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Abstract

In this report we have thoroughly examined stress and welfare in salmon, how
it relates to breathing, and how ventilation can be inferred by computer vision
methods. The validity of ventilation frequency as a stress metric has been
demonstrated by the construction of a pipeline capable of coarsely discerning
shoals exposed to different levels of Dissolved Oxygen (DO) from video streams.
To construct and evaluate the algorithm, an experiment was performed in which
salmon was recorded at different temperatures and oxygen levels.

Preface

This document is a preparatory work for my master thesis at the Engineer-
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and Annette Stahl from NTNU. Fish experiments were done together with the
Norwegian Institute for Water Research (NIVA) and the Norwegian University
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Notation

1. Salmon refers to atlantic salmon (Salmo salar).

2. We will follow the convention of calling neural networks with single image
inputs 2D, even if the images have multiple color channels. The term 3D
will be reserved for networks with multiple different images in the same
tensor.

8



Chapter 1

Introduction

Aquaculture is the fastest growing food animal sector in the world[2], with Nor-
way establishing itself as a major player in the field. Due to the high feed con-
version ratio, low CO2 footprint and large stock densities, salmon farming has
been praised as the solution to the food requirements of a growing population[3].
Like all success stories, however, the industry is not without its problems. Lice
infestation[4], escaping fish[5], sick fish[6], fish mortality[7], retarded growth[8]
and pollution[9] are some of the issues researchers and farmers are faced with,
causing economic losses and reduced salmon welfare.

To effectively combat these problems, the underlying causes of the adversary
effects must be elucidated. It is firmly established that stress has some role in
this discussion[10], causing both acute and chronic changes in the physiology of
the fish. These stress responses can be examined by chemical screening of blood
and organs, external observation by humans, or even analysis of the environment
of the fish[11]. All of these methods have their downsides ([12], chapter 11),
which motivates a new, automatic framework for stress evaluation in fish.

Among the possible candidates, computer vision is standing out as a cheap
and effective way of performing this automation. It has been successfully applied
to a number of related tasks, such as measuring feeding activity in salmon[13],
analysing hypoxia response in goldfish[14], measuring salmon welfare from be-
haviour indicators[15], counting fish[16], estimation of fish size, quality assess-
ment and species identification. All of the projects related to welfare and stress
used behaviour indicators like speed, direction and location as features. By
doing so, they are neglecting an easily discernible and possibly important pa-
rameter; respiration. The aim of this project is therefore to investigate how
respiration relates to stress and welfare in fish, how this can be elucidated by
computer vision methods, and to perform a proof of concept that displays a
pipeline capable of automatic welfare assessment by computer vision based res-
piration analysis.

The report will start with a survey of related works, in which the first part
covers fish physiology. This will handle teleost ventilation, stress, as it relates
to endocrines, homeostasis and chronic responses, and finally evaluation and
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quantification of fish stress and welfare. The emphasis will be on salmon and
respiration due to our problem statement, although a more general scope is
required occasionally to understand the broader context.

The second part of the literature review will cover computer vision methods
for respiration analysis. The main focus will be on deep learning, together with
methods that accommodate and support such a pipeline.

After looking into previous work, an end-to-end breathing frequency pipeline
is developed. The workings of this will be presented, starting with theoretical
background, before covering the practical implementation. Thereafter, a salmon
respiration experiment is described, in which fish are subjected to different levels
of DO and temperature. The data gathered from this experiment is used to
develop and assess the ventilation frequency algorithm.

The report will end with a discussion of the main findings of the project,
and an outline for subsequent work that will be performed in my master thesis.
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Chapter 2

Literature survey

2.1 Survey methodology

This literature survey is split into two, where the first part covers ventilation,
stress and welfare mechanisms in fish, and the second part covers computer
vision methods that can be used for respiration estimation. Both inquiries
start with material directly related to the problem statement, and auxiliary
literature is gathered to expand on interesting findings discovered during the
survey. For the biological examination, the main keywords used during searches
were salmon, aquaculture, stress, catecholamines, cortisol, welfare and ventila-
tion/respiration/breathing. The technological part was organized a bit differ-
ently, as I already had knowledge of interesting neural networks and traditional
methods. Due to this, literature was mainly used to expand and correct loose
initial ideas. The primary search engines used during the survey were google,
google scholar[17] and Science Direct[18].

2.2 Fish ventilation

Teleosts absorb oxygen for metabolism by gas exchange between erythrocytes
and water in lamellae attached to the gill arch[19]. Two modes of breathing
have been observed; buccal pumping and ram-ventilation[20]. In the former, the
operculum closes and the mandible is lowered to draw water into the mouth,
followed by closing of the jaws and opening of the operculum to thrust water
out over the gills[21]. In the latter, high water velocity drives water over the
gills without energy expenditure of the opercular and buccal pumps.

Buccal pumping is effectuated by muscles in the jaw, operculum and gills,
driven by the Vth, VIIth and IXth/Xth cranial nerves, respectively[22]. Their
nuclei are located in the medulla oblangata, where they are interacting with the
reticular formation. This loosely defined network contains pacemaker cells that
generate the respiratory rythm of the fish. The medulla alone is capable of sus-
taining ventilation, however the midbrain synapse with both the reticular forma-
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tion and the cranial nerves, and is through this capable of altering respiration.
In addition to efferent pathways, the cranial nerves posses afferent branches,
projecting to different locations in the brainstem. The sensory pathways are
receiving stimuli from mechanoreceptors and chemoreceptors, modulating the
breathing to adapt to the millieux.

The main modulatory sensory input for fish ventilation stems from oxy-
gen chemoreceptors[23]. As the O2 balance of the fish gets disturbed, these
organs transmit afferent signals to higher brain centers, causing altered ventila-
tion frequency and amplitude[24]. It seems different population of receptors are
responsible for different ventilation responses[25]. Modulation of breathing fre-
quency is mainly caused by branchial receptors, with orientation both towards
the water, and towards the blood. The ventilation amplitude, however, is also
altered by chemoreceptors that are located at extrabranchial sites, such as the
orobranchial cavity. These receptors are usually oriented externally.

In later years, it has also been found that CO2 sensitive chemoreceptors are
active in modulation of the respiration of fish[24]. Milsom found in his review
that these were exclusively located at the gill arches, facing externally[25]. Some
studies have found resiratory response to internal stimuli with stable arterial
O2 levels, such as Wood, which discovered carbonic anhydrase injected in fish
attenuates post-excercise hyperventilation with stable O2 levels[26]. This is
likely caused by PH sensitive structures close to the fish arteries.

Looking specifically into salmon, the chemoreceptive sensors linked to hy-
percarbia is primarily responding to CO2 concentration, as opposed to H+[27].
CO2 causes a significant increase in both ventilation frequency and amplitude,
while H+ only results in a minor amplitude increase. Furthermore, O2 chemore-
ceptors in coho salmon are only located in the first gill arch, and innervated by
the IX cranial nerve[28].

Putting this together, salmon regulate their ventilation by a complex in-
terplay of neural processes, receiving information about about oxygen and CO2

levels external and internal to the salmon from the ascending tract. The breath-
ing frequency this network gives rise to depends on stressors, environment and
size, as shown in the summary presented in table 2.1. Most salmon seem to
fall in the ventilation range [1, 2.5] Hz, with 1 Hz being the resting respiratory
frequency.

2.3 Stress in fish

Fish, like humans, get stressed when subjected to real or perceived stressors.
A common definition of ”stress” has been the nonspecific response of the body
to any demand made upon it[34], however this might be a too narrow descrip-
tion. As we shall see, stressors like high temperature and hypoxia elicit differ-
ent physiological responses in fish. Even with some ambiguity of what stress
is, researchers are largely agreeing on the main endocrine stress pathways, the
Hypothalamic-Sympathetic-Chromaffin cell (HSC) axis and the Hypothalamic-
Pituitary-Interrenal (HPI) axis. The cascade of mechanisms following the acti-
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Author Weight (g) resp. freq. (num/min) Stressor

Hosfeld[29] 29.2 73 control
Hosfeld[29] 29.2 65 125% DO
Hosfeld[29] 29.2 57 145% DO
Hosfeld[29] 29.2 53 178% DO
Knoph[30] 430 56 control
Knoph[30] 430 61 30 mg/l ammonia
Knoph[30] 430 60 56.2 mg/l ammonia
Millidine[31] 1.8-12.6 61-140 Diverse
Erikson[32] 1641g 161 Commercial transport
Erikson[32] 1641g 137 Open transport
Erikson[32] 1641g 153 Closed transport
Erikson[33] 4410g 55 and 64 Control
Erikson[33] 4410g 80 and 81 Crowding

Table 2.1: Overview over salmon ventilation frequency

vation of these is highly diverse, and conflicting findings are not uncommon. In
the following we will review the most important stress mechanisms in fish by
looking into the three main layers of physiological responses[35].

2.3.1 Primary responses

The primary responses describe the endocrine changes that occur in the fish
immediately after being exposed to a stressor. The main agents are catheco-
lamines and corticosteroids, which are effectuated by the HSC axis and the HPI
axis, respectively[10].

Cathecolamines, of which ephinephrine and norephinephrine are the main
actors, are controlled by direct action of the hypothalamus on the chromaf-
fin cells of the head kidneys by the sympathetic branch of the autonomous
nervous system[10]. The chromaffin cells and head kidneys are homologues to
the adrenal medulla and adrenal gland, respectively[36]. When stimulated, the
chromaffin cells release cathecolamines into circulation. Catecholamines can also
be excreted from chromaffin cells in direct response to reduced oxygen levels,
without being stimulated by the hypothalamus[37].

The HPI axis works a bit differently, as it involves hormonal control[10]. It
is initiated by the release of Corticotropin Releasing Hormone (CRH) by the
hypothalamus, causing the anterior pituitary to secrete AdrenoCorticoTropic
Hormone (ACTH). This in turn causes interrenal cells, which is homologous to
the adrenal cortex, to synthesize and release cortisol. Beyond the main pathway
described here, several other endocrines have been shown to support, inhibit or
replace CRH and ATCH in the cortisol pathway of fish.

Some fish circumvent these main endocrine axes, and rely on sympathetic
nerve activity as a response to stress instead[38]. Salmon is not in this group,
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so we will not pursue this peculiarity further.

