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Abstract

Hole cleaning is a critical process in oil drilling that involves removing the cuttings from
the wellbore using a drilling fluid. The performance of hole cleaning can be measured
by the equivalent circulating density (ECD), which is affected by various factors and
control parameters. Predicting ECD accurately, can help to optimize hole cleaning and
prevent problems such as mechanical pipe sticking, premature bit wear, slow drilling
rate, formation fracturing, and loss of circulation, all which may lead to increased non-
productive time. However, collecting and processing real oil drilling data is costly and
cleaning the data is time consuming. This thesis propose to use cheap lab scale data from
a greenhouse as a proxy for oil drilling data, and to evaluate and compare different time
series analysis and forecasting methods using this cheap laboratory-scale data. Principal
component analysis (PCA), empirical mode decomposition (EMD), ensemble empirical
mode decomposition (EEMD) and fast Fourier transform (FFT) are used to analyse
the dynamics of the greenhouse data, and PCA, EMD and EEMD are used to analyse
the dynamics of the oil drilling data. Feed-forward neural network (FFNN) and long
short-term memory (LSTM) based neural network are used to predict temperature and
humidity for greenhouse data and the best performing model are used for ECD predic-
tion in oil drilling. The results shows that the greenhouse data can serve as a proxy for
the oil drilling data, and that the methods and techniques that provides useful insights
and accurate predictions in the greenhouse data, also performs good on the drilling data.
Lastly, directions of future work are suggested, such as creating laboratory-scale setups
that better mimics the dynamics of oil drilling and to investigate LSTM with continuous
learning to make models that better generalizes on different pattern in the data.
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Sammendrag

Hullrensing er en viktig del av oljeboring. Hullresning innebærer å fjerne borekaks fra
brønnen ved hjelp av en borevæske. Ytelsen til hullresingsprosessen kan måles ved sir-
kulasjonstrykket (ECD), som p̊avirkes av forskjellige faktorer og kontrollparametre. Å
predikere ECD nøyaktig kan bidra til å optimalisere hullrensing og unng̊a problemer,
som at borerørene setter seg fast, for tidlig slitasje p̊a boret, lav borehastighet, forma-
sjonsbrudd og tap av sirkulasjon, som alle kan føre til økt nedetid. Men, å samle inn og
prosessere data fra oljeboring er dyrt og datarensing er tidkrevende. Denne oppgaven
foresl̊ar å bruke billig labskala data fra et drivhus som erstatning for data fra oljeboring og
å evaluere og sammenligne forskjellige tidsserieanalysemetoder og -teknikker for analyse
og prediksjon ved å bruke denne billige dataen. Hovedkomponentanalyse (PCA), em-
pirisk modusdekomponering (EMD), ensemble empirisk modusdekomponering (EEMD)
og rask Fourier-transformasjon (FFT) blir brukt til å analysere dynamikken i drivhusda-
taen, og PCA blir brukt for å analysere dynamikken i oljeboredataen. Et fremovermatet
nevrealt nettverk (FFNN) og to langt korttidsminne-nettverksbaserte nettverk predike-
rer temperaturen og luftfuktigheten i drivhuset og det nettverket med best prediksjon
blir brukt til å predikere ECD i oljeboredataen. Resultatene viser at drivhusdataen can
brukes som en erstatning for boredata og at metodene og teknikkene som fungerer bra
p̊a drivhusdataen og fungerer bra p̊a oljeboringdataen. Til slutt foresl̊as retninger for
fremtidig arbeid som å lage en labskala modell som genererer data som bedre represen-
terer dynamikken i oljedrillingdataen. Å bruke kontinuerlig læring sammen med LSTM
blir ogs̊a foresl̊att som en metode som kan bidra til modeller som generaliserer bedre og
dermed h̊andterer forskjellige datamønstre bedre.
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1. Introduction

1.1. Background and Motivation

Drilling oil wells is a vital activity for the global energy supply, as it is essential for
extraction of oil from underground reservoirs. Oil drilling involves drilling a drill bore
into the soil, and pumping drilling fluid through the drill string to lubricate and cool
down the bit, remove drill cuttings, and maintain the well bore stability. Oil drilling is
a complex, costly and risky operation that requires careful planning, design, execution
and monitoring [33].

One of the main challenges when drilling is hole cleaning. This refers to the ability of
the drilling fluid to transport and suspend the drilled cuttings from the well bore to the
surface. Bad hole cleaning can lead to several expensive problems, such as: mechanical
pipe sticking, premature bit wear, slow drilling rate, formation fracturing, and loss of
circulation, all of which may lead to increased nonproductive time (NPT) [1]. Cleaning
is especially challenging in horizontal and deviated wells, where the cuttings tend to
accumulate at the low side of the hole due to the gravity [13].

The hole cleaning performance depends on various factors, such as flow rate, drilling
fluid density, cuttings size, and rate of penetration (ROP) [5]. During drilling operations,
data is collected from different sensors, both at the platform and along the drill string.
These measurements collected at regular time steps are called time series data. To opti-
mize the hole cleaning performance and avoid problems during drilling, it is essential to
understand this data and how different factors interact and influence the cuttings trans-
port. Understanding this requires building and applying suitable time series analysis
and forecasting techniques and models for analysis and prediction of the data.

Time series analysis and forecasting techniques are a set of tools for extracting mean-
ingful information and making predictions from temporal data. Time series analysis
involves developing models to understand underlying patterns in the data to gain deeper
insight into the data, while time series forecasting uses these models, and knowledge from
these models, to project future values based on historical data. Time series analysis and
forecasting have many applications in various domains, such as resource management,
traffic flow forecasting, weather forecasting, and disease transmission forecasting [69].

One of the challenges with time series analysis and forecasting is the choice of appro-
priate models and techniques on different data and problems. There are many methods
and techniques for time series analysis and forecasting, such as Principal Component
Analysis (PCA), Empirical Mode Decomposition (EMD), Ensemble Empirical Mode De-
composition (EEMD), fast Fourier Transform (FFT), time series regression, time series
decomposition, exponential smoothing, ARIMA models, Feed-Forward Neural Networks
(FFNN), Long Short-Term Memory (LSTM) based neural networks and others [40, 52].
These methods and techniques have strengths and weaknesses, and their performance
will vary for data sets and scenarios. Therefore, to get good results when analysing and
predicting on time series data, it is essential to evaluate and compare the performance
of the methods and techniques.

Developing and testing such a model on data from real oil drilling is expensive and

1



1. Introduction

impractical, as it involves accessing confidential data from oil companies, dealing with
noisy and incomplete data, and facing ethical and environmental issues. Therefore,
alternative data sources are needed that can mimic the characteristics of oil drilling
data and provide cheap and convenient ways to evaluate and compare different models
and techniques for hole cleaning analysis and prediction. Some examples of alternative
data sources are miniature models of fluids through pipes, using a small boat in a wave
pool to mimic real wave interactions and data simulations of physical processes.

This thesis proposes a novel approach of evaluating and comparing different analy-
sis and forecasting methods using cheap data from a laboratory-scale greenhouse. The
greenhouse data consists of measurements of temperature, humidity, light intensity, car-
bon dioxide concentration, and moisture at regular intervals over several months. The
greenhouse also has the possibility of manipulating the measurements with a heater,
inlet fan, outlet fan, lighting and a watering system. The greenhouse data is used as
a proxy for more expensive oil drilling data, which has similar characteristics of high
dimensionality, nonlinearity, nonstationarity, noise, and seasonality. Various methods
and techniques for analysis and prediction are applied to the greenhouse data and the
results are then validated by application on oil drilling data. The goal is to identify the
best methods for analysing the oil drilling data using the greenhouse data. As the data is
measurements of dynamical system processes, there is a special focus on how the models
generalize on measurements from similar process that are exhibiting other patterns.

1.2. Contribution, Research Objectives and Research Questions

1.2.1. Contribution

This thesis makes a novel contribution to the field of time series analysis and forecasting
by showing how cheap data can be used as a proxy for expensive data for evaluating and
comparing different time series analysis and forecasting methods. It shows how having a
laboratory-scale setup, with labeled measurements and the possibility for manipulation
of internal states using controls, can generate data of such complexity that it can serve
as a proxy for a complex field scale setup.

1.2.2. Objectives

The main research goal of this thesis is to show how it is possible to evaluate and
compare different time series analysis and forecasting methods applied for hole cleaning
in oil drilling using cheap data from a laboratory-scale greenhouse.

Primary Objective: The primary objective is to show how cheap data from a laboratory-
scale greenhouse can be used to develop, test and validate different time series methods
and techniques for analysis and forecasting on hole cleaning data from oil drilling.

Secondary Objectives: In addition to the primary objective five secondary objectives
are formulated:

• To collect and pre-process greenhouse data and oil drilling data for time series
analysis and forecasting.

• To apply various time series analysis methods, such as PCA, EMD, EEMD and
FFT to the greenhouse data and the oil drilling data to get a better understanding
of the underlying dynamics.

2



1.3. Structure of the Thesis

• To identify the best methods for analysing and predicting hole cleaning perfor-
mance in oil drilling using the greenhouse data as a proxy.

• To apply time series forecasting methods based on FFNN and LSTM based neural
network on the greenhouse data, and further apply the best ones on oil drilling
data.

• Investigate how prediction models performs on new measurements from the sys-
tems, exhibiting other patterns than the ones in the training data.

1.2.3. Research Questions

The main research question for this thesis is:

• How can time series analysis and forecasting methods be evaluated and compared
using cheap data from a laboratory-scale greenhouse as a proxy for expensive oil
drilling data?

Other research questions are:

• How to pre-process data from greenhouse and oil drilling to make it suitable for
analysis and prediction?

• How can time series analysis methods, such as PCA, EMD, EEMD, and FFT, be
used to understand the underlying dynamics of the greenhouse data and oil drilling
data?

• How can knowledge about performance of time series prediction models on laboratory-
scale greenhouse data be transferred to field scale oil drilling data?

1.3. Structure of the Thesis

The thesis is organized as follows: Chapter 2 provides an overview of methods and tech-
niques used. Chapter 3 describes the models and datasets used and how the experiments
are conducted. Chapter 4 presents the results of applying the techniques and methods
the the greenhouse data and discusses their performance. It also presents how some
of the methods performing best on the greenhouse data, performs on the drilling data
and discusses how they perform. Lastly, Chapter 5 concludes the thesis and suggests
directions for future work.

3





2. Theory

The theory section introduces and discusses the theoretical perspectives of the study. The
study includes various methods and techniques for time series analysis and forecasting,
such as Principal Component Analysis (PCA), Empirical Mode Decomposition (EMD),
Ensemble Empirical Mode Decomposition (EEMD), and fast Fourier Transform (FFT)
for analysis, and Feed-Forward Neural Networks (FFNN), and Long Short-Term Memory
(LSTM) based neural networks for prediction. These methods and techniques are all
presented in this section.

The chapter is organized as follows: First, it presents the concept of time series analysis
and how PCA, EMD, EEMD and FFT can be applied in this context. Second, it gives
an introduction to neural networks. Third, it shows how neural networks can be used
for prediction in the context of time series analysis. Finally, it gives an introduction to
laboratory-scale greenhouse setup and the hole cleaning operation within oil drilling. It
introduces the concepts and presents the dynamics of the different systems and explains
their similarities.

2.1. Time Series Analysis

Time series analysis is a range of methods used to analyse and extract trends from time-
dependent data, such as: temperature measurements, number of airline passengers and
car sales. It is all about understanding the patterns in the data and the underlying causes
of the past events. This knowledge can then be applied to improve our understanding
of the systems producing the data and predict how this system will act in the future.
These techniques ranges from simple statistical methods like autocorrelation [65], to
more complex deep learning based methods [18].
A subset of these techniques does what is called a decomposition of the time series.

The idea of time series decomposition is old and was used to calculate planetary orbits
as early as in the 17-th century [7], but was first explicitly stated by Persons [43].
Decomposition of time series is to separate the time series into a set of non-observable
(latent) components that can be associated to different temporal components [7]. In
other words, time series decomposition is to extract components that are hidden in the
time series data such as seasonal patterns or dominating frequencies.
Traditionally, Persons [43] looked at decomposition from an economic stand point.

He thought of the decomposition as separating the time series into a long-term trend, a
more frequent cyclical movements superimposed on top of the long-term trend, a seasonal
trend and residual variations.

Xt = Tt +Ct + St + It. (2.1)

In the above equation, the time series data Xt is described as a summation of the trend,
Tt, a cyclical component Ct, the seasonal trend, St, and the irregular residual variations,
It. But the components do not need to be added, they can also be a product of each
other:

Xt = TtCtStIt, (2.2)
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which is called a multiplicative model. A multiplicative model is more suitable when the
components are dependent and interact with each other, or when the amplitude of the
seasonal or cyclical variations changes over time.
Of course, the components of the decomposed time series can consist of many different

component of different frequencies that do not necessarily match the component names
presented in equation (2.1) and equation (2.2). For example in engineering, the time
series data often describes dynamical systems that has different components ranging over
several frequencies. But the point holds, the goal is to separate the data into different
components, where some of them (probably most of them) contains noise, or irregular
residuals, while some of them contain useful information about the data.
There exists a wide range of different decomposition techniques. In this thesis the focus

is on four of the more common ones, Principal Component Analysis (PCA), Empirical
Mode Decomposition (EMD), and Fast Fourier Transform (FFT) [30, 63]. The goal of
all different techniques is to get a deeper insight into the data and find patterns and
relationships that are useful for understanding the data properly.

2.1.1. Principal Component Analysis (PCA)

Introduced independently by Pearson [17] and Hotelling [23] in 1901 and 1933, respec-
tively, Principal Component Analysis (PCA) is a method for reducing the dimensionality
of data. PCA finds a set of uncorrelated variables, Principal Components (PCs), such
that the first PC captures more of the variance in the data than the second, and so on.
Mathematically, PCA can be formulated by letting X be a real valued matrix of dimen-
sion n × p, where the n number of rows represents the number observations and the p
number of columns corresponds to measurements of those observations. Each column in
X are normalized such that the matrix has a column-wise empirical mean of zero. The
PCs of X, Z, are then calculated via a linear combination

Z = XA, (2.3)

where Z is a matrix containing each principal component zi such that Z = [z1, z2, ..., zp] ∈
Rn×p where the variance captured of each components is decreasing with p. X ∈ Rn×p is
the matrix with observations and measurements and A = [a1,a2, ...,ap] is an orthonor-
mal matrix that rotates the data into a new space. The columns of A are often called
modes or loadings.
The optimization problem of finding the A that maximize the variance captured by

each component, in decreasing order with p, can be formulated as a least-square problem
i.e. by minimzing the sum of squared residual error between the input data and the
projected data

min
A

||X−XAAT ||2F

s.t. ATA = I.
(2.4)

Here || · ||2F is the squared Frobenius norm. Here PCA differs from normal least-squares
by imposing orthogonality constraints on A.
To solve the optimization problem in equation (2.4) one can utilize the Singular Value

Decomposition (SVD). SVD is a decomposition methods that decompose the input data
matrix X into

X = UΣVT (2.5)

where it turns out that the minimizer of equation (2.4) is given by the right singular
vectors, v. Thus, setting A = v yields the PCA loading matrix. Further, SVD also
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provides the PCs as the scaled left singular vectors Z = UΣ, where the diagonal entries
of Σ are the singular values.

The way PCA can be used to reduce the dimensionality of the input data matrix X
is by removing all but the first k dominant PCs. As the PCs accounts for a smaller
and smaller amount of the variance with increasing p, the first k << p component will
in many cases account for a significant amount of the variance of the input data. This
results in a reduced matrix of dimensionality n × k. The optimal value of k depends
on the desired level of accuracy and complexity of the analysis. A common criterion
for choosing k is to retain a certain percentage of the total variance in the data, such
as 95% or 99%. However, choosing a smaller value of k may also result in losing some
important information or features in the data.

PCA can also be used to find correlations in the data by analyzing the loadings or coef-
ficients of the principal components [70]. The loadings indicate how much each variable
contributes to each principal component, and they can be interpreted as the correla-
tions between the variables and the principal components. By examining the loadings,
one can identify which variables are strongly or weakly correlated with each other, and
which variables are responsible for most of the variance in the data. For example, if two
variables have high loadings on the same principal component, it means that they are
positively correlated with each other and with that principal component. Conversely, if
two variables have opposite signs of loadings on the same principal component, it means
that they are negatively correlated with each other and with that principal component.
Furthermore, if a variable has a low loading on all principal components, it means that
it is weakly correlated with any other variable and with the overall structure of the data.

