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Abstract

Salmon farming is becoming increasingly important in the global food chain,
which necessitates a deep understanding of how internal salmon states relevant
for production yield and welfare is evinced externally on salmon, in order to
facilitate real-time detection of inadequate conditions. In this thesis, one par-
ticular external trait of salmon, ventilation frequency, is elucidated in great
detail to evaluate how it can inform on the condition of salmon in tanks and
net pens.

To allow for easy and automatic extraction of this trait, a complete pipeline
capable of estimating ventilation frequency of individual salmon from a video
recording is developed. By the use of State Of The Art (SOTA) deep learning
methods, the algorithm is capable of detecting and tracking salmon, estimating
mouth poses in order to calculate ventilation frequency, and determining the
unique salmon individual a fish belongs to.

Upon completion of the salmon ventilation frequency extraction method, it
was applied to data from a salmon stress experiment, unveiling that salmon
ventilation frequency increase in response to reduced Dissolved Oxygen (DO)
content or disturbances, and that individual salmon show consistent respiration
patterns across hours and weeks.

By observing the capability of the constructed salmon ventilation frequency
pipeline to discern salmon welfare trends in a stress experiment, it can be con-
cluded that the method is capable of automated evaluation of a salmon welfare
indicator.
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Sammendrag

Lakseoppdrett blir stadig viktigere i den globale næringskjeden, noe som nødvendiggjør
en dyp forst̊aelse av hvordan interne tilstander i laks som p̊avirker dennes velferd
og økonomiske verdi manifesterer seg gjennom ytre trekk, slik at utilstrekkelige
forhold kan avdekkes og utbedres. I denne oppgaven er et enkelt ytre trekk ved
laks, ventilasjonsfrekvens, belyst i detalj for å undersøke hvordan denne fysiol-
ogiske parameteren kan informere om tilstanden til laks i tanker og merder.

For å kunne undersøke denne egenskapen enkelt og automatisk ble en algo-
ritme utviklet for å estimere ventilasjonsfrekvensen til individuelle laks fra et
videoopptak. Ved hjelp av moderne metoder for dyp læring ble denne algorit-
men i stand til å lokalisere og spore laks, estimerer disses munn̊apning for å
beregne ventilasjonsfrekvensene deres, og identifiserer hvilket unike lakseindivid
den lokaliserte fisken tilhørte.

Denne ventilasjonsestimeringsalgoritmen for laks ble brukt til å analysere
data fra et stresseksperiment da den var ferdig utviklet, noe som avdekket at
laksens ventilasjonsfrekvens øker som respons p̊a forstyrrelser og redusert oksy-
genmetning i vann, og at individuelle laks viser konsistente respirasjonsmønstre
over timer og uker.

Ved å observere ventilasjonsestimeringsalgoritmens evne til å bestemme lak-
sens velferd i et stresseksperiment, kan det konkluderes med at metoden er i
stand til automatisert evaluering av velferd hos laks gjennom analyse av respi-
rasjonsfrekvens.
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Terminology

1. Salmon: Refers to atlantic salmon (Salmo salar).

2. Tracker: Refers to an object that follows a salmon individual.

3. Downbreathing and upbreathing: Downbreathing refers to restricting
oxygen to a salmon tank and letting the metabolism of salmon gradually
reduce the DO content in the water. Upbreathing is the reverse mech-
anism, and involves introducing oxygenated water to a hypoxic environ-
ment, causing a gradual increase in DO content. These terms are used as
both nouns and verbs in the document.

4. School and shoal: These terms will be used interchangeably about a
collection of fish, even though the terms technically have slightly different
meanings[3].

5. Breathing, respiration and ventilation: These terms will be used as
synonyms for salmon oxygen uptake.

6. Salmon classification: When the two terms salmon and class/classification
are used together, they are referring to classifying salmon based on which
individual the salmon belongs to. Species classification, which these terms
also could refer to, is not discussed in this document.

7. Statistical significance: This refers to a p value below 0.05.

8. Mean and average: These terms are used interchangeably and refers to
the arithmetic mean (

∑N
i=1

xi

N ).
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Chapter 1

Introduction

Aquaculture is the fastest growing food animal sector in the world[4], with Nor-
way establishing itself as a major player in the field. Due to the high feed con-
version ratio, low CO2 footprint and large stock densities, salmon farming has
been praised as the solution to the food requirements of a growing population[5].
Like all success stories, however, the industry is not without its problems. Lice
infestation[6], escaping fish[7], sick fish[8], fish mortality[9], retarded growth[10]
and pollution[11] are some of the issues researchers and farmers are faced with,
causing reduced salmon welfare and economic losses.

To effectively combat these problems, the underlying causes of the adversary
effects must be elucidated. It is firmly established that stress has some role in
this discussion[12], causing both acute and chronic changes in the physiology of
the fish. Stress responses can be examined by chemical screening of blood and
organs, external observation by humans, or even analysis of the environment of
the fish[13]. All of these methods have their downsides ([14], chapter 11), which
motivates a new, automatic framework for stress evaluation in fish.

Among the possible candidates, computer vision is standing out as a cheap,
effective and non-invasive way of performing this automation. It has been suc-
cessfully applied to a number of related tasks, such as measuring feeding activity
in salmon[15], analysing hypoxia response in goldfish[16], measuring salmon wel-
fare from behaviour indicators[17], counting fish[18], estimation of fish size[18],
quality assessment[18] and species identification[18]. All of these projects related
to welfare and stress used behaviour indicators like speed, direction and location
of the fish as features. By doing so, they are neglecting an easily discernible
and possibly important parameter; respiration. This metric requires no three
dimensional reconstruction, is always present and shows a quick dynamic. Fur-
thermore, as will be elucidated later in the document, stress is closely related to
ventilation frequency in teleosts (fish belonging to the infraclass Teleostei[19],
which includes salmon). These considerations motivate the construction of a
deep learning pipeline extracting salmon breathing frequency from video record-
ings.

In the preproject associated to this thesis, the feasibility of extracting respi-
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ration frequency of a salmon shoal by applying a deep learning pipeline to videos
was demonstrated[1]. The method demonstrated there is further investigated
and improved in this report, before applied to data from a salmon experiment
in order to hypothesize how ventilation frequency relates to stress induced by
temperature, hypoxia and disturbance.

As this is a technical thesis, the main focus of the report will be on the
computer vision frequency extraction pipeline. Even so, some elucidation on
the biological context around the experiment data is necessary to understand
how the fish breathing frequency can inform about important parameters and
relationships. Therefore, the report will start with a literature review of relevant
salmon biology. This will consist partly of a distilled version of earlier work of
the author, and the reader is referenced to[1] for more in-depth covering of the
topics.

Succeeding this, literature relevant for the computer vision pipeline will be
presented. This will cover precise problem formulations, together with discus-
sion of SOTA methods that can contribute to algorithms solving the stated
problems. Afterwards, the mathematics behind the most intriguing methods
will be described in the theory section.

Next, the experiment will be described. It was performed at NIVAs research
facility at Solbergstrand (figure 1.1a[20]), and involved seven salmon in each of
nine different tanks, exposed to three different temperatures (figure 1.1b[21]).
At two different times over a two week period, downbreathings were performed
in all tanks, involving an initial decline in dissolved oxygen concentration, and
a subsequent increase. All salmon were recorded by cameras during the down-
breathings (see figure 1.1c for an example frame), providing the data used in
this report.

Armed with theory from both biology and engineering, as well as exper-
imental data, the salmon ventilation analysis pipeline is described in detail.
This pipeline is then used for a thorough analysis of the experiment data, on an
individual salmon level. All results from both the salmon ventilation frequency
extraction pipeline and the experiment will be presented and discussed in detail,
in order to both display the capabilities of the constructed method to extract
ventilation frequencies from video recordings, and to explore the link between
salmon ventilation and welfare.

This discussion will make it clear that ventilation frequency can be auto-
matically detected by computer vision and deep learning methods, and that the
extracted ventilation frequencies can inform about welfare reduction induced by
acute disturbances or reduced DO content, as well as determining the person-
ality type of individual fish, which correlates to their welfare.
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(a) NIVA Research Facility at Solbergstrand[20]. This was where the salmon stress
experiment was performed.

(b) Layout of fish tanks[21]. Each tank contains seven fish, exposed to two down-
breathings over a two week period. Tank four to six are cold (12.3 ◦C to 13.4 ◦C),
tank one to three hold intermediate temperatures (14.0 ◦C to 15.6 ◦C), and tank
seven to nine are warm (15.9 ◦C to 17.7 ◦C).

(c) Example of a video frame from the tank recordings. Each tank was recorded at
60 Hz with a consumer camera regularly over a two week period, and continuously
with two cameras during the two downbreathings.
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Chapter 2

Literature survey biology

2.1 Chapter introduction

This literature review will start with a presentation of the main physiological
mechanisms involved in teleost ventilation, before the internal mechanisms and
evaluation of fish stress are presented. Subsequently two stressors are examined
in light of the discussed concepts, and the notion of fish welfare is briefly eluci-
dated. The primary search engines used during the survey were google, Google
Scholar[22] and Science Direct[23].

2.2 Fish ventilation

Teleosts absorb oxygen for metabolism by gas exchange between erythrocytes
and water in lamellae attached to the gill arch[24]. Two modes of breathing
have been observed; buccal pumping and ram-ventilation[25]. In the former, the
operculum closes and the mandible is lowered to draw water into the mouth,
followed by closing of the jaws and opening of the operculum to thrust water
out over the gills[26]. In the latter, high relative water velocity drives water
over the gills without energy expenditure of the opercular and buccal pumps.

Buccal pumping is effectuated by muscles in the jaw, operculum and gills,
driven by the Vth, VIIth and IXth/Xth cranial nerve, respectively[27]. Their
nuclei are located in the medulla oblangata, where they are interacting with
the reticular formation. This loosely defined network contains pacemaker cells
that generate the respiratory rythm of the fish. The medulla alone is capable of
sustaining ventilation, however the midbrain synapse with both the reticular for-
mation and the cranial nerves, and is through this capable of altering respiration.
In addition to efferent pathways, the cranial nerves possess afferent branches,
projecting to different locations in the brainstem. The sensory pathways are
receiving stimuli from mechanoreceptors and chemoreceptors, modulating the
breathing to adapt to the millieux.

The main modulatory sensory input for fish ventilation stems from oxygen

4



Author Weight (g) resp. freq. (num/min) Stressor

Hosfeld[32] 29.2 73 control
Hosfeld[32] 29.2 65 125% DO
Hosfeld[32] 29.2 57 145% DO
Hosfeld[32] 29.2 53 178% DO
Knoph[33] 430 56 control
Knoph[33] 430 61 30 mg/l ammonia
Knoph[33] 430 60 56.2 mg/l ammonia
Millidine[34] 1.8-12.6 61-140 Diverse
Erikson[35] 1641 161 Commercial transport
Erikson[35] 1641 137 Open transport
Erikson[35] 1641 153 Closed transport
Erikson[36] 4410 55 and 64 Control
Erikson[36] 4410 80 and 81 Crowding

Table 2.1: Overview over salmon ventilation frequency

chemoreceptors[28]. Branchial receptors of this type, oriented either towards
the blood or the water, have a pronounced effect on both ventilation frequency
and amplitude. Extrabranchial externally oriented sensors, such as those lo-
cated in the orobranchial cavity, are mainly altering ventilation amplitude[29].
In addition to oxygen receptors, fish possess externally facing CO2 sensitive
chemoreceptors at their gill arch[29], and internally oriented H+ sensors close
to the fish arteries[30]. In salmon, CO2 sensors are far more prominent than
H+ receptors[31].

Table 2.1 presents an overview of salmon ventilation frequency at different
stressors, environments and sizes. Most salmon seems to fall in the ventilation
range [1, 2.5] Hz, with 1 Hz being the resting respiratory frequency.

2.3 Stress in fish

Fish get stressed when subjected to real or perceived stressors such as high tem-
perature[37] or hypoxia[38]. The physiological responses to these irritants are
initiated and controlled by two endocrine axes; the Hypothalamic-Sympathetic-
Chromaffin cell (HSC) axis and the Hypothalamic-Pituitary-Interrenal (HPI)
axis. The functioning and effects of these will be expanded on in the following,
structured according to the three layers of physiological responses as described
by Barton[39].

2.3.1 Primary responses

The primary responses are the endocrine changes that occur in the fish imme-
diately after being exposed to a stressor. The main agents are cathecolamines
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and corticosteroids, which are effectuated by the HSC axis and the HPI axis,
respectively[12].

Cathecolamines, of which ephinephrine and norephinephrine are the main
actors, are secreted into circulation by direct action of the hypothalamus on
the chromaffin cells of the head kidneys by the sympathetic branch of the au-
tonomous nervous system[12]. These stress hormones can also be excreted from
chromaffin cells in direct response to reduced oxygen levels, without being stim-
ulated by the hypothalamus[40].

The HPI axis is initiated by the release of Corticotropin Releasing Hor-
mone (CRH) by the hypothalamus, causing the anterior pituitary to secrete
AdrenoCorticoTropic Hormone (ACTH). This in turn causes interrenal cells to
synthesize and release cortisol. In addition to this main pathway, several other
endocrines have been shown to support, inhibit or replace CRH and ATCH in
the cortisol pathway of fish[12]. As this endocrine axis involves hormonal signal
transfer, it works slower than the nerval driven HSC axis ([14], chapter 11).

Some fish circumvent these main hormonal axes, and rely on sympathetic
nerve activity as a response to stress instead[41]. Salmon is not in this group,
so this peculiarity will not be pursued further.

2.3.2 Secondary responses

The secondary responses are the direct effects of released endocrines on physio-
logical systems in the fish, such as the cardiovascular system, the defense system
and the respiratory system, as well as changes in metabolism and hydromineral
balance[39].

Starting with the cardiovascular system, stress modulates the teleost heart
by cholinergic and adrenergic neural pathways ([14], chapter 7) in order to
raise[42][43] or lower[24][42] the beating frequency. Also direct endocrine ac-
tions modulate the cardiovascular system of fish. Catecholamines[44] and corti-
sol[45] increase cardiac contractility, catecholamines induce vasoconstriction in
the systemic circuit, and vasodilation in the branchial capillaries[12], adrenaline
increase the permeability of gill epithelium[46] and catecholamines increase the
blood transport capacity[47] and hematocrit[12].

The increased diffusion through the gills driven by the mechanisms above
disturbs the hydromineral equilibrium of teleosts. Cortisol have some regulating
effects on this balance, causing proliferation of the osmolarity regulating[48]
chloride cells[49], and might[50][51] have an effect on sodium-potassium ATPase
activity.

With regards to metabolism, catecholamines are the hormones that exert the
main glycemic control during stress. They cause elevated glycogenolysis, slightly
elevated gluconeogenesis, and might cause an increase of free fatty acids[12].
Cortisol promote some gluconeogenesis and lipolysis.

Lastly, stress hormones alters ventilation, however the relationship is con-
troversial[12]. Evidence have been presented for both a positive[52][53] and a
negative[54] correlation between catecholamines and ventilation response. In
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Author Cortisol Stress Growth rate

Mcckormick[55] Reduced Handling Reduced
Pickering[59] No effect Handling Reduced
Barton[60] Injected No Reduced
Barton[60] Reduced Handling No effect
Fast[61] No effect Handling No effect

Table 2.2: Overview over papers examining the relationship between cortisol,
stress and growth rate

the case of severe hypoxia, where feeding muscles are recruited in an attempt
to stave off further oxygen deficit, catecholamines seem to have an effect[53].

2.3.3 Tertiary responses

This kind of responses is the main reason farmers are concerned about stress
in fish. They describe how the organism is affected by stress, causing reduced
growth, weaker defense system, accelerated ageing, and reproduction problems,
culminating in reduced revenue of the farm.

Fish subjected to stressors show reduced nutrient assimilation by actions on
the appetite[55][38] and gut[56], and stress induced release of cortisol promote
proteolysis[57] and reduce myogenesis[58]. Some of the research on the long term
effects of cortisol and stress on growth is displayed in table 2.2, and show that
chronic stress lower basal plasma cortisol levels, while the effects of handling
and cortisol on growth differ between experiment setups and salmon strains.

Furthermore, both immune enhancing and immune suppressive effects have
been observed from stress, with the acute responses tending towards increased
immunocompetence, while the chronic effects are immunodepressive. The de-
pressive effects far outweigh the enhancing ones ([14], chapter 10). In salmon,
acute stress cause enhanced expression of inflammatory genes, while chronic
stress leads to decreased stimulation and survival of leukocytes[61]. Further-
more, cortisol seems to prevent skin growth[62].

Accelerated aging has also been observed in teleosts during stress, where
cortisol has been shown to promote apoptosis in pavement, mucous and chloride
cells[63][64].

Lastly, stress affects all levels of the reproductive system of fish, with a clear
detrimental effect ([14], chapter 8). In salmon, elevated maternal cortisol levels
lead to increased mortality, reduced size and increased morphological malfunc-
tion in offsprings[65].

2.3.4 Fish personality

Having discussed the general response of teleosts to stress, it is necessary to
state that fish responds in different manners from individual to individual. In
the literature, it is common to separate fish into two personality categories
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based on their stress response, proactive and reactive. They are diverging by
the former category tending towards low cortisol response after acute stress[66],
high sympathetic activity[67], social dominance[68], low locomotor activity[69],
quick feeding in novel environments[69] and lower ventilation rate[70].

2.4 Stress evaluation

To properly research and draw inference on stress, some method of observation
and quantification of indicators are necessary. Catecholamines and cortisol are
the initiators of later modulation of physiological systems, and measuring these
should provide a perspicuous perception of the fish stress state.

Catecholamine concentration in blood plasma rise quickly after stressor ex-
posure ([14], chapter 11), making it difficult to use as a stress indicator, since
capture and handling prior to blood sampling have a great effect on measured
levels. Furthermore, the measurement of catecholamines requires highly spe-
cialized equipment[71].

Cortisol is better fit as a stress metric than catecholamines due to its slower
response and easier means of analysis. It can even be measured in water around
the fish[13]. Furthermore, a correlation between crowding stress and immediate
blood cortisol elevation has been firmly established[72][73][13][74], although, as
previously seen, some accommodation effect might occur after long term expo-
sure. This long term effect will influence whether cortisol can predict chronic
stress as well as acute stress[75]. Considering the above, cortisol can be consid-
ered the current gold standard of fish stress evaluation, at least for acute stress
([14], chapter 11).

Even if cortisol measurements are precise, their invasiveness limit their prac-
tical applicability. Furthermore, solutions for reducing invasiveness, such as
measuring water bound cortisol, cannot differentiate between individual salmon.
This motivates exploiting an easily accessible secondary response for stress eval-
uation instead. One such marker could be respiration frequency, which is both
non-invasive and individual specific.

The use of ventilation as a stress indicator, however, is controversial. Some
researchers argue against its use, claiming it is insensitive to stress[76], that it
has too many confounding variables[73], and that it requires the fish to ventilate
by pure buccal pumping. Others hold that the variable is among the most
informative for stress elucidation[36][77]. A bonus of using this metric is that
ventilation frequency can inform about more than stress state, such as type of
stressor[78] and stress coping strategies[70].

Traditionally, ventilation has been measured by counting opercular[79] or jaw
oscillations, or measuring electrical activity of buccal muscles by external[80]
or internal[81] electrodes. The measurement methods related to counting is
possible to automate by computer vision methods.
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2.5 Stressors

Temperature[82][83][84] and oxygen concentration[84][85] in the epipelagic zone
shows diurnal and yearly cycles, as well as spatial variations, often to an extent
that moves the environment in and out of salmon stress and welfare thresholds.
This affects farming sites as well, motivating a further exploration of these
stressors.

2.5.1 Oxygen

Salmon consume oxygen for metabolic activity, and stress, size[86], tempera-
ture[87] and exercise ([14], chapter 7) change the oxygen requirements of the
fish. When the fish is unfed, resting, and only maintaining normal physiological
functions, its metabolism is in a state known as standard or resting metabolic
rate. This distinguishes itself from the maximum metabolic rate, in which the
fish cannot increase its aerobe metabolism further. The difference between these
two are known as the metabolic scope[88], which, colloquially speaking, is the
capacity the fish has for activity. When the oxygen requirements of the cells
surpass the current availability of blood oxygen, salmon normally cope by in-
creasing the water flow over their gills in order to raise oxygen availability around
its lamellae, ensuring sufficient oxygen delivery to the cells[89]. This strategy is
known as oxyregulation[90], and is only a feasible approach as long as the fish
metabolism is inside the metabolic scope. At excessive metabolic challenges,
increased water flow over the gills is not a viable compensation strategy, and
the salmon start conforming to the environment by decreasing the metabolic ac-
tivity, increasing anaerobic metabolism and focus energy expenditure on imme-
diate survival[85]. The oxygen saturation when salmon switch from regulators
to conformers is called pcrit[91].

Low DO saturation cause three main effects on salmon ventilation frequency.

1. The salmon ventilation frequency increase to compensate for the low oxy-
gen gradient at the lamellae-water interface in hypoxic environments.

2. The salmon ventilation frequency is influenced by the transient cortisol
release in fish induced by reduced water DO content[92][93] (see section
2.3.2). Since the stress response of salmon is somewhat adaptive, as seen
from e.g. the effects of stress on the teleost heart (section 2.3.2), it is likely
that stress responses caused by hypoxic conditions cause an increase in the
ventilation frequency.

3. The metabolic rate of fish change together with the DO content according
to the oxyconformance effects discussed above. For high oxygen satura-
tions, the oxygen requirements of fish are constant or slowly decaying,
while the oxygen requirements decrease linearly (with a faster rate than
before) after a breaking point[94]1[95].

1This article discusses Sturgeon, which is part of the same subclass as Salmon (Actinoptery-
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By assuming the oxygen gill uptake is proportional to the total amount of
oxygen flowing over them, such that two litre of 50% oxygen saturated water
provide the same amount of oxygen to the fish as one litre of 100% oxygen
saturated water, the oxygen gradient alone would yield a linear increase in ven-
tilation frequency in response to decreasing DO content. This linear ventilation
frequency increase is subjected to two opposite curvature influences from the
two remaining ventilation frequency effects; the reduced metabolism under hy-
poxic conditions (oxyconformance) pushing it towards concavity, and the stress
effects pushing it towards convexity. The reason that these effects influence the
curvature, is that they are only active after a breaking point, hence the rate of
increase of the ventilation frequency will change as the DO saturation decreases.

In [85]2, empirical ventilation frequency to DO curves are presented, dis-
playing a slightly sigmoid (almost linear) ventilation frequency shape as the
DO saturation decreases. This is consistent with the above discussion. The
oxygen gradient is the main driver of the ventilation frequency increase, with
convex stress effects being most significant at the beginning of the DO decrease,
and concave oxyconformity effects being more pronounced as the DO content
approaches pcrit.

If the DO content decreases past pcrit, oxyconformity will be the main in-
fluence on the fish ventilation, causing the ventilation frequency to decrease.

2.5.2 Temperature

Fish, with some exceptions[96], are unable to regulate their body tempera-
ture[97]. They deal with varying ambient temperatures by locating themselves
at water areas holding optimal3 temperatures[99]. Salmon have a higher tem-
perature tolerance than other salmonids[100], with farming industry theory sug-
gesting survival between zero and 23 degrees Celsius, reasonable growth between
six and 16 degrees Celsius, and optimal temperature between 12 and 15 degrees
Celsius[101]. This is challenged by later work, suggesting optimal temperature
between 16.5 and 20 degrees Celsius[102][85]. These ranges are simplifications,
and are not true for all cases. For example, acclimation has an effect on lethal
limits[103][104], and viral infections[105] and stress[106] have an effect on opti-
mal temperature.

