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Abstract

This study compares the performance of three path planning algo-
rithms in aquaculture: the Elastic Band Method, the Rapidly Random
exploring Tree, and the RRT-based near-optimal planner. The Elastic
Band Method, provided by SINTEF Ocean, served as the benchmark
for comparison. The algorithms were tested in two different environ-
ments using a C++ based simulation tool called FhSim. The results
showed that the Elastic Band Method performed better than the other
two algorithms in both environments.
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Problem formulation

Aquaculture is an important global contributor to the production of seafood
for human consumption, and in 2020, Norwegian aquaculture produced al-
most 1.5 mill. tons of marketable fish meat [1]. As fish farming sites are
moved further offshore and to more exposed locations, working conditions
get increasingly challenging due to the harsher environments at such sites,
and the sheer remoteness to land. The automation of certain important fish
farm operations is therefore an industrial aim to ensure safe and efficient
operation.

There is also a general desire within aquaculture to shift production meth-
ods from manual operations and experience-based reasoning towards a more
objective approach using intelligent sensors, mathematical models, and de-
cision support- and autonomous systems in different stages of production.
However, using unsuitable technological tools and immature automation so-
lutions can lead to unwanted events and accidents, that may in turn lead
to economic losses, damages to structures and fish, and increased person-
nel risks. Avoiding this is the main aim of the concept of Precision Fish
Farming, which provides approaches for adapting technological solutions to
applications in aquaculture.

Using unmanned underwater vehicles (UUVs) is a key element in automating
several aspects of aquaculture operations. However, since the situation in a
fish farm is highly complex and dynamic due to the living fish, deformable
flexible structures and at times demanding environmental conditions, it is
difficult to automate operations using conventional methods and tools. While
existing models and control strategies for autonomous UUVs allow naviga-
tion among rigid structures in static environments, they are not designed for
operations in a dynamic fish farm environment where they need to react to
the presence of animals and deformable structures such as net cages influ-
enced by external forces (e.g., waves and currents). Researches in SINTEF
Ocean are targeting research to address the challenges (e.g., minimizing the
impact on living fish during autonomous fish-farm operations) of using UUVs
in dynamically changing environments such as fish farms.

An important area within this topic is to develop methods enabling the
vehicles to move within the cage without colliding with the fish or the net
structure. Previous student projects have explored different planning meth-
ods for avoiding both static and dynamic obstacles, but there have been few
activities on developing new methods enabling the vehicle to track the paths
or trajectories produced by such methods. This specialization will focus on
the development of path planning strategies for in-cage navigation of UUVs.
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The specialization project will include the following elements:

• Literature review of collision free path planning methods for navigation
of UUVs in subsea and aquaculture domains

– Select three suitable methods and describe these in greater detail

• Implementation and testing:

– Implement the three methods in FhSim

– Formulate simulation setups that provide realistic case studies for
applications in sea-cages/fish farms

• Simulation experiments:

– Run the case studies with the methods to demonstrate their dif-
ferent properties

– Compare the performance between the methods
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I Introduction

Part I

Introduction
Aquaculture is the practice of farming aquatic organisms in complex envi-
ronments. These environments can vary greatly in terms of their physical
characteristics, such as the presence of obstacles, currents, and other factors
that can affect the movement of the aquatic organisms [1, 3]. Automation
plays a crucial role in maintaining efficient and effective aquaculture oper-
ations, particularly in challenging environments. It can assist with various
tasks, including navigating and managing complex environments. To achieve
success in aquaculture operations, it is important to use a robust path plan-
ner for efficient navigation through the aquatic environment. Path planning
algorithms allow robots to navigate through the aquatic environment, avoid-
ing obstacles and finding the most efficient routes to their destination. This is
important for a number of reasons, including optimizing resource utilization,
improving the health and welfare of the aquatic organisms, and increasing
the overall productivity of the aquaculture operation. [1, 3]

SINTEF Ocean has implemented the Elastic band Method towards enabling
autonomy prior to this project. SINTEF Ocean’s implementation of the
elastic band algorithm had been extensively tested and validated [2]. In
this project, the task is to compare SINTEF Ocean’s implementation of the
Elastic Band Method against other path planning algorithms to test the per-
formance. The algorithms that are being compared against the Elastic Band
Method are the Random Rapidly exploring Trees(RRT) and the RRT-based
near-optimal planner.

The contributions of this work are towards path planning in complex an
aquatic environments. More specifically:

• Implementation of RRT and RRT*

• Testing the Path Planners in different simulation environments.

The structure of the report is divided into the following Sections: Path
planners, Implementation of methods, Simulations, Discussion, Conclusion
and Recommended future work.
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II Path Planners

Part II

Path Planners
Path planning [4] is the computational problem of finding a path to move an
object from a starting pose to a goal pose within the free space. This is an
essential aspect of navigation for autonomous systems, as it allows them to
solve safe navigation by deciding safe motion. Path planners can be divided
into two categories: Global path planners and Local path planners. Global
path planning involves finding a path from a starting point to a destination
within a global map, a global map means a map that covers the total space.
Local path planning involves finding a path within a local map using sensor
data to update the path as the object moves, local map means a map that
covers just a portion of the total space.

The Guidance and Navigation Control (GNC) in Figure 1 is responsible
for ensuring that the Remotely Operated Vehicle (ROV) remains on course
and reaches its destination safely.

Figure 1: A block diagram illustrating the information flow between the
main modules of the system, based on a figure in [2]

As depicted in the figure, the path planner receives input in the form of
goals(waypoints), obstacles, and estimated states. The planner uses this
information to generate a safe path, which is then passed to the guidance
law. The guidance law uses the desired path to generate reference signals,
which are sent to the motion control system. The motion control system
uses these signals to generate control inputs for the ROV, which are used
to steer the ROV along the desired path. This process allows the ROV to
navigate its environment and achieve its goals while avoiding obstacles and
staying within the configuration space.
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II Path Planners

1 Background

There are many different approaches to path planning, each with their own
strengths and limitations. To present the possible paths that a path plan-
ner can take from its current location to a goal while avoiding obstacles in
its work space is called the configuration space C [5]. For path planners
however the subset of the configuration space is typically used to search for
paths, namely the free space Cfree [5]. The free space can then be defined
as Cfree = [cimin, c

i
max]× · · · × [cnmin, c

n
max] with n degrees of freedom, where

[cnmin, c
n
max] is defining the maximum and minimum of the space [6]. The free

space mainly represents the configurations that are not in collisions with any
obstacles.

