Challenges of image segmentation of
corrosion damages using Mask R-CNN

NTNU

Author:
Helene Semb

Supervisor:
Annette Stahl

Specialization project
Department of Engineering Cybernetics

Norwegian University of Science and Technology

December 19, 2022

Executive summary

The goal of this thesis is to present and evaluate the challenges related to automatic
image segmentation of bridge damages, specifically related to corrosion. Robotic systems,
with the combination of unmanned aerial vehicles and artificial neural networks, have the
potential to replace manual inspection of corrosion damages to make them more effective,
where the network architecture Mask R-CNN is the recent state-of-the-art model for image
segmentation. To this end, a total of 1990 images have been used to train a segmentation
model for detecting corrosion. The network performs at a varying degree, often detect-
ing other objects like forests, water and clouds. Detecting corrosion damage is a complex
problem, requiring the network to adapt to its varying patterns to perform properly. This
paper will review methods of improving the image segmentation model based on a com-
prehensive literature study of similar tasks and challenges, to increase performance given
specific metrics. The conclusion is that an automated hyperparameter tuning can be used
to better adapt the network to the given dataset training, including making changes in the
network backbone to better extract information from the feature maps, another idea is to
extend the architecture to incorporate more than one network to further process images.

Table of Contents

Executive summary

Abbreviations

1 Introduction
1.1 Motivation e e e e
1.2 Background
1.3 Objectives e
1.4 Structure of thereport L

2 Theoretical background

2.1 Classification, object detection and segmentation
2.2 Convolutional Neural Networks
2.2.1 Overall architecture
23 MaskR-CNN e
2.3.1 Architecture.
232 Lossfunction
2.3.3 Evaluationmetric
234 Transferlearning
2.3.5 Hyperparameters
Image segmentation on structure damages
3.1 Goal of automated inspection
32 Currentstate e e e e
3.3 Relatedresearch
3.3.1 Object detection of damages
3.3.2 Corrosiondetection
34 Challenges.
341 Bridges
342 Detecting corrosion
343 Dataset

iv

W NN = -

ii

4 Implementation

4.1 Dataset

4.1.1 TImageacquisition
4.1.2 Image processingo i e
4.13 Imageannotation
42 Distributedcode
421 MaskR-CNN
422 Customdataset
4.3 Training and configuration of the corrosion dataset
44 Testingot
441 Results e
5 Discussion and suggestions of improvements
5.1 Refinement and tuning of hyperparameters
5.2 Improving backbone networko,
5.3 Two stage neural networks
5.4 Othersuggestions i e e
5.4.1 Transferlearning
5.4.2 Multi-class detection,
5.4.3 Increase efficiency and training time
5.4.4 Automatic image annotation

6 Conclusion and further work

6.1 Conclusion
6.1.1 Dataset
6.1.2 Implementation
6.2 Furtherwork
6.3 Delimitations
Bibliography
Appendix
A Distributed code

21
21
21
22
22
22
22
23
24
24
26

29
29
31
32
34
34
34
34
35

36
36
36
37
37
37

38

43

iii

Abbreviations

Abbreviation | Description

NPRA Norwegian Public Road Administration
IoT Internet of Things

CNN Convolutional Neural Network
UAV Unmanned Aerial Vehicle
ANN Artificial Neural Network
FPN Feature Pyramid Network
RPN Region Proposal Network
FCN Fully Convolutional Network
ROI Region of Interest

NMS Non-Maximum Suppression

IoU

Intersection over Union

iv

Introduction

1.1 Motivation

Corrosion of steel is a significant concern in all fields of infrastructure, specifically related
to bridges and their carrying capacity, with lasting economic and environmental impact
[1]. If left unaddressed, severe degradation can lead to catastrophic failure of the construc-
tion, as seen in the 2019 collapse of the Nangfang’ao bridge in Taiwan [2]. The bridge,
which was designed to last for 50 years, collapsed after only 25 years of operation. An
investigation revealed that the cause of the collapse was a lack of maintenance. The global
cost of corrosion is estimated to be 25 trillion Norwegian kroner (NOK) per year, equiva-
lent to 3.4% of the global GDP [3]. It has been suggested that between 25% and 30% of
annual corrosion costs could be saved through the use of optimal corrosion management
practices [1].

In Norway, the Norwegian Public Road Administration(NPRA) [4] is responsible for the
inspection and maintenance of over 1000 steel bridges. To withstand corrosion and achieve
the design lifetime of a steel bridge, NPRA applies a zinc coating along with a layer of
paint. Regular recoating is needed, and NPRA is obligated to inspect a bridge every five
years. Today, inspection is done manually on-site, where qualified engineers and inspec-
tors take pictures and write down the damage evaluation. This process is labor-intensive,
costly, and time-consuming. There is therefore a significant opportunity to automate in-
spections using unmanned aerial vehicles (UAVs) and image classification. By developing
a segmentation algorithm to detect and classify the severity of corrosion on steel bridges,
inspections can be done thoroughly and more efficiently. By removing human subjectiv-
ity, it can also be more certainly classified when maintenance is needed, saving potentially
millions of NOK.

1 Introduction 1.2 Background

1.2 Background

The subject of machine learning and image segmentation is constantly growing and im-
proving. In just the last two years there has been a growing number of publications about
Mask R-CNN, as seen in fig. 1.1 [5]. There are several projects related to classifying and
segmenting corrosion on steel structures. The latest thesis written for SINTEF Industry
on this current project was published in June 2020, which concluded great promise in the
state-of-the-art Mask R-CNN [6] architecture for instance segmentation of bridge corro-
sion [7]. The project was done on a dataset of 608 annotated pictures, which is quite small
for such an extensive task as image segmentation. Two years later, the size of the dataset
has tripled, containing almost 2000 pictures with a wide range of corrosion damages on
bridges and other steel structures. There is also constantly new research on how to im-
prove the accuracy of neural networks with data augmentation and parameter tuning. It is
therefore safe to say that the model has the potential for greater performance than what it
currently performs today.

Publications in each year. (Criteria: see below)
35,000

32,500

.
30,000 /
27,500 /

v

25,000

22,500

20,000
17,500

15,000 /'"

12,500

10,000 /
d

7,500

5,000

2,500 S o
— —

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

o Publications (total)

Figure 1.1: Number of publications mentioning Mask R-CNN per year, from dimension.ai[5]

1.3 Objectives

The objective of this project thesis is to present the current performance of the network,
and propose methods of improvement based on a comprehensive literature study. The
proposed methods are not implemented in this work, therefore the improvements are only
hypothesized based on performance from former research. As the use of Mask R-CNN on
corrosion segmentation is a narrow research field, the current research used in this thesis
also is based on other datasets and problem formulations. This thesis mostly focuses on
published work over the last two years and evaluates how well these changes compare to
the corrosion dataset.

1 Introduction 1.4 Structure of the report

1.4 Structure of the report

Chapter 2 introduces the fundamental theories of convolutional neural networks (CNNs),
which will be used to explain the architecture of Mask R-CNN and the tools it uses to
improve performance. It is assumed that the reader has a basic understanding of artificial
neural networks, and we will only briefly discuss these concepts. Chapter 3 discusses the
use of computer vision techniques for the inspection of steel bridges and the challenges
involved. Chapter 4 presents the current implementation of our algorithm and dataset,
and demonstrate some results. Chapter 5 delves into the challenges faced by our current
implementation and suggest potential improvements, ultimately concluding with the most
promising ones.

Theoretical background

2.1 Classification, object detection and segmentation

Computer vision relates to how researchers can automate tasks of the human visual cortex
by extracting useful information from image data [8]. Advances in the field began in the
1960s, and sought to extract shape information about simple objects such as edges and
boxes. Later methods experimented with more complex problems with the development
of different representations of image patterns. Breakthroughs such as Optical Character
recognition [9] served purposes like automated license plate recognition, already showing
potential for real use-cases.

The classical problem in computer vision has always been determining whether or not
the image contains some specific object or feature, and to be able to correctly detect and
classify the object. With the growth of artificial neural networks (ANNs) and specifically
Convolutional Neural Networks, algorithms have been able to build high-quality percep-
tion systems for complex visual problems.

The common tasks for computer vision has been

* Object classification: The task of assessing the correct class of an object

* Object detection: the task of detecting instances of objects of a certain class within
an image. This object classification combined with determining the location of the
object while other object classes may be present.

* Object segmentation: Classifying every pixel related to an object, creating “masks”
and determining the area covered by that object in the image.
— Semantic segmentation: Objects of the same class are regarded as one entity.

— Instance segmentation: Identifies the number of individual objects (instances)
within one class.

2 Theoretical background 2.2 Convolutional Neural Networks

2.2 Convolutional Neural Networks

For a traditional ANN to be trained on an image, each pixel will be regarded as a single
input to one neuron. Using an example with a 1028x1028 RGB image, the total amount of
weights per neuron would be 3 * 1028 * 1028 = 3170352 which makes the structure of an
ANN impractical to work with on complex image classification tasks.

Convolutional Neural Networks (CNNs) [10] are a type of ANN specialized for image
processing, first introduced in the 1980s by Yahn LeCun [11] to classify handwritten digits.
It is similar to a traditional neural network in that it is composed of neurons that self-
optimize during training, with the key difference being in the organization of the neurons
in dimensions; the spatial dimensionality of the input (height and width of the image) and
the depth. Unlike standard ANNSs, the output of a given layer is only connected to a small
region of the input, instead of being fully connected.