The relationship between resting metabolic rate and temperature is still
an area of active research. Several curves have been suggested to explain the
correlation between the two variables, such as exponential[107][101], sigmoid[94]
and Gaussian[108]. The unexplained variance of the fit of these curves are
large, and some papers have findings that disagree with all the suggested curves,
such as seeing a ventilation decrease with increasing temperatures at water

gii), but not the same infraclass (Teleostei). Sturgeon is instead part of the infraclass Chon-
drostei[19]. This might limit the relevance of this paper to salmon physiology.

2The version of [85] that the URL in the bibliography of this document link to does not
contain the DO to ventilation frequency curves.

3Optimal temperature for fish can be defined as the point where the difference between
standard and maximum metabolic rate is highest[98].
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temperature below ten degrees[109]. The general trend seems to be an increase
of the resting metabolic rate as the temperature increases.

The complex biological interplay in salmon makes the extent to which stress
is responsible for the observed temperature induced ventilatory changes diffi-
cult to delineate. It seems clear that deviation from the optimal temperature
increasingly brings the fish into a range of stress ([14], chapter 9), and that in-
creased temperature increases cortisol in fish[110][111]. Some papers, however,
find that the cortisol increase is only significant at extreme temperatures[112].

As another point when it comes to the relationship between temperature,
ventilation and stress, elevated temperature boosts cortisol increase after expo-
sure to other stressors[87].

2.5.3 Interplay of temperature and oxygen

The salmon oxygen uptake and temperature are closely related. As the tem-
perature increase, the percentage of oxyconformers increase, the critical oxygen
saturation (Pcrit) increase[91][85] and the metabolic scope changes (it decreases
as the temperature deviates from the optimal)[101].

In addition to the difference in salmon hypoxia response at different temper-
atures, increased temperature changes the environment by decreasing oxygen
solubility[85]. Furthermore, the discussed stressors affect other internal mech-
anisms, as an example, higher temperatures and higher DO content leads to
faster growth[113][114].

2.6 Fish welfare

When it comes to fish welfare, three different definitions have been proposed.
Feelings-based welfare evaluation looks at the subjective experience of the fish,
function-based welfare evaluation looks at the extent to which the animal is cop-
ing with its environment, while the comparison with natural lives is evaluating
in what manner the fish is exhibiting behaviour similar to that of a wild fish
([14], chapter 12). Some work has been done in moving from these rather vague
definitions to more tangible, quantitative analysis. The Salmon Welfare Index
Model (SWIM) index is one such approach, where several indicators of welfare
in fish farms, such as temperature, salinity, mortality and condition factor, are
evaluated and summed to acquire a single welfare score[9][10].

By comparing the indicators of the SWIM model with the secondary and
tertiary responses covered in this study, it is clear that stress and welfare of fish
is intimately linked. Some welfare indicators are directly affected by chronic
stress response, such as growth, reproduction and appetite. In the rest of the
indicators, the causal direction is turned, and reduced welfare indicators cause
stress. This is the case for temperature, stocking density and disturbances.

One aspect of welfare not addressed in the SWIM index is that fish subjected
to reduced well-being alters behaviour. In salmon, fixed feeding and underfeed-
ing cause aggression, hyperoxia reduce swimming speed, parasites reduce max
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swimming speed, cage submergence increase swimming speed, environmental
gradients cause changed space use, and scheduled feeding cause higher swim-
ming speeds[115]. As seen above (section 2.3), cortisol is linked to both feeding
behaviour and oxygen requirements, hence some of these behaviour responses
might be a tertiary stress response. Furthermore, a correlation is observed
between cortisol levels and hierarchical position, suggesting a stress mediated
pathway in displacement aggression[116]. Swimming behaviour have been con-
sidered in other welfare indexes[117], as well as in earlier computer vision based
works for welfare estimation[17].

considering the findings in this section, we establish that stress and welfare
are equal for our purposes. To be more specific, a stressed salmon, at least if this
stress is chronic, has poor welfare, while a salmon with low welfare is frequently
stressed. Due to this, we will focus on stress in the rest of this report, as this
property is more tangible and has a stronger link to physiological effects than
welfare.
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Chapter 3

Literature survey Computer
vision

3.1 Chapter introduction

This chapter discusses different ways of solving the main computer vision re-
lated challenges of this report by first presenting the technical description of the
problem, moving on to discussing the input, the output and the core obstacles of
the problem, and finally how the input-output mapping should be constructed.
Two approaches are suggested for the mapping; an end-to-end and a composite
pipeline. The composite pipeline disquisition is further split into subsections
covering possibilities at each pipeline segment.

3.2 Problem statement

The problem that this report endeavours to solve can be framed as follows.

P: Find the transformation T that maps an ordered set of tensors V
onto a set of salmon frequencies F.

This is a very general description of the task of measuring the breathing
frequencies of salmon from underwater video recordings taken in fish tanks,
however it allows an initial separation of the problem into three parts; input,
transformation and output.

3.3 Problem input

The input V is received from cameras, which all have a similar mode of op-
eration. Reflected light hits a lens, is steered through an aperture, before it
hits color-sensitive photodiodes. When a shutter, placed behind the aperture, is
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closed, the intensity values of the photodiodes are read by an Analog to Digital
(A/D) converter, and a tensor of integer values is passed on for further pro-
cessing ([118], chapter 2). Some cameras, termed event type, omit the shutter
by replacing the A/D converters with value triggered integrators, facilitating
continuous time registration at the cost of spatial resolution and color[119].

Most consumer cameras today have a frame rate of at least 30 Hz[120],
which is around ten times the Nyquist frequency[121] of salmon ventilation,
making this frame rate a well suited sampling rate. Considering this, the time
discretization induced by the shutter does not pose an obstacle for respiration
frequency elucidation, and a reasonable high resolution water proof camera is a
good choice for capturing the salmon scenery.

3.4 Problem output

The value of the salmon frequency data at the pipeline output depends on the
extent to which it describes salmon stress state. As such, the algorithm should
return the breathing frequency itself, as well as variables that correlates with
both ventilation rate and stress. To formalize, the output should be points on
an underlying function g() : M → R in some euclidean topology M, where the
axes of M align with those of frequency variability, and the function output of
g is a ventilation frequency.

The review in the previous chapter (chapter 2) suggests that the breathing
frequency of the shoal depends on two main factors; time and individuals. The
former is a proxy for other variables, like temperature and dissolved oxygen,
that can be ultimately linked to stress. Considering this, the output set should
consist of four-tuples such that F = {f̃ |f̃ = (f, t, c, l)} where f is a single
frequency, t is a short time range c is an identifier for salmon individuals and l
is the location of a fish. The l variable allows linking f̃ instances with close time
proximity, ensuring redundancy in case of occasional errors in c. From f̃ , then,
it is possible to estimate g(t, c) = f. As g() is a function dealing with biological
relationships, it will be highly stochastic, and as such primarily has descriptive
power over general trends, and not necessarily specific details.

3.5 Core obstacles

Before delving into the construction of the pipeline T , it is useful to state some
of the obstacles that must be overcome.

1. The size of the input data is huge. A conservative estimate is one million
pixels per image channel and a frame rate of 60 Hz[120], summing to over
ten billion pixels for each minute of video.

2. The output is far smaller than the input, and has a completely different
form.
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3. Salmon rotate, translate, deform and are exposed to different lighting
conditions, complicating detection, individual identification and keypoint
localization.

4. Lense and image-water interface cause deviation from an ideal pinhole
camera model, resulting in deformation in the 2 Dimensional (2D) map-
ping of the salmon scenery unless compensated by an elaborate camera
model. This comes in addition to the information loss intrinsic to any 3
Dimensional (3D) to 2D mapping.

5. Individual salmon look very similar, which complicate salmon identifica-
tion.

Considering the size of V , deep learning should, and does, play a critical role
in the pipeline. This machine learning method is able to learn very accurate
transformations from input-output relationships, and shows better results than
manually engineered features as long as the dataset is big enough[122]. Below,
two different approaches for incorporating deep learning into T (the transfor-
mation from videos to salmon breathing frequency information) are discussed.

3.6 End-to-end training

The output of the breathing frequency extraction pipeline F could be annotated
directly on a small video sequence. Assuming a minimum salmon frequency of
0.8 Hz (see table 2.1), a 75 frame video with a frame rate of 60 Hz is sufficient
to capture at least one period of salmon breathing. As several salmon can
be present in one frame, each salmon in each frame must be labeled with the
identifier c. Then, one datapoint consists of a R75×W×H×3 tensor as input, and
a tuple (f ∈ RN , t ∈ R1, c ∈ N75×N , l ∈ N75×N×4) as output, where N is the
number of salmon in the sequence, l is the locations of all salmon and (W, H) is
the dimensions of the image. Assuming seven fish and fourteen1 dot structure
classes, 52500 classes and locations must be annotated for a dataset with 50
instances from each class.

Here we consider two types of deep learning frameworks that can be em-
ployed for video data, whereof the first is sequentially passing frames into
the network, and letting the network remember previous images by the use
of memory units. These memory units can be backward connections in the
network([123], chapter 15), Long Short-Term Memory (LSTM) cells[124] or im-
age LSTM cells[125]. Object detection and classification have been successfully
solved by exploiting image LSTM cells[119], and extending such a network with
a frequency estimation head should be trivial (at least conceptually).

In the second framework images are stacked in a new dimension, and this
large tensor is treated as a single unit. This has been successfully applied to

1The network must learn each side of the salmon independently.
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action recognition[126], and one could frame the problem P as an action classifi-
cation task by creating classes for all permutations of individual fish and frequen-
cies. To be more specific, it is possible to define c as c ∈ {a10, a12, ..., n22, n24},
where the letter corresponds to the fish individual and the number corresponds
to frequencies (in decihertz). These kind of networks have a high number of tun-
able parameters, and demand more data and training time than their frame-by-
frame counterparts[126]. Some complexity reduction can be achieved by differ-
ent methods, one of these is to incorporate Spatio-Temporal short term Fourier
Transform (STFT) blocks into the neural network. These blocks use fixed con-
volutional layers to extract local Fourier information, together with learnable
linear weights determining how the fixed Fourier channels correlate[127].

3.7 Composite pipeline

3.7.1 Deep learning

The end-to-end networks described above are intriguing, however their large
data requirements make them impractical for a thesis project. One alternative
approach is to use deep networks as part of a composite pipeline that eventually
outputs F . The primary external manifestation of salmon breathing is its jaw
movements, which can be inferred by the evolution of framewise jaw pose. The
problem of jaw pose estimation is a special case of the more general keypoint
detection problem, satisfactory solved by networks such as Keypoint Region-
based Convolutional Neural Network (RCNN)[128].

Keypoint RCNN has as input the same V as the problem statement P, and
can learn to predict keypoints, bounding boxes and classes through supervised
learning techniques. Using the network to predict classes would cause the same
large training data predicament as faced earlier (section 3.6), but by disregarding
classification in the first deep learning phase, reasonable salmon detection and
keypoint localization results can be obtained by annotating only 50 frames2.

Jaw movement detection could be enhanced by some classical machine learn-
ing methods, such as incorporating optical flow[129][130] grids into the network,
Exempli Gratia (e.g.) by warping the color image grid[131] in a way that en-
hances (zooms in on) locations with high velocity. Due to the deformation,
distortion and complex motions of the salmon, however, creating a beneficial
warping is far from trivial. Some of the problems that pose themselves are
inconsistent warping between frames and warping of non-jaw areas.

Even though jaw pose estimation seems like the most straight forward way
to evaluate respiration frequency, other biological mechanism could be eluci-
dated instead. One such mechanism is the hydromineral balance, which can be
measured by change in colorimetric properties of water based on calcium con-
tent[132]. As respiration is correlated with hydromineral balance (section 2.3.2),
detection of hydromineral disturbance would indirectly provide information on
salmon respiratory state. It is unlikely that this method would be able to extract

2This number is based on feasibility examination performed by the author.
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ventilation information about individual salmon, and the extracted respiration
information would probably be imprecise (due to the very small color changes
the hydromineral disturbance induce). As such, measuring jaw pose evolution
come across as a better approach for solving the problem P.

3.7.2 Linear assignment

Assuming two consecutive frames with object and keypoint detections, any tem-
poral inference of the objects require a method that matches items between
frames. A simplistic way to accomplish this is to match instances by bounding
box Intersection over Union (IoU) score (see section 4.2.6) across frames. This
requires a tight thresholding parameter and is prone to wrong matches when
detections are overlapping. More sophisticated methods can be explored by for-
malizing the problem as a linear program, as shown in equation 4.7[133]. Here,
a cost matrix c is introduced to define the proximity between all salmon detec-
tions in the two frames, as well as an index matrix x, representing the matches
of the salmon between frames.

Dantzig showed that the linear assignment problem (eq: 4.7) can be solved by
classical linear programming algorithms such as the simplex method [134]3. This
approach is not very efficient, with exponential time complexity for some un-
fortunate configurations[135], motivating the development of better algorithms
specifically tailored for item matching.

A well performing group of algorithms focuses on the idea of applying the
primal-dual relationship of optimization theory to bipartite graphs. Kuhn[136]
and Munkres[137] started this line of research when they framed the linear as-
signment problem as a maximum flow problem, which they solved by iteratively
bringing the dual and primal solutions closer to each other, until convergence
at the optimum.

Although still popular, this algorithm is outperformed by newer methods[138].
A popular algorithm, used in modern python libraries[139], is presented by
Crouse[133] as the culmination of a long line of contributions originating from
Kuhn and Munkres. The first step was taken by Tomizawa[140], which improved
on Munkres method by framing the linear assignment method as a shortest path
problem, solved by repetitive uses of Dijkstras[141] shortest path algorithm.
Jonker and Volgenant[142] further improved on this idea, before Crouse finally
demonstrated how to deal with the case of different number of objects to match
(Nr ̸= Nc).

All the methods discussed above converge at the global optimum, and con-
sidering the small problem size when matching salmon across frames, any of the
mentioned algorithms will perform satisfactory. The main engineer decision in
this part of the pipeline is what kind of cost the c matrix should be filled with.
The euclidean distance is often a standard choice when measuring distances,
however employing the Mahalanobis distance[143] instead is intriguing. This

3Strictly speaking, he demonstrated it for a closely related problem known as the trans-
portation problem.
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measurement weights the euclidean distance by the inverse covariance matrix,
so uncertain detections have reduced influence when the distance is short, and
increased influence when the distance is long. As will be discussed later, the
current salmon detection could be matched with not only the previous salmon,
but with some composition of several previous measurements, contained in an
item known as a tracker. Some of these trackers, like the Kalman filter, keeps
an updated covariance matrix describing the uncertainty of the composite state
estimate (P in the Kalman filter). This covariance matrix can be used for
calculating the Mahalanobis distance in the linear assignment problem.

3.7.3 Object tracking

Matching detections between frames can provide good trajectories, however any
one frame without detection of a fish will end that track. Several methods
have been proposed to accurately track multiple objects in the presence of lost
detections, false positives, and noise, with the Kalman filter[144] based algo-
rithms being popular for computer vision applications[145]. These types of
trackers require a model of the swimming behaviour of the fish, which could
be as easy as assuming some coherence of swimming direction and velocity,
or something more advanced, like what was developed in Føres fish modelling
experiments[146][147][148].

A possible extension of a purely linear velocity based Kalman filter is to
include salmon rotation and camera projection into the mathematical model.
The nonlinearity of the new model requires some adjustment to the Kalman
filter, such as seen in the Extended Kalman filter or the Unscented Kalman
filter[149].

Another possible improvement of the tracking method is to replace the simple
frame-by-frame linear assignment association method with a more sophisticated
probabilistic algorithm, such as Cox and Reids multiple hypothesis tracking
algorithm[150][151].

3.7.4 Jaw poses

Tracking keypoints attached to the same salmon over a time period allows es-
timating jaw pose evolution, which can be used for respiration frequency es-
timation, as long as the salmon is breathing by buccal pumping. Several jaw
poses can be envisioned, such as euclidean pixel distance between the upper
and lower jaw, angle of mouth opening, or jaw distance after normalizing the
salmon size by warping it onto a fixed configuration by the application of a ho-
mogeneous transformation matrix. In table 3.1, the strengths and weaknesses
of the different considered methods are compared. Generally, as the jaw pose
estimation method become more complex, the robustness decrease, as more key-
points must be correctly placed for the jaw pose to be correctly estimated. On
the other hand, more keypoints makes it is easier to determine whether the jaw
pose measurements are correct, as fewer relative keypoint placements are valid.
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Features Euclidean Angular Normalized euclidean

Number of keypoints 2 3 6
Rotation invariance Dorsoventral and lateral axes Lateral axis All axes
Scale invariance No Yes Yes

Ease of error detection Difficult Medium Easy
Robustness Good Medium Poor

Amplitude measurement No Yes Yes

Table 3.1: Overview over methods of jaw pose estimation

3.7.5 Frequency extraction

The output after Keypoint RCNN detections, linear assignment and tracking
is a set of jaw pose time series of unequal length. These contain oscillations
corresponding to the mouth opening frequency of salmon jaws, together with
offset drift, varying amplitude and noise. As the jaw pose errors come from
wrong neural network detections, they will not necessarily be described by a
well-behaving probability distribution, and their probability distribution could
be both multimodal and skewed. Both the complex dynamics of the true jaw
gape evolution and the difficult error distribution makes direct application of
frequency extraction algorithms such as autocorrelation or Fourier transforms,
as well as classical outlier rejection algorithms, unsuited.

RAndom SAmple Consensus (RANSAC) type algorithms can to some ex-
tent overcome difficult noise distributions by sampling a subset of (time series)
points, estimate a model from the sampled points (by e.g. the Levenberg-
Marquardt (LM) method, see section 4.9.1), and evaluate the model fit by
counting inliers[152]. This moves the problem of discerning outliers from before
to after an underlying model exists. The model to be fitted could be a bi-
nary switch explaining whether the jaw gape is larger than the mean, or a sine
wave. The original RANSAC method[153] can be extended with a series of im-
provements such as smart sampling[154][155], effective model validations[156],
refining the best model[157] or more elaborate loss functions[158].

Other options for detecting the time series frequencies are the use of genetic
algorithms[159], or exploring clever outlier pruning algorithms suited for difficult
outlier distributions.

3.7.6 Salmon identificators

The earlier parts of this chapter completes the pipeline for three of the four ele-
ments in the output tuple f̃ . In the final parts of this chapter, the last element of
f̃ , c (individual salmon class), is dealt with. Salmon classification is not strictly
necessary to elucidate frequency change over time, however it reduces estimation
variance if there is any correlation between salmon individuals and frequency
inside a school. Earlier work has demonstrated that computer vision methods
can differentiate individual fish both for salmon [160] and other species[161].
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Cisar[160] used the salmon dot structure of the dorsoanterior quadrant of the
fish body to distinguish between fish instances. His out of water photography
setup made it possible to remove almost all pose dependent variability, which
facilitated a dot by dot distance calculation between fish images that directly
explained the dissimilarity between fish. Although the problem Cisar solved is
an easier problem than the one discussed here, it demonstrate the feasibility of
salmon recognition by dot structure.

The amount of literature on human re-identification is far greater than that
of salmon. Typical approaches in this field is to match equal individuals by com-
paring distances between body landmarks[162], gait[163], height[164] or body
area. These strategies could also mutatis mutandis be applied to salmon.

3.7.7 Salmon identification

Assuming the use of Keypoint RCNN in the pipeline, clippings of salmons dis-
playing part of its dot structure are readily available. This is a natural input to
the salmon identification algorithm, and the output is given from F as a single
class represented by an integer. The depicted fish exhibits texture, deformation
and 3 dimensional rotation and translation, complicating the problem. Further-
more, fish eye cameras add radial distortion when mapping a fish scene onto
camera sensors. If the fish is sufficiently far away from the camera, the texture
becomes inconsequential and the radial distortion approaches constant over the
span of the fish. Deformation is significant over the entire fish, however the
head is almost entirely acting like a rigid object, except for the lower jaw. If
the region of interest is extended further posterior on the fish, more distortion
occurs, however the extent of the distortion can be considered small as long as
the region of interest does not extend past (more posterior than) the dorsal fin.
By disregarding the minor effects of uneven scaling, deformation and texture,
the fish-camera system can be modelled as a rigid plane exposed to a pinhole
camera.

One way to classify individual fish is to train a convolutional neural net-
work[123] classifier. The filters of deep CNNs (Convolutional Neural Networks)
are powerful when it comes to pattern recognition under spatial variance, how-
ever they cannot, without certain tricks, deal with rotation, scaling or defor-
mation of objects. A common approach to overcome this is to augment the
input data in plausible ways, and let the network learn distortion invariance
by generating a set of parameters for each configuration[165]. For rotation in-
variance specifically, an alternative strategy is to learn only one canonical filter
representation, apply this to the input in a set of rotated configurations, and
max pool the feature maps at the network output[166]. Also restricting con-
volutional weights to adhere to isotropic constraints are popular[167]. A final
possibility in the search for pose invariance is to reduce the need for distor-
tion robustness of the network by mapping the input objects to a predefined
configuration before passing them through the network. By exploiting the key-
points found by the Keypoint RCNN network, a homogeneous transformation
can transform the salmon clippings to a predefined pose (see figure 6.3). This

20



preserves the salmon dot structure as long as the simplifications of the previous
paragraph are valid. The mapping could be made even more precise by recti-
fying the video[168] before applying the Keypoint RCNN model to the salmon
recordings, or introducing more keypoints when calculating the homogeneous
transformation matrix.

A main consideration in salmon reidentification problems is that the amount
of data for each class can be very low, or even missing, due to the infeasability
of building a database over every fish in a farm. First consider the case where
the number of fish are limited, and it is possible to build a small individual fish
dataset. This problem is known as few-shot classification.

Instance recognition is usually performed in four steps; instance detection,
instance alignment, feature extraction and classification[169], and the case of
few-shot learning is no exception[170]. The first step is handled earlier in the
salmon breathing frequency extraction pipeline (section 3.7.1 about Keypoint
RCNN), the second step was discussed in the first paragraphs of this section
(homogeneous transformation), and the last two steps will be dealt with below.

In SOTA methods, feature extraction is mostly performed by some sort of
neural network, while the classification itself tests a distance measure[171]. This
distance could be euclidean, cosine, Mahalanobis[170], L1 (as seen in siameese
networks) or neural networks[172]. Below, some popular feature extraction
methods are presented.

1. K Nearest Neighbors (KNN) networks consider the image to be a point
in a RW×H×C space, and classify novel datapoints by a max vote of the
k nearest neighbors ([173] for an introduction to the k nearest neighbor
algorithm).

2. Prototypical networks learn an informative embedding space, and repre-
sent each class as the mean of a set of examples in this space. At inference
time, the test point is assigned to its closest mean[171].

3. Siameese networks accept two images, and outputs a value describing the
similarity of these images[174]. Traditionally, examples of positive and
negative pairs are needed during training, however a late approach is able
to generate a descriptive feature map without negative pairs, and without
convergence to the trivial solution[175].

4. The finetuning approach consists of first training a network on a huge,
general dataset, and then continue to train this network with a small,
few-shot dataset. Finetuning can be done with or without frozen layers,
generally performance increase by not freezing layers[176].

5. Model Agnostic Meta Learning specifically trains on quick adaption to
new datasets[177].

6. CNAPS use a novel layer, FiLM, which translate and scale fixed feature
maps. When exposed to novel datasets, only the FiLM parameters and

21



the final classifier are adjusted, enabling quick adaption on a small number
of parameters to tune the network according to the few-shot dataset[178].

7. TADAM is relatively similar to CNAPS, but it has a learnable scale factor
before the softmax output to reduce the network sensitivity to extreme
values and choice of distance metric[179].