Optimality is a measure of how well a path planner performs in finding
the best solution to a given problem. There are several different types of
optimality, including near-optimal, sub-optimal, global optimality and local
optimality. Near-optimal refers to a solution that is close to the optimal
solution, within a specified tolerance. Sub-optimal refers to a solution that
is arbitrary far from optimal solution. A global optimal solution refers to
the best possible solution to a problem, regardless of where it is found. A
locally optimal solution refers to the best solution within a limited range of
candidate solutions. In the following paragraphs some common algorithms
for path planning are to be presented.

One common approach is to use a search-based algorithm, such as A* or
Dijkstra’s algorithm [7], to find the shortest path between two points. These
algorithms are widely used because they are relatively efficient and can find
paths that are guaranteed to be optimal. However, they can be computa-
tionally expensive and may not be suitable for real-time applications.

Another approach is to use probabilistic methods, such as Rapidly explor-
ing Random Trees (RRTs) or Probabilistic Roadmaps (PRMs), to generate
paths in a probabilistic manner [7]. The RRT and PRM are known to be
probabilistically complete, which means that if a problem is solvable, the
probability that the planner will solve it approaches 1 as the running time
increases. This means that given enough time, the planner will eventually
find a solution to any solvable problem [8]. By improving these methods
into RRT-based near-optimal planner (RRT*) and PRM-based near-optimal
planner (PRM*) can prove to be more efficient than search-based algorithms
and can generate paths that are near-optimal. However, they are not guar-
anteed to find the optimal path and can be sensitive to the parameters used.

In conclusion, path planning is a crucial problem in robotics and there are
many different approaches to solving it. In this project, the focus is on
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II Path Planners

comparing two path planning algorithms against the already implemented
Elastic band Method and observe the outcome. This allows the possibility
to gain a deeper understanding of how different path planners work and how
they perform compared to each other. By conducting this comparison, one
can identify the strengths and weaknesses of each approach and gain insights
into the factors that affect their performance.

In this project, the algorithms selected are Elastic Band Method (EBM),
RRTs and RRT*. These algorithms each have a different approach to path
planning, and each has its own strengths and limitations. The world in
this project is defined using the NED coordinate system, and the vehi-
cle has 6 Degrees Of Freedom (DOF), which are represented by the state
η = [x, y, z, ϕ, θ, ψ]⊤. The position of the vehicle is represented by [x, y, z]⊤

, and its orientation is represented by [ϕ, θ, ψ]⊤.

2 Elastic Band Method (EBM)

EBM [9] is a technique that conceptualizes a path as a band of partly over-
lapping bubbles of varying sizes with a functionality as shown in Figure 2.
The motivation behind the method is to treat the path as if it were a physical
and dynamic system, giving it properties similar to those of a real physical
system such as an elastic band. The elastic band is a good model for this
because it contracts due to internal potential energy, causing it to become
shorter. This idea can be applied to the path in order to give it similar
dynamics.

Figure 2: EBM - The figure shows a band of overlapping bubbles(Green)
from a starting pose to a goal pose(Black) that avoids an obstacle(Red)

Figure 2 shows a vehicle that has created a path consisting of overlapping
bubbles, where each bubble has an attraction force on its neighboring bub-
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II Path Planners

bles in the form of spring forces. Initially, the overlapping bubbles are formed
in a straight line from a start point to a set of waypoints. Due to the contrac-
tion forces, the path will also change depending on its own state. To avoid
collision within the environment the EBM provides a repellent force from
the obstacles onto the bubbles, as shown in Figure 2. The figure illustrates
a repellent spring that pushes the bubbles away from the obstacle, making
the path avoid the obstacle.

The EBM consists of three phases: Initial path build up, Elastic band defor-
mation, and Bubble reorganization [10]. In the following Sections the detailed
procedures and methods mentioned previously are going be explained.

2.1 Phase-I: Initial Path Build-up

In Phase-I the aim is to initialize a set of straight line paths from the ve-
hicle to a number of given navigation waypoints without considering any
obstacles. The path consists of a sequence of partly overlapping bubbles, bi,
each bubble has a position and radius, i.e., bi = [pb ⊤

i rbi ]
⊤, i ∈ [0, n − 1],

where pb
i ∈ R3 contains the bubble position of bubble i, and rbi > 0 is the

i-th bubble radius. The bubble nodes are inserted along the initial path and
labeled with ascending numbers. Each bubble should be a subset of the free
space, and its radius is therefore

0 ≤ rmin ≤ rbi , (1)

where rmin refers to the minimum bubble radius, which corresponds to the
maximum distance from the vehicle center to its edge. [10, 11, 2]

2.2 Phase-II: Elastic Band Deformation

Phase-II in the Elastic Band Method is reserved to continuously modify the
path in real-time to avoid static and dynamic obstacles. This is done by
introducing artificial forces to contract the path from internal potential and
to repel the path from obstacles. Each bubble node is subject to contracting
forces from its neighboring bubbles. This will work to remove any ”slack”
from the path, thus making the path shorter. The internal force f iint on
bubble i can be computed as a geometric expression using

f iint(p
b
i−1,p

b
i ,p

b
i+1) = kint

(
pb
i+1−pb

i

∥pb
i+1−pb

i∥
(∥∥pb

i+1 − pb
i

∥∥− rmin

)
+

pb
i−1−pb

i

∥pb
i−1−pb

i∥
(∥∥pb

i−1 − pb
i

∥∥− rmin

))
,

(2)

where rmin mimics the natural spring length and kint > 0 is the spring stiff-
ness.
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II Path Planners