2.2.1 Overall architecture

The goal of a CNN is to produce feature maps, also known as activation maps, with re-
duced dimensionality instead of a vectored output. A feature map corresponds to the
activation of different parts of the image, a high activation means a certain feature has
been found. This type of feature extraction is done in a convolutional layer, where a nxn
dimensional filter, also known as kernel, slides over the input image computing convo-
lutions, where the number of feature maps is decided by the depth of the current layer.
Figure 2.1 visualizes the procedure.

Another important layer of CNNs is the pooling layer, where the goal is to reduce the
spatial dimension of the feature maps. The two most common pooling layers, shown in
fig. 2.2, are MaxPool, which extracts the strongest features in an activation map, and Avg-
Pool, which averages the input from the kernel, giving a more smooth feature extraction.
A common CNN architecture aims to reduce the spatial dimension while increasing the
depth for each layer, where an example can be seen in fig. 2.1. A common tactic is to
flatten all the feature maps to the usual neural network structure, with a fully connected
layer at the end, to perform classification with softmax or sigmoid. It is also possible to
replace this layer with another convolutional layer using 1x1 kernels, in which we would
call the architecture a fully convolutional network (FCN).

D j J IJD/]

Figure 2.1: A typical CNN architecture. the blue field to the left represents the kernel, and the field
to the right represents the output pixel from one convolution.

O000O0

2 Theoretical background 2.3 Mask R-CNN

8 5) 4 4

AvgPool

Figure 2.2: An example of the outputs of a MaxPool layer versus an AvgPool layer with a 2x2
kernel and stride 2. The colors represent the receptive field of the output pixel

2.3 Mask R-CNN

Mask R-CNN [6] is a deep learning based technique developed in 2017 by researchers at
Meta Al (changed name from Facebook Al in 2021) for instance segmentation. It is a
two-stage process, where a region proposal network generates regions of interest, which
are then further classified and segmented.

Mask R-CNN is built on top of the Faster R-CNN [12] object detection architecture and
adds a mask branch for pixel-level object segmentation. It extends the Faster R-CNN ar-
chitecture by adding a branch for predicting an object mask in addition to the existing
branch for bounding box recognition. The mask branch takes feature maps from the back-
bone CNN as input and predicts a mask of shape (M M) for each ROI, where M is the
resolution of the mask. The output is then three folded for each candidate object; the class
label, bounding box offset and the object mask.

The main advantages of Mask R-CNN are its accuracy and speed. Compared to other
instance segmentation techniques, Mask R-CNN has been found to be more accurate and
faster. It also has the advantage of being well-suited for training on large-scale datasets.

2.3.1 Architecture

The Mask R-CNN pipeline can be divided into four main parts, visualized in fig. 2.3. To
shortly describe each part:

1. Backbone: The input image is pre-processed in a feature extraction backbone net-
work (in fig. 2.3 we use ResNet-101 + FPN). The goal is to produce feature maps
for further detection.

2. RPN: The feature maps obtain a large number of candidate frames, known as regions
of interest (ROI) through a regional proposal network. The ROIs are given two
binary scores of objectness along with a bounding box offset for each frame.

3. ROIAlign: The feature maps and the remaining ROI are sent to the ROIAlign layer,
so that each ROI generates a fixed size feature map.

2 Theoretical background 2.3.1 Architecture

4. Segmentation + classification: The flow goes through two branches, one fully con-
nected layer to perform object classification, and one branch entering a fully convo-
lutional network (FCN) for pixel segmentation.

Mask FCN

cls

A
ubi|v|od
A

RPN

ResNet-101 + FPN

Feature map

Figure 2.3: Mask R-CNN architecture

Backbone: ResNet + FPN

The first section of Mask R-CNN is a backbone model that serves as a feature extractor.
This network follows the same principles desribed in section 2.2 and fig. 2.1. Performance
of feature extraction is directly related to the depth of the convolutional neural network, but
increasing network size can lead to deprecation of the network, including problems such
as disappearing gradients. The solution to this common problem is to introduce residual
blocks [13], creating what is known as Residual Neural Networks, or ResNets. In ResNets,
a residual block is convolutional block with an added skip connection, a “’shortcut” for the
gradient to be directly propagated to earlier layers, making us able to extend the amount
of layers of our feature extractor. In [6] ResNet with different amount of layers is tested,
which is why we use this as our backbone in further work as well. The size of the network
can vary, but in this assignment we focus on the 101-layered residual network, known as
ResNet-101, where fig. 2.4 shows the different blocks of layers.

The CNN architecture forms a contracting path with increasing semantic value and de-
creasing resolution. Scaling the final feature maps. The decreased resolution makes it
challenging to detect objects, in particular for small features. To have both high semantic
value and resolution, Mask R-CNN has implemented a Feature Pyramid Network (FPN)

7

2 Theoretical background 2.3.1 Architecture

\ 4

MaxPool
1x1 Conv, 128

7x7 conv, 64
v
1x1 Conv, 64
1x1 Conv, 64
1x1 Conv, 256
1x1 Conv, 128
1x1 Conv, 512
A\
1x1 Conv, 256
1x1 Conv, 256
1x1 Conv, 1024
\ 4
1x1 Conv, 512
1x1 Conv, 512
1x1 Conv, 2048
Avg. Pool

Q
X

cl c2 c3 c5

Figure 2.4: ResNet layers: Here the skip connections are shown in the identity of x ”skipping”
the convolution layer and is added at the end of each block. There are five unique blocks in the
network, where each layer is shown with their nan size filter and depth. C1 is performed without
skip connection once followed by a MaxPool layer, C2 is repeated 3 times, C3 four times, C4 23
times and C5 3 times, the final step is then a average pool layer.

[14] to generate multi-scale feature maps with better quality information. It is composed
of a bottom-up and top-down pathway as visualized in fig. 2.5. The bottom-up is the usual
ResNet, while the top-down pathway constructs high resolution layers from a semantic
rich layer. The reconstructed layers, or the M-blocks in fig. 2.5 are created from adding
the up scaled output of the previous block and the corresponding C block. Each scale
level is then sent to a Regional Proposal Network, which in fig. 2.5 is represented by the
P-blocks.

bottom-up top-down predictions

Figure 2.5: Feature Pyramid Network

Region Proposal Network

A Region Proposal Network (RPN)[12] takes the feature maps produced from the feature
extractor as input, and outputs a range of ROIs where an object has been detected. The

2 Theoretical background 2.3.1 Architecture

ROIs come each with an objectness score and a bounding box offset. The objectness
score is two-dimensional and computed with Softmax, and show one probability that there
is an object in the particular region, and one probability that the region only contains
background.

The process is shown in fig. 2.6. A 3z3 kernel moves over the feature map and generates
a particular set of anchors for each pixel coordinate (z,,¥,). In this case the network
generates anchors with three different aspect ratios (AR) for the height and width (hg, w,),
and three different scales (51, Sz, S3). This gives a total of 9 anchors for each position of
the feature map. For each feature map with width W and height H this gives us a total of
W#*H*9 anchors.

The next step for RPN is to classify and localize the anchor box to produce region propos-
als. Classification is done by a Bounding Box Classifier, which compares the anchor box
with the Ground truth, and outputs the objectness score.

The regions that have been classified as foreground are then localized with a Bounding
Box Regressor layer, which computes the offset between the region and ground truth box,
and outputs w,h,x,y as the bounding box offset. Where (x,y) is the center of the box, w
and h are width and height. RPN will filter out the regions with low objectness score and
overlapping regions using non-maximum suppression(NMS) [12], and output the number
of ROIs up to the maximum count, which also can be configured.

It should be noted that RPN does not care about the class of the object, only if there is an
object in the box or not. Given the level of confidence in our network

r Sl SQ SS
3x3 kernel ARur | m | ho (Xm.ya) .
\ "
¥
..... 4 ARz 1 [| [|
Teature map
AR5 [] | []

Figure 2.6: Region proposal network

ROIAlign

As the ROIs are of different scale and ratio, and the classification network expects a fixed
size input, a conversion is needed before the regions are sent to the next network. Faster

9

2 Theoretical background 2.3.2 Loss function

R-CNN used what is known as ROIpooling [12], but due to quantization the regions can
lose a lot of important information.

Meta Al developed ROIAlign instead [6]. The algorithm is designed to improve the perfor-
mance of object detection by providing a more accurate alignment of the object’s features
in the image. It works by dividing the ROI into an evenly-spaced grid and computing
the features at each location by bilinear interpolation. This interpolation method produces
more accurate features that can be used for better object detection. Additionally, ROIAlign
reduces the amount of time required to process a large image since it only needs to process
the ROI instead of the entire image. This makes it an efficient and effective solution for
object detection tasks.

Classification + segmentation

The final step of Mask R-CNN is running two parallel networks for the predicted output.
This is where the model differs from its previous versions. While Faster R-CNN only has
one classification network built by fully connected layers, which will again produce the
probability of a given class and a refined bounding box regressor from the ROIs produced
by RPN, Mask R-CNN adds a FCN to produce k maxm binary masks for each ROI, where
k is the number of classes, meaning one mask is generated for each class leading to less
competition between classes. This two-network structure allows Mask R-CNN to decou-
ples mask and class prediction, meaning they do not depend on each other, which increases
performance significantly according to He[6].

