
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

M
as

te
r’s

 th
es

is

Torben Falleth Olsen

Model Predictive Control-based Path-
planning and Obstacle Avoidance for
Real-Time Safe Underwater
Operations

Master’s thesis in Cybernetics and Robotics
June 2023

Torben Falleth Olsen

Model Predictive Control-based Path-
planning and Obstacle Avoidance for
Real-Time Safe Underwater Operations

Master’s thesis in Cybernetics and Robotics
June 2023

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem Description
Aquaculture is an important global contributor to the production of seafood
for human consumption, and in 2020, Norwegian aquaculture produced al-
most 1.5 million. tons of marketable fish meat. As fish farming sites are
moved further offshore and to more exposed locations, working conditions
get increasingly challenging due to the harsher environments at such sites,
and the sheer remoteness to land. The automation of certain important fish
farm operations is therefore an industrial aim to ensure safe and efficient
operation.

Aquaculture also desires to shift production methods from manual operations
and experience-based reasoning towards a more objective approach using in-
telligent sensors, mathematical models, decision support, and autonomous
systems in different stages of production. However, using unsuitable tech-
nological tools and immature automation solutions can lead to unwanted
events and accidents, that may in turn lead to economic losses, damages to
structures and fish, and increased personnel risks. Avoiding this is the main
objective of Precision Fish Farming, which provides approaches for adapting
technological solutions to applications in aquaculture.

Using autonomous underwater vehicles (AUVs) is key in automating sev-
eral aspects of aquaculture operations. However, since the situation in a fish
farm is highly complex and dynamic due to the living fish, deformable flexible
structures and at times demanding environmental conditions, it is difficult
to automate operations using conventional methods and tools. While ex-
isting models and control strategies for AUVs allow navigation among rigid
structures in static environments, they are not designed for operations in
a dynamic fish farm environment where they need to react to the presence
of animals and deformable structures such as net cages. SINTEF Ocean is
targeting research to address the challenges (e.g., minimizing the impact on
living fish during autonomous fish-farm operations) of using AUVs in dy-
namically changing environments such as fish farms.

An important area within this topic is to develop methods enabling the
vehicles to move within the cage without colliding with the fish or the net
structure. Previous research have explored different planning methods for
avoiding both static and dynamic obstacles, covering methods such as the
Elastic Band Method (EBM), RRT, RRT* and reinforcement learning based
approaches. Model Predictive Control (MPC) approaches using optimisa-
tion to find an optimal obstacle free path, could pose an alternative solution
to these methods. Due to their high computational demands, MPC meth-
ods have traditionally been considered unsuitable for real-time navigational

i

purposes. However, recent advances in computer technology, particularly in
embedded systems, have made such approaches more relevant.

This master project will focus on the development of an MPC-based lo-
cal path planner. This planner will be used between the waypoints defined
by a global path planner (e.g., RRT* from the previous project [1]) to avoid
dynamic obstacles in the path of an AUV.

The following items should be considered:

• Literature study covering the applications and previous work on using
MPC for path planning.

– Identify examples from applications on land, in the air, and on
the ground.

– Identify potential optimization criteria suitable for path planning
composed of an objective function and constraints

• Implementation and testing

– Implement the local path planner in C++

– Explore the potential of using MPC for path optimization

• Simulation experiments

– Simulations running case studies based on relevant examples from
autonomous operations in fish farms

ii

Abstract
Underwater path planning enables autonomous underwater vehicles (AUVs)
to navigate complex environments safely and efficiently, which is essential
when operating in aquaculture. This thesis aims to develop and assess
MPC-based path-planning for AUVs operating in challenging underwater
environments, especially in aquaculture settings. Furthermore, the thesis in-
vestigates integrating active perception together with the MPC-based path
planner to improve overall navigation. Through testing in diverse underwa-
ter environments, this research demonstrates the promising potential of the
path planner in enabling efficient and safe navigation for AUVs in challeng-
ing underwater scenarios while observing points of interest. The findings
provided valuable insights, which would greatly benefit the advancement of
underwater navigation in various environments, including aquaculture oper-
ations.

iii

Acknowledgement
This work is performed in collaboration with SINTEF Ocean and supported
by the Norwegian Research Council project CHANGE [grant no. 313737]
and ResiFarm [grant no. 327292]. I would also like to express my gratitude
towards my supervisor, Associate Professor Martin Føre, and co-supervisors,
Dr. Eleni Kelasidi, Dr. Marios Xanthidis, and Mr. Herman Biørn Amund-
sen, for contributing with informative discussions and guidance during the
project.

iv

Contents

Problem Formulation i

Abstract iii

Acknowledgement iv

List of Figures viii

Abbreviations ix

I Introduction 1

1 Aquaculture production practices 1

2 Autonomous navigation and path planning in aquaculture 2

3 Contributions 4

4 Outline 5

II Theory 6

5 Path Planning 6
5.1 Analysis of Common Path Planners 7

6 Model Predictive Control for Path Planning 9
6.1 Model Predictive Control . 9
6.2 MPC vs LQR . 10
6.3 Nonlinear Model Predictive Control 11

III Method Description 12

7 Problem Statement 12

8 Optimization Problem Formulation for NMPC-Based Path
Planning 12
8.1 Active Perception . 14

9 Planner Formulation 15
9.1 Initial Path Update . 16

9.1.1 Algorithm . 17
9.2 Path Resolution . 18

v

9.2.1 Algorithm . 19
9.3 Collision Prediction . 20

9.3.1 Algorithm . 21
9.4 Prediciton Horizon Extension 23

9.4.1 Algorithm . 24
9.5 Active Perception . 25
9.6 Collision avoidance . 26

9.6.1 Algorithm . 26

10 Simulation Experiments 28
10.1 FhSim - Underwater Simulations 28
10.2 Case Study 1: Cluttered Environment 28
10.3 Case Study 2: Multi-robot coordination 29
10.4 Case Study 3: Narrow Passage 30
10.5 Case Study 4: Inspect Fish Cage 31
10.6 Case Study 5: Inspect Fish Cage with Obstacles 32
10.7 Case Study 6: Obstacle-rich Environment with Points of Interest 33

IV Results 34

11 Path-Planning 34
11.1 Case Study 1: Cluttered Environment 34

11.1.1 Time-varying Visualization 35
11.2 Case Study 2: Multi-robot coordination 36

11.2.1 Time-varying Visualization 37
11.3 Case Study 3: Narrow Passage 38

11.3.1 Time-varying Visualization 39
11.4 Planning efficiency . 40

12 Path Planning with Active Perception 41
12.1 Case Study 4: Inspect Fish Cage 41

12.1.1 Time-varying Visualization 42
12.2 Case Study 5: Fish cage with obstacle 43

12.2.1 Time-varying Visualization 44
12.3 Case Study 6: Obstacle-rich Environment with Points of Interest 45

12.3.1 Time-varying Visualization 46

V Discussion 47

13 Path-Planning 47

14 Path-Planning with Active Perception 48

vi

15 Areas of Improvement 49

VI Conclusions and Recommended Future Work 50

16 Future Work 50

VII Appendices 52

A Case Study Parameters and Configurations 52
A.1 Case Study 1: Cluttered Environment 52
A.2 Case Study 2: Multi-robot coordination 52
A.3 Case Study 3: Narrow Passage 52
A.4 Case Study 4: Inspect Fish Cage 53
A.5 Case Study 5: Inspect Fish Cage with Obstacles 53
A.6 Case Study 6: Obstacle-rich Environment with Points of Interest 53

References 55

List of Figures

1 NMPC - Initial Path . 16
2 NMPC - Path Resolution . 18
3 NMPC - Collision Prediction 20
4 NMPC - Prediction Horizon 23
5 NMPC - Observation point 25
6 NMPC - Obstacle Avoidance 26
7 Case Study 1 Environment 28
8 Case Study 2 Environment 29
9 Case Study 3 Environment 30
10 Case Study 4 Environment 31
11 Case Study 5 Environment 32
12 Case Study 6 Environment 33
13 Case Study 1 Result . 34
14 Case Study 1 Time-Varying Result 35
15 Case Study 2 Result . 36
16 Case Study 2 Time-Varying Result 37
17 Case Study 3 Result . 38
18 Case Study 3 Time-Varying Result 39
19 Planning time . 40
20 Case Study 4 Result . 41
21 Case Study 4 Time-Varying Result 42
22 Case Study 5 Result . 43
23 Case Study 5 Time-Varying Result 44
24 Case Study 6 Result . 45
25 Case Study 6 Time-Varying Result 46

viii

Abbreviations
MPC Model Predictive Control . 3

NMPC Nonlinear Model Predictive Control 3

AUV Autonomous Underwater Vehicle 2

SQP Sequential Quadratic Programming 11

IPM Interior Point Methods . 11

QP Quadratic Programming . 11

NLP Nonlinear Programming . 11

LQR Linear Quadratic Regulator . 10

PFM Potential Field Method . 7

RRT Rapidly exploring Random Trees 2

DOF Degrees Of Freedom . 6

EBM Elastic Band Method . 2

PRM Probabilistic roadmaps . 8

PRM* PRM-based near-optimal planner 8

RRT* RRT-based near-optimal planner 2

ICRA IEEE International Conference on Robotics and Automation . 4

ix

I Introduction

Part I

Introduction
Aquaculture is an important global contributor to seafood production for
human consumption. The practice of aquaculture involves the farming of
aquatic organisms in diverse environments with varying physical character-
istics. Automating fish farming operations becomes increasingly critical for
safety and efficiency as the practice moves to more challenging and remote lo-
cations [2, 3]. To ensure the success of aquaculture operations, it is essential
to have reliable autonomy for automated underwater vehicles [4]. To achieve
autonomy and operate efficiently within an aquatic environment, the pres-
ence of a reliable path-planning system is of utmost importance. This system
generates paths for vehicles to follow, ensuring efficient and safe navigation.
With the help of path planning algorithms, underwater vehicles can navi-
gate around obstacles and find the most efficient routes to their destination,
resulting in reduced energy usage and lower operational costs. Additionally,
precise and controlled movement within the environment is essential for the
health and safety of aquatic organisms, as it minimizes disturbances and
potential harm to marine life [2].

1 Aquaculture production practices

Aquaculture production practices aim to provide optimal conditions for aquatic
organisms’ growth, health, and productivity [2, 3]. This involves careful man-
agement of water quality, temperature, salinity, and nutrition. Aquaculture
systems vary greatly, from extensive systems in natural water bodies to in-
tensive systems in land-based tanks or offshore structures. Efficient and sus-
tainable production is a significant challenge in aquaculture, which requires
advanced and reliable technologies. Robotics and automation are crucial
in improving aquaculture operations, allowing for automated tasks such as
feeding, monitoring water quality, disease detection, and harvesting. This
helps to reduce labor costs and enhance overall production efficiency [2, 3].