Given that a situation can contain multiple obstacles where some might
be dynamic, obtaining the virtual external repulsion force requires that all
obstacles are considered. This is important because the repulsion force rep-
resents the force to make the bubbles avoid obstacles, where the j-th obstacle
is defined as oj = [po ⊤

j roj ]
⊤, j ∈ [0, n− 1] with the position po

j ∈ R3 and
the radius roj > 0. The repulsion force for from obstacle oj onto bubble pb

i

is then calculated as follows:

f i,jext (bi, oj) = kext · e−Da

 pb
i − po

j∥∥∥pb
i − po

j

∥∥∥
 , (3)

where kext > 0 is the repulsive gain. The fading function e−Da is to ensure
that the repulsive effect of an obstacle decreases with distance Da, which is
calculated using the following equation:

Da = ||pb
i − po

i || − rmin − roj − dsm, (4)

where dsm ≥ 0 is a customizable safety margin. Next, the summarized
external force acting upon bubble i is calculated by

Fi
ext =

N−1∑
j=0

f i,jext (bi, oj) . (5)

Since it is possible that the elastic band deforms above the sea surface or
below the seafloor, virtual forces from the sea surface and the seafloor were
included. This is to prevent the EBM from creating a path that travels above
the sea surface or below the seafloor. The force will push the bubbles away
from the sea surface and the seafloor. The sea surface force upon bubble i
is given by
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II Path Planners

f isurface(bi) = ksurfacee
−z [0, 0 , z]

⊤

z
(6)

where ksurface > 0 is a designer parameter. Similarly, the resulting force
from the seafloor upon bubble i is then

f iseafloor(bi) = kseafloore
−(z−zmax−rmin−dsm) [0, 0 , z − zmax]

⊤

zmax − z
(7)

with zmax indicating the the depth of the seafloor and kseafloor > 0 is a
design parameter. The total applied force upon bubble i is then summarized
by

f itotal = f iint + f iseafloor + f isurface + Fi
ext (8)

The resulting force f itotal is then used to find the updated bubble position for
bubble i. A gradient descent [12] can then be used to find the new bubble
position. The new bubble position is found by iteratively solving

pb
i [k + 1] = pb

i [k] + γf itotal (9)

until
∣∣pb

i [k + 1]− pb
i [k]

∣∣ < dtol for some small constant dtol > 0, where γ > 0
is an input that represents the step size for the gradient descent. [10, 11, 2]

2.3 Phase-III: Bubble Reorganization

In Phase-III of the EBM, the new configuration of the EBM is evaluated and
updated. This is done by recalculating the bubble radii, removing redundant
bubbles, and inserting new bubbles if needed [2]. The recalculation of the
bubble radii is to ensure that each bubble is still a subset of the free space,
where the radius for bubble i is determined by

rbi =


rmax, ||pb

i − po
j || > rmax − roj

rmin, ||pb
i − po

j || < rmin − roj + dsm

||pb
i − po

j || − roj − dsm, otherwise,
(10)
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II Path Planners

where oj = [po ⊤
j roj ]

⊤ is the closest obstacle, rmax is the maximum bubble
radius and rmin is the minimum bubble radius.

When changing the bubbles and path of the elastic band, one must always
check two properties. This is to ensure that the path maintains feasibility
and continuity. The first step is to remove redundant bubbles, which means
when a bubble is completely within another bubble’s coverage, i.e.,

|rbi−1 − rbi | ≥ ||pb
i−1 − pb

i || (11)

or if the bubble is within an area where two other bubbles overlap, i.e.

rbi−1 + rbi+1 > ||pb
i − pb

i−1||+ ||pb
i+1 − pb

i ||+ dol (12)

where dol > 0 is a parameter representing the desired overlap between two
neighboring bubbles, such that the radius of the intersection circle is always
larger or equal to rmin. The second step is to ensure that the path is contin-
uously connected, which means that there are no gaps between consecutive
bubbles in the path. This is done by checking the criteria below,

rbi + rbi−1 − dol < ||pb
i − pb

i−1|| (13)

Should the criteria for (13) hold, then the method will insert an extra bubble
between pb

i−1 and pb
i to fill the gap. [10, 11, 2]
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II Path Planners

3 Rapidly Exploring Random Trees (RRTs)

RRTs [13] is an algorithm that explores the free space Cfree by creating a
random tree that stretches across the region.

In Figure 3, the steps necessary to create the random tree are illustrated.
The first step is sampling a random point (red) within the configuration
space C. When the random point is picked, the nearest neighbor (green) is
found. When knowing both the random point and the nearest node the RRT
creates a new node (yellow), which is restricted by an input step size. Next,
the new node is connected to the nearest neighboring node and becomes a
node of the tree. This is done iteratively until a solution is found or a pre-
defined timeout.

Figure 3: RRT - The figure shows a random point(red) being picked and the
nearest node(green) being found, with a new node(yellow) being placed in
the direction of the random point at a length equal to the step size

The RRTs holds four main steps that are repeated, these are random sam-
pling, nearest neighbor, tree expansion and path extraction. In the following
sections the detailed procedures and methods mentioned previously are go-
ing be explained. The implementation details of the method are given in the
Section 6:

3.1 Random sampling

When sampling for the random point qrand the point needs to lie in the free
space ∈ Cfree and it is sampled uniformly to preserve thew probabilistic
completeness guarantees. The random point can then be found by the fol-
lowing equation:

9



II Path Planners

qirand =
(
cimax − cimin

)
rs

rmax
s

qrand = [q1rand, q
2
rand, q

3
rand]

(14)

where rs is a random sample from a random sample function, rmax
s is the

maximum value that the random sample can have.

3.2 Nearest neighbor

The next step is to find the nearest neighbor qnear to the random point. The
nearest node can be found by calculating the minimum distance between the
random point and all the nodes in the tree. The nearest neighbor can then
be found by,

qnear = argmin {||q− qrand||} q ∈ T, (15)

with q being a node already connected to the tree T.

3.3 Tree expansion

When the nearest neighbor is found the next step is to calculate the new
node qnew. By using the position of the nearest node one can calculate the
new node of the tree by using the direction of the random point and limit
the branch with a input step size ∆q. The equation can then be stated as:

qnew = qnear +
∆q

dmin
(qrand − qnear), ∆q ≤ dmin (16)

If the distance to between the nearest node and the random point is less
than the step size, the equation is as follows

qnew = qnear + (qrand − qnear), ∆q > dmin (17)

When the new node is computed the next step is to check if the new node
and is collision free.