2.3.2 Loss function

During training, the complete loss function is calculated as a sum of the tasks of the last
network predictions. For each ROI, the loss is defined as follows

L= Lcls + Lbom + Lmask (21)

Where L. represents the classification loss, L., represents regression loss of the pre-
dicted box and L, s, represents the summed binary cross entropy loss per pixel

Leis(pisp;) = —[p;i log(pi) + (1 — pi*) log(1 — p;)] (2.2)
Lo (tia t:) = R(ti - t;k) (2.3)

1
Lmask = _N [x;k Ing(.I'z) - (1 - .’L’;k) 1Og<1 - p(xl))] (24)

For the classification loss in eq. (2.2) is defined as the log loss function with 2 classes,
whether the detected object is the target or not, here p; represents the predicted probability
for the class of an object in anchor i, while p} represents a binary ground truth (1 for target
object, O for not). The regression loss function R in eq. (2.3) is the robust loss function
(smooth L;)[15], where ¢, is a vector of 4 coordinates of the predicted bounding box, while
t; is the corresponding ground truth coordinates of the bounding box. The regression loss

10

2 Theoretical background 2.3.3 Evaluation metric

is only activated for p; = 1. Ly,qs in €q. (2.4) is computed by applying a per-pixel
sigmoid on each of the k binary masks and compute the average cross entropy loss. It
is only the mask associated with the ROI class that contribute to the loss. N represents
the number of pixels in the mask (m?), p(x;) is the predicted value of the pixel given by
sigmoid, and z] is the binary ground truth value for that pixel.

2.3.3 Evaluation metric

Reducing the performance of a model down to a single number (the loss) can obscure
detail in the model results that may be important. It is therefore possible to use other
metrics when measuring the performance of Mask R-CNN, mainly in computing scores
for how many pixels the prediction scored correctly. By using the definition for binary
classification defined in a confusion matrix seen in fig. 2.7, it is often the percentage of
true positives we want to evaluate, which can be done through precision or recall. They
are defined as

TP
PRECISION = ———— 2.
RECISIO TP+ FP 2.5)
TP
ECALL = ———— 2.
REC TP+ FN (2.6)

In other words accuracy measures how many predicted positive values that are actually
correct, while recall computes how much of Ground Truth the algorithm detected. Though
easy to use, their drawbacks are that it can be easy to achieve high precision or recall
without improving the overall network performance. With precision it is trivial to simply
predict any output as negative, while for recall one could predict any pixel as positive.
One metric that solves this issue and is a very popular metric for object segmentation, is
Intersection over Union (IoU). It is defined as the intersection between Ground Truth and
the prediction mask, divided by their union. A better representation is shown in fig. 2.8.
We can also derive it as

TP

TolJ —
U= TP FPTFN

Q2.7)

We can see this evaluation metric being used often, such as in the PASCAL VOC image
challenge[16]. The metric allows for the bounding box prediction to be rewarded when it
heavily overlaps with the ground truth box even if the coordinates do not match 100%.

2.3.4 Transfer learning

Training a Mask R-CNN model from scratch can be time-consuming and require a large
amount of labeled data. Initializing weights can also be a difficult challenge and lead to
local minima or poor training results. Transfer learning is a technique often utilized in
training deep neural networks. It involves using the knowledge and weights learned by a
pre-trained model on a large dataset and applying them to a new task and dataset. This
can be useful when training a Mask R-CNN model for a specific task, as it can allow the

11

2 Theoretical background 2.3.4 Transfer learning

Actual value

Positive Negafive

False Negative (FN)| True Negative(TN)

Negative

Predicted value

True Positive (TP) | False Positive(FP)

Positive

Figure 2.7: Confusion matrix

Area of overlap

lou =
Area of Union

Figure 2.8: Visualization of how IoU is computed

model to make use of the knowledge learned by the pre-trained model and converge to a
good solution faster and with less data.

Pre-trained models are often trained on large, high-quality datasets that contain a diverse
range of examples. This can provide the pre-trained model with a strong foundation of
knowledge that can be useful for many different tasks. For feature extraction, there are
many common features for images even as they are not related to bridges, such as edges.
Transfer learning can also help to prevent overfitting. When training a Mask R-CNN model
from scratch, it is possible for the model to overfit to the training data and perform poorly
on new, unseen data. By using transfer learning, the model can learn more generalizable
features that are less likely to overfit to the training data.

One of the most popular existing datasets used for transfer learning is the Microsoft
COCO: Common Objects in Context [17], the dataset contains 91 object classes of com-
mon objects that are easily recognizable, e.g ”Cat”, "Bicycle” or “Pizza”. The COCO
weights for Mask R-CNN are already trained and easily accessible [18].

12

2 Theoretical background 2.3.5 Hyperparameters

COCO Dataset Custom Datset

o -

Ny

input input

Tor-Pos

Pre-trained network Trained network

Untrained network

Figure 2.9: Transfer learning for Mask R-CNN

2.3.5 Hyperparameters

Hyperparameters are adjustable parameters that control the model’s behavior and perfor-
mance. These parameters are typically set before training the model, and they can have a
significant impact on the model’s ability to learn from the data and make accurate predic-
tions.

Mask R-CNN has many of the standard deep learning hyperparameters, such as number
of epochs, batch size, learning rate and learning momentum. Batch size is only chosen
based on the limitations of the GPU used for training, while epochs and learning rate can
have major consequences for our network, as too few epochs and wrong learning rate can
lead to a non-optimal network. These are important to test for the correct assignment of
values. Other parameters that can have an effect on the training is image size and loss
weights, where a good resolution on the images will make it simpler for Mask R-CNN to
detect small features. The loss weights are the weights assigned to the different parameters
in eq. (2.1) and the loss function for RPN, which affects which loss function we want to
evaluate higher. This could become useful after further testing.

The hyperparameters of RPN are related mostly to the number of proposals generated,
their size and overlap threshold, along with the minimum confidence for the ROI to be
classified as having an object or not. As the last part of Mask R-CNN related to detection
and mask generation are very similar to RPN. the hyperparameters are very alike, such as
confidence threshold, maximum number of detections and maximum number of ground
truth instances. Mask R-CNN has about 18 hyperparameters that have potential effect on
the performance [19]. Tuning these can be challenging, as they can interact with each
other in complex ways. In general, it is best to try out a range of different settings and see
which ones work best for the specific task, which we will discuss more about in chapter 5.

13

Image segmentation on structure
damages

This chapter will give an overview of the goal of using computer vision based techniques
in infrastructure inspection, along with the recent research in the field. It will in addition
address to why we have chosen instance segmentation with Mask R-CNN- The chapter
will also introduce some common challenges with using neural networks.

3.1 Goal of automated inspection

The long-term goal is to eliminate human intervention in infrastructure inspections in order
to obtain an objective evaluation of damages, such as cracks, paint flaking, asphalt damage,
and corrosion. This could potentially be enhanced with the use of digital twins [20], which
create a digital 3D model of the structure. With frequent automated inspections, the digital
twin would be constantly updated with an overview of damages and their progression.

In later years there has been a wish to digitize the maintenance of infrastructure as a part
of Internet of Things [21]. By implementing an automated classification algorithm, this
can later be extended to automated inspection with UAVs along with monitors, sensors
and cameras to get automated continuous inspection of infrastructure, which is the goal of
Structural Health Monitoring [22]

3.2 Current state

Research on automated inspection of infrastructure based on computer vision methods is
in constant development, and offers great promise even though existing algorithm have
not fully matured yet to be fully realized out in the field. Spencer et al. [8] provides
a brief overview of the advances in in computer vision based techniques related to civil
infrastructure.

14

3 Image segmentation on structure damages 3.3 Related research

Early research in corrosion detection delved in traditional computer vision methods like
using wavelet [23], but with the recent development and use of neural networks in medi-
cal imaging, autonomous driving and facial recognition, the research suggests that CNN's
vastly outperform traditional computer vision algorithms in terms of object detection [8].
When choosing the architecture for the problem, one could choose between a variety of
suitable algorithms. One choice lies in whether to do simple object detection or detection
and segmentation of the damage. Relating to previous section with the goal of an continu-
ous supervision, it is more practical with segmenting the area of corrosion to evaluate the
graveness and damage of the bridge. A clear segmentation of areas also aids a potential au-
tomated inspection drone in orientating itself with the framework of Visual-Simultaneous
Localization and Mapping(VSLAM) [24]. As Mask R-CNN is the recent state-of-the-art
algorithm for segmentation, and its two-step architecture with both feature extraction and
RPN, makes it a good choice in the complex assignment of corrosion segmentation. As it
builds on the Faster R-CNN and R-CNN architecture, it solves many of the challenges in
facing object detection, by adding multi-task loss for both localization and classification
error. The RPN structure aids in the problem of objects appearing in different scales and
ratios. It would also be easy to switch back to object detection without segmentation by
using Faster R-CNN instead.

3.3 Related research

Mask R-CNN is one of the most widely used segmentation algorithms in computer vision
research today. The algorithm has been applied in several areas such as facial recognition,
autonomous driving and damage inspection. The most researched field is by far in medical
imaging, where Mask R-CNN has been used for organ classification and tumor detection
in CTs, MRI and ultrasound [25].