2.1.2. Fast Fourier Transform (FFT)

The Fourier transform, or Fourier analysis, is a decomposition technique which decom-
pose a signal into different frequency components [10]. The Fourier analysis is to extract
sinusoidal components that sums up to form the original signal or time series. By doing
so, the Fourier analysis can reveal the periodic patterns or cycles in the data, as well as
the amplitude and phase of each frequency component. The Fourier analysis can also
be used to filter out noise or unwanted frequencies from the data, or to compress the
data by retaining only the most significant frequencies [45, 68]. The Fourier analysis is
widely used in various fields of science and engineering, such as signal processing, image
processing, data compression, spectral analysis, and time series analysis.

There are different types of Fourier transforms for different types of signals and sit-
uations. The most basic one is the continuous Fourier transform, which applies to
continuous signals in the time domain. It produces a continuous signal in the frequency
domain, which shows how much each frequency contributes to the original signal.

The continuous Fourier transform is defined as

f(v) = Ft[f(t)](v) =

∫ ∞

−∞
f(t)e−2πivtdt (2.6)

where f(v) is the frequency domain representation of the signal as a function of frequency,
v. Ft is the Fourier operator transforming the time domain signal, f(t), from time
domain to frequency domain and i is the imaginary unit, i =

√
−1. Noting that

Ae2πivt = A cos(2πvt) + iA sin(2πvt),

the connection to sinusoidal components is clear.
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But, as we are working on computers and our time series data are discrete, the discrete
Fourier transform (DFT) is most useful. Consider a generalization of a discrete signal
f(t)→ f(tk) by letting fk ≡ f(tk) where tk ≡ k∆, with k = 0, ..., N − 1. Here ∆ refers
to the time between to discrete time points, tk and tk+1, and N is the number of time
points in the signal from the first to last sample, zero indexed [71].
Switching the integral with a summation, the discrete Fourier transform becomes

Fn = Fk[{fk}N−1
k=0 ](n) =

1

N

N−1∑
n=0

fke
−2πin/N (2.7)

This transform takes a discrete time-domain signal and transforms it into a discrete
frequency spectrum. This spectrum contains as many points as there are samples in the
time domain signal. These points are complex numbers, each calculated as a function
of some frequency and their absolute value represents the energy contained in that
frequency.
The DFT makes it possible to get an insight into which frequencies are presents in

the data and how much each of them contribute to the total energy in the signal. This
is useful when you have a signal that seems to be noisy and contain no information and
you want to find whether it contains any cyclical pattern or not.
But the DFT is not perfect. There are two major drawbacks with the approach.

Firstly, it requires the signal to be stationary over time. This means that the properties
of the signal should not change at any time. Secondly, it can only detect individual
periods of cyclical components and not their position in time [58]. These drawbacks
will in many cases render FFT less efficient. Although, the results from FFT on non-
stationary signals in many cases are not trustworthy, it can be worth trying in many
cases.
There are different methods that are designed to cope with its drawback. An example

is the Short-Time Fourier Transform, which splits the time domain signal into windows
before conducting the transform. The windowing keeps the temporal information about
the frequency components and, in many cases, the signal in each window will be some-
what stationary. Here, the window shape and size must be adapted to the properties of
the signal as it limits the time-frequency resolution. Sejdić et al. [51] provides a more
detailed overview of different time-frequency representation with their advantages and
drawbacks.
One last property of the data that may cause problems for DFT is non-linearity. By

looking at equation (2.7), the transformation aims to find a sum of frequency components
that, combined, sums up to the original signal. A system is said to be nonlinear if it
does not satisfy the superposition principle or its output is not directly proportional to
its input [48].
DFT is a powerful tool for analyzing signals, but it can be computationally expensive

to calculate. The number of operations required to compute the DFT of a signal of
length N is proportional to N2, which means that the computation time grows very
quickly as N increases. For example, if N = 1024, then we need about one million
operations to perform the DFT [60].
Fortunately, there is a way to speed up the calculation of the DFT by exploiting some

symmetries and redundancies in the formula [32]. This method is called the Fast Fourier
Transform (FFT), and it reduces the number of operations required to compute the DFT
from N2 to N logN . This means that the computation time grows much more slowly as
N increases. For example, if = 1024, then we only need about 10 thousand operations
to perform the FFT.
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2.1.3. Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is a method for decomposing time series data
into a finite and often small number of components. The components are called Intrinsic
Mode Functions (IMFs), which are zero-mean oscillating signals that are calculated
analytically through the Hilbert-Huang transform. The IMFs aims to represents some
physically meaningful part of the signal. The EMD extracts the IMFs in a sequential
manner based on the energy associated with various intrinsic time scales of the signal,
starting high frequencies on a fine temporal scale and ending with low frequencies on a
coarser temporal scale. An important advantage with this method, compared to other
decomposition methods, is that it is fully data-driven and adaptive with its basis signals
adapted from the data automatically. Consequently, there is no need for determining
any basis functions or other parameters beforehand [37].

As mentioned, EMD aims to decompose the data into IMFs. By definition, an IMF is
a function that satisfies two conditions: the number of extremas and zero-crossings must
be either equal or differ by one through the whole data set and, at any point, the mean of
the envelope defined by the local maxima and the envelope defined by the local minima
is zero. The name ”intrinsic mode function” describes how each component contains one
oscillation mode within the data. These conditions guarantees a well-behaved Hilbert
transform of the IMF [24].

The process of extracting the IMFs from the original time series data consists of 5
steps [19]:

1. Obtain the local minimas and local maximas of the signal X(t).

2. Create the upper envelope by using cubic splines to fit a function to the local
maxima. Do the same for the local minima to create the lower envelope.

3. Calculate the mean of X(t), m1, by averaging the upper and lower envelope at
individual points. Let the difference between m1 and the original data be defined
as: h1 = X(t)−m1.

4. If h1 satisfies the requirements of an IMF, h1 is the first IMF of the data. If it it
does not satisfy the requirements, which is often the case, swap X(t) with h1 and
repeat step 1-3 until conditions are satisfied.

5. Repeat step 1-4 until the desired number of modes is extracted from the signal or
the residual becomes a monotonic function.

This process will result in an finite number of IMFs and a residual. The residual will
be a constant, monotonic function or a function with only one maxima and minima from
which no IMF can be extracted.

Although being a versatile decomposition method that is applicable to many different
signals, EMD has some drawbacks. First, EMD suffers from mode mixing. Mode mixing
is when one IMF either consists of signals of widely different scales, or a signal of similar
scale being present in different IMFs [74]. Huang et al. [24] presents intermittency as
a reason for this mode mixing and also states how this make the physical meaning of
IMFs unclear. Intermittency describes irregular or unpredictable behavior of a system
where it has periods of activity interrupted by periods of rest. Second, EMD is sensitive
to small perturbations in the data or addition of new data. Wu and Huang [74] shows
how small perturbations only in the first 10% of the data leads to significantly different
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IMFs. This renders EMD quite unstable. Several other drawbacks of EMD are further
investigated in [74].
Another use case for EMD is for noise filtering. Boudraa et al. [11] presents an EMD-

based noise filtering technique where the signal are decomposed into a set of IMFs, before
reconstructing the signal using only a selection of those IMFs. As signals, typically, are
corrupted by white noise, they assume that low frequency signal components have a
higher signal-to-noise ratio compared to higher frequency components. Based on this,
there will be a mode, indexed j, after which the energy distribution of the information
carrying parts of the signal will be greater than the high frequency, noise-carrying part.
The signal can then be reconstructed using the IMFs with index ≥ j.
This noise filtering use-case, emphasise EMD’s capability of revealing the informa-

tional parts of the signal. A frequently used approach is to decompose the signal into
IMFs using EMD before further perform analysis on each IMF, often using FFT [9, 28].
This means that each IMF is analysed and either kept or discarded based on its infor-
mational components. As noisy IMFs with no information are discarded, using EMD
for analysis signals, may be looked on as a noise filtering technique.
In practice the EMD is performed using the PyEMD package in Python [34].

2.1.4. Ensemble Empirical Mode Decomposition (EEMD)

To deal with mode mixing and reduce the effects small perturbations of the signal has
on the resulting IMFs of EMD, Wu and Huang [74] presents Ensemble Empirical Mode
Decomposition (EEMD). This is an improved version of EMD that seeks to solve the
problems of mode mixing and lack of stability of EMD by imposing white noise on the
signal.
Generally, all measurement data are a combination of signal and noise,

x(t) = s(t) + n(t), (2.8)

where x(t) is the measured data, s(t) is the true signal with information and n(t) is
some type of noise. Consequently, the goal is to remove as much noise as possible to
end up with accurate and information carrying measurements. To do this the ensemble
mean is a powerful approach. Here separate measurements of data are obtained, each
containing different noise, and the mean of these measurements are used as measurement
to improve the signal-to-noise ratio. EEMD utilises this technique by adding white noise
to the data,. This makes it as if different measurements of the data were taken in a real
life measurement process. The i-th artificial measurement of the signal will then be

xi(t) = x(t) + wi(t) (2.9)

were x(t) is the data and wi(t) is the i-th unique realization of white noise. Although
adding noise will reduce the signal-to-noise ratio, it will provide a relatively uniform
reference scale distribution to facilitate EMD. Therefore, the lowered signal-to-noise
ratio will not affect the decomposition but enhance it to avoid mode mixing.
This results in the following algorithm to compute IMFs of a signal using EEMD:

1. Add a unique realization of white noise to the data.

2. Decompose the data, with white noise, into IMFs using EMD.

3. Repeat step 1 and 2 several times, using different realizations of white noise each
time.

10



2.2. Neural Networks

4. Calculate the ensemble mean of corresponding IMFs to the different decomposi-
tions as the final IMFs.

As the final IMFs are calculated as the ensemble mean of the corresponding IMFs, the
added white noise in each iteration of the algorithm will cancel each other out. Leaving
the final IMFs unaffected by the added white noise.

As EEMD share many of its properties with EMD it may also be used for noise
filtering in the same way as for EMD. A possible approach utilising this is explained in
section 2.1.3.
In practice the EEMD is performed using the PyEMD package in Python [34].

2.2. Neural Networks

Inspired by the structure of the brain, neural networks are a class of machine learning
techniques applicable for several different tasks. In the same way as the brain is made
up of interconnected neurons, neural networks are made up of artificial interconnected
neurons called ”units”. A network consist of layers, which is a group of neurons grouped
together at the same depth. Different units in a network are connected and are able
to pass values between each other. When the input values arrives at the neuron, it is
processed by an activation function before being sent to the other connected neurons.
The importance of these connections between units is encoded in the weight of the
connection. That is a number that the connection between two units is multiplied with.
Connections between units can be arranged in different ways. For example, it can be

from one unit in one layer to a unit in a different layer, or between two units in the same
layer [20]. How units are arranged and how the connections are made is an important
part of the ”architecture” of a neural network. Different neural network architecture are
suited for different types of tasks.
Neural networks are said to be able to learn from data. This refers to their ability

to recognise patterns and structures in data. Neural networks are particularly good
at learning from complex, high-dimensional data, such as images and natural language
[35]. The learning is done by adjusting the weights of the connections between the
different units and layers in special ways. In most modern approaches this is done using
a gradient-descent based algorithm called backpropagation [49].
Multilayered neural networks are known as universal function approximators, meaning

that they can, given the right size and computational power, approximate any function
[22]. Consequently, neural networks will only be useful whenever there are a functional
relationship between what is known, the input to the network, and what is desired
to know, the targets corresponding to these inputs. For example, say the goal is to
determine whether an image is of a cat or a dog, then what is known is the image, and
the target is cat or dog. Given that the images actually contains a cat or a dog, there
will be some property of the image that makes it possible to determine whats in the
image. The function relationship the network tries to learn will be these properties, that
links the image to a target.
In the context of time series prediction there often exists some function that describes

the transition from the values at timestep t and timestep t+ 1, meaning that

xt+1 = f(xt), (2.10)

where xt+1 is the value of the time series in the next time step, xt is the value of the time
series in the current time step, and f(·) is some function describing their relationship.
In real life, this relationship function, f , may be arbitrarily complex.
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Will a neural network always be able to predict the time series data, or determine
what is in an image, no matter the complexity of the function? No, the theorem of
universal approximation also states that any lack of success in approximating any func-
tion must arise from inadequate learning, insufficient numbers of hidden units or lack
of deterministic relationship between input and target [22]. First, as the complexity in
the relationship between historical data and future data increases, so does the amount
of hidden units required to approximate this relationship. Adding more units results
in an increased demand for memory and computational power during the learning pro-
cess, which may result in inadequate learning. Second, noise is an issue in many real
life applications. The proposed relationship between historical and future data may be
polluted by measurement error or random events affecting the data, making the rela-
tionship between the historical input data and future target data non-deterministic. In
other words, a NN model requires good input data quality to perform. Therefore it
will, in real life applications, often be difficult to approximate the relationship between
historical and future data, although NNs are universal approximates in theory.

Fortunately, this does not render the problem of predicting time series, or classifying
images, infeasible. The solution is to create NN models that generalize such that the
most important relationships between historical and future data, or the most important
properties of an image, are learned. To achieve this, hyperparameters such as network
architecture, activation functions, distribution of weights, and regularization techniques
during training needs to be carefully considered.

During training of the networks used in this thesis, different techniques, to improve
generalization and reduce overfitting of the network, are applied. This is L1-regularization,
dropout and early stopping. Tian and Zhang [66] provides a detailed overview of differ-
ent regularization techniques, including L1-regularization, Cheng et al. [14] shows how
dropout can improve LSTM performance, and Prechelt [44] presents early stopping to
avoid overfitting. The optimization is performed using the Adam optimizer [31].

The rest of this section will cover details about different neural network architectures
and how they can be used for prediction of time series. Details about backpropagation
and training of neural networks will not be covered, but Nielsen [39] and Goodfellow
et al. [20] provides well-written and detailed explanations.

Feed-Forward Neural Network

A fully connected Feed-Forward Neural Networks (FFNN) is a type of a fully connected
network. These are regarded as one of the simpler types of neural networks, and some
type of fully connected FFNNs are present in most neural network architectures. Fully
connected FFNNs ranges from simple, one-layer, perceptrons to multilayer perceptrons
with numerous layers. What distinguishes fully connected FFNNs from other networks
is that all units in each layer are connected to all units in the next layer and that the data
are fed through the network in one direction, from input to output, with no recurrent
connections.

As all units in one layers has a connection to all units in the next layer, each unit gets
as many inputs as there are units in the previous layer. Each unit takes the outputs
from the previous layer, which now has been multiplied with the weights corresponding
to the connections, adds them together and processes them with its activation function.
After training, the output values from the units represents some aspect of the pattern of
the input data that the units has learned to recognize.Consequently, by gathering these
units into layers, and gathering the layers into networks, it is possible to learn complex
patterns from the simple aspects that each unit aims to learn. In this way, a neural
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network can be thought of as a long and complicated function that is built up from
many weighted sums of nonlinear functions of weighted sums of nonlinear functions, and
so on, as many as there are hidden layers hidden layers in the network.

Typically, a FFNN consists of an input layer, an output layer, and a number of hidden
layers. The data, such as an image, time series measurements or a portion of a speech
signal, are fed into the input layer. From there it is fed to the first of the hidden
layers. The hidden layers then apply their weights and activation functions to the data,
transforming and augmenting it in an attempt to extract important information. Lastly,
the data is fed into the output layer where it is further transformed and nonlinearized.
The output from this layer serves as the networks prediction on the solution to the task
it tries to learn.

Let the output of a FFNN be denoted as ŷ, and let the neural network itself be denoted
as f(x;θ). That is,

ŷ = f(x;θ), (2.11)

where ŷ ∈ Rs is the output of the network with length s. x ∈ Rd is the input to the
network with dimension d and θ ∈ Rp is the parameters of the network with dimension
p.

The process of feeding data through a network can be described mathematically, here
showing how the output of each layer can be calculated. Let j denote the layer number
and Zj ∈ RLj denote the output from the last layer of length Lj . The output from the
next layer, j + 1, can be written as:

Zj+1 = σ(W j+1Zj + bj+1). (2.12)

Zj+1 ∈ RLj+1 is the output vector from layer j +1 of length Lj+1. W
j+1 ∈ RLj+1×Lj is

the weight matrix of the layer and bj+1 ∈ RLj+1 is the bias vector. W j+1 together with
bj+1 are the parameters of the the layer: θj+1 = {W j+1, bj+1}. Lastly, σ is a, often
nonlinear, activation function. σ is applied to the output vector element-wise, that is

σ(W j+1Zj + bj+1) =



σ(W j+1
1 Zj + bj+1

1 )
...

σ(W j+1
i Zj + bj+1

i )
...

σ(W j+1
Lj+1

Zj + bj+1
Lj+1

)


, (2.13)

where i = 1, .., Lj+1 are the indices of all layers in the network. Thus, W j+1
i are the i-th

row vector of the weight matrix Wj+1, and bj+1
i are the i-th entry of the bias vector. In

words, the output of each layer in the network is a nonlinear function of the weighted sum
of the prior layer in the network plus a bias. Each neuron takes the whole vector from
the prior layer as input and puts a value, or weight, to the importance of each output,
the more important the output, the higher magnitude of the corresponding weight.

