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Abstract

This master thesis contributes to the development of a photobox designed for computer vision analy-

sis of deceased salmon in aquaculture. It addresses a gap in the existing literature by providing deeper

insights into the analysis of deceased fish, an area that has received limited attention in previous re-

search.

Data were collected from two locations in the coastal area of Trøndelag, and computer vision tech-

niques were used to analyze the acquired images. The prevalence of winter ulcers in a significant

portion of the deceased fish prompted the decision to focus on capturing photographs of these cases.

Winter ulcers pose a well-known challenge in aquaculture, particularly during periods of low ocean

temperatures. The data was annotated, resulting in a complete dataset tailored for segmenting winter

ulcers. A model to segment the ulcers was implemented, trained and tested.

The thesis begins by presenting the theoretical background of aquaculture and a review of the com-

puter vision methods used for disease analysis in aquaculture. Subsequently, the concepts and tech-

niques relevant to the project are introduced. The methods employed and the implementation details

of the developed code are justified and described for reproducibility. The experiments to find the best

model are presented along with the results of the best model. Finally, an evaluation of the project’s

choices is conducted, along with a discussion on further steps necessary to create a functional pho-

tobox for computer vision analysis of fish.

The result was a model which segmented winter ulcers, performing an IoU of 74,24% and an F1 score

of 81,60%. The thesis concludes that the methods used in this thesis are suitable to segment winter

ulcers in Atlantic Salmon.
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Sammendrag

Denne masteroppgaven er utarbeidet med hensikt å bidra til å lage en fotoboks for analyse av dødfisk

ved hjelp av datasyn fra oppdrettsanlegg for laks. Dagens forskning har i liten grad viet oppmerk-

somhet til dypere datasynsanalyse av dødfisk. Derfor tar denne oppgaven sikte på å fylle dette gapet

i den eksisterende litteraturen.

Data ble samlet inn ved hjelp av feltarbeid på to ulike anlegg langs kysten i Trøndelag og bildene

ble analysert ved hjelp av datasyn. Indvidene som ble fotografert bar preg av vintersår, som er et

kjent problem i vinterhalvåret i oppdrettsnæringen, da bakteriene som forårsaker plagen trives best

ved lave havtemperaturer. Prosjektet ble derfor rettet mot å segmentere vintersår på død laks for å

innhente videre informasjon om sykdommen. Dataen ble annotert for å danne et komplett datasett

for trening av en modell for segmentering av vintersår. Modellen ble implementert, trent og testet.

Oppgaven begynner med å presentere teorien bak oppdrettsnæring og datasynmetoder brukt for

analyse av sykdom i oppdrettsnæring belyst. Deretter presenteres konsepter og teori som er rele-

vante for prosjektet. Følgende blir metodene og implementasjonen av koden presentert og valg blir

begrunnet. Deretter blit eksperimentene for å finne den beste modellen og resultatene presentert. Til

slutt diskuteres valgene som ble tatt under prosjektet og hvordan det kan jobbes videre for å utvikle

en fungerende fotoboks for dataanalyse av dødfisk.

De beste resultatene i oppgaven var en IoU score på 74,24% og en F1 score på 81,60% for segmenter-

ing av vintersår. Oppgaven konkluderer med at metodene som ble brukt er passende for å segmentere

vintersår hos laks fra oppdrettsanlegg og kan fungere som en basis for videre utvikling av den frem-

tidige løsningen.
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Abbreviations

Abbreviation Description

EUS Epizootic Ulcerative Syndrome

mAP mean Average Precision

GeLu Gaussian Error Linear Unit

HSV Hue, Saturation and Value

CNN Convolutional Neural Network

SVM Support Vector Machine

PCA Principal Components Analysis

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

TP True Positive

TN True Negative

FP False Positive

FN False Negative

IoU Intersection over Union

FPS Frames Per Second

CPU Central processing unit

GPU Graphics processing unit

HMI Human Machine Interface

RoI Region of Interest
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Chapter 1

Introduction

The introduction chapter of this thesis begins by providing the motivation and background for the

research problem under investigation. This includes a comprehensive overview of the context and

significance of the topic, highlighting the limitations of existing research. Following the motivation

and background, a clear problem description is presented, leading to the formulation of specific ob-

jectives for the study.

1.1 Motivation and Background

1.1.1 Aquaculture and Welfare Monitoring

Fish farming is the practice of raising fish and comprises all life stages of the fish from brood-stock/eggs

to fully grown adults [1]. While some species are raised in tanks until they have a marketable size, the

Atlantic Salmon is moved to outdoor sea cages for the final growing phase. The volume of water re-

quired by a fish is dependent on its size, which makes it more convenient to meet the needs of fully

grown fish in a sea cage. Fish farming is regarded as a pivotal approach in fostering the advancement

of a more sustainable food production system and addressing the mounting global population’s nu-

tritional needs [2].

Salmon aquaculture was first developed in Norway during the early 1970s and has subsequently un-

dergone significant global expansion [3]. The health benefits of seafood are increasingly being pro-

moted by global health authorities, and aquaculture has expanded fish availability to regions and

countries with limited or no access to cultured species [4]. At a global level, about 80% of the world-

wide salmon harvest is farmed. Atlantic Salmon is relatively small in harvest volume when compared

to other species of fish, but it is a very visible product in many markets due to a high level of industri-

alization.

According to a report from The Norwegian Marine Research Institute, Norway exported 1.26 million

of tons farmed salmon for a value of 105.8 billion NOK in 2022, making salmon the biggest contrib-

utor to seafood export [5]. Norway’s aquaculture industry represents the largest farmed production

in the country, with over 500 million farmed fish located along the Norwegian coast. However, this

large-scale production presents significant challenges concerning animal welfare.

1
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In the realm of aquaculture, the well-being of the aquatic animals being raised is of paramount im-

portance [6]. As these animals are living beings, there exists a moral obligation to ensure their welfare

is upheld. This was the motivation behind the FISHWELL project, which has established a definition

of fish welfare as the overall quality of life as perceived from the perspective of the fish themselves [6].

Ensuring fish welfare is not only of ethical interest but also benefits the producer economically due

to higher quality and decreased mortality.

According to a report from 2022, the fish who dies in the fish cages constitutes the biggest loss in fish

production of salmon and trout [7]. The Norwegian Veterinary Institute has identified three health

challenges that contribute to significant mortality rates: injuries resulting from delousing operations,

complex gill disease, and winter ulcers [8]. Particularly, the extent of winter ulcers poses challenges in

terms of animal welfare. In 2022, 56,7 million salmon died in the sea cages, which represents 90 % of

the loss in the production of Atlantic Salmon. The obligation for companies to solely report mortality

numbers rather than mortality reasons render the precise data regarding diseases unattainable.

To optimize fish production and maximize resource utilization, it is necessary to implement monitor-

ing and control measures for fish in cages. Currently, manual monitoring is conducted through the

collection and examination of deceased fish from the cage floor. Automation of this process through

the incorporation of cameras and machine learning techniques has the potential to greatly enhance

and improve this aspect of fish production. The implementation of automated classification and

analysis of deceased fish in a cage via machine learning techniques has the potential to greatly en-

hance disease and damage detection, allowing for earlier preventative measures to be taken. This can

help to minimize the spread of disease and suffering among the fish population. Additionally, the re-

duction of loss from fish production that results from this improved monitoring can lead to increased

revenue and better quality of the fish produced in fish farms.

1.1.2 Previous Efforts on Computer Vision for Disease Analyses

Computer vision technology is an excellent and practical inspection technology that can contribute

to more efficient solutions to industrial challenges [9]. Due to the rapid development of cameras and

hardware, one has been able to use computer vision for an increasing volume of applications in the

previous years. The interest in aquaculture combined with the search for sustainable food production

has resulted in a considerable amount of related research motivated by the reduction of mortality and

loss.

Fish farming practices worldwide exhibit variations in terms of species composition and the chal-

lenges encountered, leading to numerous studies and publications that can be partially transferable

across contexts. However, it is important to note that certain cases are highly specific to particular

species and diseases, necessitating tailored approaches and interventions.

A relevant research to this thesis was published by Ahmed et al. (2020) [10] who used feature extrac-

tion with statistical features and gray-level co-occurrence matrix features and a Super Vector Machine

(SVM) to distinguish between healthy and infected fish. An SVM is a supervised classifier machine
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learning model [11]. The research was motivated by the recognition of the significant impact that

various diseases pose to both wild and farmed populations of fish and the objective was to propose

a framework for fish disease detection based on an SVM. The dataset utilized in the study comprised

salmon species, and while there was limited specification regarding the infected fish, the visual rep-

resentations depicted in the paper closely resembled characteristics associated with skin diseases.

In the process of developing the classifier, they used k-means clustering to separate the infected ar-

eas from the fish images. The features from these segmentations were then fed into the SVM. The

classifier proposed achieved an accuracy of 94.12 % for their dataset with augmentation, which is

considered good performance for the binary classification problem.

Automatic detection and classification of skin diseases appear to garner widespread attention due to

their broad relevance and visible nature. Malik et al. (2017) [12] developed an algorithm to classify

images of fish with and without Epizootic Ulcerative Syndrome (EUS). EUS is a skin disease occur-

ring in regions far from Norway [13], but as mentioned earlier, the methods and techniques can be

transferred to other cases. Like the research described in the previous section, the objective was to

classify infected and non-infected fish. The research explored various combinations of feature ex-

tractors and processing techniques to find the best combination for classification. The combination

of FAST-Principal-Component-Analysis (FAST-PCA) as a feature extractor and neural network gave an

accuracy of 96 % for the binary classification.

Another disease classification study conducted by Waleed et al. [14] investigate different convolu-

tional neural networks (CNNs) to classify three diseases in fish farms, respectively EUS, Ichthyoph-

thirius (Ich) and Columnaris. The proposed system in the research is to utilize a combination of

multiple sensors and cameras, integrated with a Raspberry Pi platform, to classify diseases. Upon

detection, the system will communicate the results to the user through a mobile phone notification

mechanism. The data used in the research was extracted from videos acquired by the authors. The

study compares the performance of the CNN architectures ResNet18, ResNet50, ResNet101 and Alex-

Net on the dataset in different color spaces. The classification results made the authors conclude that

Alexnet was the best deep neural network with a test accuracy of 99.04% for classifying the three dis-

eases in the XYZ color space.