2.3.2 Secondary responses

The secondary responses are the direct effects of released endocrines on physio-
logical systems in the fish, such as the cardiovascular system, the defense system
and the respiratory system, as well as changes in metabolism and hydromineral
balance[35].

Cardiovascular response

Starting with the cardiovascular system, stress has a pronounced modulatory ef-
fect on the heart, however the response depends on the stressor. Aerobic exercise
in lingcod[39] and temperature increase in rainbow trout[40] cause tachycardia,
while bradycardia emerge from hypoxia[19] and burst swimming in lingcod[39].
The heart rate of teleosts are mainly controlled by cholinergic and adrenergic
neural pathways ([12], chapter 7), so the observed frequency modulations are ef-
fectuated through the nervous system. Other cardiovascular effects are instead
caused by direct endocrine actions. Both catecholamines[41] and cortisol[42]
increase cardiac contractility in rainbow trout, and catacholamines induce vaso-
constriction in the systemic circuit, and vasodilation in the branchial capillar-
ies[10] of fish. The dilation and constriction synergy cause higher gill perfusion
rate, increasing oxygenation of the blood. Furthermore, adrenaline has been
shown to increase the permeability of gill epithelium[43], boosting gas exchange
additionally. In salmon, CO2 has been shown to elevate heart rate and systemic
resistance[27].

Catecholamines also increase the blood transport capacity in fish. This is
caused by β-adrenergic receptors that boost the Na+/H+ exchange of erythro-
cytes, moving charge from the extracellular to the intracellular fluid. This blood
acidosis increases the hemoglobin saturation, boosting plasma oxygen[44]. The
blood is further oxygenized by a raise of hematocrit by catecholamines acting
on the spleen[10]. Salmon shows a particularly strong increase in hemoglobin
saturation due to its large amount of β receptors on the blood cells.

Metabolism

With regards to metabolism, catecholamines are the primary actors. They cause
elevated glycogenolysis, slightly elevated gluconeogenesis, and might cause an
increase of free fatty acids[10]. Cortisol has some glycemic effects, although less
prominent than the ones of catecholamines. It seems to promote gluconeogenesis
in particular, as well as contributing to some extent in lipolysis. The result of
these metabolic actions is hyperglycaemia of the fish.

Ventilatory response

The relationship between stress, hormones and ventilation in fish is contro-
versial[10]. Aota[45] found evidence for a positive correlation between cat-
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echolamines and ventilation response under acidotic and hypoxic conditions,
while Kinkhead[46] measured a depression of ventilation frequency during cat-
echolamine administration. Randall[47] also strongly advocated for a cate-
cholamine mediated ventilatory increase in response to stress. Both Aota and
Randall note that the ventilation increase is suppressed by propanolol injection,
which is a known β-adrenergic antagonist. This strengthens the hypothesis of
a positive correlation between catecholamines and breathing. Furthermore, the
higher metabolic rate during stress necessitates oxygen, hence an increase in
respiration seems obvious[47]. Catecholamines seem to have an effect also in
the case of severe hypoxia, where feeding muscles are recruited in an attempt
to stave off further oxygen deficit[22].

Hydromineral balance

As previously seen, catecholamines cause increased diffusion through the gills,
disturbing the delicate hydromineral equilibrium of teleosts. Cortisol seems to
have some effect on this balance, but the picture is unclear. Langhorne found
no stimulatory effect of cortisol on sodium-potassium ATPase activity[48], while
Gallis found both cortisol dependency and cortisol independence of ATPase in
mullets acclimating to water with different osmolarity[49]. Laurent looked into
the chloride cells, and found that they proliferate when stimulated with corti-
sol[50]. The chloride cells are responsible for osmolarity regulation in salt water
fish, and can adapt quickly in the event of change in the ion concentration[51].

2.3.3 Tertiary responses

This kind of responses are the main reason farmers are concerned about stress
in fish. They describe how the organism is affected by stress, causing reduced
growth, weaker defense system, accelerated ageing, and reproduction problems,
culminating in reduced revenue of the farm.

Growth

Fish subjected to stress shows several growth-inhibiting responses. Nutrient
assimilation is reduced by actions on the appetite and gut. This has been
demonstrated on salmon, which showed reduced appetite and growth rate after
handling stress[52], and gut damage and reduction of gut microflora after being
stressed for 15 minutes[53].

As both catecholamines and cortisol promote metabolism and hypergly-
caemia, they necessarily remove energy available for investment activities ([12],
chapter 5). Cortisol seems to be the most important growth inhibiting factor,
both promoting proteolysis[54] and reducing myogenesis[55].

There are some conflicting findings with regards to the relationship between
cortisol, stress and growth. Mckormick found a reduction in plasma cortisol
after chronic stress in salmon[52], which suggests lowered basal plasma cortisol
when exposed to stressful environments. Pickering[56] similarly found that after
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40 days, plasma cortisol levels was not elevated in brown trouts exposed to han-
dling stress. He still measured reduced growth, leading him to hypothesize that
growth rate is inhibited by stress, but that cortisol only plays a minor role. Bar-
ton, however, got an opposite result of Pickering in an experiment with rainbow
trout, where he found growth inhibition in fish fed cortisol, but not in stressed
fish[57]. Fast[58] similarly found no growth modulation in stressed salmon. In
addition he measured, similary to Mckormick, that acute stress raised plasma
cortisol, while chronic stress had no effect on cortisol levels. Mckormick sug-
gests the differences observed to be due to species differences, as well as level
of domestication[52]. This raises the question of whether different fish strains,
even in the same subfamily (Salmoninae) or species (salmon), might have fun-
damentally different stress responses.

Immune response

There are a plethora of research aiming at investigating the immune response
of fish as it relates to stress ([12], chapter 10), here it will suffice to give a
brief overview. Both immune enhancing and immune suppressive effects have
been observed from stress, with the acute responses tending towards increased
immunocompetence, while the chronic effects are immunodepressive. Looking
at the complete picture, the depressive effects far outweigh the enhancing ones.

This is coherent with the findings in salmon. After acute stress, salmon
shows enhanced expression of inflammatory genes, while chronic stress leads
to decreased stimulation and survival of leukocytes[58]. Furthermore, cortisol
seems to prevent skin growth[59].

Accelerated ageing

Also accelerated aging has been observed in teleosts as a stress response. Cor-
tisol is the main agent, having been shown to promote apoptosis in pavement
and mucous cells of rainbow trout[60], as well as pavement and chloride cells in
Mozambique Tilapia[61].

Reproduction system

Lastly, we mention the reproductive system. Stress affects all its levels, with
a clear detrimental effect ([12], chapter 8). In salmon, elevated maternal corti-
sol levels lead to increased mortality, reduced size and increased morphological
malfunction in offsprings[62].

2.4 Stress evaluation

As demonstrated above, stress can have a large impact on fish, both chronic and
acute. To properly research and draw inference on this property, some method
of stress observation and quantification is necessary. In general, any primary,
secondary or tertiary response could be used as a stress indicator, however
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some are more or less suited. Main considerations are ease of analysis, id est
how easy it is to acquire a sample that can be used for stress quantification,
and specificity and robustness of indicator, that is how much the indicator is
responding to non-stress phenomena, and how well it is correlating with stress
phenomena ([12], chapter 11). Referring to our previous discussion, cortisol
and catecholamines are the most precise stress metrics. They are considered
primary responses, and the initiator of later modulation of physiological sys-
tems. As we shall see, however, in some situations the evaluation of secondary
responses is preferred, due to easier data access. Tertiary responses are valuable
for evaluating chronic stress, however they are too slow to provide information
during short-term homeostatic imbalances. In this section, the focus will be on
describing the gold standards for stress evaluation, and comparing this to the
use of ventilatory response as an indicator instead.

2.4.1 Catecholamines

Catecholamine concentration in blood plasma is intimately linked to stress, hav-
ing a quick response after stressor exposure ([12], chapter 11). This quick re-
sponse, however, makes it difficult to use as a stress indicator, since capture and
handling prior to blood sampling have a great effect on measured levels. Fur-
thermore, the measurement of catecholamines requires specialized equipment,
in fact researchers were not able to quantify resting catecholamine levels in fish
until 40 years ago[63].

2.4.2 Cortisol

Cortisol is better fit as a stress metric than catecholamines, due to its slower
response and easier means of analysis. Cortisol can even be measured in wa-
ter round the fish[11]. Furthermore, a correlation between crowding stress and
blood cortisol has been firmly established[64] [65] [11] [66], although, as previ-
ously seen, some accommodation effect might occur after long term exposure.
There are some evidence that cortisol can predict chronic stress as well as acute
stress, however the relationship is not clear[67].

2.4.3 Respiration

Stress alters the ventilation of fish, although the exact mechanisms are de-
bated. The use of ventilation as a stress indicator is equally controversial. The
quick modulatory effects on both respiration frequency and amplitude to several
stressors seem certain, although significant species differences exist[25]. Barreto
argues against ventilation frequency as a stress metric, as he found the respira-
tion response to be insensitive to stress intensity[68]. The same goes for Holden,
which noted that both temperature and feeding has a pronounced effect on ven-
tilation[65]. On the other side, Erikson found that ventilation rate and cortisol
was the only two metrics clearly able to differentiate between stressed and calm
salmon, finding indicators such as behaviour, lactate, PH, and onset of rigor
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mortis to be less indicative[33]. Also Kammerer[69] claimed increased ventila-
tion frequency as a response to salinity stress when studying tilapia.

One of the great advantages of ventilation rate for stress evaluation is that
it is very simple to measure. With a camera and a stop watch, opercular os-
cillations, which accurately match ventilation frequency, can be counted and
analysed[70]. It is also possible to measure the frequency of premaxilla-kype
closure, however this behaviour can also happen during feeding. Other ways
of measuring ventilation have been developed as well. One interesting method
is to take advantage of the great conductivity of water to measure bioelectri-
cal signals from the opercular and buccal muscles on electrodes external to the
fish[71]. This requires appropriate placement of electrodes, and the signal is
influenced by noise from locomotive muscles, so the method is most relevant in
experimental settings. Another way to measure ventilation rate is to insert an
embedded system transmitting ultrasound signals dependent on the activity of
adductor mandibula into the fish. A receiver can then pick up these signals, and
later processing can refine the information. This method provide signals accu-
rate enough to distinguish feeding and ventilation behaviour, but is expensive
and time consuming to set up[72].

An additional strength of respiration frequency as a stress metric is that it
might say something about the type of stressor the fish is exposed to[73].