The activation function σ can be any continuous and differentiable mathematical
function. However, in order to learn nonlinear and highly complex data, the activa-
tion function should be nonlinear. Some popular choices include the sigmoid function,
hyperbolic tangent, and ReLU [56].
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Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is a type of neural networks designed for pattern
detection in sequence data [50]. Sequence data are data where the order of its value is
important and each value has some relationship with earlier values. Examples of such
data includes handwriting, genes, text or time series data, for example financial data
and weather data. The difference between RNNs and FFNN is how the information gets
passed through the network. In a FFNN the information are only passed in one direction,
from input to output, without any cycles, while, in a RNN, the network has cycle and
may pass data back to itself. This introduces the possibility of taking previous inputs into
account, instead of just feeding the current input through the network. Consequently,
the network will have memory of the earlier inputs and their value may affect the output
of the current input.

Denote the memory, or hidden unit, and input at time step t respectively asHt ∈ Rn×h

and Xt ∈ Rn×d, where h is the number of hidden units, n is the number of samples and
d is dimension of each sample. Further, let Wxh ∈ Rd×h be the weight matrix of each
layer, Whh ∈ Rh×h be the hidden-state-to-hidden-state matrix, and bh ∈ R1×h be the
bias. Lastly, each layer has an activation function, ϕ, typically logistic sigmoid or tanh.
Combining this results in the following output equations for each layer

Ht = ϕh(XtWxh +Ht−1Whh + bh)

Ot = ϕo(HtWho + bo)
(2.14)

Equation (2.14) shows the update equation for the hidden layer and the output equation,
respectively. As you can see, the output is calculated using the hidden units and is
therefore a result of not only the input, but also prior inputs.

As the RNN are quite different from feed-forward neural networks training RNNs re-
quires modification to the classic backpropagation algorithm. The modified algorithm is
called the Backpropagation Through Time (BPTT) algorithm. This algorithm basically
unfolds the RNN in a way that makes it possible to apply the regular backpropagation
algorithm to it. The inner workings of this algorithm will not be covered in this the-
sis, but, for the curious reader, Schmidt [50] provides a detailed walk through of this
algorithm.

The BPTT involves repetitive multiplication of the hidden states weights, Whh, to
calculate the loss function. This can make the overall loss function very large and render
the problem infeasible. This is due to eigenvalues less than 1 vanishes and eigenvalues
grater than 1 diverging when the network learns from longer time intervals [8]. In
practice, the vanishing eigenvalues stops the contribution of far earlier time steps to the
current time step. Conversely, exploding eigenvalues results in the network valuing each
weight too much and it changes it heavily. This is a key problem for RNNs.

A partial solution to this problem is the truncated BPTT [72]. The problem of vanish-
ing and exploding gradients are avoided by establishing an upper bound for the number
of timesteps a gradient can flow back. As the BPTT, in some way, unfolds the RNN
to treat it as a feed-forward neural network the truncated BPTT can be seen on as
establishing an upper bound for the number of hidden layers in this unfolded RNN. Any
time steps before this cut off will not be considered therefore the truncated BPTT will
limit the performance of the RNN.
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Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks were introduced to properly handle the
RNN´s problem of vanishing gradients. To solve the problem they store information in
gated cells, which are outside the traditional neural network flow. This can make LSTMs
able to learn from many more time steps, way over 1000, than traditional RNNs [38].

The gated memory cell is a memory unit outside the flow of the network from which
information can be stored in or read from. Whether the content of the cell can be
changed, accessed or erased is determined by the input gate, output gate and forget
gate, respectively. The input gate controls if the an input should be written to the cell,
the output gate controls if what is saved in the cell should be read or not, and the forget
gate controls if what is stored in the cell should be erased or not. The cells consists
of a gate-wise weight matrix and a sigmoid function, and the value at the gate after
multiplying the input with the weight matrix and feed it through the sigmoid function
determines if the gate remains closed or not. As these gates are analog, they are also
differentiable and can be included in backpropagation based learning algorithms.

Let the input gate be It, the output gate be Ot and the forget gate be Ft. For a time
step, t, the computations for each of these gates will be

Ot = σ(XtWxo +Ht−1Who + bo)

It = σ(XtWxi +Ht−1Whi + bi)

Ft = σ(XtWxf +Ht−1Whf + bf )

(2.15)

In the above equations, Wxo,Wxi,Wxf ∈ Rd×h are the weight matrices controlling how
the current input affects the cell gates. Who,Whi,Whf ∈ Rh×h are weights controlling
how previous time steps, or the hidden states affects the gates. Lastly, bo,bi,bf ∈ R1×h

are the gates biases.

In addition to the above gates, there is one more computation taking place, called the
candidate memory. This calculation decides how the internal memory state of the gated
cell are updated if the input gates decides that it are to be updated. The calculation
of this candidate memory, called C̃t ∈ Rn×h, is done in the exact same way as for the
gates, but with its own set of weights and tanh as activation function

C̃t = tanh(XtWxc +Ht−1Whc + bc), (2.16)

where Wxc ∈ Rd×h is the input weight, Whc ∈ Rh×h is the hidden states weights and
bc ∈ R1×h is the bias.

To tie it all together, the new state of the memory cell, Ct, is updated in the following
way

Ct = Ft ⊙Ct−1 + It ⊙ C̃t (2.17)

where ⊙ denotes element-wise multiplication.

Lastly, the computation of the hidden state is done by

Ht = Ot ⊙ tanh(Ct). (2.18)

The gated memory cell given by the equations and functionality described above gives
the LSTM the possibility of learning important features for many time steps. The
memory of the cell is gated by the input gate and input is only allowed to enter and
change the memory when the cell gate allows. Also, the cell learns when to let the
network read from the internal memory of the cell making it possible to include and
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ignore information at different time steps. The network can also totally remove all
memory in a cell if the forget gate are triggered.
Nicholson [38] and Schmidt [50] provides more details about the LSTM architecture

and how they learn.

2.3. Prediction of Time Series Data

Prediction of time series data is about making predictions about future events in a time
series based on historical data. Time series data are typically historical observations of
events gathered over time, usually with regular intervals. These observations can be of
a wide range of phenomena, for example stock prices, customer behavior or, in this case,
temperature measurements inside a small greenhouse placed in the office of a professor
and measurements along an oil drilling pipe.
The process of prediction is to use statistics or machine learning to build models that

can make predictions about future values of a time series, based on historical data. The
goal is to build models that manages to exploit patterns, trends and relationships within
the data to make accurate predictions. It is therefore important to have knowledge
about the characteristics of the data and know which models that are suitable for such
characteristics.
There are several different approaches to make accurate time series prediction models,

and which is the best depends on the task. The complexity of models ranges from simple
statistical models, such as ARIMA models [21], to simple machine learning models based
on feed-forward neural networks [36], to more complex machine learning models such as
LSTM [57] and transformers [67]. Not only are there different machine learning models
that can be used for predictions, there are also several different approaches to how
these models may be applied. Legaard et al. [36] provides an overview of many such
approaches, especially in the context of time series predictions of dynamical systems.

2.3.1. Fully Connected Feed-Forward Neural Network for Time Series
Prediction

Fully Connected Feed-Forward Neural Networks are NNs where all neurons in one layer is
connected to all neurons in the next layer and there are no recurrent connections. There
are several possible approaches for using fully connected feed-forward networks for time
series predictions. The FFNN based model used in this thesis is what is called a Euler
time-stepper model. Time-stepper models are similar to traditional numerical solvers as
the derivative of the model is approximated at each time step, tk. This values is then
used to integrate the system through time. A benefit with such models is that they can
make use of knowledge about and be combined with classical integration schemes.
Specifically, the Euler time-stepper tries to learn the derivative of the system at a

timestep, tk, given the states of the system. Starting of with a given set of initial
conditions, the method estimates the derivative at each timestep given the internal
states and inputs to the system. This derivative is then multiplied by the length of the
time step and added to the current value. Mathematically, it integrates through time by

˙̃xt = f(x̃t; θ)

x̃t+1 = x̃t +∆T · ˙̃xt,
(2.19)

where ˙̃xt is the estimate of the derivative of the system at the current timestep. f(x̃t; θ)
is a neural network taking prior measurements or estimates of the states at the current
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time step, x̃t as input, and has parameters θ. x̃t+1 is the estimated value of the states
at the next timestep, and it is found by taking the current state value and adding the
estimate of the derivative times the size of the timestep, ∆T . It is worthy to note that
the actual inputs to a system may be known and their exact value can be incorporated
into x̃t.

How to use the Euler time-stepper to estimate the values of the dynamical system
through the time horizon is shown in algorithm 1.

Algorithm 1: Neural network based Euler time-stepper

Require: Initial conditions, x0, size of timestep ∆T , prediction horizon, T , trained
neural network, f , with parameters θ.
Initialize prediction vector, xpred

Insert initial conditions as first input in prediction vector: xpred[0]← x0

Add prior information to xpred, such as controllable inputs to the system.
for t = 1, ..., T do
Predict derivative: ẋ← f(xpred[t]; θ)
Update next prediction step, t+ 1: xpred[t+ 1]← xpred[t] + ∆T · ẋ

end for

2.3.2. Long Short-Term Memory Networks for Time Series Prediction

As already mentioned in section 2.2, LSTMs are great for learning connections between
far apart samples in sequence data. It has been applied to various domains, such as:
Covid-19 predictions and language models [55, 62]. However, there are many different
ways to use LSTMs for prediction. This section will explain two of the many possible
approaches to use LSTM for time series prediction.

Based on different input and output sequences, LSTMs can be classified into four
types [59]:

• One-to-one: The LSTM takes one input and gives back one output. It is suitable
for simple tasks such as classification or regression.

• One-to-many: The LSTM takes one input and produces several outputs. It is
suitable for tasks such as image captioning or music generation.

• Many-to-one: The LSTM takes a sequence of inputs and generates one output. It
is suitable for tasks such as time series prediction.

• Many-to-many: The LSTM takes a sequence of inputs and generates a sequence
of outputs. It is suitable for tasks such as speech recognition.

For the time series prediction case, the last two types of LSTMs are most suitable as
prior time steps are provided.

This thesis focuses on two different approaches based on many-to-one LSTMs. The
first approach is a direct time-stepper model [36], which predicts the value in the next
time step based on a given number of prior time steps. Let this number of prior time
steps be called lookback and denoted as l. Further, let the LSTM-based neural network
be denoted by f with parameters θ. Then a prediction of the next time step, xt will be

x̃t+1 = f(x[t− l : t];θ) (2.20)
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Algorithm 2: LSTM based direct time-stepper

Require: Initial conditions x0, size of timestep ∆T , prediction horizon T , lookback l
trained LSTM based NN f , with parameters θ.
Initialize prediction vector, xpred

Insert initial conditions as first input in prediction vector: xpred[0]← x0

Add prior information to xpred such as controllable inputs to the system.
for t = l, ..., T do
Predict value of next timestep: x← f(xpred[t− l : t]; θ)
Update next prediction step, i+ 1: xpred[t+ 1]← x

end for

where x[t− l : t] are all values of timesteps within the lookback horizon.
The second approach is similar to the one presented in section 2.3.1, except that the

derivative is predicted using a LSTM, instead of an FFNN. Again, let the number of
prior time steps used for prediction be denoted l, let the LSTM based neural network
be denoted by N. Then a prediction of the derivative of the current time step, ẋt

˙̃xt+1 = N(x[t− l : t]) (2.21)

A prediction of the value at time t+ 1 can then be made by integration

x̃t+1 ≈ xt +∆T · ẋt (2.22)

Algorithm 3: LSTM based Euler time-stepper

Require: Initial conditions x0, size of timestep ∆T , prediction horizon T , lookback l
trained LSTM based NN f , with parameters θ.
Initialize prediction vector, xpred

Insert initial conditions as first input in prediction vector: xpred[0]← x0

Add prior information to xpred such as controllable inputs to the system.
for t = l, ..., T do
Predict derivative: ẋ← f(xpred[t− l : t]; θ)
Update next prediction step, i+ 1: xpred[t+ 1]← xpred[t] + ∆T · ẋ

end for

2.4. Laboratory-Scale: Greenhouse

A central part of this thesis is to show how Laboratory-scale data can be used to verify
methods for analysis and prediction, before applying the same method to field scale data.
The Laboratory-scale data, in this case, is a greenhouse placed in to office of Professor
Adil Rasheed. The greenhouse is 50×50×60 cm with clear polycarbonate walls. A plant
is placed in the center of the greenhouse. Bruaset [12] built and designed the greenhouse
setup. A picture of the setup are shown in figure 2.1.
The greenhouse is packed with sensors and control units that affect the conditions

within the greenhouse. The sensors are one humidity and temperature sensor, one
moisture sensor in the soil of the plant, one light sensor and 13 temperature and humidity
sensors distributed in various locations. For technical sensor information see table A.1.
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Figure 2.1.: Picture of greenhouse setup.
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The controls are one heater hanging from the ceiling, one inlet fan, one outlet fan,
lighting and watering valve.
This combination of sensors and controls creates the possibility of generating high

quality data from a real life dynamical system. Instead of using data from a complex
field-scale system where measurements are expensive and unlabeled, this system can
generate data with similar patterns and complexity. This data can further be used to
test methods for analysis and prediction on cheap data.
The greenhouse is a miniature of a bigger, industrial greenhouse. The dynamics of

such greenhouses are influenced by interactions between physical components of the
greenhouse, such as the cover, the soil, the plants, and external factors, such as solar
radiation, wind, and humidity. The interaction between these factors results in heat and
mass transfer that results in changes in energy and water balance. These dynamics can
be described mathematically as a set of differential equations that relate the different
variables, such as temperature, humidity, and CO2 concentration [46].
One of the main challenges in modeling the greenhouse dynamics is to account for the

spatial variability of the state variables within the greenhouse volume and the nonlinear
dynamics of the radiation and heat transfer [6, 47]. Fortunately, as the laboratory-scale
greenhouse is both a miniature and placed inside an office, its dynamics are easier to
explain.
The temperature in the greenhouse will be a function of the temperature in the office

and the heater in the greenhouse. The outside temperature will affect the inside tem-
perature in two ways: when the fans are blowing air into the greenhouse, and through
heat transfer. The heater will, when having a higher temperature than the inside tem-
perature of the greenhouse, result in an increase in the temperature. Temperature is
the main driving force for the internal states in the greenhouse, as it affects the other
measurements, such as humidity and moisture in different ways.
Humidity is affected by temperature as the saturation water vapour pressure is as

function of temperature. This is the pressure at which water vapour is in thermody-
namic equilibrium with its condensed state. If the pressure gets higher than this vapour
pressure, water will condense, and if the pressure gets lower, water will evaporate. Sat-
uration water vapour pressure is linked with humidity through the formula for relative
humidity:

Relative humidity (%) =
Water vapour pressure

Saturation water vapour pressure
× 100 (2.23)

The saturation water vapour pressure increases with temperature because higher tem-
perature means higher kinetic energy of the water molecules, which makes them more
likely to escape the liquid phase and enter the gas phase [41]. Based on this, the rel-
ative humidity will decrease when the temperature increases. Also, when the fans are
turned on, air from the office is sucked in by the inlet fan and blown out by the outlet
fan resulting in a air flow through the greenhouse. Depending on the humidity in the
surrounding environment, the humidity inside the greenhouse will be affected. Sucking
in air with lower humidity will make the humidity drop, while air with higher humidity
will make it increase [54, 73].
Çetin and Sevik [75] shows that how much a plant affects the CO2 concentration in a

room is directly proportional to their size. As the only plants placed in the greenhouse are
small sprouts, the effect of their photosynthesis can be neglected. Humans are the main
contributor to indoor CO2 levels in non-industrial indoor environments [4]. Therefore,
human presence in the office, or close to the greenhouse, and human interaction with
the greenhouse will be the main contributor to change in CO2 level in the greenhouse.
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The walls of the greenhouse are clear polycarbonate sheets. As they are clear, the
outside light is let in and, since it is placed in a office with windows, the light sensors
will capture the outside light cycle. There are also lighting in the greenhouse that can
be turned on and off. The measurements of light will then be a function of the daily
light cycle, combined with the light from the greenhouse lighting.
Lastly, we have measurements of moisture. These are measurements of the moisture

in the soil of the plant. Seneviratne et al. [53] shows how moisture and temperature
are coupled and affects each other with different positive and negative feedback loops.
Therefore, the exact relationship between moisture and temperature is complex and,
depending on factors, such as soil type, soil condition, and temperature, it may be
inverse or proportional.