The classification of skin diseases is a popular research problem that has received attention in re-

search. The detection of these infections may able the farmers to prevent further outbreaks and has

motivated the research conducted by Gangyi et. al (2023) [15]. They used YOLOv4 in combination

with MobileNetv3 as the feature extraction network and the GeLU (Gaussian error Linear Unit) ac-

tivation function to detect and classify four different skin diseases. They achieved a mean Average

Precision (mAP) of 99.64 %.

Although many researchers have used deep learning techniques to detect and classify skin diseases,

Chakravorty et al. (2015) [16] explored how diseases can be identified by the use of image process-

ing techniques. They were motivated by reducing mortality caused by EUS and gathered data from

decreased fish infected with this skin disease. The research applies various image processing tech-

niques like Principal Component Analysis (PCA), K-means Clustering, HSV and Morphological oper-
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ations to measure the number of pixels in diseased areas. Despite being conducted eight years ago,

this research showcased the possibility of simple segmentation techniques in addressing the prob-

lem. However, they conclude that more advanced techniques like pattern recognition by the use of

neural networks or support vector machines may be advantageous.

Various papers of research have been conducted to classify skin diseases with the motivation of reduc-

ing losses in fish farming. Given the visible nature of skin diseases, using computer vision techniques

becomes advantageous for the accurate identification and classification of such ailments. While cer-

tain studies have proposed comprehensive systems encompassing identification and notification

functionalities for farmers, others have focused solely on the classification aspect. However, it can

be generally observed that the systems proposed thus far primarily aim to classify the live fish within

their respective aquaculture cages. The majority of studies focus on classification, separating fish by

their diseases. There has been unexploited potential in the insights that can be derived from the anal-

ysis of dead fish and how meaningful information from this can conclude on fish health and prevent

diseases.

A company that has attempted to exploit this is the Norwegian company Fishwell Technology AS

which released a commercial product called GOODeye Detection which they claim can count dead

fish in containers with a handheld tablet [17]. The diagnostics part of the system is said to be under

development to deliver increased knowledge about the mortality reasons of fish from sea cages.

The existing studies primarily emphasize disease classification based on the presence or absence of

diseases in images, focusing on classification or detection. However, the segmentation of diseased

areas has received limited attention, and the study by Chakravorty et al. (2015) [16] does not utilize

deep learning for this purpose. Consequently, there is a scarcity of research aimed at effectively seg-

menting infected areas and extracting additional information about the infections. The utilization of

segmentation techniques holds promise in providing valuable insights into the localization, shape,

and size of skin diseases.

The field of image segmentation has been of big interest in a broad field and has been applied in for

example medical image analysis, autonomous vehicles and augmented reality [18]. One of the first

significant techniques for image segmentation is thresholding, dividing pixels into groups by their

values. Long et al. proposed in 2015 the Fully Convolutional Networks [19], which was a milestone

in deep learning-based semantic image segmentation models. Since then, multiple deep-learning-

based models for segmentation have been developed including U-net, Mask R-CNN and Deeplab.

Segmentation has not been frequently used in previous research of aquaculture, but a method article

from Sintef by Kvæstad, Hansen and Davies (2021) describe how they used Mask R-CNN to segment

morphometrics on microscopy images of cod larvae [20]. The researchers were able to accurately

and efficiently analyze large amounts of microscopy images of cod larvae, providing valuable insights

into the development and growth of these fish. The use of Mask R-CNN in combination with classical

machine vision techniques achieved a significant improvement in accuracy and precision compared

to previous methods, and the ability to automate the morphometric analysis of Atlantic Cod Larvae
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has the potential to greatly enhance research in this field. Overall, this study is a noteworthy contri-

bution to the advancement of computer vision and its applications in marine biology research. This

study exemplifies the utilization of image segmentation to enhance comprehension of objects within

images, with potential applicability to skin diseases.

1.2 Problem Description

As stated in Subsection 1.1.1, there is both ethical and economic motivation behind the investigation

of diseases and mortality reasons in farmed salmon. The previous attempts at using computer vision

presented in Subsection 1.1.2 emphasize the untapped possibilities for the analysis of deceased fish

and introduce new avenues of research. However, there remains a distinct need to focus specifically

on the segmentation of skin disease in deceased salmon. While previous attempts have explored clas-

sification methods, a deeper analysis of deceased fish has received comparatively limited attention

in the existing literature. Hence, this research addresses this gap by emphasizing the significance of

segmentation techniques for winter ulcers on deceased salmon.

ScaleAQ is an international provider of technological solutions for fish farming. The company provide

innovation, technology and equipment to customers globally [21]. A long-term ambition for ScaleAQ is

to develop a self-sustained photobox system that can analyze dead fish collected from sea cages with

the help of computer vision. The idea of the desired solution with the photobox is to get more data

and thereby learn from the dead fish analysis so that preventive measures can be taken in the future

and prevent economic loss and animal suffering. This thesis aims to contribute to automating and

digitizing the work of measuring disease and damage to fish in fish farming. A sketch of the photobox

is shown in Figure 1.1.

Figure 1.1: A sketch of the desired system.
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1.3 Objectives and Scope

The objective of this thesis is to develop a program that will contribute to the development of a photo-

box for disease inspection for ScaleAQ and thereby contribute to fill the gap in previous research pa-

pers. The project description can be found in the ??. The thesis has a specific scope that concentrates

on the software aspect of the photobox, with no consideration given to the hardware components.

Consequently, the solution excludes any computational constraints that may arise during the actual

implementation of the final product.

The process to create a program for the ScaleAQ photobox include data acquisition, image prepro-

cessing, and the development of a neural network for analysis. The main objectives can be summa-

rized as:

• Identify methods for automatic winter ulcer segmentation in salmon

• Collect and annotate real data from a fish farm

• Train and test a model for the automatic segmentation of winter ulcers

1.4 Outline

This report comprises six chapters that are structured as follows. Chapter 2 serves as an introduction

to the concepts, presenting the theory of deep learning and identifying methods for image analy-

sis and segmentation of winter ulcers. Chapter 3 focuses on the data acquisition process during the

field trip and demonstrates how the techniques discussed in Chapter 2 were applied to implement

the solution. Additionally, this chapter justifies the choices made during the implementation. Chap-

ter 4 presents the experiments conducted to determine the optimal neural network with the highest

performance. The results from the best model and the visualization of these results are showcased in

Chapter 4, additionally. Chapter 5 presents a comprehensive discussion of the obtained results in this

thesis and the methods used in the project. Furthermore, recommendations for further research and

potential modifications are provided. Finally, the conclusion of the thesis can be found in Chapter 6.



Chapter 2

Theory

The chapter aims to provide the reader with a comprehensive understanding of the available known

methods for the automatic inspection of images and focuses on the segmentation of winter ulcers

in Atlantic Salmon, addressing the first of the three objectives described in Section 1.3. Different ap-

proaches to inspect diseases have been utilized in the literature presented in Subsection 1.1.2 and

both deep learning techniques and basic image processing techniques have been attempted. How-

ever, deep learning techniques have been chosen to create a solution to this research problem as they

have demonstrated good performance in image analysis tasks in [10], [12], [14] and [15]. In addi-

tion, the conclusion of [16] recommends using classical pattern recognition algorithms to improve

the performance of disease detection, claiming that image processing is not sufficient. Recent meth-

ods for image segmentation propose deep learning models to solve the segmentation problem and

have achieved notable performance [22]. Furthermore, considering that this research marks the ini-

tial phase in the development of the ScaleAQ photobox, employing a deep learning technique offers

the potential for continuous improvement and adaptability as the project progresses. By selecting

deep learning as the approach, this research aims to capitalize on its proven effectiveness in image

analysis, aligning with the conclusions and recommendations of prior studies, and leveraging its po-

tential for ongoing development and refinement within the context of the ScaleAQ photobox project.

The objective of this thesis is to address the existing research gap by focusing on the segmentation of

winter ulcers, a skin disease prevalent in aquaculture-reared Atlantic Salmon. The literature review

has identified an absence in the segmentation of winter ulcers, and by conducting this segmentation,

valuable information regarding deceased salmon can be extracted. Additionally, the segmentation

process can also serve as a means of solving the binary classification problem, as it allows for the de-

termination of the presence or absence of the disease.

To address the research objectives outlined in this thesis and bridge the existing research gap, the

acquisition of data from infected fish using a camera is crucial. The process of distinguishing between

infected and non-infected fish necessitates the extraction of pertinent features from the captured

images, followed by training a model to discern the distinctive patterns present in the infected fish. To

do pixel-wise segmentation of the ulcers, the features need to be fed into a binary classifier to classify

if the pixel belongs to the ulcer or not. The theory behind the components used in the implemented

solution will be presented in the following sections.

7
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2.1 Deep Learning

Deep learning is a subset of the field of machine learning which has proved to provide advanced an-

alytical tools for understanding enormous amounts of data [23]. As deep learning involves training

neural networks to learn patterns and data representations, this is a suitable method to make a com-

puter process images and videos. Convolutional neural networks have gained significant popularity

as a technique employed for the processing of video or images to extract information. Section 2.1.1

will present the theory of neural networks and how they learn and Subsection 2.1.2 will present the

theory behind convolutional neural networks.

2.1.1 Neural Networks

Neural networks are a class of machine learning algorithms that use multiple layers to learn and make

predictions from data. These networks are a set of algorithms inspired by the neurons in the human

brain, designed to recognize patterns [24]. In the context of supervised learning, a neural network

can be conceptualized as a black box that takes in data along with their corresponding true labels and

then computes the relationship between them. This can be seen in Figure 2.1. The goal is that by

updating the models’ internal states, it can use these internal states to predict data when presented

with data it has never seen before.

Figure 2.1: Neural network as a black box.

The inputs to a neural network is a set of data points of patterns represented as feature vectors. In

image recognition tasks, the input can be a matrix of pixel values [25]. Computations takes place in

the nodes, which can take multiple inputs and give a single output [26]. A neural network node is

seen in Figure 2.2 and the functions will be explained below.
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Figure 2.2: A diagram of a node in neural networks.

The inputs, [x1, x2, x3, ..., xm], will in the case of image recognition be pixel values, and the weights,

[w1, w2, w3, ..., wm], determine the significance of the inputs. The net input function gives the weighted

sum of the inputs: ∑= (x1 ×w1)+ (x2 ×w2)+·· ·+ (xm ×wm)+b (2.1)

The b in Equation 2.1 denotes the bias, which can be seen as an offset and is necessary to move the

entire activation function horizontally to generate the required outputs [27]. The activation function

scales the output and depends on the design of the network. Activation functions prevent linearity

and enable the model to solve complex problems [28]. A popular choice is the nonlinear Rectified

Linear Unit, ReLu [29].