3.3.1 Object detection of damages

The wide field of damage detection using neural networks have long been regarded as
the primary focus for digitizing the infrastructure section. The most popular research by
far has been crack detection, with the invention of CrackNet [26] on 3D images showing
promising results. Detection of cracks in pavements have also been tested with Mask R-
CNN and Faster R-CNN [27], with a relatively small dataset. Showing promising results
for simple damages like straight cracks, even with interference from sunlight, but per-
formed slightly worse for cracks with more complex structure. Testing on the CRACKS500
dataset, it showed a clear need for a larger dataset for it to perform good detections.

Mask R-CNN has also been used for a variety of other damage detection tasks, such as
aircraft dents [28], car inspection [29] and inspection netting damage [30]

3.3.2 Corrosion detection

To this day research on segmentation of corrosion is sparse, due to the lack of training
data. There has however been some new research the last two years, where several have
tested other network architectures than Mask R-CNN. Shi et al. implemented a corrosion

15

3 Image segmentation on structure damages 3.4 Challenges

Figure 3.1: Nordhordland bridge

segmentation algorithm using squashing and cropping based on VGG-Unet [31]. With
only 200 corroded images, cropping segmentation can increase the dataset majorly. This
involved a lot of images where no corrosion was presents, so to improve the capability of
the network, Background Data Drop Rate was defined to control the proportion of pixels
in each category, randomly dropping some of the images where only background was
present. It was shown that with an increased background drop rate, the mIOU increased.
Rahman et al. developed both a tool for automatic image annotation using a small set
of labeled images, using a texture based segmentation method integrated with red-green-
blue feature based classifier optimization, and a standard CNN model for training and
segmentation. [32]

Burton et al. proposed in 2022 RustSEG [33], a deep learning algorithm for producing
segmentation masks without annotation. The schematic for RustSEG was using a CNN-
based classifier with a 50% confidence rate, where the images classified with corrosion are
passed to a localization function, which is an adaption of the Grad-CAM++ method and
returns a heatmap of corrosion in the image. A threshold filter is then used to produce the
final output mask. Several refinement techniques were considered when no Ground Truth
was present, such as conditional random fields (CRF), which considers the boundary of
the mask given colour, texture and contiguity.

3.4 Challenges
3.4.1 Bridges

The structure of bridges is mostly recognizable for a computer vision algorithm. This is
due to their contrast with the background, which tends to be green nature, blue skies or
water, and sharp edges which can be detected by feature extraction. It is however difficult

16

3 Image segmentation on structure damages 3.4.1 Bridges

Figure 3.2: Stavne bridge

to generalize bridges for one single algorithm, as the type and structure of a bridge can
vary immensely. Take for example the Nordhordland bridge, visualized in fig. 3.1, which
is a type of pontoon bridge floating on top of the water. There are barely any pillars and
the distance between the bridge and the ocean is short. Compared to a typical bridge
structure where pillars are taken into consideration, this can produce other type of images
and different scales to every image. Additional to shape and type, bridges also come in
varying colors, as displayed with the Langgy bridge in fig. 4.3 which is blue and Stavne
bridge in fig. 3.2, which is both grey and red. The important lesson to take from this is to
acquire training sets from all types of bridges, in order to not overfit the algorithm to one
specific type or colored bridge.

Images are captured both with UAVs and handheld cameras with varying quality, both
due to the resolution of the camera and the photography skills of the inspectors. Images
are also collected without regards to light or angles, where some images will be of only
concrete with shadows, and some will include blue sky, water and animals. One thing to
also notice is the disturbance of other brown-like objects on bridges which is not corrosion,
here the picture in fig. 3.2 is a good example, with objects like dirt and graffiti which could
look like corrosion.

An idea to reduce the distribution would be to standardize the way inspections are done and
have a pre-planned route for the UAVs, but this could prove challenging due to multiple
causes. One is the different shapes and sizes of bridges, making the route unique for
each bridge. The other is that new corrosion can develop outside of the planned route,
needing specific inspection either way. If one were to develop a monitoring process where
the model could predict further development of corrosion, it is beneficial either way to
calibrate images the same way for optimal performance.

17

3 Image segmentation on structure damages 3.4.2 Detecting corrosion

3.4.2 Detecting corrosion

All though corrosion is easy to spot for the human eye, it can be difficult for a deep learning
algorithm to fully comprehend the patterns they pose, due to their sporadic growth. It can
also make for some complex annotating Examples where the work of detecting corrosion
is easy, can be seen in fig. 3.3. This is because of the clear boundary between corroded
and non-corroded material, and the contrast to the background. We can verify this by
algorithms like RustSEG and VGG-Unet having high accuracy for these kinds of photos.
These images are a good starting point for training the algorithm, but realistically there are
many outliers.

Figure 3.4 shows examples of where both annotation and classification can be difficult.
Either by scattered corrosion dots with a small diameter or soft corrosion without well-
defined edges. Bridges are also subject to other types of damages such as white corrosion,
which forms on the zinc material[4], or flaking paint. These are also classified as corro-
sion, which can disturb the finding of global optimum in the training, and lead to other
misclassifications. Corrosion can also be of different colors, with the severity of corrosion
not being classified. A possible solution could be to identify several classes of damage and
degree of corrosion, but this would also depend on the weighted balance of the dataset for
each class, as the amount of data ultimately skews towards brown corrosion.

(
spansanns e AAS
XXANS

Figure 3.3: Examples from dataset with clear boundary lines

18

3 Image segmentation on structure damages 3.4.3 Dataset

3.4.3 Dataset

The crux of any CNN model performance is the lack of available high quality training data.
The more complex the problem is, the higher the need is for accurate data representation,
which is highly relevant for this problem. Both section 3.4.1 and section 3.4.2 talk about
the high variance in types of corrosion and bridges, which concludes that the quality of
data is imperative to the success of the algorithm.

Another reason that speaks the importance of the dataset is the overfitting vs underfitting
problem, which is a common issue for all neural networks. The combination of a too
small dataset along with a highly complex model such as a 101-layered Residual Neural
Network can lead to the model being biased towards the training images and failing to
generalize to the features, meaning the network overfits. However, too many outliers in
the dataset can make the network struggle to do proper optimization, i.e it underfits.
However much one can talk about the importance of gathering enough data, it is a com-
plex and time consuming process of acquiring good data and to annotate it. A tool many
computer vision engineers use is data augmentation, which is to artificially create new
data from existing by flipping, cropping, blurring etc. so that the dataset is increased with-
out having to gather new data. A survey testing smaller networks for corrosion damage
[34] used cropped images 128x128 creating a total training set of 50,000 images and 4856
images for validation from 926 acquired corroded images.

The conclusion most researchers achieve in their studies [33, 28, 29] is that new data
should be gathered to increase performance. This is a continuous process that will be
constantly worked on, but data augmentation is a method that can decrease this need.

19

3 Image segmentation on structure damages 3.4.3 Dataset

(a) Scattered corrosion (b) Corresponding mask to (a)

o
(¢) Unclear boundaries (d) Corresponding mask to (c)

(e) White corrosion (f) Corresponding mask to (e)

(g) Heavy corrosion sorrounded by light cor- (h) Corresponding mask to (g)
rosion

Figure 3.4: Selection of images from dataset

20

Implementation

Fondevik implemented the code for training Mask R-CNN on a small corrosion dataset
[7]. All though the dataset have increased, a lot of the code from 2020 will be reused for
the purpose of testing the performance as a starting ground. Very little work have been
done with the code by the author, which can be found in section A, and this is a brief
overview of the implementation we have as of now, along with some results.

4.1 Dataset

The complete dataset consists of a total of 1990 images and 15030 instances, with a 22.3%
average of corroded pixels. The train-val split done is better described in table 4.1.

4.1.1 Image acquisition

As there is no pre-existing dataset for bridge corrosion, the pictures being used for training
have been collected over the last years from several sources, with a total of 1632 images
for training, and 358 images for validation. This includes objects from which are not
bridges, as in fig. 3.3, but since corrosion develops universally the same regardless of
object, this should not be an issue. Images have also been fetched from real inspections by
the Norwegian Public Roads Administration, as exemplified in fig. 3.4. The distribution
of damage is shown in fig. 4.1, where we see that most of the images have a very small
percentage of actual corroded pixels. This is an important factor when evaluating

Dataset #Images # Instances Avg. corroded pixels
Train 1632 12279 22.14%
Val 358 2751 20.45%

Table 4.1: Metadata statistics for the dataset

21

4 Implementation 4.1.2 Image processing

No. images
No. images

40 60
% of damaged pixels 9% of damaged pixels

40 60 80 100
(a) Train dataset (b) Val dataset

Figure 4.1: Histogram of images with % corroded pixels

4.1.2 Image processing

For training, a small amount of data augmentation has been done, mostly in horizontal and
vertical flipping, as corrosion is invariant of direction. 50% of all images will be flipped
vertically, and 50% will be flipped horizontally. For future work, more data augmentation
methods can also be considered such as blurring, rotating and the methods suggested in
section 3.4.3.

4.1.3 Image annotation

Annotations have been done using Al assisted tools from V7 labs [35]. The new toolkits
have made the time-consuming annotation part of supervised learning tasks significantly
more effective. With V7, one simply has to envelop the parts of the image, and the instance
mask is generated almost automatically. The time of annotating one picture varies based
on the complexity of the image and number of instances, but the mean time is an estimated
2 minutes, which is significantly lower than the time for other tools such as LabelBox,
according to their own website.