2.5. Field Scale: Oil Drilling Hole Cleaning Process

The field scale data used in this thesis to validate the analysis and prediction methods
on data from the oil drilling domain. Specifically, the data used in this study is collected
from drilling operations on the Norwegian continental shelf. The well contains multi-
lateral systems that include highly deviated and horizontal sections. The end-of-well
reports indicates that there were several issues during drilling, such as: poor cuttings
transportation, loss of circulation, stuck pipe and problems with well bore stability. Con-
sequently, some portions of the drilled sections were plugged and abandoned. The data
consist of measurements of physical parameters, obtained from both surface and down-
hole sensors along the drill string. The data is sampled with an average frequency of 1
hertz. The data used in this study also includes tripping in and out, drilling activities
in different formations and various well bore configurations with vertical, inclined and
horizontal sections.
Hole cleaning is the process of removing cuttings while drilling through the soil, carving

a hole where the oil pipe can go to reach the oil reservoir. The drilling is done using a
rotating drill string with a bit at the end. This bit drills through the soil resulting in a
vast amount of cuttings being left. To remove these cuttings, drilling fluids are pumped
through the drill string. When reaching the end, the fluid, combined with the rotation
of the string, carries the cuttings out of the hole. Figure 2.2 shows a simple illustration
of this hole drilling process.
Hole drilling is a complex process and bad hole cleaning may lead to abortion of drilling

session and, in worst case, loss of expensive equipment and increased nonproductive time
(NPT). Good cuttings circulation is essential for effective and safe drilling. To monitor
this process, there are mounted sensors at different locations along the drill string, as
well as sensors on the surface. These sensors are measuring depth, pressure, temperature
and torque, to mention some. Measurements from such sensors are denoted Along String
Measurements (ASM). How the sensors are placed along the drill string are illustrated
in figure 2.2.
The most important indicator for cuttings circulation is Equivalent Circulation Den-

sity (ECD) [2]. ECD is a derived quantity from measurements of mud weight (MW),
annular pressure loss (APL), and true vertical depth (TVL). ECD is calculated as

ECD = MW+
APL

0.052× TVD
. (2.24)

An increase in drilling cuttings in the hole will reduce the fluid flow area and increase
the effective drilling fluid density, which consequently leads to an increase in the ECD
[2]. This makes ECD a good indicator for the state of the cuttings transportation.
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To ensure good cuttings circulation conditions it is therefore desirable to know, in
advance, how the ECD will change given current drilling conditions and future control
parameters. This also makes it possible to experiment with how different control inputs
may affect the future ECD values.

The well boring is controlled by a team of operators that are monitoring the conditions
of the drilling process. The drilling operation is constantly monitored by a drilling team.
This team of operators can adjust some of the drilling parameters during drilling oper-
ations to ensure the safe drilling of the well. Some of the important control parameters
are: the density of the mud drilling fluid pumped into the hole (DMIAVG), the flow
rate of this drilling fluid (FLIAVG), the revolutions per minute for the drill string and
bit (RPMBAVG), and the weight on bit (WOBAVG). An overview of these controls are
presented in table 2.1.

Drilling fluid is pumped through the borehole to transport cuttings from the bottom
of the well to the surface. This fluid is a mud drilling fluid that is pumped from the
surface, through the drill string and out by the bit. This fluid ensures that the cuttings
are carried up and out of the hole. It also reduces friction between the bit and rock,
clean the bit, maintains well bore stability, and controls pressure [16].

The mud density and the rate at which the mud is pumped into the well, affects
the ECD. Increasing the mud density, results in an increase of the weight of the mud
exiting the hole. Referring to equation (2.24), this results in an increase in the ECD.
The flow rate of the drilling fluid affects the annular pressure loss. Again, referring to
equation (2.24), this will affect the ECD. But, as the drill string is rotating and the walls
are stationary, the behaviour of the drilling fluids in the well is governed by complex
dynamics and the exact relationship between the fluid density, flow rate and ECD is often
hard to determine [27]. It is also important to note that, although being controllable,
the mud density cannot be changed easily [15].

To drill through solid rock, a great pressure needs to be put on the drill bit and the bit
needs to rotate. This is controlled by the parameters: weight on bit and revolutions per
minute. Weight on bit is the amount of downward force exerted on the bit during drilling
operations. Too low weight on bit during drilling leads to a low rate of penetration and
too high weight on bit may result in a damaged bit. The revolutions per minute is how
fast the drill string is rotating. These controls, in combination, affects the torque on
bit, vibrations in the drill string, bit rotation, as well as the rate of penetration [3]. An
increase in the rate of penetration will lead to an increased amount of cuttings, which
again will lead to higher ECD, as this affects the mud density, flow of the drilling fluids
and the annular pressure loss [29].

A key point to consider is that the controls have various combinations that can either
increase or decrease the ECD. For instance, a higher flow in enhances the cuttings
transportation, which can lower the ECD. Likewise, a higher RPM can reduce the ECD
by improving the hole cleaning, especially in the directional and horizontal well sections.
Hence, these parameters have both positive and negative effects on ECD. The safe range
of these parameters is essential for a successful drilling operation.

2.6. Similarities Between Greenhouse and Oil Drilling

Both greenhouse dynamics and oil drilling dynamics are complex systems that involve
interactions between physical components, external forces and control inputs. They can
both be modeled mathematically as a set of differential equations that relate the different
variables. However, these models are often both non-linear, uncertain, and are difficult
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Table 2.1.: Measurements and controls the drilling operator can inspect and adjust dur-
ing drilling to ensure good cutting circulation and hole cleaning.

Control: Unit: Description:

ECD kg/L Equivalent circulation density (Measurement)

DMIAVG kg/m3 Mud density in (Control)

FLIAVG m3/min Flow rate in (Control)

RPMBAVG RPM Revolutions per minute total averaged (Control)

WOBAVG kN Average weight on bit (Control)

Figure 2.2.: Figure of drilling operation. The rotating drill string with a bit at the end
bores through the soil and carves a hole. Throughout the drilling operation,
drilling fluid are pumped through the string to create a circulation to re-
move cuttings from the hole. Along the drill string there are Along String
Measurement (ASM) sensors.
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to solve analytically or numerically.
Both systems has control inputs that can be adjusted to optimize the systems perfor-

mance and achieve certain objectives. In the green house these are heater duty cycle,
fan controls, lighting and watering valves. These controls can be used to control temper-
ature, humidity, lighting and soil moisture in the greenhouse. In oil drilling, the control
inputs are mud density, flow rate in, weight on bit and revolutions per minute. These
inputs can be used to manipulate the rate of penetration, the torque on bit, the cuttings
circulations, and the ECD in the well.
Another similarity is that both systems have sensors that measures different variables

in the system. In the greenhouse these are temperature, humidity, light intensity and soil
moisture sensors. In the greenhouse there are several sensors, including ECD, temper-
ature, pressure, mud weight and depth. Measurements of physical quantities are often
corrupted by noise. Noise in measurements are the deviation from the measured value
of a physical quantity due to various sources of error and uncertainty in the measure-
ment process. There exists numerous methods for trying to remove this noise from the
measurements, such as using Kalman filters [42]. But although the noise is removed,
the signal may not be perfect. Therefore, both systems show how a model performs
when that data are from measurements of physical quantities where there may be noise
present.
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The method section of this thesis consists of four steps: data collection, data pre-
processing, model architecture and model evaluation. In the first step, data is collected
from the two data sources: the laboratory-scale greenhouse and the field scale oil drilling
operation. In the second step that data is processed to fit the analysis and prediction
methods. In the third step, the models for analysis and prediction are designed. In the
fourth step, different data sets and scenarios are created to evaluate the performance of
the models and techniques based on some popular metrics.

3.1. Data Collection

The greenhouse data is collected from several sensors that measures temperature, hu-
midity, light intensity, CO2 and moisture inside the greenhouse over several months.
The oil drilling data is provided by Aker BP through SINTEF and contains 92 different
measurements from different oil drilling operations. The measurements include ECD,
flow in, and out, weight on bit, revolutions per minute, hook load, depth, and rate of
penetration. Some of these measurements are obtained using sensors placed at differ-
ent depths along the drilling string using, such are called Along String Measurements
(ASM).

3.2. Data pre-processing

In the second step the both data sets are pre-processed in different ways. The greenhouse
data is temporally aligned, while both data sets are arranged to fit the models.

3.2.1. Laboratory Scale: Greenhouse

A benefit of the greenhouse setup is that the data is clean, cheap, and labeled. However,
the distributed sensors and the control inputs have different sampling frequencies. The
data from the controls has a sampling frequency of 15 seconds, while the data from the
distributed sensors have a sampling frequency of 1 second. To align the data, the control
data is re-sampled using linear interpolation before merged with the sensor data. This
results in one common data set with sampling frequency of 1 second.

3.2.2. Field Scale: Oil Drilling Hole Cleaning Process

The field scale data from the oil drilling hole cleaning process is heavily pre-processed
by Aker BP and SINTEF. The data is from long drilling operations and contains data
from different parts of the operation, not only drilling. Therefore, the different drilling
sections are identified, thanks to PhD candidate Mehmet Cagri Altindal, based on end-
of-well reports. Based on this, the data is split into these different drilling sections. This
is the only pre-processing step for the drilling data.
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3.2.3. Standardization

Standardizing data before using it in the training process of neural networks can signifi-
cantly reduce both the prediction error and the time it takes to find an optimal solution
[61]. For analysis methods, such as PCA, standardization is essential as the analysis is
working with variables often at different scales [26].

To standardize the data, each data value xji is both centered and divided by the
standard deviation sj of the n observations of variable j:

zij =
xij − x̄j

sj
,

The initial data matrix X is then replaced by the standardized data matrix Z filled
with standardized measurements.

3.2.4. Windowing for LSTM

Before feeding the data to a LSTM model, the data needs to be arranged in the correct
way. Section 2.3.2 presents how the lookback is an important part of the LSTM model.
The lookback is how many timesteps the model is allowed to look backwards in time.
For example, let the lookback be 10 and the goal is to predict the values at the next
time step. Then the model needs to get ten timesteps as input and one target value to
evaluate the output. This means that the data needs to be organized in windows, where
each window is the same size as the lookback used in the model, and each window has
as many target values as time steps to predict. This pre-processing is applied to both
greenhouse and oil drilling data.

3.3. Model architecture

The various time series analysis and prediction methods are developed and applied to the
greenhouse data, and some of them are applied to oil drilling data. This section provide
details about model architecture to make it possible to reproduce the experiments in
this thesis.

3.3.1. Methods for Analysis

The methods for analysis, PCA, EMD, EEMD, and FFT does not require any architec-
tural considerations. They are applied straight out of the box.

3.3.2. FFNN model

The simplest model used in this thesis is the FFNN model. It is used to predict the
derivative of the time series and integrate through time. The model has an input layer of
size 4, which takes in the measured or predicted temperature and humidity in the current
time step and the controls, the heater duty cycle and fan, applied in the current time step.
It has two hidden layers, each consisting of 32 neurons. The output size of the model
is two, which corresponds to the predicted derivative of the temperature and humidity.
The network is trained for 750 epochs, using the Adam optimizer. The learning rate
was 0.0001 and the network was regularized during training using L1-regularization. An
overview of the parameters for the model are presented in table C.1.
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3.3.3. LSTM models

The LSTM models used in the thesis vary some in parameter value from task to task,
but they all consist of one LSTM layer and three fully connected feed-forward layers at
the end.

The models take measurements or predictions of temperature and humidity, and the
control inputs, heater duty cycle and fan, as inputs, all with a lookback of 50. Based
on this, the model produces two outputs: prediction of temperature and humidity. The
LSTM layer of these models has a hidden size of 32 for the direct model and 64 for
the Euler time-stepper, and it has one hidden layer for both cases. The fully connected
output network has a hidden layer size of 32 for the direct model and 64 for the Euler
time stepper. The models are trained for 50 epochs using the Adam optimizer and early
stopping. During training, the LSTM using a dropout of 0.4, and the output layers are
regularized using L1-regularization. All hyperparameters are presented in table C.2.

The LSTM model used for prediction on drilling data is, in many ways, similar to the
greenhouse model. This model takes 5 inputs, measurements or predictions of ECD, and
control inputs, mud weight, flow in, revolutions per minute and weight on bit, all with
a lookback of 30. As output, the model produces one prediction for ECD. The hidden
layer size for the LSTM is 32 and it has one layer, the number of layers in the output
network is 3, each with a size of 32. Training is done using the Adam optimizer with a
learning rate of 0.0001. During training the LSTM is regularized using dropout with a
probability of 0.4 and the output network is regularized using L1-regularization with a
value of 0.0001. The model is trained for 20 epochs with early stopping. Table C.3 gives
an overview of the model parameters.

3.4. Model Evaluation

In the fourth step, the performance of the developed prediction methods are evaluated
and compared based on different popular metrics: root mean squared error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE) [64]. While
the analysis methods are presented with their strengths and weaknesses based on how
well they manage to extract information from the data. The evaluation is done on both
the greenhouse data and the oil drilling data to validate the results and identify the best
methods for hole cleaning analysis and prediction. For the methods of analysis, one data
set were used for greenhouse and one for oil drilling. But the evaluation also considers
how the models generalize on measurements from similar processes that are exhibiting
other patterns. For example, how well a model trained on one oil drilling session performs
on another oil drilling session. Therefore, different scenarios were developed.

3.4.1. Data for Analysis

Laboratory Scale: Greenhouse

As mentioned, the data used for analysis of greenhouse data is both the measurements
from the single sensors and the measurements from the 13 distributed sensors. The
positioning of the distributed sensors are shown in table 3.1. The data for the single
sensors are collected over a period of 1 month, 01.04.2023-01.05.2023. Plots of the data
from the single sensors are shown in figure 3.1 and the temperature measurements for
the distributed sensors are shown in figure 3.2.
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Table 3.1.: Coordinates of the sensors inside the greenhouse. (25, 25, 0) marks the
midpoint of the bottom of the greenhouse, where the plant is placed. The
distances from the heater, the inlet fan and the outlet fan to the sensors are
shown in the table.

Name X Y Z Dist. heater Dist. inlet fan Dist. outlet fan

Sensor 1 5 24 14 41.19 40.31 51.00

Sensor 2 14 48 0 56.12 67.94 61.61

Sensor 3 40 23 22 31.83 52.01 26.32

Sensor 4 6 48 58 30.89 49.84 78.59

Sensor 5 48 24 0 55.05 70.68 27.86

Sensor 6 48 48 50 32.53 68.00 60.03

Sensor 7 7 42 16 42.06 52.09 60.14

Sensor 8 12 0 34 32.40 16.97 42.94

Sensor 9 20 5 24 33.18 30.15 32.02

Sensor 10 42 24 48 17.15 48.41 42.38

Sensor 11 37 40 11 43.47 64.76 42.17

Sensor 12 120 120 120 151.49 185.14 174.75

Sensor 13 -10 24 14 50.22 41.23 64.62

(a) Temperature measurements (b) Heater duty cycle

(c) Humidity measurements (d) Fans
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(e) Light intensity measurments (f) Lights

(g) CO2 measurements (h) Moisture measurements

Measurement Control

Figure 3.1.: Measurements and controls used when analysing the greenhouse data.

Field Scale: Oil Drilling Hole Cleaning Process

For analysis of the hole cleaning data, the whole data set for one drilling operation in
case A are used. The data is shown in figure 3.12.

3.4.2. Predition Evaluation Metrics

The metrics used for evaluating performance of model prediction are: root mean squared
error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).
RMSE are calculated as the squared error between actual values and predictions:

RMSE =
1

n

n∑
i=1

(xi − x̃i)
2. (3.1)

As the error is squared, the RMSE are sensitive to outliers and large errors. Therefore,
outlier will affect the RMSE and in many cases show a worse fit than it actually is. Also
RMSE has no clear interpretation in terms of the original units of the measurements.
This will, in many cases, make it hard to interpret the metric.
MAE are calculated as the mean of the absolute difference between the actual and

predicted values:

MAE =
1

n

n∑
i=1

|xi − x̃i|. (3.2)
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(j) Temperature measurements sensor 1 (k) Temperature measurements sensor 2

(l) Temperature measurements sensor 3 (m) Temperature measurements sensor 4

(n) Temperature measurements sensor 5 (o) Temperature measurements sensor 6

(p) Temperature measurements sensor 7 (q) Temperature measurements sensor 8
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(r) Temperature measurements sensor 9 (s) Temperature measurements sensor 10

(t) Temperature measurements sensor 11 (u) Temperature measurements sensor 12

(v) Temperature measurements sensor 13

Measurement

Figure 3.2.: Temperature measurements for the distributed temperature sensors. Note
how each sensor has its distinct set of dynamics and how some of the sensors.
The effects of temperature change are also delayed for some of the sensors
due to spatial distances.
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MAE are less sensitive to outliers as it is the absolute value of the error and not the
square. The MAE are easy to interpret, as it gives the average error of the original unit.
In contrast to RMSE, it is not sensitive to outlier and gives equal weight to all errors.
Consequently, MAE are less sensitive to noise in the actual data or predictions.
MAPE are calculated as mean of the absolute difference between the actual value and

the prediction, divided by the actual value, multiplied by 100:

MAPE =
1

n

n∑
i=1

∣∣∣∣xi − x̃i
xi

∣∣∣∣ . (3.3)

MAPE are independent of scale and can be used to compare models across different data
sets an scales. It is easy to interpret, as it gives the average error as a percentage of the
actual value. This makes the metric scale-free and the result can be easily compared
across different data sets or units of measurements. However, MAPE are not defines
when the actual value is zero something that affects the metric.
To test how to models generalize different experiments with different combinations of

training and test data was conducted both for greenhouse and oil drilling.