Some downsides to this approach also needs to be addressed. Firstly, only
if the fish is purely breathing by buccal pumping can ventilation frequency be
applied as a stress indicator, as ram ventilation leads to constant opercular
and jaw gape. Secondly, both amplitude and frequency of respiration is altered
during stress, and it seems different stressors trigger one or the other to different
degrees[25]. Hence, breathing frequency alone is not sufficient to unambiguously
determine stress.

2.5 Fish welfare

Welfare in fish is perhaps more of a philosophical than scientific question. In
humans, we generally consider welfare as the state of doing well especially in
respect to good fortune, happiness, well-being, or prosperity [74], but this is not
directly applicable to fish. Traditionally, three different definitions of fish welfare
have been proposed; feelings-based, function-based and comparison with natural
lives ([12], chapter 12). Feelings-based welfare evaluation looks at the subjective
experience of the fish, function-based welfare evaluation looks at the extent
to which the animal is coping with its environment, while the last method
is evaluating in what manner the fish is exhibiting behaviour similar to that
of a wild fish. Some work has been done in moving from these rather vague
definitions to more tangible, quantitative analysis. The Salmon Welfare Index
Model (SWIM) index is one such approach, where several indicators of welfare
in fish farms, such as temperature, salinity, mortality and condition factor, are
evaluated and summed to acquire a single welfare score[7][8].

If we compare the indicators of the SWIM model with the secondary and
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tertiary responses covered in this study, it is clear that stress and welfare of fish
is intimately linked. Some welfare indicators are directly affected by chronic
stress response, such as growth, reproduction and appetite. In the rest of the
indicators, the causal direction is turned, and reduced welfare indexes cause
stress. This is the case for temperature, stocking density and disturbances.

One important aspect of welfare not addressed in the SWIM index deserves
some attention. When fish are subjected to reduced well-being, it alters be-
haviour. In salmon, fixed feeding and underfeeding cause aggression, hyperoxia
reduce swimming speed, parasites reduce max swimming speed, cage submer-
gence increase swimming speed, environmental gradients cause changed space
use, and scheduled feeding cause higher swimming speeds[75]. As we have seen,
cortisol is linked to both feeding behaviour and oxygen requirements, hence these
responses might be a tertiary stress response. In african cichlid fish, dominant
males tend to defend their territories, while subordinates tend to respond to
intruders by directing their aggression at subordinate males[76]. A correlation
is observed between cortisol levels and hierarchical position, suggesting a stress
mediated pathway in displacement aggression. These behaviour indicators have
been used for welfare analysis in earlier computer vision based works[15].

considering the findings in this section, we establish that stress and welfare
are equal for our purposes. To be more specific, a stressed salmon, at least if this
stress is chronic, has poor welfare, while a salmon with low welfare is frequently
stressed. Due to this, we will focus on stress in the rest of this report, as this
property is more tangible and has a stronger link to physiological effects than
welfare.

2.6 Computer vision methods

Having explored stress, welfare and respiration in fish, we will now explore how
computer vision methods can aid in elucidating these traits.

2.6.1 Problem statement

Human visual system

The human vision system is extraordinary. It is able to classify animal pic-
tures within a few hundred of milliseconds[77] and identify tens of thousands
of different objects and scenes[78]. This is done by photoreceptive cells in our
retina firing electrical pulse trains towards the occipital lobe in the telencephalon
based on reflected light in the surrounding scene[79]. From there, a complex set
of scene understanding processes are initiated, recruiting up to 30 percent of
the cortex[80] to segment and classify the millieux, estimate motion of self and
others, and interpret the environment.
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Cameras

The way computers see are not very different from that of a human. In the
most common type of cameras, reflected light hits a lens, is steered through
an aperture, before it hits color-sensitive photodiodes. When a shutter, placed
behind the aperture, is closed, the intensity values of the photodiodes are read by
an Analog to Digital (A/D) converter, and a tensor of integer values is passed on
for further processing ([81], chapter 2). This is analogous to what the eye does
in a human. One issue with this kind of camera, is that information between
frames is lost. This is fixed in the event camera, where each pixel acts as an
integrator that fires when a certain amount of intensity is reached. This allows
for continuous time registration, however the spatial resolution is reduced, and
usually they only provide gray-scale pictures[82].

Viable end features

As motivated in the previous section, we wish to find some sort of indicator
of stress in salmon. Since informative features manifest themselves externally,
and can be evaluated by human perception, computer vision algorithms should
be able to use tensors received from cameras to infer on salmon welfare. It is
mainly two avenues to explore in this regard; behaviour, consisting of swimming
speed, location, aggression and directional change, and respiration, consisting of
frequency and magnitude of opercular and jaw movement. To limit the scope of
this review, we will focus on the ventilation frequency. This has, to the authors
knowledge, not yet been explored through computer vision, even tough it is
quantifiable, provides important information on the physiological state of the
fish, and has technical advantages over other approaches.

Motivation for respiration frequency as end feature

The main advantage of respiration frequency as a stress metric, is that no 3
dimensional reconstruction is necessary. A video of salmon has clearly distin-
guishable maximum and minimum jaw gape, which a proper algorithm can ex-
ploit to find breathing frequency. Most behaviour metrics, like swimming speed
and location, on the other hand, requires 3 dimensional scene understanding.
This can be constructed, but require resource intensive video prepossessing.

Another advantage of using respiration frequency is that for low salmon ve-
locities, ventilation rate is always present, easily detectable and has a rather
short time constant. Behaviour indicators, like aggression, only happens spo-
radically, require biological expertise to distinguish, and is more dependent on
historical information. Some behaviour indicators have even longer time con-
stants, like scale loss and fin damage.

Lastly, behaviour indicators are often a result of chronic stress, while venti-
lation frequency can effectively capture acute stress. This is useful for farmers,
which can respond quickly to stressful events.

Even with these advantages, the salmon environment pose several challenges
for any computer vision algorithm. Salmon lives under water, individuals look
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similar to the human eye, they swim fast, they deform and they live in large
shoals.

Problem type

We have already specified the input to the computer vision pipeline as a stream
of tensors, and the end feature as respiration frequency. The problem of esti-
mating ventilation frequencies, altough, can be posed in a couple of ways. If
we track individual fish, we can frame the problem as a classification problem,
putting each fish in a frequency range, or as a regression problem, estimating a
numeric respiration rate. It is also possible to look at the whole shoal together,
and estimate a common respiration. With this approach, we loose some infor-
mation about hierarchies and individual differences, however the algorithm is
more robust to fish swimming out of the camera frame, and inaccuracies. In
the next section we will look into algorithms and State Of The Art (SOTA)
methods for generating these input-output maps.

2.6.2 Algorithm proposals

Computer vision can be broadly separated into two categories, traditional ap-
proaches and deep learning[83]. In the former, we are transforming the input
in a known and specific way to acquire a small set of features, before using a
shallow function approximator to generate the output. Deep learning, on the
other hand, exploits the descriptive power of deep neural networks to let a single
large function approximator estimate outputs from raw inputs.

A trend in later years is the increased use of deep learning in the com-
puter vision pipeline. The reason is that deep learning, under assumptions of a
large dataset and high computing power, performs better than traditional ap-
proaches[84], do not require feature engineering, and is able to learn some form
of optimal map between input and output. Even with all these strengths, tradi-
tional methods are still used for some tasks. Deep networks tend to overfit the
training data and produce black box functions that are impossible for a human
to understand [83], while traditional methods are more interpretable, easier to
construct in a way that avoids overfitting. and require less data. Further, pitch-
ing these two methods against each other is partly a false dichotomy, as modern
pipelines often use traditional methods to highlight certain features or perform
data augmentation, before a deep learning system generates an input-output
map. Further, traditional approaches are often employed on the output of the
networks, to further improve and specialize the estimates.

Feature extraction and preprocessing

As traditional methods tend to aid deep learning ones, we will start our discus-
sion with some feature extraction methods. Digital images today, like the ones
taken from a cellular phone, are often composed of several million pixels[85].
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When we are trying to separate ten respiration classes, there are a lot of irrele-
vant information contained in these pixels. By manually selecting features from
the images, we can remove irrelevant information, while enhancing the effects
of relevant information. This enables a smaller and more precise subsequent
network.

One way to reduce the complexity of the image tensor, is to create masks, so
each pixel is either on or off. By masking the operculum or the jaws of salmon,
the subsequent classification or regression is easier, as irrelevant color nuances
are removed. A popular masking operator is the canny edge detector[86], ef-
ficiently registering the edges of objects. If a simple binary mask looses too
much information, the Histogram of Oriented Gradients (HOG) descriptor can
be used, which is a soft edge detector[87]. It computes the weighted sum of
gradient directions in windows in the picture, in order to describe intensity
changes.

The issue with both of these descriptors, is that they are providing infor-
mation frame by frame, while our problem is aiming at inference about frame
changes. Optical flow is addressing this, where it tracks the changes of each
pixel between frames. A popular method was developed in 1981, assuming local
constant flow [88]. This breaks down for the case of salmon recording, were both
swimming and breathing are happening simultaneously. Bergen[89] suggested a
solution to this, by assuming two coherent motion patterns in a local area.

A method tightly linked with optical flow, tracking of region of interest,
has been applied in human ventilation estimation[90]. A window on the chest
were registered at each frame, and the vertical movement of this corresponded
to ventilation. This method is transferable to salmon, id est by tracking the
upper and lower jaw as a region of interest. The complexity of this task, how-
ever, is greatly increased when moving from humans to salmon, because of the
movements and deformations of the latter.

The regions with large optical flow are the most interesting areas for respira-
tion analysis, so enhancing these areas in the image before using deep learning
would boost our task performance. One way to do this is to warp the image
grid to magnify locations with useful information, like Recasens did in his work
on saliency based resampling to solve a gaze following problem[91]. One poten-
tially downside with this approach is inconsistent warping, which would cause
difficulty when comparing frames.