4.2 Distributed code

4.2.1 Mask R-CNN

The implementation of Mask RCNN is developed by Waleed Abdullah (Github user Mat-
terport), made in 2017 for Python, Tensorflow and Keras [18]. The code is naturally
outdated after version updates from Tensorflow 1.x to Tensorflow 2.x. Kamlesh Kumar
contributed to the repository so that the model could support Tensorflow 2.7. Mask RCNN
comes with model . py, which contains the model supported by either resnetl01FPN or
resnetSOFPN backbone. This restriction makes it challenging to test other backbone ar-
chitectures or changes in layers without making large changes to the code, which would

22

4 Implementation 4.2.2 Custom dataset

A1

. AL LA A LA

KAXXSSA TSI AAAD
FErr Ly

Figure 4.2: Screenshot of V7 annotation tool

be too time consuming for this project assignment. As the dataset has grown to a sub-
stantial enough size to avoid overfitting, ResNet-101 is the chosen backbone for further
development and testing.

The library also comes with utils.py and visualization.py to help with assess-
ment of performance. These helperfunctions have been used for inference, loU computa-
tion and visualization of the predicted masks. The code for evaluating the network is in
section A.

The last scripts are config.py and parallel model.py. The config-script con-
tains all configurations for Mask R-CNN,such as backbone, number of GPUs, optimizer
and the hyperparameters discussed in section 2.3.5. The custom class DamageConfig
overwrites the standard configurations provided by the model, as seen in section A. The
script parallel_model . py opens up the possibility of training the network on multiple
GPUs. As we only use one GPU for our training, this will not be used.

4.2.2 Custom dataset

An important aspect of training neural neural network is the correct configuration and
loading of the dataset. To adapt to the corrosion dataset, Fondevik implemented the class
DamageDataset inherited from the dataset in utils, which stems from the imple-
mentation by Matterport [18]. The code is mainly inspired by Dhruvil Shah [36], who
showed how Mask R-CNN could be implemented for custom datasets. The class loads the
images along with the ground truth mask as a binary numpy matrix, as the code for now
only supports binary classification (corrosion vs non-corrosion). The class can be viewed
in section A.

23

4 Implementation 4.3 Training and configuration of the corrosion dataset

4.3 Training and configuration of the corrosion dataset

The specific configurations for training the corrosion dataset is given in DamageConfig.py
and in table 4.2, all other parameters are unchanged and given in config.py. A batch
size of 2 is chosen along with the dimensions of images between 9602960 and 128021280,
given the restriction of a 12GB GPU. We have chosen to run through the full dataset per
epoch for optimal training, at the expense of a slower network. Epoch size was chosen to
be 80, but stopped early due to convergence.

From previous testing, the conclusion was that a good initial learning rate for the optimizer
was between 0.0001 and 0.001, therefore the value has been set to 0.005. From theory
it is shown that to get optimal results, learning rate decay should be used to avoid the
optimizer getting stuck in local minima while also avoiding plateauing. The function
lr_scheduler provides with learning rate decay and is therefore also being used to
reduce the learning rate by 50% per tenth epoch.

The confidence threshold for object detection went from 0.7 to 0.9 to avoid a high rate
of false positives. Training is done by preparing a train and val dataset and using the
model’s own train function, with the COCO-weights already loaded[17]. When training
we save weights per epoch to use for inference, where the val dataset is then used for
mask prediction and IoU computation. We can also choose any image to visualize mask
predictions.

Parameter Configuration
NAME damage
IMAGES_PER_GPU 2
NUM_CLASSES 2
STEPS_PER_EPOCH 1632
VALIDATION_STEPS 358
DETECTION_MIN_CONFIDENCE 0.9
LEARNING_RATE 0.0005
OPTIMIZER SGD
BACKBONE resnet101
IMAGE_MIN_DIM 960
IMAGE_MAX DIM 1280
MAX_GT_INSTANCES 150
RPN_CLASS_LOSS 1.0
RPN_BBOX_LOSS 1.0
LOSS_WEIGHTS {1.0, 1.0, 1.5, 1.0, 1.0, 1.0}
RPN_ANCHOR _SCALES {16, 64, 128, 512, 1024}

Table 4.2: configuration of the custom MASK R-CNN

4.4 Testing

A small run has been done on the model using the dataset as we have now, with configura-
tions in table 4.2. No changes have been done to the code other than a version update of the

24

4 Implementation 4.4 Testing

MRCNN architecture. The goal is to give an understanding of the major challenges of cor-
rosion detection with the model now before suggesting improvements. The performance
is given by evaluating the validation dataset.

A small detecting test on images has also been done to a dataset of images collected by the
Public Road Administration from an inspection earlier this fall on the Langgy bridge in
Mgre and Romsdal county fig. 4.3 [4]. Inspection has been done using controlled drone,
and no quality check has been done to the images.

it

Figure 4.3: The Langgy bridge

Computed Mask R-CNN loss

— Train
— Validation

S
< — Corrosion
5 06 — Background
B

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Loss

(a) Train and val loss (b) Mean IoU for the val dataset per epoch

Figure 4.4: Results from one run through the MRCNN network

25

4 Implementation 4.4.1 Results

4.4.1 Results

The mean IoU of the validation dataset per epoch can be seen in fig. 4.4b. It shows the
corrosion IoU never coming higher than 0.5, meaning the predicted mask only covers 50%
of the Ground Truth. This leaves a lot to be desired in terms of performance. Evaluating
the loss from fig. 4.4a, the train loss follows a traditional asymptotically improvement
as expected, but the validation loss is constantly diverging. This could be from several
reasons other than bad performance, so it is more valuable to look at the mean IoU, which
still shows room for improvement for the network. An interesting part to take from both
fig. 4.4b and fig. 4.4a is that the network does not seem to improve much with further
training. This could be a sign of overfitting to the training dataset, which we have discussed
in previous section. One possible reason for the low IoU in this training compared to other
research such as Fondevik [7] and RustSEG [33] is that this dataset is larger and more
challenging for the model to perform on, leading to lower accuracy. Adding more diverse,
high-quality data or using additional types of data augmentation could potentially improve
performance.

When testing the model on unseen images of the Langgy bridge, a common issue was the
detection of false positives. Figure 4.5 shows some examples of the model incorrectly clas-
sifying other areas of the image as corrosion, including high-textured objects like clouds,
stones, and columns, as well as simple objects like paint stains. Figure 4.6 also illustrates
instances where the model detects vastly different objects in similar images, which would
not be suitable for a potential VSLAM (Visual Simultaneous Localization and Mapping)
integration. In both cases, the algorithm appears to struggle with mistaking clouds for cor-
rosion. It is worth noting that the quality of these images may be a factor, as in many cases
the bridge is too far away for the camera to capture the corrosion clearly, and in Figure
4.6 the sun obscures and darkens the bridge. Ensuring proper pre-processing and quality
checks of the images is an important part of image acquisition, as using low-quality images
could hinder the performance of the algorithm. Additionally, if no corrosion is visible in
the images, as in fig. 4.6, the algorithm should not react at all.

As previously discussed in sections 3.4.1 and 3.4.2, the results of running the model
demonstrate the challenges that Mask R-CNN faces in accurately detecting corrosion. In-
creasing the amount of data is a simple way to improve performance, but image acquisition
and annotation is a time-consuming process, even with tools like V7. Other potential so-
lutions, such as optimizing hyperparameters and using a different backbone network, will
be discussed further in chapter 5.

26

4 Implementation 4.4.1 Results

Figure 4.5: Samples of detections by the network. Prediction is shown with confidence level

27

4 Implementation 4.4.1 Results

Figure 4.6: Detecting different objects from the same angle

28

Discussion and suggestions of
improvements

Figures 4.5 and 4.6 show us different examples of the model failing to detect anything
of importance, and how it gives us a range of false positives on the bridges. Specifically
textured areas regardless of color or form is classified as corrosion, which could imply low
quality feature extraction or low performing RPN.

Mask R-CNN is not without its challenges, as it is highly dependent on the ROIs being
accurate to actually perform high quality segmentation, which one step algorithms like
YOLO [37] are not dependent on. Seeing as Mask R-CNN is the current state-of-the-
art instance segmentation algorithm, we will try to evaluate some methods of increasing
performance based on recent research, before we could consider using other types of ar-
chitectures like RustSEG or VGG-Unet which were discussed previously.

5.1 Refinement and tuning of hyperparameters

One problem with Mask R-CNN is the large number of parameters that needs to be tuned.
The Config class presents a variety of hyper parameters that can be manually decided and is
dependable on the custom dataset for which it is going to be used, as seen in section 2.3.5.
Given the small research on corrosion segmentation, there are no certified intervals for the
parameters that are proven to work better than others. The safest way is to manually tune
the hyperparameters and test network performance, which is a tiresome process. But by
evaluating the different parameters, we can have a clearer view on which ones are the most
important regarding this dataset.

A study was done on quantifying common rust severity on maize leaves with Mask R-
CNN, where the Genetic Algorithm [38] was examined for automated hyperparameter
tuning [19]. The point of the algorithm was to effectively evaluate values for hyperparam-
eters effectively. The algorithm created a population of individuals where each individual
represents a potential problem solution. Each individual had a chromosome with multiple

29

5 Discussion and suggestions of improvements 5.1 Refinement and tuning of hyperparameters

genes where the number of genes in the chromosome is equal to the number of hyperpa-
rameters to be optimized. Each gene represents a different hyper-parameter in the Mask
R-CNN. In the study 18 hyper-parameters were identified, and the chromosome would
look like table 5.1. Each individual is then evaluated and assigned a fitness score repre-
senting on how well the solution performed. The Fitness function was given as the overall
loss associated with a training run of the Mask R-CNN, where a large loss would lead to a
low scoring individual.