3.4.3. Scenarios for Prediction

To evaluate how well the models generalizes on other measurements from similar pro-
cesses that are exhibiting other patterns, different scenarios are presented for both green-
house and oil drilling. For the laboratory-scale data, the same training set is used for
all scenarios, while for drilling, both training and test set are changed in each scenario.

Laboratory Scale: Greenhouse

Depending on the control inputs, the data from the greenhouse exhibits totally different
patterns. First, the heater duty cycle and fans had a cyclical pattern, something that
resulted in cyclical patterns in temperature and humidity as well. Second, the fans
were shift to a more random pattern, this resulted in high frequency components in the
temperature and a more high frequent humidity. Last, both the heater duty cycle and
fans were switched to a random pattern, resulting in a non-cyclical pattern.
The first data set with the simple cyclical pattern are split in to a training and test

set. The other data sets with more complex patterns are all used as test sets. This
creates three scenarios:

• Scenario 1: Train on simple, cyclical pattern, test on similar pattern.

• Scenario 2: Train on simple, cyclical pattern, test on more complex cyclical pattern
with high frequency temperature components and high frequency humidity.

• Scenario 3: Train on simple, cyclical pattern, test on non-cyclical pattern with
random heater duty cycle and fan controls.

These three scenarios will test how well the models perform on data that are similar to
the one it has seen before, data that is similar, but with different fan controls resulting
in high frequency components in temperature and high frequency humidity, and data
that are non-cyclical with random controls. This will provide a good overview of model
performance and generalization.

The training data for all scenarios are shown in figure 3.3. Statistical properties of
the variables are shown in table 3.2.
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Table 3.2.: Mean, median, standard deviation, range, max and min of training data for
labatory-scale greenhouse data.

Mean Median STD Range Max Min

Temperature 29.16 29.26 1.16 6.20 31.61 25.41

Humidity 44.76 45.85 5.58 32.52 57.54 25.02

Fans 0.04 0.00 0.20 1.00 1.00 0.00

Heater Duty Cycle 0.32 0.35 0.15 0.49 0.50 0.01

(a) Temperature measurements used for training (b) Humidity measurements used for training

(c) Fan controls used for training (d) Heater duty cycle used for training

Measurement Control

Figure 3.3.: Tranining data used to train the models on greenhouse data. Figure 3.3a
and figure 3.3b shows the measurements and figure 3.3c and figure 3.3d
shows the corresponding control inputs.
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Table 3.3.: Mean, median, standard deviation, range, max, and min for the test set used
in scenario 1 for testing models on the laboratory-scale greenhouse data.

Mean Median STD Range Max Min

Temperature 28.43 28.54 1.12 6.92 31.52 24.60

Humidity 42.95 43.63 4.30 23.79 49.9100 26.12

Fans 0.04 0.00 0.20 1.00 1.00 0.00

Heater Duty Cycle 0.32 0.35 0.15 0.49 0.50 0.01

Table 3.4.: Mean, median, standard deviation, range, max, and min for test set used in
scenario 2 for testing models on the laboratory-scale greenhouse data.

Mean Median STD Range Max Min

Temperature 27.73 27.78 0.98 4.21 29.77 25.56

Humidity 28.79 28.75 3.40 16.33 38.43 22.10

Fans 0.24 0.00 0.42 1.00 1.00 0.00

Heater Duty Cycle 0.32 0.36 0.15 0.48 0.50 0.02

The first test set, test set 1, have a similar pattern to the training data, but with
different trend, mean and standard deviation. The statistical properties of the test data
is shown in table 3.3. Here you can see how the standard deviation, especially for the
humidity, is different from the training set. The data is visualized in figure 3.4

The next test set, for scenario 2, still obtains the same cycles in temperature seen in
both in the training set (figure 3.3) and test set 1 (figure 3.4), but with the addition of
high frequency components. The humidity in this test set are more high frequent and
has a signature that differs to the one in the two other data sets. This is a results of
high fan activity seen both in figure 3.5c, by looking at the fan controls, and in table 3.4,
as a significant rise in mean value for fans. The data is visualised in figure 3.5 and its
statistical properties are summarized in table 3.4.

The test set for scenario 3 is the most challenging test set for the model. This data set
exhibits a pattern that is non-cyclic both in temperature and humidity. This is caused
by both the heater and fan working randomly, see figure 3.6d and figure 3.6c. The hole
data set and its statistical properties are shown in figure 3.6 and table 3.5, respectively.

Field Scale: Oil Drilling Hole Cleaning Process

Two drilling cases are available for the oil drilling data. These are different drilling op-
erations, but from nearby locations. In the first drilling case, case A, the pattern of the
ECD changes significantly during drilling as the operators changes the drilling parame-
ters. In the second case, case B, the data has somewhat the same pattern throughout

Table 3.5.: Mean, median, standard deviation, range, max, and min for test set used in
scenario 3 for testing models on the laboratory-scale greenhouse data.

Mean Median STD Range Max Min

Temperature 30.13 30.23 1.76 6.99 33.72 26.73

Humidity 28.48 27.32 4.93 21.98 44.12 22.14

Fans 0.35 0.00 0.49 1.00 1.00 0.00

Heater Duty Cycle 0.48 0.41 0.31 0.93 0.95 0.02
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(a) Temperature measurements used for test in sce-
nario 1

(b) Humidity measurements used for test in scenario 1

(c) Fan controls used for test in scenario 1 (d) Heater duty cycle used for test in scenario 1

Measurement Control

Figure 3.4.: Test data for prediction in greenhouse scenario 1. Figure 3.4a and figure 3.4b
shows the measurements and figure 3.4c and figure 3.4d shows the corre-
sponding control inputs. This data has mostly the same type of pattern as
the training data in figure 3.3.
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(a) Temperature measurements used for test (b) Humidity measurements used for test

(c) Fan controls used for test (d) Heater duty cycle used for test

Measurement Control

Figure 3.5.: Test data for prediction in greenhouse scenario 2. Figure 3.5a and figure 3.5b
shows the measurements and figure 3.5c and figure 3.5d shows the corre-
sponding control inputs. Note how this data differs quite significantly from
the training data in figure 3.3. This is due to an increase in the on/off fre-
quency of the fans.
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(a) Temperature measurements used for test (b) Humidity measurements used for test

(c) Fan controls used for test (d) Heater duty cycle used for test

Measurement Control

Figure 3.6.: Test data for prediction in greenhouse scenario 3. Figure 3.6a and figure 3.6b
shows the measurements and figure 3.6c and figure 3.6d shows the corre-
sponding control inputs. Note how this data differs quite significantly both
other data sets with random heater and fan controls.
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(a) Case A (b) Case B

Measurement

Figure 3.7.: ECD in the drilling case A and drilling case B.

the drilling.
The first data set are split into training and test, in two different ways. In the first

split, the training data includes both the initial pattern of the ECD as well as some
of the pattern that emerged after change of drilling parameters, while the test data
includes only the pattern after change of parameters. In the second split, the training
data includes only the initial pattern, while the drilling data includes only the pattern
from after the change of parameters. Lastly, since the two data sets are from different
drilling operations in nearby locations, the first case is used as training set and the last
is used for testing.
This creates the following three scenarios:

• Scenario 1: Case A are split into two data sets. The model are trained mainly on
the first pattern, but also some on the second. The performance is evaluated at
the second pattern.

• Scenario 2: Case A are split into two data sets. The model are trained only on the
first pattern. The performance is evaluated at the second pattern.

• Scenario 3: Case A and case B forms training and test set, respectively. The model
is trained on case A and its performance is evaluated on case B.

These three scenarios will show how well the model will perform both on seen and
unseen patterns. The first scenario presents whether seeing only a small part of the
pattern makes the model perform better. While the second scenario shows how the
model performs on data with different patterns from the same drilling session, while
scenario three shows how models can generalize across drilling operations.

The data sets used for the field scale models are based on two drilling cases, case A
and case B. The ECD of these cases are shown in figure 3.7.
The training and test set pair for scenario 1 is shown in figure 3.8 and figure 3.9,

respectively. Here the session is split so that the training set includes mainly the initial
dynamics of the drilling and only a small part of the shifted dynamics. The statistical
properties of the training set for this scenario is shown in table 3.6 and the test set are
shown in table 3.7.
For scenario 2, the pair of training and test sets are shown in figure 3.10 and figure 3.11,

respectively. Here the data is split into a train set with the initial ECD pattern, and a
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(a) ECD (b) Mud density

(c) Flow in (d) RPM

(e) Weight on bit

Measurement Control

Figure 3.8.: ECD measurements and corresponding controls of training set for scenario
1 on case A. Note how the controls changes significantly causing a change
in the ECD.
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(a) ECD (b) Mud density

(c) Flow in (d) RPM

(e) Weight on bit

Measurement Control

Figure 3.9.: ECD measurements and corresponding controls for test set for first scenario
on case A.
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Table 3.6.: Mean, median, standard deviation, range, max, and min for the train set for
scenario 1 for the oil drilling data.

Mean Median STD Range Max Min

ASMECD1 T 1.47 1.46 0.03 0.17 1.57 1.40

RPMBAVG 124.49 164.04 62.83 184.04 184.05 0.01

FLIAVG 2.61 3.24 0.93 3.33 3.33 0.00

WOBAVG 114.78 93.52 139.87 923.97 690.57 -233.40

DMIAVG 1382.98 1381.41 9.08 55.47 1411.20 1355.73

Table 3.7.: Mean, median, standard deviation, range, max, and min for the test set for
scenario 1 for the oil drilling data.

Mean Median STD Range Max Min

ASMECD1 T 1.47 1.47 0.01 0.08 1.5016 1.42

RPMBAVG 106.13 120.41 36.31 121.99 122.00 0.01

FLIAVG 2.35 2.47 0.53 2.59 2.59 0.00

WOBAVG 61.05 48.61 110.46 893.08 662.41 -230.67

DMIAVG 1377.11 1378.05 4.03 31.01 1389.14 1358.13

test set with the new pattern emerging after change of parameters. The statistics of the
training set are presented in table 3.8, while the statistics for the test set are presented
in table 3.9.

In scenario 3, all data from case A is used for training, while all data for case B is
used for testing. The training set, case A, are shown in figure 3.12, while the set, case B,
are shown in figure 3.13. The two drilling cases differs in pattern. Case A has a change
in pattern about half way through the operation, while case B has the same pattern
throughout the operation. The statistics of these data sets are presented in table 3.10
and table 3.11, respectively.

Table 3.8.: Mean, median, standard deviation, range, max, and min for training data for
oil drilling scenario 2.

Mean Median STD Range Max Min

ASMECD1 T 1.47 1.49 0.03 0.17 1.57 1.40

RPMBAVG 139.60 179.90 68.45 184.04 184.05 0.01

FLIAVG 2.75 3.24 1.04 3.33 3.33 0.0000

WOBAVG 140.20 116.30 152.70 847.82 614.42 -233.40

DMIAVG 1385.83 1386.46 9.25 55.47 1411.20 1355.73
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Table 3.9.: Mean, median, standard deviation, range, max, and min for test data for oil
drilling scenario 2.

Mean Median STD Range Max Min

ASMECD1 T 1.46 1.47 0.01 0.09 1.50 1.42

RPMBAVG 101.17 120.39 34.18 121.99 122.00 0.01

FLIAVG 2.34 2.47 0.51 2.59 2.59 0.00

WOBAVG 60.32 49.43 101.92 921.24 690.57 -230.67

DMIAVG 1376.97 1377.84 4.12 32.04 1390.17 1358.13

(a) ECD (b) Mud density

(c) Flow in (d) RPM

(e) Weight on bit

Measurement Control

Figure 3.10.: ECD measurements and corresponding controls of training set for scenario
2 on case A. Here the pattern that changes as the drilling parameters change
are not included in the data set.

42



3.4. Model Evaluation

(a) ECD (b) Mud density

(c) Flow in (d) RPM

(e) Weight on bit

Measurement Control

Figure 3.11.: ECD measurements and corresponding controls for test set for scenario 2.
The pattern in this data differs significantly from the one in figure 3.10.

Table 3.10.: Mean, median, standard deviation, range, max, and min for training data
for oil drilling scenario 3.

Mean Median STD Range Max Min

ASMECD1 T 1.47 1.47 0.02 0.17 1.57 1.40

RPMBAVG 116.84 120.41 52.88 184.04 184.05 0.01

FLIAVG 2.50 2.47 0.77 3.33 3.33 0.0000

WOBAVG 88.96 61.95 128.33 923.97 690.57 -233.40

DMIAVG 1380.59 1378.80 7.77 55.47 1411.20 1355.73
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(a) ECD (b) Mud density

(c) Flow in (d) RPM

(e) Weight on bit

Measurement Control

Figure 3.12.: ECD measurements and corresponding controls of training set for scenario
1 on case A. Note how the controls changes significantly causing a change
in the ECD.

Table 3.11.: Mean, median, standard deviation, range, max, and min for test data for
oil drilling scenario 3.

Mean Median STD Range Max Min

ASMECD1 T 1.46 1.47 0.01 0.09 1.50 1.42

RPMBAVG 101.17 120.39 34.18 121.99 122.00 0.01

FLIAVG 2.34 2.47 0.51 2.59 2.59 0.00

WOBAVG 60.32 49.43 101.92 921.24 690.57 -230.67

DMIAVG 1376.97 1377.84 4.12 32.04 1390.17 1358.13
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(a) ECD (b) Mud density

(c) Flow in (d) RPM

(e) Weight on bit

Measurement Control

Figure 3.13.: ECD measurements and corresponding controls for test set in scenario 3 on
oil drilling data. For this scenario the whole data set for case B are used.
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4. Results and Discussions

The results section of this thesis presents the outcomes of data collection, data pre-
processing, model architecture, and model evaluation steps from chapter 3. In the first
part, the methods of analysis, PCA, EMD, EEMD, and FFT, are applied to the data
and the results are discussed. In the second part, the methods for prediction, FFNN for
prediction of derivative, LSTM for prediction of next value, and LSTM for prediction
of derivative are applied to both greenhouse and drilling data. Their performance is
evaluated using different metrics, MSE, MAE, and MAPE. The models are also validated
on different data sets to investigate the generalization ability of the models. The chapter
aims to answer the research questions and objectives of the thesis.

4.1. Exploratory Data Analysis

In this section the results of applying the methods of analysis: PCA, EMD, EEMD, and
FFT to the data. The purpose of applying these methods is to explore the patterns and
connections in the data and to extract useful connections between controls and mea-
surements. The methods are first applied to greenhouse data before the best-performing
ones are applied to the drilling data.

4.1.1. Laboratory Scale: Greenhouse

Dashboard for Real-Time Data Visualization and Exploration

For data analysis, it is often useful to have a dashboard showing real-time data. Such
a dashboard makes it possible to quickly explore the data and do initial analysis before
digging deeper into the data. As there are many different sensors in the greenhouse, it
is, in this case, also useful with an interactive 3D plot showing the sensor’s locations as
well as the locations of the plant, heater and fans.

A screenshot of the dashboard is in figure 4.1. The dashboard was created using the
Dash library from Plotly [25]. This is a library for creating deployable dashboards in
Python,

PCA

PCA was performed on the single sensors and controls to investigate their interactions.
Figure 4.2 shows the loadings for the first two PCs. These PCs explain ≈ 48% of the
total variance in the data.

Naturally, as the temperature is proportional to the heater duty cycles and the light
intensity is proportional to the lights, these measurements and controls are grouped,
pairwise. The temperature will increase if the heater duty cycle increase and the light
intensity will increase if the lights are on.

In both PC1 and PC2, the humidity is negatively correlated with temperature and
the heater duty cycle. As explained in the theory section (chapter 2) there is an inverse
relationship between temperature and humidity. The results from the PCA confirm this.
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Figure 4.1.: Screenshot of greenhouse dashboard.

The PCA also suggest that there is some correlation between the fans and the heater
duty cycle and temperature. Looking at figure 3.1, there is a clear similarity between
the pattern in the heater duty cycle and the fans.