Precision livestock farming research has also suggested some ways to ex-
tract vital parameter features. In cows, infrared cameras were used to assess
temperature changes around the nostrils to estimate ventilation rate, and Red
Green Blue (RGB) cameras were used to record color changes to predict car-
diovascular action[92]. As fish are cold-blooded with less transparent skin than
humans, these methods are not directly applicable to salmon, however related
opportunities exists. Lopez[93] discovered that colorimetric properties of water
change based on calcium content, hence stress mediated hydromineral distur-
bances might be observable by color cameras.
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2 Dimensional (2D) Neural networks

After an acceptable feature set has been created, a map between input fea-
tures and output values must be constructed. One possibility is to use shallow
machine learning methods. Popular frameworks are support vector machines,
able to handle classification, regression and nonlinear boundaries in the feature
space ([94], chapter 5), decision trees for regression or classification, and shal-
low neural networks. Although these algorithms have proven effective for certain
computer vision tasks[95], the general trend is that deep neural networks have
better accuracy and robustness[96], especially when using pretrained weights.
With only two simple building blocks, fully connected layers and convolutional
layers, they are able to learn state of the art automated medical image segmen-
tation[97], visual recognition/object classification[98] and object detection[99].
Convolutional neural networks are also able to learn object detection together
with keypoint classification[100]. This can be used to estimate mouth gape of
individual salmon, frame by frame, which could discern breathing frequency
with appropriate post processing.

To further increase the descriptive power of neural networks, a temporal
dimension can be incorporated. A naive approach is to make a connection
backwards in the network, so the next data batch travelling through the network
is summed together with the previous state ([94], chapter 15). This type of
network, called recurrent neural network, forgets fast, which is problematic for
a network that should remember the last respiration cycle of the salmon, up to
100 frames ago, depending on frame rate and respiration.

To improve on this, a more sophisticated Long Short-Term Memory (LSTM)
cell has been proposed[101]. This introduces a forget mechanism, so that both
short term and long term memory can be achieved. Later, this has been refined
for use in image applications[102], and employed in an event-camera object
detection algorithm by Perot[82]. He estimates bounding boxes by considering
historical data, and one could imagine this network being expanded to include
frequency estimation heads linked to these bounding boxes.

When estimating mouth gape of fish far away from the camera, the lengths
become small. One proposed solution to enhance detection of small objects in
neural networks is to include global context by frequency domain convolution,
as well as using skip connections to avoid loosing detailed features in long sig-
nal paths[103]. Global information will likely be of little use in detecting jaw
keypoints, however skip connections are worth considering. Other work have
focused on magnifying subpixel motions by tracking color gradients[104], also
in the presence of background motion[105]. This was accomplished by a tradi-
tional computer vision pipeline, but later work improved on the results by deep
learning[106]. It is unlikely that jaw motion is on sub-pixel scale, and due to
deformation and translation of salmon, comparing pixels in different frames are
difficult. Hence, this method does not seem useful for the problem discussed
here.
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3 Dimensional (3D) neural networks

The task of estimating respiration frequency can be framed as an action clas-
sification task, in which one action consists of breathing with one frequency.
Carreira[107] presented five different architectures for action recognition, Long
Short-Term Memory (LSTM), like reviewed above, 3D-ConvNet, Two-stream,
3D-Fused Two-Stream and Two-Stream 3D-ConvNet. The last four incorpo-
rates temporal information by stacking frames into a 3D tensor, and they differ
among each other by how they incorporate optical flow into their framework.

The extension of neural networks into 3 dimensions cause a large increase
in tunable parameters, and consequently resource requirements. Carreira uses
32 to 64 parallel Graphics Processing Units (GPUs) for training, and a dataset
of over 160000 videos. This is with reasonable sized data dimensions, up to
images of size 224x224 pixels and a temporal history of 64 frames. Comparing
this to our salmon dataset, which would need around 100 frames to guarantee
capturing a respiration cycle, together with images of dimension 1920x1080
pixels, the resource requirements become prohibitively large. By decreasing
image resolution, performing random cropping and sub sampling frames, this
approach could still be feasible.

There are two ways a 3 dimensional neural network could be labelled for
estimating frequency. One possibility is to crop a 2 second snippet from the
salmon video stream, count the respiration of the fish, and use the average of this
as a frequency label. The other possibility is to label each frame with bounding
boxes, and then learn both fish object detection and fish-specific respiration
frequency. The former would be very easy to annotate, but only extract part
of the possible information in the video. The other option would be more
informative, but very time consuming to label. A large amount of actions, at
least 50, would need to be labelled, with 100 frames in each action, and around
5 bounding boxes in each frame. This accounts to 25’000 bounding boxes, and
due to the time dependency of the network, artificial inflation of data is not
trivial.

Options exists to limit the amount of parameters and resource requirements
of 3 dimensional neural networks. One approach is to change the token mixer
module[108], which Kumawat[109] did with great success. He applied a set of
fixed Fourier transforms on proximal time and space pixel in order to extract
local frequency information. This is of particular interest for analysing respira-
tion, as the computed features will be tightly related to frequency.

Fish tracking

If a non-temporal network is used, it is necessary with some sort of tracking
method to match individual fish in different frames. The easiest way to do this
is to find the Intersection over Union (IoU) of bounding boxes in two consecutive
frames, and accept two detections as the same fish if this metric is above a certain
threshold. Other more advanced assigning algorithms could be employed, such
as the Hungarian method[110].
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The main issue with this simplistic method, is that a fish not registered
for one frame is assumed lost. A solution to this would be to use a Kalman
filter[111], and reiterate prediction steps until a new detection is registered inside
the probability distribution of the filter representation of the fish location. This
would require a model of the swimming behaviour of the fish, which could
be as easy as assuming some coherence of swimming direction and velocity,
or something more advanced, like what was developed in Føres fish modelling
experiments[112][113][114].

Another way to track the fish is to use instance recognition. This has been
popularized as a human identification tool[115], and would allow us to recognize
individual fish independently of their time outside the camera frame. The use
of deep learning object recognition for salmon identification has been done with
impressive accuracy by Cisar, where the salmon dot structure were leveraged to
recognize individual fish both short term and long term[116].

Instance recognition is usually performed in four steps; instance detection,
instance alignment, feature extraction and classification[117]. Mask RCNN[100],
which has already been established as useful in breathing frequency estimation,
can be modified to accommodate for this. If we introduce a new bounding
box and class head, and let each fish be a separate class, the model can learn
to differentiate fish based on the features in the identified bounding box. To
do this, a database of individual fish data must be available during training,
which pose a difficulty. It requires building a database of all fish that is to be
identified, which reduces generalizability and increase annotation workload. If
the network is to be used during farming operations, building such a database
becomes infeasible.

Adapting the network to new fish populations can be done with few training
instances. By using methods such as Model Agnostic Meta Learning[118], which
specifically trains on quick adaption, or fine tuning with most parameters frozen,
only a couple of data points are necessary for each new class. This does not
remove the issue with very large populations, however, which motivates the use
of unsupervised re-identification.

It is possible to determine individuals without building a database first.
Normally this is done by learning a discriminative feature map, which can be
exploited for instance clustering at evaluation time. The discrimintative feature
maps can be trained by ordering the data into similar pairs, by manual an-
notation or data augmentation, and dissimilar pairs, before a contrastive[119]
network maximizes the separability between classes. A late approach is able
to generate a descriptive feature map without negative pairs, and without con-
vergence to the trivial solution[120]. The feature map inference can be done
by unsupervised clustering[121], or by calculating a distance metric to other
instances[122].

One intriguing possibility is to teach a network to generate a mask over the
dot structure on the salmon. This structure can then be parameterized to a
low dimensional space, and used to cluster salmon of the same instance. One
objection to this is that salmon has two sides with different dot structure, so
the fish will be classified differently depending on the direction it swims.
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Frequency estimation

By allowing a neural network to estimate mouth gape of individual salmon, and
use some method to track the fish, a one dimensional signal oscillating with
the respiration frequency of salmon should result. These signals will be noisy,
contain offset drift, and have varying amplitude and frequency, making the task
of estimating period non-trivial.

Two obvious candidates to extract oscillation periods are the Fourier trans-
form and the autocorrelation function. These transformations are specifically
designed for inference on frequency, and efficient algorithms have been designed
for calculating them[123]. The problem with these approaches, is that they are
vulnerable to noise. It is possible to set up a pipeline that remove outliers and
filter signals before passing them downstream, however this might disturb the
frequency content of the signals in undesirable and surprising ways.

Another solution is to fit a function, like a sinusoid, to the time series. This
is a flexible method capable of handling offset and amplitude dynamics. It is
sensitive to outliers, however outlier pruning beforehand will work well, as it is
possible to move, or remove, the outliers in a way that have very little effect on
the final estimate.

The final possibility is to use a random sample consensus (RANSAC) type of
algorithm. This algorithm handles outlier detection and function fitting simul-
taneous by sampling a subset of points, generating a model from the sampled
points, and finally evaluating the model fit by counting inliers[124]. The basic
algorithm does the initial sampling of points randomly[125], while later works
suggest picking points close together in the feature space[126], or points with
high quality[127]. Also the evaluation step of the algorithm has been proposed
improved, from an iteration over all points in the dataset for all proposed mod-
els, to more effective validations. One such method is the sequential probability
ratio test[128], which iteratively checks whether points are consistent with a
good model, enabling quick discarding of bad models.

A main assumption in RANSAC is that a model computed from outlier-
free samples is consistent with all inliers. This is not true, as inliers are also
contaminated with noise. A proposed solution is to refine the current best
RANSAC estimate by some sort of local optimization, like estimating a new
model by least square fitting, or performing nonminimal RANSAC iterations on
the estimated inliers[129].

Another critique of RANSAC is that it treats outliers and inliers with differ-
ent, but constant, penalty. A proposed solution is to let inliers receive a penalty
equal to the sum of squared errors, or to minimize the negative log likelihood of
the samples[130]. When detecting mouth gape outliers, a reasonable assump-
tion is that they are uniformly distributed over the bounding box. If this is the
case, errors will normally be large, and an inlier weighting is not necessary.

26



Chapter 3

Theoretical background

Having established possible methods for salmon respiration estimation, this sec-
tion will provide a detailed theoretical overview of algorithms and mathematics
relevant for the pipeline developed. It will start with an overview of layers and
training of neural networks, move on to a specific deep learning implementation,
and finally discuss methods for frequency estimation from time series.