1

I Introduction

2 Autonomous navigation and path planning in aqua-
culture

Effective path planning is crucial in aquaculture for promoting sustainable
environmental management through robotic navigation. An Autonomous
Underwater Vehicle (AUV) must determine the most efficient path to navi-
gate the underwater environment while avoiding obstacles and complex ter-
rain to reach their destinations successfully.

In aquaculture, underwater robots require a seamless integration of percep-
tion and path planning for reliable navigation. By combining these compo-
nents, trajectories can be created to track and monitor important features
like fish, corals, and structures in the aquatic environment. This integration
is beneficial when navigating through fish cages, as it allows for inspecting
the cage’s condition and gathering vital data on the fish population’s well-
being and behavior. With this capability, underwater robots can perform
targeted and informed actions, contributing to the overall efficiency and ef-
fectiveness of aquaculture operations [5, 6, 4].

As part of the previous project [1], the aim was to evaluate the effectiveness
of different global path planners for use in an aquaculture setting within an
underwater environment. Global path planning involves analyzing the global
map and obstacles to generate a path from point A to point B. The planners
tested included Rapidly exploring Random Trees (RRT), RRT-based near-
optimal planner (RRT*), and Elastic Band Method (EBM), which demon-
strated varying levels of success. However, relying solely on a global path
planner in a complex underwater environment is not advisable. While it
can generate an optimal path globally, it will not adjust to environmental
changes, resulting in collisions and an inefficient strategy. Therefore, it is
necessary to pair a global path planner with a local path planner that con-
tinuously updates the path based on the surroundings, ensuring the robot’s
safety.

Local path planning is crucial for navigating complex underwater environ-
ments for AUVs. Local path planning involves identifying a safe route for
a robot or vehicle in its immediate vicinity, considering the obstacles and
surroundings. Various methods have been utilized in this field, with con-
ventional approaches such as potential field method [7] or D* [8] being
widely used to generate collision-free paths in cluttered underwater envi-
ronments. However, these methods may encounter local minima, resulting
in sub-optimal path quality.

2

I Introduction

More advanced local path planning methods, such as Model Predictive Con-
trol (MPC), have recently been introduced for underwater robotic path plan-
ning. MPC-based planners are a relatively new type of planner that uses a
dynamic system model to optimize a future trajectory subject to constraints.
Previous studies have tested and implemented MPC as a path planner for
ground and aerial vehicles. These studies have shown that MPC is a reliable
path planner that can create safe and comfortable paths for autonomous ve-
hicles [9, 10]. However, the limitations of these studies include the absence
of extra functions in the planner, the implementation of active perception,
and the lack of testing in complex underwater environments.

The limitation of traditional MPC is that it relies on a model of the en-
vironment, which may not always be accurate. The system model is as-
sumed to be linear in a standard linear MPC. However, this assumption
may not hold in underwater environments where the rigid-body kinemat-
ics can be nonlinear. Employing a linear MPC in such scenarios can lead
to complications since it requires linearizing the nonlinear system, which is
an impractical simplification. To address this limitation, Nonlinear Model
Predictive Control (NMPC) has been proposed. The NMPC’s capability to
manage complex dynamics, constraints, and changes in real-time makes it
ideal for underwater environments. NMPC uses a nonlinear model of the
system to optimize the trajectory and is more robust to model uncertainties
than traditional MPC.

Considering the success of MPC-based path planning in ground and aerial
vehicles and the lack of testing on underwater vehicles, it would be inter-
esting to explore its potential as a path planner in dynamically changing
underwater environments. This thesis aims to develop, implement, and test
a path planner for underwater robots, mainly focusing on MPC-based local
path planning. The aim is to thoroughly examine the challenges and oppor-
tunities associated with this approach, emphasizing the real-world applica-
tion of NMPC in underwater environments. By investigating the potential
of NMPC to enhance the navigation capabilities of autonomous underwa-
ter vehicles, this project aims to advance underwater robotics and facilitate
more efficient and successful underwater exploration and operations.

3

I Introduction

3 Contributions

The following contribution has been made to this thesis:

• The results obtained in this thesis are aimed for conference publi-
cations in IEEE International Conference on Robotics and Automa-
tion (ICRA).

• Designed the optimization problem for the NMPC-based path-planner.
This is described in Section 8.

• Creation of additional functions used in the path planning. This is
described in Section 9.

• Implementation of active perception together with the NMPC-based
path planner. This is described in Section 9.5.

• Development of the total path planning algorithm. This is described
in Section 9.6

• Comparison of the performance of the planning time with different
numbers of obstacles. This is presented in Section 11.4

• Case studies evaluating the performance of the path planner. This is
presented in Section 11.

• Case studies evaluation the performance of the path planner with active
perception. This is presented in Section 12.

4

I Introduction

4 Outline

• Chapter I introduces and explains the problem this project aims to
solve. It gives a detailed explanation of the problem statement and its
relevance.

• Chapter II offers a detailed summary of the key theoretical background
that serves as the basis for the following work. Its goal is to provide
readers with the essential knowledge and comprehension required to
understand and value the ensuing discussions and analyses presented
throughout the project.

• Chapter III focuses on the practical implementation aspects of the
software, calculations, and functional concepts. It provides a detailed
account of the steps to develop and deploy the software system, includ-
ing the various calculations and algorithms employed.

• Chapter IV validates the path planner in different situations. It ex-
plains the evaluation and presents the path planner’s performance re-
sults.

• Chapter V analyzes the research results by examining the data col-
lected during experimentation and evaluation to better understand the
outcomes’ significance and implications.

• Chapter VI summarizes the essential findings and insights from the
research. It provides a thorough overview of the results, emphasizing
the primary outcomes and their implications for the field.

5

II Theory

Part II

Theory
This chapter introduces the theory of path planning, which builds upon some
of the pre-project work in [1]. The goal is to establish a strong theoretical
foundation and provide a comprehensive understanding of the path-planning
principles used.

5 Path Planning

Path planning [11] is a computational problem that involves finding a valid
sequence of configurations to determine an object’s path from its starting
pose to its goal pose within the free space, Cfree, which is crucial for safe
navigation in autonomous systems. Path planning is usually presented as
a search problem in a state space [12], where the state refers to the rele-
vant properties of the robot, and the state space is made up of all possi-
ble states. The state space is created by including the Degrees Of Free-
dom (DOF), each adding a dimension to the issue, leading to a space with
multiple dimensions. A specific robot configuration or state corresponds to
a point in the state space. The configuration space [12] is the collection of
all feasible robot configurations represented by C ∈ Rn and is defined as
C = [cimin, c

i
max] × · · · × [cnmin, c

n
max] where n is the number of degrees of

freedom and [cnmin, c
n
max] defines the minimum and maximum boundaries of

the space [13]. In path planning problems with obstacles, C can be divided
into two complementary subsets, namely free space Cfree and obstacle space
Cobs [12]. Free space refers to all the safe states where the robot can move
without colliding with obstacles or being in any invalid states. The obstacle
space refers to any states considered invalid within the system, which colli-
sions or other limitations can cause.

Regarding path planning, optimality refers to how effectively the planner
can find the best solution for a given problem [12]. There are different types
of optimality, including near-optimal, global optimality, and local optimality.
A near-optimal solution is a solution that is close to the optimal within a
specified tolerance. Regardless of location, a globally optimal solution is the
best solution for the problem. A locally optimal solution is the best solution
within a limited range of options.

There are two types of path planning to consider when planning a safe and
efficient route: global and local [14]. Global path planning creates a path
from the start to the final destination, taking into account the entire envi-
ronment shown on a map. On the other hand, local path planning focuses

6

II Theory

on generating a path in real time that avoids obstacles based on the current
surroundings and the vehicle’s status. Although global path planning is cru-
cial for determining the overall route, it is not enough for real-time control
of a AUV, particularly when faced with time-sensitive tasks or unexpected
obstacles. Therefore, local path-planning techniques are necessary to ensure
safe and efficient navigation in dynamic environments.

5.1 Analysis of Common Path Planners

Various path-planning algorithms exist in robotics, each with unique strengths
and limitations. Understanding the differences between these algorithms is
crucial for selecting the most suitable approach for a given robotic applica-
tion. This section presents some of the popular path planners in robotics,
aiming to explain their differences.

One particularly influential path planner is the Potential Field Method (PFM) [15].
The PFM algorithm utilized attractive and repulsive forces to guide a robot
towards a goal while avoiding obstacles [16]. The combined force of the
two determines the direction of where the vehicle moves. Its simplicity and
real-time computation made it a popular choice [7]. However, one of the
drawbacks of PFM is its tendency to get stuck in local minimums, oscilla-
tions in narrow passages, and close to obstacles, leading to sub-optimal path
quality [17]. The EBM[18] is an enhanced version of the PFM. It incor-
porates an elastic band model to refine the robot’s path and enhance the
overall path quality. The method combines attractive and repulsive forces
of PFM with the band’s flexibility to generate smoother and more efficient
paths. However, it will face limitations as the PFM when it is close to the
goal.

Another commonly used path planner is A* [19]. This algorithm uses heuris-
tic functions to guide the optimal path generation by minimizing the path
cost [16]. The strength of this method is its efficiency, simplicity, and mod-
ularity [20]. However, its disadvantage is that it can be computationally ex-
pensive when dealing with complex problems [20]. In dynamic environments
where the map must be updated continuously based on new observations,
specialized variants of A*, such as D* [8], are commonly used. This variant
update previously explored states, resulting in significant computational ef-
ficiency improvements without sacrificing the optimality guarantees of the
path planning algorithm. Although it is effective, the computational cost of
this method is high, and its action space is discretized, limiting the number of
available actions. Furthermore, it is not suitable for use in high-dimensional
spaces.

7

II Theory

Probabilistic methods, such as RRT [21] or Probabilistic roadmaps (PRM) [22],
is also commonly used path planning method, which generates paths in a
probabilistic manner. The RRT is a sampling-based path-planning method
that constructs a tree by randomly sampling configurations, and it’s great
for handling complex constraints and high-dimensional spaces [16]. How-
ever, its paths may not always be optimal as it can settle for a local min-
imum [16]. PRM also uses a sampling-based approach and constructs a
roadmap from randomly sampled configurations. This method is effective
in high-dimensional spaces and generates non-intuitive paths [16]. However,
constructing the roadmap can be computationally expensive [16]. The qual-
ity of PRM’s paths depends heavily on the connectivity of the roadmap, and
sparse sampling or weak local connections can result in inefficient or sub-
optimal paths. Improving these methods into RRT* [23] and PRM-based
near-optimal planner (PRM*) [23] have been developed to almost guarantee
a solution. These can be used anytime, with extra iterations improving the
path. However, updating and rewiring can be computationally expensive
compared to the original planners’ performance.

