>0 ψt(j

′)νj′→t + σt
. (A.39)

which again is the desired result in (6.1a).
The track-to-hypothesis message ρt(θ) can be simplified as follows. We do a decom-

position of the sum in (A.7) into a partial sum over at = 0, 1, . . . ,mk and the term for
at = N to get

ρt(θ) =
∑

at ̸=N
ψt(at)ζt(θ, at)

∏

j

νj→t(a
t) + ψt(N)ζt(θ, at = N)

∏

j

νj→t(N).

(A.40)
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Performing the same procedure as for σt above, we get that inserting θ when t ∈ θ makes

ψt(N)ζt(θ, at = N)
∏

j

νj→t(N) = 0 (A.41)

and ∑

at ̸=N
ψt(at)ζt(θ, at)

∏

j

νj→t(a
t) =

∑

at ̸=N
ψt(at)

∏

j

νj→t(a
t) (A.42)

due to ζt(θ, at) = 0 and ζt(θ, at) = 1, respectively, while for θ when t /∈ θ makes

∑

at ̸=N
ψt(at)ζt(θ, at)

∏

j

νj→t(a
t) = 0 (A.43)

and
ψt(N)ζt(θ, at = N)

∏

j

νj→t(N) = ψt(N)
∏

j

νj→t(N) (A.44)

for similar reasons. Consequently, as before, the message reduces to two cases,

ρt(θ) =





∑
at ̸=N ψt(a

t)
∏
j νj(a

t), t ∈ θ
ψt(N)

∏
j νj(N). t /∈ θ

(A.45)

By inserting ψt(N) = 1 from (5.14c) and
∏
j νj(N) = 1 from (A.19) we get that the

t /∈ θ case is equal to 1, hence no normalization is necessary in this case. If we separate
the term for at = 0 the t ∈ θ case becomes

ρt = ψt(0) +

mk∑

j=1

ψt(j)νj→t (A.46)

which we recognize as (6.1d).
The only thing that remains is to simplify (A.32). Note that the product

∏
t′ ̸=t ρt′ in

the numerator can be written as
∏
t′ ρt′ , i.e. over all tracks, as ρt = 1 for all terms in that

sum. We can further reduce the number of factors to
∏
t′∈θ ρt′ by normalization. For

the product in the denominator we do the same trick, only we now need to divide by ρt
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as well as it is no longer unity. Thus, the final message definition used is

σt =

∑

θ: t/∈θ
φ(θ)

∏

t′∈θ
ρt′

1

ρt

∑

θ: t∈θ
φ(θ)

∏

t′∈θ
ρt′

= ρt ·

∑

θ: t/∈θ
φ(θ)

∏

t′∈θ
ρt′

∑

θ: t∈θ
φ(θ)

∏

t′∈θ
ρt′
. (A.47)

The benefit of this is that this allows for reusing of computation and lower overall
complexity by computing

∏
t′∈θ ρt′ for each θ before computation of σt. ■

With Lemma 1, it is straight-forward to prove Theorem 1.

Proof. To visualize the necessary changes, see Figure A.2, which is the same figure as
Figure 6.1. The most important thing to realize is that locally to each node, the edges
look the same, and so we expect the expressions to be similar. The track-to-measurement
messages µt→j and measurement-to-track messages νj→t remain the same as a track
at only has one incoming edge from the corresponding hypothesis variable θc and the
edges from messages bj . The edges into each measurement bj are equal to that of the
single-cluster graph and so the equality follows trivially. The same then also holds for
the track-to-hypothesis messages ρt as they are entirely a function of νj→t and the prior
factors ψt(j), where the prior factors also are the same. The only major difference are
the hypothesis-to-track messages σtc which has to be computed for each cluster. The
expression becomes the same, although we now need specify what tracks tc to use as the
incoming edges to θc are only from tracks atc that participates in the given cluster c.

■
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θ1

at1

at
′
1

θ2

at2

at
′
2

bj

bj
′

σt1
ρt1

σt′1

ρt′1

ρt2σt2

σt′2

ρt′2

µt1→j′

νj′→t1

νj→t1

µj→t1

µt′1→j′

νj′→t′1

νj→t′1

µj→t′1

µt2→j

νj→t2

νj′→t2

µt2→j′

µt′2→j

νj→t′2

νj′→t′2

µt′2→j′

Figure A.2: Message direction example for multicluster scenario with two clusters.
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B | Derivation of MH-LBP Bethe
pseudodual

In the following we will adhere to the pairwise potential Markov random field equivalent
of the MH factor graph. In other words, the MH association density p(x) is given as

p(x) ∝
∏

i∈V
ϕi(xi)

∏

(i,j)∈E
ψij(xi, xj) (B.1)

where V denotes the index set for the vertex indices and E the index set for the edge
indices of the graph. We rewrite (B.1) as

p(x) ∝
∏

i∈V
exp

{
ϕ̃i(xi)

} ∏

(i,j)∈E
exp

{
ψ̃ij

}
(xi, xj) (B.2)

where

ϕ̃i(xi) = lnϕi(xi)) (B.3)

ψ̃ij(xi, xj) = lnψij(xi, xj) (B.4)

We will later see that the case ln 0 does not need to be properly handled. Recall that the
Bethe free energy is defined as

FB = UB −HB (B.5)

where

UB = Eq [E(x)] , (B.6)

HB = −Eq [ln q(x)] (B.7)
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where the Bethe approximation q(x) factors as

q(x) ∝
∏

i∈V
qi(xi)

∏

(i,j)∈E

qij(xi, xj)

qi(xi)qj(xj)
. (B.8)

In our case, the beliefs qi and qij are given by

qθ(θ) =
1

Zθ
φ(θ)

∏

t

ρt(θ), (B.9)

qt(a
t) =

1

Zt
ψt(at)

∏

j

νj→t(a
t)σt(a

t), (B.10)

qj(b
j) =

1

Zj

∏

t

µt→j(b
j), (B.11)

qtθ(a
t, θ) =

1

Ztθ
ψt(at)ζt(θ, at)φ(θ)

∏

j

νj→t(a
t)
∏

t′ ̸=t
ρt′(θ), (B.12)

qtj(a
t, bj) =

1

Ztj
ψt(at)γtj(at, bj)

∏

j′ ̸=j
νj′→t(a

t)
∏

t′ ̸=t
µt′→j(b

j)σt(a
t). (B.13)

where qθ, qt, and qj are the node beliefs for θ, at and bj , respectively, and qtθ and qtj are
the edge beliefs for at and θ and for at and bj , respectively.