A neural network consists of layers of nodes processing inputs and outputs. The initial input layer

received the data and the output layer gives the prediction. The output on one node is the input to a

node in the next layer. This builds the neural network as seen in Figure 2.3.
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Figure 2.3: A deep NN.

The objective of the training is to find the optimal weights and biases, that is the network parameters.

For a neural network to find these parameters, a cost function is used to get an estimation of how far

from the desired solution the model is. The cost function is dependent on what type of problem the

neural network solves [27]. An example of a cost function is the mean squared error (MSE), which is

the average of the error between the predicted labels and the true labels,

C = MSE = 1

m

m∑
i=1

(
yi − ŷi

)2 (2.2)

where yi denotes the true values, ŷi denotes the predicted values and m denotes the number of sam-

ples. It is desired to minimize the cost function, as this yields a minimization of the error. The process

for minimizing the error by updating weights and biases is called back-propagation [29]. This is done

by taking the partial derivative with respect to the weights and biases, which gives the gradient of the

cost function. To estimate the optimal weights and biases, an optimization algorithm is used. This al-

gorithm is to be chosen by the designer of the neural network, popular choices are Gradient Descent

and Stochastic Gradient Descent [30]. To choose the step for the change of the weights and biases to

minimize the cost, one can set a learning rate, α. The updates of the weights and biases, when using

Gradient Descent, are given as follows [27]:

wi = wi −
(
α× ∂C

∂wi

)
b = b −

(
α× ∂C

∂b

) (2.3)

The objective when training a neural network is to minimize the generalization error, which reflects

the network’s ability to make accurate predictions for new, unseen data that were not encountered

during training[31]. Overfitting is a problem that prevents the model to generalize, which means it
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fits too well to the training data [32]. There are several techniques to avoid overfitting the training data

including early stopping and batch normalization which will be used in this thesis. Batch normaliza-

tion is a technique used during the training of deep neural networks to accelerate the training process

and enhance the network’s performance [33]. The objective is to avoid the phenomena of internal co-

variance shift, referring to the change in the distribution of each layer’s inputs during training.

2.1.2 Convolutional Neural Networks

Convolutional neural networks are algorithms that take an image as input and learn the features and

characteristics of the image. The CNNs have three main layers; a convolutional layer, a pooling layer

and a fully connected (FC) layer [34].

The convolutional layer takes an image as input and performs multiple convolutions on the image.

The objective is to extract patterns and information from the image. The convolutional layers utilize

kernels to convolve the image and extract features [35]. The deeper the convolutional layer is in the

network, the more advanced pattern it learns as each convolutional kernel specializes in learning

different features. An example of one step of convolution can be found in Figure 2.4. The kernel acts

as a filter and can be seen as a small-size matrix [36]. The filter slides across the image pixels and

determines specific features from the image, depending on the kernel design. Figure 2.4 shows the

kernel applied to the first 3x3 pixels of the image. The convolved feature is the result of the filter’s

convolution for this first step. The next step will involve a convolution with the 3x3 next pixels and

the pixel step size for the filer is to be set as the stride. Adding multiple convolutional layers in a NN

allows the network to learn different features.

Figure 2.4: Convolution.

The pooling layer is responsible for performing pooling operations to the image, to mainly reduce

computational cost and make the network more generic [35]. The pooling layer reduces the spatial

dimensions, that is the width and height of the input. The operation leads to a loss of information

but, however, the loss is beneficial to the network as the computational cost decrease. The pooling

operations extract the most important features in the data. Figure 2.5 demonstrates a visual example

of max pooling. The spatial dimension is reduced from 4x4 pixels to 2x2, and the maximum value of

the pixels is kept.
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Figure 2.5: Max pooling.

The convolutional layers and the pooling layers can be repeated multiple times before the final fully-

connected layer [35].

The fully-connected layers take in a one-dimensional flattened image vector and find a probability

score for each of the labels.

Convolutional neural networks have been applied to a variety of computer vision problems including

image classification, object detection, semantic segmentation or instance segmentation [37]. Given

the objective of segmenting winter ulcers in a dataset of infected salmon, CNNs have demonstrated

their potential and efficiency for addressing this specific problem. Semantic segmentation aims to

segment an unknown image into different parts [38]. As the project aims to segment winter ulcers, the

pixels will be assigned to belong to the ulcer or the background, hence the problem to solve is a binary

segmentation problem. Notably, numerous studies have showcased remarkable accomplishments in

semantic segmentation by leveraging convolutional neural network architectures such as U-net and

its variants [37], [39], [40]. Therefore, the subsequent section presents the theoretical foundations of

U-net to provide a comprehensive understanding of its principles and techniques.

2.1.3 U-net

U-net is a deep neural network designed for image segmentation [41]. The release of U-net provided

an 11% improvement in accuracy over the second best approach, contributing to a significant im-

provement in the problem of image segmentation [42]. The architecture of the net makes it belong

to the encoder-decoder-based models as the net consists of an encoding stage and a decoding stage,

denoting a U. The U-net architecture is presented in Figure 2.6. The net is symmetric, where the first

contracting path captures context, classifying the objects and the expanding path enables precise lo-

calization [22].
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The encoder aims to determine the type of objects in the image and their localization [42], depicted

in the left part in Figure 2.6. The encoder extract features from the image, creating compact repre-

sentations of the input image in a lower dimension. The extraction is done using convolutional layers

and pooling layers. The convolutional layer is a kernel passing through each pixel of the image and

learning the features. Each encoder block exists of two 3x3 convolutions, seen as the blue arrows in

Figure 2.6. Each convolution is followed by a ReLU activation function. The ReLU makes the network

non-linear, which contributes to the generalization of the training data. The output of the ReLU acts

as a skip connection for the corresponding decoder block, illustrated by the gray arrows in Figure 2.6.

The following layers are pooling layers which reduce the dimensions of the output. U-net has a 2x2

max-poling where the spatial dimensions are reduced, leading to a reduction of the computational

cost due to the reduction of trainable parameters. The max pooling is denoted by the red arrows in

Figure 2.6. Combining these layers able for the extraction of detailed information. During training,

the network learns what features are important for semantic segmentation and extract these to create

a compact representation of the image.

The skip connections between the encoder and decoder layers, illustrated by gray arrows, aid in im-

proving the flow of gradients during backpropagatation [42]. Due to the symmetry of the U-net, these

opposite layers have the same dimensions. The skip connections connect the encoder and decoder at

the corresponding convolution and deconvolution blocks. This allows the decoder to combine high-

level features from the encoder with the low-level details that were lost during downsampling.

The decoder reconstructs the image from the compact representation output of the encoder [42]. It

contains deconvolutional layers to increase the dimension of the image. Every block in the decoder

starts with a 2x2 deconvolution, seen as green arrows in Figure 2.6, which is concatenated with the

corresponding convolution layer in the encoder. Next follows two 3x3 convolutions followed by the

ReLU activation function. The output of the last decoder passes the image through a 1x1 convolution

with sigmoid activation. The sigmoid activation creates the segmentation mask, representing the

pixel-wise classification. The classification appears as probabilities for each pixel to belong to the

positive class.
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Figure 2.6: U-net as illustrated in the original paper [39]. Reproduced with permission.

U-net was made to perform biomedical image segmentation. One of the main advantages of U-net is

the reliance on data augmentation to use the available dataset more efficiently [39]. The network has

been applied to various biomedical segmentation problems.

2.2 Metrics in Computer Vision

The evaluation of a model is crucial in the search for the best solution for image segmentation of win-

ter ulcers. This section will present the metrics used in the project for measurements of performance

in the developed model. Several metrics for performance measurements in machine learning exist

but some are more relevant than others, dependent on the specific case. Since this thesis is centered

around image segmentation, it is crucial to consider a comprehensive set of metrics that collectively

assess the performance of the segmentation. Instead of relying solely on a single metric, evaluating

the segmentation results using multiple measures allows for a more holistic and thorough analysis

of the overall segmentation quality. The metrics to be presented will be the ones used for the binary

segmentation task done in this thesis.

2.2.1 Accuracy

Pixel accuracy is a widely used metric to evaluate the accuracy of image classification tasks by mea-

suring the percentage of correctly classified pixels in an image. However, this metric may not be a

suitable measure for binary segmentation tasks due to the presence of imbalanced class distribution

in the image. In such scenarios, a high pixel accuracy score may be achieved even if the segmentation

output assigns all the pixels to the background class, rendering this metric inadequate for assessing
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the performance of binary segmentation models [43]. A more suitable metric for image segmentation

is balanced accuracy. Balanced accuracy is a metric used when the problem has a class imbalance and

the formula is given by [44]

Balanced Accuracy = Sensitivity + Specificity

2
(2.4)

where

Sensitivity = TP

TP+FN
(2.5)

and

Specificity = TN

TN+FP
(2.6)

2.2.2 Recall

Recall is a metric given by

Recall = TP

TP+ FN
(2.7)

which can be seen as the classifier’s ability to find all the positive samples [44]. In the context of

image segmentation of winter ulcers, the true positive predictions refer to the pixels that belong to

the ulcers. The false negatives belong to the pixels that were predicted to not belong to the winter

ulcers, but truly belonged.

2.2.3 Precision

The precision is the ratio given by

Precision = TP

TP+FP
(2.8)

and can be seen as the ability of the classifier to accurately identify positive samples at the pixel level.

It quantifies the number of true positive predicted pixels overall positively predicted pixels [44].

2.2.4 F1-score

The F1 score is a common performance metric used to evaluate the accuracy of binary classification

models [43]. The F1 score is given by

F1 = 2∗|A∩B |
|A|+ |B | (2.9)

where A and B denote the ground truth segment and the predicted segment [43]. The F1 score is a

good evaluation for binary segmentation tasks as it can be seen as a measure of overlap between the

ground truth and the predicted class. As this thesis will solve a binary segmentation problem, the F1

score will be the same as the Dice coefficient. For this thesis, the dice coefficient metric is used in the

loss function, which will be later explained and justified. The dice loss is given similar to the F1 score,

but with a 1 added to the denominator and numerator so that the function is defined when A = B = 0

[45].

DL(A,B) = 1− 2∗|A∩B |+1

|A|+ |B |+1
(2.10)
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2.2.5 Intersection over Union

A good evaluation for binary segmentation tasks is the Intersection over Union (IoU), which is given

by the formula

IoU = |A∩B |
|A∪B | =

|A∩B |
|A|+ |B |− |A∩B | (2.11)

where A and B denote the ground truth segment and the predicted segment. This metric is considered

as a good measurement for semantic segmentation tasks where the classes are imbalanced distribu-

tion in the images. The IoU determines the area of overlap between the predicted segmentation and

the ground truth, divided by the union between these [43]. A visual representation of IoU is to be

found in Figure 2.7.