Sampling-based techniques can solve problems, but their solutions are of-
ten sub-optimal, leading to rough and aggressive movements. Optimization-
based planners such as Trajopt [24, 25] and CHOMP [26] take constraints
and cost functions as inputs and generate an optimized path. CHOMP is
a reliable algorithm that can solve various problems starting with a linear
interpolation between the initial and goal configurations. However, it may
take longer and be less accurate when dealing with complex problems. On
the other hand, Trajopt is a popular path optimization framework that can
quickly produce paths that meet constraints and optimize desired cost func-
tions both in 2D and 3D space [27].

Recently path planning based on MPC has been adopted [28, 10, 29], which
has shown great promise. The MPC uses a dynamic system model to opti-
mize the future trajectory subjected to constraints. The method has shown
the ability to produce safe and comfortable paths [9]. The strength of this
method lies in its ability to handle constraints and generate dynamically
feasible paths. However, it requires a model of the system and can be com-
putationally expensive.

While some methods, like PFM and RRT, provide solutions, they may lead
to sub-optimal paths or encounter challenges in certain environments. Al-
gorithms like A* can face challenges when dealing with complex problems.
Therefore, it is crucial to choose path-planning techniques that are efficient,
optimal, and robust for the specific context or problem domain. Careful
evaluation is necessary to make the right choice. Recent technological ad-
vancements have led to adopting MPC for path planning. MPC has shown

8

II Theory

great promise in producing safe and comfortable paths for autonomous vehi-
cles. Therefore, it would be valuable to test the performance of MPC-based
path planning in real-world underwater scenarios to evaluate its effectiveness
for underwater navigation further.

6 Model Predictive Control for Path Planning

To explore how MPC can be used for navigation, it is essential to understand
its basic principles and concepts. This section provides a comprehensive
overview of MPC, laying the groundwork for a deeper exploration of how
it can be applied to navigation and path planning. By understanding the
basics of MPC, one can better understand how it can successfully face the
obstacles of autonomous navigation in various environments.

6.1 Model Predictive Control

MPC [30] is an advanced process control technique that calculates the cur-
rent control action by solving a finite horizon open-loop optimal control
problem at each sampling instance, also meeting a series of constraints. The
optimization process begins with the system’s present state as the starting
point and produces an optimal control sequence. The initial control in the
sequence is then subsequently applied to the system. The equation below
shows how the optimization problem is usually structured in a MPC [31],

min
z∈Rn

f(z) (1.)

s.t.
c1(z) = g1(z) (2.)

c2(z) ≥ g2(z) (3.)

c3(z) ≤ g3(z) (4.)

(1)

where f(z) is the objective function, ci(z) are the constraints and gi(z) are
the contraint functions. The objective function (1.) measures how good
a solution is to a problem’s goals. It takes input variables and produces
a scalar value to be maximized or minimized. The constraints in (2.)-(4.)
limit possible problem solutions by defining requirements and restrictions
and optimizing the objective function. There are many ways to formulate
the objective function. One typical formulation is [31]:

9

II Theory

f(z) =
N−1∑
i=0

x⊤i+1Qi+1 xi+1 + dxi+1 xi+1

+
1

2
u⊤i Riui + duiui +

1

2
∆u⊤i R∆iui

The variables in the equation include the state of the plant represented by
xi+1, the input by ui, input change by ∆ui, prediction horizonN and tunable
variables such as Qi+1, dxi+1, Ri, dui, and R∆i. The Q and R matrices assign
weights to variables in the cost function, tuning performance, effort, and
stability for controller modification. However, the form previously shown is
just a basic example of a quadratic cost function, and there are numerous
variations that the objective function can take.

6.2 MPC vs LQR

Linear Quadratic Regulator (LQR) and MPC are two different methods for
designing control strategies for dynamic systems, with significant differences
despite some similarities.

LQR is a feedback control technique that designs a linear controller to min-
imize a quadratic cost function [31]. It is a one-step control strategy that
computes the entire control sequence based on the system’s current state.
LQR is best suited for linear systems with no constraints.

MPC, on the other hand, is a receding horizon control technique that pre-
dicts the system’s future behavior using a dynamic model and optimizes a
control sequence over a finite time horizon [31]. Constraints on the system’s
state and input are considered during optimization. Only the first optimized
control action is applied at each time step, and the optimization process re-
peats with a new initial state at the next step. MPC is an effective strategy
for systems with dynamics and constraints.

It’s worth noting that the MPC approach is more relevant than the sim-
pler LQR approach. While LQR computes the entire control sequence in a
single step based on the current system state, MPC considers future behavior
by predicting it and optimizing a control sequence over a finite time horizon
using a dynamic system model, all while considering constraints. Therefore,
the MPC approach provides more flexibility and adaptability in controlling
the system than LQR.

10

II Theory

6.3 Nonlinear Model Predictive Control

NMPC [31] is a form of MPC that uses nonlinear system models in its cal-
culations. Similarly to MPC, NMPC solves the optimal control problems
iteratively over a finite prediction horizon. However, unlike linear MPC,
these problems may not be convex in NMPC, presenting complications for
both the stability and the numerical solutions. Non-convex problems are
optimization problems that do not follow the rules of convexity. Convexity
means that a curve in a function or set is either flat or curves upward, and
any line connecting two points within the curve or set is above or on the
curve. To effectively use NMPC, it is crucial to have a solver that solves the
Nonlinear Programming (NLP) problem. Therefore, a nonlinear solver is re-
quired. The two primary classes of solvers available are Sequential Quadratic
Programming (SQP) and Interior Point Methods (IPM) [31].

Sequential Quadratic Programming (SQP)

SQP is a numerical optimization method that utilizes an iterative approach
to find the optimal solution. It achieves this by solving Quadratic Program-
ming (QP) sub-problems sequentially [32]. There are traditionally two types
of classes that are used in the SQP method, and these are line search and
trust-region methods [32]. These classes ensure global convergence of locally
convergent minimization in the SQP method. The Line search method
controls the step length taken along the computed SQP direction [32]. The
Trust-region method, on the other hand, aims to control the step length
at the same time as computing the search direction [32].

Interior Point Methods (IPM)

IPM are numerical optimization techniques that transform constrained opti-
mization problems into unconstrained ones by introducing a barrier function
that penalizes constraint violations [32]. In practice, there are two effec-
tive classes of IPMs. The first class is an extension of IPMs for linear and
quadratic programming, which enforces convergence through line searches
and computes steps using direct linear algebra. The second class employs
a quadratic model to define the step and includes a trust-region constraint
to ensure stability. These two approaches share similarities with line search
and trust-region SQP methods [32].

11

III Method Description

Part III

Method Description
An NMPC-based local path planner was implemented in Visual Studio using
C++. The planner used CasADi [33] library with the Opti stack class to
solve the optimization problem formulated in Section 8. To ultimately solve
the path planning problem presented in Section 7.

7 Problem Statement

This project aims to produce safe paths for underwater vehicles operating in a
constrained underwater aquaculture environment with unknown underwater
conditions, such as aquatic organisms or cage instruments. To simplify the
problem, the AUV is assumed to be holonomic, meaning that the number of
DOF matches the number of controllable DOF. A typical 3D configuration
space C will be utilized in the environment, meaning C = X x Y x Z.
Let xinit = [xinit yinit zinit] indicate the initial state of the vehicle, and
the goal defined as xgoal = [xgoal ygoal zgoal], where x is the location of
a state within the configuration space. Additionally, let P define a path
from the initial state x0 to a goal xgoal. Lastly, let O = [o0 o1 . . .on] be
a set of known convex spherical obstacles within the environment, where
oj = [xj r

obs
j]⊤ ∈ O is the state of obstacle j. The objective is to produce

locally optimal paths with minimal length, avoiding collision between the
vehicle and any obstacle within the environment.

8 Optimization Problem Formulation for NMPC-
Based Path Planning

To address the challenges inherent in underwater navigation and path plan-
ning, the initial phase of development involved creating a design based on the
NMPC principles presented in 6. This design optimizes the path-planning
process, allowing the planner to generate safe and efficient trajectories while
considering surrounding obstacles. This section presents the key components
implemented in the NMPC-based path planner, highlighting how these en-
hancements improve the navigation capabilities of the vehicle. The design
of the NMPC is presented by the optimization problem shown in (2).

12

III Method Description

min
x∈R3

N−1∑
i=0

||xi+1 − xi||2 (1.)

s.t.
x0 = xinit (2.)

xN = xN (3.)

||xi − xj || > rrobot + robsj (4.)

∣∣∣∣∣∣∣∣xi+1 + xi

2
− xj

∣∣∣∣∣∣∣∣ > rrobot + robsj (5.)

rrobot < min
k∈P
{||xi − xk||} ≤ rrobot + dobsrv (6.)

(2)

The NMPC-based path planner’s objective function aims to minimize the
path length within the prediction horizon (N). To achieve this, the sum of
distances between consecutive states represented by xi and xi+1 is calcu-
lated in (1.), as shown in Equation (3). By minimizing the length, the path
planner can find the most efficient and compact path from the initial state
to the destination, leading to optimal navigation.

min
x∈R3

N−1∑
i=0

||xi+1 − xi||2 (3)

where xi refers to the state of path node i, represented as a three-dimensional
vector xi = [xi yi zi]

⊤ ∈ P, i ∈ [0 , N−1]. The equality constraints outlined
in Equation (4) fix the initial (2.) and final (3.) points of the prediction
horizon, thereby preventing the path from collapsing to a zero length. This
ensures that the path maintains a non-zero length throughout the prediction
horizon.

x0 = xinit

xN = xN
(4)

Where xinit represents the current vehicle state, while xN indicates the state
located at the end of the prediction horizon. Equation (5) enforces an in-
equality constraint in line (4.), preventing any states from intersecting with
a set of obstacles O that may cause a collision.

13

III Method Description

||xi − xj || > rrobot + robsj (5)

where xj corresponds to the position of an obstacle, robsj > 0 denotes the
obstacle radius, and rrobot > 0 represents the radius of the vehicle. The fol-
lowing equation from line (5.) illustrates an additional inequality constraint,
which prohibits the middle point between xi+1 and xi from colliding with
any obstacles. ∣∣∣∣∣∣∣∣xi+1 + xi

2
− xj

∣∣∣∣∣∣∣∣ > rrobot + robsj (6)

8.1 Active Perception

An additional constraint was added to the optimization problem to enhance
the planner for aquaculture use. Apart from the constraints that help nav-
igate from the starting point to the endpoint, this new constraint enables
observing points of interest close to the path. Equation (7) shows the con-
straint used, which applies an attractive force on the path towards a specific
observation point (6.).

rrobot < min
k∈K

{||xi − xk||} ≤ rrobot + dobsrv (7)

The variable xk ∈ K denotes a point of interest, specifically, a point the
path is attracted to but does not collide into so that the vehicle can safely
observe the point. The scalar dobsrv represents the maximum distance over
which observations can be made.