Several of these few-shot classification approaches require a neural network
backbone, i.e. a convolution neural network that the more specific method
is built around[180]. These backbones also work as stand-alone classification
networks, with color images as inputs, and sets of class probabilities as outputs.
Below, the main peculiarities of three possible neural network backbones are
described.

1. AlexNet[181] is one of the first, and perhaps the most influential, paper
on deep CNN networks with Graphics Processing Unit (GPU) acceler-
ated training[182][183]. It has a classical pyramidal shape, and can be
considered a baseline for later CNN networks.

2. Efficientnet[184] is able to improve accuracy and decrease the number of
parameters (compared to AlexNet) by a balanced scaling of depth, width
and resolution of the network.

3. Resnet[185] uses skip connections between blocks (collections of a few
neural network layers) to combat the problem of vanishing gradients, and
are through this capable of greatly increasing the network depth. Benali
suggests that this network is a good neural network backbone[180].

The ideal salmon re-identification network is one that is able to correctly
identify already seen salmon, detect images that belong to a novel salmon, and
facilitate later re-identification of the novel salmon at operation time. This can
be considered a zero-shot classification task[186], as some instances are unseen
at deployment time.

Several of the few-shot models can trivially be generalized to zero-shot mod-
els. Siameese networks can be trained on a set of fish instances, and at de-
ployment the similarity between a novel fish and each of the seen classes can
be calculated. If the most similar class has too low score, the fish is a novel
instance, while a high score for the most similar class allows the fish to be as-
signed to that class. Prototypical networks can be adapted to the zero-shot case
by clustering seen fish in an embedding space by methods such as k-means[187],
DBSCAN[188] or Gaussian mixture models[189]. In recent years, some cluster-
ing techniques have been specifically designed for unsupervised re-identification
tasks[190].

For the case of salmon re-identification, leveraging knowledge of the problem
domain can provide better results than general re-identification solutions. A
discriminative feature on salmon is its dot structure[160], so by generating a
salmon dot mask, and then use this to classify salmon instances, better results
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might be achieved. Several ways of detecting dot masks can be imagined, three
of them are suggested below.

1. Use a segmentation neural network ([191] for an extensive review) to gen-
erate a dot mask directly.

2. Split the image into small windows, and classify each window as ”dot”
or ”no dot”, as seen in[160]. Afterwards, a dot mask is constructed by
concatenating the window classification results.

3. Use classical machine vision methods such as adaptive thresholding (see
section 4.6) to detect dot areas.

Consider the case where masks of prototypes of fish individuals, together
with the mask of a novel fish, are available. To classify the novel fish, one can
compare its dot mask directly with that of the prototypes, by assigning the
dots on the two masks to each other by Jonker-Volgenant[142] and sum up the
euclidean distance over all the dot matches. The sum of the distances can then
be used as a similarity metric between the protoype and the novel instance.
Another option is to transform the dot mask to an embedding space, which
could be as small as the R1 space Number of dots, and use distances in this
space to evaluate proximity to prototypes.

A clear issue with this approach is that it requires a very accurate instance
alignment (pose match) between the novel fish and the prototypes. It is doubtful
that a homogeneous transformation with four points detected by the Keypoint
RCNN is accurate enough, however using more keypoints, or a more complex
transformation, might improve the accuracy of the instance alignment.
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Chapter 4

Theory

4.1 Chapter introduction

This chapter presents the mathematics behind the algorithms that are employed
in the final breathing frequency analysis approach. It is structured according to
the order the different methods appear in the final processing pipeline, and as
such will begin with discussing neural networks, before continuing with assign-
ment methods, the Kalman filter, homogenous transformations and pixelwise
image transformations. After this, a probabilistic method for removing uncer-
tain classification sets will be presented, some statistical methods are displayed,
and algorithms for extracting frequency information from time series data are
elaborated on.

4.2 Neural networks

The cerebral cortex is the outer layer of our brain, and carries out essential
human functions including emotional response, execution of cognitive functions,
spatial awareness, motion planning, voluntary movement and sensory processing
([192], table 13.1). It spends 30 percent of its capacity on processing visual
information[193], demonstrating the importance and difficulty of understanding
complex scenery. Tackling this problem by artificial means has seen several
proposed solutions, with deep neural networks establishing itself as the top
contender in recent publications[194][122]. Deep neural networks mimic the way
our cortex processes visual information. It does so by organizing huge amounts
of nodes (neurons) and connections (synapses) in a layered fashion, in order to
create a generalized function with impressive descriptiveness. Up to 135 billion
parameters have been used in a single function approximator[195].
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4.2.1 Fully connected layers

The conceptually easiest, and mathematically most complex, layer is known as
a fully connected layer. Such a module calculates a weighted sum of all nodes in
the previous layer, passed through a nonlinear function. Let σ be an elementwise
nonlinear function, X be a row vector containing the inputs to the layer, W
be a square matrix containing the weights between all nodes, b be a row bias
vector and Y be the output of the layer. Then, a fully connected layer can be
represented as shown in equation 4.1 ([123], chapter 10).

Y = σ(XW + b) (4.1)

4.2.2 Convolutional layers

Fully connected layers are not well suited for extracting features from images.
They can not learn spatial invariance, and connection between all pixels in an
image is excessive. Convolutional layers improve on both of these issues by let-
ting filters scan previous layers for learned items, facilitating both detection and
localization of objects with a single weight set ([123], chapter 14). If the location
of an object is irrelevant for the task, pooling layers can reduce complexity and
leave the network almost[196] invariant to spatial location. A common network
structure is to begin with convolutional and pooling layers to extract features,
and then end the network with some fully connected layers to combine all the
local feature information into a global output. To move from convolutional to
fully connected layers, a flattening of the feature tensor is necessary.

Keeping to the notation introduced above, an arbitrary layer X of a con-
volutional neural network will be a depthwise stack of feature maps. Let the
subscripts w, h and d describe width, height and depth of the input map, and
f and s describe receptive field and stride. The receptive field of a kernel is the
dimensions in the input layer X that is captured in one node in the output layer
Y, and the stride of a layer is the size of pixel shift between each filter computa-
tion. Then, equation 4.2 ([123], chapter 14) describes how a node in the output
layer is related to the previous feature tensor in a convolutional neural network.
Note that the dimensions of X are extended compared to the fully connected
layer representation, from an X spanning only the two dimensions x and y (a
feature map plane), to an X spanning a three dimensional (x, y, z) feature map
space. The CNN filters vary along the added depth axis in the feature maps.
No stride is applied in the depth direction.

Yi,j,k = bk+

fh−1∑
u=0

fw−1∑
v=0

fd−1∑
z=0

Xi×sh+u,j×sw+v,z ×Wu,v,z,k

(4.2)
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4.2.3 Pooling layers

Normally, pooling layers are used with more or less regularity between convolu-
tional layers. They map a cube in the feature tensor to a single value, often by
using the max operator. Keeping to the notation of equation 4.2, this cube is
of size fh × fw along the spatial axes of the feature map, and includes fd filters
along the depth direction. By letting a function p define a pooling operation
(such as the max() operation) acting on a cube of pixel values, one element in
the output of a pooling layer is defined as shown in equation 4.3.

Yi,j,k = p(X[i×sh,i×sh+fh],[j×sw,j×sw+fw],[k×sd,k×sd+fd]) (4.3)

4.2.4 Training of neural networks

Having described the flow of data through different layers, it is now necessary
to elucidate on how the parameters are adjusted during the training phase. The
training is done by applying the generalized delta rule (backpropagation)[197],
which works in four steps:

1. Passing a feature vector through the network.

2. Compare the generated output vector to a manually annotated output
vector by computing the value of a loss function.

3. Calculate the gradient of the loss function with regards to all weights.

4. Adjust all weights by some form of gradient descent.

To understand the power of this method, note that the gradients in the lth
last layer can be decomposed. Assume we are in the middle of a fully connected
neural network, and wish to adjust a weight wl

2,3 that goes from node two in
layer l − 1 to node three in layer l. Let superscript describe layers (indexed
by l − 1, l or l + 1), subscript describe node connections (nodes are indexed
by N ≤ n), w describe weights, v describe node outputs (node values) and n
describe the size of hidden layer l+1. Then, the gradient of the loss with regards
to node wl

2,3 is given by equation 4.4. All gradients can be unwrapped based on
deeper nodes this way, until a full loss gradient is acquired. Mutatis mutandis,
the CNN gradients are calculated in the same manner.

∂L
∂wl

2,3

= (
∂L

∂vl+1
1

∂vl+1
1

∂vl3
+

∂L
∂vl+1

2

∂vl+1
2

∂vl3
+ ...

+
∂L

∂vl+1
n

∂vl+1
n

∂vl3
)
∂vl3
∂wl

2,3

(4.4)

Any gradient descent method can iteratively improve the neural network
parameter set (W) after backpropagation has provided ∇WL(W) (the partial
derivative of the loss function with regards to each parameter, i.e. ∂L

∂wl
i,j

∀i ∈
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ni, j ∈ nj , l ∈ nl). A good option is a stochastic version with momentum and
weight decay, allowing batch training, improving the likelihood of avoiding local
minima and reducing the erroneous effects of noisy gradients ([123], chapter 11).
Let b with parameter µ be the momentum, g be the generalized gradient, λ be
the regularization parameter, γ be the learning rate and L the loss function.
Then, the gradient is calculated using a random subset of the training examples
of the dataset (batch), and parameters updated, as displayed in algorithm 1[198].

Algorithm 1 Stochastic gradient descent

gt ← ∇WL(Wt−1) + λWt−1

bt ← µbt−1 + gt

gt ← bt

Wt ←Wt−1 − γgt

4.2.5 Keypoint RCNN

Architecture

The layers and training methods described above (in the previous subsections
of this section) have been incorporated into a SOTA network called Keypoint
RCNN, which is described in the original Mask RCNN paper[128]1. This net-
work is based upon Faster RCNN[200], which again draws inspiration from Fast
RCNN[201].

Fast RCNN uses a pipeline with two components; a Region Of Interest (ROI)
extractor algorithm, and a neural network to predict classes and bounding boxes
of the ROIs. The pipeline uses a conventional CNN to extract a feature map
of the complete input image, crops the feature map into several smaller tensors
determined by the ROIs, and then pools all the feature map crops to a fixed
size. Then, the equally sized feature maps are passed through fully connected
layers individually to estimate a softmax class vector and a per-class bounding
box (within the cropped area) for each feature map crop. An image from the
original paper visualizing the network structure is displayed in figure 4.1a to
make it easier to follow the description of the algorithm[201].

The main drawback with Fast RCNN is the two-step procedure, where the
ROI algorithm and the classifier must be developed separately. This is fixed
in Faster RCNN, where a common feature map is generated, a separate branch
is using these features to generate region proposals, the common feature map
is cropped into smaller tensors determined by the extracted region proposals,
before these crops are fed into into the ROI pooling layer of the Fast RCNN.
The network structure is visualized in figure 4.1b[200].

Finally, Mask RCNN[128] adds segmentation to the network. This is achieved
by introducing a third branch after the ROI pooling layer, which uses several

1The explanations related to the Mask RCNN construction is partly based on unpublished
work of the author[199].
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fully convolutional layers[202] to generate a pixel mask for each ROI. As an
additional improvement, Mask RCNN uses floating numbers and bilinear inter-
polation when mapping ROIs to the common feature map, in order to properly
align the two domains, which removes the quantization noise present in Fast
RCNN. The Mask RCNN architecture is visualized in figure 4.1c[128].

Keypoint prediction is achieved by introducing k one-hot masks to the Mask
RCNN model, where each mask represents one keypoint. One-hot masks are
binary pixel grids filled with zeros, except for a single 1 value at the location of
the keypoint. The final network is now a complete end-to-end instance detection
and keypoint prediction net, capable of extracting the anterior body area of
salmon, together with informative landmarks.
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(a) Fast RCNN[201]

(b) Faster RCNN[200]

(c) Mask RCNN[128]

Figure 4.1: Three architectures based on residual neural networks.
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Training

To train the network, a regular back propagation approach is employed, which
requires both manually annotated training data, and a loss function.

The training data consists of images annotated with bounding boxes and
bounding box specific keypoints, which it learns to predict on images during
training. As discussed in the literature review chapter (section 3.7), the detected
keypoints must be usable for two tasks.

1. Retrieving states relevant for salmon respiration, which can be concate-
nated in order to create a ventilation signal.

2. Creating a transformation matrix that maps salmon to a predefined con-
figuration, so that the dot structure can be analysed in order to re-identify
fish. A reasonable fixed configuration is one where the plane spanned by
the anterioposterior and dorsoventral axes of the fish is parallel to the
image plane (see figure 6.3).

To accommodate the first point, the upper and lower jaws must be part
of the keypoint set, hence the bounding box needs to cover the fish snout.
The second point requires the inclusion of a significant part of the fish body
to reduce the risk of keypoint colinearity by increasing the distance between
points. Additionally, including parts of the salmon trunk in the bounding box
ensures sufficient amount of dots to discern a large number of fish. On the other
hand, parts of the most posterior sections (such as the caudal fin) of the fish
should be removed to avoid excessive deformations in the fish clip, and to reduce
the risk of overlapping salmon detections. A reasonable trade off is to include
all aspects of the salmon anterior to the posterior root of the dorsal fin in the
bounding box (see figure 6.2a).

By annotating all salmon with the coordinates of the upper jaw, lower jaw
and jaw root for jaw gape estimation, and four points for the homogeneous
transformation, all bounding boxes contain K = 7 keypoints, each represented
by two numbers (x, y). See figure 4.2 for a visualization of how a single salmon
is annotated. Furthermore, the number of bounding boxes will be equal to the
number of fish in the frame, and each box will have dimension R4, two numbers
(x, y) for two of the box corners. Having described the network labels, the next
step is to explicate the loss function.

For simplicity, assume batches of single frames. The ground truth targets
consist of R bounding boxes contained in a v ∈ RRx4 tensor and a set of K
different keypoints for each bounding box, such that all keypoints are contained
in a s ∈ RRxKx2 tensor. Additionally, the tensor p ∈ RR contains one in-
teger representing salmon class for each bounding box. For the network out-
put, let the number of classes be C, the number of region proposals be RROI ,
and the dimension of the keypoint masks be wk × hk pixels. Then, the Key-
point RCNN estimates consist of a class probability tensor (p̂ ∈ RRROI ,C), a
bounding box regression tensor (v̂ ∈ RRROI ,4·C) and a keypoint mask tensor
(ŝ ∈ RRROI ,K,C,hk,wk).
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Figure 4.2: Annotation of a salmon instance

The total loss function (equation 4.5a) for a frame is the sum of the losses of
each ROI, and each ROI has a loss equalling a sum of classification loss, localiza-
tion loss and keypoint loss. An optimal mapping between ROI and ground truth
is performed by IoU thresholding[200], facilitating a synchronized ordering of
the network estimates and ground truth targets during training, such that equal
subscripts refer to the same salmon (i.e. pr and p̂r refers to the ground truth
class and the estimated class of the same salmon, respectively). Localization
loss and keypoint loss are only calculated for ROIs that are associated with a
positive (salmon) class, hence the encoding function λ is introduced, defined
as one when a ROI is associated with a positive ground truth class, and zero
otherwise. In the complete loss function (equation 4.5a), Ncls is equal to RROI ,
and Nloc and Nkey is equal to the number of ground truth bounding boxes in the
frame. The individual components of the loss function are expanded on below.

1. The classification loss is estimated as a log loss over the two classes object
and not object (equation 4.5b), where p̂r refers to the estimated class, pr
refers to the ground truth class, and sm(p̂r) refers to the softmax value at
the neural network output of the estimated class. Furthermore, the binary
variable h ∈ {0, 1} is one if pr = p̂r, and zero if pr ̸= p̂r.

2. The localization loss is calculated as a smooth L1 loss, (equation 4.5c, see
the documentation of [198]), where v̂r refers to the network bounding box
estimation values of the ground truth class (pr).

3. The keypoint loss is calculated as the cross-entropy over an K · hk · wk

way softmax output (equation 4.5d), where ŝr refers to the one-hot mask
estimates of the ground truth class (pr).
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L(p, v, s, p̂, v̂, ŝ) =
RROI∑
r=0

1

Ncls
Lcls(pr, p̂r) +

1

Nloc
λrLloc(vr, v̂r)

+
1

Nkey
λrLkey(sr, ŝr)

(4.5a)

Lcls(p, p̂r) = −(h · log(sm(p̂)) + (1− h) · log(1− sm(p̂))) (4.5b)

Lloc(v, v̂) =

{
0.5 · (v − v̂)2, if∥v − v̂∥ < 1

∥v − v̂∥ − 0.5, otherwise
(4.5c)

Lkey(s, ŝ) = −
1

K · hk · wk

K∑
k=0

hk∑
i=0

wk∑
j=0

(sk,i,j · log(ŝk,i,j))+
(1− sk,i,j) · log(1− ŝk,i,j))

(4.5d)

4.2.6 NMS and IoU

After training Keypoint RCNN for salmon detection, every true salmon instance
will be detected by multiple overlapping bounding boxes. One way to deal with
this situation is by using the Non Maximum Suppression (NMS) method, built
on the IoU metric.

The IoU of two bounding boxes A and B is the correct overlap of the boxes,
divided by the total proposed area of both of them, defined in equation 4.6.

IoU =
A ∩B

A ∪B

=
true positives

true positives+ false negatives+ false positives
(4.6)

The NMS algorithm is build on this metric, and works by removing all
bounding boxes with too high IoU overlap, keeping the most confident bounding
boxes. Let B be the initial set of bounding boxes in a frame, C a confidence
function (C : b→ [0, 1], with b being a bounding box in B), T a threshold and U
the set of non-overlapping bounding boxes. NMS is then described in algorithm
2.
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Algorithm 2 NMS

Require: B, T
U ← ∅
while B not ∅ do

b̃← {b̃|C(b̃) ≥ C(b)∀b ∈ B, b̃ ∈ B}
for b ∈ B do

if IoU(b̃, b) > T then
B ← B \ {b}

end if
end for
B ← B \ b̃
U ← U ∪ b̃

end while

4.3 Assignment methods

The problem of linear assignment can be formalized as the linear optimiza-
tion problem below (equation 4.7), with the cost matrix c and index matrix x
describing the proximity and matches between the two assignment sets, respec-
tively[133]. For the salmon tracking problem considered in this report, the two
assignment sets are the salmon detections in the current frame, and the set of
active salmon trackers.

x∗ = argmin
x

NR∑
i=1

NC∑
j=1

cij · xij

s.t.


∑NC

j=1 xij = 1∀i∑NR

i=1 xij ≤ 1∀j
xij ≥ 0∀xij

(4.7)

This formulation assumes that the number of salmon in the current frame
(NC) is equal or larger than the number of salmon trackers (NR), however the
assumption of NC ≥ NR implicit in the above formulation (equation 4.7) does
not reduce generalizability, as the cost matrix can be transposed without any
effects on the original problem2. Furthermore, the last constraint is a relaxation
of the more intuitive xij ∈ {0, 1}∀xij . The reason for performing this relaxation
is to ensure linearity of constraints, and the change of constraint does not affect
the final solution[133].

In this section a popular solution developed by Crouse[133], leveraging the
primal-dual dichotomy of optimization theory, is described. To begin, the dual
objective function of the assignment problem[133] is presented in equation 4.8
(see [204] for a thorough description of dual problems).

2This is because the symmetry property of distances state d(a, b) = d(b, a)[203].
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g(u,v) = min
x,x≥0

NR∑
i=1

NC∑
j=1

cij · xij+

NR∑
i=1

ui · (1−
NC∑
j=1

xij)+

NC∑
j=1

vj · (1−
NR∑
i=1

xij)

(4.8)

By rearranging, equation 4.8 can be written as shown in equation 4.9[133].

g(u,v) = min
x,x≥0

NR∑
i=1

NC∑
i=j

(cij − ui − vj) · xij

+

NR∑
i=1

ui +

NC∑
j=1

vj

(4.9)

Note that a maximization of g(u,v) has no (finite) solution if cij−ui−vj <
0 ∀ i, j (as xij has no upper constraint on individual matrix entries), hence the
constraint cij − ui − vj ≥ 0 is introduced (see [133] for a further motivation).
Then, the dual objective is minimized with regards to x at x = 0, which reduces
the dual objective to equation 4.10.

g(u,v) =

NR∑
i=1

ui +

NC∑
j=1

vj (4.10)

Now, since strong duality is guaranteed for linear programs ([204], ch. 13.1),
the following dual problem (equation 4.11) will converge to the same optimum
as the primal representation (equation 4.7).

u∗,v∗ = argmax
u,v

g(u,v)

s.t.

{
vj ≤ 0∑NR

i=1

∑NC

j=1(ci,j − ui − vj) ≥ 0

(4.11)

The solution to problem 4.11 provides the optimal cost of the assignment
problem, however it does not directly provide the value of the primal optimiza-
tion variable at the optimum (it provides

∑NR

i=1

∑NC

j=1 cij · xij = g(u∗,v∗), not
x).

Since both the objective and constraints in the original formulation (equation
4.7) are linear, the Karush-Kuhn-Tucker (KKT)[205] requirements are applica-
ble to the problem, and provide necessary conditions for the dual variables at
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the optimum ([204], ch. 13.1). This ensures that the complementary slackness
condition holds, which states that if the dual inequality variable (vj) is slack
(non-zero), the primal optimization variable must be tight (in the case of this

problem,
∑NR

i=1 xij must be one). For problem 4.8, the complementary slackness
condition takes the form displayed in equation 4.12. This condition allows the
determination of the exact values of x[133].

vj · (1−
NR∑
i=1

xij) = 0∀j ∈ {N1 ≤ NC} (4.12)

The primal-dual relationship discussed hitherto can, as elucidated by Egervary
and König, be applied to edges and vertices in a bipartite graph. Consider the
columns and rows of the cost matrix to be represented by vertices of a graph,
the dual variables u and v to represent vertex budgets (bv), and the costs in the
cost matrix to represent edge weights (we). Then, the general form of Egervarys
theorem is presented below[206].

Let G be a bipartite graph. Let a non-negative integral weight we be
assigned to every line e, and also let a non-negative integral weight
bv be assigned to every point v. Then, the maximum weight of a
t-matching in G is equal to the minimum b-weight of a collection of
points from which every line e contains at least we elements.

Crouse[133] leverage this theorem to alternately reduce edge weights and
increase vertex weights until the primal and dual optimum have reached equality.
A central concept in his algorithm is the notion of a shortest augmenting path,
which is explicated below through a list of definitions from the field of graph
theory.

1. A matching is a set of edges such that no edges share vertices. A maxi-
mum matching is the highest cardinality matching in a given graph. An
assignment is one of the edges in the matching.

2. Consider graph edges E and vertices V, and let a matching M ⊂ E be
given. An alternating path is then defined as a path alternating between
M and {E \M}.

3. An augmenting path is an alternating path starting in a row (a left ver-
tex in the bipartite graph) not connected to M, and ending in a column
(a right vertex in the bipartite graph) not connected to M. By reassign-
ing edges along an augmenting path, the cardinality of the match, |M |,
increase by one.

4. A shortest augmenting path is an augmenting path that solvesmin
∑

E.

Having specified the primal and dual optimization problem that is to be
solved, as well as how this can be framed as a graph problem, the full linear
assignment algorithm is presented below. Crouse[133] describe five steps to
follow in order to find the optimal matching from a given cost matrix.
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1. Initialize the data structures: When the algorithm is implemented
into code, this step must be considered in detail. For the high-level theoretical
description provided here, it suffices to say that the dual variables u and v is
initialized to zero vectors.