Figure 2.7: IoU - Intersection over Union.

2.2.6 Frames per Second

Frames per second (FPS) is a key metric used to evaluate the performance of computer vision algo-

rithms [46]. It measures the rate at which a system can process video frames per second and is critical

for real-time applications. A higher FPS indicates that the algorithm can process more frames in a

shorter amount of time, which is important for achieving real-time performance in applications such

as autonomous driving or robotics. In the context of the photobox, the FPS will evaluate how fast the

algorithm can process images, i.e. how fast the photobox can be presented for new fish individuals to

analyze [47].

FPS = 1

t
(2.12)



Chapter 3

Methods and Implementation

This chapter presents the practical application of the theoretical concepts and techniques outlined

in the previous chapter to address the objectives of the master’s thesis. Firstly, the hardware tools

and software frameworks employed in the study are presented. Subsequently, the data acquisition

process is described, followed by the preprocessing steps and the necessary preparations of the data

to train a neural network. Lastly, the implementation details of the U-net architecture are presented.

3.1 Technical Framework for Implementation

3.1.1 Hardware

As the training of neural networks might be computationally intensive and can be time-consuming

on CPUs, NTNU provided a GPU machine that was accessed remotely through the Windows software

program Remote Desktop. The GPU used was NVIDIA GeForce RTX 3070. The hardware used for the

data acquisition was a CANON XA15 video camera along with a tripod and a tripod extension.

3.1.2 Software

This section provides information about the software set-up in the project and justifications for the

choices made regarding software.

The programming language chosen for this project was Python 3.10 due to the availability of open-

source libraries tools and resources for computer vision projects. These libraries have a lot of re-

sources and documentation online, making them easy to use.

Pytorch 2.0.1 was chosen as the deep learning framework as it is a popular tool in deep learning re-

search [48]. Pytorch is easy and intuitive to use and provides strong support for GPU acceleration, al-

lowing faster training times. It also integrates seamlessly with other libraries like for example NumPy

and OpenCV. Another alternative is TensorFlow, but Pytorch was understood to have better commu-

nity support for research. The additional libraries used in this project will be presented and justified

further in the following sections of this chapter.

Visual Studio Code was chosen as the code editor as it is designed to be lightweight, fast, and versatile.

17
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The choice of the operating system for this project was Windows 10, as it was readily available on the

provided computer and the candidate possessed prior experience with this operating system.

3.1.3 Training With GPU

The computational demands of training machine learning models can be substantial, which made

it advantageous to use Graphics Processing Units (GPUs) due to their capacity to execute parallel

computations. NVIDIA’s CUDA 11.7 software platform has facilitated the development of code that

can be executed on NVIDIA GPUs, rendering it an appealing choice in combination with PyTorch for

its user-friendliness.

3.2 Field Data Collection

As indicated in the literature review discussed in subsection 1.1.2, limited efforts have been made to

analyze diseases specifically in Atlantic Salmon, resulting in a limited availability of data including

diseased salmon. Due to the lack of available data, it was necessary to undertake a field data collec-

tion.

3.2.1 Image Acquisition

On March 29th and 30th, 2023, image acquisition was carried out at sea-based fish farms located in

a coastal region of Trøndelag. The data were collected from two separate facilities, each containing

salmon in varying stages of growth. A third party agreed to provide a visit to do data acquisition for

the thesis. The locations were decided by the company but were chosen as two locations with high

mortality, providing more fish samples to capture. To ensure confidentiality for the company that fa-

cilitated the visit, the precise locations of the fish farms will not be disclosed, and will henceforth be

referred to as location 1 and location 2. Location 1 where visited on 29th of March while location 2

where visited on 30th of March.

The first part of both data acquisition days was used to pump the dead fish from the bottom of the

cages up in a boat, which can be seen in Figure 3.1. A camera placed at the bottom of the cages was

used to observe that all the dead fish was removed from the cages. The collection of deceased fish

from the sea cages was carried out by the third-party company.
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(a) A hose was placed in the bottom of the cage. (b) The dead salmon ended up in a container.

Figure 3.1: Dead salmon from the bottom of the cages were collected.

After collecting all the dead salmon at each cage in a container, a selection of dead fish was picked

out of the container and put in separate containers to be photographed. The photos were taken at

the employees’ deeding barge, inside a veterinary lab. The setup was very simple, as demonstrated

in Figure 3.2. The camera used was a CANONXA15 video camera provided by NTNU along with an

adjustable tripod. An extension to the camera tripod where made at the NTNU TTK laboratory so that

the camera lens could be pointed 90 degrees at the object without including the tripod in the resulting

image. The light was limited to a lamp over the veterinary desk and some daylight from keeping the

door open. The background was chosen to be white, as the other alternative was a stainless steel desk,

with a color similar to the salmon scale.



CHAPTER 3. METHODS AND IMPLEMENTATION 20

(a) The setup at day 1, location 1. (b) The setup at day 2, location 2.

Figure 3.2: Data acquisition setup at the veterinary lab.

The data collection process involved retrieving deceased fish from the containers and placing them

on a standardized background for imaging. Some fish had winter ulcers on both sides, thus they

were flipped, to photograph both sides. The amount of fish in location 1 was bigger than in location

2. Due to the lower quantity of dead salmon in location 2, the salmon were moved and rotated so

that some additional images were captured of the same individual. The first location had fish with a

weight of approximately 312-620 g and the other location had fish of approximately 5 kg, which is the

fully grown size. This made the fish easier to carry, place and capture on location 1. Due to security

protocols, personnel were required to wear multiple protective gear, including helmets, life jackets,

and work suits. The use of gloves was preferred while handling the fish, however, to capture clear

images, gloves were not worn during photography, which posed an inconvenience during the work. In

addition, there was limited space in the veterinary room and the tripod used a significant amount of

space. There was no possibility to connect the camera to an external monitor, that is, all the captured

images were only available on the small camera screen. This posed challenges when evaluating the

camera settings during the data acquisition and the effect of how this challenge affected the results

will be discussed in Chapter 5.

3.2.2 Camera Settings

The suboptimal environment during data acquisition necessitated the exploration of various camera

settings. On the first day, the sharpness of the images was deemed inadequate, prompting corrective

measures to enhance the sharpness. Although the initial intention was to manually adjust the focus,

the practical difficulties and limitations involved in assessing image sharpness on location necessi-

tated the use of the auto focus setting. Consequently, images from location 1 on day 1 and location
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2 on day 2 differed in quality, which will be further explained in the following section. The concept

of having a photobox for automatic data collection will improve the possibility to choose the right

settings and will be further discussed in Chapter 5.

3.2.3 The Raw Data Set from Data Acquisition

Day 1 of data acquisition resulted in 627 images and day 2 resulted in 160 images. The disparity in

the number of pictures from the two locations was due to the amount of dead fish at the different lo-

cations and their size. Some duplicates were removed in the annotation process, leaving 470 images

from day 1 and 38 images from day 2. The big amount of duplicates from day 2 was due to experi-

menting with different camera settings during the data acquisition. The images were saved as .png

images.

The images from day 1, shown in Figure 3.3a, contain fish at an early stage of development, which

yields a variety of wounds, with different colors and shapes. The images from day 2, shown in Fig-

ure 3.3b, contained fish of size ready for slaughter, with particulary red wounds, and with a signifi-

cant size. Some fish had more wounds, others had a bigger size. The images from day 2 are improved

mainly in comparison to day 1 due to better light conditions at location 2 and better resolution set-

tings from the camera. This resulted in the images from day 1 having a resolution of 640x360 and the

images from day 2 having a resolution of 1920x1080. Ideally, a higher resolution would be preferred,

allowing for a more detailed representation of the image, but this setting was not discovered on the

first day of data acquisition.

The data acquisition process was carried out with the primary objective of capturing a large number

of images, leading to the inclusion of multiple images of the same individual, with some rotations. An

example from each of the days of data acquisition can be seen in Figure 3.3, the development phase

of the fish at the different locations is demonstrated.
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(a) Data from day 1, location 1.

(b) Data from day 2, location 2.

Figure 3.3: Raw data obtained at the data acquisition field trip.

3.3 Data Preparation to Segment Winter Ulcers

Due to the challenges of winter ulcer at the time of the data acquisition, it was decided to develop

a model to segment winter ulcers. Other diseases were considered as well, but due to a restricted

amount of individuals with other diseases it was decided that to get the best performance, and thus

the best system for final software implementation in the photobox, a model for winter ulcers would

be suitable to the data set. Image segmentation was the preferred technique to solve the task. It was

considered the best solution to identify and measure the characteristics of the ulcer in each individ-

ual.

The code folder from this project contains several files depending on each other to prepare the data

to be able to train and test the model. U-net require images and binary masks as ground truths on a

specific format to be able to train a model. The information needed by each script and the results of

running the scripts are shown in Figure 3.4. All the files will be presented and explained in the follow-

ing section.
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Figure 3.4: An overview of how the files created in the project work together and produce outputs that
the latter files depend on.

3.3.1 Data Annotation of Winter Ulcers

The first step in preparing the data for the U-net model was annotation. U-net requires binary masks

as ground truth, meaning that these labels of the ulcers must be sent into the model together with the

images. The annotation was done by the utilization of the Visual Image Annotation (VIA) tool, which

is a widely utilized software developed by the Visual Geometry Group (VGG) at the University of Ox-

ford. The annotations were carried out on a publicly available online demo of the VIA tool, acces-

sible at https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html. The annotations

may exhibit variability in terms of accurately delineating the boundaries of the wounds, especially

at the wound edges, due to the manual annotation of 508 images. The images were meticulously

annotated using polygonal shapes to delineate the precise regions of interest corresponding to the

wounds. Some images were duplicates, and thereby removed. The resulting annotation data, which

captured the spatial information of the wounds, was then meticulously saved in a .JSON file format,

ensuring the preservation and accessibility for subsequent data analysis and processing. The use of

the annotation tool is presented in Figure 3.5.

https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html


CHAPTER 3. METHODS AND IMPLEMENTATION 24

Figure 3.5: An overview of how the VIA tool was used to annotate the data. Image screenshot from
https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html.