14

III Method Description

9 Planner Formulation

This section will discuss the functions added to the NMPC-based local path
planner. The purpose of these functions is to enhance navigation in un-
derwater environments and create safer paths. The goal is to improve the
performance and reliability of the path planner, allowing it to handle the
unique challenges posed by underwater conditions. These functions were
added to optimize the path planner’s ability to navigate complex underwa-
ter terrains, avoid obstacles, and ultimately increase the safety and efficiency
of underwater robotic operations. The functions are:

• Initial Path Update updates the initial path used in the optimization
based on the vehicle’s state.

• Path Resolution regulates the number of states in the path based on
a predefined step length.

• Collision Prediction predicts collisions with moving obstacles, cre-
ating static obstacles at collision points.

• Prediction Horizon Extension moves the last state of the prediction
horizon to a safe state if the current is not feasible.

• Active Perseption does not assist with collision avoidance but is
designed to enhance navigation and efficiency during underwater mis-
sions. This function pushes the path toward a specific point of interest,
allowing the vehicle to observe the point safely.

• Collision Avoidance creates an optimized path that avoids obstacles,
combining the NMPC framework and the previous functions.

15

III Method Description

9.1 Initial Path Update

The Initial Path Update function recalculates and generates the initial
path from the vehicle’s current state to the goal. This function is used as
a starting point for the path-planning process. To better understand this
process, refer to figure 1 for a visual representation.

Figure 1: The figure shows the process of updating the initial path and
computing the locally optimal path based on the vehicle’s movement along
the path.

Figure 1 depicts a vehicle in a gray color that progressively computes the ini-
tial path (Pinit

i) and the locally optimal path (blue) using the sliding window
goal xN and the global goal (Black). The figure shows transparent versions
of the vehicle at different times. These vehicles have recalculated the initial
path based on their current state, depicting a dark blue line indicated as the
first updated path and a green line indicated as the second.

The function begins by calculating the distance between the goal xgoal and
the current state of the vehicle x0 in x, y, and z directions as shown below.

xgoal − x0 (8)

16

III Method Description

After computing the distance, the function determines the number of states
between the vehicle’s current state and the goal. This is calculated using the
following equation:

n =
||xgoal − x0||

|k| + 1 (9)

Where |k| > 0 is the Euclidean step length between the path states, and n
is the number of states between the current state and the goal, the next step
involves calculating the updated initial path by determining the new step
length k in x, y, and z. The new step length can then be expressed as:

k =
xgoal − x0

n− 1
, n > 1 (10)

A new initial path between the current state and the goal is then generated
using k as the length between each state.

9.1.1 Algorithm

Algorithm 1, which utilizes the equations previously presented, is used to
create the function that updates the initial path. The inputs required for
this algorithm are specified in Line 1. The output coming from this algorithm
is specified in Line 2. Line 3 computes the number of states necessary to
reach the goal, given a desired step length. The new step length for the
initial path is calculated in Line 4, and in Lines 6 and 7, the new initial path
is generated. Finally, the algorithm returns the path in Line 8.

Algorithm 1 InitialPathUpdate()

1: Input: xi → State, xgoal → Goal, |k| → Desired step length.

2: Output: P → Path.

3: n = ||xgoal−x0 ||
|k|

4: k =
xgoal−x0

n−1

5: i = 0
6: for i < n do
7: xi ← [x0 + ikx, y0 + iky, z0 + ikz] ∈ P
8: return P

17

III Method Description

9.2 Path Resolution

The Path Resolution function adjusts the path resolution by adding or
removing states to ensure a smoother trajectory, which will help to navigate
more safely. Figure 2 visually represents this process.

Figure 2: The figure shows the first optimal path calculated from the initial
path with step length |k|, where it has three nodes in the horizon. The
function then uses the previous solution to calculate the new number of
states for the path to maintain step length |k|.

In Figure 2, the gray vehicle has created a path from its current state to
its destination, like in previous functions. The optimized path (blue) goes
around the obstacle (pink), where it obtains a different step length (|k|) than
the initial path (black). On the next iteration, the initial path is adjusted to
maintain consistency in step length, resulting in the optimized path’s step
length obtaining the same step length as the initial path. In this example,
this is done by inserting a new state in the local horizon.

The function uses the optimized path’s Euclidean distance, represented as
lf , to determine how many states a path needs to contain. This distance is
calculated using Equation (11), which considers the distance between adja-
cent states in the horizon.

lf =
N−1∑
i=0

||xopt
i+1 − xopt

i || (11)

where xopt
i is an optimal state, xopt

i+1 is the adjacent optimal state and N is
the number of states in the prediction horizon. Next is calculating the new

18

III Method Description

number of states n needed for the optimal path to match the desired step
length |k|. The following equation calculates this.

n =
lf
|k| (12)

When the state index n is calculated, the new initial path step length k must
be calculated within the prediction horizon using the following equation.

k =
xN − x0

n
(13)

where x0 is the current state and xN is the last state in the prediction
horizon. Then, the new number of states can be placed using the new step
length to create step length |k| on the optimal path.

9.2.1 Algorithm

The equations previously mentioned are implemented in Algorithm 2 to up-
date the path resolution. The required inputs for the algorithm are listed
in Line 1. The algorithm outputs are listed in Line 2. Lines 4 and 5 calcu-
late the Euclidean distance of the optimal path, while Line 6 calculates the
number of states needed to match the desired step size in the optimal path.
Line 7 computes the new step length for the initial path within the horizon.
The updated number of states within the prediction horizon is added to the
initial path in Lines 9 to 10. Finally, Line 11 returns the updated initial
path.

Algorithm 2 PathResolution()

1: Input: xi → States, xOpt
i → Locally Optimal States, |k| → Desired step

length, N → The number of states in the prediction horizon.

2: Output: P → Path.

3: i = 0
4: for i < N do
5: lf =

∑N−1
i=0 ||x

opt
i+1 − xopt

i ||
6: n =

lf
|k|

7: k = xN−x0
n

8: i = 0
9: for i < n do

10: xi ← [x0 + (ikx, y0 + iky, z0 + ikz] ∈ P

11: return P

19

III Method Description

9.3 Collision Prediction

The Collision Prediction function uses a similar idea to predict the obsta-
cle trajectory presented in [34], where it predicts future collision between the
vehicle and a dynamic obstacle within the prediction horizon. This function
enables the local path optimization to predict and avoid these collisions en-
suring the vehicle’s safety. Figure 3 offers an illustration to understand the
action better.

Figure 3: NMPC - The figure shows the trajectory of a dynamic obstacle
(pink) and the path of the vehicle, where prediction is made as to where they
will collide (see-through pink)

Figure 3 shows an initial path (black) between the vehicle (gray) and the
goal. On the left corner of the figure, there is an obstacle (pink) moving
with a velocity v⃗. The optimization uses a time-based state trajectory to
predict where the obstacle and vehicle will collide along the path. This means
that the optimization uses time-based states instead of position-based states.
This is done by calculating the time it takes for the vehicle to go from state
xi to xi+1. The function then calculates the distance (di) between the vehi-
cle states corresponding to the obstacle states, predicting the collision and
creating a static obstacle at the collision point (see-through pink).

The vehicle’s state time ti ∈ T is calculated to obtain the time it takes
for the vehicle to reach state xi from its current state. Equation (14) is the
equation used for this.

ti+1 = ti +
||xi+1 − xi||
||ẋ0||

, ||ẋ0|| > 0 (14)

20

III Method Description

Here, a state of the path is represented by xi, while the velocity of the ve-
hicle is indicated by ẋ0. Once the time-based states are found, the obstacle
trajectory xti

j is calculated using equation (15).

xti
j = xj + (ẋjti) (15)

where the current position of an obstacle is represented by xj , while its cur-
rent speed is denoted by ẋj . To determine whether the vehicle collides with
an obstacle, it is necessary to evaluate the associated obstacle trajectory,
denoted by xti

j , against the following condition. This is to check if a state in
the local path collides with the corresponding obstacle trajectory state.

||xi − xti
j || ≤ rrobot + robsj

If the condition is met, the obstacle will collide with the vehicle. The position
of the obstacle xti

j will then be considered as an inequality constraint in (5),
i.e., ||xi − xti

j || > rrobot + robsj .

9.3.1 Algorithm

The algorithm in Algorithm 3 utilizes the equations mentioned earlier to up-
date the path. Line 1 lists the required inputs for the algorithm. Line 2 lists
the algorithm outputs. Lines 3-6 create time-based states from the distance
between path states and the vehicle’s velocity. Lines 7-11 create an obstacle
trajectory using the time-based states and obstacle velocity. Checking for
potential collisions between path states and obstacle trajectory states is done
in Lines 12-19. If a collision is detected, Line 20 is triggered. Lines 20-21 add
any obstacles on a collision course with the vehicle as static obstacles posi-
tioned on the collision point. Lastly, Line 22 returns the updated obstacle
positions.

21

III Method Description

Algorithm 3 CollisionPrediction()
1: Input: xi → States, ẋ0 → Vehicle velocity, ẋj → Obstacle velocity,

xj → Obstacle position, N → The number of states in the prediction
horizon, |O| → Number of obstacles.

2: Output: O → Obstacles.

3: t0 = 0.0
4: i = 0
5: for i < N do

6: ti+1 = ti +
||xi+1−xi||

||ẋ0|| ,

7: j = 0
8: for j < |O| do

9: i = 0
10: for i < N do

11: xti
j = xj + (ẋjti)

12: j = 0
13: Collisions = empty
14: for j < |O| do

15: if ||ẋj || = 0 then

16: i = 0
17: for i < N do

18: if ||xi − xti
j || ≤ rrobot + robsj then

19: Collisions ← oti
j = [xti

j robsj]⊤

20: if len(Collisions) > 0 then

21: O ← Collisions
22: return O

22

III Method Description

9.4 Prediciton Horizon Extension

In some cases, the final state’s (xN) location may be in collision, and the
optimization process might not converge into a safe solution. However, im-
plementing the Prediction Horizon Extension function has solved this
issue. The function extends the prediction horizon if the last state of the
horizon collides with an obstacle. The function moves the last state (xN)
to the next available state outside the obstacle’s range to ensure that the
vehicle can safely follow the path. Figure 4 offers a visual representation to
understand this process better.