3.1 Neural networks

3.1.1 Introduction

Deep neural networks draw inspiration from the way our cortex process visual
information from the retina. They use huge amounts of nodes (neurons) and
connections (synapses) to create a generalized function with impressive descrip-
tiveness. Up to 135 billion such parameters have been used in a single function
approximator[131]. These neurons are organized in layers, with the simplest one
being a fully connected layer. Such a module calculates a weighted sum of all
nodes in the previous layer, passed through a nonlinear function. If we let σ be
an elementwise nonlinear function, X be a row vector containing the inputs to
the layer, W being a square matrix containing the weights between all nodes, b
being a row bias vector and Y being the output of the layer, we can represent
a fully connected layer as shown in equation 3.1 ([94], chapter 10).

Y = σ(XW + b) (3.1)

3.1.2 Convolutional layers

Fully connected layers are not well suited for extracting features from images.
They can not learn spatial invariance, and connection between all pixels in an
image is excessive. Convolutional layers solve this issue by letting filters scan
previous layers for learned items, facilitating both detection and localization
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with a single weight set ([94], chapter 14). If the location of an object is irrel-
evant for the task, pooling layers can reduce complexity and leave the network
almost[132] invariant to spatial location. A common network structure is to
begin with convolutional and pooling layers to extract features, and then end
the network with some fully connected layers to combine all the local feature
information into a global output. To move from convolutional to fully connected
layers, a flattening of the feature tensor is necessary.

Keeping to the notation introduced above, an arbitrary layer X of a con-
volutional neural network will be a depthwise stack of feature maps. Let the
subscripts w, h and d describe width, height and depth of the input map, and
f and s describe receptive field and stride. The receptive field of a kernel is the
dimensions in the input layer X that is captured in one node in the output layer
Y, and the stride of a layer is the size of pixel shift between each filter computa-
tion. Then, equation 3.2 ([94], chapter 14) describes how a node in the output
layer is related to the previous feature tensor. Note that the dimensions are
extended compared to the fully connected layer representation, and no stride is
applied in the depth direction.

Yi,j,k = bk+

fh−1∑
u=0

fw−1∑
v=0

fd−1∑
z=0

Xi×sh+u,j×sw+v,z ×Wu,v,z,k

(3.2)

3.1.3 Pooling layers

Normally, pooling layers are used with more or less regularity between convo-
lutional layers. They map a cube in the feature tensor to a single value, often
by using the max operator. If a function p defines some pooling operation, one
element in the output of a pooling layer is defined in equation 3.3.

Yi,j,k = p(X[sh·i,sh·i+fh],[sw·i,sw·i+fw],[sd·i,sd·i+fd]) (3.3)

3.1.4 Training of neural networks

Having described the flow of data through different layers, it is now necessary to
elucidate on how the parameters are adjusted. The training is done by applying
the generalized delta rule (backpropagation)[133], which works in four steps:

1. Passing a feature vector through the network.

2. Compare the generated output vector to a manually annotated output
vector by some loss function.

3. Calculate the gradient of the loss function with regards to all weights.

4. Adjust all weights by some form of gradient descent.
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To understand the power of this method, note that the gradients in the lth
last layer can be decomposed. Assume we are in the middle of a fully connected
neural network, and we wish to adjust a weight wl

1,1 that goes from node 1 in
layer l−1 to node 1 in layer l. Let superscript describe layers, subscript describe
node connections, w describe weights, v describe node outputs and n describe
the size of hidden layer l+1. Then, the gradient of the loss with regards to node
wl

1,1 is given by equation 3.4. All gradients can be unwrapped based on deeper
nodes this way, until a full loss gradient is acquired.

∂L
∂wl

1,1

= (
∂L

∂vl+1
1

∂vl+1
1

∂vl1
+

∂L
∂vl+1

2

∂vl+1
2

∂vl1
+ ...

+
∂L

∂vl+1
n

∂vl+1
n

∂vl1
)
∂vl1
∂wl

1,1

(3.4)

Any gradient descent method can iteratively improve the function approxi-
mation after backpropagation has provided ∂L

∂W . A good option is a stochastic
version with momentum and weight decay, allowing batch training and ensuring
some robustness for local minima and noisy gradients ([94], chapter 11). Let b
with parameter µ be the momentum, g be the generalized gradient, λ be the
regularization parameter, γ be the learning rate and L the loss function. Then,
the gradient is calculated, and parameters updated, as displayed in algorithm
1[134].

Algorithm 1 Stochastic gradient descent

gt ← ∇WL(Wt−1) + λWt−1

bt ← µbt−1 + gt
gt ← bt
Wt ←Wt−1 − γgt

3.1.5 Keypoint Region-based CNN (RCNN)

Construction

The layers and training methods described above have been incorporated into a
SOTA network called keypoint RCNN, which is described in the original mask
RCNN paper[100]1. This network is based upon faster RCNN[136], which again
draws inspiration from fast RCNN[137]. To understand the former, therefore,
we must begin with the latter. Fast RCNN uses a pipeline with two components;
a Region Of Interest (ROI) extractor algorithm, and a neural network to predict
classes and bounding boxes of the ROIs. The neural network uses a conventional
Convolutional Neural Network (CNN) to extract a feature map of the input

1The explanations related to the mask RCNN construction is partly based on unpublished
work of the author[135].
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image, crops the feature map according to the ROIs, and then pool the feature
map to a fixed size. Then, the fixed-size feature maps are passed through fully
connected layers to estimate a softmax class vector and a per-class bounding
box. The ROIs are processed individually, each leading to a bounding box and
class probability for all classes.

The main problem with fast RCNN is the two-step procedure, where the
ROI algorithm and the classifier must be developed separately. This is fixed in
faster RCNN, where a common feature map is generated, a separate branch is
using these features to generate region proposals, and then the feature map and
ROIs are fed into the ROI pooling layer of the fast RCNN.

Now, the mask RCNN[100] comes along to add segmentation to the network.
To do this, it adds a third branch after the ROI pooling layer. This branch
uses several fully convolutional layers to generate a pixel mask for each object.
Further, when fast RCNN maps ROIs from the input image to the feature map,
it introduces quantization noise, greatly impairing segmentation performance.
Mask RCNN fixes this by using floating numbers and bipolar interpolation to
do the mapping, resulting in a proper alignment of the feature map.

Finally, keypoint prediction is achieved by introducing k number of on-hot
masks, each representing one keypoint. The final network is now a complete
end-to-end instance detection and keypoint net, capable of finding premaxilla,
dentary, eye and head area of the salmon.

Training

To train the network, a regular back propagation approach is employed, which
requires both manually annotated training data, and a loss function.

Keypoint RCNN is trained from images annotated with bounding boxes and
bounding box specific keypoints, which it learns to predict on images during
training. By labeling the images in such a way that respiration relevant states
for each salmon can be constructed, a ventilation signal can be generated by
concatenating these states.

The bounding boxes could capture the whole salmon. This is easy for the
network to learn, since a salmon is large and has a distinguishable shape. The
problem with this, however, is that salmon in tanks and nets often overlap with
each other, and features from the stomach and tail of salmon is irrelevant when
evaluating breathing frequency. A better solution is to only capture the salmon
head, which provides the same amount of respiration relevant information as the
whole salmon, while reducing keypoint head size, and thereby resource require-
ments. When using this approach, it should be ensured that both the operculum
and the tip if the jaws are contained in the bounding box.

Two types of respiration states can be extracted from keypoint locations.
The first is the euclidean distance between keypoints at the top and bottom
jaw. The second is the fish mouth opening angle, which can be calculated by
additionally labelling the root of the jaw.

In addition to the task-specific keypoints, it is a good idea to label points not
used in subsequent ventilation state calculations, but which instead forces the
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network to learn the right relationships (auxiliary targets). One such keypoint
is the eye, which is easy to predict, and can be used by the network to learn
relative jaw positioning.

By using the coordinates of the upper jaw, lower jaw and eye, all bounding
boxes will contain K = 3 keypoints, each represented by two numbers (x, y).
Furthermore, the number of bounding boxes will be equal to the number of fish
in the frame, and each box will have dimension four, two numbers (x, y) for two
of the corners. Having described the network labels, we now move on to the
loss function.

For simplicity, we assume batches of one frame. The ground truth targets
consists of R bounding boxes contained in a v ∈ RRx4 tensor and a set of K
different keypoints contained in an s ∈ RRxKx2 tensor. As for the network
output, let the number of classes be C, the number of region proposals be
RROI , and the dimension of the keypoint masks be wk and hk. Then, the
keypoint RCNN estimates consist of a class probability tensor (p̂ ∈ RRROI ,C),
a bounding box regression tensor(v̂ ∈ RRROI ,4·C) and a keypoint mask tensor
(ŝ ∈ RRROI ,K,C,hk,wk).

The total loss function (equation 3.5) for a frame is the sum of the losses for
each ROI, and each ROI has a loss equalling a sum of classification loss, local-
ization loss and keypoint loss. An optimal mapping between ROI and ground
truth is performed by IoU thresholding[136]. Localization loss and keypoint loss
are only calculated for ROIs that are associated with a positive (salmon) class,
hence we introduce an encoding function λ that is 1 when a ROI is associated
with a positive ground truth class, and 0 otherwise.

The classification loss is estimated as a log loss over the two classes object
and not object (equation 3.5b), the localization loss is calculated as a smooth L1
loss (equation 3.5c)[134] and the keypoint loss is calculated as the cross-entropy
over an K ·hk ·wk way softmax output (equation 3.5d). In these equations, Ncls

is equal to RROI , and Nloc and Nkey is equal to the number of ground truth
bounding boxes in the frame.
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L(p, v, s, p̂, v̂, ŝ) =
RROI∑
r=0

1

Ncls
Lcls(pr, p̂r) +

1

Nloc
λrLloc(vr, v̂r)

+
1

Nkey
λrLkey(sr, ŝr)

(3.5a)

Lcls = −(p · log(p̂) + (1− p) · log(1− p̂)) (3.5b)

Lloc =

{
0.5 · (v − v̂)2, if∥v − v̂∥ < 1

∥v − v̂∥ − 0.5, otherwise
(3.5c)

Lkey(s, ŝ) = −
1

K · hk · wk

K∑
k=0

hk∑
i=0

wk∑
j=0

(sk,1,i,j ∗ log(ŝk,1,i,j))+
(1− sk,1,i,j)log(1− ŝk,1,i,j))

(3.5d)

3.2 Frequency estimation

Frequency estimation of a one dimensional signal will be an important part of
the final pipeline. Due to this, we will here explain methods of outlier rejection,
non-linear function fitting, autocorrelation and RAndom SAmple Consensus
(RANSAC). First, however, we will describe Non Maximum Suppression (NMS)
and IoU.