3.3.2 Creating Binary Masks for the Winter Ulcers

The JSON files containing the annotated data were processed using a Python program, denoted as

creating_binary_masks.py. This processing step involved extracting relevant information from the

annotations to generate binary masks, which served as ground truth labels for the subsequent imple-

mentation of a U-net. These binary masks, accurately representing the spatial extent of the annota-

tions, played a crucial role in training and evaluating the performance of the neural network model in

the subsequent stages of the research. Figure 3.6 illustrate how the original images correspond with

the binary masks.

https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html
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(a) Original image.

(b) Binary mask.

Figure 3.6: Original image and the corresponding binary mask.

3.3.3 Splitting the Dataset into Training, Testing and Validation Datasets

After the annotations and the creation of a binary mask for all images, they were manually copied to

a folder. The dataset folder contained two sub-folders, image and mask. A Python file for the creation

of a training, test and validation set was created by running create_datasets.py. The script provides

the user with the ability to specify the proportion of the entire dataset to be apportioned into three

distinct sets. Before distributing the image-mask pairs into the training, testing, and validation sets,

the code employs a randomization process. To prevent the occurrence of duplicates within any of the

folders, an auxiliary function was incorporated into the script, which necessitates invocation each

time the creation of new datasets is intended. The division of the datasets ended up being 70% for

training, 20% for validation and 10% for testing. This resulted in 355 training images, 101 validation

images and 52 test images before data augmentation.

3.3.4 Data Augmentation for the Winter Ulcer Dataset

To increase the number of images, a data augmentation process was added to the pipeline. Data aug-

mentation is the process of increasing the amount of data by applying adjustments to the existing
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data [49]. This technique has demonstrated remarkable effectiveness when the availability of data

is limited and was used in the originally released paper of U-net [49] [39]. Therefore, data augmen-

tation was chosen as a valuable approach in this study. The objective was that the data should be

realistic, like their original, but with a slight variation. The data augmentation program is to be found

in data_aug.py. The data augmentation techniques applied include horizontal flip, vertical flip, and

rotation using the imgaug library. Every image in the training dataset was augmented to a horizon-

tally flipped version, a vertically flipped version and a randomly rotated version within the limit of

[-45◦, 45◦]. The augmentations are visualized in Figure 3.7. The size of the images was determined in

the augmentation process. The annotations were done equally for the masks and the images so that

the correspondence was kept. The test and validation images were sent through the augment func-

tion to get the right dimensions and format for the U-net, but they were not augmented. The data

annotation process resulted in 1420 training images, 101 validation images and 52 test images. An

example of the augmentations for an image and their corresponding masks can be seen in Figure 3.7

and Figure 3.8.

(a) Original image. (b) Vertically flipped image.

(c) Horizontally flipped image. (d) Rotated [-45◦, 45◦] image.

Figure 3.7: The data augmentations performed on the training images.
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(a) Original mask. (b) Vertically flipped mask.

(c) Horizontally flipped mask. (d) Rotated [-45◦, 45◦] mask.

Figure 3.8: The data augmentations performed on the training masks.

3.4 Preparing Data to Segment Fish Bodies

To improve the likelihood of successfully segmenting winter ulcers, the background was removed to

reduce the occurrence of false positive predictions. Some images did have a noisy background con-

taining blood or other disturbances. In a few cases on the test set, these spots were segmented and

predicted as ulcers. This led to the need for background removal, in addition to the interest in mea-

suring the area of the fish body.

A wide range of techniques were tested to remove the background. The most desired case was to

use an implemented library in Python or a pre-trained model from the internet to avoid the need

for annotation of the bodies on the data, as annotation is time demanding. Some techniques and

models were tested and explored, but none of them gave satisfying results. It was therefore necessary

to create an additional model to segment the fish bodies and then remove the background. The same

dataset with the 508 images from the field trip was used to develop and train this model. An overview

of how the scripts in the development of the body model work together is presented in Figure 3.9.
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Figure 3.9: An overview of how the files created in the development of the body segmentation model
work together.

This section will describe the work of the data preparation for creating a model to segment the fish

bodies and thus separate the region of interest from the background. Since the focus of this project

was to segment winter ulcers, the same model architecture will be used to train both models. The

model design and implementation are to be found in Section 3.5.

3.4.1 Creating the Binary Masks for the Fish Bodies

To generate binary masks suitable for use in a computer vision model, an open-source platform for

computer vision known as Roboflow was employed. The platform facilitated the use of machine learn-

ing models to assist in the annotation process, resulting in rapid annotation. The annotation process

involved a single-click selection of the fish after just a few sample annotations.

Roboflow provided the possibility to download the dataset in one folder containing the masks and

the images. Consequently, there was no need to use the previous method and read .JSON files. The

masks were in a different format compared to the ones generated in the creating_binary_masks.py

and needed preprocessing to work as label input to U-net. This happens in preprocess_fish_body_masks.py,

which split the folder with masks and images into two folders, one with masks and one with images

and transforms the masks into the right format.
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3.4.2 Creating Matching Datasets for the Two Models

The process from the implementation of the model for the winter ulcers was repeated with the fish

body segmentation model. The difference was the creation of the datasets. Having two models work-

ing together required the test set to be the exact same. The idea was to send the test images through

both models, where one model’s output is the input of the other. The test sets was not seen by either

model before testing, ensuring valid testing. The create_matching_datasets.py script takes in the two

folders of masks and images for the fish bodies and sorts the images and masks belonging to the test,

validation and training set for the ulcer model. This script takes advantage of the fact that the image

IDs are kept in every process it goes through, resulting in easy data handling to create the correct

datasets.

3.4.3 Data Augmentation for the Fish Body Dataset

The augmentation process was repeated for the fish body dataset. Due to the test dataset not being

augmented, the datasets for the two models contained identical test images.

3.5 Neural Network Design

Once the data material was prepared, the neural network for automatic segmentation was designed.

The desired objective to first segment the fish and then segment the ulcer posed the need for two

different datasets, as described in the previous section. This resulted in one fish body dataset and

one ulcer dataset. The focus of this thesis was to segment winter ulcers, the background removal was

added as an extra functionality. For this reason, the same neural network, U-net, was used to perform

the segmentation. The code implementation of U-net along with the arguments for the selection of

U-net is presented in the following section.

3.5.1 U-net

U-net was chosen due to its special design for image segmentation tasks, where the input and output

are images. In the case of segmentation of wounds on fish, the goal was decided to be segmenta-

tion of the area of the wounds, involving pixel-level classification. Other models, such as YOLO, can

provide a four point detection of objects, creating a rectangle around the desired object, but U-net

can provide pixel-wise classification, making it more suitable for segmenting wounds of different,

non-geometrical shapes. U-net’s architecture has been proven to be well-suited for this type of clas-

sification, allowing the capturing of both local and global context information and preserving spatial

details. Previous literature has demonstrated the successful utilization of Mask-RCNN for image seg-

mentation [50] [20]. However, U-net was considered advantageous due to the limited available data

in this project and was consequently preferred. During the research of this project, it was found that

a significant amount of successful segmentation tasks have been solved by U-net segmenting similar

shapes and objects, as described in Subsection 2.1.3. U-net additionally have the advantage of being

simple and efficient, requiring less computational resources than Mask-RCNN. Due to these argu-

ments, the U-net architecture was deemed an optimal solution for addressing the problem at hand.
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The U-net was implemented with inspiration from the code developed by Tomar, N. (2021) [47] which

created a basic that was further developed and modified. The objective of the code base from [47] was

to conduct semantic segmentation of retinal blood vessels in a limited dataset comprising a small

number of images. This was deemed a favorable starting point, as this segmentation task exhibits a

significant degree of similarity to the targeted problem being addressed in the current project. The

net was implemented from scratch with the use of Python classes, making it intuitive and organized

so that changes in the architecture could be implemented easily.

The implementation of U-net used in this project differs from the original U-net from [39] due to

batch normalization inserted between the convolutional layer and the ReLU. This aims to reduce the

internal covariance shift and make the network more stable during training. The following section

will present the U-net used in this project and Figure 3.10 presents an overview of the architecture.

The implementation of U-net in both models consists of four encoder blocks and decoder blocks

as seen in Figure 3.10. The input to the U-net was set to be a 512x512 image with 3 channels (RGB

image). Each encode block consists of a convolutional layer, a batch normalization layer, a ReLU ac-

tivation function and a max pooling layer. The convolutional layers consist of two 3x3 convolutions,

the max-pooling layers have dimensions of 2x2. The encoder block generates two outputs. It sends

the output from the convolutional layer as input to the corresponding decoder block and the output

from the max pooling layer is passed into the next encoder block. In every encoder layer, the spatial

dimensions of the image are halved and the number of feature channels are doubled.

The decoder blocks consist of an up-sampling layer, a concatenation with the input it gets from the

skip-connection, hence the output of the corresponding encoder block, and a convolution block.

The up-sampling is of dimension 2x2 and the convolution layer consists of two 3x3 convolutions. A

bottleneck layer has been implemented as a bridge between the encoder and decoder block. This

bottleneck compresses and fuse the information for capturing both low-level and high-level features.

The final layer of the U-net can be seen as a classifier and is a convolutional layer with 1 kernel to

output the probability map with the same 512x512 size as the input, but with 1 channel. To create a

binary segmentation image, a threshold of 0.5 is applied to the output, such that all probabilities over

0.5 are assigned a value of 1, meaning they belong to the object. This results in a binary image which

is seen as the prediction mask.
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Figure 3.10: The U-net architecture.

The training and tuning of U-net is presented in chapter 4.

3.6 Combining the Two Models in Series

After the experiments to get the two models to work thoroughly, which is described in Chapter 4,

there was some work left to put them together. The output of the fish body segmentation model,

hereby called model 1, was fed into the ulcer segmentation model, hereby called model 2. The output

of model 1 was a binary predicted mask for the fish body, which needed to be combined with the

original test image with a binary AND operation. This operation is demonstrated in Figure 3.11. The

selection of black as the background color was based on the divergence between the ulcers and the

color. Although green could have also been a suitable alternative due to its dissimilarity from red,

black was deemed preferable to facilitate data manipulation.
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(a) Original image. (b) Predicted binary mask.

(c) Original image without background.

Figure 3.11: Result of original image AND predicted binary mask.

The workflow of how the two models are connected and work together to segment the images is

shown below in Figure 3.12. The models work together in series. The input to the first model is

images of fish in the right format. The first model segmented the fish body and thereby removed the

background. The second model takes a picture with the fish body as an input and outputs an image

with a segmentation of the winter ulcer. This system can be integrated into the photobox where the

first input image will come from the photobox camera and the output image can be shown on an HMI

screen for the employees handling the system.
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Figure 3.12: The flow of images through the developed models.