Figure 4: The figure shows the last state xN of the prediction horizon being
extended from its previous location (red) to a safe state (blue) outside of the
obstacle range on the path

In Figure 4, the vehicle (gray) wants to reach a goal, following an initial
path (black) between its current position and the goal. An obstacle (pink)
lies in the path between the two states. The length of the prediction horizon
is such that the last state, xN (red), collides with the obstacle. To address
this, the function relocates the state xN to a position outside the range of
the obstacle, represented by xnew

N (blue).

The process involves comparing the distance between xN and obstacle xj

to determine if xN collides with an obstacle and how many states it needs
to move to be outside the obstacle’s range. The condition in equation (16)
determines if a state is in collision with an obstacle.

||xn − xj || ≤ rrobot + robsj (16)

The condition involves xn ∈ P which represents a state further down the
path, where n ∈ [N, goal], and rrobot, r

obs
j represent the radii of the vehicle

and obstacle, respectively. The states will continue to test against this con-
dition until it is no longer true. The new xN will become the state that did
not fulfill the condition.

23

III Method Description

9.4.1 Algorithm

The equations mentioned earlier are utilized to create the algorithm in Algo-
rithm 4. Specific inputs required for the algorithm are listed in Line 1. The
algorithm outputs are listed in Line 2. The for-loop in Line 5 goes through
the states from the end of the prediction horizon to the end of the path, and
the for-loop in Line 8 goes through the number of obstacles detected. Line
9 sets a condition to check if the state collides with an obstacle. If it does,
collision is declared true in Line 10. If a collision occurs, the index variable
is incremented by 1 in Lines 11-12. Once there is no collision, the loop is
exited in Lines 13-14. The value of the index variable is added to the number
of prediction states in Line 15 and is then returned in Line 16.

Algorithm 4 ExtendHorizon()
1: Input: xi → States, N → The number of states in the prediction hori-

zon, |O| → Number of obstacles, |P| → number of path states.

2: Output: N → The number of states in the prediction horizon.

3: Index = 0
4: i = N
5: for i < |P| do
6: Collision = FALSE
7: j = 0
8: for j < |O| do
9: if ||xn − xj || ≤ rrobot + robsj then

10: Collision = TRUE
11: if Collision = TRUE then
12: Index += 1
13: if Collision = FALSE then
14: Break
15: N = N + Index
16: return N

24

III Method Description

9.5 Active Perception

The last addition to the path planner is the Active Perception function.
This function adds an attraction on the path to an observation point based
on the constraint in (7), which is inspired by AquaVis [35]. The function
involves the observation of visual objectives and modifying the planning
process to enable observation of the point. Figure 5 is provided to enhance
the understanding of this function.

Figure 5: NMPC - The figure shows a point of interest placed in the aeria
of the path, making the optimal path being attracted to the point

Figure 5 shows the initial path(Black) between the vehicle state and the
goal. The closest state in the optimal path(Blue) is then pulled toward the
observation point(magenta) until it reaches an observation distance. The
vehicle is then able to observe the point from a safe distance.

25

III Method Description

9.6 Collision avoidance

The Collision avoidance function ensures that the path generated by the
planner avoids obstacles in the environment, combining the NMPC frame-
work with the previously presented functions. This is achieved from the
constraints in Equation (5) and (6) that prevent the vehicle from collid-
ing with any obstacles in its path. The function can be better understood
through visualization in Figure 6.

Figure 6: The figure shows a locally optimal path (blue) generated from the
initial path (black), effectively avoiding the obstacle (pink) encountered.

Figure 6 displays a path indicated with black that connects the vehicle to
a goal position, with a red obstacle intersecting the path. The path plan-
ner calculates an optimal path that avoids collisions by circumventing the
obstacle, creating a safe path within the prediction horizon.

9.6.1 Algorithm

The path planner algorithm is summarized in Algorithm 5. The required
inputs are listed in Line 1. The outputs are listed in Line 2. Line 3 initializes
the optimal path to be the same as the initial path. In Line 4, the algorithm
loops Lines 5 to 24 until it reaches the goal. Line 5 sets a condition to limit
the loop to run at a non-zero input frequency. Line 6 updates the initial path
using the function from Algorithm 1. Line 7 updates the number of states in
the initial path using the function from Algorithm 2. Line 8 uses the function
from Algorithm 3 to create static obstacles from potential dynamic collisions.
Line 9 extends the prediction horizon using the function from Algorithm 4.
Line 10 initializes the function variable of the MPC. Lines 11 to 12 initialize
the objective function from equation (3). Line 13 Initializes the minimization
function enabling the minimization of the objective function. In Lines 14 to
21, the constraints presented in equations (4) (5) (6) (7). Line 22 initializes
the NLP solver, which is the SQP method in this case. Line 23 initializes the
quadratic solver used in the SQP method. Line 24 utilizes the initial guess
from Line 23 to solve the optimization problem, which is then extracted into
the optimal path. Line 25 resets the timer used in Line 4, and the optimal

26

III Method Description

path is ultimately returned in Line 26.

Algorithm 5 Nonlinear Model Predictive Control (NMPC)
1: Input: N → number of states in the Prediction Horizon, fz → Update

frequency, xgoal → Goal, |k| → Desired distance between the states, P
→ Initial Path, O → Obstacles, K → Points of interest.

2: Output: Popt → Locally optimal Path
3: Popt = P

4: while x0 ̸= xgoal do
5: if timer ≥ 1

fz then
6: P = InitialPathUpdate(P, xgoal, |k|)
7: P = PathResolution(P, POpt, |k|, N)
8: O = CollisionPrediction(P, ẋ0, ẋj , xj , N , |O|)
9: N = ExtendHorizon(P, N , |O|, |P|)

10: f = 0

11: for i < N − 1 do
12: f = f + ||xi+1 − xi||2

13: Minimize(f)

14: SubjectTo(x0 = Pinit)
15: SubjectTo(xN = PN)

16: for i < N do
17: for j < |O| do
18: SubjectTo(||xi − xj || > rrobot + robsj)

19: SubjectTo(
∣∣∣∣∣∣xi+1+xi

2 − xj

∣∣∣∣∣∣ > rrobot + robsj)

20: for k < |K| do
21: SubjectTo(rrobot < mink∈K {||xi − xk||} ≤ rrobot + dobsrv)

22: InitializeSolver(SQP METHOD)
23: InitializeQuadraticSolver(QRQP)
24: Popt = Solve(P)

25: timer.reset()
26: return Popt

27

III Method Description

10 Simulation Experiments

The simulation environment adopts FhSim to execute the simulations us-
ing the NED coordinate system. The vehicle’s state is defined by a six-
dimensional vector η = [x, y, z, ϕ, θ, ψ]⊤, where x, y, and z represent the
position of the vehicle, and ϕ, θ and ψ represent its orientation.

10.1 FhSim - Underwater Simulations

FhSim is a software platform for mathematical modeling and numerical sim-
ulations in C++. It places great emphasis on simulation performance and
marine systems modeling. Its modular design lets users define simulations
by connecting independent objects. FhSim features a collection of essential
mathematical marine models for simulating a marine environment, particu-
larly on fish farming [36, 37].

10.2 Case Study 1: Cluttered Environment

The first environment chosen to test the path planner is a cluttered box,
highly dense with obstacles. This assesses the planner’s performance in a
complex and restricted environment. The case study will help evaluate the
path planner’s ability to avoid collisions in a challenging scenario. Figure
7 represents the environment where a generic box with length(L) = 31m,
width(W) = 16m, and height(H) = 8m is filled with obstacles. The test is
conducted by assigning the vehicle to travel between two predefined points
within the volume and letting the path planner identify a feasible route by
avoiding the obstacles. For more details see A.1

Prediction
Horizon (N)

Step Length
(|k|)

10 1.0 (m)

Figure 7: Case Study 1 - Cluttered Box

28

III Method Description

10.3 Case Study 2: Multi-robot coordination

For Case Study 2, the objective is to test the path planner’s ability to handle
complex situations by simulating a scenario where two vehicles will collide
with each other. The vehicles will use the same path planner and logic
without communicating with each other in an environment that includes
obstacles. Figure 8 shows the environment, which includes two vehicles, three
obstacles, and two different goals. The two vehicles start from a common
starting point connected to the goals through an initial path. For more
details see A.2

Prediction
Horizon (N)

Step Length
(|k|)

10 1.0 (m)

Figure 8: Case Study 2 - Several Vehicles & Obstacles

29

III Method Description

10.4 Case Study 3: Narrow Passage

Case Study 3 aims to test the path planner’s capability to safely navigate
through a 10x1.4x1.4m narrow passage, which will evaluate its effectiveness
in real-world scenarios and its ability to handle challenging situations. This
environment was selected because other path planners, including the poten-
tial field method, have struggled with similar environments [17]. Figure 9
illustrates the narrow passage, with the entrance and exit indicated by an
arrow. For more details see A.3

Prediction
Horizon (N)

Step Length
(|k|)

10 1.0 (m)

Figure 9: Case Study 3 - Narrow Passage

30

III Method Description

10.5 Case Study 4: Inspect Fish Cage

The Environment in Case Study 4 is intended to evaluate the path planner’s
ability to navigate to inspect points of interest within a fish cage environ-
ment, with a radius = 25m and depth = 25m. The presence of points of
interest will enable assessing the planner’s ability to observe them effectively.
Figure 10 displays the fish cage environment used for this study. The test is
conducted by assigning the vehicle to navigate between two predetermined
points within the fish cage and letting the path planner identify a feasible
route and be attracted by points of interest placed near the cage wall. For
more details see A.4

Prediction
Horizon (N)

Step Length
(|k|)

20 1.0 (m)

Figure 10: Case Study 4 - Fish Cage

31

III Method Description

10.6 Case Study 5: Inspect Fish Cage with Obstacles

Case Study 5 is focused on aquaculture and utilizes an environment similar
to the one in 10.5 but with added obstacles. The aim is to test the path
planner’s ability to handle attraction and repulsion functions, specifically
obstacle avoidance, while navigating to points of interest placed on the cage
wall. Figure 11 visually represents the environment. For more details see
A.5

Prediction
Horizon (N)

Step Length
(|k|)

10 1.0 (m)

Figure 11: Case Study 5 - Fish Cage with obstacle and points of interest

32

III Method Description

10.7 Case Study 6: Obstacle-rich Environment with Points
of Interest

Case Study 6 is designed to challenge the path planner by presenting a variety
of situations that require the use of all its implemented functions, demon-
strating its capability to navigate effectively in a diverse environment. The
environment, illustrated in figure 12, features multiple dynamic obstacles,
points of interest(Dark Pink), and static obstacles. The scenario begins at a
starting point (marked in green) and is linked to an initial path via several
intermediate goals. For more details see A.6

Prediction
Horizon (N)

Step Length
(|k|)

10 1.0 (m)

Figure 12: Case Study 6 - Obstacle-rich Environment with Points of Interest

33

IV Results

Part IV

Results

11 Path-Planning

11.1 Case Study 1: Cluttered Environment

0102030
−10

0

10

X (m)

Y (m)

Position
Goal
Path
Obstacle

0102030

0

8

X (m)

Z
(m

)

0

10

20

30−10

0

10

0

8

X (m)
Y (m)

Z
(m

)

Figure 13: NMPC (N = 10) - The figure shows the path planner performing
in a cluttered restricted environment from three different points of view.