Inserting (B.8) into (B.5) and rewriting the resulting expression based on what is
done in [51], [52], we arrive at the expression

FB =
∑

i∈V
(1− di)

∑

xi∈X

[
ln qi(xi)− ϕ̃i(xi)

]
(B.14)

+
∑

(i,j)∈E

∑

xi,xj∈X 2

[
ln qij(xi, xj)− ϕ̃i(xi)− ϕ̃j(xj)− ψ̃ij(xi, xj)

]
(B.15)

where di denotes the degree, i.e. the number of adjacent edges, of vertex i.
In [26] they argue that one should use the pseudodual of the Bethe free energy

function, as it allows for tracking convergence of LBP while also evaluating to exactly the
Bethe free energy function at the stationary point of the LBP messages. The pseudodual
is constructed as a modified Lagrangian by simply adding the edge constraints in the
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original LBP optimization problem, such that the pseudodual F#
B takes the form

F#
B = FB

−
∑

(i,j)∈E

∑

xi∈X
λj→i(xi)


∑

xj∈X
qij(xi, xj)− qi(xi)


 (B.16)

−
∑

(i,j)∈E

∑

xj∈X
λi→j(xj)

(∑

xi∈X
qij(xi, xj)− qj(xj)

)
. (B.17)

where the Lagrange multipliers λi→j and λj→i are given from the messages in LBP as

λi→j =
∑

k∈N(j)\{i}
lnmk→j(xj) (B.18)

and wheremi→j denotes an LBP message from node i to j andN(i) denotes the neighbors
of node i as proven in [23] and the notation is from [51].

Initially, the above expression looks more complicated than just the Bethe free energy
function. We will, however, see that evaluating the pseudodual is in general simpler than
the Bethe free energy function due to several beneficial cancellations of terms.

The proof will first expand the node and edge terms with the relevant factors and
simplify as much as possible. Then, the constraint terms will be expanded, for lastly to
go over all cancellations that occur before concluding the proof. To help the derivation
we will introduce the notation

F#
B = Fn + Fe − L (B.19)

where Fn denotes the sums over nodes, Fe the sums over edges and L the constraint
sums.

The node terms in (B.14) can be expanded as follows. The node term for θ we get
(1− n)∑θ qθ(θ) (ln qθ − lnφ(θ)), which is reduced to

(1−n)
∑

θ

qθ(θ) (ln qθ − lnφ(θ)) = (1−n)
∑

θ

qθ(θ)

(
− lnZθ +

n∑

t=1

ln ρt

)
(B.20)

by substituting qθ with (B.9) and canceling. Similarly, for the track nodes and measure-
ment nodes we get

∑n
t=1(−m)

∑
at qt(a

t) (ln qt − lnψt(at)) and
∑n
t=1(1−n)

∑
bj qj(b

j) ln qj
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which are reduced to

n∑

t=1

(−m)
∑

at

qt(a
t)
(
ln qt − lnψt(at)

)
=

n∑

t=1

(−m)
∑

at

qt(a
t)


− lnZt + lnσt +

m∑

j=1

ln νj→t


 ,

(B.21)
n∑

t=1

(1− n)
∑

bj

qj(b
j) ln qj =

n∑

t=1

(1− n)
∑

bj

qj(b
j)

(
− lnZj +

m∑

t=1

lnµt→j

)
.

(B.22)

In conclusion, we can write Fn as

Fn = (1− n)
∑

θ

qθ(θ)

(
− lnZθ +

n∑

t=1

ln ρt

)
(B.23a)

+

n∑

t=1

(−m)
∑

at

qt(a
t)


− lnZt + lnσt +

m∑

j=1

ln νj→t


 (B.23b)

+

n∑

t=1

(1− n)
∑

bj

qj(b
j)

(
− lnZj +

m∑

t=1

lnµt→j

)
(B.23c)

The edge terms takes the forms
∑n
t=1

∑
at
∑
θ qtθ(a

t, θ)
(
− lnZtθ +

∑m
j=1 νj→t +

∑
t′ ̸=t ρt′

)

for edges between θ and a track at and∑n
t=1

∑m
j=1

∑
at
∑
bj qtj(a

t, bj)
(
− lnZtj +

∑
j′ ̸=j νj′→t + lnσt +

∑
t′ ̸=t µt′→j

)

between a track at and measurement bj by simple substitution and cancelling of terms,
and so Fe becomes

Fe =

n∑

t=1

∑

at

∑

θ

qtθ(a
t, θ)


− lnZtθ +

m∑

j=1

νj→t +
∑

t′ ̸=t
ρt′


 (B.24a)

+

n∑

t=1

m∑

j=1

∑

at

∑

bj

qtj(a
t, bj)


− lnZtj +

∑

j′ ̸=j
νj′→t + lnσt +

∑

t′ ̸=t
µt′→j


 .

(B.24b)

When expanding L, we separate the sum into messages going in both directions, and
into the edges between θ and each at and similarly for between every at and bj . We will
first rename the Lagrangian multipliers with notation closer to its corresponding message
counter-part. The hypothesis-to-track Lagrangian multiplier is called σ̃t(at) and is given
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by

σ̃t =

m∑

j=1

ln νj→t (B.25)

which follows from (B.18) and the structure of the graph. Similarly, the track-to-
hypothesis Lagrangian multiplier is called ρ̃t and given by

ρ̃t =
∑

t′ ̸=t
ln ρt′ , (B.26)

the track-to-measurement Lagrangian multiplier is called µ̃t→j and given by

µ̃t→j =
∑

t′ ̸=t
lnµt′→j (B.27)

and lastly, the measurement-to-track Lagrangian multiplier is called ν̃j→t and given by

ν̃j→t =
∑

j′ ̸=j
ln νj′→t + lnσt. (B.28)

By expanding L with the Lagrangian multipliers and sorting the terms into edges
between θ and at and between at and bj , we get

L =

n∑

t=1

{∑

at

σ̃t(a
t)

(∑

θ

qtθ(a
t, θ)− qt(at)

)

+
∑

θ

ρ̃t(θ)

(∑

at

qtθ(a
t, θ)− qθ(θ)

)}
(B.29a)

+

n∑

t=1

m∑

j=1

{∑

bj

µ̃t→j(b
j)

(∑

at

qtj(a
t, bj)− qj(bj)

)

+
∑

at

ν̃j→t(a
t)

(∑

bj

qtj(a
t, bj)− qt(at)

)}
. (B.29b)

We proceed by writing out every sum in (B.29) individually while also substituting in
the expressions for the Lagrangian multipliers found in (B.25) to (B.28) in addition to
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making the algebraic manipulations