The well-performing individuals would have genetic operations applied to them which
created new individuals for the next generation. The genetic operators would be one of
two

* Mutation: Genes are split into 6 subsets, random boolean value is generated for
each subset. If true, all genes in that subset are set to have new random values
within the bounds. If false. all genes stay unchanged.

* Crossover: Two parents are individually selected from existing population. The
offspring has its chromosome traversed, at each gene a bool is generated. If true, the
offspring gets the gene value from parent 1, if false, parent 2.

The paper initialized a population of 12 with randomly generated values for genes given
a certain interval, with a mutation rate of 50% and crossover rate of 50%. This was cho-
sen empirically to make sure the search space was covered, and to guarantee convergence
within 30 generations without the algorithm stagnating. The resulting Mask R-CNN per-
form the same as a manually tuned model or better, with vastly less time used, meaning
there is a clear case for using automated hyperparameter tuning.

A lot of the principles that the article discusses, can be applied in this problem. As this de-
scribes a general algorithm that can be applied to better the Mask R-CNN network given
a particular dataset, we can generalize the objective enough to apply it in our Mask R-
CNN model for infrastructure damages. The results are promising, all though it requires
substantial computational power to converge properly. It is an idea to also use the Ge-
netic algorithm to better adapt the network to certain bridges or datasets, making it better
equipped for large alterations. As everything is done automatically, it does not require ex-
pertise knowledge about tuning and would make the network easy accessible for inspectors
to improve on their own.

A note is to evaluate the fitness landscape, which the article also recommends, as it is
uncertain whether the loss function is the best use for the fitness function in the Genetic
Algorithm. As seen in figure (loss function) the loss can be drastically higher while the
IOU performance is good.

Hyperparameter tuning in of itself is not enough to properly improve the network, but a
nice thing about it is that it probably can’t make the network worse. Determining a lower
maximum number for region proposals or detections could possibly lower the risk of false
positives as we see in fig. 4.5.

30

5 Discussion and suggestions of improvements

5.2 Improving backbone network

RPN_ANCHOR_STRIDE 2
RPN_NMS_THRESHOLD 0.89
RPN_TRAIN_ANCHORS_PER_IMAGE 150
PRE_NMS_LIMIT 5980
POST_NMS_ROIS_TRAINING 1100
POST_NMS_ROIS_INFERENCE 1568
MEAN_PIXEL [127, 126.45, 134.45]
DETECTION_NMS_THRESHOLD 0.7
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.9
LEARNING_RATE 0.0005
ROI_POSITIVE_RATIO 0.4
LEARNING_.MOMENTUM 0.85
WEIGHT_DECAY 0.0002
GRADIENT_CLIP_.NORM 4.0
MAX_GT_DISTANCES 150
LOSS_WEIGHTS 1.5,1.0,1.0,1.0

Table 5.1: An example of an individual’s chromosome in GA algorithm

5.2 Improving backbone network

Quality object detection is determined by the quality in the feature extraction, making the
design of the backbone network crucial. As mentioned in section 5.2, we add a Feature
Pyramid Network to increase resolution so that small objects, such as corrosion stains, can
be detected. The Mask R-CNN network to detect damages in fishnets [30] implements an
improvement of the FPN structure by using a Recursive Feature Pyramid (RFP) instead.
Inspired by the human thinking of looking and thinking twice, RFP incorparates feedback
connections into the bottom-up backbone of FPN, extending it to a two-step sequential
network, as visualized in fig. 5.1, wherein the network is run again, but merged together
with the results from the previous iteration.

The final step is to fuse together the two feature maps together, and with the RFP-incorporated
feedback connections containing the gradient signals of classification and regression at the
previous iteration, it is possible to update the backbone parameters directly.

The paper also incorporates a Deformable Convolution Network (DCN) to deal with ir-
regular mesh holes in the fishnets, and it is reason to believe that we can relate this to the
irregular patterns of corrosion. By replacing the last ResNet block with a DCN structure,
the researches believed it could improve the efficiency and accuracy of feature extraction.
The goal is to create a convolution kernel more adapted to the formation of objects.

It is difficult to evaluate how well these changes will perform for the corrosion dataset
without testing it. There is a clear need for improving feature extraction in order for the
network to distinguish between corrosion and other textured areas in the image, but the
changes applied here have a huge impact on the runtime of the network, as the backbone
runs on the same image twice, and a copy of the feature map must also be saved for each

31

5 Discussion and suggestions of improvements 5.3 Two stage neural networks

propagation. It is worth considering applying these changes, but it is not realizable if the
changes doesn’t lead to major improvements at the cost of computational complexity.

o I U e

A \ 4 N

» O
ESN
“m
3 E 3

g
g!. o
O« O
) o
s 3

y y v
M3 M3 O P3
[ce @
A Tl

Image Image

Figure 5.1: An example of Recursive Feature Pyramid

5.3 Two stage neural networks

As seen in fig. 4.5 and fig. 4.6, the algorithm struggles when faced with images with a lot
of objects in the background, such as nature, clouds and sunlight. We previously discussed
the possibility of simply broadening the dataset with noisy images, lowering the network’s
confidence rate in detecting objects. Another possibility is rather than training one network
to keep track of a large task, we create separate networks responsible for smaller subtasks,
making it simpler for each network to adapt to their given goal. While using Mask R-
CNN for the actual corrosion detection and segmentation, there could be other smaller
networks used to support its assignment by doing other tasks. While there are multiple
solution to what these networks could do and their architecture, we have chosen to focus
on a two stage pipeline where a second network is tasked with cropping out or removing
background.

A suggestion for the implementation of this two stage network is to use a Faster R-CNN
network for detecting the bridge, in the use of cropping out any background, before send-
ing the bounding boxes to the network responsible for segmenting corrosion. A similar
study have been done in [39] related to segmenting the Optic Nerve Head, where a first
stage Mask R-CNN produces cropped Rols that are sent to a second stage Mask R-CNN

32

5 Discussion and suggestions of improvements 5.3 Two stage neural networks

for further segmentation. Here both networks are trained to locate the optic nerve head,
while we would train the first stage to look specifically for bridges, as they are easier to
detect for a region proposal network due to their contrasted structure in comparison to the
nature around. In fig. 5.2, there is a suggestion of how the pipeline would look like.

This vision could be extended in the use of an automated drone inspection, and aid the
UAV in taking better pictures. In order for the drone to localize suitable places to inspect
for corrosion, it needs to have the overview of the type and size of bridge. Using multilevel
networks to first classify the bridge, the drone can place itself closer the relevant parts of
the bridge, removing unqualified images too far away or with plenty of nature like the
images in fig. 4.5 show.

Yu and Nishio [40] created a bridge inspection algorithm compromised of three neural net-
works, a ResNet50 for bridge type classification, a YoloV3 [37] for component detection,
and Mask R-CNN for segmentation. All though showing promise, additional networks
require extra work. This means the time consuming labour of collecting high-quality data
and labeling it, as well as looking at optimization techniques for each separate network.
This would also require much higher computational complexity, making it harder for real-
time detection with a drone.

nput image

Cropped image

— Class

FASTER R-CNN m— Bounding boxes

,’ Class

MASK R-CNN 2 EEm——
Bounding baxes

]—I masks

With segmentation mask

Figure 5.2: An example of two stage network

33

5 Discussion and suggestions of improvements 5.4 Other suggestions

5.4 Other suggestions

This section is tied to other suggestions of improvement that haven’t been fully consid-
ered, but can be researched further. They have little work related to them, and are mostly
brainstormed between the author, supervisors and other students.

5.4.1 Transfer learning

The Matterport version of Mask R-CNN [18] uses the COCO dataset for pre-training the
network. All though a good general starting point for any network, it is worth considering
that the subject of corrosion is vastly different from objects like cats, bicycles and pizzas.
It could be useful to use other datasets for pretraining, such as medical images of tumors
and organs, due to their deformative and unusual structure. There does not exist any large
scale dataset on medical images on par with the COCO dataset, but with the rapidly devel-
oping machine learning techniques in medical imaging, the datasets like Br35H by Ahmed
Hamada [41] are also being developed. Medical images can however be vastly different
from images of corrosion, as they are colorless and often without a lot of disturbances,
including that medical images are often taken from the same angle. It is therefore also
worth testing other datasets for pre-training, for example of other similar damages.

5.4.2 Multi-class detection

Fondevik suggested for further work to introduce multiple damage classes in the network,
examples could be white corrosion, cracks, paint flaking or heavy/light corrosion. This
could help alleviate some of the work of detecting the specified corrosion, as the network
can specify the patterns more into each class. This does again require further data acqui-
sition to get an evenly weighted dataset for each class, which can be challenging due to
brown corrosion vastly outnumbering white corrosion in terms of instances. Pictures of
paint flaking are also rare. A suggestion could be to perform data augmentation on the rarer
classes, but without diverse enough images, we can face the same problems like discussed
in section 3.2. This is an improvement that can be evaluated further with the acquisition of
more data. An short-term idea is to still use multiple classes with the small dataset, but still
only consider the performance of brown corrosion. This way avoids further disturbances
by white corrosion for the network to learn.