2. Find the shortest augmenting path The algorithm begins by assigning
the first row vertex (u1) in the graph representation of the cost matrix to the
column (vj) that has the lowest edge weight connecting it to u1. This row can
never be connected to a column by a smaller edge weight, hence this assignment
provides a lower bound on the price (vertex budget) of the vertices (u1 and
vj) it connects. As the algorithm propagates to subsequent rows (ui) in later
iterations, the event might occur that the edge with the lowest weight (connected
to that row) leads to an already assigned column, hence the simple minimal
assignment (using the edge with the lowest weight) is not applicable. Instead,
a slightly modified version of Dijkstras shortest path algorithm[141] is used,
that search for a shortest augmenting path starting at the current row (ui) and
ending at an unassigned column (vj). Reassignment along this path increase
the matching cardinality by one, while resolving edge conflicts (e.g. the smallest
edges of two rows connect to the same column) in an optimal manner. This
shortest path is then saved for later steps in the algorithm.

The search for a shortest augmenting path is performed on a reduced cost
matrix, in which each element is calculated as shown in equation 4.13. The
entries of the reduced cost matrix will decrease as the algorithm propagates,
and when the algorithm terminates, all entries in the matrix corresponding to
an assignment will be zero. Note that the weights of the reduced matrix will
never be negative, hence the requirements for Dijkstras shortest path algorithm
is fulfilled.

c̄ij = cij − ui − vj (4.13)

3. Update the dual variables to assure complementary slackness:
Equation 4.11 states that the dual variables should be maximized under the
constraint in equation 4.14, which means that the sum of the two vertices in an
assignment (ui and vj) should equal the value of the edge connecting them (cij).
After a shortest augmenting path is found, all assignments weights (edge weights
of assignments) will stay the same or increase when this shortest augmenting
path is used to increase the cardinality of the matching. Hence, the constraint
given in 4.14 will no longer be tight, and the variables uj and vj can be increased
until the sum of the dual variables equal that of the new edge weight.

cij − ui − vj ≥ 0 (4.14)

4. Augment the previous solution with the shortest path: After up-
dating the dual variables, the graph matching is changed according to the short-
est augmenting path found in step two of the algorithm. This new matching
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will consist of the right assignments (assignments from row to column) in the
shortest augmenting path.

5. Loop: If all rows have been assigned, then the problem is solved. Other-
wise, go to step 2, and consider the next row in the graph. As discussed in step
two and three, the propagation of the algorithm leads to decreased values in the
reduced cost matrix, and increased dual variable values, which in effect is the
dual and primal problems converging to the same optimum.

When the algorithm exits, the optimal value (
∑NR

i=1

∑NC

j=1 cij ·x∗
ij = g(u∗,v∗))

is found as the sum of the elements of the dual variables u and v, and the value
of the primal optimization variable x is found by considering the elements of
the reduced cost matrix (a zero value in the reduced cost matrix is a necessary
condition for being an optimal assignment), together with the complementary
slackness constraint from equation 4.12. The sum of the entries of the (unre-
duced) cij at the locations specified by x will be equal to the optimal dual value
(g(u∗,v∗)).

4.4 Kalman filter

Assume a set of detections at discrete timesteps, and that a matching exists
between the detections at time k-1 and time k. Let the detections be defined
by their euclidean coordinates p ∈ R2. The problem of finding the optimal
estimate of the real p from a number of measurements subjected to uncertainty
is a reoccurring problem in several technical fields, and was solved by Kalman in
his famous paper from 1960[144] in the case of linear, discrete models exposed
to Gaussian noise.

Estimating the state by a Kalman filter requires a known system model. A
salmon in a video stream moves in three dimensions, and has an erratic dynamic
that is difficult to model, however the 2D projection of a salmon trajectory onto
camera sensors tend to be approximately linear with fixed velocity. Hence, the
model displayed in equation 4.16 can predict salmon movement in the immediate
future with reasonable accuracy. Here, ∆t is the time between frames, x =
[pT ṗT ]T is the true state vector, w is the model uncertainty and v is the
measurement uncertainty.

xk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

xk−1 +wk = Axk−1 +wk (4.15)

zk =

[
1 0 0 0
0 1 0 0

]
xk + vk = Hxk + vk (4.16)

At any timestep k, the best linear estimate of xk, x̂k, will be a weighted
sum of the two sources of information available; the model estimate x̂−

k and the
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measurement zk. This is displayed in equation 4.17, with the weight K called
the Kalman gain.

x̂k = x̂−
k +Kk(zk −Hx̂−

k ) (4.17)

Now, call the covariance matrix of the expected error between the true and
estimated state Pk, and observe that the optimal state estimate is at the point
where this is minimized. By simple gradient considerations, a recursive formula
calculating the Kalman gain K at this minima can be found, as demonstrated
in[207]. This iterative method is presented in algorithm 3, with superscripts
− describing estimates before received measurements, subscripts describe time
step, hat describe estimates, and R and Q are describing the magnitude of the
measurement and model uncertainty, respectively.

Algorithm 3 Kalman filter

Require: x̂0, P̂0

k ← 1
while True do

x̂−
k ← Ax̂k−1

P−
k ← APk−1A

T +Q
if zk ̸= ∅ then

Kk ← P−
k H

T
k (HkP

−
k H

T
k +R)−1

x̂k ← x̂−
k +Kk(zk −Hkx̂

−
k )

Pk ← (I−KkHk)P
−
k

end if
k ← k + 1

end while

Several ways of modelling the noise, in order to determine Q, exists. Here a
piecewise white noise model will be employed[208]. Let σi be a random accel-
eration disturbance, constant over each ∆t, and with i ∈ {x, y} describing the
direction of acceleration. This noise will act as an additive disturbance on the
model dynamics, with magnitude σi∆t for ṗ, and σi

∆t2

2 for p. These effects
can be incorporated into the initial model equation (eq: 4.16) by defining w as
follows.

wk =


σx

∆t2

2

σy
∆t2

2
σx∆t
σy∆t

 (4.18)

The covariance of the process noise is then Q = E(wkw
T
k ), showed in equa-

tion 4.19. The final form (of equation 4.19) has been further simplified by as-
suming no covariance between the acceleration in the two directions (σxσy = 0)
and that the magnitude of both standard deviations are equal (σx = σy = σa).
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The standard deviation of the acceleration, σa, acts as a tunable parameter for
algorithm 3.

Q =


σ2
x
∆t4

4 σxσy
∆t4

4 σ2
x
∆t3

2 σxσy
∆t3

2

σxσy
∆t4

4 σ2
y
∆t4

4 σxσy
∆t3

2 σ2
y
∆t3

2

σ2
x
∆t3

2 σxσy
∆t3

2 σ2
x∆

2
t σxσy∆

2
t

σxσy
∆t3

2 σ2
y
∆t3

2 σxσy∆
2
t σ2

y∆
2
t



=


∆t4

4 0 ∆t3

2 0

0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆2
t 0

0 ∆t3

2 0 ∆2
t

σ2
a

(4.19)

For the measurement covariance R, similar simplifications can be made as
for Q. Assuming no covariance between the measurement errors in the x and
y directions, and equal uncertainty in both directions (σm), the measurement
covariance matrix takes the following form (equation 4.20).

R =

[
σ2
m 0
0 σ2

m

]
(4.20)

Some of the noise modelling simplifications might be unreasonable. In par-
ticular, the model noise covariance (Q) in the x and y directions are different,
as the direction of fish velocity is mainly in the x direction. However, due to the
already large simplifications made when modelling the salmon movement, this
should not cause too much performance drop of the Kalman filter. Furthermore,
keeping only one parameter greatly simplifies the filter tuning.

4.5 Homogenous transformation

A homography is a mapping between two planes in R3 defined by a 3x3 matrix
H ([209], s. 33). Let any salmon in the tank be simplified to an oriented
plane segment, and coordinates in a local frame attached to this bivector (plane
segment) be given by a 2D vector x = [x, y]T (x is describing displacement
in the 2D plane segment). Furthermore, let the image frame coordinates be
defined as u = [u, v]T and the homogeneous transformation matrix as H. Then
the relationship between the two planes can be written as cũ = Hx̃, with
x̃ = [xT 1]T and ũ = [uT 1]T . As seen from the scalar c, the homogeneous
transform is only unique up to scale[210], giving it eight degrees of freedom.

If four point correspondences between the two planes are known, the problem
of estimating H is straight forward, by an approach known as the Direct Linear
Transform (DLT). To explain this method, first notice how ũ = Hx̃ can be
written as shown in equation 4.21 after some algebraic manipulations[210]3.

3In this article the last term in the second equation is multiplied by u. This is likely a
typo, as subsequent matrix forms in that article, as well as my own derivation, suggests a
multiplication by v instead.
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−h11x− h12y − h13 + (h31x+ h32y + h33)u = 0 (4.21a)

−h21x− h22y − h23 + (h31x+ h32y + h33)v = 0 (4.21b)

This form is linear in the matrix (H) elements, and can be written asAh = 0
if A and h are defined as below.

A =

[
−x −y −1 0 0 0 ux uy u
0 0 0 −x −y −1 vx vy v

]
(4.22a)

h =
[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]T
(4.22b)

By stacking the A matrices of four points vertically, a linear matrix equation
with eight rows result. This allows the inference of the eight degrees of freedom
in the homography, and hence a determination of H.

It is important to note that if three of the points in one plane segment
are collinear, while the corresponding points in the other plane segment are
noncollinear, no transformation can be found, as a projective transformation
(synonym to homogeneous transformation) preserves colinearity ([209], s. 91).

In the case of more than four points, the redundancy can be handled by
introducing a cost function that is minimized by an appropriate transformation
matrix H. By assuming the true correspondences have zero error, and that
the measured point correspondences are Gaussian distributed around these true
matches, the maximum likelihood estimate of the transformation matrix is given
by the minimizer of the reprojection error ([209], s. 103). This error function is
shown below, with N representing the number of points.

N∑
i

(ui −
h11xi + h12yi + h13

h31xi + h32yi + h33
)2 + (vi −

h21xi + h22yi + h23

h31xi + h32yi + h33
)2 (4.23)

Other types of transformations could be applied to the salmon plane seg-
ments, such as affine transformations. These kind of transforms can compensate
two dimensional rotation, translation, shear, and scale, however it is not able
to correct for perspective, like the homogeneous transformation.

4.6 Pixelwise image transformations

Some classical computer vision methods are used in the pipeline, they are briefly
covered below. The theory is based on the OpenCV documentation[211], and
can also be found in classical computer vision books such as [118] and [212].
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4.6.1 Grayscale

To convert an image to grayscale, a pixelwise weighted sum of the color channels
is performed. In openCV, the following calculus is used (equation 4.24).

gray = 0.299 ·R+ 0.587 ·G+ 0.114 ·B (4.24)

4.6.2 Adaptive threshold

Thresholding transforms an image to a binary grid, where each pixel is either on
(1) or off (0). As the interesting image information when capturing salmon pose
and dot structure is not color dependent, the thresholding can be performed
on an image with a single channel, such as a gray scale one. Let A be the set
of pixels where some requirement is met, then the threshold image 1A(x, y),
mathematically an indicator function, is presented below.

1A(x, y) =

{
1 if gray(x, y) > T(x, y)

0 else
(4.25)

T can be defined a couple of different ways. OpenCV has two main formats,
differing from each other by whether an identity4 or Gaussian kernel is applied
to the receptive field of the thresholding function. Let g() describe a Gaussian
function with mean at (x,y), N the field of view of the threshold function, and
C an offset constant. Then, the two thresholding functions are defined as shown
below (equation 4.26a describes the linear kernel thresholding function, while
equation 4.26b describes the Gaussian kernel thresholding function).

T (x, y) =
1

N ×N

N
2∑

i=−N
2

N
2∑

j=−N
2

gray(x+ i, y + j)− C (4.26a)

T (x, y) =
1

N ×N

N
2∑

i=−N
2

N
2∑

j=−N
2

gray(x+ i, y + j)× g(x+ i, y + j)− C (4.26b)

4.6.3 Laplacian

The Laplacian of an image is a way of describing how much the color intensity
changes around pixels. It is based on the Sobel operator[213], referred to by ∂̃ in
this document, which is a filter that approximates the image intensity gradient
when convolved with the image. The sobel operator is isotropic, so to elucidate
the full intensity change at a pixel, the gradient along each axis must be found
independently, and then composed afterwards. Since convolution is associative,

4Identity kernel is referring to treating every pixel value in the receptive field with equal
weight.
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higher order derivatives can be computed by first convolving gradient filters
with itself, and then convolving the larger filter with the image.

Let the notation for the Sobel operator be similar to that of partial deriva-
tives, and gray refer to a grey scale image. Then the Laplacian of an image is
shown in equation 4.27.

lap =
∂̃2gray

∂̃x2
+

∂̃2gray

∂̃y2
(4.27)

4.7 Probability

Assume a time series of length n has a predicted class for each sample. The
class with most predictions is called bestClass, and this class has bestClassNum
number of predictions. An important question that poses itself is:

Pprob: What is the probability that bestClass would have more than
bestClassNum predictions under a random classifier.

If this probability is large, the certainty of the estimated class over the entire
time series is low, and the whole data point set (time series) should be discarded.

To answer Pprob, the first step is to model the random classifier. Let the
number of classes in a tank be N, and assume each class prediction is an inde-
pendent experiment with constant probability p = 1

N of estimating bestClass,

and q = N−1
N of predicting another class. This is a common setup in proba-

bility theory, with each experiment called a Bernoulli trial, and the probability
of drawing X instances of bestClass in n number of frames is given by the
probability mass function of the binomial distribution[214] (equation 4.28).

P (X = k) =

(
n

k

)
pkqn−k (4.28)

By summing up the probability mass function over the range that concerns
the initial problem, Pprob is answered in equation 4.29.

P (X ≥ k) =

n∑
i=k

(
n

i

)
piqn−i = 1−

k−1∑
i=0

(
n

i

)
piqn−i (4.29)

Equation 4.29 gives a quantitative measure for the classification certainty of
a set of salmon identifications, which facilitates an automatic rejection of time
series if P (X ≥ bestClassNum|random classifier) > p.

The assumption of independent draws is a major simplification, as frames
close together in time share a large resemblance, making consecutive frames
likely to share the same misclassifications. A practical solution to this is-
sue is to lower the class number N to two, making all misclassifications the
same class. This solution leads to a higher bestClassNum threshold for a
time series to be accepted, however if the classifier is reasonable well per-
forming, this requirement is not unreasonable. As an example, if n = 100,
P (X ≥ 63|random classifier,N = 2) = 0.006.
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4.8 Statistics

4.8.1 t-test

Statistics will play a role in this report when analysing the results of the salmon
stress experiment. Apart from calculation of average (µ =

∑N
i=1

xi

N ), mode
(the most common value of a sample set) and standard deviation (std(x) =√∑N

i=1(xi−µ)2

N−1 ) of samples (see e.g. [214]), the main use of statistic will revolve
around t-tests. These t-tests are used to evaluate the probability of two sample
sets having different sample means, or the probability of a single sample set
having mean above zero. First, consider the problem of deciding whether two
samples have different means.

Due to the complex dynamics of fish ventilation, it is not reasonable to as-
sume equal variance between the populations examined in this report, and as
such a version of the t-test known as Welch’s t-test is employed, which allows for
both unequal variance and unequal sample size of the populations[215]. Con-
sider two sample sets containing samples Xi and Yj from random variables X
and Y with distributions N(µX , σX) and N(µY , σY ), with N being the normal
distribution. Furthermore, let X̄ and Ȳ be the sample means, sX and sY be
the sample standard deviations, and NX and NY be the sample sizes of the
two populations. Then the statistic T, given by equation 4.30[216], can be ap-
proximated as Student’s t-distributed with degree of freedom ν (see equation
4.31).

T =
X̄ − Ȳ√
s2X
NX

+
s2Y
NY

(4.30)

ν =

s2Y
NX

+
s2Y
NY

1
NX−1 (

s2X
NX

)2 + 1
NY −1 (

s2Y
NY

)2
(4.31)

Considering this, the following steps can be followed to find the probability
that the random variables X and Y have different means.

1. Insert the values of the population samples (Xi and Yj) into the formula
for T (equation 4.30) to retrieve a sample t value (t′).

2. Use a lookup table to find the critical values of Student’s t-distribution
with ν degrees of freedom. If the p value is set to 0.05, the critical values
are tcrit =

+
− t0.025,ν .

3. If |t′| > t0.025,ν (the distribution is symmetric) it is under 5 percent prob-
ability that random variable X and Y (of which only a set of samples are
known) has the same mean.

When evaluating the probability of a single sample set having mean above
zero, the approach is very similar. The T statistic is now given by equation
4.32, with ν = NX − 1[214]. Furthermore, since the hypothesis to be tested is
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whether the sample mean is above zero, a one-tailed t-test can be used, giving
a critical value of tcrit = t0.05,ν .

T =
X̄ ·
√
NX

sX
(4.32)

4.8.2 Pearson correlation

The Pearson correlation is a quantitiave measure for the linear correlation be-
tween two sample sets. This metric is in practice a normalized covariance, as
displayed in equation 4.33 (see e.g. [214], where the Pearson correlation is called
the Correlation coefficient). As this coefficient compare datapoints between the
two sets, it requires equal sample size (NX = NY = N).

r =

∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
∑N

i=1(Yi − Ȳ )2
(4.33)

To determine whether the calculated correlation coefficient (r) is significantly
different from zero, the approach discussed in the previous subsection (section
4.8.1) can be employed. The T statistic for the Pearson coefficient in the case
of normally distributed random variables (see equation 4.34[214]) is Student’s
t-distributed with degree of freedom ν = N − 2.

T =
r
√
N − 2√
1− r2

(4.34)

4.9 Frequency estimation

Frequency estimation of a one dimensional signal is an important part of the
final salmon breathing frequency pipeline. Due to this, the section below is
dedicated to explaining methods of non-linear function fitting and RANSAC.

4.9.1 Levenberg-Marquardt

The problem of fitting a sinusoid to a set of datapoints (x, y) can be framed as a
non-linear least square problem. Let the parameter vector p (4.35a) determine
the function f(x, p) (4.35b), and let p̂ be the optimal p, defined as the parameter
vector that minimizes the sum of squared errors (4.35d). An effective and robust
algorithm to find p̂ is the Levenberg-Marquardt (LM) method, which effectively
combines the advantages of gradient descent and Gauss-Newton[217] by finding
the sk that solves equation 4.35e, and then updates the current p estimate in
direction of sk. This algorithm will converge to a local minima, and under some
conditions achieve locally quadratic convergence[218].
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p = [A f ϕ O a ] (4.35a)

f(x,p) = A · sin(2π · f · x+ ϕ) + o+ a · x (4.35b)

L(x, y,p) = 1

2

N∑
i=1

(f(xi, p)− yi)
2 =

1

2

N∑
i=1

r2i (4.35c)

p̂ = minpL(x, y,p) (4.35d)

(JT
k Jk + µkI)sk = −JT

k ri(pk) (4.35e)

The method needs an initial parameter vector, and the better this guess is,
the larger the possibility that the algorithm converges to the wanted optimum.
Below is an overview of possible heuristics to perform this initialization.

1. Offset (O): This describes the vertical bias of the data, and can be ini-

tialized to the average of the datapoints. O0 = µ =
∑N

i=1
yi

N .

2. Amplitude (A): The standard deviation of a perfectly sampled sinusoid
is A√

2
[219], hence a reasonable initialization of the amplitude is A0 =

√
2 · std(y), where std(y) =

√∑N
i=1(yi−µ)2

N−1 .

3. Frequency (f): This should be initialized to an expected respiration
frequency.

4. Phase(ϕ): This could be initialized by looking at the numerical gradient,
or the absolute gape size, at the beginning of the signal.

5. Offset inclination (a): This could be initialized by fitting a line to the
data, and extract the rate of increase. As it is reasonable to assume a low
offset inclination, zero is also a good parameter guess.

4.9.2 RANSAC

The RANSAC algorithm is able to simultaneously do outlier rejection and func-
tion fitting. It does so by randomly sampling minimal subsets S of size n from
from the full set of datapoints P ∈ RN , before calculating a set of inliers I con-
taining points close to a model M := f(S,M0) fitted on the minimal sample.
This model fitting could be performed by e.g. the LM method. The sample
extraction and model fitting is repeated kmax times, and the model with the
largest set of inliers is returned as the best model fit when the algorithm finishes.
Close is in the RANSAC setting defined as any point with loss function L(M |x,
y) smaller than a threshold T. Setting a fixed threshold T is problematic if the
scale of the data is changing between datapoint sets (P), however this issue can
be tackled by normalization methods such as multiplying T by the standard
deviation between the full datapoint set (P) and a straight line.

The random sampling is done kmax times, where kmax can be found by the
relationship shown in equation 4.36, giving the minimum number of RANSAC
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iterations required to find one outlier free set of size n with confidence η0 from
a dataset with ϵ fraction of inliers[152]. Since we do not know the inlier ratio a
priori, kmax can be dynamically updated every time a new maximum inlier set is
found. Composing all the ideas above, the full RANSAC method is summarized
in algorithm 4[152]. Upon completion, this algorithm returns the best inlier set
(I∗) and model parameter set (M∗) it has encountered during its execution,
which most likely are close to the optimal sets.

Algorithm 4 RANSAC

Require: P,N > n,M0, η0, T
Imax, k ← 0
kmax ← g( 1

N , η0, n)
while k < kmax do

Sk ← {A|dim(Sk) = n,A ∈ P}
Mk ← f(Sk,M0)
Ik ← {(x, y)|L(M |x, y) < T, (x, y) ∈ P}
if dim(Ik) > Imax then

M∗, I∗ ←Mk, Ik
Imax ← dim(Ik)
kmax ← g( Imax

N , η0, n)
end if
k ← k + 1

end while

g(ϵ, η0, n) =
log(1− η0)

log(1− ϵn)
(4.36)
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Chapter 5

Experiment

5.1 Chapter introduction

This chapter describes the salmon stress experiment performed in the autumn of
2022 at NIVA Research Facility Solbergstrand. The data from this experiment
was later used to develop and test the salmon breathing frequency pipeline
discussed in this report.

5.2 Experiment

Nine tanks, each with seven fish, were subjected to changing oxygen and temper-
ature millieux (see figure 1.1b). The experiment lasted for fifteen days, 22.09.22
to 06.10.22, and contained four phases.

1. Phase 1: This phase lasted six days, and were used to raise the tempera-
ture from twelve degrees to fifteen degrees in tanks one to three, and from
twelve degrees to eighteen degrees in tanks seven to nine. Tanks four to
six were kept at twelve degrees.

2. Phase 2: This phase lasted two days, and contained a downbreathing of
the tanks. During downbreathings, the oxygen supply to the tanks was
restricted, causing a gradual decline in DO content. This was enabled by
removal of air stones and water flow to the tanks. When the DO levels
reached a lower limit (see table 5.1), oxygen was let back into the tanks,
allowing the fish to upbreathe the water to previous DO levels. Tanks
four to six were downbreathed the second day, the rest of the tanks were
downbreathed the first day.