∑

t′ ̸=t
ln ρt′ =

n∑

t′=1

ln ρt′ − ln ρt (B.30)

∑

t′ ̸=t
lnµt′→j =

n∑

t′=1

lnµt′→j − lnµt→j (B.31)

∑

j′ ̸=j
ln νj′→t =

m∑

j′=1

ln νj′→t − ln νj→t (B.32)

in select places to arrive at the massive expression

L =

n∑

t=1

∑

at

m∑

j=1

ln νj→t

∑

θ

qtθ(a
t, θ) (B.33a)

−
n∑

t=1

∑

at

m∑

j=1

ln νj→tqt(a
t) (B.33b)

+

n∑

t=1

∑

θ

∑

t′ ̸=t
ln ρt′

∑

at

qtθ(a
t, θ) (B.33c)

−
n∑

t=1

∑

θ

n∑

t′=1

ln ρt′qθ(θ) (B.33d)

+

n∑

t=1

∑

θ

ln ρtqθ(θ) (B.33e)

+

n∑

t=1

m∑

j=1

∑

bj

∑

t′ ̸=t
lnµt′→j

∑

at

qtj(a
t, bj) (B.33f)

−
n∑

t=1

m∑

j=1

∑

bj

n∑

t′=1

lnµt′→jqj(b
j) (B.33g)

+

n∑

t=1

m∑

j=1

∑

bj

lnµt→jqj(b
j) (B.33h)

+

n∑

t=1

m∑

j=1

∑

at


∑

j′ ̸=j
ln νj′→t + lnσt


∑

bj

qtj(a
t, bj) (B.33i)

−
n∑

t=1

m∑

j=1

∑

at




m∑

j′=1

ln νj′→t + lnσt


 qt(a

t) (B.33j)

+

n∑

t=1

m∑

j=1

∑

at

ln νj→tqt(a
t). (B.33k)
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What remains before cancelling terms is to collect sums in (B.33) to more easily recognize
the cancellations we can make. Note that in (B.33d), (B.33g) and (B.33j) we repeat a
sum twice, such that we can write the sums as

n∑

t=1

∑

θ

n∑

t′=1

ln ρt′qθ(θ) = n

n∑

t=1

∑

θ

ln ρtqθ(θ) (B.34)

n∑

t=1

m∑

j=1

∑

bj

n∑

t′=1

lnµt′→jqj(b
j) = n

n∑

t=1

m∑

j=1

∑

bj

lnµt→jqj(b
j) (B.35)

n∑

t=1

m∑

j=1

∑

at




m∑

j′=1

ln νj′→t + lnσt


 qt(a

t) = m

n∑

t=1

∑

at




m∑

j=1

ln νj→t + lnσt


 qt(a

t).

(B.36)

By combining (B.34) with (B.33e), (B.35) with (B.33h), (B.33a) with (B.33c), (B.33f)
with (B.33i), cancelling (B.33b) with (B.33k), interchanging some sums and moving
constants across sums we get that L can be written as

L = (1− n)
∑

θ

qθ(θ)

n∑

t=1

ln ρt (B.37a)

+

n∑

t=1

(−m)
∑

at

qt(a
t)


lnσt +

m∑

j=1

ln νj→t


 (B.37b)

+

n∑

t=1

(1− n)
∑

bj

qj(b
j)

m∑

t=1

lnµt→j (B.37c)

+

n∑

t=1

∑

at

∑

θ

qtθ(a
t, θ)




m∑

j=1

νj→t +
∑

t′ ̸=t
ρt′


 (B.37d)

+

n∑

t=1

m∑

j=1

∑

at

∑

bj

qtj(a
t, bj)


∑

j′ ̸=j
νj′→t + lnσt +

∑

t′ ̸=t
µt′→j


 . (B.37e)

It is now trivial to make the necessary cancellations by comparing (B.37) with (B.23)
and (B.24) while considering the signs in (B.19) to get that the Bethe pseudodual F#

B

can be written as

F#
B = (n− 1) lnZθ +m

n∑

t=1

lnZt + (n− 1)

m∑

j=1

lnZj −
n∑

t=1

lnZtθ −
n∑

t=1

m∑

j=1

lnZtj ,

(B.38)
where we have marginalized out the LBP beliefs qθ, qt, qj , qtθ and qtj as the only thing
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remaining inside the relevant sums were the normalization constants Zθ, Zt, Zj , Ztθ and
Ztj .

We now derive how the normalization constants are computed by marginalizing
the LBP beliefs, using the normalization properties of the messages involved and the
compatibility factors ζt and γtj . For Zθ we get

Zθ =
∑

θ

φ(θ)
∏

t

ρt(θ) (B.39)

=
∑

θ

φ(θ)
∏

t∈θ
ρt (B.40)

(B.41)

with no more simplifications possible. For Zt we get

Zt =
∑

at

ψt(at)
∏

j

νj→t(a
t)σt(a

t) (B.42)

= ψt(0)
∏

j

νj→t(0)σt(0)

+

m∑

j=1

ψt(j)
∏

j

νj→t(j)σt(j)

+ ψt(N)
∏

j

νj→t(N)σt(N) (B.43)

= ψt(0) +

m∑

j=1

ψt(j)νj→t + σt. (B.44)

For Zj we get

Zj =
∑

bj

∏

t

µt→j(b
j) (B.45)

=
∏

t

µt→j(0) +

n∑

t=1

∏

t′

µt→j(t
′) (B.46)

= 1 +

n∑

t=1

µt→j . (B.47)

The normalization constants for the edge beliefs are slightly more involved. For Ztθ we
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get

Ztθ =
∑

θ

∑

at

ψt(at)ζt(θ, at)φ(θ)
∏

j

νj→t(a
t)
∏

t′ ̸=t
ρt′(θ) (B.48)

=
∑

θ

φ(θ)
∏

t′ ̸=t
ρt′(θ)

∑

at

ψt(at)ζt(θ, at)
∏

j

νj→t(a
t) (B.49)

=
∑

θ

φ(θ)
∏

t′ ̸=t
ρt′(θ)ζ

t(θ, at ̸= N)


ψt(0)

∏

j

νj→t(0) +

m∑

j′=1

ψt(j′)
∏

j

νj→t(j
′)




+
∑

θ

φ(θ)
∏

t′ ̸=t
ρt′(θ)ζ

t(θ, at = N)ψt(N)
∏

j

νj→t(N) (B.50)

=
∑

θ:t∈θ
φ(θ)

∏

t′ ̸=t
ρt′(θ)


ψt(0)

∏

j

νj→t(0) +

m∑

j′=1

ψt(j′)
∏

j

νj→t(j
′)