3.3.1 Collision avoidance

When checking for collisions in the RRTs one might use a method that
calculates the minimum distance from a point a line segment 1. The method
consist of three cases, Should any of these cases have a lower distance than

1https://www.geeksforgeeks.org/minimum-distance-from-a-point-to-the-line-segment-
using-vectors/
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II Path Planners

the obstacle radius, then the line segment collides with an obstacle and the
node will not be connected to the tree.

Case 1

In Case 1 the obstacle O1 = po
1 has a minimum distance d1 to P2 = qnew on

the line segment lP2
P1 = [(xP2−xP1), (yP2−yP1), (zP2−zP1)] and P1 = qnear.

If the following statement is true

lP2
P1 · lO1

P2 > 0,

where lO1
P2 = [(xO1−xP2), (yO1−yP2), (zO1−zP2)], then the minimal distance

is between P2 and the obstacle, as shown in Figure 4.

Figure 4: The figure shows the case 1 collision check, with the position of
the obstacle (Red) compared to the line segment between P1 and P2.

The distance can then be calculated by the norm d1 = ||lO1
P2||, which results

in the distance between the obstacle and P2.

Case 2

In Case 2 the obstacle O1 has a minimum distance to P1 on the line segment
lP2
P1. If the following statement is true

lP2
P1 · lO1

P1 < 0

where lO1
P1 = [(xO1−xP1), (yO1−yP1), (zO1−zP1)], then the minimal distance

is between P1 and the obstacle, as shown in Figure 5.

The distance can then be calculated by the norm d2 = ||lO1
P1||, which results

in the distance between the obstacle and P1.
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II Path Planners

Figure 5: The figure shows the case 2 collision check, with the position of
the obstacle (Red) compared to the line segment between P1 and P2.

Case 3

In Case 3 the obstacle O1 has a minimum distance perpendicular to the line
segment P1P2, as shown in Figure 6.

Figure 6: The figure shows the case 3 collision check, with the position of
the obstacle (Red) compared to the line segment between P1 and P2.

The distance can then be calculated as:

d3 =
||lP2

P1 × lO1
P1||

||lP2
P1||

which results in the perpendicular distance between the obstacle and the line
segment lP2

P1.

3.4 Path extraction

As the RRT iteratively finds new nodes for the tree, there is an goal bias when
sampling for random points. The goal bias is the probability of sampling the
goal node instead of a random point, thus creating a solution. If a solution
exist the next step is to extract the path from the tree. This is done by
following the parent nodes from the goal position back to the initial node as
shown in Figure 7.
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Figure 7: RRT - The figure shows the path(red) being extracted between
the init node(green) and the goal(red).

4 RRT-based near-optimal planner (RRT*)

RRT* is an extension of the RRT algorithm presented in Section 3, that
provides near-optimal solutions. One of the key features of the RRT* algo-
rithm is its use of cost to guide the optimization process. Cost is a way of
evaluating the quality or value of a path, which in this case would be the
path length. This is important since knowing the cost of a path makes it is
possible to improve the cost. The use of cost in the RRT* algorithm allows
the algorithm to continuously improve the quality of the path by rewiring
the tree as it iteratively adds new nodes. By prioritizing paths with lower
cost, the algorithm can quickly identify and discard infeasible or sub-optimal
paths, thereby reducing the search space and improving the efficiency of the
algorithm.

4.1 Major Enhancements of RRT

The RRT* extension adds three major enhancements to the regular RRT:
incorporating cost, rewire node and rewire neighborhood. Figure 8 shows an
illustration of these enhancements.

Figure 8 shows a new node that has been connected to a preexisting tree.
A low-opacity circle indicates the neighborhood region, and the neighboring
nodes (in gray) inside this circle are checked against the current edge (shown
as a firm line) of the new node (in yellow) using cost. The new node checks
the cost of each neighboring node, plus the cost (shown as a dotted line) to
reach the neighboring node. If it finds a neighboring node that would give
the new node a reduced cost, it will disconnect from its current parent and
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Figure 8: RRT* - The figure shows the rewiring of the new node (yellow) in
a neighborhood(low opacity blue circle) in a tree(grey nodes).

connect to the neighboring node instead.

It is not only the parent of the new node that is updated in the tree. The
neighboring nodes within the region are also checked against the new node
to try to improve their own cost. The neighboring nodes check the cost of
the new node, plus the cost to reach the new node, to see if it would reduce
their cost. If the cost is reduced by connecting to the new node, the neigh-
boring node will disconnect from its current parent and attach itself to the
new node instead.

In the following sections, the detailed procedures and methods mentioned
previously will be explained in more detail. The implementation details of
the method are given in the Section 6:

4.1.1 Incorporating Cost

The most important enhancement of the RRT in RRT* is the incorporation
of cost, this is important because it is the cost of the solution of the tree
that the RRT* wants to minimize. The cost of a node in the RRT* is the
sum of the weight of the edge that leads to that node added with the cost of
the parent node. The equation can then be written as:

costnew = costnear + ||qnew − qnear|| (18)
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II Path Planners

where costnear is the cost of the nearest node and costnew is the cost of the
new node.

4.1.2 Rewire node

The next enhancement of the RRT is the rewiring of the new node, the rea-
son that this is desirable is because it will reduce the cost of the new node.
This is done by checking if the new node can be connected to another parent
resulting in a reduced cost for the new node. Should this be the case then
the new cost of the new node is be calculated by:

costnew = costneighbor + ||qnew − qneighbor|| (19)

where costneighbor is the cost of the better neighboring parent.

4.1.3 Rewire neighborhood

The last enhancement of the RRT is the rewiring of the neighborhood, the
reason the reason for doing this is that when a new node is set the cost of
one of the neighboring nodes might be improved. The RRT* then checks
the resulting cost from the neighboring node to the new node. If the cost of
the neighboring node is reduced, then the new cost of the neighboring node
is calculated by:

costneighbor = costnew + ||qnew − qneighbor|| (20)
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Part III

Implementation of methods

5 Simulation Environment

Realistic simulation is an important part of underwater robotics research. It
allows researchers to test algorithms and concepts in a controlled setting.