To extract additional information on the system performance, an additional indicator parameter

called ulcer factor was derived. The feature is the result of dividing the number of pixels denoting

the winter ulcer by the number of pixels denoting the fish body. The white pixels of respectively win-

ter ulcers and fish bodies were saved to two different .JSON files and the data was processed further

so that an ulcer factor could be found. This was done due to the lack of a known correlation between

the pixels and the real-world measures. The ulcer factor can be seen as the percentage of the surface

of the fish that was infected by winter ulcer. This was added to demonstrate the possible features that

could be easily integrated into the photobox system if desired.



Chapter 4

Training and Results

Following the design and implementation of U-net, as explained in the previous chapter, some fine-

tuning was needed to achieve the best performance of the model. The best model was found through

experiments with different combinations of hyperparameters. Various combinations of different hy-

perparameters and model architectures were trained and evaluated before a final model was chosen.

The training of the models was a time-consuming process posing a limitation on how many models

that could be trained. This chapter presents the experiments and methods used to find the resulting

model which will be presented in the chapter additionally.

4.1 Training U-net

To get the best performance for image segmentation of winter ulcers, a lot of experimentation was

performed, experimenting with different combinations of hyperparameters, data augmentations and

model depths.

During the experiments, an issue related to limited memory access on the GPU was encountered. As

a consequence, the combinations of batch sizes, model depths, and image sizes were restricted. The

implications of this error on the obtained results will be examined and elaborated upon in Chapter 5.

The models for fish body segmentation and winter ulcer segmentation were trained and tested sep-

arately. The experimental methods of evaluating different hyperparameters were similar for both

models.

The tuning procedure involved training the model for a specified number of epochs by executing the

training files. Subsequently, the models were evaluated by executing the test files using the validation

data as input. The validation loss and the training loss were plotted during training, so that the per-

formance could be monitored. This was considered to be an important metric to avoid the network

to overfit the training data. Early stopping was implemented to avoid overfitting and stop the train-

ing when the validation loss did not improve enough. The requirement for early stopping was set to

be an improvement in the validation loss of less than 0.001 for 5 epochs. After running each model,

the model was saved as a checkpoint. The test file ran the 101 validation images through the trained

model and calculated the IoU, F1-score, Recall, Precision and Balanced Accuracy. These metrics were

34
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taken into account when deciding what parameters to adjust and which model to prefer. The metrics

were saved to a .JSON file, together with the hyperparameters used to train the model. This enabled

a clear overview of the different models that were trained and their performance on the validation set.

The loss function chosen for the training of U-net was the region-based loss function, Dice loss, as

this has been shown to perform well on class imbalance problems [51]. Dice loss is a popular choice

of loss function in medical image segmentation [52]. The goal is to minimize the error of the overlap,

and dice loss is related to the overlap of the ground truth and the prediction. These are the main rea-

sons for choosing dice loss in the advantage of for example cross entropy loss.

Due to the mentioned memory issues with the GPU used to train this model, there were done some

experiments with different image sizes. Having smaller images allowed for increasing batch sizes, but

the performance was decreased when the image size was decreased. This is due to a loss of infor-

mation when the original image is scaled down. The smaller images may have fewer details which

result in less accurate predictions. Choosing a large image size, however, requires more computa-

tional resources to process, and there is a trade-off between the computational resources and image

size which needs to be balanced. From these experiments, it was decided that the recommended im-

age size should be 512x512.

The optimizer used was the Adam optimizer, which is popular in deep learning and in U-net and has

proven robust performance in CNNs [53]. Due to efficient memory usage and fast convergence, this

optimizer was favored. The Stochastic Gradient Descent (SGD) optimizer was tested but exhibited

slower convergence in the losses than the Adam optimizer. The slow convergence might be due to

the small batch sizes as SGD updates the network parameters at each mini batch [30]. Due to limited

computational resources requiring small batch sizes, the SGD optimizer was ultimately discarded.

As described in the theory in Subsection 2.1.3, the output of U-net will contain probabilities for each

pixel to belong to the positive class. A threshold is then needed to determine if the pixel should be set

to 1 for positive pixels or 0 for negative samples. The threshold was set to 0.5 after experimentation,

indicating that all probabilities over 0.5 were considered to belong to the ulcers.

Several experiments were done with different depths of the model. Using the model design seen in

Figure 3.10 as a base, two additional nets were made. One was made as a smaller net, removing the

two last layers before the bottleneck, giving 3 encoder blocks and 3 decoder blocks. The other net was

made by adding an encoder and a decoder, thus it had 5 encoders and 5 encoders. In Table 4.1, these

architectures are denoted by their depths, respectively 3, 4 and 5. The different depths are demon-

strated in Figure 4.1. The content within the blocks remains identical to that depicted in Figure 3.10.
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(a) U-net with depth 3. (b) U-net with depth 4.

(c) U-net with depth 5.

Figure 4.1: A visual presentation of U-net with different encoder/decoder depths.

4.2 Experiments

A selected combination of hyperparameters and image sizes was tested during tuning. Some com-

binations will be presented here, but additional models were trained in the search for the optimal

model. The different combinations to be presented can be found in the table below. Early stopping is

denoted as ES in the table.

Model Image Size Batch Size Number of epochs Learning Rate U-net depth

1 255x255 16 100 (ES 68) 0.0001 4

2 512x512 16 100 (ES at 67) 0.0001 3

3 512x512 16 300 0.00001 4

4 512x512 12 50 (ES at 42) 0.0001 5

Table 4.1: Table overview of the model combinations.



CHAPTER 4. TRAINING AND RESULTS 37

Model F1 IoU Recall Precision Balanced accuracy

1 0.8484 0.7693 0.8343 0.8925 0.9169

2 0.8525 0.7763 0.8397 0.8989 0.9197

3 0.8437 0.7673 0.8354 0.8840 0.9175

4 0.8748 0.7995 0.8633 0.9094 0.9315

Table 4.2: Metrics overview of the model combinations.

What can be seen from the tables is that the depth of the network does not have too much signification

for the metric results. This can be because the model already has reached a good level of complexity

and increasing the layers too much may lead to overfitting. Additionally, the data is limited and may

not have enough features to warrant a more complex model. Nevertheless, the models with a depth

of 5 exhibits faster convergence and the early stopping criterion were triggered.

What was experienced additionally was that the batch size does not affect the performance signif-

icantly, but as explained in the previous section, there were limited choices of batch sizes due to

limited GPU memory. In the experiments, the batch size where thus set to be as large as possible, or

slightly less. There is a common practice to set the batch size to 2k . This is not a requirement, and as

the GPU had memory issues, other batch sizes were explored. The models of depth 5 triggered early

stopping and achieved a good performance although they were trained for fewer epochs.

Two interdependent hyperparameters that required tuning were the learning rate and the number of

epochs. The learning rate influences the rate at which the optimizer converges to an optimal solu-

tion, and therefore, a lower learning rate requires more epochs to reach convergence. Given that early

stopping was implemented to prevent overfitting and reduce the computational burden of training,

there was no need to limit the number of epochs. However, the time spent for training was dependent

of the epochs, with higher epochs being time demanding.

The results displayed in Table 4.3 indicate that the balanced accuracy exhibits a consistently high level

of performance across all applications. As a result, during the parameter tuning and selection of the

optimal performance, the balanced accuracy metric was not given a significant emphasis or weight.

The evaluation process placed significant emphasis on the F1 score and Intersection over Union (IoU)

score as the primary metrics. These metrics were considered highly important due to their ability to

measure the overlap between the predicted area and the ground truth in the context of segmenta-

tion. The performance of the model was primarily determined by these metrics, given their direct

relevance to the segmentation task. Although the other metrics were not disregarded, they served as

additional control parameters during the selection of the model with the best performance. Their

inclusion ensured a comprehensive assessment of the model’s effectiveness beyond the F1 score and

IoU score, providing a more holistic evaluation of its segmentation capabilities.

The final results for the best model chosen based on the validation data from Table 4.3 will be pre-

sented in the following section.
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4.3 Metric Results From the Resulting Ulcer Model

Following the tuning of the model through the utilization of validation data performance metrics, the

final evaluation of the optimal model was performed on the test data. The 52 test images were run

through model 5 from Table 4.1. The performance of the best model is presented in the table below:

Metric Score
F1 0.8160

IoU 0.7424
Recall 0.8145

Precision 0.8301
Balanced Accuracy 0.9168

Table 4.3: Metrics for the resulting model for segmentation of winter ulcers.

The best model performance was obtained by combination 5 in Table 4.1. The F1 score and Intersec-

tion over Union (IoU) metrics provide insights into the degree of overlap achieved by the model in

segmenting the ulcers. The results indicate that the model demonstrates satisfactory performance in

accurately delineating the ulcer regions. The model shows a well balanced accuracy which takes into

account the class imbalance. The FPS was 25.05 images per second, meaning that the model was able

to process 25.05 images each second during testing.

The model has an overall decrease in the evaluation metrics for the test data. The primary reason is

the difference between the test data and the validation data, which was selected randomly. As the

model was tuned with the performance of the validation data, the model was optimized to this par-

ticular data. Consequently, the model could not obtain the same performance for the test data. The

model’s performance on the test data reflects its capability to handle real-world data that never have

been encountered.

The plot of the validation and training loss for the chosen model can be seen in Figure 4.2. The plot-

ted results indicate that both the validation set and the training set are relatively representative of

the population, as the disparity between them is minimal. Additionally, the plot provides evidence

supporting the adequacy of the dataset sizes in with each other. The observed low losses signify that

the model is effectively fitting the data. The plot also shows an early stopping at epoch 42, which

prevents the model from overfitting. The results obtained will be further discussed in chapter 5. The

next section will present the output images from the model.
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Figure 4.2: The curves for validation loss and training loss for the resulting model.

4.4 Results Visualization

The test results from the resulting model are shown in the figures below. This type of visualization of

the results provides an intuitive understanding of the predicted segments, but is harder to evaluate

thoroughly. However, the visualized results provide information that could be of great interest to the

aquaculture industry.

Figure 4.3: Example prediction: Original image, ground truth mask, predicted mask.
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Figure 4.4: Example prediction: Original image, ground truth mask, predicted mask.

Figure 4.5: Example prediction: Original image, ground truth mask, predicted mask.

Figure 4.6: Example prediction: Original image, ground truth mask, predicted mask.

The model predictions have been presented in two different manners. The visualization in Figure 4.3

and Figure 4.5 gives the possibility of an intuitive comparison of the predicted area and the ground

truth. Figure 4.4 and Figure 4.6 presents the segmentation on the original masks.