+
∑

θ:t/∈θ
φ(θ)

∏

t′ ̸=t
ρt′(θ)ψ

t(N)ζt(θ,N)
∏

j

νj→t(N) (B.51)

=
1

ρt

∑

θ:t∈θ
φ(θ)

∏

t∈θ
ρt


ψt(0) +

m∑

j=1

ψt(j)νj→t




+
∑

θ:t/∈θ
φ(θ)

∏

t∈θ
ρtψ

t(N)

=
ψt(0) +

∑m
j=1 ψ

t(j)νj→t

ρt

∑

θ:t∈θ
φ(θ)

∏

t∈θ
ρt +

∑

θ:t/∈θ
φ(θ)

∏

t∈θ
ρt. (B.52)
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Finally, for Ztj we get

Ztj =
∑

at

∑

bj

ψt(at)γtj(at, bj)
∏

j′ ̸=j
νj′→t(a

t)
∏

t′ ̸=t
µt′→j(b

j)σt(a
t) (B.53)

=
∑

at ̸=j
ψt(at)

∏

j′ ̸=j
νj′→t(a

t)σt(a
t)
∑

bj ̸=t

∏

t′ ̸=t
µt′→j(b

j)

+ ψt(j)
∏

j′ ̸=j
νj′→t(j)

∏

t′ ̸=t
µt′→j(t)σt(j) (B.54)

= ψt(0)
∏

j′ ̸=j
νj′→t(0)σt(0)

∑

bj ̸=t

∏

t′ ̸=t
µt′→j(b

j)

+

m∑

j′′=1
j′′ ̸=j

ψt(j′′)
∏

j′ ̸=j
νj′→t(j

′′)
∑

bj ̸=t

∏

t′ ̸=t
µt′→j(b

j)

+ ψt(N)
∏

j′ ̸=j
νj′→t(N)σt(N)

∑

bj ̸=t

∏

t′ ̸=t
µt′→j(b

j)

+ ψt(j) (B.55)

=


∑

bj ̸=t

∏

t′ ̸=t
µt′→j(b

j)





ψ

t(0) +

m∑

j′=1
j′ ̸=j

ψt(j′)νj′→t + ψt(N)σt


+ ψt(j)

(B.56)

=


1 +

n∑

t′=1
t′ ̸=t

µt′→j





ψ

t(0) +

m∑

j′=1
j′ ̸=j

ψt(j′)νj′→t + σt


+ ψt(j) (B.57)
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Trondheim, Norway

Abstract— This paper explores evaluation of association
marginals in multiple hypothesis tracking. The work builds
upon recent results where loop belief propagation (LBP) has
been used in single-hypothesis cases. There are two con-
tributions in the paper. The first is a novel factor graph
representation of the joint multihypothesis association posterior.
The second contribution is two algorithms that both use LBP
to evaluate association marginals. The first method uses total
probability in conjunction with hypothesis-conditioned LBP,
and is called PHD-LBP. The second method is an LBP algorithm
running directly on the full multihypothesis association graph
with novel, specialized message definitions that are derived in
this paper and efficient to compute and store in memory, and
is called MH-LBP. Results show that both algorithms perform
well with high correlation with the exact marginals for the
majority of the cases.

I. Introduction

In order to do data association in multitarget tracking,
one needs to build what is called association hypotheses.
As time progresses, the number of possible hypotheses that
can be made from the measurements that one receives
grows exponentially, and so introducing assumptions and
approximations are required for performing data association
online. A typical approach in the target tracking literature is
to model the association posterior as a factor graph, which
encodes the underlying structure in the data association
problem as a graph. The desired association marginals can
then be approximated with the loopy belief propagation
(LBP) algorithm, which takes considerably less computations
to do compared to brute-force hypothesis enumeration for
acceptable loss in accuracy.

A common denominator in all of these applications of
factor graphs for data association in target tracking is that
they are used in a single-hypothesis setting, where the
number of association hypotheses after each timestep is
approximated by a single hypothesis. The novelty in the
present work is to propose a factor graph representation of
the joint multihypothesis association posterior that appears
in multiple hypothesis tracking, where we allow multiple
association hypotheses after each timestep. We also present
two different approaches that generalize the efficient LBP
scheme presented in [1] to a multihypothesis setting.

This work was supported in part by the Research Council of Norway
through Projects 295033 and 333917.

The motivation for this is twofold. The first is the compu-
tational benefits, as LBP has been shown to compute good
approximations to the association marginals with a fraction of
the computations needed for an exact solution. The second
reason is for track management in the multitarget tracking
filter Poisson multi-Bernoulli mixture (PMBM) that was
first presented in [2] by Williams et. al. Inside the PMBM
framework, new tracks are initialized for every measurement
that is not associated to a new track, which over time means
the number of tracks to estimate is unbounded without any
pruning procedure. For a single-hypothesis tracking scenario
Williams proposes in a previous work [3] the concept of re-
cycling, which means to return low-quality tracks, i.e. tracks
with low existence probability, into the Poisson component
for undiscovered targets. By generalizing the method in [1]
for multihypothesis scenarios we pave the way for achieving
the same in a multihypothesis scenario.

The paper is structured as follows. First, related work on
use of LBP in target tracking is presented in Section II.
Then, required background theory and model assumptions
are presented in Section III before the novel factor graph
representation and association methods are presented in
Section IV. The results from testing the methods on a
simulated dataset are presented in Section V. The paper is
then concluded in Section VI.

II. Related work
The present work uses factor graphs, a probabilistic graph

representation first presented by Kschischang et. al in [4],
to efficiently approximate a solution to the data association
problem. They also describe how to conduct belief propaga-
tion on such a graph, an inference algorithm first presented by
Pearl [5]. Early work on use of factor graphs in target tracking
was done by Chen, Cetin et. al in [6]–[9] where they use
message passing for find the optimal association hypothesis
by using the max-product algorithm, a close relative of
BP that finds the argmax of a joint distribution instead of
marginalizing it.

More recent work by Williams et. al in [1], [10] augments
the data association problem by overparameterizing of as-
sociation variables which allows for formulating a bipartite
matching graph and applies LBP to efficiently and quickly
compute approximate association marginals that can be used
in a MTT filter, such as in [2]. Together with Vontobel in [11]



they prove that this graphical representation exhibits certain
properties that guarantees convergence of LBP, a particularly
desirable property. In one of their latest work [12] they do
approximate marginalization on an association graph similar
to the one in [1] generalized for single-hypothesis inference
jointly over multiple measurement scans. They derive a BP-
like algorithm based on a convex approximation to the exact,
nonconvex Bethe free energy of the graph for better and more
robust performance.