3.2.1 NMS and IoU

NMS and IoU are fundamental terms in any computer vision pipeline, and will
be briefly explained below.

The IoU of two bounding boxes A and B is the correct overlap of the boxes,
divided by the total proposed area of both of them, defined in equation 3.6.

IoU =
A ∩B

A ∪B

=
true positives

true positives+ false negatives+ false positives
(3.6)

The NMS algorithm is build on this metric, and works by removing all
bounding boxes with too high IoU overlap, keeping the most confident bounding
boxes. Let B be the initial set of bounding boxes in a frame, C a confidence
function, T a threshold and U the set of non-overlapping bounding boxes. NMS
is then displayed in algorithm 2.
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Algorithm 2 NMS

Require: B, U: ∅, C : B → [0, 1], T
while B not ∅ do

b̃← {b̃|C(b̃) ≥ C(b)∀b ∈ B, b̃ ∈ B}
for b ∈ B do

if IoU(b̃, b) > T then
B ← B \ {b}

end if
end for
B ← B \ b̃
U ← U ∪ b̃

end while

3.2.2 Outlier detection

Several outlier detection algorithms have been developed in the past couple of
decades, some specializing in soft detection by finding a local outlier factor[138],
others in effective and quick separation by generating an isolation forest[139].
Here, I will describe a novel and intuitive method instead, the frame jump
limiter.

Let Td be a distance threshold for separating inliers and outliers, ws (window
size) determine the neighborhood over which the algorithm will search and N
the length of the signal x. Then, algorithm 3 calculates a local average which
it draws points to if they are too far away from other local points. One of
the main strengths of this algorithm is that even outlier clusters larger than
the neighborhood will be handled, since the signal is dynamically altered. A
weakness is that prolonged periods of outlier rejection results in horizontal lines
overwriting the signal, and these lines will continue after the outlier cluster
has passed if the difference between the recorded signal and the horizontal line
exceeds Td.

Algorithm 3 Frame jump limiter

Require: ws, Td

for i=ws to N do
avg ← x[i−ws,i]

ws
if ∥avg − x[i]∥ > Td then

x[i]← avg
end if

end for

3.2.3 Levenberg-Marquardt

The problem of fitting a sinusoid to a set of datapoints (x, y) can be framed
as a non-linear least square problem. Let us define a parameter vector p (3.7a)
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determining the function f(x, p) (3.7b), and let p̂ be the optimal p, defined
as the parameter vector that minimizes the sum of squared errors (3.7d). An
effective and robust algorithm to find p̂ is Levenberg-Marquardt (LM), which
effectively combines the advantages of gradient descent and Gauss-Newton[140]
by finding the sk that solves equation 3.7e, and then updates p in direction of
sk. This algorithm will converge to a local minima, and under some conditions
achieve locally quadratic convergence[141].

p = [A f ϕ O a ] (3.7a)

f(x, p) = A · sin(2π · f · x+ ϕ) + o+ a · x (3.7b)

L(x, y, p) = 1

2

N∑
i=1

(f(xi, p)− yi)
2 =

1

2

N∑
i=1

r2i (3.7c)

p̂ = minpL(x, y, p) (3.7d)

(JT
k Jk + µkI)sk = −JT

k ri(pk) (3.7e)

The method needs an initial parameter vector, and the better this guess
is, the larger the possibility that the algorithm converges to the optimum we
are aiming for. Below is an overview of possible heuristics to perform this
initialization.

1. Offset: This describe the vertical bias of the data, hence should be ini-
tialized to the average of the datapoints. O0 = µ =

∑N
i=1

yi

N .

2. Amplitude: The standard deviation of a perfectly sampled sinusoid is
A√
2
[142], hence a reasonable initialization of the amplitude is A0 =

√
2 ·

std(y), where std(y) =

√∑N
i=1(yi−µ)2

N−1 .

3. Frequency: This should be initialized to an expected respiration fre-
quency.

4. ϕ: This could be initialized by looking at the numerical gradient, or the
absolute gape size, at the beginning of the signal.

5. a: This could be initialized by fitting a line to the data, and extract the
rate of increase. As it is reasonable to assume a low offset inclination, zero
is also a good parameter guess.

3.2.4 Autocorrelation

The autocorrelation function is a description of how similar a signal is with how
it looked k timesteps ago (eq: 3.8). The local peaks of this signal, therefore,
corresponds to a possible period of the mouth gape.

R[k] =
∞∑

m=−∞
x[m]x[m− k] (3.8)
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3.2.5 RANSAC

The RANSAC algorithm is an approach able to simultaneously do outlier rejec-
tion and function fitting. It does so by randomly sampling minimal subsets S
of size n from from the full set of datapoints P ∈ RN , and then calculating a set
of inliers I containing points close to a model M := f(S) fitted on the minimal
sample. Close is defined as any point with loss function L(M |x, y) smaller than
a threshold T. The random sampling is done kmax times, where kmax can be
found by the relationship shown in equation 3.9, giving a minimum number of
RANSAC iterations required to find one outlier free set of size n with confidence
η0 from a dataset with ϵ fraction of inliers[124]. Since we do not know the inlier
ratio a priori, it can be dynamically updated every time a new maximum inlier
set is found. The full method is displayed in algorithm 4[124].

Algorithm 4 RANSAC

Require: N > n, kmax, η0
Imax, k ← 0
while k < kmax do

Sk ← {A : dim(A) = n,A ⊂ P}
Mk ← f(Sk)
Ik ← {A : L(M |x, y) < T,A ⊂ P}
if dim(Ik) > Imax then

M∗, I∗ ←Mk, Ik
Imax ← dim(Ik)
kmax ← g( Imax

N , η0, n)
end if
k ← k + 1

end while

g(ϵ, η0, n) =
log(1− η0)

log(1− ϵn)
(3.9)
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Chapter 4

Method

After looking into possibilities for computer vision based frequency estimation
of salmon, including a detailed theoretical description of some of them, we will
here establish a baseline algorithm for end-to-end salmon ventilation regression.
The proposed algorithm is a two-step pipeline, in which the first step is a neural
network to estimate the mouth gape of the fish, and the second step is to
extract a frequency from the resulting mouth gape trajectory. We will describe
how the neural network were constructed and trained, and how the output of
the deep learning network were used to find respiration rate. For development
of the method, a 10 minute video recording from the 4th hour of a salmon
downbreathing was available. For the evaluation of the algorithm, additional
recordings from the 1st and 2nd downbreathing hour were included.

4.1 Deep learning

4.1.1 Training data

The 10 minute salmon recording were split into frames, and 35 images spaced
out over the video recording were annotated with bounding boxes going from
the attachment of the pectoral fin to a bit in front of the snout. Each salmon
head were further annotated with three keypoints; one eye, the kype (dentary
prominence) and the tip of the premaxilla. Partly occluded fish were not anno-
tated.

To inflate the dataset, an albumentations[143] pipeline was constructed, per-
forming random crops, horizontal and vertical flips, contrast and gamma adjust-
ment and RGB shifts 60 times per image. This resulted in a 2100 frame dataset.

4.1.2 Network and training

The keypoint RCNN implementation from PyTorch[134], constructed as ex-
plained in the previous chapter, was used for salmon detection and keypoint
prediction. The backbone was pretrained on imagenet[144], while the keypoint
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and bounding box heads were randomly initialized. All parameters in the model
were adjustable, and the model was trained for 10 epochs on 2 T4 GPUs with
the 2100 frame augmented dataset.

At the output of the model, all bounding boxes were pruned by the PyTorch
NMS method when making predictions.

4.2 Frequency analysis

The mouth gape of the salmon was extracted simplistically, by calculating the
euclidean distance between the kype and premaxilla keypoints. Thereafter, fish
in different frames were matched by an IoU (eq: 3.6) threshold algorithm, and
wrongly detected keypoints removed by the frame jump limiter algorithm (alg:
3). After this, all mouth gape time series under 50 frames were removed, and
long signals were split into two second long snippets. Finally, the autocorre-
lation function and the Levenberg-Marquardt algorithm were used to estimate
the frequency of the resulting one dimensional signals by the statsmodels[145]
and scipy[146] libraries, respectively. For the autocorrelation function, only cor-
relations above a threshold T1, detected with at least T2 frames delay, were
considered valid frequency estimates.

4.3 Complete model

The sine fitting approach was found to be the best frequency extraction method,
and therefore used in the full model. Levenberg-Marquardt outputs both fre-
quency and fitting error for each signal, so the output of the full pipeline were
two vectors, one with the estimated frequency of all trajectories, and one with
the uncertainty of the estimate of all trajectories. The most erroneous sinu-
soids were removed from the vector, and the rest were used to plot a weighted
histogram over respiration frequencies. Also the weighted average of the fre-
quencies were computed.

4.4 Parameters

The parameters used in the pipeline were tuned from a set of mouth gape signals
generated from a 1000 frame snippet of the 10 minute salmon recording. Below
is an overview of the parameters and how they were determined.

1. Outlier detection

(a) Averaging window size (ws): Visual inspection was performed to
maximize the human visibility of the respiration oscillations.

(b) Distance threshold for outlier classification (Td): Visual in-
spection was performed to maximize the human visibility of the res-
piration oscillations.
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2. Autocorrelation

(a) Lowest valid correlation (T1): Visual inspection was performed
to put the threshold such that only clear oscillation peaks, not noise
or flat correlations, would be estimated.

(b) Lowest valid delay (T2): Cutoff was placed such that frequencies
above natural salmon range would not be detected.

3. Sine fitting

(a) Initial parameter estimate (p0): Frequency was initialized to a
reasonable value, amplitude and offset were initialized from dataset
statistics. The rest of the initial parameters were initialized to zero.

4. Complete model

(a) Max fitting error: Visual inspection was performed to set a thresh-
old that removes sinusoids that are unlikely to match physical respi-
ration.

4.5 Testing

4.5.1 Quantitative evaluation of frequency correctness

The same 1000 frame video snippet as used for tuning the parameters were used
for constructing a validation set. It was developed the following way.

1. Create a movie with annotations from the deep neural network drawn on
top.

2. Note which bounding boxes have valid autocorrelation estimates.

3. Note down the frames in the generated video of max mouth gape for all
valid bounding boxes.

4. Use the period between max mouth gape to calculate frequencies for the
valid bounding boxes.

After this, frequencies estimated by the model were compared with the
ground truth frequencies.