3. Phase 3: This phase lasted for five days, in which the tanks held constant
temperature.

4. Phase 4: The last phase lasted two days, and was a new downbreathing
similar to the first one.
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Tank Date Temperature (−+0.1
◦C) Min DO (−+5%) Max DO (−+5%) DB time

1 28.09 14.0 ◦C 37% 90% 300 min
1 05.10 15.6 ◦C 40% 94% 333 min
2 28.09 14.0 ◦C 40% 91% 301 min
2 05.10 15.6 ◦C 44% 91% 344 min
3 28.09 14.0 ◦C 18%1 76% 311 min
3 05.10 15.6 ◦C 38% 87% 319 min
4 29.09 12.3 ◦C 46% 91% 363 min
4 06.10 13.4 ◦C 39% 89% 365 min
5 29.09 12.3 ◦C 38% 90% 371 min
5 06.10 13.4 ◦C 39% 89% 334 min
6 29.09 12.3 ◦C 34% 89% 335 min
6 06.10 13.5 ◦C 39% 90% 329 min
7 28.09 15.9 ◦C 45% 90% 218 min
7 05.10 17.7 ◦C 49% 89% 215 min
8 28.09 15.9 ◦C 43% 88% 204 min
8 05.10 17.8 ◦C 47% 88% 231 min
9 28.09 15.9 ◦C 45% 94% 213 min
9 05.10 17.7 ◦C 49% 94% 213 min

Table 5.1: Overview over downbreathing data from the salmon stress experiment

In table 5.1, an overview of temperature, DO content and length of oxygen
cutoff (DB time) during the downbreathings are displayed. The warm tanks
had less oxygen reduction as higher temperature reduce hypoxia tolerance in
salmon[85]. As can be seen from the table, the ideal temperatures described in
the phase list above were not reached precisely, and the minimum DO content in
the tanks holding equal temperature was not exactly the same. The temperature
was, however, equal for equal days at equal temperature steps (cold, medium
and hot). Under the column DB time, the length between the start of the
oxygen decline and the time of minimum DO content is presented.

In the phases with constant oxygen supply, salmon were filmed for 1 hour
two times each day, centered around the feedings at 10:00 and 14:00 o’clock.
Spotlights were placed above the tanks to ensure sufficient light, and GoPro
cameras were lowered down to recording positions on a stick. This position was
horizontal and 21 cm from the bottom of the cage, alternating between two cor-
ners of the tank. Every fourth recording was done close to the surface and with
an angle, facilitating behaviour analysis. During downbreathings, the fish were
filmed constantly from two bottom corners, with minor breaks during battery
and memory card switching. This switching was performed approximately once
every hour.

Due to camera restrictions, each video clip had a length of 42420 frames

1Likely erroneous oxygen measurement
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(707 seconds)2, unless being stopped prematurely by e.g. battery change. These
video clips were organized into hours by grouping all clips produced between
a battery change into the same hour. The exact length of this hour varied
according to the exact time of battery change, but usually one hour contained
five to seven clips. As such, the temporal length of a one hour video clip group
was usually a bit longer than an actual hour.

In figures 5.1 and 5.2, representative oxygen trajectories during both down-
breathings in two tanks are displayed.

Dissolved oxygen and temperature were measured continuously in all tanks
with the miniDO2T Logger[220]. During the downbreathings, oxygen and tem-
perature were measured each hour with a handheld device additionally3.

2In a couple of downbreathings, the settings were changed (by accident), resulting in a clip
length of 531 seconds instead.

3For this project, the data extracted from the handheld device was not used.
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(a) Oxygen evolution in tank nine at 28.09

(b) Oxygen evolution in tank nine at 05.10

Figure 5.1: Oxygen evolution of tank nine during two downbreathings
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(a) Oxygen evolution in tank five at 29.09

(b) Oxygen evolution in tank five at 06.10

Figure 5.2: Oxygen evolution of tank five during two downbreathings
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Chapter 6

Method

6.1 Chapter introduction

In this chapter, the complete pipeline for extracting breathing frequencies from
underwater salmon recordings is presented. To ensure a firm grasp on the over-
arching structure of the method, this section will be dedicated to a high level
description of the developed algorithm.

In figure 6.1, the entire salmon breathing frequency extraction method is
displayed. The basis of the pipeline is a Keypoint RCNN model that detects
salmon with keypoints for all frames in a small video sequence. From there, the
method splits into two branches. The first one tracks salmon individuals between
frames, and the second classify each salmon detection into one of the seven fish
in the tank. From the trackers of branch one, a set of one dimensional salmon
jaw pose signals is extracted and fitted to sinusoids, before these time series are
associated to a salmon class as predicted by branch two. Some frequency central
tendency is found for each salmon class over the small video sequence, which
is considered the salmon frequency at a given time. This salmon frequency is
finally evaluated with a certain time interval, e.g. 10 minutes, informing on
fish ventilation frequency evolution for all salmon individuals over a longer time
period.
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Figure 6.1: Overview of the pipeline performing breathing frequency extraction
of all individual salmon in a tank from an underwater video.
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6.2 Keypoint RCNN

A 10 minute video from the second clip of the second hour into downbreathing
one in tank nine was split into frames, and each tenth frame was saved to disk.
The first 200 of these frames were annotated with the items presented below.
When annotating keypoints for fish partly outside the frame, points were drawn
at the frame edge closest to where the points would be. The software used for
the annotation was labelme[221], and the keypoint positions are visualized in
figures 6.2a and 4.2.

1. Bounding box: Placed such that every part of the fish anterior to the
posterior root of the dorsal fin were inside the box. In addition, a margin
equal to half of the length between the premaxilla[222] and the point where
the maxilla attaches to the angular bone[222] were added at the snout of
the fish.

2. Keypoint eye: Placed in the middle of the eye.

3. Keypoint lower jaw: Placed at the kype (dentary prominence).

4. Keypoint upper jaw: Placed at tip of the premaxilla.

5. Keypoint root jaw: Placed at the intersection betwen the maxilla and
the mandible, where the gap between the two bones disappears.

6. Keypoint Head-Body Intercept (HBI): Placed at the anterior ex-
treme of the nape([223], s. 18). This is at the intersection between the
scaly salmon body and the smooth, scaleless salmon head.

7. Keypoint pectoral root: Placed at the point of the pectoral fin attache-
ment most proximal to the eye of the fish.

8. Keypoint dorsal fin: Placed at the anterior root of the dorsal fin.

9. Class: Two classes were defined for each fish, one for swimming left, and
one for swimming right. In addition, an occluded class was defined for
when both jaw keypoints were visible, but one or more other keypoints
were occluded, and a front class for when the pattern on the fish operculum
were invisible, or the angle that the eye made with the HBI and the
pectoral root exceeded 170 degrees. Finally, adding 0 as a background
class gave a total of 17 classes. In figure 6.3, all seven fish in tank nine
are displayed, with both numeric and letter classes. The postfixes sl and
sr describes the fish swimming in the left or right direction, respectively.

To increase the size of the dataset, plausible transformations were applied
to each of the annotated images according to algorithm 5. The algorithm uses
the following variables and functions.
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(a) Manually annotated frame (1080x1920 pixels)

(b) Augmented frame before label pruning (800x1600 pixels)

(c) Augmented frame after label pruning (800x1600 pixels)

Figure 6.2: Annotation pipeline for Keypoint RCNN
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Figure 6.3: All fish in tank nine with class labels

1. V is an ordered set containing annotated image frames, such that V =
{v|v = (I, L)} where I is an image tensor, L is a set of salmon labels and
v is an annotated frame.

2. inflation ratio is the number of augmented images per manually anno-
tated frame.

3. apply augmentation() is a function performing rotation, four-point ran-
dom perspective transformation, scaling, shearing, random cropping, bright-
ness adjustment and contrast adjustment in a random fashion by the use
of the Python Albumentations[224] library. The four first transformations
are all subsets of the projective transformation, described in section 4.5.

4. remove incomplete labels() is a function that removes all labels with one
or more keypoints placed outside of the frame after all transformations.

By setting the inflation ratio to 30, a dataset of 6000 images were obtained
(the S set of algorithm 5). In figure 6.2, three different intermediate outputs in
the augmentation pipeline are visualized.

Algorithm 5 Augmentation pipeline for Keypoint RCNN data

Require: V , inflation ratio
S ← ∅
for all (I, L) ∈ V do

k = 0
while k < inflation ratio do

(I, L)← apply augmentation(I, L)
L← remove incomplete labels(L)
if L ̸= ∅ then

k ← k + 1
S ← {(I, L)} ∪ S

end if
end while

end for
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The Keypoint RCNN implementation from PyTorch[198], constructed as
explained in the theory chapter, was used for salmon detection and keypoint
prediction. The backbone was pretrained on imagenet[225], while the keypoint
and bounding box heads were randomly initialized. All parameters in the model
were adjustable, and the model was trained for 13 epochs on 2 T4 GPUs. The
initial learning rate was set to 0.005, and divided by 10 every 3 epochs. Fur-
thermore, the momentum was set to 0.9 and the regularization to 0.0005. Total
training time was between eight and nine hours.

At the output of the model, all bounding boxes were pruned by the PyTorch
NMS method when making predictions, with the overlap threshold set to 0.1.

6.3 Tracking

For tracking salmon instances, a Kalman filter based method was employed.
Consider an indexed set of trackers T with |T | = M , where each tracker t in the
set contain information pertaining to a single fish instance. For the high level
description of the algorithm, it is sufficient to consider t as a Kalman filter,
with domain R2 describing the spatial location of the filter. Let the matrix
eye ∈ RN×2 contain the N eye detections of the Keypoint RCNN model in a
frame and the cost matrix c ∈ RM×N contain the euclidean distances between
all tracker positions and eye detections. Furthermore, let W and H be the
width and height of a frame, Tlog be the set of kalman filters which are no
longer active, and S be the number of matches between trackers and detections
in a given frame. Before presenting the algorithm to track the fish, a number
of functions are defined below, with the non-trivial ones expanded upon in the
theory chapter (chapter 4). The Kalman filter implementation was a modified
version of [226].

1. predict() : t → t propagates the Kalman filter one timestep by updating
the pre measurement model estimate (see section 4.4).

2. eyeDetect() : RH×W×C → RN×2 finds salmon eyes in a frame by applying
the Keypoint RCNN model.

3. position() : T → RM×2 returns the position of the Kalman filters.

4. dist() : RN×2 × RM×2 → RMxN finds the cost between detections and
trackers, and store the results in a cost matrix c. In this implementation,
euclidean distance was used as cost.

5. JonkerV olgenant() : RM×N → R2×S finds the best matches between
the trackers and the eye detections, given a cost matrix. The first row
of the function output contain eye detection indices, and the second row
contain tracker indices. Included in this function is a distance threshold
(max tracker detection dist), that discards the match if the tracker and
the eye detection is sufficiently far away from each other.
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6. update() : t × R2 → t performs the measurement update step in the
Kalman filter (see section 4.4).

7. incrUnmatched() : t → t increments a flag in the Kalman filter, which
enables the filter to remember the time span it has not received a mea-
surement.

8. unmatched() : t→ R1 returns the amount of time steps which the tracker
has not received a measurement.

9. newTracker() : R2 → t initialize a new kalman filter with position at the
argument, and zero velocity.

The salmon tracking method is presented in its entirety in algorithm 6.
In the actual implementation, the trackers contain more information than the
Kalman filters, such as mouth pose descriptors, however they do not contribute
to the logic of the tracking and are hence omitted here for clarity. Subscript : is
indexing a full matrix axis, and k is a tunable parameter defining the number
of frames a tracker is allowed to have no matches.

When algorithm 6 finish, the two tracker sets T and Tlog contains objects (t)
that hold information pertaining to a fish individual for the time span that this
fish occupy the camera field of view. Included in these objects are information
about salmon class (discussed in subsequent sections 6.4 and 6.5), and salmon
mouth pose (which is given directly from the keypoint placement on the salmon
detections) for each frame.

The parameters were assigned the following values in the final implementa-
tion of the salmon tracking algorithm:

1. Kalman filter model uncertainty (σ2
a in equation 4.19): σ2

a = 0.5

2. Kalman filter measurement uncertainty (σ2
m in equation 4.20): =

σ2
m = 0.01

3. Survival time of tracker without detections (k): 50 frames

4. Maximum distance between tracker and eye detection (max tracker detection dist):
100 pixels
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Algorithm 6 Salmon tracking

Require: V, k
T ← ∅
Tlog ← ∅
for all v ∈ V do

T ← predict(T )
eye← eyeDetect(v)
c← dist(eye, position(T ))
m← JonkerV olgenant(c)
for all i ∈ m2,: do

Tm2,i ← update(Tm2,i , eyem1,i
)

end for
Iut ← {j ∈ N|j ≤M, j ̸∈ m2,:}
for all i ∈ Iut do

Ti ← incrUnmatched(Ti)
if unmatched(Ti) > k then

Tlog ← Tlog ∪ Ti

T ← T \ {Ti}
end if

end for
Iud ← {j ∈ N|j ≤ N, j ̸∈ m1,:}
for all i ∈ Iud do

T ← newTracker(eyei) ∪ T
end for

end for
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6.4 Semi-automated labelling

The dataset used for training salmon identification networks was constructed
by the help of the previously developed detection (section 6.2) and tracking
(section 6.3) algorithms.

In this dataset, the input features consisted of salmon images warped onto
a fixed configuration, and cropped to display only part of the fish. The image
warping was performed by a homogeneous mapping, using the OpenCV Python
library[211] and four of the keypoint predictions of the Keypoint RCNN model.
As the matching points should be noncollinear for a large range of poses, as
well as attached to anatomical landmarks that does not move independent of
the fish1, the points used for the homogeneous transformation were the four
keypoints most posterior on the fish (the eye, HBI, dorsal fin and pectoral
fin keypoints). After the warping, the fish were cropped to display the area
between the dorsal fin and eye keypoints along the anterioposterior axis and the
area between the dorsal fin and pectoral root keypoints along the dorsoventral
axis. An image of this form will be called the torax of the fish (see figure 6.3).
The variability between torax images were almost exclusively due to the dot
structure of the fish, which a network can use to identify individual salmon.

Having specified the data input, it is time to describe the method for labelling
the output y. The output consists of one integer c for each input torax image,
describing which salmon individual the fish belongs to. The semi-automated
labelling consisted of four steps.

1. Pass all frames in a video sequence of 500 to 3000 images through the
Keypoint RCNN model.

2. For each frame, generate torax images and annotated complete frames by
the help of the Keypoint RCNN detections. Save these to disk.

3. Review the full frame images, and create an annotation containing the
tracker IDentifier (ID), start frame, end frame and c for all good detection
trajectories. A good detection trajectory is a consecutive set of detec-
tions of the same salmon, where all keypoints used for the homogeneous
transformation of the salmon is placed relatively well.

4. Iterate through all trackers, and use the manual annotations to extract
all salmon torax images in the range [start frame, end frame]. These are
then linked to the specified c.

This method allows a single manual annotation to generate several hundreds
of datapoints, as all torax images between the start and end frame are included
in the dataset. After the labelling, all torax images were manually reviewed to
check for degenerate images.

Using this method of semi-automatic annotation, datasets of at least 500
images per fish class were created for each tank. It was ensured that each fish

1Points such as the lower jaw moves independent of the rest of the salmon.
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T1 T2 T3 T4 T5 T6 T7 T8 T9

Asl 633 806 850 595 1566 786 819 650 1065
Asr 744 1256 630 1587 1728 608 673 845 2152
Bsl 551 831 887 575 980 863 748 772 2864
Bsr 1213 583 525 1320 1207 569 570 1753 1196
Csl 628 577 624 755 1051 669 648 822 2954
Csr 1623 633 536 639 1546 708 1047 610 1070
Dsl 764 694 1210 533 1020 606 623 1050 1049
Dsr 1305 1079 661 1008 1463 651 1006 1002 1157
Esl 730 583 1006 684 1109 819 690 1044 1542
Esr 658 627 500 1350 1152 734 1243 635 1129
Gsl 710 828 576 523 1006 930 573 744 1014
Gsr 818 549 935 1271 1224 644 584 1307 1138
Hsl 1084 842 775 820 1185 778 1087 1436 1471
Hsr 687 874 545 870 1248 537 953 653 1081

Table 6.1: Overview over dataset size. Subscripts in the left column (sr and sl)
refers to swimming direction, and the letters correspond to the fish individual.

class contained at least 100 datapoints from each downbreathing. Due to the
nature of the fish data, with some fish classes being frequently filmed and some
staying mostly out of the camera field of view, there was a large difference in the
number of datapoints in the different fish classes. To avoid imbalanced datasets,
the size of all fish classes were reduced to the size of the smallest (least number
of datapoints) class in each tank by the use of random sampling. The number of
datapoints of all fish classes are displayed in table 6.1, with the tanks changing
along the horizontal axis, and the fish individual differing along the vertical axis.

For one tank, tank nine, there was also created a small test dataset to evalu-
ate network performance. The test dataset was created from different video clips
than the training data, to ensure any results would be descriptive of network
performance on unseen trajectories. The test data had 105 images per fish class,
or 1470 images in total. Note that the front and occluded classes were excluded
from all torax datasets as their keypoint placement did not allow homogeneous
transformations of salmon into the desired torax images, and classification of
these classes are of less interest to the salmon ventilation frequency pipeline.

Finally, the datasets of all tanks were inflated thirtyfold by an Albumenta-
tions[224] pipeline. The augmentations of the Albumentations pipeline consisted
of blurring, randomizing the tone curve, distorting the grid, square dropouts
and altering the brightness and contrast. An example of an augmented image
is shown in figure 6.4.

For tank nine, an additional modified dataset was created, in which the color
images were replaced with three feature engineered channels. These channels
were gray scale images (eq: 4.25), adaptive thresholding images with identity
kernel (eq: 4.26a) and image Laplacians (eq: 4.27). The dataset with the
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Figure 6.4: A non-augmented (top) and an augmented (bottom) torax image
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Figure 6.5: Visualization of the three different channels in a dot image, as well
as the color image they are created from.

feature engineered channels is called the dot dataset, in contrast to the color
dataset which are composed of Red Green Blue (RGB) images. In figure 6.5,
the three different channels in a dot image, as well as the color image they are
created from, is visualized.

The tunable parameters in the adaptive thresholding function were tuned as
follows.

1. Offset constant (C): 21

2. Thresholding function field of view (N): 9

6.5 Salmon classification

A set of deep neural networks from the Python Pytorch[198] library were trained
on the semiautomaticly generated dataset from tank nine. For the color dataset,
Alexnet[181], Efficientnet[184], Resnet 50[185] and Resnet 101[185] were used,
each trained for two epochs. The dot dataset was trained only on Resnet 50 and
Efficientnet, also for two epochs. The two best networks from the color dataset,
and one network from the dot dataset, were then trained for a longer time. All
models were evaluated on the test dataset from tank nine, using accuracy as
optimality metric and a confusion matrix for enhanced understanding of the
error distribution. The network performing best on the test dataset of tank
nine was saved for later usage in the full salmon breathing frequency pipeline.
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This turned out to be the Resnet 101 architecture (see section 7.4 later in the
report).

For each new tank analysed, the same Resnet 101 model that was used on the
previously analysed tank was fine-tuned on the dataset of the novel tank. This
way, the Resnet 101 backbone accumulated information from previous tanks,
while the network head, which was randomly initialized for each new tank, only
contained knowledge pertaining to the set of fish classes in the current tank. The
networks were trained on two T4 GPUs, with a learning rate of 0.005, a weight
decay of 0.0005 every fourth epoch, a momentum of 0.9, and a total training
time of eight epochs. With regards to resource requirements, the finetuning
took between four and five hours per tank.

6.6 Frequency analysis

As discussed in section 6.1, the pipeline initially splits into two branches; salmon
classification, and mouth pose tracking. At the current step in the pipeline, these
two branches merge to create time series over the mouth pose of the salmon,
and assign these time series to a fish class. The process can be described in four
steps.

1. The Keypoint RCNN model predicts salmon and corresponding keypoints
for each frame.

2. Each fish is assigned to a tracker.

3. The Keypoint RCNN detections are used to classify fish and calculate
mouth pose. This information is saved together with the tracker.

4. When all frames are finished, the trackers are used to generate time series,
where the time index (x) is the frame number, and the time series value
(y) is a tuple containing fish class and mouth pose.

Three different metrics were tried for salmon jaw pose; the euclidean distance
between the top and bottom jaw keypoints, the same distance, but after the
homogeneous transformation, and the angle the root jaw makes with the upper
and lower jaw (see section 3.7.4). The best of these metrics, the non-normalized
(raw) euclidean distance, was chosen.

To reduce the number of outliers and erroneous classifications, some require-
ments were put on the relative keypoint placement. Jaw pose measurements
were removed if the upper jaw keypoint was ventral to the lower jaw keypoint,
if the lower jaw keypoint with an added margin (eyeLjawMargin) was dorsal
to the eye keypoint, or if the upper jaw keypoint was further away from the
eye keypoint in the vertical direction than in the horizontal direction2. Simi-
larly, the classification results were disregarded if the four points used for the

2Even though anatomical terminology is used to described relative keypoint placement
in this paragraph, the implemented checks consider image axes, not the anteroposterior and
dorsoventral axes of the fish. These sets of axes will normally be relatively aligned, and
anatomical terms were used to make the mental picture clearer for the reader.
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homogeneous transform were placed fallaciously relative to each other. This
was checked by ensuring the eye to be the most anterior keypoint, the dorsal fin
to be the most dorsal keypoint, and the HBI keypoint to be more dorsal than
the keypoint at the root of the pectoral fin. Aditionally, it was ensured that
the upper and lower jaw keypoints were placed anterior to the four homoge-
neous transformation keypoints. The function performing removal of erroneous
keypoints, as explained in this paragraph, is called remove err keypoints().

After this pruning, the available data consisted of a set of time series of
varying length. A moving window approach was used to extract time series of
fixed length L and stride s from these. By letting TSf be a full time series,
the moving window approach is displayed in algorithm 7. This algorithm was
repeated for all the original time series (TSf ) in the trackers.

Algorithm 7 Moving window approach for time series splitting

Require: L, s, TSf , ∥TSf∥ > L
TS ← ∅
N ← ∥TSf∥
sf = {j ∈ N|j ≤ N − L, j%s == 0}
for all i ∈ sf do

TS ← TS ∪ TSf [i · s, i · s+ L]
end for

Each of the L-length jaw gape time series were fitted to a sinusoid by the
LM method wrapped inside a RANSAC loop for outlier rejection (see section
4.9). This RANSAC loop was again wrapped in a line search over a small
number of frequencies (freqV al, used for RANSAC initialization), to avoid fre-
quency bias in the results. Amplitude (A), offset (O) and offset inclination (a)
were initialized as described in the theory section, with an added perturbation
(ransacInitPerm) each model fit (LM run) to avoid local minima. Furthermore,
the phase (ϕ) was randomly initialized in the range [−π, π]. Both the RANSAC
loop and the frequency line search used number of inliers below a threshold as the
optimality criterion, with the thresholds (ransacThresh/lineSearchThresh)
normalized by the standard deviation between the datapoint sample (time se-
ries data) and a straight line fitted to the sample (stdsl(y)). Additionally, the
RANSAC algorithm output was discarded if the model it returned had a fre-
quency standard deviation above maxFreqStd on the LM fit of this model.

After the time series sine wave fitting, the data (time series) was discarded if
any of the following were fulfilled. N is describing the length of the time series,
and the function checking these requirements is called acceptable time series().

1. The number of valid classification points of the time series was less than
minV alClsf . This happened if a large amount of Keypoint RCNN detec-
tions had poor keypoint configurations.

2. A random classifier had probability above p of beating the results achieved
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by the neural network model used to generate the time series classifica-
tions.

3. The time span (frame number) between the first and last frame was longer
than maxFrameDiff .

4. The inlier number of the best model was less than minInlCnt.

By putting all the above together, the complete frequency extraction method
is displayed in algorithm 8. The notation used in this method is explained in
the list below.

1. T is the set of trackers from the video clip V (T ∪ Tlog from algorithm 6).

2. F is a set of tuples such that F = {f̃ |f̃ = (c, f)}, where c is an integer
representing a salmon individual, and f is a respiration frequency. This
set will be the output of algorithm 8.

3. G is a set of time series (TS) of fixed length L. Furthermore, TSg ∈ R2×L

and TSc ∈ RL are extracting the mouth gape time series and a list of
classes, respectively, from TS.

4. freq val is a list of frequencies used for RANSAC initialization. Each
instance in this list is used as the f value of p0 (see section 4.9.1).