In the work by Meyer, Braca et. al [13] the authors
embed the data association method presented in [1] in a
factor graph representation of the joint track state posterior
in a multisensor setting and uses LBP to approximate the
marginal track state posteriors. They later extend this method
with estimation of unknown, time-varying model parameters
[14] and the presence of an unknown number of targets [15].

Lastly, in the maritime setting, Gaglione et al. proposes a
method for multisensor-multitarget tracking by constructing
a suitably devised factor graph and use LBP for approximate
inference in [16]. In [17] the same authors use BP to per-
form data fusion of radar and AIS (Automatic Identification
System) data.

III. Preliminaries
A. Factor graphs

A factor graph is a particular bipartite graph consisting
of variable nodes and factor nodes where edges are only
between variables and factors. A factor graph describes a
function f(xV) which can be factorized as

f(xV) =
∏

a

fa(xN(a)) (1)

where V denotes the variable index set of the graph such
that xV indicates all variables xi, i ∈ V , of f and where
fa(xN(a)) is a factor of f with N(a) indicating all neighbors
of node a such that xN(a) indicates all neighboring variable
nodes of fa.

B. Belief propagation
Belief propagation is an algorithm for doing efficient infer-

ence on probabilistic graphs with tree structure by exploiting
the structure of the graph. For loopy graphs, we define the
iterative computation of messages between nodes, given by

µa→i(xi)←
∑

xN(a)\{i}

fa(xN(a))
∏

j∈N(a)\{i}
µj→a(xj), (2)

µi→a(xi)←
∏

b∈N(i)\{a}
µb→i(xi) (3)

where µa→i denotes the message from factor a to variable
i and vice-versa for µi→a. The iterations are repeated until
the messages converge or until some preset max number of
iterations are done, and the messages are initialized to unity.

Perhaps the largest contribution to understanding the be-
havior of LBP came with the seminal work by Yedidia
et. al [18] that demonstrated the properties of LBP and
its connection to variational inference. Here, they describe
the LBP algorithm as a constrained optimization of the

variational free energy given a trial density q. The trial
distribution is constructed to take the form of a simpler
function that is feasible to do inference on. The particular
constraint chosen is that q must factorize into the same nodes
and edges as the original graph in a way that is exact for trees,
and is called the Bethe approximation [19].

C. Target tracking models for data association
For the sake of simplicity we will make linear Kalman

filter assumptions and the resulting tools for data association
will be summarized below in a multitarget tracking frame-
work. The reader is referred to [20] for a more thorough
treatment.

We use the notation N (µ,Σ) for a multivariate Gaussian
distribution, where µ and Σ are the parameters of the
distribution, specifically the expectation value vector and
covariance matrix, respectively. Due to the Kalman filter
assumptions, we assume that the state of each track t evolve
from timestep k − 1 to k according to the process model
p(xtk|xtk−1) which is linear and Gaussian, such that we have

p(xtk|xtk−1) = N
(
Fxtk−1,Q

)
. (4)

for an appropriate transition matrix F and covariance matrix
Q. To define the measurement model, assume we have
k consecutive sets of measurements denoted by Z1 =
{z1

1, . . . ,z
m1
1 }, . . . , Zk = {z1

k, . . . ,z
mk

k }. We use zjk, j ∈
{1, . . . ,mk} to denote the jth measurement out of the mk

we receive in timestep k. The measurement model for a
particular measurement zjk is p(zjk|xtk) and is given by

p(zjk|xtk) = N
(
Hxtk,R

)
(5)

for an appropriate measurement matrix H and covari-
ance matrix R. Suppose that the posterior distribution
p(xk−1|Z1:k−1) of a track t in timestep k − 1 is Gaussian.
Together with the equations in (4) and (5), the prior distri-
bution p(xtk|Z1:k−1) is given by

p(xtk|Z1:k−1) = N
(
x̂tk|k−1,P

t
k|k−1

)
, (6)

where x̂tk|k−1 and Pt
k|k−1 denotes the predicted target state

and covariance, respectively. The likelihood distribution is
given by

p(zk|Z1:k−1) = N
(
Hx̂tk|k−1,HPt

k|k−1H+R
)

(7)

for each track t, and we will denote the value we get by
evaluating the distribution for some track t in a particular
measurement zjk by ltj .

D. Track definition
A target will refer to an actual object in the surveillance

region. A track will refer to a sequence of measurements or
misdetections over time and can be represented as a vector

It = [i1, . . . , ik] (8)

where il = {0, . . . ,ml, N} for each l ∈ {1, . . . , k}. The
nonexistence index il = N is used to indicate a track that
has not been detected yet in timestep l, and as such “does



not exist”. Thus, for a track initialized in timestep L+ 1 we
must have that il = N for l = 1, . . . , L.

E. Hypothesis definition

In this paper, we refer to an association hypothesis as a
tree. The root is some parent hypothesis from the previous
timestep θl1:k−1, where we assume we have L parent hy-
potheses and l ∈ {1, . . . , L}. The different possible child
hypotheses that can be formed based on the measurement
set Zk are then formed as branches which will be denoted
by the set ak containing each association event atk for each
track t. The valid association events for each track is either
atk = 0, denoting misdetection, or atk = j, j = 1, . . . ,mk for
mk measurements denoting that measurement j is a detection
of track t. An unassociated measurement j′ is declared a new
target, denoted by j′ ∈ {nk+1, . . . , nk+mk} for nk tracks.

1) Defining hypotheses as sets of tracks: Assume we
get in total R child hypotheses and denote some arbitrary
child hypothesis by θr1:k with r ∈ {1, . . . , R}. A hypothesis
needs to contain the full information of all associations made
between tracks and measurements for all timesteps k, and so
we will use the recursive definition

θr1:k = ak ∪ θl1:k−1 (9)

with base case θ10 = { }. Due to the definition in (8) we can
make the definition in (9) more compact by referring to a
hypothesis as a subset of all nk track indices

θr1:k ⊆ {1, . . . , nk} (10)

where instead each scalar index t ∈ θr1:k points to a vector
It.

When a track is contained in the hypothesis, we will
say that the track exists in the hypothesis. Conversely, this
implies that nonexistence means the track is not contained
in the hypothesis. From the definition (10) we will allow the
notations t ∈ θ to indicate tracks t that exist in the hypothesis
θ and t /∈ θ to indicate tracks t that do not exist in the
hypothesis θ.