In the first example image, Figure 4.3 and Figure 4.4, the model exhibits less precise edge detec-

tion compared to the ground truth. The second example, Figure 4.5 and Figure 4.6 demonstrate the

model’s capability to successfully segment all ulcers present on the fish. However, there is a notice-
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able decrease in edge accuracy. The predicted results when marked on the original images show an

overall satisfying performance. The results will be discussed in Chapter 5.

4.5 Results After Moving the Background

The process to find the best model to remove the background was identical to the process of finding

the best winter ulcer model. A selected amount of models were trained, tested on the validation set

and evaluated. The best model to remove the background was obtained with the combination of

hyperparameters as shown in Table 4.4. The results obtained when testing on the 52 test images for

the fish body model are presented in Table 4.5. The results are slightly better than for the ulcer model,

which indicated that the segmentation of fish bodies is very well suited for the U-net with this dataset.

This might be due to the fish bodies having a more consistent visual shape and color. The fish also

exhibits more distinct boarders than the ulcers. Additionally, there was one fish in each image, in

comparison to multiple winter ulcers. The results obtained for the fish body model was obtained by

only having 20 epochs, which when compared to the ulcer model demonstrate how the fish bodies

are easier to segment than the ulcers.

Model Image Size Batch Size Number of epochs Learning Rate U-net depth
1 512x512 4 20 0.0001 4

Table 4.4: Hyperparameters combinations for the resulting body model.

Model F1 IoU Recall Precision Balanced accuracy
Fish body model 0.9608 0.9304 0.9767 0.9522 0.9817

Table 4.5: Metric results for the fish body model.

As expected, the background removal after adding a fish body segmentation model to the system im-

proved the predictions in certain images. Below follows a sample containing noise in the background,

leading to false positive predictions on the background noise in Figure 4.7. Figure 4.8 demonstrates

a prediction of the same sample after having passed through both the models, which avoids the false

positives seen in Figure 4.7.

Figure 4.7: Output after only winter ulcer model: Original Image, segment ground truth, predicted
segmentation.
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Figure 4.8: Output after going through the system with two segmentation models: Original Image,
segment ground truth, predicted segmentation.

Nevertheless, the overall performance of the combined system, resulted in a poorer performance

compared to when the model was provided with images containing the background. The perfor-

mance of the best model, respectively model 5 in Table 4.1 when the background was removed is

presented in Table 4.6. The lower performance might be due to a data distribution mismatch. By re-

moving the background during testing, the introduction of a different data distribution is made com-

pared to what the model was trained on. The model learned the segmentations of the wounds based

on the presence of the background during training and struggled more when presented for images

without background. The removal of the background also provides a loss of contextual information

which may have helped the model to make accurate segmentation predictions. The recommenda-

tions for how this can be avoided or if the background should be removed or not can be found in

Chapter 5.

Model F1 IoU Recall Precision Balanced accuracy
Total system 0.6657 0.7396 0.7265 0.7842 0.8822

Table 4.6: Metric results for the combined system with the body model and the ulcer model.

4.6 The Ulcer Factor

As mentioned in Chapter 3, an additional feature, the ulcer factor was added. An example of a result

can be seen in Figure 4.9. According to the calculated ulcer factor of 0.2199, it can be inferred that

approximately 21.99% of the visible fish surface is affected by ulcers. This value is difficult to verify,

but can seem reasonable by inspection of the image.



CHAPTER 4. TRAINING AND RESULTS 43

Figure 4.9: IMG_0353_0.png resulted in an ulcer factor of 21,99%.



Chapter 5

Discussion and further work

This chapter will present the findings of this thesis and their implications. It will explore potential

areas for further research and discuss the strengths of the implemented methodology. Additionally,

the concept of the photobox will be examined in the context of the findings from this thesis.

5.1 Discussion and Evaluation of the Model Performance

The implementation of the developed model for segmenting winter ulcers yielded an F1 score of

81.60% and an Intersection over Union (IoU) score of 74.24%. These results validate the effectiveness

of the employed methods in achieving the objective of segmenting winter ulcers, demonstrating sat-

isfactory performance. This emphasizes that this method can be applied to the photobox to segment

winter ulcers or other similar-looking damages to decreased fish. Despite the reported Intersection

over Union (IoU) scores of 92.03% and 77.56% achieved by Ronneberger, Fischer, and Brox in their

publication on the U-Net model [39], the performance of the neural network employed in this project

is considered satisfactory for a manually created dataset. The performance can be seen as a good first

model in the development of robust software for the photobox. The previous literature in this field

demonstrates the interest in classifying skin diseases as this is a considerable global problem in aqua-

culture. In this particular case, it is noteworthy that the successful segmentation of winter ulcers on

deceased salmon using neural networks has been achieved, which, has not been previously explored

according to the literature review. This accomplishment serves as a proof of concept, demonstrating

the viability of this approach.

The visualized results in section 4.4 can be interpreted as good results as the classifier segments the

winter ulcers. When the predictions are put on top of the original image, the resultant visual coher-

ence is notable, as human visual perception finds the predictions to be aesthetically pleasing without

any discernible shortcomings. While the precision of the edges may not match that of the ground

truth, it is worth considering that the significance of precise edge detection may not be of paramount

importance in this context. Section 4.4 shows that all ulcers are segmented, which can be used for

accurately counting the ulcers. An essential factor in the evaluation of the model and the desired

accuracy is the fact that the photobox is analyzing dead animals, which makes it less critical for the

animal and its welfare.

44
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The choice of segmentation of winter ulcers provides the possibility to extract multiple features that

can provide various information. If the objective is to classify whether a winter ulcer is present or

not, the classifier could satisfy the objective by searching for any positive pixels in the outputs. The

classifier could achieve high accuracy as the model segmented all winter ulcers in the test set. The

complex information about shape and localization can provide additional information and allows for

the classification of the ulcers in regards to size, shape, color or localization.

5.2 The use of Neural Networks to Segment Winter Ulcers and the Choices

for the Final Solution

During the code development process, the issue of utilizing the oldest segmentation techniques,

specifically pixel thresholding or blob-detection, arose due to the observation that the selected fish

sores particularly exhibited a distinct deep red color. Observing the dataset, some sores were appear-

ing to be white and of a different color, demonstrating the need for a more complex algorithm with

deep learning. This posed the need for a more complicated algorithm than the simplest segmentation

techniques. The relevant literature demonstrated multiple applications of Support Vector Machines

(SVMs). This could have been a great approach if only the presence of the ulcers were desired clas-

sified, the implemented model can provide more information and denote the shape and localization

of the ulcers additionally.

U-net was decided to be the best alternative of image segmentation nets to solve the task in this

project. Some other popular alternatives for image segmentation were Fully Convolutional Networks,

Mask R-CNN and DeepLab [18]. U-net was chosen due to its ability to handle small training datasets,

as the data available in the project was limited. A viable approach for this project with limited data

could be to use transfer learning with models like Mask R-CNN and fine tune the weights for the spe-

cific problem in the project. However, the findings obtained in the thesis demonstrated the suitability

of employing the U-net model for accomplishing the objectives of the undertaken task. A reasonable

inference can be made that an increased volume of data has the potential to positively increase the

performance of U-net, as more data will help the model to generalize better. Nevertheless, it is es-

sential to take into account certain limitations of U-net in future research. Due to its significant com-

putational demands, the deployment of U-net in a real-time photobox scenario can pose challenges,

necessitating substantial computing resources. Additionally, U-net offers limited insight into the un-

certainty associated with its predictions. After the introduction of U-net, numerous variations have

been published, which may be favored in future research endeavors [54].

In the search for an optimal solution, two models in series, each segmenting different objects in the

image, were implemented. This approach proved to be effective in achieving accurate segmentation

of winter ulcers when the background was noisy. However, the results of the tests did not improve,

which was likely to the loss of contextual information and different data distribution between the

training set and the test set. The metric results for the total system when tested on the test image set

were not expected to improve as the ulcer model was trained on images with background. However,

the model was put in series to demonstrate how the flow of the photobox could be. A possible ap-

proach can be to train the winter ulcer model on images without background to solve these issues.
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That could have provided a system more robust to noisy backgrounds. The amount of data was con-

sidered insufficient for this approach, since the desired way to test the system was to send images

through both models that neither model had encountered before. To be able to train the ulcer model

on data without background, one must first have trained the fish body model to remove the back-

ground, then train the ulcer model on the images from the test set after the first model. This was not

done due to small datasets and the results simulate a real scenario where both models are presented

for images that have never been seen. In the latter implementation, one should aim to train the ul-

cer model on images without background if two models in series are preferred. An approach in this

project could also have been to remove the background manually and then train the model, but it was

chosen to add a background removal after the ulcer model was trained and it was desired to automate

the whole process.

One advantage of choosing the method with two separate models is the flexibility this provides. Sep-

arating the models provides easier possibilities for debugging and troubleshooting the models. The

output of the first body segmentation model can easily be fed into other models for different disease

analyses with computer vision. Another advantage of removing the background is that one can find

a Region of Interest (RoI) and thereby decrease the computational resources required by the model

to perform further predictions. The main drawback of this solution is the need to train two models

and annotate two different types of objects, creating the binary masks needed. An alternative strat-

egy could be to use a different algorithm, like for example YOLO, to detect the fish and thereby the

RoI. Feeding the Ulcer Segmentation model with the output from the Fish Body segmentation model

may lead to mistakes being transferred from one model to the other. This may affect the performance

of the whole system and its correspondence to the real ground truth as the first model may remove

information that the second model would have marked. The additional ulcer factor is vulnerable to

errors in the two models and depends on their performance.

An alternative approach to employing two sequential models involves the utilization of a Multi-Task

Learning (MTL) model [55], which aims to simultaneously predict multiple labels for the objects of in-

terest. The model’s effectiveness relies on the presence of task similarity, which can potentially result

in reduced generalization performance. Additionally, it should be noted that such models demand

a substantial volume of data and exhibit inherent complexity. To achieve the task of distinguishing

between a fish body and winter ulcers, which are dissimilar objects, it was chosen to utilize two se-

quential models.

5.3 The Data Acquisition and the Dataset Used

The data acquisition process played a crucial role in determining the outcome of this project, as the

performance of neural networks is heavily influenced by the quality of input data. In other words,

the network can never be better than the data it is trained on. The data collection endeavor can be

deemed successful, given its acquisition of usable data, which, in turn, facilitated the development

of a proficient segmentation model for winter ulcers. The data annotation, being a time-demanding

process, allowed for satisfying results which can be evaluated to cover the winter ulcers satisfyingly.
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Moreover, the data holds potential for future utilization by other researchers, who can leverage it to

implement different algorithms. The creation of the dataset for this study fills a research gap, as no

previous instance of this dataset had been established, signifying a novel contribution to the field.