34

IV Results

Figure 13 shows the optimized path obtained from three viewpoints. The
first viewpoint shows the path on the x,y-plane, while the second shows it
on the x,z-plane. The third view is a 3D view that provides a complete path
visualization. The path navigates from a starting point (represented by the
color green) towards a goal (represented by black) while avoiding obstacles
and staying within the box’s confines. A color gradient shows the path’s
depth, where the depth is positive.

11.1.1 Time-varying Visualization

0
10

20
30−10

0
10

0

(a) t0

0
10

20
30−10

0
10

0

(b) t1

0
10

20
30−10

0
10

0

(c) t2

0
10

20
30−10

0
10

0

(d) t3

Figure 14: NMPC (N = 10) - The figure shows the position of the vehicle
and the navigation of the path at different points in time, navigating in a
cluttered environment while being restricted by a box.

Figure 14 shows the path evolution from time t0 (start) to t3 (end). The
path adapts and updates as the vehicle moves toward its destination. A color
gradient indicates the positive depth along the path.

35

IV Results

11.2 Case Study 2: Multi-robot coordination

010203040
−10

0

10

X (m)

Y (m)

Position
Goal
Path
Obstacle

010203040

−3
0

3

X (m)

Z
(m

)

0

10

20

30

40
−10

0

10

0
3

X (m)

Y (m)

Z
(m

)

Figure 15: NMPC (N = 10) - The figure shows two vehicles on a collision
course, navigating to not collide with each other or in any other obstacle.

Figure 15 displays the path of two vehicles from three perspectives, the
xy-plane, the xz-plane, and a full 3D view. The green dots indicate the
vehicles which navigate around gray obstacles. Additionally, the vehicles
avoid colliding by passing over and under each other. A color gradient shows
the path’s depth, where the depth is positive.

36

IV Results

11.2.1 Time-varying Visualization

0
10

20
30

40−10
0

10

0
3

(a) t0

0
10

20
30

40−10
0

10

0
3

(b) t1

0
10

20
30

40−10
0

10

0
3

(c) t2

0
10

20
30

40−10
0

10

0
3

(d) t3

Figure 16: NMPC (N = 10) - The figure shows two vehicles avoiding collision
with obstacles and each other at different points in time.

Figure 16 displays the paths of two vehicles as they advance toward their
respective destinations. The paths are recalculated at each step, with t0 rep-
resenting the time at the beginning of the path when the vehicle is close to
the starting point and t3 representing the time at the end of the path when
the vehicle is close to the goal. The time in between is represented by t1,t2
respectively. The green dots represent the two vehicles, which calculate their
unique paths. The plot illustrates that the vehicles were initially headed to-
ward a collision, but they predict and avoid the collision by choosing different
paths. Additionally, they successfully navigated around any other obstacles
that came their way. A color gradient shows the path’s depth, where the
depth is positive.

37

IV Results

11.3 Case Study 3: Narrow Passage

−5010
−5

0

5

X (m)

Y (m)

Position
Goal
Path

−5
0

10

−5
0

5

0

3

X (m)

Y (m)

Z
(m

)

Figure 17: NMPC (N = 10) - The figure shows the performance of the path
planner as it navigates through a narrow passage.

Figure 17 shows two viewpoints of path planning within a fish cage. The
first viewpoint is a 2D representation of the x,y-plane, while the second is a
full 3D representation. The plot shows a path from a starting position and
through a narrow passage to a goal position.

38

IV Results

11.3.1 Time-varying Visualization

−5
0

10
−5

0
5

0

3

(a) t0

−5
0

10
−5

0
5

0

3

(b) t1

−5
0

10
−5

0
5

0

3

(c) t2

−5
0

10
−5

0
5

0

3

(d) t3

Figure 18: NMPC (N = 10) - The figure shows the path planner navigating
through a narrow passage at different points in time.

Figure 18 shows the vehicle’s path towards its destination, with t0 repre-
senting the time at the beginning of the path when the vehicle is close to
the starting point and t3 representing the time at the end of the path when
the vehicle is close to the goal. The time in between is represented by t1,t2
respectively.

39

IV Results

11.4 Planning efficiency

During the testing phase of the path planner, it was crucial to assess its
planning time to determine its usefulness in real-world situations. The plan-
ning time was tested in three simulation environments, where the first was
an empty space with no obstacles. In the second simulation, the path avoids
one obstacle. In the third simulation, the path avoids four obstacles. The
performance of the planning time can be seen in figure 19.

0 10 20 30 40 50 60 70 80 90 100
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

Prediction Horizon

T
im
e
(s
)

Planning time w/o obstacles
Planning time with 1 obstacle
Planning time with 4 obstacles

Figure 19: The figure shows the planning time of the MPC, which suggests
that it is linear scaling with respect to the prediction horizon, minimal, and
dependent on the number of obstacles.

The plot depicted in Figure 19 showcases the relationship between the plan-
ning time for the optimal path, the number of states in the prediction hori-
zon, and the impact of obstacles on the planning time. It is suggested from
the result that the planning time of the NMPC increases linearly as the
number of encountered obstacles increases.

40

IV Results

12 Path Planning with Active Perception

12.1 Case Study 4: Inspect Fish Cage

−20 −10 0 10 20

−20

−10

0

10

20

X (m)

Y
(m

)

Position
Goal
Path
Point Of Interest

−20−10
0

10
20−20−10 0

10
20

0

10

20

X (m)Y (m)

Z
(m

)

Figure 20: NMPC (N = 20) - The figure shows the path planner performing
in a fish cage, where there are five points of interest within the cage.

Figure 20 provides two viewpoints of the path planning result within a fish
cage. The first viewpoint is a 2D representation of the x,y-plane, while the
second is a full 3D representation. The figure showcases the optimized path
from a starting position to a goal, with five points of interest along the

41

IV Results

way. The path follows a curved trajectory, passing the points of interest and
heading toward the goal. A color gradient shows the path’s depth, where
the depth is positive.

12.1.1 Time-varying Visualization

−20
0

20−20
0

20

0

20

(a) t0

−20
0

20−20
0

20

0

20

(b) t1

−20
0

20−20
0

20

0

20

(c) t2

−20
0

20−20
0

20

0

20

(d) t3

Figure 21: NMPC (N = 20) - The figure shows the navigation of the path
planner at different points in time, showing how the path updates as the
vehicle moves.

Figure 21 shows the evolution of the path over time as the vehicle moves
toward its destination. The time at the beginning of the path is represented
by t0, and t3 represents the time at the end of the path when the vehicle is
close to the goal. The time in between is represented by t1,t2 respectively.
It is a visual representation of the path adapting and updating as the ve-
hicle moves forward. The angle at different points represents the deviation
between the initial and optimal paths. The initial path follows the vehicle,
so the last part of the path is directed toward it. A color gradient shows the
path’s depth, where the depth is positive.

42

IV Results

12.2 Case Study 5: Fish cage with obstacle

−10 0 10 20

−20

−10

0

X (m)

Y
(m

)

Position
Goal
Path
Point Of Interest

−10 0 10 20

0

10

20

X (m)

Z
(m

)

Figure 22: NMPC (N = 10) - The figure shows the path planner navigating
in a fish cage attracted to points of interest and repulsed by obstacles.

Figure 22 displays two viewpoints of the path within a fish cage, one in the
xy-plane and the other in the xz-plane. The path has a fixed starting point
and a goal point. The path is affected by an attraction force from points of
interest and a repulsion force from obstacles. The color gradient indicates
the depth of the path. A color gradient shows the path’s depth, where the
depth is positive.

43

IV Results

12.2.1 Time-varying Visualization

−10 0 10 20

0

10

20

(a) t0

−10 0 10 20

0

10

20

(b) t1

−10 0 10 20

0

10

20

(c) t2

−10 0 10 20

0

10

20

(d) t3

Figure 23: NMPC (N = 10) - The figure shows the path planner navigating
in a fish cage at different points in time, attracted to points of interest and
repulsed by obstacles.

Figure 23 displays the path of a vehicle as it advances toward its respective
destinations. The path is constantly recalculated with t0 representing the
time at the beginning of the path when the vehicle is close to the starting
point and t3 representing the time at the end of the path when the vehicle
is close to the goal. The time in between is represented by t1,t2 respectively.
The figure indicates that the path is drawn towards points of interest as
the prediction horizon progresses while avoiding an obstacle by passing un-
derneath it. A color gradient shows the path’s depth, where the depth is
positive.

44

IV Results

12.3 Case Study 6: Obstacle-rich Environment with Points
of Interest

01020
−10

0

10

20

X (m)

Y (m)

Position
Goal
Point Of Interest
Path
Obstacle

0

10

20
−10

0

10

20

0

5

X (m)
Y (m)

Z
(m

)

Figure 24: NMPC (N = 10) - The figure shows the path planner navigating
in a diverse and complex environment, testing all the functions of the path
planner.

Figure 24 illustrates the optimized path from two viewpoints, 2D on the
x,y-plane and 3D. The path starts at the initial position and goes to the

45

IV Results

first goal while avoiding two dynamic obstacles that are meant to collide
with the vehicle. The figure also shows the path from the first goal to the
second goal. In this part of the path, the vehicle avoids a static obstacle
while simultaneously observing two points of interest. The last scenario in
the figure is between the second and third goals, where the path planner
successfully avoids two larger static obstacles. A color gradient shows the
path’s depth, where the depth is positive.

12.3.1 Time-varying Visualization

0
10

20−10
0

10

20

0

5

(a) t0

0
10

20−10
0

10

20

0

5

(b) t1

0
10

20−10
0

10

20

0

5

(c) t2

0
10

20−10
0

10

20

0

5

(d) t3

Figure 25: NMPC (N = 10) - The figure shows the path navigating in a
diverse and complex environment at different points in time.