F. Joint association posterior

We assume the association posterior is given by

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

} ∏

t:at=0

(1− rtkPd)

∏

t:at>0

rtkPdl
tat

Pdνk + λ
(11)

where Pd is some constant detection probability, rtk denotes
the existence probability of track t in timestep k, λ is the
clutter intensity, νk denotes the arrival intensity of new
targets in all of the valid target space,

∏
t:at=0 denotes

the product over undetected tracks in timestep k under the
hypothesis θr1:k, at = j denotes the index of the measurement
track t is associated with and

∏
t:at>0 denotes the product

over all tracks t that are detected. A full derivation of (11)
can be found in e.g. [2] and is omitted here.

IV. Multihypothesis data association

We will here present a novel factor graph representation
of the joint multihypothesis association posterior, which is
based upon the work in [1], but introduces two novelties.
Firstly, we introduce the hypothesis variable θ, which ex-
tends the inference capabilities of the factor graph to be
multihypothesis. Secondly, we introduce the nonexistence
state at = N to the association posterior for all tracks t.
Intuitively, this state encodes the notion that tracks are only
initialized in a single, previous hypothesis, and so we can
only declare tracks as misdetected or detected if they exist.

Based on this, the new factorization can be derived as
follows. We use the same overparameterization of track-
measurement associations as in [1]. The track association
variable atk, defined in Section III-E, denotes the association
of track t in timestep k. We additionally introduce the
measurement association variable bjk, j = 1, . . . ,mk with
mk being the number of measurements, defined as bjk = t
if measurement j is associated with track t and bjk = 0 if
measurement j is a false alarm. We then require the compat-
ibility factors γtj between the tracks atk and measurements
bjk which are given as

γtj(atk, b
j
k) =

{
0, atk = j ∧ bjk ̸= t ∨ atk ̸= j ∧ bjk = t

1, otherwise
(12)

in order to assign 0 probability to invalid association hy-
potheses that disobeys the standard at-most-one assumption.
Given a prior hypothesis θl1:k−1, the distribution over the
association hypothesis ak then takes the form

Pr
{
ak | θl1:k−1, Z1:k

}
∝

nk∏

t=1


ψt(at)

mk∏

j=1

γtj(at, bj)




(13)
where

ψt(at = 0) = 1− rtkPd, (14)

ψt(at = j) =
rtkPdl

tj

Pdνk + λ
, j ∈ {1, . . . ,mk} (15)

which follows from (11).
We now introduce the required factors for the multihypoth-

esis case. First, we add the prior factor φ(θ1:k−1),

φ(θ1:k−1) = Pr{θ1:k−1 | Z1:k−1} , (16)

for the prior hypothesis variable θ1:k−1 to the factorization,
where we drop the superscript l as it can be any parent hy-
pothesis. Additionally, we introduce the compatibility factor
ζt between tracks atk and θ1:k−1, which is defined by

ζt(θ1:k−1, a
t
k) =




1,

t ∈ θ1:k−1 ∧ atk ̸= N

∨t /∈ θ1:k−1 ∧ atk = N

0, otherwise
(17)

which we require to encode the nonexistence state atk =
N . The logical statement for ζt(θ1:k−1, a

t
k) = 1 can be

interpreted as one of two mutually exclusive requirements



that must be fulfilled. One of the requirements, the existence
consistency requirement, is that atk = j, j = 0, 1, . . . ,mk,
i.e. a track t can only be associated with misdetection or
detection in the cases where θ1:k−1 takes the value of a prior
hypothesis containing track t. The alternative requirement,
the nonexistence consistency requirement, is that atk = N ,
i.e. track t does not exist, only in the cases when θ1:k−1 takes
the value of a hypothesis that does not contain track t. Again,
the purpose of this factor is to assign 0 probability to invalid
association hypotheses. We will now rewrite the expression
in (11) in a factorized form that we can use to build a factor
graph. Note that we have in (11) evaluated the hypothesis
posterior in a specific child hypothesis θr1:k which branches
of the parent hypothesis θl1:k−1. To generalize the expression
for all hypotheses θ1:k−1 we include the compatibility factor
ζt from (17) and use ψt(atk = N) = 1 for all t /∈ θ1:k−1.
This lets us arrive at the expression

Pr{θ1:k|Z1:k} ∝ φ(θ1:k−1)

×
nk∏

t=1

[
ζt(θ1:k−1, a

t
k)ψ

t(atk)

mk∏

j=1

γtj(atk, b
j
k)
]
.

(18)

where nk denotes the number of tracks.
An illustrative example of how such a factor graph can

look like can be found in Figure 1 for a tracking scenario
where we have three tracks a1k, a2k and a3k and one measure-
ment b1k.

θ1:k−1

φ

a2k

a1k

ψ2

ψ1

a3k

ψ3

b1k

ζ1

ζ2

ζ3

γ11

γ21

γ31

Fig. 1: A toy example with three tracks a1, a2 and a3 and one measurement
b1.

A. Hypothesis-conditioned loopy belief propagation

Before presenting the main result of this paper, we will
first consider an alternative approach to marginalization of
the joint multihypothesis association hypothesis posterior.
We can rewrite the desired marginals as a total probability
over all prior hypotheses, such that one first computes the
hypothesis-conditioned marginals using LBP as in [1], for
then to sum these together with appropriate scaling. By total

probability and Bayes’ rule, the marginal can be written as

Pr
{
atk | Z1:k

}
∝
∑

θ1:k−1

{
Pr
{
atk | θ1:k−1, Z1:k

}

× p(Zk | θ1:k−1, Z1:k−1)φ(θ1:k−1)
}

(19)

For tracks that exist in the prior hypothesis θ1:k−1,
the marginal Pr{atk | θ1:k−1, Z1:k} can be computed with
LBP, setting Pr{atk = N | θ1:k−1, Z1:k} = 0. For tracks
that does not exist in the prior hypothesis we set
Pr{atk = N | θ1:k−1, Z1:k} = 1 and all other association
events to 0. What remains is to compute the hypothesis-
conditioned set likelihood p(Zk | θ1:k−1, Z1:k−1). Comput-
ing it exactly involves full hypothesis enumeration, which is
in general infeasible. Instead, we use approximations from
the PHD filter [21] which is based on random finite set
theory (RFS). Going forward we will refer to this method by
the name PHD-LBP. For the sake of brevity, the derivation
details are left out. The result is that we can approximate the
hypothesis-conditioned likelihood with

p(Zk|θ1:k−1, Z1:k−1) ≈ K exp

(
−

nk∑

t=1

rtkPd

)

×
mk∏

j=1

[(
nk∑

t=1

rtkPdl
tj

Pdνk + λ

)
+ 1

]
(20)

where K is a common constant for all θ1:k−1 and is
cancelled after the final normalization. This approximation
approximates the true Binomial set distribution by a Poisson
set distribution with the same PHD.
B. Multihypothesis loopy belief propagation