5. params are tunable parameters included in the method. For simplicity,
they are not stated independently in algorithm 8, however all of them can
be found in the list of parameter values later in this section.

6. The moving window() function are an implementation of algorithm 7.

7. The ransac() function is an implementation of algorithm 4. To fit the sine
wave model with the LM approach (line Mk ← f(Sk,M0)), the function
curve fit from the scipy.optimize[139] Python library was employed.

8. p is describing the parameter list of equation 4.35b. Superscript star refers
to some optimal p, and subscripts are extracting a particular parameter
(e.g. p∗f are referring to the optimal frequency parameter). Furthermore,
p0 is an initial parameter vector, and f(p0) is an initial model M0 (see
section 4.9.1).

9. mode() are returning the most common fish class in the time series.

10. The function acceptable time series() returns True or False depending on
whether the requirements stated in the list above are fulfilled.

11. e is the estimated covariance of the best model fit, extracted from the LM
method. ef is the estimated variance of the frequency parameter.

12. The remove err keypoints() function removes keypoints with erroneous
configurations, as explained earlier in this section.
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Algorithm 8 Salmon frequency estimation from time series

Require: T, freq val,params
F ← ∅
for all t ∈ T do

t← remove err keypoints(t)
G← moving window(t)
for all TS ∈ G do

Imax ← 0
for all f0 ∈ freqV al do

p0 ← [A0, f0, ϕ0, O0, a0]
p, I, e = ransac(TSg, f(p0), η0, ransacThresh)
if dim(I) > Imax and ef < maxFreqStd then

p∗ ← p
Imax ← dim(I)

end if
end for
c← mode(TSc)
if acceptable time series(TS) then:

F ← F ∪ {(c, p∗f )}
end if

end for
end for

After receiving a single frequency and a single class for all L-length time
series (the F set of algorithm 8), the data was reduced to one number per fish
by taking the median over the frequencies. This way, the entire video sequence
V provided a single frequency estimate for each fish individual in the tank.

The parameters were tuned as follows.

1. Mouth pose metric: Raw euclidean distance.

2. Length of each time series (L): 100

3. Length of time series stride (s): 20

4. Minimum number of valid classifications (minValClsf): N
3 = 34

5. Probability of more than bestClassNum number of predictions
under a random classifier (p): 1%

6. Max frequency standard deviation of LM fit (maxFreqStd): 0.05

7. Maximum time span between first and last time series frame
(maxFrameDiff): 200

8. Minimum inlier count (minInlCnt): 11·N
20 = 55

9. RANSAC inlier threshold (ransacThresh): stdsl(y)
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10. Inlier threshold when evaluating best line search model (line-
SearchThresh): 0.7 · stdsl(y)

11. Permutation of the RANSAC initial variables (ransacInitPerm):
0% for phase, 5% for offset, offset inclination and frequency, 30% for am-
plitude.

12. Certainty of picking an outlier free sample in the RANSAC loop
(η0): 0.9999

13. Frequency line search values (freqVal): 0.8, 1.2, 1.6, 2 and 2.4

14. Margin added to the lower jaw keypoint when comparing its
horizontal location to that of the eye (eyeLjawMargin): 5 pixels

6.7 Respiration frequency extraction pipeline ap-
plied to experimental data

The salmon breathing frequency pipeline up until this point has extracted a
single frequency for each individual fish from a temporally short recording. In
the following, this will be leveraged to extract frequency evolutions for all fish
through an entire downbreathing (see chapter 5). This frequency trajectory will
be called a full frequency evolution.

Data from one downbreathing was provided as a set of 11:47 minute video
clips, with a clip count between 23 and 45. These clips were sorted according to
which battery shift they succeeded, such that the clips before the first battery
change was grouped as hour one (the battery lasted for around one hour). For
each of the clips, frame number 5000 to 7000 were extracted, passed through the
pipeline developed in the previous sections of this chapter, before the output of
the pipeline was stored (as a single frequency per fish individual, calculated as
the median of F over each fish class). These measurements were then concate-
nated to provide a full salmon frequency evolution for all fish. Additionally, the
average frequency at each time point (clip) in the downbreathing was calculated,
resulting in an average trajectory called fullT rajAvg.

If a fish class, after the frequency analysis (see section 6.6), had less than
minFreqCount frequency estimates (stored in the F variable of algorithm 8),
the fish was regarded as not present in the camera field of view at that time
instance (clip).

Each downbreathing was filmed by two cameras, and each tank had two
downbreathings, summing to 36 full downbreathing frequency evolutions. These
trajectories are solving the initial problem statement P of chapter 3.

From the downbreathing data, three metrics were extracted from each full
frequency evolution. These are presented below. When presenting the results
of these metrics (see section 7), some statistical analysis were performed by the
use of the Python library scipy.stats[139].
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1. A shortened trajectory, that provided a single respiration frequency per
fish per hour (instead of per clip, as described above). This trajectory is
be called hourly frequency evolution, and was calculated the following way.

(a) Discard the results from the first clip each hour.

(b) Create a single array for each fish each hour, containing all the salmon
respiration frequencies (output of algorithm 8) estimated that hour
for that fish.

(c) Take the median of all the arrays, each containing data from one fish
over one hour.

(d) In addition to these seven datapoints (one per fish) per hour, an
hourly average trajectory was calculated (hourlyTrajAvg). This was
accomplished by taking the average over all fish each hour.

2. The frequency increase when the cameras were inserted into the tanks.
This insertion happened at the beginning of each hour, so the frequency
increase can be calculated by reviewing how the frequency change between
this clip, and the two clips on either side (assuming temporally ordered
clips). Let clip number t be the first clip in an hour, then the ventila-
tion increase after disturbances are calculated as shown in equation 6.1,
where vent refers to the average trajectory of the full frequency evolution
(fullT rajAvg). For all full frequency trajectories, an average ventilation
frequency increase, called respiration frequency increase after disturbance,
was calculated each hour. When calculating the respiration frequency in-
crease the first hour of a downbreathing, only the frequency difference to
the subsequent clip was considered, as there is no previous clip.

3. The personality of the fish, i.e. if the fish is trending towards breath-
ing faster or slower than the average shoal respiration frequency. This is
calculated by finding the difference between the hourly frequency evolu-
tion average (hourlyTrajAvg) and the hourly frequency evolution of an
individual fish at each hour, and then averaging this over the full down-
breathing.

ventavg =
(ventt − ventt−1) + (ventt − ventt+1)

2
(6.1)

In this section, only one parameter were tuned. This was minFreqCount,
which was set to two in the final salmon breathing frequency extraction pipeline.
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Chapter 7

Results

7.1 Chapter introduction

The results of the different segments of the salmon breathing frequency pipeline
are presented below. For some methods and algorithms, numerical assessment
was deemed less informative than other evaluation techniques, such as visual
inspection. To fully appreciate the text, the reader is advised to review an
example video[2] displaying all pipeline components up until the time series
operations (section 6.6).

7.2 Keypoint RCNN

The vast majority of the salmon detections and keypoint placements were done
correctly by the network. When errors did happen, they mostly consisted of the
following cases. Frames demonstrating the errors are displayed in appendix A.

1. False negative (the system failed to identify a fish that was actually present).

2. False positive (a fish was detected, but no fish was actually present).

3. Jaws detected on wrong fish.

4. Occluded jaws, which caused either jaw gape errors, or completely wrong
keypoint detections.

5. Salmon turning away from the camera.

6. Dorsal fin keypoint sliding along the back of the fish.

7. Two fish detected very close to each other, resuting in the IoU bounding
box pruning removing one of the detections.

8. Two fish contained inside the same bounding box, resulting in some key-
points placed on one fish, and some on the other.
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When using the Keypoint RCNN model on recordings from other tanks than
the one it was trained on (tank nine), the performance was slightly reduced. The
types of errors were similar.

7.3 Tracking

The trackers work well, however some occasionally shift fish or are unable to
retrieve a tracked fish after long frame sequences without detections. Examples
of these errors are presented in appendix B.

7.4 Salmon identification

In figure 7.1 and 7.2, confusion matrices from different deep neural network
models trained for two epochs on the color image dataset are displayed. The
Resnet models perform considerably better, beating Alexnet and Efficientnet
with over 15 percent points on the test dataset. By training the two best
models further, the highest performing network reaches an accuracy of 99.51
percent (figure 7.5). Some examples of the classification errors of this network
are presented in figure 7.6.

In figure 7.3 and 7.4, the results after training different neural network mod-
els with the dot dataset are displayed. After two epochs of training, the Ef-
ficientnet model trained on the dot dataset beats the same network trained
on color images by over 10 percent points. For the Resnet50 model, the color
dataset beats the dot dataset by around three percent points after two epochs
of training. By continuing training the Efficientnet model on dot images, the
test performance reduces slightly.
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(a) Alexnet

(b) Efficientnet

Figure 7.1: Salmon identification results for Alexnet and Efficientnet, trained
on the color dataset for two epochs.
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(a) Resnet50

(b) Resnet101

Figure 7.2: Salmon identification results for two different Resnet models, trained
on the color dataset for two epochs.
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(a) Efficientnet, 2 epochs

(b) Resnet50, 2 epochs

Figure 7.3: Salmon identification results for two different networks trained on
the dot dataset for two epochs.
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Figure 7.4: Salmon identification results for Efficientnet trained on the dot
dataset for eight epochs.
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(a) Resnet50, 10 epochs

(b) Resnet101, 10 epochs

Figure 7.5: Salmon identification results for two different ResNet models,
trained on the color dataset for 10 epochs
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Figure 7.6: Examples of wrongly classified fish individuals for the Resnet101
model trained for 10 epochs on the color dataset.
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7.5 Frequency analysis

In figure 7.7, a representative selection of jaw gape time series fitted to sinusoids
are presented, while figure 7.8 displays the most common errors when fitting the
sine wave models. The first case, figure 7.8a, displays a time series with a noisy
signal, often received when salmon are turned towards the tank wall, making the
salmon jaws difficult to distinguish for the Keypoint RCNN. Case two, shown
in figure 7.8b, displays a signal that has captured the salmon body dynamics
instead of the jaw dynamics. This happens when the mouth pose is difficult to
detect, making the jaw keypoints more or less fixated to the salmon body, while
the fish moves significantly. The final case, figure 7.8c, shows a salmon snapping
(quickly opening and shutting its mouth). In this case, all of the time series gape
estimates are correctly identified, however the true gape period is significantly
different between two consecutive oscillations. The method employed in this
report, fitting a sinusoidal model with fixed frequency, cannot deal with this
kind of varying period.

In appendix C, a complete set of sine fitted time series from a 2000 frame
video sequence is displayed.

A more concise representation of the extracted frequencies, in the form of a
box plot, is presented in figure 7.9. In this plot, only the information used down-
streams of the sinusoid fitting are presented, i.e. salmon class and respiration
frequency.
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Figure 7.7: Time series function fitting. The x axis is describing the number
of seconds since the start of the video clip, and the y axis is describing the
mouth opening distance in pixels. All subplots axes are independent and broken,
hence the scale of the oscillations, and the time they occur, are different between
different time series. Each box is displaying one 100 frame time series. Ticks are
omitted as their inclusion would take up space, without providing an increased
understanding of the method.
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(a) Noisy signal

(b) Signal displaying pronounced salmon dynamics

(c) Signal displaying snapping salmon

Figure 7.8: Some common error cases for time series model fitting
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Figure 7.9: Box plot of salmon frequencies three hours into the first downbreath-
ing of tank nine. The abbreviation smp. describes the number of frequency
samples in each column, and the orange lines are the sample medians.
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7.6 Respiration frequency extraction pipeline ap-
plied to experimental data

Frequency evolutions

In figure 7.10, the full frequency evolutions of all tank nine downbreathings are
displayed, while the hourly respiration evolutions of tank nine are displayed in
figure 7.11 and 7.12. For the hourly downbreathings, the data point at hour n
contains all frequency data in the range [n-1, n], such that hour 1 is the first
hour. The complete set of the full frequency evolutions of all tanks are presented
in appendix E.

For both downbreathings, all hourly frequency trajectories were calculated,
and plotted together in figures 7.13 and 7.14. The colors represent temper-
ature, with cold tanks being drawn blue, tanks of intermediate temperature
being drawn green, and warm tanks being drawn red. Furthermore, different
cameras in the same tank at the same time are distinguished by being drawn
with different line styles.
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(a) Camera eight, first downbreathing

(b) Camera nine, first downbreathing

(c) Camera seven, second downbreathing

(d) Camera eight, second downbreathing

Figure 7.10: Respiration evolution for tank nine downbreathings. The vertical
grey lines represent the time of camera insertion into the tank.
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(a) Camera eight, first downbreathing

(b) Camera nine, first downbreathing

Figure 7.11: Hourly respiration evolutions for tank nine during downbreathing
one
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(a) Camera seven, second downbreathing

(b) Camera eight, second downbreathing

Figure 7.12: Hourly respiration evolutions for tank nine during downbreathing
two
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Figure 7.13: Hourly respiration frequencies for all first downbreathings (28.09.22
and 29.09.22)
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Figure 7.14: Hourly respiration frequencies for all second downbreathings
(05.10.22 and 06.10.22)
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Comparison of full ventilation frequencies and DO content

In figure 7.15, the average full ventilation frequencies (fullT rajAvg) of tank
nine are plotted together with the negated DO content of tank nine. The fol-
lowing steps were performed to generate the plots.

1. All DO saturation values were negated, so that it could be meaningfully
compared to the ventilation frequency.

2. Ventilation frequency clips with camera disturbance were omitted from
the plot.

3. The lowest negated DO value was matched with the first hourly ventila-
tion frequency, and the maximum negated DO value was matched with
the highest value of the full frequency evolution (disregarding clips with
camera disturbance). In this way, the two trajectories were scaled so that
their values were in the same range.

4. Every salmon recording (clip) were assumed to be 12 minutes.

5. A Pearson correlation coefficient (r, see section 4.8.2) was calculated for
each full frequency evolution using a dataset containing the fullT rajAvg
values (disregarding disturbance clips), and the DO saturation values at
the times of the fullT rajAvg measurements. In the title of the plots, both
this r value, and its associated p value (probability that the correlation is
different from zero), were included. Importantly, the r value was calculated
from the DO content, not the negated DO content that is used in the plots.

In appendix F, the average full ventilation frequencies (fullT rajAvg) plot-
ted together with the negated DO contents are displayed for all tanks.
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Figure 7.15: Negated DO content and full frequency evolutions of tank nine.
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Statistical analysis of ventilation frequency extremes

The salmon stress experiment (chapter5) data contained six different temper-
atures; cold, intermediate and warm for each of the two downbreathings. At
each of these temperatures, the following three extreme values were extracted
from the ventilation frequency trajectories.

1. Frequency first hour: The average of all hour one respiration frequen-
cies (item one in the hourly frequency evolution) at a given temperature.

2. Max hourly frequency: The average of all hourly maximum values (the
item of max value in the hourly frequency evolution) at a given tempera-
ture.

3. Max clip frequency: The average of all maximum values in the full fre-
quency evolutions (disregarding the clips containing camera disturbance)
at a given temperature.

In table 7.1, all these extreme values are presented. The uncertainties, set
to two standard deviations (2 · σ), are included as well.

Temperature Frequency first hour Max hourly frequency Max clip frequency

12.3 ◦C 1.32 +
−0.15 Hz 1.61 +

−0.23 Hz 1.69 +
−0.14 Hz

13.4 ◦C 1.26 +
−0.15 Hz 1.59 +

−0.11 Hz 1.73 +
−0.19 Hz

14.0 ◦C 1.34 +
−0.13 Hz 1.64 +

−0.14 Hz 1.77 +
−0.11 Hz

15.6 ◦C 1.24 +
−0.14 Hz 1.58 +

−0.06 Hz 1.69 +
−0.08 Hz

15.9 ◦C 1.44 +
−0.21 Hz 1.71 +

−0.12 Hz 1.85 +
−0.08 Hz

17.7 ◦C 1.40 +
−0.05 Hz 1.53 +

−0.10 Hz 1.62 +
−0.10 Hz

Table 7.1: Overview over maximum and initial ventilation frequencies for differ-
ent temperatures. The uncertainty is set to twice the standard deviation (2 ·σ).
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To evaluate whether any of the ventilation frequency extreme values of table
7.1 were statistically different, a t-test (see section 4.8) were performed between
all the different temperatures for each of the three extreme values. The follow-
ing temperatures were found to have statistically different (p value below 5%)
ventilation frequency extremes. This is also displayed in graphical form in figure
7.16.

1. Frequency first hour:

(a) 12.3 ◦C measurements are different from those at 15.9 ◦C (p = 0.043)

(b) 12.3 ◦C measurements are different from those at 17.7 ◦C (p = 0.045)

(c) 13.4 ◦C measurements are different from those at 15.9 ◦C (p = 0.007)

(d) 13.4 ◦C measurements are different from those at 17.7 ◦C (p = 0.005)

(e) 14.0 ◦C measurements are different from those at 15.6 ◦C (p = 0.036)

(f) 15.6 ◦C measurements are different from those at 15.9 ◦C (p = 0.004)

(g) 15.6 ◦C measurements are different from those at 17.7 ◦C (p = 0.003)

2. Max hourly frequency:

(a) 13.4 ◦C measurements are different from those at 15.9 ◦C (p = 0.006)

(b) 14.0 ◦C measurements are different from those at 17.7 ◦C (p = 0.010)

(c) 15.6 ◦C measurements are different from those at 15.9 ◦C (p = 0.002)

(d) 15.9 ◦C measurements are different from those at 17.7 ◦C (p = 0.000)

3. Max clip frequency:

(a) 12.3 ◦C measurements are different from those at 14.0 ◦C (p = 0.049)

(b) 12.3 ◦C measurements are different from those at 15.9 ◦C (p = 0.001)

(c) 13.4 ◦C measurements are different from those at 15.9 ◦C (p = 0.031)

(d) 14.0 ◦C measurements are different from those at 15.6 ◦C (p = 0.022)

(e) 14.0 ◦C measurements are different from those at 15.9 ◦C (p = 0.021)

(f) 14.0 ◦C measurements are different from those at 17.7 ◦C (p = 0.001)

(g) 15.6 ◦C measurements are different from those at 15.9 ◦C (p = 0.000)

(h) 15.6 ◦C measurements are different from those at 17.7 ◦C (p = 0.036)

(i) 15.9 ◦C measurements are different from those at 17.7 ◦C (p = 0.000)
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Figure 7.16: Visual presentation of the temperatures with significantly different
ventilation frequency extremes (at a p value of 5 %). Only the upper left triangle
of the plot is filled out, so each temperature comparison is only recorded once
in the plot.
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Fish personality

Figure 7.17 displays the personality of all fish, defined as the average deviation
from the shoal ventilation frequency over a downbreathing (see section 6.7). All
hourly frequency evolutions are used to evaluate fish personality, hence the total
set of fish personalities will contain 4 samples for each fish individual (one for
each downbreathing), totalling 252 samples. The histogram were fitted to a
Gaussian curve using the scipy.stats.norm.fit() method[139].

To evaluate how fish personality changed between downbreathings, a bar
plot was created (see figure 7.18) the following way.

1. Order each fish in a downbreathing according to their personality, such
that the class number of the slowest breathing fish is placed at index zero
in the personality order list.

2. Calculate how much each fish fall or rise on this ranking list between
downberathing one and two, and put all these values into a list. Call a
number in this list a ranking change.

3. Use the list of ranking changes to find the rate of ranking change for all
possible ranking changes (zero to six).

4. Since some ranking changes are statistically more likely than others, cal-
culate the rate of ranking change if all rankings were done randomly, by
simulating 100000 random personality orderings.

5. For each possible ranking change (zero to six), subtract the rate of random
ranking change from the data ranking change. This yields the rate of
all ranking changes, corrected for random effects. In figure 7.18, these
ranking change surpluses are displayed. Additionally, the uncorrected
rate of ranking change (which sums to one) is written at the end of each
bar in the plot.

Since each downbreathing had two cameras, one tank yielded four ranking
comparisons, totalling 28 ranking changes (seven fish per comparison) for each
tank.
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Figure 7.17: Histogram displaying all fish personalities
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Figure 7.18: Figure displaying the change of fish personality ranking between
downbreathings, corrected for how much ranking change a random fish ordering
would induce. The text at each bar states the percentage of the given fish
ranking change before correction of the statistical bias.
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Respiration frequency increases after disturbance

Figure 7.19 displays all respiration frequency increases after camera disturbance
of all downbreathings (see section 6.7). The mean of these samples was above
zero with an infinitesimal p value (9.05 · 10−51).

To evaluate how these respiration increases are distributed over the down-
breathing timeline, figure 7.20 was created, where all respiration frequency in-
creases after camera insertions are displayed, separated into the hour following
the respiration increase (so hour one displays the ventilation increase at the
beginning of the downbreathing). Hour two, three and four are significantly
different (at p value 5%) from hour one, five, six and seven.
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Figure 7.19: Histogram displaying all respiration frequency increases after cam-
era disturbance.
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Figure 7.20: Figure displaying the increase in respiration frequency after camera
insertion for all downbreathing hours. Each filled circle is a datapoint, while
the bars are hourly averages.
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Resource requirements

The processing time of generating jaw gape time series from one 2000 frame
image sequence was around 01:30 hours, while the sinusoid fitting took around 2
minutes. As such, the total processing time for one downbreathing was between
30 and 70 hours on an Intel i7 processor.
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Chapter 8

Discussion

8.1 Chapter introduction

This chapter presents a discussion of all pipeline segments, presented in the order
they appear in the final salmon ventilation frequency method. Both methodol-
ogy decisions and results are dealt with in detail.

8.2 Keypoint RCNN

8.2.1 Method

Keypoint placement

The locations of the keypoints were chosen so that they would be easy to distin-
guish, even on fish far away from the camera, and to ensure the fulfillment of the
requirements stated in the numerated list in section 4.2.5 (extraction of salmon
ventilation information and the calculation of a transformation matrix). The
inclusion of a root jaw keypoint facilitated comparison of different jaw poses.

Selection of classes

In the salmon recordings, fish were overlapping or swimming towards the camera
a significant amount of time. In this configuration, salmon identification is close
to impossible, while the breathing frequency is detectable. By including the
two classes front and occluded to the set of salmon individual classes, breathing
frequency relevant keypoints (jaw keypoints) could be annotated even when
classification was infeasible.

Augmentation

The augmentations employed can be separated into two categories, spatial-level
and pixel-level. The spatial transformations are nested, such that rotation, scal-
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ing and shearing are subsets of the perspective transformation. The reason for
using transformations from several complexity levels was to have more control
of the exact nature of the final image, in order to make the augmented frames as
similar to the original ones as possible. The pixel-level transformations ensured
robustness to different lighting conditions.

Label pruning

By removing any label with one occlusion, some fish that should be labeled
occluded were instead labeled as background. This incoherent labelling increase
the rate of false negatives at the frame borders, and might reduce the quality of
the detections the network makes at these locations. One way to tackle this is
to drop the occluded class altogether, and require a completely visible salmon
torax for all annotations. This would reduce the amount, while increasing the
reliability, of the extracted ventilation information, since partly hidden fish have
a higher rate of erroneous keypoint placement than fish without occlusion.

Another approach to deal with annotation at the frame borders is to ensure
that the labelling is coherent at these locations, by moving keypoints outside
the frame to their closest projection on the image, to only do transformations
that preserve all labels, or to use a network that accept missing keypoints. The
two first suggestions would require writing own support functions, and the last
one would require constructing a new Keypoint RCNN model.