The CO2 concentration seems to correlate negatively with the humidity and positively
with the fans. As the CO2 level is proportional with the fans, it is the air blown into
the greenhouse that mainly contributes to the CO2 level in the greenhouse, indicating
that human interaction is an important factor for CO2 level. Also, as the humidity and
moisture are negatively correlated with the fans, the humidity level in the office can be
said to generally be lower than the one inside the greenhouse.

The aim of applying PCA to the greenhouse measurements and controls was to in-
vestigate the interactions between the sensor measurements and controls. The results
show how PCA manages to find both negative and positive correlations between the
measurements and controls that were presented in the theory section. It finds a cor-
relation between, temperature and heater duty cycle, light intensity and lighting, and
CO2 concentration and fans. Also, it finds negative correlations between humidity and
temperature, and humidity and fans. This resulted in most of the theoretical dynamics
presented in the system being extracted from the data using this PCA approach.

On the other hand, according to the theory, moisture and temperature should not
be that negatively correlated. This may be a result of the simplified dynamics of this
laboratory-scale greenhouse, compared to real-life greenhouses. It is also noteworthy
that many of the dynamics and relationships presented in the theory section are simple
and could be identified by just looking at the data.

Within and outside the greenhouse, there are also 13 distributed sensors that measure
temperature and humidity. These sensors are placed at different distances from the
heater and fans. Therefore, it is expected to see some dynamics in the data that describe
the relationship between the different sensors and the heater and the fans. PCA was
applied to investigate this relationship.
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Figure 4.2.: Scatter plot of PCA loadings for PC1 and PC2 for sensors and controls in
the greenhouse.
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Figure 4.3.: Scatter plot of PCA loadings from the temperature data from the 13 dis-
tributed sensors in the greenhouse. PC2 seems to capture the distance from
the sensor to the heater. The numbers indicates the sensor number.

Figure 4.3 shows the first and second principal components of the data from the
different humidity and temperature sensors distributed in the greenhouse. PC1 and
PC2 describe 66% and 13.43% of the total variance in the data, respectively.

In PC1 all sensors correlate. As all sensors measure the same variable this is not
surprising. If the temperature increase in the location of one sensor, it will increase at
the location of the other sensors as well.

But in PC2 it looks more interesting. The different sensors seem to be arranged in
rising order, from the lowest PC2 value for sensor 10 to the highest PC2 value for sensor
13. Plotting this against the distance from each sensor to the heater yields the plot
in figure 4.4. Here there is a clear, for most sensors, linear relationship between their
distance to the heater and their PC2 value. Table 3.1 provides an overview of the sensor
locations and their distance from the heater.

Compared to the earlier results, where PCA was used to investigate relationships
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Figure 4.4.: PC2 loading for sensors against their respective Euclidean distance to the
heater. There is a clear trend showing that PC2 captures mostly their
distance from the heater, with lower PC2 loading meaning a smaller distance
to the heater. The number indicates the sensor number.

between controls and measurements, these results show how PCA can be used to explore
heat transfer dynamics. PCA manages to unveil the distance from the sensors to the
heater through PC2. These results would be challenging to find by just looking at the
data. On the other hand, this way of interpreting PC2 is hard to find without knowledge
about sensor placement.

FFT

To determine the dominant frequencies in the data, the Fourier transform was applied
to the temperature and moisture measurements from the greenhouse. As discussed in
section 2.1.2, Fourier transform requires the signal to be stationary over time for a correct
transformation. However, the data from the greenhouse system, especially the moisture
measurements, is likely to be non-stationary due to the non-linear dynamics and the
random and cyclic control inputs. Therefore, the results of the FFT analysis should be
interpreted with caution.

Figure 4.5 shows the temperature data with its corresponding FFT. The temperature
data exhibits a clear periodic pattern with a frequency of 0.5 cycles per hour, which
corresponds to the heater duty cycle of 2 hours. The temperature data also shows
some fluctuations due to the effect of the fans, which are turned on and off at irregular
intervals.

Figure 4.5b shows the magnitude spectrum of the temperature data obtained by taking
the absolute value of the FFT output. The magnitude spectrum indicates the relative
strength of each frequency component in the signal. The spectrum has a prominent
peak at 0.00015 Hz, which corresponds to a period of 2 hours, confirming the visual
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(a) Temperature measurments from greenhouse. (b) FFT of temperature measurements from green-
house.

Figure 4.5.: Temperature measurements and its corresponding FFT from greenhouse
data. Note how the time domain measurements look noisy with no clear
patterns and how the energy is spread in many different frequencies.

(a) Moisture measurments from greenhouse. (b) FFT of moisture measurements from greenhouse.

Figure 4.6.: Moisture measurements and its corresponding FFT from greenhouse data.
Note how the time domain measurements look noisy with no clear patterns
and how the energy is spread in many different frequencies.

observation of the temperature data. The spectrum also has some smaller peaks at
higher frequencies, which may represent some noise or other effects in the signal.

The same procedure was applied to the moisture measurements from the greenhouse,
shown in figure 4.6. The moisture data is more noisy and less periodic than the temper-
ature data, making it harder to identify any dominant frequencies by visual inspection.

Figure 4.6b shows the frequency spectrum of the moisture data obtained by taking the
absolute value of the FFT output. The spectrum has a broad peak around 0.0012 Hz,
which corresponds to a period of about 13 minutes. This frequency does not match any
known control input or physical phenomenon in the greenhouse system and may be an
artefact of noise or measurement error. The spectrum also has a smaller peak at 0.00013
Hz, which corresponds to a period of about 2 hours. This frequency matches the heater
duty cycle, suggesting that there is some influence of temperature on moisture.

These results demonstrate that FFT analysis can reveal some information about the
frequency content of the signals from the greenhouse system, but it also has some lim-
itations due to noise and non-stationarity. A more advanced method or model may be
needed to capture the complexity and variability of the greenhouse system.
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EMD and FFT

To extract the periodic information from the moisture measurements, which appeared
to be noisy and complex, EMD was applied to the data. Figure 4.6 shows the moisture
measurement and the corresponding FFT. The moisture signal looks rather noisy and
it is difficult to discern any patterns or dominant frequencies by visual inspection. The
FFT of the signal, from the last section, shows that the energy is spread over a wide
range of frequencies, with a slight peak at about 0.00125 Hz, corresponding to a period
of about 13 minutes.

Figure 4.7 shows some selected IMFs and their FFTs obtained by applying EMD
to the moisture signal. Most of the IMFs are mainly noise, but some contain useful
information. For example, IMF 11 and its FFT, shown in figure 4.7a and figure 4.7b,
respectively, reveal a frequency component with a period of 2 hours. This matches the
heater duty cycle, which is the main driver for temperature change in the greenhouse.
As the theory suggests, an increase in the temperature has some effect on the moisture.

Another example is IMF 12 and its FFT, shown in figure 4.7c and figure 4.7d, respec-
tively. They show a frequency component with a period of about 4 hours. This matches
the frequency of when the fans are turned on for a brief moment and air is blown through
the greenhouse. As the temperature inside the greenhouse is different from the one in
the outside office, air blowing through the greenhouse will affect the temperature. And,
as mentioned earlier, an increase in temperature will affect the moisture level.

Finally, IMF 14 and its FFT, shown in figure 4.7g and figure 4.7h, respectively, show
a frequency component with a period of about 24 hours. This matches the period of the
light intensity in the greenhouse, as the greenhouse is placed in an office with windows.
In addition to increased temperature, the increased light intensity will also affect the
temperature and the moisture.

The results indicate that EMD can successfully extract different periodic components
from the moisture signal and uncover their hidden information. The IMFs obtained by
EMD reflect the influence of both the temperature and light intensity on the moisture
level in the greenhouse. However, it is important to acknowledge that when looking
for patterns and information, one may find what one expects to find. Therefore, it is
possible that the temperature, fans, and light, do not have a significant impact on the
moisture, but rather that their frequencies are detected by coincidence.

The results in figure 4.7 also demonstrate how EMD removes high-frequency noise
components from the signal. All IMFs from EMD are shown in figure D.1. Analyzing
the first 10 IMFs shows that they contain a range of frequencies that either do not seem
to have any meaningful information or have their energy spread over a wide range of
frequencies. Therefore, these first 10 IMFs can be considered as containing mostly noisy
parts of the signal and thus, in some sense, act as a noise filter.

EEMD and FFT

As discussed in section 4.1.1, EMD can decompose the data into IMFs that each contain
information about the dynamics of the greenhouse. However, EMD is prone to mode
mixing, which means that the IMFs may not represent distinct scales of oscillations in
the signal. In figure 4.7, the IMFs look noisy and their FFTs have energy spread over a
wide range of frequencies, suggesting that the modes of the IMFs are not well separated.
To overcome this problem, EEMD, instead of EMD, is used to decompose the signal
into IMFs with a lower degree of mode mixing. All IMFs from EEMD are shown in
figure E.1.
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4. Results and Discussions

(a) IMF 11 (b) FFT of IMF 11. The red stem marks the frequency
of the sinusoidal heater duty cycle variations (2
hours).

(c) IMF 12 (d) FFT of IMF 12. The red stem marks the frequency
of when the fans are on (4 hours).

(e) IMF 13 (f) FFT of IMF 13. The red stem marks a frequency
of twice the frequency of fans are on (8 hours)

(g) IMF 14 (h) FFT of IMF 14. The red stem marks a frequency
of 24 hours.

Figure 4.7.: IMF and its FFT frequency plot for selected IMFs. Figure 4.7a, figure 4.7c,
figure 4.7e and figure 4.7g shows the 11th, 12th, 13th and 14th IMF of the
signal, respectively. And figure 4.7b, figure 4.7d, figure 4.7f and figure 4.7h
shows their corresponding FFTs.
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4.1. Exploratory Data Analysis

Figure 4.8 shows some of the IMFs of the EEMD and their corresponding FFTs.
The IMFs in this case still look noisy, indicating that the modes are still somewhat
mixed. However, the FFTs of the IMFs from EEMD show some clearer peaks at certain
frequencies, which are further investigated.

Figure 4.8a and figure 4.8b show the 14th IMF and its corresponding FFT. The FFT
has a prominent peak at a frequency corresponding to a period of 2 hours, which matches
the heater duty cycle.

Figure 4.8c and figure 4.8d show the 15th IMF and its corresponding FFT. The FFT
has two dominant peaks, one at a frequency corresponding to a period of 2 hours and
another at a frequency corresponding to a period of 4 hours. As the heater duty cycle
has a period of 2 hours and the fan has a period of 4 hours, this IMF seems to capture
a combination of the effects of these controls.

Figure 4.8e and figure 4.8f show the 16th IMF and its corresponding FFT. The FFT
has two peaks, one at a frequency corresponding to a period of 8 hours and another at a
frequency corresponding to a period of 24 hours. The period of 8 hours is a multiple of
both the heater duty cycle period and the fan control period and may be a result of their
interaction. The period of 24 hours matches the light intensity in the room, indicating
that the light may affect the moisture level.

Finally, figure 4.8g and figure 4.8h show the 17th IMF and its corresponding FFT. The
FFT has a single peak at a frequency corresponding to a period of 24 hours, confirming
the influence of light intensity on moisture.

Based on the results, EEMD did not seem to improve mode mixing and performance
significantly compared to EMD on this data set. The IMFs obtained by EEMD still
looked noisy and their FFTs still had energy spread over a wide range of frequencies.
This may be due to several different reasons. The moisture signal may be inherently
noisy and complex, making it hard to decompose it into distinct modes of oscillations
or the added white noise may not be sufficient or appropriate to separate the modes of
oscillations in the moisture signal.

4.1.2. Field Scale: Oil Drilling Hole Cleaning Process

PCA

Figure 4.9 shows a scatter plot of the control variables along PC1 and PC2 axes. The
PCA is performed on the control variables, mud density (DMIAVG), flow in (FLIAVG),
weight on bit (WOBAVG) and revolutions per minute (RPMBAVG) to investigate their
relationship with ECD.

PC1 explains 48.03% of the variance. Along PC1, DMIAVG, FLIAVG, and RPM-
BAVG are positively correlated with ECD, while WOBAVG is negatively correlated.
This indicates that increasing DMIAVG, FLIAVG, and RPMBAVG increases ECD while
increasing WOBAVG decreases ECD. For the positively correlated variables, this is con-
sistent with the theoretical equation of ECD (equation (2.24)), which shows that ECD
depends on the weight and pressure of the fluid exiting the hole, the annular pressure
loss, and the cuttings concentration.

Increasing DMIAVG will increase the mud weight at the exit, consequently increasing
ECD. Increasing the FLIAVG will increase the annular pressure loss. While the RP-
MAVG can be adjusted in a way to increase the rate of penetration and therefore also
the amount of cuttings left in the hole. This increased amount of cuttings will lead to
increased mud weight at the exit. Therefore, PC1 captures the proportional relationship
between some of the control variables and ECD.
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(a) IMF 14 (b) FFT of IMF 14. The red stem marks the frequency
of the sinusoidal heater duty cycle variations (2
hours)

(c) IMF 15 (d) FFT of IMF 15. The red stem marks a frequency
of 2 hours and the yellow stem marks a frequency
of 4 hours.

(e) IMF 16 (f) FFT of IMF 16. The red stem marks a frequency
of 8 hours and the yellow stem marks a frequency
of 4 hours.

(g) IMF 17 (h) FFT of IMF 17. The red stem marks a frequency
with a period of 24 hours.

Figure 4.8.: IMF and its FFT frequency plot for selected IMFs. Figure 4.8a, figure 4.8c,
figure 4.8e and figure 4.8g shows the 14th, 15th, 16th and 17th IMF of the
signal, respectively. And figure 4.8b, figure 4.8d, figure 4.8f and figure 4.8h
shows their corresponding FFTs.
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4.1. Exploratory Data Analysis

WOBAVG has a negative correlation with ECD along PC1. This implies that WOBAVG
has an inverse relationship with ECD during drilling. However, the exact mechanism of
how WOBAVG affects ECD is not clear. It may affect other parameters that in turn af-
fect ECD. For example, decreasing WOBAVG may reduce the rate of penetration, which
may reduce the cuttings and ECD. Therefore, it is not unreasonable that WOBAVG has
a negative correlation with ECD.

PC2 explains 21.99% of the variance. The variables have different directions along
PC2, indicating that they have different effects on ECD. FLIAVG and RPMBAVG are
positively correlated with ECD along PC2, while DMIAVG andWOBAVG are negatively
correlated. This is consistent with the results in PC1. DMIAVG and WOBAVG are
negatively correlated with ECD in this PC. For WOBAVG, this is consistent with the
results in PC1, but not for DMIAVG.

DMIAVG has a different correlation with ECD along PC1 and PC2. This shows that
DMIAVG can affect ECD both positively and negatively. Figure 3.12 shows the controls
and ECD. The DMIAVG has the same pattern at the beginning of the drilling operation,
but its mean decreases towards the end. However, the ECD keeps increasing. This may
explain the negative relationship, but the theoretical explanation is not clear.

The PCA analysis reveals that some of the control variables and ECD have different
correlations along PC1 and PC2. This reflects the different effects of the control pa-
rameters on ECD depending on how they are adjusted during drilling operations. This
implies that the operators manipulate the parameters to change ECD in various ways,
sometimes proportionally and sometimes inversely. This is according to theory.

The relationships between the different variables found using PCA are also mostly
consistent with the theory. Theory agrees with the positive correlations between DMI-
AVG, RPMAVG, FLIAVG and ECD in PC1. The inverse relationship between ECD
and WOBAVG is harder to explain using theory, but the relationship is not direct and
may be complex. For PC2, the positive correlations between FLIAVG, RPMAVG and
ECD remain, but the DMIAVG now has a negative correlation. In the same way as
WOBAVG, this is difficult to explain using theory, but looking at the plots, it is not
unreasonable. WOBAVG still correlates negatively, also in PC2.

EMD and EEMD

each method to illustrate the range of the IMFs, without implying any correspondence
between the same numbered IMFs from different methods. EMD produced 24 IMFs and
EEMD produced 20 IMFs. For the curious reader, all IMFs from EMD and EEMD are
shown in figure F.1 and figure G.1, respectively.

As can be seen from figure 4.10, EMD failed to preserve the important information in
the ECD signal, such as the points where the signal characteristics changed significantly.
These points were distributed over different IMFs, resulting in a loss of interpretability.
Therefore, the IMFs from EMD were not suitable for further analysis.

On the other hand, EEMD maintained the signal features and patterns in the IMFs,
as shown in figure 4.11. The points where the ECD characteristics changed were visible
in all IMFs, indicating a better decomposition quality. Therefore, the IMFs from EEMD
were more informative and useful for further analysis.