The following section will present the main result of this
paper. For doing LBP on the full multihypothesis factor
graph, we define the track-to-measurement message µt→j ,
the measurement-to-track message νt→j , the hypothesis-to-
track message σt and the track-to-hypothesis message ρt. We
only use the subscript t for σt and ρt as all these messages
unambiguously are either from or to the prior hypothesis
variable θ1:k−1, respectively. The message directions are
illustrated in Figure 2. In principle, doing LBP is matter

θ1:k−1

atk

at
′
k

bjk

bj
′

k

σt

ρt

ρt′

σt′
µt′→j

νj→t′µt→j′

νj′→t

νj→tµj→t

νj′→t′µt′→j′

Fig. 2: Simplified illustration of message directions in association graph.

of computing the messages in (2) and (3). By inserting the



factors from (18) into (2) and (3), the general LBP equations
take the form

µt→j(b
j
k) =

∑

atk

ψt(atk)γ
tj(atk, b

j
k)


∏

j′ ̸=j
νj′→t(a

t
k)


σt(a

t
k),

(21)
νj→t(a

t
k) =

∑

bjk

γtj(atk, b
j
k)
∏

t′ ̸=t
µt′→j(b

j
k), (22)

σt(a
t
k) =

∑

θ1:k−1

ζt(θ1:k−1, a
t
k)φ(θ1:k−1)

∏

t′ ̸=t
ρt′(θ1:k−1),

(23)
ρt(θ1:k−1) =

∑

atk

ζt(θ1:k−1, a
t
k)ψt(a

t
k)
∏

j

νj(a
t
k), (24)

where
∑
bjk

denotes the sum over all values bjk ∈
{0, 1, . . . , nk},

∑
atk

denotes the sum over all values atk ∈
{0, 1, . . . ,mk, N},

∑
θ1:k−1

denotes the sum over all values
θ1:k−1 ∈ {θ11:k−1, . . . , θ

L
1:k−1} for L prior hypotheses,

∏
j′ ̸=j

denotes the product over all measurements except for the jth,∏
t′ ̸=t denotes the product over all tracks except for the tth

and
∏
j is the product over all measurements.

The key insight is that all messages have similar behavior
to what is recognized in [1], which allows for clever normal-
izations for reducing computation complexity and simpler
expressions. This is because we can show that, although the
messages above are strictly speaking functions of atk, btk and
θ1:k−1, we can use the structure of the graph to reduce
the messages to scalar values instead of tables of values.
This takes less resources to compute and store in memory,
which has great benefits when implementing and executing
the algorithm.

Due to the compatibility factors ζt and γtj , the message
values are reduced to the distinct values

µt→j(b
j
k) =




ψt(j)

(∏
j′ ̸=j νj′→t(j)

)
σt(j), bjk = t

∑
atk ̸=j ψ

t(atk)
∏
j′ ̸=j νj′→t(a

t
k)σt(a

t
k), b

j
k ̸= t

(25)

νj→t(a
t
k) =

{∏
t′ ̸=t µt′→j(t), atk = j∑
btk ̸=t

∏
t′ ̸=t µt′→j(b

j
k), atk ̸= j

(26)

σt(a
t
k) =

{∑
θ: t∈θ φ(θ1:k−1)

∏
t′ ̸=t ρt′(θ1:k−1), atk ̸= N∑

θ: t/∈θ φ(θ1:k−1)
∏
t′ ̸=t ρt′(θ1:k−1), atk = N

(27)

ρt(θ1:k−1) =

{∑
atk ̸=N ψt(a

t
k)
∏
j νj(a

t
k), t ∈ θ1:k−1

ψt(N)
∏
j νj(N). t /∈ θ1:k−1

(28)
where

∑
θ: t∈θ and

∑
θ: t/∈θ denotes the sum over all prior

hypotheses θ1:k−1 containing and not containing the track t,
respectively, and

∑
atk ̸=j and

∑
btk ̸=t denotes the sum over all

valid values of atk and bjk except for j and t, respectively. We
then normalize the messages appropriately with µt→j(b

j
k ̸=

t), νj→t(a
t
k ̸= j), σt(atk ̸= N) and ρt(θ1:k−1), t /∈ θ1:k−1 to

get the scalar message definitions

µt→j =
ψt(j)

ψt(0) +
∑
j′ ̸=j,j′>0 ψ

t(j′)νj′→t + σt
, (29)

νj→t =
1

1 +
∑
t′ ̸=t,t′>0 µt′→j

, (30)

σt = ρt ·

∑

θ : t/∈θ
φ(θ)

∏

t′∈θ
ρt′

∑

θ : t∈θ
φ(θ)

∏

t′∈θ
ρt′
, (31)

ρt = ψt(0) +

mk∑

j=1

ψt(j)νj→t, (32)

where
∏
t′∈θ denotes the product over all tracks t ∈ θ1:k−1.

We can now run LBP using these messages. After conver-
gence, the approximate association marginals can be com-
puted from

p̂(atk|Z1:k) ∝





ψt(0), atk = 0

ψt(j)νj→t, atk = 1, . . . ,mk

σt, atk = N

(33)

while the measurement marginals are computed with

p̂(bjk|Z1:k) ∝
{
1, bjk = 0,

µt→j , bjk = 1, . . . , nk
(34)

and the prior hypothesis posterior

p̂(θ1:k−1|Z1:k) ∝ φ(θ1:k−1)
∏

t∈θ
ρt (35)

V. Simulation results

The proposed methods for approximate marginals pre-
sented in Section IV were tested on a large, simulated dataset
consisting of 1397 simulated radar scans in 2 dimensions.
For each timestep, the methods are tested separately on each
cluster of tracks. Extracting the cluster data from the timestep
data showed that there are in total 111887 clusters in the
dataset. The reader is referred to [22] for more details.

A. The methods compared

Three methods are compared in the following results. The
two first methods are the methods MH-LBP and PHD-LBP,
presented in Section IV-B and Section IV-A, respectively.
Additionally, as a benchmark or best-case to compare with,
a hypothesis-conditioned LBP similar to PHD-LBP was also
tested that used the exact hypothesis-conditioned normaliza-
tion constant instead of the PHD approximation. We here
mean “exact” as the normalization constant to (13) which
can be found by doing full posterior hypothesis enumeration
for each prior hypothesis. The purpose of this was to isolate
errors from the approximate normalization constant in order
to better capture the properties and failure modes of LBP on
the multihypothesis association problems in question.