As detailed in subsection 3.2.1, the data collection process during the field trip posed several chal-

lenges. The manual creation of standardized images was particularly difficult due to limited light

conditions and restricted time at the fish farms. This may have introduced a bias that can affect the

transferability to the resulting photobox. The data quality could have been significantly improved if

optimal light settings were available, and if a team of more people was available to divide the tasks

into one handling the fish and another assisting with photography, the photos could have had a better

uniform format. During image collection, the screen of the camera was not very visible, posing poor

calibration and correction of settings during fieldwork. This left unused potential in image quality

when it comes to accuracy, clarity and reliability of the images. Further investigation is warranted

to explore the trade-off between image resolution and the computational resources required when

selecting camera settings for the photobox.

Another challenge to consider is the similarity between the background and the lower fish body. Hav-

ing a uniform background is an advantage, but preferably, the color should be one that was not rep-

resented in the object. This would give a big advantage for the algorithm in separating the object of

interest from the background and might have made the process of removing the background easier,

making the images more suitable for pre-trained models and libraries. However, the implemented

model to segment the fish bodies did get notable performance with an IoU of 93,03% and an F1 score

of 96.0%, and the selection of a white background over a stainless steel desk can be deemed as the

appropriate choice. The photobox should have a background that can easily be separated from the

fish, meaning that the color should not appear in the fish.

The quantity of salmon to be captured was limited when doing data acquisition manually, hence the

amount was also affecting the performance results of the model. The limited time period of the data

acquisition may have imposed a bias, making the dataset not representative of the underlying popu-

lation and their ulcers. A short time of data acquisition may in general have made an impact on the

diversity of the dataset, and preferably, the dataset could have been collected at more locations with

varying development phases, temperatures and sea cage sizes to better get a diverse dataset. Another

possible source to bias is the selection of the dead fish from the boat. The fish were selected from their

sores and the fish with the biggest and most notable sores might have been favored in comparison

with the ones with less visible sores. This may have decreased the dataset’s ability to represent the

real population and the diversity of winter ulcer cases. The augmentation techniques were meticu-

lously chosen to ensure the absence of any patterns or biases that were not inherent in the authentic

dataset. However, the test set remained relatively small. This could potentially affect the conducted

evaluations since the test set may lack representativeness for the overall performance when faced

with unseen data [56]. Striking a balance between excessive data augmentation and compromised

generalization is essential, and the approach in this thesis aimed to achieve this trade-off. In sum-

mary, it can be postulated that the dataset might exhibit limited representativeness concerning the

broader population of deceased salmon derived from sea cages in aquaculture. The mention of the
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proof of concept remains noteworthy, highlighting the applicability of the employed methods.

The dataset might affect the transferability to the photobox, but can be avoided if the data acquisition

process is improved. To effectively collect better data, a substantial quantity of fish exhibiting diverse

symptoms would need to be collected over a potentially prolonged period. Ideally, it could be recom-

mended to transport the dead fish to a controlled environment, such as a factory, where standardized

image acquisition methods can be employed under controlled lighting conditions. Ideally, the hard-

ware of the photobox could be developed and the data acquisition could happen inside the photobox,

creating standardized data. If high-quality data containing a wide range of diseases is available, the

approach utilized in this thesis could be extended to facilitate the implementation of the photobox

being developed by ScaleAQ. Certain adjustments may be required to the existing methods, given that

the characteristics of diseases can differ.

The inclusion of rulers within the images was undertaken to facilitate the comprehension of the pixel-

to-real-world measurement correspondence in centimeters. Regrettably, this intended strategy did

not yield the desired outcome owing to the inadequate resolution of the images. Nevertheless, it is

important to note that despite this setback, the objectives of the thesis were successfully attained,

with the rulers serving as supplementary elements rather than essential components.

The data annotation process provided masks that were successfully matched with the images and

provided a crucial component in the development of the model. The tool Roboflow was not encoun-

tered prior to the completion of fish body annotation, but its utilization would have been preferable

during the initial annotation process, given its capability to assist with annotations, thereby enabling

faster annotation speed. However, the VIA tool provided satisfying annotations but was more time

demanding.

5.4 The Photobox as a Concept

As mentioned in section 5.3, the lack of a standardized methodology for data collection, characterized

by consistent lighting conditions and uniform background, presented inherent challenges during the

process of acquiring the dataset. This could, as mentioned as a recommendation in section 5.3, be

solved by doing the data acquisition with the photobox, providing a consistent environment. An au-

tomated imaging system for the analysis of deceased fish, designed for use in aquaculture, can be

deemed as a viable platform for expedited development. The hardware of this photobox can advan-

tageously be made very easily, including a camera as the most advanced feature. This photobox can

be placed both on the boat and the deeding barge, preferably on the deeding barge to avoid waves

affecting the quality of the images. One reason for the necessity of such a system is the big amount

of dead fish in aquaculture every year. There are proven to be no requirements to report the mortal-

ity reasons for these fish and manually detecting the mortality reasons is an impossible process due

to the significant amount. Gathering information about mortality reasons can give the fish farmers

possibilities to start preventive measures, reduce costs and prevent fish suffering. Having numbers

on the mortality reasons in aquaculture may also encourage increased research on the diseases and

the preventive measures that can be done to avoid them.
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It is noteworthy to consider that the system relies on the suffering of certain individuals to save others,

notwithstanding the fact that the fish in question has already perished. The literature study provided

information about the huge amount of dead individuals in aquaculture, therefore the system can be

considered very useful due to many samples of dead fish, providing a lot of information if the photo-

box is well developed. A notable limitation for fish on a conveyor belt is that one is only able to capture

the condition of half the fish, considering the 2D camera. One solution to this is to have two similar

photoboxes after each other on a conveyor belt and flip the fish between them, to analyze both sides.

There might also be considered to take pictures from above or below and it should be considered if

four photoboxes will be the best solution to create the desired outcome. Another aspect to consider

regadring welfare is that this system only detects physical problems for the salmons, to best monitor

welfare in sea cages, additional monitoring instruments should be applied.

The limitations of the photobox will be determined by the visibility of the diseases. The field trip

provided knowledge about how the veterinary does the manual work for disease classification today,

stating the fact that some diseases require an autopsy to be detected. For this reason, there will be

only a selective amount of diseases that can be analyzed and detected by computer vision. In general,

diseases that are easily seen with the human eye can be detected by the photobox. Other diseases will

be harder to detect and might potentially require a huge amount of data for a deep learning model

to see a pattern that the human eye cannot see. Moreover, the data can be subject to analysis by do-

main experts to discern the presence of multiple diseases in particular regions and examine the data

in conjunction with other factors.

To increase the potential diseases that could be detected with machine learning, one could with great

advantage add more automated tools to a dead fish system. It should be fully possible to add some

automatic tests that can be added to computer vision analysis such as blood tests. If the photobox

gets the dead fish through a conveyor belt, there could be added blood test after the camera has seen

the fish to not affect what the camera sees. In vaccination, conveyor belts are used and the process is

fully automatic, so the potential to take additional biological tests on dead salmon on a conveyor belt

exists.

5.5 Software Transferability to the Photobox

This program has the potential to be integrated into a photobox together with other disease detection

programs. The evaluation of the model’s performance could be entrusted to individuals possessing

the appropriate expertise to assess its suitability for implementation without necessitating additional

modifications, ensuring that it adequately provides the requisite information. Nevertheless, the em-

ployed methodology demonstrated decent performance and offers good scalability to train the model

on even better data and probably improve the performance.

What should be considered if the resulting model should be used in the final photobox is the disparity

between the images that this model is trained on and the images captured by the photobox. Factors

that can impact the performance of the model are background, lightning conditions and image qual-
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ity. It might be recommended to do the data acquisition with the photobox and pursue the procedure

provided in chapter 3. The code was structured to support seamless modification and training on

new image datasets with minimal changes to the underlying architecture, this enable the program to

be used for other images. The procedure presented in chapter 3 can provide a base for other diseases

where segmentation is desired.

There is a great possibility of developing the program further such that it can segment and analyze

more than one fish in a single image. The requirement for this extension is to train the model on a

dataset containing images of more than one fish. The developers should then have in mind that the

body segmentations must be able to distinguish the different individuals and place the right ulcer at

the corresponding fish. This extension is dependent on how the hardware design is developed, de-

pending on if the conveyor belt passes more than one fish through the camera box or not. Be aware

that the FPS rate of the two models must be taken into consideration when deciding the speed of the

conveyor belt and thereby how fast the images need to be analyzed. The fish should pass at a speed

corresponding to the slowest processing model. However, the FPS will be determined by the compu-

tational resources available.

The body segment model would be a great base to extend the diseases the photobox can analyze. A

background removal is a natural choice of the first step in all applications.



Chapter 6

Conclusion

This thesis has provided a solution for the segmentation of winter ulcers in dead salmon from sea

cages in aquaculture. The motivation behind the research was to contribute to the software solu-

tion in a photobox which is to be developed by ScaleAQ to perform an automatic assessment of dead

fish from sea cages in aquaculture. The current method consists of manually counting and analyzing

the fish, but it is desired to automate this process through the photobox using computer vision tech-

niques.

Due to the lack of available data, a dataset was created by data acquisition at a field trip and man-

ual data annotation of the winter ulcers. Methods used for automatic winter ulcer segmentation was

identified and U-net were selected to solve the segmentation problem. The U-net model was trained

on the dataset to segment the ulcers. The winter ulcer segmentation model yielded a satisfying per-

formance with an IoU of 74,24% and an F1 score of 81,60%, which can equip the aquaculture indus-

try with data features of great interest. Additional functionalities such as background removal were

added to the model, which demonstrated the possibilities that can be exploited in future applications.

An ulcer factor, the ratio between the infected surface and the body surface, was added as an extra

feature to exhibit how additional information can be extracted from the implemented solution.

The methods and results obtained demonstrate that computer vision can be considered a great ap-

proach for automatic assessment of fish mortality causes. Semantic segmentation, which was used in

this thesis, can be combined with other computer vision techniques, such as object recognition and

classification to provide a more complete analysis of the dead fish condition. In conclusion, this work

has contributed to the development of the software of the ScaleAQ photobox, addressing a previously

unaddressed gap in the existing literature and offering notable benefits to the aquaculture industry.
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