8.2.2 Result

Classification

As expected, the classifications performed by the Keypoint RCNN worked poorly,
most likely due to the insufficient size of the training dataset. The only classes
with somewhat reasonable results were the two support classes occluded and
front. As a result, the network class head was disregarded completely in the
final salmon breathing frequency pipeline. Considering this, the classes can be
thought of as an auxiliary target for the model performing salmon detection
and keypoint prediction. Since class features are mainly dependent on salmon
dots, while keypoint detection is dependent on anatomical landmarks, it would
be interesting to compare whether training without the class information would
give better or worse results.

Keypoint prediction and salmon detection

Since the Keypoint RCNN network was not able to learn keypoint occlusion, bad
keypoint predictions for occluded fish are expected. Furthermore, some drop in
accuracy for novel tanks is expected. The general picture is that the labelling
should be slightly more conservative, as a false negative error is better than an
erroneous true positive detection (that is, correct salmon detection, but wrong
keypoint placement). A more restrictive labelling could mean not labelling fish
turned away from the camera, and not labelling occluded fish.
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The Keypoint RCNN network solves the task of keypoint prediction and
salmon detection acceptably. By increasing the size of the training dataset, the
performance could be improved even more.

8.3 Tracking

8.3.1 Method

Two important trade-offs, presented below, reveal themselves when it comes to
tracker performance. The appropriate balance of these were found by tuning
the relevant parameters through trial and error.

1. By accepting fewer consecutive frames without detections, and require
closer proximity between eye detection and tracker, fewer trackers will
jump between fish, however more trackers will loose its current fish as-
signment and be removed from the set of active trackers (T, see section
6.3). Components downstreams of the tracking algorithm in the breathing
frequency pipeline, including splitting time series to a fixed size, and en-
forcing performance requirements of the time series classification, will en-
sure that jumping trackers is a fixable problem. To exemplify, if a tracker
switch fish after 400 frames, the fixed-length time series before frame 400
will be accepted by the breathing frequnecy pipeline, while the time series
including frame 400 will be rejected by the performance requirements of
the time series classification (see the acceptable time series() function of
section 6.6). Trackers with lost fish, however, have no later pipeline fixes,
and is hence a larger issue.

2. The relative weight of the measurement noise (σm) compared to the model
(acceleration) disturbance (σa) in the Kalman filter must be tuned appro-
priately. As the model of the fish dynamics is very simplified, the model
uncertainty is larger than the measurement uncertainty, which is consis-
tent with how the parameters were tuned (see section 6.3).

The reason for using the fish eye as the basis for the trackers, was because
it was the keypoint with the most accurate predictions.

8.3.2 Results

From the results of the salmon tracker (see section 7.3) it can be observed that
the Kalman filter based tracking worked well, despite the large simplifications
done when constructing it (see section 4.4). The trackers are able to track
salmon with sufficient accuracy for downstream tasks.
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8.4 Semi-automated labelling

8.4.1 Method

Augmentation

Since the homogeneous mapping of the salmon torax image was used to remove
spatial level variability, it should be ensured that this variability is not rein-
troduced to the images during the augmentation phase. Because of this, only
one spatial transformation was applied the salmon image; optical distortion, in
order to simulate small errors in the image mapping (homogeneous transfor-
mation). The other augmentations applied to the salmon classification dataset
were used to train the network to not fixate on small details (dropout), ensure
scale/resolution invariability (blur), and to make the network robust to changing
lighting or color conditions (contrast, brightness and tone curve adjustment).

Dataset diversity

The inclusion of data from both downbreathings turned out to be necessary for
the later network classification performance. Whether distinguishing features
of the fish were dot intensity, scale loss or wounds, they tended to change signif-
icantly between downbreathings, making it hard, even for humans, to correctly
re-identify salmon across the two periods of oxygen restriction.

Unlabelled data sampling

An improvement to the semi-automated labelling could be to sample only every
tenth video frame when creating the frames annotated with the Keypoint RCNN
predictions. This way, the constructed datasets would contain more diverse
poses, without increasing the computing requirements of the unlabelled (not
containing individual class labels) data generation. An issue with this is that
the difficulty of, and time spent on, the manual labelling would increase, as the
fish would move in and out of the camera field of view more frequently.

Salmon camera shyness

One problem encountered when generating the salmon classification datasets,
was the case of what can be colloquially called camera shy fish1. Some fish
tended to only swim in one direction along the side of the tank, resulting in
difficulty of gathering data from the salmon side proximal to the tank rim. This
required spending some time searching for salmon in the right pose, however all
fish individuals eventually were represented by 500 images from each side in the
final dataset.

1This name is meant to give the reader an intuition about the problem, and must not be
understood as a suggestion that the fish is afraid of the camera.
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A related issue is the case of consistent salmon trajectories. The salmon
enjoyed following the same paths during its movements, causing lighting condi-
tions and fish poses to correlate with salmon individuals. This could potentially
confuse the neural network model trained on this dataset to learn the salmon
behavior, instead of the salmon individual. This would lead to classification
errors if salmon during evaluation of the network occupy novel configurations.

Resource requirements

The process of annotating the fine tuning dataset of one tank with seven fish
took about eight to ten hours of manual labour. Hence, this process is feasible
for experimental settings, but cannot be extended to industrial applications.

The dataset

The method of semi-automated labelling allowed the creation of a huge dataset,
totalling 118492 images distributed over 126 classes. In this report the data was
only used for finetuning deep neural networks, however it would be interesting to
apply this training set to other few-shot frameworks. To the authors knowledge,
no similar large scale salmon identification benchmark has been developed, and
as such, this dataset can be considered a scientific contribution on its own.

8.5 Salmon identification

8.5.1 Method

Rejected salmon identification strategies

Two methods for salmon identification were briefly tried and rejected, before
the deep learning approach described in section 6.5 was chosen.

The first strategy was the use of scale-invariant geometric relationships, such
as euclidean distance relationships and angles, to distinguish salmon individuals,
motivated by the way human re-identification is performed (see section 3.7.6).
None of the tested relationships, calculated from the keypoint predictions of the
Keypoint RCNN, showed any clear distinguishing patterns between intraindi-
vidual and interindividual measurements. This was likely due to the noise of fish
pose and deformation being more pronounced than the individual variations.

The second strategy was to extract salmon dot locations of salmon torax im-
ages transformed to a predefined configuration, and then compare the similarity
between two dot sets in order to determine whether they origin from the same
fish. The dots were accurately detected by classical machine vision methods,
however the homogeneous mapping was not accurate enough to allow for direct
comparison between a novel and a prototype salmon dot mask.
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Few-shot classification methods

Some few-shot classification methods were tested to see whether a large tank
nine dataset together with small datasets for the other tanks would be enough
to perform accurate individual salmon classifications in all tanks. It turned out
that neither Siamese nor Prototypical networks were able to get accuracy close
to the fine tuning approach, even with the best performing tank nine network
as backbone. This is unfortunate, as Siamese and Prototypical networks can,
unlike the fine tuning approach, easily be adapted to the zero-shot classification
task (see section 3.7.7). The methods tested here were not adapted to the
problem domain, instead they were general algorithms trained on the salmon
classification datasets developed in this report. Methods tailored to the problem
domain, such as ones showing increased attention to dot structures, will likely
yield improved results.

Some work was spent on using only a few instances from each salmon class,
inflated hundredfolds, as the finetuning dataset. The best validation accuracy
with this method reached 94% with a single manually annotated frame for each
salmon individual. The confusion matrix for this network is displayed in ap-
pendix D, and it shows that all classes had more than 80% accuracy. This
accuracy, however, was not sufficient to provide reliable classifications for the
salmon time series. Further increasing the manually annotated frames to 100
instances per class was still not sufficient, while 500 worked well. Note that
increasing the number of manually annotated frames was compensated by a
reduction of the dataset inflation ratio.

A possible explanation for why a high accuracy network was not able to
provide reliable time series classifications, is that the augmentations applied
to the few-shot dataset covers most, but not all, of the true variability inside a
salmon individual class. When achieving 94% one-shot accuracy, a large amount
of augmentations were tested, hence the final result is caused by overfitting on
the augmentation pipeline. As such, the augmentations are tuned to cover the
variability in the validation set (the set that yielded 94% accuracy), while the
rest of the true variability confuse the network at evaluation time. The effect
of these unseen variabilities have a large influence on some trackers, as the
error dependence across temporally proximal detections of the same fish makes
a single unseen variability influence large parts of a tracker.

Homogeneous transformation

An improvement that could reduce the necessary manual annotations of the
finetuning network, as well as make the two rejected identification methods fea-
sible, is to make the homogeneous transformation more accurate. This could be
done by letting the Keypoint RCNN detect a larger number of keypoints, and
use a loss function based method for calculating the homogeneous transforma-
tion matrix. By using more keypoints, it is also possible to use a transformation
with more degrees of freedom than a homogeneous transform, for example one
that allows progressive scaling.
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All datasets created in this work used the pixels of a transformed salmon
torax image as input features. It would be interesting to evaluate how a salmon
identification network trained on raw (untransformed) salmon images would per-
form, and evaluate whether the homogeneous transformation yielded improved
network performance.

Dot dataset

The motivation behind the dot dataset was to enhance informative salmon fea-
tures, while removing information irrelevant for salmon re-identification. Gray
scale images retain most of the information in the salmon images, and might
have been sufficient for salmon classification on its own. The Pytorch network
models, however, are built with three channel images, which made it reasonable
to choose the same number of channels in the dot dataset, so that the dataset
could be applied directly to the premade models. In a dot image, the two last
channels (an adaptive thresholding image and a Laplacian grid) were used to
simplify the salmon dot detection for the network, and to ensure dot structure
was used for the individual salmon classification. The neural network could
learn to calculate both adaptive thresholding images and Laplacian grids from
a gray scale image without specifying these features in independent channels,
however specifying them guides the network into focusing on dots, instead of
geometry or color.

Network evaluation

Accuracy were used as optimality metric when evaluating the deep classification
models. Due to the relatively large number of classes in each tank, and the fact
that the dataset is balanced, this provides good insight into the model perfor-
mance. Additionally, a confusion matrix was constructed to examine whether
some classes were particularly difficult to separate.

8.5.2 Results

Comparing dot and color images

Comparing the dot dataset to the color dataset (see section 7.4), it seems like
the models trained on the dot dataset find reasonable parameters quicker and
easier than their color dataset counterparts, while they are not able to beat
the best color image networks. One possible reason for this could be that in-
formation apart from the dots contribute to identifying salmon. This way, the
manually engineered features facilitate quick and easy extraction of the identi-
fying power of the dots, while other information that might be useful for salmon
identification is lost. A counterargument to this position is that the gray scale
image included in the dot dataset is almost indistinguishable to the color image
by human inspection, so most of the information should be retained in the dot
dataset.
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Another possible explanation is that the imageNet dataset (used for pretrain-
ing the Resnet models) is made of color images, so the pretrained parameters
extract features on the assumption of color images. The dot dataset might not
be large enough to train entire new dot feature extractors in the network, re-
sulting in suboptimal network parameters. Furthermore, the network is tailored
for color images with depth (pixel resolution) of 255, and binary masks require
different network structure for optimal learning.

Performance of the individual salmon classification networks

The best network achieves very high test accuracy, and when using the network
to generate videos annotated with salmon names, close to all frames with well
placed keypoints have correctly labeled salmon individuals (see video in [2]).
This is also the case for the tanks finetuned with a dataset of 500 instances
per fish class. By looking at the wrongly classified fish for the best performing
network (figure 7.6), it can be seen that the erroneous classifications happen
when the torax image is deformed (displaying an unusual pose). Furthermore,
the most similar fish individuals to the human eye are the ones the network
misclassifies (such as Gehasi and Daniel, see figure 6.3), which suggests that
the network is using the same classification criterions as humans, such as dot
placement. This indicates that the network is in fact classifying salmon individ-
uals, and not salmon behaviour, which was one of the worries presented in the
previous section (section 8.4).

8.6 frequency analysis

8.6.1 Method

Parameter tuning

A significant number of parameters were used in this section (see section 6.6).
They were introduced and tuned to achieve a model fit that resembled the
fit a human would deem accurate (L, s, ransacThresh, lineSearchThresh,
ransacInitPerm, η0, freqV al), or to remove time series that did not have the
necessary quality to give rise to a proper model fit (minV alClsf , p,maxFreqStd,
maxFrameDiff , minInlCnt).

Jaw gape metric

Three jaw gape metrics were suggested in the literature review, raw euclidean
distance, warped euclidean distance and angular opening (see section 3.7.5). Af-
ter reviewing time series created with each of these, the raw euclidean distance
ended up being the jaw gape metric incorporated into the salmon breathing
frequency pipeline, due to its robustness (see tradeoff of different mouth pose
metrics in table 3.1). The high outlier number of time series using this metric,
stemming from the difficulty of discarding jaw gape measurements based on the
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relative placement of only two keypoints, was not prohibitively large. Further-
more, the short time series length made the scale and rotational variance of the
euclidean distance metric a problem of little concern, and the loss of amplitude
information was deemed acceptable as the extraction of this was not the main
focus of the work done in this report.

Frequency extraction method

The reason for choosing a RANSAC loop approach to extract the salmon breath-
ing frequency was briefly motivated in the literature review section (section
3.7.5), however the choice of fitting a sinusoidal function to the time series de-
serves some further attention. The valuable information in the time series is the
period between two true signal peaks (the time between two consecutive max
mouth gapes of the physical salmon), and as such a local peak detector might
seem more intuitive than fitting an oscillatory function. This would also allow
handling snapping salmon appropriately (see figure 7.8c). Two main problems,
however, interfere with such an approach.

The first problem is the small location variability that is present in all key-
point predictions, causing the time of the true signal peak to differ from that of
the highest recorded measurement, and removing a strict correlation between
increased measurement value and increased true mouth opening. Hence, the
peak detection is inaccurate (if using a simple max() operation to determine the
peak position), and it is not possible to check the strength of the peak detection
by asserting monotonic decrease of measurement values on both sides of the
peak.

Secondly, the large amount of outliers in the time series, caused by com-
pletely wrong keypoint placements, cause a large amount of false peaks (peaks
in the measurement signal that does not correspond to true peaks), a problem
that is amplified by the difficulty of peak strength estimation discussed above.

Neither of these problems are insurmountable, however they make a straight
forward peak detector implementation insufficient.

Fitting a function with the LM method inside a RANSAC loop effectively
solves the issues stated above, however, as mentioned previously, cannot han-
dle varying peak period. An improvement of the salmon breathing frequency
pipeline would be to find a frequency extraction method that harmonize the
positive effects of both peak detection and function fitting with RANSAC.

Time series splitting

Using the moving window approach to split time series reduces complexity and
length of the time series, and introduces more redundancy in the salmon fre-
quency extraction pipeline, which ensures that a few imprecise RANSAC runs
do not have a major impact on the final frequency estimates of a video clip. This
effect is further boosted by using the median as a central tendency metric, since
this metric is unaffected by the value of outliers. Another strength of splitting
time series is that trackers that jumps from one fish to another during a frame
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sequence do not need to be discarded entirely. Only the time series that overlap
with the jump must be removed, which is controlled by the p parameter (see
section 6.6).

The main weakness of the moving window approach is that it requires more
resources than processing the entire time series at once. Since the analysis time
of the time series is orders of magnitude lower than that of the video processing
pipeline segments (section 6.2 to 6.5), this problem is not significant.

Rejection of data with erroneous keypoint configurations

The rejection of clearly erroneous keypoint predictions by only considering the
keypoints (i.e. not considering the salmon image) turned out to be a difficult
task, as the pose and deformation of the fish caused a large range of realizable
keypoint configurations. An alternative approach to facilitate early rejection
of faulty time series datapoints is to construct a dataset of erroneous keypoint
configurations, and train a neural network to automatically detect which mouth
gapes or homogeneous transforms should be rejected.

8.6.2 results

The fit of the RANSAC loop worked very well, and gave results similar to what
humans would propose without a priori problem knowledge (see figure 7.7).
The main difficulty was to detect and remove time series which did not contain
sufficient information to decide the ventilation frequency, as shown in figure
7.8. The parameters used in the acceptable time series() function introduced
in section 6.6 were able to remove some of the poorest time series, e.g. the
minInlCnt detected a significant number of noisy signals.

The signals capturing the salmon dynamics instead of the jaw gape (figure
7.8b) often had low frequency standard deviation and high inlier count, which
made them difficult to deal with. Luckily, this error case was not very common,
so frequency redundancy provided reasonable error robustness.

As seen from the last time series error case, figure 7.8c, salmon gape fre-
quency is not always fixed. To handle this error case, the sine fitting approach
could be changed to a peak detector, as discussed in the previous subsection
(section 8.6.1), which would allow elucidation of all jaw pose periods. Due to
the similarity between the signals of snapping fish and those of salmon swim-
ming past obstacles, the detection of snapping fish would still not be trivial.
To satisfactory detect snapping and long gapes in salmon, a more accurate key-
point prediction model should be constructed, so that erroneous jaw detections
approach zero.

No numerical evaluation of the exact rate of erroneous model fits were per-
formed, due to the difficulty of determining whether the time series oscillations
that the fitted sine wave followed were caused by respiration or not. What is
clear is that the error count is very low; as an example the complete time series
set in appendix C has no errors.
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Looking at the box plot in figure 7.9, the assumption of low error rate is
strengthened. Apart from two outliers, all of the estimates of each fish class fall
inside a range of 0.3 Hz.

8.7 Respiration frequency extraction pipeline ap-
plied to experimental data

8.7.1 Method

The steps performed in this part of the salmon ventilation frequency extrac-
tion method leverage the previously developed algorithms to extract ventilation
frequency information from the data gathered during the salmon stress experi-
ment (see chapter 5). Only one parameter, minFreqCount, was tuned in this
section, introduced to ensure that all ventilation estimates in the full frequency
evolutions had some redundancy in case of occurrence of the errors discussed in
section 8.6.

Full frequency evolution

The full frequency evolutions provide a good overview of how the fish is changing
its respiration frequency in response to disturbances and changing levels of DO.

One problem with these trajectories is that the time between two consecutive
video samples vary, making it difficult to compare different downbreathings.
The following issues complicated the task of synchronizing the downbreathings
to each other, and to synchronize downbreathings to DO content.

1. Some clips were shorter than 11:47 minutes, due to (accidentally) changed
camera settings. The last clip before a battery change was always of
reduced length, due to the camera being manually stopped.

2. Some periods of the downbreathings were not filmed. This was the case
during battery change, if the battery ran out of power before battery
change, or if the camera malfunctioned and turned off during filming.

3. If any clips were shorter than 7000 frames, they were removed from con-
sideration, due to the sampling strategy (extracting frame 5000 to 7000).

Some of these effects are possible to mitigate by manual inspection of all
timelines during analysis, while the effects of battery change, battery running
out of power, and camera malfunctioning cannot be dealt with post experi-
ment. As such, perfect synchronization of the full frequency trajectories was
not achieved.

Another issue with the full frequency evolutions is that a single video clip
sometimes lacks frequency estimates for some salmon individuals, causing the
full average frequency trajectory (fullT rajAvg) to be biased towards fish that
are frequently detected.
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Hourly frequency evolution

The issues with the full frequency evolutions motivated the construction of
hourly frequency evolutions. These are robust against some of the synchro-
nization issues that affects the full frequency trajectories, such as camera mal-
functioning or changed camera settings. Furthermore, the issue of bias in the full
average trajectory (fullT rajAvg) is improved by calculating hourly frequency
evolutions for the fish individuals, and then averaging over those, as all salmon
normally have a lot of frequency estimates in a six clip period. Hence, the av-
erage hourly frequency evolution (hourlyTrajAvg) provides a precise, unbiased
evolution of the average respiration frequency of the shoal.

The hourly frequency evolutions are still not synchronized, hence the length
of one hour (which separate the video clips into periods between battery changes)
of recording can vary by a significant amount of time, making direct comparison
between downbreathings inaccurate, even when looking at the hourly frequency
evolutions.

The main downside of the hourly frequency trajectories compared to the
full frequency trajectories is the reduced time resolution of the former. Look-
ing at the full frequency trajectories (see appendix E), the average ventilation
frequency rise by up to 0.2 Hz in an hour, which is a significant increase. This
is not a large problem in the middle of the downbreathings, as hourly sampling
here is sufficient to catch the main dynamics. At the time of maximum ven-
tilation, however, the crude time resolution creates an erroneous perception of
the peak ventilation frequency and the curvature of the ventilation frequency
evolution. As an example, if the peak of the full frequency evolution is early in
the hour of maximum ventilation frequency, and the ventilation frequency starts
declining in this hour, the estimated hourly frequency will be quite similar in
the hour of maximum ventilation frequency, and the hour just before, causing a
seemingly concave hourly frequency evolution, even if this does not match the
true respiration frequency shape. If the downbreathing lasts only four hours,
this datapoint significantly disturbs the hourly frequency evolution shape.

By removing the first clip each hour when calculating the hourly frequency
evolutions, the influence of camera insertion disturbance on these trajectories
is greatly diminished, ensuring the hourly frequency evolutions mainly eluci-
date the effects of varying temperature and DO content on salmon respiration
frequency.

When calculating the average hourly frequency evolutions (hourlyTrajAvg),
the calculation pipeline began with taking the intrafish median, followed by the
interfish average, instead of the other way around (first take the intraclip average
over all fish individuals, and then averaging over the averages to acquire the
hourly average). This was to ensure a large pool of data points for each fish, to
avoid bias due to missing fish individuals in some clips. The reason for using the
median when finding a frequency central tendency for one fish was to increase
outlier robustness, while the average was used when finding central frequency
tendency over the fish individuals, as each fish should have the same influence
on the average trajectory.
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Correlation between DO content and ventilation frequencies

As discussed in the previous numerated list, under the full frequency evolution
discussion, the exact timeline of the video recordings are not known, and can
not be perfectly synchronized with the oxygen data. In order to still be able
to compare the evolutions of salmon ventilation frequency and oxygen data,
each video clip was assumed to take twelve minutes, implicitly saying that the
cumulative effect of the synchronization issues resulted in 13 seconds (12:00
minus 11:47) of added time per video clip. This is a significant simplification,
and must be kept in mind when comparing the full ventilation frequencies with
the DO content.

The scaling approach when overlaying DO content and ventilation frequency
was to map the first hourly frequency values to the highest DO contents (low-
est negated DO content), because no significant positive ventilation frequency
trends were observed during the first downbreathing hours. Hence, the hourly
average frequency trajectories provide a robust, largely unbiased resting fre-
quency estimate. For the maximum ventilation frequencies, however, there were
a major difference between the hourly maximum and clip maximum ventilation
frequencies (see table 7.1). Due to this, the maximum value of the full frequency
evolutions were used when aligning the maximum ventilation frequency value
to the lowest (highest negated) DO content. Scaling was only applied in the y
(value) direction, and not in the x (time) direction.

Since the plots comparing DO saturation to ventilation frequency (figure
7.15) looked disorganized when the video clips with camera disturbance were
included, and disturbance peaks are not interesting when comparing ventilation
frequency and DO, these clips were removed from the plots.

Respiration frequency increase after disturbance

When calculating the respiration frequency increase after disturbance, single
clip frequency estimates (instead of hourly estimates) had to be used, as the
disturbance induced respiration increase is present in only one clip (each hour).
This increases the uncertainty of the results, primarily due to some fish missing
from some clips, which results in average frequency (fullT rajAvg) bias, as
discussed above.

Fish personality

The fish personality could be calculated from both the full and the hourly fre-
quency trajectories. Which of the two evolution types used did not have a large
effect on the results. Since the hourly frequency trajectories had more robust
individual estimates, this was the frequency evolution used in the final breathing
frequency pipeline.
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8.7.2 Results

Full frequency trajectories

In appendix E, all full frequency trajectories are displayed. The vast majority
of frequency estimates are reasonably placed, however occasionally, large jumps
in the ventilation frequency estimates for individual fish in two consecutive clips
occur.