4.5.2 Qualitative evaluation of shoal respiration frequency
as it relates to stressors

In the experiment section we will describe how recordings of salmon exposed to
different kind of stressors are obtained. These recordings are passed through the
model to generate shoal frequency estimates, which is qualitatively analysed.
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Chapter 5

Experiment

The following description will be restricted to video recordings, as the full exper-
imental data and setup material is not obtained at the time of report delivery.

Nine tanks, each with seven fish, were subjected to changing oxygen and tem-
perature millieux. The experiment lasted for fifteen days, 22.09.22 to 06.10.22,
and contained four phases.

1. Phase 1: This phase lasted six days, and were used to raise the tempera-
ture from twelve degrees to fifteen degrees in tanks one to three, and from
twelve degrees to eighteen degrees in tanks seven to nine. Tanks four to
six were kept at twelve degrees.

2. Phase 2: This phase lasted two days, and contained a downbreathing of
the tanks. During downbreathing, the oxygen supply to the tanks were
restricted, causing a gradual decline in Dissolved Oxygen (DO) content.
This was enabled by removal of air stones and water flow to the tanks.
When the DO levels reached 50%, oxygen were let back into the tanks,
allowing the fish to ”upbreathe” the water to previous DO levels. Tanks
four to six were downbreathed the second day, the rest of the tanks were
downbreathed the first day.

3. Phase 3: This phase lasted for five days, in which the tanks held constant
temperature.

4. Phase 4: The last phase was a new downbreathing similar to the first
one.

In the phases with constant oxygen supply, salmon were filmed for 1 hour
two times each day, centered around the feedings at 10:00 and 14:00 o’clock.
Spotlights were placed above the tanks to ensure sufficient light, and gopro
cameras were lowered down to recording positions on a stick. This position was
horizontal and 21 cm from the bottom of the cage, alternating between two
corners of the tank. Every fourth recording was done close to the surface and
with an angle, facilitating behaviour analysis. During downbreathing, the fish
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Figure 5.1: Dissolved oxygen content during a downbreathing

were filmed constantly from a bottom corner, with minor breaks during battery
and memory card switching.

Dissolved oxygen and temperature were measured continuous in tank 2, 5
and 7 with the miniDO2T Logger[147]. During the downbreathing, oxygen and
temperature were measured each hour with a handheld device additionally.

For this project, three small clips from a downbreathing phase in tank 9
were used, recorded one, two and four hours after the start of the oxygen cutoff.
All clips had a length of 42420 frames (707 seconds). For the model evaluation,
1000 frame (16,7 seconds) snippets at different times during these clips were
used. In figure 5.1, a representative oxygen trajectory during a downbreathing
is displayed. Due to the nature of the preliminary data, some metadata is
missing, and it is uncertain whether the displayed oxygen recording is from
the same downbreathing as the video recordings. The oxygen trajectories look
relatively similar during both downbreathings, the only relevant variation is how
close the oxygen levels after two and four hours are. In figure 5.1, the oxygen
content is almost equal.
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Chapter 6

Results

The detections of the keypoint RCNN are shown in figure 6.1, where frames are
displayed to highlight the difficulties of a fish detection network. In frame 832,
both false negatives and false positives are present due to similarities between
fish and other objects, as well as the deformation of the fish, in frame 835 the fish
to the bottom left of box 67 has lost its bounding box due to overlap between
two fish and NMS pruning, in frame 890 occlusion of the jaw leads to a major
keypoint localization error, and in frame 952 a short period of occlusion caused
a new bounding box IDentifier (ID) (72 to 97).

Figure 6.2 shows the processed mouth gape trajectories together with the
Levenberg-Marquardt fitted sinusoides. Most signals show clear oscillations,
which the fitted model captures well. On some signals, like box 67, the oscil-
lations are barely visible, and the model fit is poor. This is captured by the
standard deviation of the frequency parameter, which is second largest on box
67.

Looking at the autocorrelation function (figure 6.3), the time series with
the clearest oscillations are captured well. Some of the more noisy signals,
and signals with offset drift and amplitude dynamics, however, show no peak
in the autocorrelation function. Also the ground truth periods are visible in
the autocorrelation plot, showing that the generated estimates are of the same
magnitude as the true respiration. Furthermore, when both have detections,
the autocorrelation estimates are similar to the sine fitting estimates.

In figure 6.4 three frequency histograms for each of the three clips at different
times during the downbreathing are displayed. All of the histograms have a
clear peak around a reasonable frequency, and the four hour histogram peaks
are clearly distinguishable from the peaks of the rest of the histograms. The
one hour and two hour histograms, however, estimate approximately the same
frequency.

In the next histogram plot, figure 6.5, high error estimates are removed. As
with the other histogram plot, the average frequency after four hours is clearly
distingusihable from those after one and two hours.

At evaluation the algorithm spent 2209 seconds on an i7-11700 Intel Core

41



CPU to process a 16,7 second video snippet. 2201 of these seconds were used
in applying the deep neural network, track bounding boxes and generate an
annotated movie. Of these three tasks, the deep neural network was by far the
most resource intensive.
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(a) Picture 832 (b) Picture 835

(c) Picture 890 (d) Picture 952

Figure 6.1: Illustration of different issues with the neural network

Figure 6.2: Time series of mouth gape
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Figure 6.3: Autocorrelations of mouth gape trajectories
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(a) 1 hour, frame ∈
[10′000, 11′000]

(b) 2 hours, frame ∈
[10′000, 11′000]

(c) 4 hours, frame ∈
[10′000, 11′000]

(d) 1 hour, frame ∈
[20′000, 21′000]

(e) 2 hours, frame ∈
[20′000, 21′000]

(f) 4 hours, frame ∈
[20′000, 21′000]

(g) 1 hour, frame ∈
[30′000, 31′000]

(h) 2 hours, frame ∈
[30′000, 31′000]

(i) 4 hours, frame ∈
[30′000, 31′000]

Figure 6.4: Histograms of all ventilation estimates in tank 9
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(a) 1 hour, frame ∈
[5′000, 6′000]

(b) 2 hours, frame ∈
[5′000, 6′000]

(c) 4 hours, frame ∈
[5′000, 6′000]

(d) 1 hour, frame ∈
[15′000, 16′000]

(e) 2 hours, frame ∈
[15′000, 16′000]

(f) 4 hours, frame ∈
[15′000, 16′000]

(g) 1 hour, frame ∈
[25′000, 26′000]

(h) 2 hours, frame ∈
[25′000, 26′000]

(i) 4 hours, frame ∈
[25′000, 26′000]

Figure 6.5: Histograms of low error ventilation estimates in tank 9
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Chapter 7

Discussion

7.1 Methodology

7.1.1 Signal length

Parts of the methodology were constructed by observing preliminary results,
and deserves some attention. The reason for removing signals under 50 frames
(0,83 seconds), were to guarantee at least one respiration period registered, and
the reason for restricting the length to two seconds, was to avoid too much offset
and amplitude dynamics. Long sequences were split into multiple signals, which
could result in a few well registered fish having a large impact on the estimated
shoal frequency. This is not an issue if the shoal frequency distribution is narrow.
One way to avoid large influence from a small number of fish is to cut off signals
instead of splitting them. This, however, would result in lost information.

7.1.2 Tuning of autocorrelation function

The two parameters in the autocorrelation function were there to ensure only
marked peaks corresponding to breathing would be registered. The numerical
values were tuned after reviewing the signals in figure 6.3, and must be inter-
preted with that in mind. The delay threshold is only sensitive to the problem
statement, and would not need to be adjusted based on the signal quality. The
correlation threshold, however, is highly dependent on noise and drift, and new
frame samples will have a different optimal correlation threshold.

7.1.3 Neural network annotation

Furthermore, the annotation must be addressed. The margin added at the snout
is inaccurate, however it was necessary to ensure the tip of the dentary and
premaxilla were inside the bounding box. The choice to refrain from labelling
partly hidden fish was to force the network to only detect individuals with
clearly distinguishable keypoints. The consequence of detecting occluded fish
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was exemplified by frame 890, with a grave location error of the kype. Another
solution to deal with hidden fish, is to train the network to learn not only the
position of keypoints, but also whether they are occluded. The keypoint RCNN
implementation of PyTorch does not offer this flexibility, so choosing this option
would require constructing the network from scratch, or finding some clever way
to modify it.

The small amount of manually annotated training data was facilitated by
data augmentation and a pretrained backbone. Rather large augmentations
were performed, making the network robust to several disturbances. Some of
these disturbances, like horizontal flip, are not physically relevant, and hence
possibly superfluous. The decision not to freeze the pretrained parameters was
to allow a specialization from general animal features in the ImageNet dataset
to fish features. This might be too much to expect from our tiny dataset, which
should be sufficiently challenged by the flexibility of the network heads.

7.1.4 Validation set

The frequency validation set was constructed with the same data that was used
to tune the parameters, and with an output of the model it is supposed to
evaluate. Due to this, it is important to state that the set is not supposed
to be used for statistical analysis, neither for proving accuracy of the model.
Instead, the set demonstrates that the estimated autocorrelation peaks and
sinusoid oscillations are close to the respiration frequency observed in the video
recordings. This strengthens the evidence that the main signal dynamics is
caused by ventilation.

7.1.5 Regularity condition

Also an implicit assumption made by the constructed algorithm is worth ad-
dressing, the regularity condition, which can be defined as assuming regularity
of the period of max mouth gape. Since the salmon can snap, feed or ram ven-
tilate, this condition does not hold in general, and oscillations not correlated
with respiration happens occasionally. This will cause both frequency extraction
methods discussed here to break down.

In this project, signals of maximum two seconds were used, so it is likely that
most of the trajectories only contain respiration oscillations. If, by improving
on the algorithm, longer sequences are extracted, some way of dealing with
snapping and feeding must be constructed. This could be done by splitting long
signals into short sections, and discard sections with poor fit, assuming they are
the result of breakdown of the regularity condition. Another possible solution is
to use neural networks to train a salmon behaviour classifier on the time series,
and use this to filter out non-breathing oscillations.
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7.2 Neural network

Most of the errors observed from the keypoint RCNN were expected. The trade
off between double detections and excessive bounding box pruning is inherent in
object detection problems, but can be improved by a soft NMS method[148], by
changing the IoU threshold, or by changing the network architecture to one that
does not require NMS, like the DEtection TRansformer (DETR) network[149].
Furthermore, the bounding box tracking issues were expected, and solutions
were addressed in the literature survey chapter.