5.4.3 Increase efficiency and training time

An additional task which is always relevant, especially for real time segmentation, is how
to increase efficiency in training and validation. This can be highly applicable if one
chooses to implement section 5.2 or section 5.3, or the dataset is vastly increased. Zim-
mermann and Siems proposes a method for faster training of Mask R-CNN by adding a
network head known as the Edge Agreement Head [42]. This head would use classical
edge detection filters on the instance masks to calculate the loss between the predicted and
ground truth mask contours. The point was to create sharper edges for the predicted mask
and increase speed and performance early on in the training procedure. This is a small
improvement which could be added on in later processes.

34

5 Discussion and suggestions of improvements 5.4.4 Automatic image annotation

5.4.4 Automatic image annotation

We have mentioned before that one of the challenges for collecting new data and intro-
ducing new classes was the work of image annotation. A solution could be even more
automated image annotation than V7 [35]. The paper from [32] presents an image label-
ing tool for unsupervised image segmentation based on texture and RGB feature-based
classifier optimization. This means that a large portion of images could be automatically
annotated from just a small set of samples, with some time spent on verifying the annota-
tions.

35

Conclusion and further work

6.1 Conclusion

In this thesis, we addressed the task of corrosion detection and the challenges involved,
and provided suggestions for improving the performance of the network in chapter 5. De-
spite the complex structure and varied results of Mask R-CNN, it is still the most suitable
network for this task, and we will continue to work with it. However, if performance does
not improve, it may be necessary to consider alternative networks. The wide range of
corrosion development and bridge images can present significant challenges as more data
is collected and tested, as seen in the results presented in chapter 4. These results also
highlight the need for improvements to the algorithm in order for it to be effectively used
in the field.
Based on this thesis, the following conclusions can be drawn:

6.1.1 Dataset

The quality of the dataset has a significant impact on the performance of a large network
like Mask R-CNN. In conclusion, while the current dataset contains useful information,
there is still a need for more data that represents the diverse environments in which corro-
sion can occur on bridge infrastructure. Pre-processing the images to remove distractions
such as sunlight and to ensure that the bridges are captured clearly is also important.
Continuous gathering of high-quality corrosion data is crucial for the future of this net-
work. This could involve data from different bridges, different types of corrosion, or
different types of damage. As this work is both time-consuming and always improvable,
the current dataset may not be complete enough for a master’s thesis by spring 2023. To
address this issue in the short term, we suggest using data augmentation techniques such
as rotation and flipping, and cropping the images to increase the size of the dataset by a
factor of ten.

Other suggestions for improving the data quality include implementing specific routes for
the UAVs or using a second neural network for bridge detection or background removal.

36

6 Conclusion and further work 6.1.2 Implementation

These approaches may be more applicable in the future when the network is more mature
and ready for integration with VSLAM.

6.1.2 Implementation

The results in fig. 4.4 shows sub-optimal performance, with an IoU of only 50% and no
improvement overall for the 30 epochs. It is difficult to evaluate where the inefficiency
comes from, but research suggests poor feature extraction and poor hyperparameter tuning,
in addition to a faulty dataset. The recent research suggests using the Genetic Algorithm
for automatic hyperparameter tuning, making the time-consuming work of manual tuning
way more efficient and easier. To get a better feature extraction backbone, suggestions like
adding a Deformable Convolutional Network and a Recursive Feature Pyramid have also
increased perfomance for some related issues.

These suggestions have not been tested, so it is difficult to evaluate how well these changes
will perform on our current dataset. Many of these changes are however possible to imple-
ment independently of each other, along with continuous work of gathering and annotating
new data. Specifically automated hyperparameter tuning and backbone improvement are
changes that should be easy to implement and test. The suggestions discussed in sec-
tion 5.4 can be further researches for future work.

The potential and societal need for an automatic segmentation algorithm is present, and
with the skyrocketing amount of research done on Mask R-CNN and other segmentation
algorithms, improvement of the network is imminent.

6.2 Further work

The whole of chapter 5 is a discussion of potential further work. Shortly summarized,
future work should be focused on gathering data, create good data augmentation such as
cropping algorithms in order for the training to be optimized, and then test any of the
suggestion in chapter 5. When performance has improved, one could start the work of
fulfilling the goal of an fully automated inspection drone by integrating the algorithm with
VSLAM.

6.3 Delimitations

The training and testing of neural networks is a complex assignment subject to many pit-
falls. This is especially relevant given the age of the code and the lack of documentation.
The goal was to develop a more comprehensive understanding of the hyperparameters and
introduce them here, and to have more results to compare. The lack of training has been
due to multiple issues regarding version control, 0% accuracy and increasing loss function.
The problems probably stem from the attempted upgrade to Tensorflow 2.7, which will be
investigated further in the master’s thesis. The results presented was therefore only based
around one training of 32 epochs.

37

Bibliography

(1]

(2]

[4]

(5]
[6]

[7]

Jozef Gocdl and Jaroslav Odrobiridk. On the influence of corrosion on the load-
carrying capacity of old riveted bridges. Materials, 13(3):717, Feb 2020. ISSN
1996-1944. doi: 10.3390/mal3030717. URL http://dx.doi.org/10.3390/
mal3030717.

Vivi Yang. Final report released on nanfangao sea-crossing bridge collapse. Taiwan
Transportation Safety Board. URL https://www.ttsb.gov.tw/english/
16051/16113/16114/28249/post.

Gerhardus Koch, Jeff Varney, Neil Thompson, Oliver Moghissi, Melissa Gould, and
Joe Payer. International measures of prevention, application, and economics of cor-
rosion technologies study. Technical report, NACE International.

Norwegian public roads administration. URL https://www.vegvesen.no/
en/?lang=en.

Dimensions ai. URL https://www.dimensions.ai/.

Kaiming He, Georgia Gkioxari, Piotr Dollr, and Ross Girshick. Mask r-cnn, 2017.
URL https://arxiv.org/abs/1703.06870.

Simen Keiland Fondevik. Image segmentation of corrosion damages in in-
dustrial inspections using state-of-the-art neural networks. 2020. URL
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
27808817locale-attribute=no.

Billie F. Spencer, Vedhus Hoskere, and Yasutaka Narazaki. Advances in com-
puter vision-based civil infrastructure inspection and monitoring. Engineering, 5
(2):199-222, 2019. ISSN 2095-8099. doi: https://doi.org/10.1016/j.eng.2018.
11.030. URL https://www.sciencedirect.com/science/article/
pii/S2095809918308130.

Deepa Berchmans and S S Kumar. Optical character recognition: An overview and
an insight. 2014. doi: 10.1109/ICCICCT.2014.6993174.

38

http://dx.doi.org/10.3390/ma13030717
http://dx.doi.org/10.3390/ma13030717
https://www.ttsb.gov.tw/english/16051/16113/16114/28249/post
https://www.ttsb.gov.tw/english/16051/16113/16114/28249/post
https://www.vegvesen.no/en/?lang=en
https://www.vegvesen.no/en/?lang=en
https://www.dimensions.ai/
https://arxiv.org/abs/1703.06870
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2780881?locale-attribute=no
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2780881?locale-attribute=no
https://www.sciencedirect.com/science/article/pii/S2095809918308130
https://www.sciencedirect.com/science/article/pii/S2095809918308130

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks,
2015. URL https://arxiv.org/abs/1511.08458.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541-551, 1989. doi: 10.1162/neco.1989.1.4.541.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. URL https://arxiv.
org/abs/1506.01497.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/
abs/1512.03385.

Tsung-Yi Lin, Piotr Dolldr, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection, 2016. URL https:
//arxiv.org/abs/1612.03144.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), December 2015.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and An-
drew Zisserman. The pascal visual object classes (voc) challenge. page 303-338,
2010. doi: https://doi.org/10.1007/s11263-009-0275-4.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar.
Microsoft coco: Common objects in context, 2014. URL https://arxiv.org/
abs/1405.0312.

Waleed Abdulla. Mask r-cnn for object detection and instance segmentation on keras
and tensorflow. https://github.com/matterport/Mask_RCNN, 2017.

Mia Gerber, Nelishia Pillay, Katerina Holan, Steven A. Whitham, and Dave K.
Berger. Automated hyper-parameter tuning of a mask r-cnn for quantifying com-
mon rust severity in maize, 2021.

Feng Jiang, Ling Ma, Tim Broyd, and Ke Chen. Digital twin and its imple-
mentations in the civil engineering sector. Automation in Construction, 130:
103838, 2021. ISSN 0926-5805. doi: https://doi.org/10.1016/j.autcon.2021.
103838. URL https://www.sciencedirect.com/science/article/
pii/S0926580521002892.

Industrial internet of things: Unleashing the potential of connected products
and services. Technical report, World Economic Forum, January 2015. URL
https://www3.weforum.org/docs/WEFUSA_Industriallnternet_
Report2015.pdf.

39

https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://github.com/matterport/Mask_RCNN
https://www.sciencedirect.com/science/article/pii/S0926580521002892
https://www.sciencedirect.com/science/article/pii/S0926580521002892
https://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
https://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Mayank Mishra, Paulo B. Lourenco, and G.V. Ramana. Structural health moni-
toring of civil engineering structures by using the internet of things: A review.
Journal of Building Engineering, 48:103954, 2022. ISSN 2352-7102. doi: https:
//doi.org/10.1016/j.jobe.2021.103954. URL https://www.sciencedirect.
com/science/article/pii/S235271022101812X.