Figure 25 shows the vehicle’s path from t0 (start) to t3 (end), with t1 and
t2 in between. Each position represents the vehicle’s location along the sub-
paths, showcasing updates for different scenarios and multi-goal navigation
capability. A color gradient indicates positive depth along the path

46

V Discussion

Part V

Discussion
The results presented in Section IV demonstrate the effectiveness and ef-
ficiency of the MPC-based path planner in various complex environments,
testing path planning with and without active perception.

13 Path-Planning

The planner’s performance was evaluated through multiple case studies.
Each intended to showcase different aspects of its performance. In the first
case study, presented in Section 11.1, the planner demonstrated its effective-
ness in navigating a challenging environment characterized by restrictions
and clutter. The planner successfully navigated the vehicle around static
obstacles by incorporating obstacle avoidance constraints, ensuring safe path
generation. The dynamic nature of the planner’s path planning was visu-
ally depicted through time-varying visualizations, showcasing the continuous
updates to the planned path as the vehicle made its way through the envi-
ronment. This real-time path adaptation allows the vehicle to respond to
changing obstacle configurations and ensure efficient and safe navigation.
The results from this case study highlight the planner’s ability to handle
cluttered and restricted environments while maintaining the desired path
toward the goal. However, it is essential to note that this case study does
not address the planner’s performance when faced with dynamic obstacles.

Section 11.2 demonstrates the planner’s ability to navigate and avoid col-
lisions with other vehicles in real time. The planner predicts and prevents
potential collisions by treating other vehicles as dynamic obstacles and simul-
taneously avoiding static obstacles, as shown in the dynamic visualization.
These results highlight the importance of reliable collision avoidance mecha-
nisms in complex environments, ultimately elevating the safety and reliability
of autonomous navigation. The performance and findings presented in Sec-
tion 11.2 highlight the planner’s effectiveness in ensuring safe and reliable
navigation in challenging underwater environments.

While the previous case studies highlighted the planner’s reliable naviga-
tion in cluttered environments, there are instances where the vehicle needs
to navigate through tight spaces. In Section 11.3, the case study showcases
the planner’s ability to maneuver through narrow passages while avoiding
collisions with the surrounding environment. Despite being a significant
challenge for many path planners, such as the potential field method [17],
the results unequivocally demonstrate the planner’s proficiency in this task.

47

V Discussion

Navigating through narrow passages without colliding with the environment
is crucial for autonomous underwater vehicles operating in complex and con-
strained environments. The planner successfully showcases its exceptional
aptitude for path planning and collision avoidance, even in challenging sce-
narios. Its effectiveness in navigating through tight spaces without collisions
opens up possibilities for various applications in underwater exploration,
inspection, and maintenance tasks. The planner’s capability to maneuver
successfully through confined spaces showcases its potential to enhance au-
tonomous underwater navigation systems’ safety, efficiency, and versatility.

The planning efficiency of the NMPC presented in 11.4 is depicted in Fig-
ure 19, which shows that the planning time is small and linear with respect
to the prediction horizon, enabling the NMPC to be applied in real-time
path planning. Although the planning time increases with the number of
obstacles, the effect on planning time is negligible in underwater robotics,
given that the horizon is shorter than 100 states and the number of colliding
obstacles is low.

14 Path-Planning with Active Perception

The previous case studies only evaluated the path planner’s safe navigation
in challenging underwater environments. However, a new function was in-
troduced in Section 12 - active perception. This function enables the path
to shift towards points of interest, enabling the planner to concentrate on
exploring and monitoring specific areas. The case study showcased in 12.1
demonstrates how the planner adjusts its trajectory to navigate a cage with
points of interest. By incorporating these points, the planner effectively
tracks and monitors them, enhancing exploration and monitoring in under-
water environments. The time-varying visualization reveals the planner’s
dynamic path updates based on new points of interest, enabling informed
decision-making and optimal path selection. This enhances its versatility
and adaptability, making it a valuable tool for underwater exploration, re-
search, and monitoring tasks requiring attention to specific areas or objects.

The case study in Section 12.2 demonstrates the planner’s ability to simulta-
neously avoid obstacles and be attracted to points of interest in an enclosed
environment. By adding attraction to points of interest in the planning pro-
cess, the planner can focus on exploring and monitoring specific areas while
ensuring safe navigation. This capability enhances the planner’s adaptabil-
ity and versatility in complex underwater scenarios, improving efficiency and
information gathering during missions.

48

V Discussion

The case study in Section 12.3 highlights the planner’s exceptional ability to
handle all the presented functions simultaneously. By integrating the pre-
diction and avoidance of dynamic obstacles, attraction to points of interest,
and navigation around static obstacles, the planner offers a comprehensive
solution for autonomous underwater navigation. This capability ensures safe
and collision-free navigation in dynamic underwater environments, enables
efficient exploration and monitoring of specific areas of interest and ensures
path generation without collisions with fixed objects. The successful demon-
stration of these functions showcases the planner’s robustness and reliabil-
ity, with implications for various underwater applications such as research,
exploration, environmental monitoring, and infrastructure inspection. The
planner’s capacity to handle multiple functions simultaneously opens up new
opportunities for optimizing underwater missions and improving overall mis-
sion success.

15 Areas of Improvement

During the testing of the planner, despite its overall safe navigation within
the environment, several issues came to light. The path planner utilized
in this project was coded in C++ via Visual Studio, mainly using the SQP
method along with the QRQP as the QP solver for the NLP solver. However,
it was discovered that the SQP method with QRQP solver was fragile and
sensitive to failure in specific environments [38]. To address this issue, simple
tests were conducted in Python, utilizing a robust solver, IPOPT [38], lead-
ing to improved performance and the ability to handle environments SQP
and QRQP could not. However, this improvement could not be implemented
because of restrictions in the build system of FhSim. Another disadvantage
of the path planner is that it does not consider vehicle dynamics in the
optimization problem, which could improve its quality and robustness. Ad-
ditionally, it was discovered that the optimization problem was technically
not nonlinear. This further emphasizes the importance of including dynamics
since the problem is nonlinear in real-life underwater robotics.

49

VI Conclusions and Recommended Future Work

Part VI

Conclusions and Recommended
Future Work
In conclusion, the MPC-based path planner demonstrates effectiveness and
efficiency in navigating complex environments. This planner can handle mul-
tiple functions simultaneously, such as avoiding static and dynamic obstacles
while being drawn to points of interest. This planner has undergone success-
ful testing in numerous case studies. Its planning time is small and linear,
making it suitable for real-time path planning, and the number of obstacles
does not significantly affect its planning time. However, the robustness of
the NLP solver was an issue, but it can be improved by replacing it with
a more robust planner such as IPOPT. Overall, the performance of this
planner is highly promising for real-world navigation applications in under-
water environments, particularly for Autonomous Underwater Vehicles. The
planner has proven efficient and effective in navigating complex scenarios
like cluttered, narrow, and dynamically changing environments. With more
refinement and development, this planner could greatly benefit the advance-
ment of underwater robotics and related industries.

16 Future Work

In terms of future work, several directions can be explored to enhance the
path planner further. One avenue to investigate is using different NLP solv-
ing methods to improve the robustness of the planner. For instance, the
IPOPT method has shown promise in previous studies and could be a worth-
while option to explore as an alternative solver [38].

Another possibility is to assess the performance of the SQP method with
a different quadratic solver. Using a different solver may enhance the ro-
bustness of the NLP solver, thereby improving the overall performance of
the path planner.

Additionally, integrating vehicle dynamics into the optimization process is
worth exploring. This enhancement involves incorporating the system’s dy-
namics into the path planning algorithm, leading to more accurate predic-
tions and improving the quality and robustness of the generated paths.

Furthermore, updating the collision prediction function could be beneficial.
Currently, the function does not account for future collisions along the opti-
mized path, which may result in potential collisions with dynamic obstacles.
Developing a collision prediction mechanism that considers the optimal path

50

VI Conclusions and Recommended Future Work

would enhance the planner’s ability to avoid collisions and improve overall
safety.

Overall, investigating different NLP solving methods, integrating vehicle dy-
namics, and improving the collision prediction function are promising av-
enues for future research. These enhancements can further improve the path
planner’s robustness, performance, and safety, ultimately advancing the field
of autonomous underwater navigation.

51

VII Appendices

Part VII

Appendices

A Case Study Parameters and Configurations

A.1 Case Study 1: Cluttered Environment

Start Position [x,y,z] Goal [x,y,z]
[0.0 , 0.0 , 1.0] [29.0 , 0.0 , 6.0]

Obstacle oj Position [x,y,z] Radius(m)
o0 [18.0 , −1.0 , 4.5] 2.0
o1 [10.0 , 0.0 , 1.8] 1.5
o2 [6.0 , 1.0 , 3.0] 1.0
o3 [5.0 , 4.0 , 4.0] 2.0
o4 [5.0 , −4.0 , 4.0] 2.0
o5 [25.0 , 4.0 , 4.0] 2.0
o6 [25.0 , −4.0 , 4.0] 2.0
o7 [15.0 , 4.0 , 2.0] 1.0
o8 [15.0 , −4.0 , 2.0] 1.0

A.2 Case Study 2: Multi-robot coordination

Vehicle Start Position
[x,y,z]

Goal [x,y,z]

1 [0.0 , 5.0 , 1.0] [40.0 , −5.0 , 1.5]
2 [0.0 , −5.0 , 1.5] [40.0 , 5.0 , 2.0]

Obstacle oj Position [x,y,z] Radius(m)
o0 [7.5 , 0.0 , 4.5] 0.5
o1 [30.0 , −3.0 , 1.2] 1.5
o2 [30.0 , 3.0 , 1.7] 1.5

A.3 Case Study 3: Narrow Passage

Start Position [x,y,z] Goal [x,y,z]
[−5.0 , −0.85 , 0.83] [12.0 , 0.0 , 0.83]

52

VII Appendices

A.4 Case Study 4: Inspect Fish Cage

Start Position [x,y,z] Goal [x,y,z]
[25.0 , 0.0 , 0.0] [−25.0 , 0.0 , 15.0]

Point Of Interest xk Position [x,y,z]
x0 [20.0 , −10.0 , 2.0]
x1 [10.0 , −20.0 , 4.0]
x2 [0.0 , −22.0 , 6.0]
x3 [−10.0 , −20.0 , 8.0]
x4 [−20.0 , −10.0 , 10.0]

A.5 Case Study 5: Inspect Fish Cage with Obstacles

Start Position [x,y,z] Goal [x,y,z]
[24.0 , 0.0 , 0.5] [10.0 , −20.0 , 0.5]

Obstacle oj Position [x,y,z] Radius(m)
o0 [16.0 , −16.0 , 4.5] 4.0

Point Of Interest xk Position [x,y,z]
x0 [21.0 , −10.0 , 8.0]
x1 [10.0 , −21.0 , 5.0]
x2 [0.0 , −24.0 , 11.0]

A.6 Case Study 6: Obstacle-rich Environment with Points
of Interest

Start Position [x,y,z] Goal [x,y,z]
[0.0 , 1.0 , 0.0] [19.0 , 2.0 , 0.5]

[19.0 , 2.0 , 0.5] [20.0 , 20.0 , 0.3]

[20.0 , 20.0 , 0.3] [0.0 , 17.0 , 0.5]

53

VII Appendices

Obstacle oj Position [x,y,z] Radius(m)
o0 [14.0 , 18.0 , 0.0] 2.0
o1 [12.0 , 18.0 , 0.0] 2.0
o2 [19.0 , 10.0 , 0.0] 1.5
o3 [8.0 , 40Sin(0.2t)+

40 , 1]
1.0

o4 [12.0 , 60Sin(0.2t)+
40 , 1]

1.2

Point Of Interest xk Position [x,y,z]
x0 [22.0 , 5.0 , 0.0]

x1 [17.0 , 15.0 , 0.5]

54

VII Appendices

References

[1] T.F.Olsen. Ttk4551 - specialization project. Technical report, Trond-
heim, Dec. 2022.