SINTEF Ocean provided a working simulation environment with a vehicle,
control system, and net structures. The goal of the project is to integrate
a path planning module with the existing simulation objects. The project
focus on developing a path planning algorithm that could be integrated with
the existing control system to improve the performance of the vehicle in the
simulation environment.

5.1 FhSim - Marine Simulations

FhSim is a software platform implemented in C++ that is designed for math-
ematical modeling and numerical simulations, with a focus on simulation
performance and marine systems modeling. Its modular design allows users
to define simulations by interconnecting a variety of independent objects.
FhSim also includes a collection of mathematical marine models that are
essential for simulating a marine environment, with special focus on fish
farming [14, 15].

6 Algorithms

The goal of this project is to implement three different path planning algo-
rithms, as presented in section II. In this section, the implementation and
description of these algorithms is presented.
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6.1 EBM

In this project, the EBM algorithm was already implemented and is referred
to as Algorithm 1.The inputs used in this algorithm are described in Line 1.
In Line 2, the path is initialized. Line 4 contains a loop that runs from Lines
7 to 19, as long as the iteration index i is not equal to the number of bubbles
N − 2. Line 5 set the new bubble position pnew is set equal to the current
bubble position pb

i and the variable k is set to zero. In Line 6, there is a loop
that continues as long as the distance between the old position pold and the
new bubble position is greater than a specified tolerance dtol or k = 0, run
the loop. In Line 7, the old bubble position is set equal to the new bubble
position. Line 8 calculates the elastic band deformation using the internal
force fint from equation 2.

In Line 9 the repulsion force fext is set to zero. In Line 10, a for-loop is
used to loop through the obstacles. Line 11 calculates the distance from the
bubble to the obstacle using equation 4. In Line 12, the repulsion force from
the obstacle onto the bubble is calculated using equation 5 and added to the
previous repulsion force. Line 13 then calculates the sea surface force fsurface
using equation 6, and Line 14 calculates the seafloor force using equation 7.
In Line 15, all the forces acting on the bubble are summarized using equation
8.

The new bubble position is calculated in Line 16 using equation 9, and
the current bubble position is set to the new position in Line 17. Line 18
then recalculates the bubble radius to ensure that it remains a subset of the
free space. Line 21 contains a while loop that loops through all the bubbles
placed in Lines 6 to 19. Lines 22 to 23 remove any bubbles that are com-
pletely within another bubble, and Lines 24 to 25 remove any bubbles that
are within an area where two bubbles overlap. Finally, Lines 26 to 28 check
for gaps between consecutive bubbles in the bubble path. If there is a gap,
an extra bubble is inserted between the two bubbles in Line 27.
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Algorithm 1 Elastic Band Method [2]
1: Input: kint→ Contraction gain. kext → Repulsion gain. ksurface →

Surface gain. kseafloor → Sea floor gain. rmin → Min bubble radius.
rmax→ Max bubble radius. dol→ Bubble overlap. dsm→ Safety margin.
dtol→ Gradient descent tolerence. γ→ Gradient descent step size. J →
Number of obstacles.

2: Construct the initial path Γinit consisting of N bubbles allocated evenly
between the vehicle and the waypoints.

3: i ← 0
4: while i ̸= N − 2 do:

5: pnew ← pb
i , k ← 0

6: while ||pnew − pold|| > dtol or k = 0 do
7: pold ← pnew

8: f int ← kint(
pb
i+1−pold

∥pb
i+1−pold∥

(∥pb
i+1−pold∥−rmin)+

pb
i−1−pold

∥pb
i−1−pold∥

(∥pb
i−1−

pold∥ − rmin))
9: f ext ← 0

10: for j ← 0; j < J ; j++ do
11: Da =

∥∥∥pold − po
j

∥∥∥− rmin − roj − dsm

12: f ext ← f ext + kexte
−Da

(
pold−po

j

∥pold−po
j∥

)
13: f surface ← ksurfacee

−z [0, 0 ,z]
⊤

z

14: f seafloor ← kseafloore
−(z−zmax−rmin−dsm) [0, 0 ,z−zmax]⊤

zmax−z
15: f total ←f int + f ext + f surface + f seafloor
16: pnew ← pold + γf total, k ← k + 1

17: pb
i ← pnew

18: rbi ← min{max{min{∥pb
i − po

0∥ − ro0 − dsm, · · · , ∥pb
i − po

J∥ − roJ −
dsm, ∥zi − zmax∥ − dsm}, rmin}, rmax}

19: i ← i+1
20: i ← 0
21: while i < N -2 do:
22: if |rbi−1 − rbi | ≥ ∥pb

i−1 − pb
i∥ then

23: Delete pb
i , N ← N − 1

24: else if rbi−1 + rbi+1 > ∥pb
i − pb

i−1∥+ ∥pb
i+1 − pb

i∥+ dol then
25: Delete pb

i , N ← N − 1
26: else if rbi + rbi−1 − dol < ∥pb

i − pb
i−1∥ then

27: Insert a new bubble at the midpoint between pb
i−1 and pb

i , N ←
N + 1

28: Go back to Line 3.
29: i ← i+1
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6.2 RRT

The RRTs algorithm is implemented and structured as Algorithm 2.The in-
puts used in this algorithm are described in Line 1. Lines 2 to 3 initialize
the tree and the path. Line 4 contains a while-loop that continues as long
as the new node qnew is not equal to the goal node qgoal, and the code does
not time out. Lines 5 to 7 contain functions that execute the equivalent
of equations 14 to 17 to find the random point qrand, the nearest neighbor
qnear and the new node qnew.

After the new node is calculated in Line 7, the algorithm performs a col-
lision check on the new node in Line 8. The collision check is described in
Section 3.3.1 If the line segment between the new node and the neighboring
node is collision-free, the algorithm progresses to Lines 9 and 10. In Line 9,
the new node is added to a list containing all the nodes of the tree, and in
Line 10, the parent is connected to the new node. In Lines 11 and 12, if a
goal qgoal has been found, the path is extracted by starting at the goal node
and adding all the parent nodes from the goal to the root into the path list.
The last line returns the path.