Based on these results, EEMD outperforms EMD in terms of preserving the signal
features and patterns in the IMFs for the ECD. EMD distributes important information
over different IMFs, resulting in a loss of interpretability. EEMD maintains the signal
features and patterns in the IMFs, indicating a better decomposition quality. Therefore,
for this case, EEMD had been a more suitable decomposition method to apply to the
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Figure 4.9.: Loadings for PC1 and PC2 for drilling data. PCA is performed on the
control variables, mud density, weight on bit, flow in and RPM to investigate
their relationship with ECD. Weight on bit, flow in and RPM seems to be
negatively correlated with ECD, while mud density seems to be positively
correlated.
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4.1. Exploratory Data Analysis

(a) IMF 4 (b) IMF 8

(c) IMF 12 (d) IMF 16

Figure 4.10.: IMFs of EMD of ECD from drilling case A. Note how the important infor-
mation about changes in pattern seems to vanish after decomposition.
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(a) IMF 4 (b) IMF 8

(c) IMF 12 (d) IMF 16

Figure 4.11.: IMFs from EEMD of ECD from drilling case A. Note how the important
changes in the original data are kept after the decomposition.
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4.2. Predictive Analysis and Forecasting

Table 4.1.: Metrics for FFNN model performance on scenario 1.

Temperature Humidity

RMSE 0.90 2.96

MAE 0.81 2.52

MAPE 0.03 0.06

data before further analysis. These findings also show how EEMD can be useful when
it comes to anomaly detection in drilling operations, as it manages to detect significant
changes in the ECD measurements.

4.2. Predictive Analysis and Forecasting

This section presents the results of applying the FFNN model for predicting derivative,
the LSTM model for predicting the next value, and the LSTM model for predicting
derivative to greenhouse data. The predictions are presented, one by one, with plots
and tables with metrics. Their performance is evaluated based on metrics and visual
inspection of the scenarios presented in chapter 3.

4.2.1. Laboratory Scale: Greenhouse

FFNN to Predict Derivative

The first model was to use a FFNN to predict the derivative. This model only uses
information about the states in the last time step to predict the derivative that ”moves”
the system from the current time step to the next.

The performance of the model on the data from scenario 1 is evaluated by comparing
the predicted value of temperature and humidity, as shown in figure 4.12. The corre-
sponding metrics are shown in table 4.1. In this scenario, the test set exhibits much
of the same dynamics as the training set. The model predicts the temperature fairly
well but drifts away from the actual values towards the end. This may be because the
test data has a drift in the temperature that is not present in the training data. The
model also predicts the humidity with reasonable accuracy, but it overestimates the
peaks and dips. This may be due to the standardization and de-standardization process
for the model’s inputs and outputs. The model is trained on standardized data using
the mean and standard deviation from the training data. The same mean and standard
deviation are used to standardize the input before feeding the data into the model and
to de-standardize the output of the model to get predictions. However, the test data
has smaller peaks and dips in the humidity, as seen in figure 3.3 and figure 3.4. There-
fore, using the mean and standard deviation of the training data may introduce some
distortions to the data.

The metrics for the model performance on scenario 1 are shown in table 4.1. The
prediction has a RMSE of 0.90, which is low compared to the range of the temperature
in the test set, which is 6.92 (see table 3.3). For the humidity, the RMSE are 2.96, which
also is low compared to the range of the humidity, 23.79 (see table 3.3). The MAE,
suggest the same as the RMSE, 0.81 for temperature and 2.52 for humidity, which is low
compared to their range. The MAPE further emphasizes the good fit, with values of,
0.03 for temperature and 0.06 for humidity.

In scenario 2, the model is tested on more complex data. The results are shown in
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4. Results and Discussions

(a) Measurement and prediction of temperature for scenario 1 using FFNN to predict derivative

(b) Measurement and prediction of humidity for scenario 1 using FFNN to predict derivative

Measurement Prediction

Figure 4.12.: Measurement of temperature and humidity in the greenhouse along with
predictions on the test set from scenario 1 using the FFNN model. Fig-
ure 4.12a shows the temperature and the corresponding prediction and
figure 4.12b shows the humidity and the corresponding prediction.
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Table 4.2.: Metrics for FFNN model performance on scenario 2.

Temperature Humidity

RMSE 1.49 12.19

MAE 1.44 11.85

MAPE 0.05 0.43

Table 4.3.: Metrics for FFNN model performance on scenario 3.

Temperature Humidity

RMSE 1.35 14.02

MAE 1.08 13.36

MAPE 0.03 0.51

Figure 4.13 and table 4.2. For the temperature, the model follows the pattern of the
actual data, but it has a systematic bias, probably due to the standardization and de-
standardization reasons discussed earlier. For the humidity, the model has a bias and
a different scale than the actual data. The model does not capture the depth of the
dips and the height of the peaks of the actual humidity data, again probably due to
standardization issues.

For scenario 2, the test set has a range of 4.21 for temperature and 16.33 for humidity,
as shown in table 3.4. The model has a RMSE of 1.49 for temperature and 12.19 for
humidity, which are high compared to the ranges of temperature and humidity values.
This means that the model has large errors in predicting the temperature and humidity.
The MAE also indicates a poor fit, with values of 1.44 for temperature and 11.85 for
humidity, which are high compared to their ranges. The MAPE shows that the model
has small relative errors in percentage terms for the temperature, with values of 0.05, and
large relative percentage errors for humidity, with 0.43. The difference in the pattern
from the training set to the test set makes it difficult for the model to predict, and
combining this with standardization issues will result in bad predictions.

Lastly, the model was used for prediction on the most challenging scenario. Here, the
test data has no cyclical patterns and different controls compared to the two other test
sets and the training set. The prediction of the model is shown in figure 4.14. For the
temperature, the model seems to have learnt how the different control inputs affect the
patterns in the data. This is seen as the prediction of temperature following the same
pattern as the actual data. The humidity is worse. The model is heavily biased, with
too high humidity prediction almost all the way.

Based on the metrics in table 4.3, the model has moderate accuracy when predicting
the temperature, but struggles with the humidity. The temperature and humidity range
for the test set in this scenario is 6.99 and 21.98 (see table 3.5). The RMSE are 1.35 for
the temperature and 14.02 for the humidity, given the ranges, this indicates a moderate
accuracy on the temperature and bad accuracy on the humidity. The MAE indicates
the same, with 1.08 for the temperature and 13.36 for the humidity. The prediction
has a fairly low MAPE for the temperature, at 0.03. A MAPE of 0.51 for the humidity
indicates a bad fit.

To summarize, prediction of the derivative with a FFNN model performs well when the
data is cyclical and stationary. When the data is not the temperature predictions tend
to be better. This is probably due to more direct interactions between the temperature
and heater duty cycle making the temperature easier to predict.
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(a) Measurement and prediction of temperature for scenario 2 using FFNN to predict derivative

(b) Measurement and prediction of humidity from for scenario 2 using FFNN to predict derivative

Measurement Prediction

Figure 4.13.: Measurement of temperature and humidity in the greenhouse along with
predictions on scenario 2 from the FFNN model. Figure 4.13a shows the
temperature and the corresponding prediction and figure 4.13b shows the
humidity and the corresponding prediction.
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(a) Measurement and prediction of temperature for scenario 3 using FFNN to predict derivative

(b) Measurement and prediction of humidity for scenario 3 using FFNN to predict derivative

Measurement Prediction

Figure 4.14.: Measurement of temperature and humidity in the greenhouse along with
predictions on scenario 3 from the FFNN model. Figure 4.14a shows the
temperature and the corresponding prediction and figure 4.14b shows the
humidity and the corresponding prediction.
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Table 4.4.: Metrics for LSTM model prediction on greenhouse scenario 1

Temperature Humidity

RMSE 1.26 3.70

MAE 1.13 3.14

MAPE 0.04 0.07

Table 4.5.: Metrics for LSTM model prediction on greenhouse scenario 2

Temperature Humidity

RMSE 2.17 11.22

MAE 1.96 10.54

MAPE 0.07 0.38

LSTM to Predict Next Timestep

In this section, a LSTM was used to estimate the next temperature and humidity values
given the last 50 (last 12 minutes and 24 seconds) measurements and/or predictions.

A plot of the prediction on scenario 1 is shown in figure 4.15 with corresponding
metrics shown in table 4.4. Looking at the plot of the temperature, the prediction is
good at the start but deviates towards the end. For the humidity it is the opposite,
the predictions are biased in the start but get better towards the end when the actual
humidity is rising. Also for this model, the data is standardised before being fed into the
model as input and de-standardized before becoming a prediction. Therefore, the bias
may be a result of this difference in mean and standard deviation between the training
set and test set.

The metrics for the LSTM model prediction on scenario 1 are shown in table 4.4.
The results show that the model has low accuracy in predicting the temperature, with a
RMSE of 1.26, a MAE of 1.13, and a MAPE of 0.04, with a temperature range of 6.92.
On the other hand, the model had moderate accuracy in predicting the humidity, with
a RMSE of 3.70, a MAE of 3.14, and a MAPE of 0.07, with a humidity range of 23.79.
This suggests that the model can capture some of the variability and trend of the data,
but the plot suggests that it is biased.

The LSTMmodel prediction on scenario 2 is shown in figure 4.16 and its corresponding
metrics are shown in table 4.5. For this scenario, the LSTM model suffers from some of
the same problems as in scenario 1. For both humidity and temperature, it starts well
with good predictions for both measurements, but the model gets more and more biased
towards the end resulting in some pretty bad predictions towards the end. Again, this
is probably due to the difference in mean and standard deviation between the training
set and the test set.

The metrics for scenario 2 are shown in table 4.5. The results show that the model
has low accuracy in predicting both the temperature and the humidity, with a RMSE of
2.17 and 11.22, a MAE of 1.96 and 10.54, and a MAPE of 0.07 and 0.38, respectively.
The range of the temperature data was 4.21, and the range of the humidity data was
16.33.

Lastly, this model was also on the more challenging data from scenario 3, shown in
figure 4.17. For the temperature, the model manages to capture both the pattern and
scales of the test data in a good way. It struggles a bit with the highest peaks but
captures the lows. For the humidity data, the model struggles a bit more and predicts
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(a) Measurement and prediction of temperature for scenario 1 using LSTM to predict next value

(b) Measurement and prediction of humidity for scenario 1 using LSTM to predict next value

Measurement Prediction

Figure 4.15.: Measurements and prediction of temperature (figure 4.15a) and humidity
(figure 4.15b) on scenario 1. The predictions are made using a LSTM to
predict the temperature and humidity at each time step.
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(a) Measurement and prediction of temperature for scenario 2 using LSTM to predict next value

(b) Measurement and prediction of humidity for scenario 2 using LSTM to predict next value

Measurement Prediction

Figure 4.16.: Measurements and prediction of temperature (figure 4.16a) and humidity
(figure 4.16b) on scenario 2. The predictions are made using a LSTM to
predict the temperature and humidity at each time step.
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Table 4.6.: Metrics for LSTM model prediction in greenhouse scenario 3.

Temperature Humidity

RMSE 0.95 12.19

MAE 0.75 11.42

MAPE 0.02 0.42

Table 4.7.: Metrics for LSTM model predicting the derivative in greenhouse scenario 1.

Temperature Humidity

RMSE 0.84 3.05

MAE 0.75 2.58

MAPE 0.03 0.06

too high humidity throughout the time horizon, but manages to capture the pattern.

The metrics for the predictions in scenario 3 are shown in table 4.6. The results
indicate that the model has a high accuracy in predicting the temperature, with a low
RMSE of 0.95, a low MAE of 0.75, and a low MAPE of 0.02, with a temperature range
of 6.99. However, the model has low accuracy in predicting the humidity, with a high
RMSE of 12.19, a high MAE of 11.42, and a high MAPE of 0.42, with a humidity range
of 21.98.

To summarize, the results show that the model performs well in predicting the tem-
perature in all scenarios, but poorly in predicting the humidity in scenarios 1 and 2.
The model also suffered from some bias issues, especially in scenarios 1 and 2, where the
predictions deviate significantly from the actual measurements. As for the FFNN model,
one possible reason for this bias is that the data was standardized before feeding into the
model, and de-standardized before becoming a prediction. This might have caused some
discrepancy between the mean and standard deviation of the training and test sets.

LSTM to Predict Derivative

The last model is the LSTM model used to predict the derivative. This model uses the
last data from the last 50 timesteps (the last 12 minutes and 24 seconds) to predict the
derivatives that take the temperature and humidity to their next values.

The results on the first, simple data set are seen in figure 4.18. Here you can see that,
similar to the other models, this model performs well in predicting both temperature
and humidity. But, similar to the other models, this model also struggles to capture
the downward trend in temperature and the upward trend in humidity. Also here, the
difference in the standard deviation from the training data makes the predictions deviate
from the true data in the highs and lows.

Looking at the metrics for the prediction in table 4.7, the model performs well for
both temperature and humidity. In this scenario, the temperature range is 6.92 and the
humidity range is 23.79. For temperature prediction, the RMSE are 0.84, the MAE are
0.75, and the MAPE are 0.03. Given the range, this indicates a good fit. For humidity
prediction, the RMSE are 3.05, the MAE are 2.58, and the MAPE are 0.06. Again, given
the range, this indicates a good fit. This is the best fit among all the other models.

The model was then tested using the test data from scenario 2, shown in figure 3.5.
This dataset contains more high-frequency components in the temperature data and a
different humidity profile. Both the humidity and temperature predictions are seen in
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(a) Measurement and prediction of temperature for scenario 3 using LSTM to predict next value

(b) Measurement and prediction of humidity for scenario 3 using LSTM to predict next value

Measurement Prediction

Figure 4.17.: Measurements and prediction of temperature (figure 4.17a) and humidity
(figure 4.17b) on scenario 3. The predictions are made using a LSTM to
predict the temperature and humidity at each time step.
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(a) Measurement and prediction of temperature for scenario 1 using LSTM to predict derivative

(b) Measurement and prediction of humidity for scenario 1 using LSTM to predict derivative

Measurement Prediction

Figure 4.18.: Measurements and predictions of temperature (figure 4.18a) and humidity
(figure 4.18b) on scenario 1. The predictions are made using a LSTM to
predict the derivative at each time step.
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Table 4.8.: Metrics for LSTM model predicting the derivative in greenhouse scenario 2.

Temperature Humidity

RMSE 2.00 13.11

MAE 1.72 12.92

MAPE 0.06 0.46

Table 4.9.: Metrics for LSTM model predicting the derivative in greenhouse scenario 3.

Temperature Humidity

RMSE 2.19 5.00

MAE 1.88 4.09

MAPE 0.06 0.16

figure 4.19. As seen in figure 4.19a, the model manages to capture the pattern tem-
perature pattern in a good way, but there is a significant offset between the prediction
and true data. For the temperature, the peaks are too high, while for the humidity, the
prediction is biased throughout the data set.

The test set for scenario 2 has a temperature and humidity range of 4.21 and 16.33,
respectively. The metrics for model performance on the data are shown in table 4.8. The
RMSE for the prediction of temperature is 2.00 and for the prediction of humidity, it
is 13.11. This indicates bad performance for both measurements. The MAE shows the
same with a MAE of 1.72 for temperature and 12.92 for humidity. The MAPE are 0.06
for temperature and 0.46 for humidity, this indicates that the temperature prediction is
better than the humidity prediction.

Lastly, for this model, we have its performance on the most challenging scenario 3.
Looking only at the plot in figure 4.20 the model seems to perform badly. For the
temperature, the model is off from the very start and struggles to capture the dynamics.
For the humidity, the model does not seem to learn how the interactions in the greenhouse
are and it predicts almost a straight line with an upward trend.

The metrics for scenario 3 are shown in table 4.9. The temperature and humidity
range for this data set are 6.99 and 21.98, respectively. An RMSE of 2.19 and a MAE
of 1.88 for the temperature predictions indicate that the predictions are off. For the
humidity, a RMSE of 5.00 and MAE of 4.09 is good compared to the other models.
The RMSE are 0.06 for the temperature and 0.16 for the humidity, which is also low
compared to the other models.

To summarize, the LSTM model for predicting the derivative also struggles with the
same problems as the other models. It performs best in scenario 1 but struggles more
with the more complex data in the other scenarios. For the most complex scenario,
scenario 3, it achieves good RMSE, MAE and MAPE values, especially for temperature.

Model Comparison

For the prediction of oil drilling data, only the best model will be used. The FFNN
model has the highest performance metrics across all scenarios and variables. However,
the main goal is to find a model that can generalize well and handle new dynamics, which
are best represented by greenhouse scenario 3. Looking only at the metrics, the FFNN
model still has the highest performance metrics for both humidity and temperature in
this scenario, with the LSTM model right behind.
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(a) Measurement and prediction of temperature for scenario 2 using LSTM to predict derivative

(b) Measurement and prediction of humidity for scenario 2 using LSTM to predict derivative

Measurement Prediction

Figure 4.19.: Measurements and predictions of temperature (figure 4.19a) and humidity
(figure 4.19b) on scenario 2. The predictions are made using a LSTM to
predict the derivative at each time step.
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(a) Measurement and prediction of temperature in greenhouse using LSTM to predict derivative

(b) Measurement and prediction of humidity in greenhouse using LSTM to predict derivative

Measurement Prediction

Figure 4.20.: Measurements and predictions of temperature (figure 4.20a) and humidity
(figure 4.20b) on scenario 3. The predictions are made using a LSTM to
predict the derivative at each time step.
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Table 4.10.: Metrics for prediction of ECD in scenario 1.