[2] Forskning og utvikling for realisering av havbruk til havs innspill
til strategiske prioriteringer mot 2040. https://www.sintef.no/
globalassets/sintef-ocean/a4_havbruk-til-havs_korrektur3.
pdf. Accessed: 2022-12-13.

[3] Offshore sites or the unavoidable need to renew new forms
of farming. https://weareaquaculture.com/featured/
offshore-closed-pen-indepth/26663/. Accessed: 2022-12-13.

[4] Eleni Kelasidi and Eirik Svendsen. Robotics for sea-based fish farming.
In Qin Zhang, editor, Encyclopedia of Smart Agriculture Technologies,
pages 1–20, Cham, 2022. Springer International Publishing.

[5] Yogesh Girdhar. Unsupervised Semantic Perception, Summarization,
and Autonomous Exploration for Robots in Unstructured Environments.
PhD thesis, 01 2014.

[6] Eric Bourque and Gregory Dudek. On the automated construction of
image-based maps. Autonomous Robots, 8(2):173–190, Apr 2000.

[7] Ding Fu-guang, Jiao Peng, Bian Xin-qian, and Wang Hong-jian. Auv
local path planning based on virtual potential field. In IEEE Interna-
tional Conference Mechatronics and Automation, 2005, volume 4, pages
1711–1716 Vol. 4, 2005.

[8] A. Stentz. Optimal and efficient path planning for partially-known en-
vironments. In Proceedings of the 1994 IEEE International Conference
on Robotics and Automation, pages 3310–3317 vol.4, 1994.

[9] Chang Liu, Seungho Lee, Scott Varnhagen, and H. Eric Tseng. Path
planning for autonomous vehicles using model predictive control. In
2017 IEEE Intelligent Vehicles Symposium (IV), pages 174–179, 2017.

[10] Björn Lindqvist, Sina Sharif Mansouri, and George Nikolakopoulos.
Non-linear mpc based navigation for micro aerial vehicles in constrained
environments. In 2020 European Control Conference (ECC), pages 837–
842, 2020.

[11] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem. ii.
general techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4(3):298–351, 1983.

55

https://www.sintef.no/globalassets/sintef-ocean/a4_havbruk-til-havs_korrektur3.pdf
https://www.sintef.no/globalassets/sintef-ocean/a4_havbruk-til-havs_korrektur3.pdf
https://www.sintef.no/globalassets/sintef-ocean/a4_havbruk-til-havs_korrektur3.pdf
https://weareaquaculture.com/featured/offshore-closed-pen-indepth/26663/
https://weareaquaculture.com/featured/offshore-closed-pen-indepth/26663/

VII Appendices

[12] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[13] Marios Xanthidis, Joel M Esposito, Ioannis Rekleitis, and Jason M
O’Kane. Motion planning by sampling in subspaces of progressively
increasing dimension. In Journal of intelligent and Robotic systems,
page 777–789, 2020.

[14] Yuncheng Lu, Xue Zhucun, Gui-Song Xia, and Liangpei Zhang. A
survey on vision-based uav navigation. Geo-spatial Information Science,
pages 1–12, 01 2018.

[15] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Proceedings. 1985 IEEE International Conference on Robotics
and Automation, volume 2, pages 500–505, 1985.

[16] Yinjing Guo, Hui Liu, Xiaojing Fan, and Wenhong. Lyu. Research
progress of path planning methods for autonomous underwater vehicle.
In Mathematical Problems in Engineering, 2021.

[17] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Proceedings. 1991 IEEE
International Conference on Robotics and Automation, pages 1398–1404
vol.2, 1991.

[18] S. Quinlan and O. Khatib. Elastic bands: connecting path planning
and control. In [1993] Proceedings IEEE International Conference on
Robotics and Automation, pages 802–807 vol.2, 1993.

[19] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[20] Daniel Foead, Alifio Ghifari, Marchel Budi Kusuma, Novita Hanafiah,
and Eric Gunawan. A systematic literature review of a* pathfinding.
Procedia Computer Science, 179:507–514, 2021. 5th International Con-
ference on Computer Science and Computational Intelligence 2020.

[21] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[22] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[23] S. Karaman and Emilio Frazzoli. Incremental sampling-based algo-
rithms for optimal motion planning. 06 2010.

56

VII Appendices

[24] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Brad-
low, and Pieter Abbeel. Finding locally optimal, collision-free trajecto-
ries with sequential convex optimization. 06 2013.

[25] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,
Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter
Abbeel. Motion planning with sequential convex optimization and con-
vex collision checking. The International Journal of Robotics Research,
33(9):1251–1270, 2014.

[26] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srini-
vasa. Chomp: Gradient optimization techniques for efficient motion
planning. In 2009 IEEE International Conference on Robotics and Au-
tomation, pages 489–494, 2009.

[27] Marios Xanthidis, Nare Karapetyan, Hunter Damron, Sharmin Rah-
man, James Johnson, Jason O’Kane, and Ioannis Rekleitis. Navigation
in the presence of obstacles for an agile autonomous underwater vehicle,
03 2019.

[28] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza.
Pampc: Perception-aware model predictive control for quadrotors. 04
2018.

[29] Masahiro Ono, Marco Quadrelli, and Terrance L. Huntsberger. Safe
maritime autonomous path planning in a high sea state. In 2014 Amer-
ican Control Conference, pages 4727–4734, 2014.

[30] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36(6):789–814, 2000.

[31] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Con-
trol. 03 2016.

[32] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, New York, NY, USA, 2e edition, 2006.

[33] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. CasADi – A software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation,
11(1):1–36, 2019.

[34] Chonhyon Park, Jia Pan, and Dinesh Manocha. Itomp: Incremental tra-
jectory optimization for real-time replanning in dynamic environments.
06 2012.

57

VII Appendices

[35] Marios Xanthidis, Michail Kalaitzakis, Nare Karapetyan, James John-
son, Nikolaos Vitzilaios, Jason O’Kane, and Ioannis Rekleitis. Aquavis:
A perception-aware autonomous navigation framework for underwater
vehicles. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5387–5394, Prague, Czech Republic, 2021.

[36] Karl-Johan Reite, Martin Føre, Karl Gunnar Aarsæther, Jørgen Jensen,
Per Rundtop, Lars T. Kyllingstad, Per Christian Endresen, David Kris-
tiansen, Vegar Johansen, and Arne Fredheim. FhSim - time domain
simulations of marine systems. In Proc. ASME 33rd International Con-
ference on Ocean, Offshore and Arctic Engineering, 2014.

[37] Biao Su, Karl-Johan Reite, Martin Føre, Karl Gunnar Aarsæther,
Morten Alver, Per Christian Endresen, David Kristiansen, Joakim Hau-
gen, Walter Caharija, and Andrei Tsarau. A multipurpose framework
for modelling and simulation of marine aquaculture systems. In Proc.
ASME 38th International Conference on Ocean, Offshore and Arctic
Engineering, 2019.

[38] Joel A.E. Andersson and James B. Rawlings. Sensitivity analysis for
nonlinear programming in casadi. IFAC-PapersOnLine, 51(20):331–336,
2018. 6th IFAC Conference on Nonlinear Model Predictive Control
NMPC 2018.

58

	Problem Formulation
	Abstract
	Acknowledgement
	List of Figures
	Abbreviations
	I Introduction
	Aquaculture production practices
	Autonomous navigation and path planning in aquaculture
	Contributions
	Outline

	II Theory
	Path Planning
	Analysis of Common Path Planners

	Model Predictive Control for Path Planning
	Model Predictive Control
	MPC vs LQR
	Nonlinear Model Predictive Control

	III Method Description
	Problem Statement
	Optimization Problem Formulation for NMPC-Based Path Planning
	Active Perception

	Planner Formulation
	Initial Path Update
	Algorithm

	Path Resolution
	Algorithm

	Collision Prediction
	Algorithm

	Prediciton Horizon Extension
	Algorithm

	Active Perception
	Collision avoidance
	Algorithm

	Simulation Experiments
	FhSim - Underwater Simulations
	Case Study 1: Cluttered Environment
	Case Study 2: Multi-robot coordination
	Case Study 3: Narrow Passage
	Case Study 4: Inspect Fish Cage
	Case Study 5: Inspect Fish Cage with Obstacles
	Case Study 6: Obstacle-rich Environment with Points of Interest

	IV Results
	Path-Planning
	Case Study 1: Cluttered Environment
	Time-varying Visualization

	Case Study 2: Multi-robot coordination
	Time-varying Visualization

	Case Study 3: Narrow Passage
	Time-varying Visualization

	Planning efficiency

	Path Planning with Active Perception
	Case Study 4: Inspect Fish Cage
	Time-varying Visualization

	Case Study 5: Fish cage with obstacle
	Time-varying Visualization

	Case Study 6: Obstacle-rich Environment with Points of Interest
	Time-varying Visualization

	V Discussion
	Path-Planning
	Path-Planning with Active Perception
	Areas of Improvement

	VI Conclusions and Recommended Future Work
	Future Work

	VII Appendices
	Case Study Parameters and Configurations
	Case Study 1: Cluttered Environment
	Case Study 2: Multi-robot coordination
	Case Study 3: Narrow Passage
	Case Study 4: Inspect Fish Cage
	Case Study 5: Inspect Fish Cage with Obstacles
	Case Study 6: Obstacle-rich Environment with Points of Interest

	References