Algorithm 2 Rapidly exploring Random Tree (RRT)
1: Input: qinit → Initial configuration, ∆q → Incremental distance, C →

Configuration space, TIMEOUT → The break time.

2: T.init(qinit)
3: Path.init(qgoal)
4: while qnew ̸= qgoal and not TIMEOUT do:
5: qrand = RandomSamples(C)

6: qnear = NearestNode(qrand,T)

7: qnew = ExtendTree(qnear,qrand,∆q)

8: if CollisionFree(qnear, qnew) then

9: T.AddNode(qnew)

10: T.AddEdge(qnear,qnew)

11: while Path.Parent ̸= Root.Parent do:
12: Path.AddNode(T.Node(Path.Parent))
13: Path.Parent = T.Edge(Path.Parent)
14: return Path
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6.3 RRT*

The RRT* algorithm is implemented and structured as show in Algorithm
3. Since the RRT* algorithm is based on the RRT algorithm described in
section 6.2,much of the code is similar. The inputs used in this algorithm
are described in Line 1. Lines 2 to 3 initialize the tree and the path. Line 4
contains a for-loop that iterates until a timeout. Lines 5 to 7 contain func-
tions that execute the equivalent of equations 14 to 17 to find the random
point qrand, the nearest neighbor qnear and the new node qnew.

After the new node is calculated in Line 7, the algorithm performs a col-
lision check on the new node in Line 8. The collision check is described in
section 3.3.1. If the line segment between the new node and the neighboring
node is collision-free, the algorithm progresses to Lines 9 and 10. In Line 9,
the new node is added to a list containing all the nodes of the tree, and in
Line 10, the parent is connected to the new node.

When the RRT* algorithm reaches Line 11, the enhancements from sec-
tion 4.1 begin. In Line 11, the cost of every new node is calculated using
equation 18. Line 12 initializes the neighbor list. In Line 13 is a for-loop
that loops though every neighbor within the neighborhood radius Rn. Line
14 then adds the node that is within that radius.

In Line 15, an if-statement checks if the cost sum of any of the nodes in
the neighborhood to the new node is less than the current cost. If the if-
statement is true, Line 16 sets the parent of the new node equal to the
neighbor, and Line 17 updates the cost of the new node using equation 19.
Line 18 ensures that the updated parent and cost are collision free, where in
Line 19 the tree is rewired.

In Line 20, another if-statement checks if the cost sum of the new node
to any of the neighboring nodes is less than the current neighbor cost. If
the statement is true, Line 21 sets the neighbor’s parent equal to the new
node and Line 22 updates the cost of the new node using equation 20. Line
23 then ensures that the updated parent and cost are collision free, where
in Line 24 the tree is rewired. In the Lines 25 to 27, the path is extracted
by starting at the most recent goal qgoal solution and adding all the parent
nodes from the goal to the root into the path list. The last line returns the
path.
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Algorithm 3 Optimized Rapidly exploring Random Tree (RRT*)
1: Input: qinit → Initial configuration, ∆q → Incremental distance, C →

Configuration space, TIMEOUT → The break time, Rn → Neighbor-
hood radius.

2: T.init(qinit)
3: Path.init(qgoal)
4: for TIMEOUT do:
5: qrand = RandomSamples(C)

6: qnear = NearestNode(qrand,T)

7: qnew = CreateNewNode(qnear,qrand,∆q)

8: if CollisionFree(qnear, qnew) then

9: T.AddNode(qnew)

10: T.AddEdge(qnear,qnew)

11: T.AddCost(qnear,qnew,qnear.Cost))

12: Neighbor.init()
13: for ||qnew −T.Node|| < Rn do

14: Neighbor.AddNode(T.Node)

15: if ((Neighbor.Cost + ||qnew −Neighbor.Node||) < qnew.Cost)
then

16: qnew.Parent = Neighbor.Index

17: qnew.Cost = Neighbor.Cost + ||qnew −Neighbor.Node||
18: if CollisionFree(qnew.Parent, qnew) then
19: T.Exchange(qnew.Parent,qnew.Cost)

20: if ((qnew.Cost + ||qnew −Neighbor.Node||) < Neighbor.Cost)
then

21: Neighbor.Parent = qnew.Index

22: Neighbor.Cost = qnew.Cost + ||qnew −Neighbor.Node||
23: if CollisionFree(Neighbor.Parent, Neighbor) then
24: T.Exchange(Neighborhood.Parent,Neighborhood.Cost)

25: while Path.Parent ̸= Root.Parent do:
26: Path.AddNode(T.Node(Path.Parent))
27: Path.Parent = T.Edge(Path.Parent)
28: return Path
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7 Case studies

The major goal of this project is to test the performance of different path
planning algorithms in a realistic scenario related to aquaculture and com-
plex environments. One of the case studies that was selected was path plan-
ning in a fish cage. An illustration of the fish cage used in this project is
shown in Figure 9.

Figure 9: Fish cage

As shown in the figure, the fish cage consists of a floating ring platform (in
red) at the top and a net. The simulation also included obstacles inside the
fish cage.
The final case study involved path planning among multiple fish cages. To
simulate this, there was placed four pairs of fish cages in a specific area. As
an extra environment the RRT* was tested in a high obstacle environment,
for the purpose of showing the different solutions of the RRT*.
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Part IV

Simulations
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Figure 10: The RRT* algorithm was tested in a scenario with obstacles
(shown in red) and a time out of 10 seconds.

Figure 10 shows the progression of the solution from the starting point (in
blue) to the goal (in black) as it avoids obstacles. The figure also shows ten
solutions that obtain a better cost at each time step, with the first solution
(in black) taking a different route than the final solution (in blue). The
obstacles in the simulation is placed in a way that technically allows the path
planner to find a solution between the obstacles. This occurred previously

23



IV Simulations

while simulating, but given the nature of the RRT/RRT* it won’t happen
every time. The first plot is a 2D representation, while the second is in 3D.

8 Case study: Path planning among fish cages
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Figure 11: The figure shows the performance of the RRT algorithm among
fish cages, starting from a point (in blue) and reaching the goal (in black).