Value

RMSE 0.0156

MAE 0.0086

MAPE 0.0059

All models have difficulty in predicting humidity, especially in scenarios 2 and 3, while
they perform better on temperature. Therefore, only temperature prediction will be
considered for selecting the best model for oil drilling data. For temperature prediction
in scenario 3, the FFNN and LSTM models have similar performance metrics, with the
LSTM model having slightly better performance.
To further distinguish between the models, the plots of the predicted and actual

values are examined. Figures figure 4.14 and figure 4.17 show the plots of the FFNN
and LSTM models for temperature prediction in scenario 3, respectively. The LSTM
model seems to capture the pattern of the temperature more accurately than the FFNN
model. Therefore, based on both quantitative and qualitative analysis, the LSTM model
is selected as the best model for predicting oil drilling data.

4.2.2. Field-scale: Oil Drilling Hole Cleaning Process

Evaluation of the model’s performance on the greenhouse data suggests that the LSTM
model may be the best-performing model, both when it comes to both performances on
the simple model and when generalizing to more complex data. To further examine the
possibilities of this model, it is tested on the different scenarios of the oil drilling data.

LSTM to Predict Next Value

The predictions for scenario 1 are shown in figure 4.21 and the corresponding metrics
are shown in table 4.10. In this scenario, the model was trained on a data set that
contained a different pattern from the test set, with some samples of the same pattern
also included. The plot of the actual and predicted ECD shows that the model was able
to learn the pattern from the data with a small exposure to it.
The range of the ECD in the test set for scenario 1 was 0.08 (see table 3.7). The RMSE

for the ECD prediction is 0.016, which is relatively high compared to the ECD range.
The MAE are 0.0086, which is much lower than the RMSE. This suggests that there
are some outliers in the errors that increased the RMSE. By looking at figure 3.9, it can
be seen that the prediction follows the pattern well, but some points, especially towards
the end, have errors. The MAPE was 0.0059, which indicates that the prediction has a
low error relative to the actual values and therefore a good performance considering the
values of the actual ECD at each time step.
In scenario 2, the model is trained only on the initial pattern in the training data and

tested on the other pattern. The prediction and actual value of the ECD are shown in
figure 4.22. From this, it is clear that when the new pattern is not shown to the model
during training, it struggled with predictions. The model started too low and then
gave too high predictions throughout the prediction horizon. However, the predictions
follow the dips in the data well. As for the greenhouse data, one possible reason for
this bias could be that the mean and standard deviation used for standardizing and de-
standardizing the data is different for the training and test sets. The standard deviation
differs significantly, with a value of 0.03 in the training set and 0.01 in the test set.
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Measurement Prediction

Figure 4.21.: Measurement of ECD and prediction of ECD in scenario 1. The model gets
a brief taste of the new pattern during training and manages to predict well.

Table 4.11.: Metrics for prediction of ECD in scenario 2.

Value

RMSE 0.0372

MAE 0.0310

MAPE 0.0212

The metrics for scenario 2 are presented in table 4.11. For this scenario, the range of
the ECD is 0.09 (see table 3.9). This is a similar range as in scenario 1, but comparing it
with the RMSE of 0.372, a MAE of 0.0310 and a MAPE of 0.0212 with those in scenario
1, this indicates a worse fit. As already mentioned, the model is biased throughout the
prediction, therefore a MAE larger than the range of the data is not surprising.

Scenario 3 also involved training the model on data with one pattern and testing it on
data with another pattern, so a similar performance as in scenario 2 was expected. The
prediction and actual ECD for this scenario are shown in figure 4.23. As can be seen,
the prediction tends to overestimate the ECD compared to the actual ECD. However,
the model also captures the dips in the data well, although they seemed to be of a
greater magnitude than the ones in the actual ECD measurements. Looking at the
statistical properties of case A and case B in table 3.10 and table 3.11, respectively,
case A has a standard deviation of 0.02, while case B has a standard deviation of 0.01.
Considering that the data were standardized and de-standardized during prediction using
the standard deviation of case A, this mismatch is expected.

The metrics for scenario 3 are presented in table 4.12. As mentioned in the previous
paragraph, the model performed similarly to the one in scenario 2. This is also reflected
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Measurement Prediction

Figure 4.22.: Actual ECD and prediction of ECD using LSTM model for scenario 2. The
model is trained solely on a different pattern than in the data set, resulting
in biased predictions. But the prediction seems to follow the pattern of the
actual ECD in a good way.
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Measurement Prediction

Figure 4.23.: Actual ECD measurements and predictions of ECD using LSRM model for
scenario 3. The model is trained on case A and the predictions are done
on case B.
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Table 4.12.: Metrics for prediction of ECD in scenario 3.

Value

RMSE 0.0664

MAE 0.0526

MAPE 0.0378

by the performance metrics. The range of the ECD in case B is 0.085, the RMSE for the
prediction is 0.0664, the MAE is 0.0529, and the MAPE is 0.0378. This is in the same
range as for scenario 2.

The above results show that the LSTM model also performed well on the oil drilling
data when it is trained on a data set that contained some samples of the same pattern
as the test set. However, when the model is trained on a data set that has a different
pattern from the test set, it fails to predict the ECD accurately. This suggests that the
LSTM model is sensitive to the pattern of the data and requires some exposure to the
new pattern during training to adapt to it. The model also seems to be affected by the
difference in the mean and standard deviation of the training and test sets, which caused
a bias in the predictions. Therefore, getting some estimate of the mean and standard
deviation of the teest set and using this for standardization and de-standardization of
the data would probably improve the results. The model can capture the dips in the
data well but sometimes exaggerates them compared to the actual ECD measurements.
This could be due to the high variability of the ECD data and the difficulty of predicting
its dynamics. Overall, the LSTM model shows promising results for predicting ECD in
both greenhouse and field-scale scenarios, but it needs further improvement and tuning
to handle different patterns and reduce errors.
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5. Conclusion and Further Work

This thesis aimed to show how readily available (and on-demand generated) lab scale
data from a greenhouse can be used to evaluate and compare different time series analysis
and forecasting methods applied for hole cleaning in oil drilling. The main goal was to
demonstrate how the greenhouse data can serve as a proxy for the oil drilling data,
and how the methods and techniques can help to understand and predict hole cleaning
performance in oil drilling.

The first objective was to collect and pre-process the greenhouse data and the oil
drilling data for time series analysis and forecasting. The data were re-sampled and
standardized to make them suitable for the methods and techniques.
The second objective was to apply various time series analysis methods, such as PCA,

EMD, EEMD and FFT to the greenhouse data and the oil drilling data to get a better
understanding of the underlying dynamics. These methods were able to reveal the
interactions between the measurements and controls in the greenhouse data, such as
the temperature and heater duty cycle, light intensity and lighting, and humidity and
temperature. Therefore, PCA was applied to investigate the dynamics of the oil drilling
controls and measurements, such as the flow rate, pressure and ECD. The results showed
that PCA could capture the main variations in the data and identify the most influential
variables for each scenario.
The third objective was to identify the best methods for prediction of ECD in oil

drilling, using the greenhouse data as a proxy. The greenhouse data was used to generate
different data with different patterns and three scenarios was constructed, each with
different patterns and complexities. A FNN model for predicting the derivative, a LSTM
model for predicting the next value and a LSTM mode for predicting the derivative were
applied to greenhouse data and evaluated. All models performed well on simple data, but
for more complex data, especially the humidity predictions were poor. The LSTM and
FFNN models had good generalizability, performing well on totally different patterns.
The LSTM model was the best model and it was used for prediction of ECD on oil
drilling data.
For ECD predictions, the LSTM model performed well when predicting on already

seen patterns, even if it was just a small peak. For the models with different patterns,
it struggled more. It got the patterns, but was biased due to a difference in the mean
and standard deviation of the different data sets. These were used for standardization
and de-standardization of the data before feeding it to the model and after getting the
model prediction.
The main contribution of this thesis is to show how inexpensive lab scale data from a

greenhouse can be used to develop, test and validate different time series methods and
techniques for analysis and forecasting on hole cleaning data from oil drilling. This can
help to reduce the cost and risk of collecting and processing real oil drilling data, which
is often scarce, noisy and expensive. The thesis also demonstrated how PCA, EMD,
EEMD, FFT, FFNN and LSTM can be applied to both greenhouse data and oil drilling
data to understand and predict their dynamics and performance. The results showed
that these methods and techniques can provide useful insights and accurate predictions
for both scenarios, but they also have some limitations and challenges.
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A limitation of this research is that the greenhouse data and the oil drilling data are
not exactly equivalent, and there are major differences in the physical processes and
their noise levels. Therefore, the generalizability and the validity of the results may be
limited to the specific scenarios and the data sets used in this research.
Some directions for future work are:

• Create lab scale setups that has more similarities with hole cleaning in oil drilling.
This will increase the similarities of the dynamics between the inexpensive lab
scale data and the expensive field scale data. Consequently, the evaluation of the
models on the lab scale data would better resemble their performance on the field
scale data.

• Clearly, using a simple LSTM for prediction on data with such different patterns
as the ones presented in this thesis is not enough. Further improvements on the
models architectures, optimizers, loss functions and regularization techniques needs
to be investigated. Continuous learning with LSTM models seems to be a good
approach.

• Explore other aspects of hole cleaning performance that were not covered in this
research, such as detecting anomalies. This can help to provide more comprehen-
sive and useful information for improving hole cleaning performance in oil drilling.
Also, this can help removing anomalies from training sets and consequently im-
prove model performance.
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[47] F. Rodŕıguez, L.J. Yebra, M. Berenguel, and S. Dormido. Modelling and
simulation of greenhouse climate using dymola. IFAC Proceedings Vol-
umes, 35(1):79–84, 2002. ISSN 1474-6670. doi: https://doi.org/10.3182/
20020721-6-ES-1901.01322. URL https://www.sciencedirect.com/science/

article/pii/S1474667015397433. 15th IFAC World Congress.

[48] Shakir Saat, Sing Kiong Nguang, and Alireza Nasiri. Chapter 1 - introduc-
tion. In Shakir Saat, Sing Kiong Nguang, and Alireza Nasiri, editors, Analysis
and Synthesis of Polynomial Discrete-Time Systems, pages 1–27. Butterworth-
Heinemann, 2017. ISBN 978-0-08-101901-6. doi: https://doi.org/10.1016/
B978-0-08-101901-6.00001-3. URL https://www.sciencedirect.com/science/

article/pii/B9780081019016000013.

[49] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

86

https://wiki.pathmind.com/lstm
http://neuralnetworksanddeeplearning.com/
https://www.sciencedirect.com/science/article/pii/S009830042200084X
https://www.sciencedirect.com/science/article/pii/S009830042200084X
http://pressbooks-dev.oer.hawaii.edu/atmo/
https://www.mdpi.com/1424-8220/19/5/1168
https://www.mdpi.com/1424-8220/19/5/1168
https://www.sciencedirect.com/science/article/pii/S2590005620300096
https://www.sciencedirect.com/science/article/pii/S2590005620300096
https://www.sciencedirect.com/science/article/pii/S1474667015397433
https://www.sciencedirect.com/science/article/pii/S1474667015397433
https://www.sciencedirect.com/science/article/pii/B9780081019016000013
https://www.sciencedirect.com/science/article/pii/B9780081019016000013


Bibliography

[50] Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction
and overview. CoRR, abs/1912.05911, 2019. URL http://arxiv.org/abs/1912.

05911.
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A. Greenhouse Sensor Information

Table A.1.: The sensors used for measuring in the greenhouse.

Sensor: Link:

DHT22 Temperature-Humidity Sensor www.adafruit.com/product/385

Grove Light Sensor wiki.seeedstudio.com/Grove-Light Sensor/

Grove CO2 Sensor wiki.seeedstudio.com/Grove-CO2 Sensor/

Grove Capacitive Moisture Sensor wiki.seeedstudio.com/Grove-Capacitive Moisture...
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B. Code

There is quite a significant code base created along with this thesis. It will be available
at: https://github.com/emilhaugstvedt/master
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C. Model Hyperparameters

Table C.1.: Hyperparameters of FFNN model used for prediction of the derivative of
temperature and humidity.

Hyperparameters: Hyperparameter value:

Number of layers 4

Input layer size 4

Hidden layers size 32, 32

Output layer size 2

Activation function ReLU

Network optimizer Adam

Learning rate 0.0001

Number of epochs 12

L1 0.001

Table C.2.: Hyperparameters of LSTM model used for prediction of next value for tem-
perature and humidity. The LSTM network consists of a LSTM layer and
a fully connected output, with each part having its own set of parameters.
The first inputs to the table, marked with ”(LSTM)” is for the LSTM layer,
the next ones, marked with ”(ON)” is for the output network, and the last
set of parameters is for training. In some parameters there are difference
between the model for x and ẋ, in these cases ”(a)” means model for x and
(b) means model for ẋ.

Hyperparameters: Hyperparameter value:

Input size (LSTM) 4

Number of hidden layers (LSTM) 1

Hidden size (LSTM) 32 (a), 64 (b)

Dropout (LSTM) 0.4

Input size (ON) 32 (a), 64 (b)

Number of layers (ON) 3

Output size (ON) 2

Activation function (ON) ReLU

Network optimizer Adam

Learning rate 0.0001

Number of epochs 30

L1 0.0001

Lookback 30 (a), 50 (b)
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C. Model Hyperparameters

Table C.3.: Hyperparameters for LSTM model used for prediction on drilling data. The
first inputs to the table, marked with ”(LSTM)” is for the LSTM layer, the
next ones, marked with ”(ON)” is for the output network, and the last set
of parameters is for training.

Hyperparameters: Hyperparameter value:

Input size (LSTM) 5

Number of hidden layers (LSTM) 1

Hidden size (LSTM) 32

Dropout (LSTM) 0.4

Input size (ON) 32

Number of layers (ON) 3

Output size (ON) 2

Activation function (ON) ReLU

Network optimizer Adam

Learning rate 0.0001

Number of epochs 20

L1 0.0001

Lookback 30
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D. IMFs from EMD of Moisture

D. IMFs from EMD of Moisture

(a) IMF 1 (b) IMF 2

(c) IMF 3 (d) IMF 4

(e) IMF 5 (f) IMF 6

(g) IMF 7 (h) IMF 8
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(i) IMF 9 (j) IMF 10

(k) IMF 11 (l) IMF 12

(m) IMF 13 (n) IMF 14

(o) IMF 15

Figure D.1.: All IMFs from EMD of the moisture measurements.
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E. IMFs from EEMD of Moisture

E. IMFs from EEMD of Moisture

(a) IMF 1 (b) IMF 2

(c) IMF 3 (d) IMF 4

(e) IMF 5 (f) IMF 6

(g) IMF 7 (h) IMF 8
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(i) IMF 9 (j) IMF 10

(k) IMF 11 (l) IMF 12

(m) IMF 13 (n) IMF 14

(o) IMF 15 (p) IMF 16
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E. IMFs from EEMD of Moisture

(q) IMF 17 (r) IMF 18

(s) IMF 19 (t) IMF 20

Figure E.1.: All IMFs from EEMD of the moisture measurements.
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F. IMFs from EMD of ECD

F. IMFs from EMD of ECD

(a) IMF 1 (b) IMF 2

(c) IMF 3 (d) IMF 4

(e) IMF 5 (f) IMF 6

(g) IMF 7 (h) IMF 8
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(i) IMF 9 (j) IMF 10

(k) IMF 11 (l) IMF 12

(m) IMF 13 (n) IMF 14

(o) IMF 15 (p) IMF 16
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F. IMFs from EMD of ECD

(q) IMF 17 (r) IMF 18

(s) IMF 19 (t) IMF 20

(u) IMF 21 (v) IMF 22

(w) IMF 23 (x) IMF 24

Figure F.1.: All IMFs from EMD of the ECD measurements.
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G. IMFs from EEMD of ECD

G. IMFs from EEMD of ECD

(a) IMF 1 (b) IMF 2

(c) IMF 3 (d) IMF 4

(e) IMF 5 (f) IMF 6

(g) IMF 7 (h) IMF 8
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(i) IMF 9 (j) IMF 10

(k) IMF 11 (l) IMF 12

(m) IMF 13 (n) IMF 14

(o) IMF 15 (p) IMF 16
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G. IMFs from EEMD of ECD

(q) IMF 17 (r) IMF 18

(s) IMF 19 (t) IMF 20

Figure G.1.: All IMFs from EEMD of the ECD measurements.
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