The false negatives are most likely caused by the network not seeing all
salmon poses during training, together with the conservative labeling. The false
positive in frame 832 is likely caused by the similarity between salmon and other
submerged objects. These kinds of errors should be removable by using more
training data.

7.3 Frequency estimation

7.3.1 Outliers

In figure 6.2, the time series after outlier pruning are shown. These are almost
outlier free, do not have pronounced processing peculiarities, and have clearly
visible oscillations, matching the respiration frequency of salmon. Considering
this, the algorithm to remove outliers work well. Some effort were spent trying to
improve the outlier removal by using scikit learns[150] implementations of local
outlier factor and isolation forest. These algorithms performed significantly
worse than the frame jump limiter.

A Kalman filter could be applied to smoothen the mouth gape curves as
an alternative to outlier detection and removal. Due to the simple oscillatory
movement of the mouth, the system modelling should be straight forward.

7.3.2 Validation set

The ground truth max mouth gape periods were mostly around 30 frames, giving
a respiration frequency of 2 Hz. Gape state were often indistinguishable for 3
frames, causing an uncertainty of up to 6 frames each period. This results in a
2 Hz label potentially being as low as 1,7 Hz, or as high as 2,5 Hz.

7.3.3 Autocorrelation function

The frequency estimates extracted from the autocorrelation functions (fig 6.3
are all close to the ground truth. The amount of estimates, however, is rather
poor. Even with some parameters tuned on observed signals, the autocorrelation
function is unable to extract frequencies in 5 of 16 tracked fish. As another
downside, it has no metric to measure quality of estimate.
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7.3.4 Sine fitting

For the fish with both sine function fitting and autocorrelation function res-
piration estimates, the regressed frequencies are very similar. The sine fitting
method furthermore provides reasonable estimates for the salmon with flat au-
tocorrelation, a quality metric is included in the estimate, and no parameter
tuning, except an initial estimate, is required. Considering this, the sine fitting
algorithm is more robust and better generalizable than the autocorrelation func-
tion. Not much time were spent on tuning initial parameters, so the function
fitting can probably be improved by providing an initial estimate for the phase,
and a more accurate initial frequency.

7.3.5 Shoal frequency distribution

It is noteworthy that the frequencies of the salmon in figure 6.2 are reasonably
close together, although some spread is noticeable. If we remove the least certain
sine fitting estimates, which can be done by requiring the standard deviation of
the frequency parameter to be less than 0.05, 10 estimates lands in the range
[1,83, 2,100]. This tells us that for our experimental setup, extracting one
frequency number for the entire shoal is a justified simplification, but cause
some loss of relevant individual fish information.

7.3.6 Small jaw motion

By looking at the time series (fig: 6.2) it does not seem like small jaw motions are
an issue. Salmon in the back of the frame with Peak to Peak (P2P) amplitude
of about 6 pixels, like box 18 or 28, have at least equally visible oscillations as
proximal fish with large gapes, like box 92 or 67. One possible reason is that
recordings of distal fish are less noisy, since locomotion has less effects on signal
amplitude and offset. Furthermore, the fish are usually filmed from the same
direction, and stay longer in the frame. If the experimental setup would have
facilitated longer distances and smaller amplitudes, down to 3 pixels, issues with
small gapes would likely be more pronounced.

7.4 Complete model

7.4.1 Frequency distribution

Looking at figure 6.4, all histograms show a clear peak around a reasonable
frequency, strongly advocating that the method is able to extract average shoal
frequencies. There are, however, a significant spread in the estimates, up to 1 Hz.
It is tempting to attribute this to random noise, however this is an unreasonable
assumption. Remember that the histogram bars represent frequencies, and that
the time series plots show very accurate fit for some signals, and very poor
for others. Hence, model noise is heavily influenced by outliers, and another
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explanation must be put forth to explain the multimodal distributions observed
in the figure.

A reasonable hypothesis is to attribute the spread to a physical ventilation
distribution among the salmon. This theory can be elucidated by removing
functions with poor fit from the histograms, reducing the amount of noise. In
figure 6.5 this is done, and a narrower, although still multimodal, distribution
is uncovered. When generating these histograms, a visual inspection was per-
formed on the time series plots earlier in the pipeline, which showed that almost
all estimates not removed had clear frequency oscillations and good sinusoidal
fit. Hence, the refined histograms are almost noise free, and we can conclude
that some difference exists in the ventilation frequency of different fish exposed
to the same stressor.

7.4.2 Stress

There are some other interesting effects in the histograms that must be men-
tioned. By looking at figure 5.1, it is clear that the oxygen content after 2 and
4 hours are nearly identical, while the average frequency estimations differ sig-
nificantly. As explained in the experiment chapter, the link between dissolved
oxygen and video recordings are uncertain, however it is likely that the oxy-
gen levels after two and four hours are not too different. If we assume this,
we arrive at the conclusion that the oxygen content by itself is not responsible
for the increased ventilation, but rather that reduced oxygen 30 minutes before
has a delayed effect on ventilation. A tenable hypothesis is to attribute this
delayed response to stress. Furthermore, not a lot of difference is observed be-
tween respiration after one and two hours, advocating for some threshold over
which the fish do not care about reduced DO content. It should also be men-
tioned that welfare score, although not evaluated, was likely reduced after the
downbreathing, since the respiration change suggests a stress response in the
fish.

As explored in the literature review, the resting frequency of salmon is
around 1 Hz. This means that all the fish in the samples evaluated here are
stressed. One possible explanation to this is that the recordings in this report
are from the first ten minutes after lowering cameras into position in the tanks.
This disturbs the fish for the span of the video. Another explanation could be
that the recordings are from one of the tanks keeping eighteen degrees, stressing
and increasing oxygen requirements of the salmon ([151], chapter 1).

7.4.3 Statistical analysis

At the time of writing this report, the full data set from the experiment was
not received, and only three sample recordings from tank nine could be used.
It will be interesting to see how the respiration frequency varies with tanks,
and with recordings a while after the camera has been lowered into position.
When more data is received, a thorough statistical analysis could be constructed,
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making it possible to draw quantitative conclusions with regards to both pipeline
performance and stress response of the fish.

7.4.4 Resource requirements

The resource requirements of the algorithm is high, spending over 2 minutes to
process one second of video. This is prohibitively large for real time applications,
however improvements can be made. The most time consuming part of the
algorithm is the neural network, so reducing the depth of this, or use GPUs at
evaluation time, would greatly speed up the pipeline.
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Chapter 8

Future directions

Through this literature study and baseline development, a large set of opportu-
nities have revealed themselves. An obvious continuation of the work done in
this report is to refine the developed algorithm by improving its components.
This could be to use RANSAC for frequency estimation, improving outlier re-
jection, training the neural network with a larger training set or automatically
determine some of the parameters.

8.1 Fish identification

Although improvement of current methods are interesting, inclusion of new
components seem more important for the performance of the algorithm. In
particular, the poor fish tracking solutions are of great concern. As the fish
respiration of different individuals in the same tank and at the same time differ
by 0.5 to 1 Hz, the specific fish that stays in the camera frame and gives rise
to good signals have a large impact on the frequency estimate. It is likely that
some of the low error histograms are created from only a couple of fish, skewing
the frequency estimate. This bias and randomness is making statistical analysis
difficult, and reducing the quality of the results. Motivated by this, the most
important addition to the current pipeline is the inclusion of fish identification
capabilities. With this, the respiration frequency evolution of single fish can be
tracked, making stress and welfare inference a lot easier. Furthermore, shoal
analysis is simplified with knowledge of single fish behaviour.

8.2 Statistical analysis

After a sufficiently good pipeline has been constructed, a statistical analysis
on the experimental data would allow us to hypothesize about the relationship
between DO, temperature and ventilation, and subsequently stress. Interesting
statistics would be the evolution of average shoal frequency, spread of shoal
frequency or whether temperature and DO has statistically significant effects
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on ventilation. By evaluating the welfare score of different salmon, ventilation
and stress could be linked to welfare.

8.3 Other pipelines

Beside this, developing new algorithms is also an interesting path to explore. It
does seem like the method with keypoint RCNN and mouth gape trajectories
works well as a non temporal network, hence new approaches should incorporate
temporal relationships. We found in this report that the shoal respiration fre-
quency has a significant distribution among fish, but also that the shoal average
contain important information. As such, both a 3D action classification algo-
rithm for shoal frequency classification, or a convolutional LSTM network for
single fish ventilation estimation is interesting avenues to pursue. The former
requires a lot of computational power to train, and the latter requires a large
manually annotated bounding box database. Due to this, neither is ideal for
master thesis work.

8.4 Other behaviour indicators

In this project, the focus has been on fish ventilation. As touched upon in the
literature survey, however, other features can also infer about fish stress. One
such metric is the tail beat frequency, which might be possible to detect with a
similar pipeline as the one developed here. The tail oscillations could even be
detected in the same neural network as the ventilation frequency, by introducing
more keypoints. Then, a combined respiration and tail beat frequency pipeline
could be constructed, providing a stronger base for stress elucidation.

8.5 Plan for master thesis

Considering the above, the following list is a preliminary suggestion for work to
be performed in the master thesis.

1. Improve robustness of the pipeline constructed in this report, and reduce
the number of tunable parameters.

2. Include fish identification into the pipeline. This could be done by adding
a new branch of keypoint RCNN used for fish recognition.

3. Perform a thorough statistical analysis on experimental data with the
developed pipeline. Use this to link respiration, DO, temperature, stress
and welfare.
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Chapter 9

conclusion

In this report we have thoroughly examined stress and welfare in salmon, how
it relates to breathing, and how ventilation can be inferred by computer vision
methods. The validity of ventilation frequency as a stress metric has been
demonstrated by the construction of a pipeline capable of coarsely discerning
shoals exposed to different levels of Dissolved Oxygen (DO) from video streams.
To construct and evaluate the algorithm, an experiment was performed in which
salmon was recorded at different temperatures and oxygen levels. This project
revealed work that can be performed in the subsequent master thesis of the
author, including a complete statistical analysis on the data gathered in the
ventilation experiment, as well as improvement on the constructed pipeline by
enhancing existing modules, and by adding new ones.
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