Figure 11 generates a path (shown as a scatter line) that avoids the fish cages
(in gray) by going around them. The path is color-coded, with red indicating
lower depths (Z = 30m) and blue indicating surface level (Z = 0). The first
plot is a 2D representation, while the second is in 3D.
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Figure 12: The figure shows the performance of the RRT* algorithm among
fish cages, starting from a point (in blue) and reaching the goal (in black),
with a time out of 30 seconds.

Figure 12 generates a path (shown as a scatter line) that avoids the fish cages
(in gray) by staying close to them without colliding. The path is color-coded,
with red indicating lower depths (Z = 30m) and blue indicating surface level
(Z = 0). The first plot is a 2D representation, while the second is in 3D.
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Figure 13: The figure shows the performance of the RRT* algorithm among
fish cages, starting from a point (in blue) and reaching the goal (in black),
with a time out of 3 seconds.

Figure 13 generates a path (shown as a scatter line) that avoids the fish
cages (in gray) by traveling between the pairs of cages without colliding.
The path is color-coded, with red indicating lower depths(Z = 30m) and
blue indicating surface level (Z = 0). The first plot is a 2D representation,
while the second is in 3D.
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Figure 14: The figure shows the performance of the EBM algorithm among
fish cages, starting from a point (in blue) and reaching the goal (in black).

Figure 14 creates a band of partly overlapping bubbles (in green), and the
resulting path (shown as a scatter line) avoids the fish cages (in gray) by
using different bubble sizes. In the figure, the EBM avoids the fish cages by
going to the side. When it reaches the last cage, the bubbles go beneath and
a little to the side. The path is color-coded, with red indicating lower depths
(Z = 30m) and blue indicating surface level (Z = 0). The first plot is a 2D
representation, while the second is in 3D.
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9 Case study: Path planning in fish cage
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Figure 15: The figure shows the performance of the RRT algorithm within
a fish cage, starting from a point (in blue) and reaching the goal (in black).

Figure 15 generates a path (shown as a scatter line) that avoids the obstacles
(in red) by going between them, resulting in a choppy path. The path is
color-coded, with red indicating lower depths(Z = 25m) and blue indicates
surface level (Z = 0m). The first plot is a 2D representation, while the
second is in 3D.
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Figure 16: The figure shows the performance of the RRT* algorithm within
a fish cage, starting from a point (in blue) and reaching the goal (in black),
with a time out of 30 seconds.

Figure 16 generates a path (shown as a scatter line) that avoids the obstacles
(in red) within the fish cage by navigating between the rows of obstacles,
resulting in a path that is close to smooth. The path is color-coded, with
red indicating lower depths (Z = 25m) and blue indicates surface level(Z =
0m).The first plot is a 2D representation, while the second is in 3D.
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Figure 17: The figure shows the performance of the RRT* algorithm within
a fish cage, starting from a point (in blue) and reaching the goal (in black),
with a time out of 3 seconds, which is closer to real time.

Figure 17 generates a path (shown as a scatter line) that avoids the obstacles
(in red) within the fish cage by navigating above and around the rows of
obstacles, resulting in a path that is close to smooth. The path is color-
coded, with red indicating lower depths (Z = 25m) and blue indicates surface
level(Z = 0m). The first plot is a 2D representation, while the second is in
3D.
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Figure 18: The figure shows the performance of the EBM algorithm within
a fish cage, starting from a point (in blue) and reaching the goal (in black).

Figure 18 creates a band of partly overlapping bubbles (in green), and the
resulting path (shown as a scatter line) avoids the obstacles (in red) by
using different bubble sizes. In the figure, the EBM navigates the bubbles
straight towards the goal while avoiding the obstacles. The path is color-
coded, with red indicating lower depths(Z = 25m) and blue indicates surface
level(Z = 0). The first plot is a 2D representation, while the second is in
3D.
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Part V

Discussion
The simulation results in Section IV highlight the differences between the
various path planning algorithms. Figure 10 specifically shows the improve-
ment of the RRT* algorithm over its initial solution after 10 seconds. This is
interesting because it shows how the RRT* algorithm is able to improve its
initial solution and decrease the cost of the solution over time. The results
of the simulation provide insight into the performance of these algorithms
and can help inform decision-making for future path planning tasks.

The simulation results in Section 8 show the performance of different path
planning algorithms among fish cages. The RRT algorithm is observed to
take a longer route by avoiding obstacles, while the RRT* and EBM show
improved performance by taking a shorter path. The RRT* was simulated
twice with different timeouts to show real-time and more computation time
solutions. In both cases, the RRT* was able to navigate smoothly between
obstacles and reach the goal. The EBM generated a line from the starting
point to the goal, with small changes in bubble positions and bubble sizes
indicating the distance to obstacles. These results indicate that the RRT*
and EBM perform better than the RRT in terms of finding the shortest path
and navigating smoothly between obstacles. It is worth noting that when
the map size changed for the RRT and RRT*, the step sizes needed to be
adjusted in order for the difference in solutions to be noticeable.

The simulation results in Section 9 show the performance of different path
planning algorithms within a fish cage. The RRT algorithm behaves simi-
larly to the previous case study, navigating around obstacles and towards the
goal located at the bottom center of the fish cage. The RRT* was simulated
twice with different timeouts to show real-time and more computation time
solutions. In both cases, the RRT* was able to navigate smoothly between
obstacles and reach the goal. The EBM generated a bubble path, travel-
ing in a straight line from the starting point to the goal, showing a clear
difference in performance compared to the other algorithms. These results
indicate that the EBM perform better than the RRT and the RRT* in terms
of finding the shortest path and navigating smoothly between obstacles in
this type of environment.
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Part VI

Conclusions and Recommended
Future Work
In conclusion, all the path planners performed well and managed to create
a trajectory from a starting point to a goal pose without colliding in to any
obstacles. The simulation results demonstrate the performance of different
path planning algorithms in fish cage environments. The RRT algorithm was
observed to take a longer route by avoiding obstacles, while the RRT* and
EBM showed improved performance by taking a shorter path. When the
configuration space changed for the RRT and RRT*, the step sizes needed
to be adjusted in order for the difference in solutions to be noticeable. The
EBM performed better than the RRT and the RRT* in terms of finding the
shortest path and navigating smoothly between obstacles. EBM was also
found to be the most efficient algorithm among RRT, RRT*, and itself in
terms of computation time. Specifically, EBM had the fastest computation
time, followed by RRT, and then RRT*. These results provide insight into
the performance of these algorithms and can help inform decision-making
for future path planning tasks.