Looking at the tank nine ventilation frequency estimates, this is the case
for Caiphas during clip five of the second downbreathing, recorded with camera
seven. For this fish and clip, the other camera (camera eight during downbreath-
ing two) has a frequency data point of Caiphas that is more consistent with the
temporally proximal estimations, hence the camera seven estimate is likely er-
roneous. The reason for this error could be because the number of Caiphas
ventilation frequency data points from camera seven during clip five are few,
and these few frequency estimates exhibit one of the errors presented in figure
7.8.

Some seemingly erroneous frequency data points, like the frequency estimate
of Daniel in the eight clip during downbreathing one in tank nine, is relatively
similar for both cameras. This suggests that the frequency estimate is correct,
while the fish, for some reason, had a large change in ventilation frequency at
that clip.

Occasionally, the full salmon trajectories contain periods without salmon
ventilation frequency estimates. This is the case for e.g. tank 5, camera 6, during
the first hour of downbreathing one (see appendix E), where a salmon swam into
the camera, knocking it out of place. Other periods of missing frequency data
points have similar explanations.

Apart from the occasional large jumps in the frequency estimates (dealt
with above) and the clips of camera insertion (which will be dealt with later),
the difference between two consecutive frequency estimates is staying between
zero and 0.3 Hz, which is consistent with the variability seen in the box plot
of frequencies extracted from a video clip (figure 7.9). It is not unreasonable
to assign this recorded frequency variation to short term ventilation frequency
variability in the physical salmon.

The full frequency trajectories display ventilation frequencies ranging from
1 Hz for the slowest breathing resting fish, to 2 Hz for the fastest breathing
salmon exposed to camera disturbance. This is correlating well with the table
displaying common salmon ventilation frequencies (table 2.1) from the literature
review section about fish ventilation (section 2.2).

Hourly ventilation frequency

Looking at the hourly ventilation frequencies of tank nine for individual salmon
(figures 7.11 and 7.12), the trajectory shape for the different fish individuals is
more or less the same, while the offset of the trajectory is changing. As such,
averaging the hourly frequency trajectories over individual salmon is a good way
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to make the data more concise, yielding an average hourly frequency trajectory
(hourlyTrajAvg).

Most of the downbreathings have very similar trajectories (hourlyTrajAvg)
for the right and left corner cameras (see figures 7.13 and 7.14). This is suggest-
ing that the salmon breathing frequency pipeline is accurately identifying the
ventilation frequency of the fish. The discrepancy between the two cameras have
two potential sources, errors of the breathing frequency pipeline, or changing
physical salmon breathing frequency as the fish swims between the field of view
of the two cameras. To separate these are difficult, as both the physical salmon,
and the frequency extraction pipeline, can display very different breathing fre-
quencies in the same video clip. For the physical salmon, such a large frequency
change can happen if it e.g. snaps.

The reason behind some of the large (above 0.1 Hz) camera discrepancies,
however, are identifiable. Firstly, tank six during downbreathing one (see figures
7.13 and 7.14), has a large discrepancy between the two camera recordings,
which seems to be caused by one being temporally skewed compared to the
other. As the time of the two downbreathings are not synchronized, the camera
discrepancy might be an error (a temporal mismatch) in the experimental data,
and not a fault in the frequency extraction pipeline.

Secondly, some of the video clips had reduced quality, which could come from
air stones in the camera field of view, or cameras pointing in an unfortunate di-
rection. These poor recordings generally had detections of only a few fish, which
led ta a bias in the hourly average frequency trajectories (hourlyTrajAvg). This
was the case for tank eight during the first downbreathing, where one of the cam-
eras (camera seven) had air bubbles in front of it during the final hour (hour
4).

In the hourly frequency trajectories, the reduced time resolution induced by
a per-hour averaging decreases the precision of the peak value. This is more
pronounced for higher temperatures, as these trajectories have a higher venti-
lation frequency rate of increase. As an example, the full frequency trajectories
of the first tank nine downbreathing reaches approximately 1.8 Hz, while the
hourly frequency trajectories only reach a bit above 1.7 Hz. Since this is more
pronounced for high temperatures, this cause a slight bias in the results based
on the hourly frequency trajectories.

Fish personality

As mentioned in section 6.7, the fish personality is describing whether a fish
individual is breathing faster or slower than the shoal average. This is visual-
ized in figure 7.11 and 7.12, where the different fish have ventilation frequency
trajectories with different offsets from the average trajectory.

In figure 7.17, all these fish personalities are presented in a histogram, which
shows that the personalities are more or less Gaussian distributed around the
average frequency trajectory with a standard deviation (σ) of 0.08. This means
that roughly two fish in each tank ( 27 = 29%) will have a breathing frequency
that is, on average, more than 0.08 Hz away from the shoal average frequency

114



(68 % of the data falls in the range µ+
−σ[214]).

By looking at the figure comparing fish personality across downbreathings
(figure 7.18), it can be seen that the fish order is consistent across downbreath-
ings to some extent. There are, however, still a significant amount of ranking
change, which can be seen from the text at the the end of the bars.

Respiration frequency increase after disturbance

By looking at the full frequency trajectories (appendix E), it can be seen that
salmon elevate their respiration frequency when exposed to disturbances from
cameras inserted into their tanks (the grey vertical lines represent time of cam-
era insertion). This disturbance effect is primarily visible in the clip in which
the camera was inserted, putting the disturbance between zero and 83 seconds
(5000 frames) prior to the observed ventilation increase, depending on the exact
time of camera insertion. The variability in the stop time of camera movement
might explain some of the variance in the observed salmon ventilation frequency
disturbance responses.

Figure 7.19 displays a histogram of the respiration frequency increases in the
first video clip each hour, showing that almost all of the camera disturbances
induce an increase in the salmon respiration frequency, with an average increase
of over 0.2 Hz.

It was not found any clear trend between temperature and disturbance re-
sponse, while the time since the beginning of the downbreathings had a signifi-
cant correlation with the size of the disturbance response. Figure 7.20 displays
a constant disturbance driven ventilation increase for hour two, three and four
into the downbreathings, before the ventilation jump decreases to a smaller,
constant value for the next three hours. Three possible biological mechanisms
could explain this.

1. As the DO content decreases, the metabolic scope decreases as well, since
less oxygen is available for metabolic activity. If the fish have a maximum
ventilation frequency that they will not surpass, higher baseline ventilation
frequency necessarily reduce the room for ventilation frequency increase
in response to stressors. One full downbreathing trajectory that supports
this view is the first tank nine downbreathing (figure 7.11), where the
ventilation frequencies during disturbance recordings (the first clip each
hour) are more or less constant, irrespective of the DO content.

2. During the last hours of a downbreathing, the DO content is often increas-
ing, hence the fish are happy with its improved millieux. This might make
them less susceptible to stressors, causing them to more or less ignore the
camera disturbances.

3. In the fifth, sixth and seventh hour of the downbreathings, the fish have
already been exposed to camera disturbances at least four times in the
immediate past. This might cause the fish to learn that the camera is not
dangerous, reducing the disturbance effect of inserting it.

115



DO

By looking into the hourly downbreathings, it is clear that the fish ventilate
with low ventilation frequency during the initial high DO period, and that the
ventilation frequency increases as the DO content decreases. This is quantita-
tively asserted by the negative linear correlations (r values) between the DO
curves and full ventilation frequency trajectories during the downbreathings, as
displayed in figure 7.15 and the figures of appendix F. When these two curves
are more or less temporally aligned, the negative correlation is statistically sig-
nificant, while the p value is above 5% for some of the curves with large temporal
difference between the negated DO content peak and the ventilation frequency
peak. The poor curve fits can most likely be attributed to the synchronization
difficulties described above (subsection 8.7.1). As the peaks of the two curves
often align well, it is reasonable to assume the peak of the downbreathing res-
piration frequencies to be caused by the release of oxygen back into the tanks.

The ventilation frequency decrease during the tank upbreathings might also
be initialized because the critical DO content (pcrit) is reached (see section
2.5.1), and the fish become oxyconformers. In [85], pcrit (termed LOS in [85])
is estimated to around 39% for 12 ◦C and 55% for 18 ◦C, which suggests that
the experimental DO content (see chapter 5) has a maximum pcrit violation of
up to 5 %. This would corresponds to around 30 minutes, or three video clips.

As pcrit and the bottom of the DO content curve is happening at approxi-
mately the same time, it is likely that the ventilation peaks of the full frequency
evolutions are a consequence of the minimum DO content, as the violation of
pcrit is not large enough to cause a significant ventilation frequency decrease
on its own. The effects related to pcrit might instead have some influence on
the rate of ventilation increase and decay on the two sides of the ventilation
frequency peak caused by the minimum DO content.

In appendix F, all average full frequency evolutions are plotted together
with the DO content. It is clear that the peaks of the full frequency evolutions
are relatively temporally aligned with the minimum DO content, and that the
ventilation frequency have an equal or more convex shape than the negated DO
curve. This shows that the ventilation frequency rise faster than the DO content
decays, which is consistent with a stress effect in the salmon (see section 2.5.1).

In the literature review (section 2.5.1), a sigmoid salmon ventilation response
were suggested, with the concave shape at low DO saturations coming from
salmon becoming oxyconformers. This respiration frequency concavity close
to the ventilation frequnecy peak was not clearly observed in the figures of
appendix F, which might be due to the DO content staying mostly above pcrit.
The hourly frequency trajectories in figures 7.13 and 7.14 shows a more sigmoid
shape, but this is mainly due to the averaging effects discussed previously. It
does not seem like temperatures have any effect on the shape of the hourly
salmon trajectories.
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Temperature

In [85], the salmon ventilation frequency ranges from 1.1 Hz to 1.7 Hz for a
temperature of 12 ◦C, and 1.6 Hz to 2.05 Hz for a temperature of 18 ◦C, as the
DO changes from full saturation to pcrit. The breathing frequency data from
this report (table 7.1), displays salmon respiration frequencies of approximately
the same values (see table 7.1), however the distribution of the data of this
report is not as coherent as the one in [85] (see e.g. the uncertainty of the
elements of table 7.1).

Table 7.1 shows the relationship between temperatures and downbreathing
extreme values, averaged over downbreathings holding the same temperatures.
For the six coldest tanks (tanks one to six, which hold temperatures of 12.3
◦C to 15.6 ◦C), the hourly frequency trajectories averaged over downbreathing
temperatures starts in the range [1.24-1.34] Hz, and peaks in the range [1.58-
1.64] Hz (see table 7.1). The maximum clip frequencies goes a bit higher than
the hourly maximum frequencies (as explained earlier in this subsection), up
to the range [1.69-1.77] Hz. In these tanks (one to six), the only significant
ventilation frequency difference was found between the 14 ◦C downbreathings
and the 12.3 ◦C and 15.6 ◦C downbreathings (see figure 7.16). Since the 14.0
◦C downbreathings show the highest ventilation frequencies, higher than both
colder and warmer tanks, it is unlikely that temperature is the driver of the
ventilation difference in the cold and intermediate temperature tanks.

For the three warmest tanks (with temperatures of 15.9 ◦C and 17.7 ◦C),
two differences to the rest of the tanks can be observed. Firstly, the resting
ventilatory frequency is around 0.1 Hz higher at the warmer tanks than in
the cold and medium temperature tanks. This difference is significant for the
ventilation frequencies at the downbreathings with temperatures 12.3 ◦C, 13.4
◦C and 15.6 ◦C, while the downbreathings with temperature of 14.0 ◦C have
p values between seven and eight percent. A resting ventilation increase in
response to elevated temperature is coherent with the findings in section 2.5.2.

Secondly, the average maximum ventilation frequencies at the 15.9 ◦C down-
breathings are over 0.07 Hz higher than the rest of the tanks, while the average
maximum ventilation frequencies at 17.7 ◦C are over 0.05 Hz lower than the
rest of the tanks (see table 7.1). These effects are significant for the following
cases.

1. The maximum hourly ventilation frequency at the 15.9 ◦C downbreathings
is statistically higher than the ventilation frequencies for the downbreath-
ings with temperatures of 13.4 ◦C, 15.6 ◦C.

2. The maximum clip frequency at the 15.9 ◦C downbreathings is statistically
higher than all other tanks.

3. The maximum hourly frequency at the 17.7 ◦C downbreathings is statis-
tically lower than the ventilation frequencies for the downbreathings with
temperature of 14.0 ◦C.
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4. The maximum clip frequency at the 17.7 ◦C downbreathings is statistically
lower than the downbreathings with temperatures of 14.0 ◦C and 15.6 ◦C.

5. All maximum ventilation frequencies for the downbreathings at tempera-
tures 15.9 ◦C and 17.7 ◦C are statistically different from from each other.

The ventilation frequency increase at the 15.9 ◦C downbreathings is ex-
pected, as the literature review (see section 2.5) uncovered that higher temper-
atures cause higher ventilation frequencies in fish. As such, the results at 17.7
◦C stands out as an unexpected datapoint.

One possible reason for the low maximum ventilation of the 17.7 ◦C down-
breathings is that the DO content at the colder tanks reached a lower concen-
tration (see table 5.1), hence the difference in peak ventilation frequency might
be caused by different DO levels, and not the temperature per se. A weaknesses
with this explanation is that the full frequency evolutions of the warmest tanks,
(see e.g. tank seven during the second downbreathing in appendix E) are almost
completely flat, while the first downbreathing trajectories of tank seven show
a steady increase, suggesting other mechanisms than the final (minimum) DO
content at play.

One alternative explanation is that the high temperature effects discussed in
section 2.5 starts becoming significant at 17.7 ◦C, i.e. that the metabolic scope
is reduced, and the rate of oxyconformers increase, at this temperature.

The information in chapter 5 provide additional information about the influ-
ence of temperature on salmon. In table 5.1, it is observed that higher tempera-
tures correlate with quicker downbreathings, with the difference between tanks
one to six (DB time between 300 and 371 minutes), and tanks seven to nine (DB
time between 204 and 231 minutes), being the clearest change of downbreathing
length. The reason for the quicker downbreathing time of tank seven to nine
is twofold, including both a quicker rate of DO content decrease, and a higher
minimum DO content before reintroducing oxygen to the tanks. The quicker
rate of DO content decrease suggests tanks seven to nine contain salmon with
high metabolic rate, which is coherent with the ventilation frequency data from
the downbreathings holding 15.9 ◦C, but not from those holding 17.7 ◦C.

This suggests a third explanation of the low ventilation frequency at the
17.7 ◦C downbreathings. If both the measurement of the downbreathing time
and the salmon breathing frequency pipeline results are correct, the ventilation
frequency of the salmon is low, while its metabolic rate is high, which is only
possible if other effects than ventilation frequency boosts the metabolic rate of
the fish. Increased oxygen uptake to sustain this metabolic rate could come
from increased ventilation amplitude, or a switch to ram ventilation (see section
2.2)

Stress and welfare

There are three clear welfare related effects that the salmon frequency extraction
pipeline is able to capture.
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Firstly, the ventilation frequency increase after camera disturbance was clearly
evident in the experimental results (see figures 7.19 and 7.20). This relates di-
rectly to acute stress, and subsequently welfare (see section 2.6).

Secondly, the shape of the ventilation evolutions were slightly convex, ad-
vocating for a DO mediated stress response (see section 2.5.1). Even if the
ventilation increase in response to DO decrease would be linear, which can-
not be dismissed from the results of this report, decreasing DO content is still
associated with reduced salmon welfare (see e.g. [9]).

Thirdly, the respiration frequency of individual salmon compared to the aver-
age shoal ventilation frequency was discernible in the hourly salmon evolutions,
and these differences were consistent between downbreathings. This can be used
to classify the personality of individual salmon (proactive or reactive, see section
2.3.4), which relates to the welfare of this particular individual.

When it comes to the final variable in the salmon stress experiment, tem-
perature, no unequivocal links between water temperature and ventilation fre-
quency were found, however some weak trends were observed. The two most
interesting are a resting ventilation frequency increase between the six cold-
est and three warmest tanks, and a possible change in salmon oxygen uptake
strategy in response to reduced DO when the temperature changes. Under the
current salmon breathing frequency pipeline, the only detectable temperature
effect was the elevated resting ventilation increase.

Resource requirements

As mentioned in section 7.6, analysing one downbreathing (ten to 25 minutes
of video in total) took several days, making the salmon ventilation frequency
pipeline developed in this report inapplicable to real time applications in its
current form.

During development of the salmon respiration frequency method, no effort
was spent on improving the efficiency of the method. As such, there are options
for making it more effective, the most obvious being GPU accelerated neural
network evaluation during data analysis. Due to limited GPU availability, only
the neural network training used GPU acceleration in this report.
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Chapter 9

Conclusion

In this thesis, a salmon respiration frequency deep learning workflow has been
developed, successfully estimating ventilation frequency on identified salmon
individuals. The three main technical contributions of the thesis are stated
below, and to the authors knowledge, none of them have been presented in
previous publications.

1. A method for estimating salmon ventilation frequency by tracking key-
points attached to salmon jaws.

2. A large-scale salmon identification dataset counting 118492 semi-manually
annotated images over 126 classes (originating from both sides of 63 fish
that were equally distributed over 9 different tanks).

3. A method for salmon re-identification using underwater fish recordings.

Applying this breathing frequency pipeline to data from a salmon stress
experiment yielded the following results.

1. Salmon ventilation increases with decreasing dissolved oxygen (DO) con-
tent, at least for temperatures between 12 and 18 degrees Celsius, and
DO content above pcrit. The curve describing ventilation frequency as a
function of negated DO content is close to linear, with a slightly convex
shape.

2. Salmon increase their ventilation frequency in response to acute distur-
bances in the form of camera inserted into their tanks.

3. If fish individuals are ranked by their ventilation frequency, the ranking
order tend to be constant over both hours and weeks, i.e. the fish breath-
ing fastest at the start of the downbreathing is also the fish breathing
fastest at the end of the downbreathing, and this fish is often the same in
downbreathing one and two.
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4. There might be a positive correlation between temperature and resting
ventilation frequency.

From this it can be concluded that an automated pipeline for extracting
respiration frequency has been successfully constructed, and that this pipeline
can be used to detect acute disturbance stress which lower the salmon welfare.
The method is also capable of detecting decreased DO content in the water by
an increase of salmon ventilation frequency, which can be linked to decreased
salmon welfare. On individual level, the algorithm can detect the ventilation
frequency of a single fish in relationship to the larger shoal, which can inform
on the personality type of the fish (proactive or reactive), which is related to its
individual welfare.
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Chapter 10

Future directions

Every part of the complete breathing frequency extraction pipeline could be
improved on, in order to create even more reliable frequency estimates. Possible
improvements includes a better Keypoint RCNN model that handles occlusion
and frame border detections more robustly, adding more keypoints to the model
in order to improve the salmon transformations, finding a way to reject more
of the faulty jaw gape time series and to create a method to detect variable
breathing frequency periods.

Considering the good performance of the algorithm, the most interesting
future work is to extend the method to industrial applications. This would
mainly require a speed up of the processing pipeline, and a zero-shot model
that can re-identify salmon not seen before model deployment.

Another avenue to pursue is the continued analysis of the experimental data,
with the most pressing improvements being to synchronize the data to allow clip-
by-clip comparisons across different downbreathings, and analysis of a larger
portion of the gathered video recordings. Also linking the result of the ven-
tilation frequency analysis to other data from the same experiment would be
interesting. This could be to estimate whether fish personality (consistent high
or low ventilation frequency) can be linked to hierarchical positions, scale loss
or other welfare indicators, as the literature review would suggest.

Furthermore, the temperature effects on salmon ventilation would be inter-
esting to examine further. Some of the trends that were observed, but could not
be ascertained, might show themselves more definite in a new experiment with
more temperature datapoints, and larger temperature differences. This could
inform about whether higher temperatures change the salmon oxygen uptake
strategy.
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Appendix A

Examples of Keypoint
RCNN errors
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(a) False negative (b) False positive

(c) Fish turned away from camera (d) Jaws detected on wrong fish

(e) Occluded jaws (f) Occluded jaws

(g) Excessive IoU pruning (h) Two fish sharing one bounding box

(i) Dorsal fin keypoint sliding along the
fish back

Figure A.1: The most common Keypoint RCNN errors
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Appendix B

Examples of tracker errors
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(a) Tracker 10 shifts fish (b) Tracker 10 shifts fish

(c) Tracker 14 is replaced by tracker 20 (d) Tracker 14 is replaced by tracker 20

Figure B.1: Two examples of tracker errors
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Appendix C

Model fit for complete time
series set

Below, a complete set of timeseries with corresponding model fit is displayed.
The video sequence used to generate the time series consisted of frame 5000 to
7000 from the first snippet (clip) after three hours of the first downbreathing in
tank nine, recorded with camera nine.
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Figure C.1: Time series function fitting part 1
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Figure C.2: Time series function fitting part 2
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Figure C.3: Time series function fitting part 3
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Figure C.4: Time series function fitting part 4
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Appendix D

One-shot classification
confusion matrix
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(a) Confusion matrix for one shot training of tank three classes
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Appendix E

All full downbreathing
evolutions
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(a) Camera eight, first downbreathing

(b) Camera nine, first downbreathing

(c) Camera seven, second downbreathing

(d) Camera eight, second downbreathing

Figure E.1: Respiration evolution for tank one downbreathings
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(a) Camera six, first downbreathing

(b) Camera seven, first downbreathing

(c) Camera five, second downbreathing

(d) Camera six, second downbreathing

Figure E.2: Respiration evolution for tank two downbreathings
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(a) Camera four, first downbreathing

(b) Camera five, first downbreathing

(c) Camera uncertain, second downbreathing

(d) Camera two, second downbreathing

Figure E.3: Respiration evolution for tank three downbreathings
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(a) Camera four, first downbreathing

(b) Camera five, first downbreathing

(c) Camera uncertain, second downbreathing

(d) Camera two, second downbreathing

Figure E.4: Respiration evolution for tank four downbreathings
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(a) Camera six, first downbreathing

(b) Camera seven, first downbreathing

(c) Camera five, second downbreathing

(d) Camera six, second downbreathing

Figure E.5: Respiration evolution for tank five downbreathings
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(a) Camera eight, first downbreathing

(b) Camera nine, first downbreathing

(c) Camera one, second downbreathing

(d) Camera eight, second downbreathing

Figure E.6: Respiration evolution for tank six downbreathings

163



(a) Camera four, first downbreathing

(b) Camera five, first downbreathing

(c) Camera one, second downbreathing

(d) Camera two, second downbreathing

Figure E.7: Respiration evolution for tank seven downbreathings
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(a) Camera six, first downbreathing

(b) Camera seven, first downbreathing

(c) Camera five, second downbreathing

(d) Camera six, second downbreathing

Figure E.8: Respiration evolution for tank eight downbreathings
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(a) Camera eight, first downbreathing

(b) Camera nine, first downbreathing

(c) Camera seven, second downbreathing

(d) Camera eight, second downbreathing

Figure E.9: Respiration evolution for tank nine downbreathings
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Appendix F

All average full frequency
evolutions plotted together
with DO content
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(a) DO content and full ventilation frequency of tank one.

(b) DO content and full ventilation frequency of tank two.

Figure F.1: DO content and full ventilation frequency of tank one and two.
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(a) DO content and full ventilation frequency of tank three.

(b) DO content and full ventilation frequency of tank four.

Figure F.2: DO content and full ventilation frequency of tank three and four.
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(a) DO content and full ventilation frequency of tank five.

(b) DO content and full ventilation frequency of tank six.

Figure F.3: DO content and full ventilation frequency of tank five and six.
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(a) DO content and full ventilation frequency of tank seven.

(b) DO content and full ventilation frequency of tank eight.

Figure F.4: DO content and full ventilation frequency of tank seven and eight.
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Figure F.5: DO content and full ventilation frequency of tank nine.
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