B. Discussion

The plots in Figure 3 show the survival function of the
empirical distribution of the marginal errors. Comparing the
performance of MH-LBP with that of PHD-LBP we see that
overall, the two approaches are similar. Notably, MH-LBP
seems to perform better in particular for misdetections than
PHD-LBP, and somewhat worse for detections.

Even more interesting is how much better the LBP with
exact normalization constant is at estimating the nonexis-
tence probability. This is most likely related to how it is
computed, as the hypothesis-conditioned marginals where
a track does not exist is concentrated with probability 1
for nonexistence. More importantly, the crucial distinction
is that we know the hypothesis-conditioned marginals for
nonexisting tracks exact, while the existing tracks have only
approximate marginals for misdetection and detection from
LBP. Thus, the terms for nonexisting tracks in the total
probability sum are also exact, and so the errors we see must
be come from the LBP approximation. In other words, before
renormalization of the marginals we can conclude that the
unnormalized nonexistence probability is exact, but that the
renormalization injects error into the nonexistence probabil-
ity from the remaining probabilities estimated from LBP.
As a final observation, although the nonexistence probability
is very exact, the misdetection and detection probabilities do
not show the same behavior. As these are inferred from LBP,
this is natural, as we have no guarantees about the accuracy
in the same way as we have for nonexistence.

In Figure 4 the PHD approximation normalization constant
is compared to the exact normalization constant in a correla-
tion plot with logarithmic scale. Interestingly, the correlation
plot demonstrates the cost of using a Poisson approximation
to the measurement set over the binomial. This can be
seen from the fact that for low likelihoods, the Poisson
approximation overestimates the exact likelihood, while for
high likelihoods it underestimates it, clearly showing the
flatness of the Poisson distribution compared to the binomial.
In any case, although the order of magnitude varies a lot,
we can still conclude that the PHD approximation does
somewhat correlate with the true normalization constant.

The correlations between the exact marginals and MH-
LBP, PHD-LBP and LBP with exact normalization constants,
respectively, can be found in Figure 5.

In the correlation plot for MH-LBP most marginals are
well correlated with the exact marginals. However, we can
clearly see an S-shaped curve that follows the point cloud
of marginals. We can primarily make two observations from
this. The first is that MH-LBP has a tendency of estimating
individual probabilities centered at 0.5, as the density of
points increases at marginals for this value, over all values
of exact marginals. This takes us to the second conclusion.
For probabilities roughly below 0.5, MH-LBP tends to over-
estimate the probabilities as the point density is centered
below the correlation line. Similarly for probabilities above
0.5 we see the opposite effect as MH-LBP underestimates the
probabilities. To conclude, it can seem from the correlation
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Fig. 3: Survival function for different errors. “Max errors” means the
maximum of the absolute value of the marginal error for each marginal
distribution, while “Abs errors” stands for the absolute value for all
marginal errors. Note that both the y-axis and x-axis are logarithmic. The
vertical line at x = 0 is due to all the marginals that estimated with zero
error. The legend is the same for all plots and is only included in the first
plot for clarity.

plot for MH-LBP that MH-LBP overall has a tendency to
“squish” the true marginal distribution together, or at least
capture the shape of it.

The correlation plot for PHD-LBP shows a clear correla-
tion line, much in the same way as for MH-LBP, but with
large, convex-shaped variance about the correlation line. We
also note that PHD-LBP has more data points spread across
the entire plot, while MH-LBP is relatively more centered
around the correlation line. A possible explanation for this
could, again, be the the flatness of the PHD approximation
that amplifies the conservative behavior that we saw in MH-
LBP.

Lastly, we will inspect the correlation plot for the best-
case LBP with exact normalization constant. Overall, the



Fig. 4: Correlation plot between estimated normalization constant and true
normalization constant with logarithmic scaling.

estimated probabilities are highly correlated with the exact
probabilities, which should follow from having access to the
exact normalization constant. Mainly three observations can
be made in this plot. The first observation is that LBP with
exact normalization constant has a larger tendency of over-
estimating probabilities close to zero than underestimating
them. This could be related to similar behavior we saw for
MH-LBP. The second observation is the strong trend that
LBP with exact normalization constant consistently underes-
timates higher probabilities, and almost never underestimates
it. This seems like an extreme case of what we saw for
MH-LBP, and raises the question whether this might be a
trend for such approximate schemes, or at least methods like
LBP. Lastly, there seems to be an almost linearly increasing
tendency to underestimate increasing probabilities, which we
see from the widening point cloud above the correlation line.

1) Failed convergence of MH-LBP: In exactly one case
out of in total 111887 clusters the MH-LBP algorithm
failed to converge to a solution. They prove mathematically
in [1] that the track-to-measurement and measurement-to-
track messages, µt→j and νj→t, respectively, must converge.
Namely, if we were to fix σt for all t, then we expect
µt→j and νj→t to converge. We therefore conclude that
the main culprit for the oscillations are the σt messages.
In [12] they consider a similar association problem that is
multiscan instead of multihypothesis and state that the Bethe
free energy for this association graph is nonconvex, which
results in undesirable behavior. A possible explanation for
the nonconvergence could be that the Bethe free energy
function of the multihypothesis association graph is similarly
nonconvex. In [1], results show that the accuracy of LBP is
tied to the SNR of the problem, where lower SNR seems to
improve accuracy and vice versa. In other words, for high
misdetection probabilities and clutter rate, we can expect
LBP in the hypothesis-conditioned case to have improved
accuracy. In [23] they observe that priors in a graph with
low values can cause oscillations in LBP, and that increasing
these in their experiments helped with convergence. As the
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Fig. 5: Heatmap showing correlation between the marginals of the methods
compared and exact marginals. Note that the colors are logarithmic.



misdetection probablities do appear in the priors of the
tracks in our factor graph, it was tested with considerable
higher misdetection probabilities. After adding 2.5 to the log
misdetections we achieve convergence.

VI. Conclusion
This paper has proposed two methods, MH-LBP and

PHD-LBP, for computing approximate association marginals
in a multihypothesis tracker based on LBP and a novel
factor graph representation of the multihypothesis association
hypothesis posterior. The methods are tested on a simulated
dataset and compared with a best-case comparison that does
hypothesis-conditioned LBP in the same manner as PHD-
LBP, but with exact hypothesis-conditioned likelihood. The
results show that both MH-LBP and PHD-LBP perform well
in most cases. The largest differences between was attributed
to the Poisson approximation of the hypothesis-conditioned
likelihood. Inspecting the performance of the best-case
hypothesis-conditioned LBP shows promise in computing the
association marginals by hypothesis-conditioned LBP given
an accurate estimate of the corresponding likelihood can be
found.
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