10 Future Work

As a future direction, it may be worthwhile to investigate more complex path
planners that can outperform and potentially replace the EBM that SINTEF
Ocean is currently using. This could involve exploring different algorithms
and techniques that are able to find even shorter paths and navigate more
efficiently through complex environments, one approach could be to imple-
ment the Trajopt path planner from [16]. By doing so, it may be possible to
improve the performance of path planning systems for applications such as
fish cage environments.

33



VII Appendices

Part VII

Appendices

References

[1] Forskning og utvikling for realisering av havbruk til havs innspill til
strategiske prioriteringer mot 2040. https://www.ntnu.no/nyheter/
wp-content/uploads/2022/11/Havbruk-til-havs_versjon-1.pdf.
Accessed: 2022-12-13.

[2] Herman Biørn Amundsen. Three-dimensional collision avoidance for un-
manned underwater vehicles using elastic bands. Manuscript in prepa-
ration.

[3] Offshore sites or the unavoidable need to renew new forms
of farming. https://weareaquaculture.com/featured/
offshore-closed-pen-indepth/26663/. Accessed: 2022-12-13.

[4] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem. ii.
general techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4(3):298–351, 1983.

[5] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[6] Marios Xanthidis, Joel M Esposito, Ioannis Rekleitis, and Jason M
O’Kane. Motion planning by sampling in subspaces of progressively
increasing dimension. In Journal of intelligent and Robotic systems,
page 777–789, 2020.

[7] Yinjing Guo, Hui Liu, Xiaojing Fan, and Wenhong. Lyu. Research
progress of path planning methods for autonomous underwater vehicle.
In Mathematical Problems in Engineering, 2021.

[8] Dmitry Berenson and Siddhartha S. Srinivasaz. Probabilistically com-
plete planning with end-effector pose constraints. In 2010 IEEE In-
ternational Conference on Robotics and Automation, pages 2724–2730,
2010.

[9] S. Quinlan and O. Khatib. Elastic bands: connecting path planning
and control. In [1993] Proceedings IEEE International Conference on
Robotics and Automation, pages 802–807 vol.2, 1993.

[10] Chi-Tai Lee and Ching-Chih Tsai. 3d collision-free trajectory gener-
ation using elastic band technique for an autonomous helicopter. In
Tzuu-Hseng S. Li, Kuo-Yang Tu, Ching-Chih Tsai, Chen-Chien Hsu,

34

https://www.ntnu.no/nyheter/wp-content/uploads/2022/11/Havbruk-til-havs_versjon-1.pdf
https://www.ntnu.no/nyheter/wp-content/uploads/2022/11/Havbruk-til-havs_versjon-1.pdf
https://weareaquaculture.com/featured/offshore-closed-pen-indepth/26663/
https://weareaquaculture.com/featured/offshore-closed-pen-indepth/26663/


VII Appendices

Chien-Cheng Tseng, Prahlad Vadakkepat, Jacky Baltes, John Anderson,
Ching-Chang Wong, Norbert Jesse, Chung-Hsien Kuo, and Haw-Ching
Yang, editors, Next Wave in Robotics, pages 34–41, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[11] Martin Føre, Sverre Fjæra, Sveinung Johan Ohrem, Eleni Kelasidi, Nina
Bloecher, and Herman Biørn Amundsen. Adaptive motion planning
and path following for permanent resident biofouling prevention robot
operating in fish farms. In OCEANS 2021: San Diego – Porto, pages
1–10, 2021.

[12] Claude Lemaréchal. Cauchy and the gradient method. Documenta
Mathematica, pages 251–254, 2012.

[13] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[14] Karl-Johan Reite, Martin Føre, Karl Gunnar Aarsæther, Jørgen Jensen,
Per Rundtop, Lars T. Kyllingstad, Per Christian Endresen, David Kris-
tiansen, Vegar Johansen, and Arne Fredheim. FhSim - time domain
simulations of marine systems. In Proc. ASME 33rd International Con-
ference on Ocean, Offshore and Arctic Engineering, 2014.

[15] Biao Su, Karl-Johan Reite, Martin Føre, Karl Gunnar Aarsæther,
Morten Alver, Per Christian Endresen, David Kristiansen, Joakim Hau-
gen, Walter Caharija, and Andrei Tsarau. A multipurpose framework
for modelling and simulation of marine aquaculture systems. In Proc.
ASME 38th International Conference on Ocean, Offshore and Arctic
Engineering, 2019.

[16] Marios Xanthidis, Nare Karapetyan, Hunter Damron, Sharmin Rah-
man, James Johnson, Allison O’Connell, Jason M. O’Kane, and Ioan-
nis Rekleitis. Navigation in the presence of obstacles for an agile au-
tonomous underwater vehicle. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 892–899, 2020.

35


	List of Figures
	Abbreviations
	I Introduction
	II Path Planners
	Background
	Elastic Band Method (EBM)
	Phase-I: Initial Path Build-up
	Phase-II: Elastic Band Deformation
	Phase-III: Bubble Reorganization

	Rapidly Exploring Random Trees (RRTs)
	Random sampling
	Nearest neighbor
	Tree expansion
	Collision avoidance

	Path extraction

	RRT-based near-optimal planner (RRT*)
	Major Enhancements of RRT
	Incorporating Cost
	Rewire node
	Rewire neighborhood



	III Implementation of methods
	Simulation Environment
	FhSim - Marine Simulations

	Algorithms
	EBM
	RRT
	RRT*

	Case studies

	IV Simulations
	Case study: Path planning among fish cages
	Case study: Path planning in fish cage

	V Discussion
	VI Conclusions and Recommended Future Work
	Future Work

	VII Appendices