Sindhu Ghanta, Tanja Karp, and Sangwook Lee. Wavelet domain detection of rust
in steel bridge images. In 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1033-1036, 2011. doi: 10.1109/ICASSP.
2011.5946583.

Ahmed Mahmoud and Mohamed Atia. Improved visual slam using semantic seg-
mentation and layout estimation. Robotics, 11(5):91, Sep 2022. ISSN 2218-
6581. doi: 10.3390/robotics11050091. URL http://dx.doi.org/10.3390/
robotics11050091.

T. Padma, Ch Usha Kumari, Dommeti Yamini, Kapilavai Pravallika, Konduru Bhar-
gavi, and Mula Nithya. Image segmentation using mask r-cnn for tumor detection
from medical images. In 2022 International Conference on Electronics and Renew-
able Systems (ICEARS), pages 1015-1021, 2022. doi: 10.1109/ICEARS53579.2022.
9751891.

Allen Zhang, Kelvin C. P. Wang, Baoxian Li, Enhui Yang, Xianxing Dai, Yi Peng,
Yue Fei, Yang Liu, Joshua Q. Li, and Cheng Chen. Automated pixel-level pavement
crack detection on 3d asphalt surfaces using a deep-learning network. Computer-
Aided Civil and Infrastructure Engineering, 32(10):805-819, 2017. doi: https://
doi.org/10.1111/mice.12297. URL https://onlinelibrary.wiley.com/
doi/abs/10.1111/mice.12297.

Xiangyang Xu, Mian Zhao, Peixin Shi, Ruigi Ren, Xuhui He, Xiaojun Wei, and
Hao Yang. Crack detection and comparison study based on faster r-cnn and mask
r-cnn. Sensors, 22(3), 2022. ISSN 1424-8220. doi: 10.3390/s22031215. URL
https://www.mdpi.com/1424-8220/22/3/1215.

Soufiane Bouarfa, Anil Dogru, Ridwan Arizar, Reyhan Aydogan, and Joselito Ser-
afico. Towards Automated Aircraft Maintenance Inspection. A use case of detect-
ing aircraft dents using Mask R-CNN. doi: 10.2514/6.2020-0389. URL https:
//arc.aiaa.org/doi/abs/10.2514/6.2020-0389.

Qinghui Zhang, Xianing Chang, and Shanfeng Bian Bian. Vehicle-damage-detection
segmentation algorithm based on improved mask rcnn. IEEE Access, 8:6997-7004,
2020. doi: 10.1109/ACCESS.2020.2964055.

Ziliang Zhang, Fukun Gui, Xiaoyu Qu, and Dejun Feng. Netting damage detection
for marine aquaculture facilities based on improved mask r-cnn. Journal of Marine
Science and Engineering, 10(7):996, Jul 2022. ISSN 2077-1312. doi: 10.3390/
jmse10070996. URL http://dx.doi.org/10.3390/jmsel0070996.

40

https://www.sciencedirect.com/science/article/pii/S235271022101812X
https://www.sciencedirect.com/science/article/pii/S235271022101812X
http://dx.doi.org/10.3390/robotics11050091
http://dx.doi.org/10.3390/robotics11050091
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12297
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12297
https://www.mdpi.com/1424-8220/22/3/1215
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0389
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0389
http://dx.doi.org/10.3390/jmse10070996

[31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

Jiyuan Shi, Ji Dang, Mida Cui, Rongzhi Zuo, Kazuhiro Shimizu, Akira Tsunoda,
and Yasuhiro Suzuki. Improvement of damage segmentation based on pixel-level
data balance using vgg-unet. Applied Sciences, 11(2), 2021. ISSN 2076-3417. doi:
10.3390/app11020518. URL https://www.mdpi.com/2076-3417/11/2/
518.

Atiqur Rahman, Zheng Yi Wu, and Rony Kalfarisi. Semantic deep learning
integrated with rgb feature-based rule optimization for facility surface corro-
sion detection and evaluation. Journal of Computing in Civil Engineering,
35(6):04021018, 2021. doi: 10.1061/(ASCE)CP.1943-5487.0000982. URL
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.
1943-5487.0000982.

B. Burton, W. T. Nash, and N. Birbilis. Rustseg — automated segmentation of cor-
rosion using deep learning, 2022. URL https://arxiv.org/abs/2205.
05426.

Deegan J Atha and Mohammad R Jahanshahi. Evaluation of deep learning ap-
proaches based on convolutional neural networks for corrosion detection. Structural
Health Monitoring, 17(5):1110-1128, 2018. doi: 10.1177/1475921717737051. URL
https://doi.org/10.1177/1475921717737051.

Darwin from v7 labs. URL https://darwin.v7labs.com.

Dhruvil Shah. Mask r-cnn on a custom dataset! https://github.com/
jackfrost1411/MaskRCNN, 2020.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018. URL
https://arxiv.org/abs/1804.02767.

Annu Lambora, Kunal Gupta, and Kriti Chopra. Genetic algorithm- a literature re-
view. In 2019 International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon), pages 380-384, 2019. doi: 10.1109/COMITCon.
2019.8862255.

Haidar Almubarak, Yakoub Bazi, and Naif Alajlan. Two-stage mask-rcnn approach
for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus
images. Applied Sciences, 10(11):3833, May 2020. ISSN 2076-3417. doi: 10.3390/
appl10113833. URL http://dx.doi.org/10.3390/appl0113833.

Weilei Yu and Mayuko Nishio. Multilevel structural components detection and seg-
mentation toward computer vision-based bridge inspection. Sensors, 22(9), 2022.
ISSN 1424-8220. doi: 10.3390/522093502. URL https://www.mdpi.com/
1424-8220/22/9/3502.

Ahmed Hamada. Brain tumor detection 2020. URL https://www.kaggle.
com/datasets/ahmedhamadal/brain-tumor—-detection.

41

https://www.mdpi.com/2076-3417/11/2/518
https://www.mdpi.com/2076-3417/11/2/518
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000982
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000982
https://arxiv.org/abs/2205.05426
https://arxiv.org/abs/2205.05426
https://doi.org/10.1177/1475921717737051
https://darwin.v7labs.com
https://github.com/jackfrost1411/MaskRCNN
https://github.com/jackfrost1411/MaskRCNN
https://arxiv.org/abs/1804.02767
http://dx.doi.org/10.3390/app10113833
https://www.mdpi.com/1424-8220/22/9/3502
https://www.mdpi.com/1424-8220/22/9/3502
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection

[42] Roland S. Zimmermann and Julien N. Siems. Faster training of mask r-CNN by
focusing on instance boundaries. Computer Vision and Image Understanding, 188:

102795, nov 2019. doi: 10.1016/j.cviu.2019.102795. URL https://doi.org/
10.1016%2Fj.cviu.2019.102795.

42

https://doi.org/10.1016%2Fj.cviu.2019.102795
https://doi.org/10.1016%2Fj.cviu.2019.102795

Appendix

A Distributed code

Custom dataset and training

aug_flipping () :

return iaa.Sequential ([iaa.Fliplr(0.5),

iaa.Flipud(0.5), 1)

horizontally £ 1 i p 50\% of all images# vertically f 1 i p 50\% of all images

s DamageConfig (Config) :

"""Configuration for training on the toy dataset
Derives from the base Config class and overrides some values

nun

Give the configuration a recognizable name

NAME = ’damage’
We use a GPU with 12GB memory,

Adjust down if you use a smaller GPU.

IMAGES_PER_GPU = 2
Number of classes (
NUM_CLASSES =1 + 1

including background)
+1 for background

Number of training steps per epochDataset

STEPS_PER_EPOCH = 1632
VALIDATION_STEPS = 358

508
50

Skip detections with < 90% confidence

DETECTION_MIN_CONFIDENCE = 0.9
LEARNING_RATE = 0.0005

0.001 seems too big,

OPTIMIZER = "SGD" # default is SGD
Reducing memory
BACKBONE = "resnetl101"

IMAGE_MIN_DIM = 960 #
IMAGE_MAX_DIM = 1280
MAX_GT_INSTANCES = 150
LOSS_WEIGHTS = {

which can fit two images

0.000001 is too small

"rpn_class_loss": 3,

"rpn_bbox_loss": 1.,

"mrcnn_class_loss": 3.,

"mrcnn_bbox_loss": 1.,

"mrcnn_mask_loss": 1.
}
RPN_ANCHOR_SCALES = (16, 64, 128, 512, 1024) # can only select 5 anchor scale
RPN_ANCHOR_RATIOS = [0.25, 0.5, 1, 2, 4]

FHEFF AR AR AR AR AR AR AR RS
Dataset
BHEAFFREE AR AR AR AR R R R R R R

cl

DamageDataset (utils.Dataset) :
load_damage (se1f, dataset_dir,

subset) :

"""TLoad a subset of the damage dataset

dataset_dir
subset Subset to load
wnn

Add classes.
1f.add_class (’damage’, 1,
+1 since 0=BG

Train or validation dataset
assert subset in ["train",

’corrosion’)

"yal"]

Root directory of the dataset
train or val

43

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

dataset_dir = os.path.join(dataset_dir, subset)

image_ids = next (os.walk (dataset_dir)) [1]

for image_id in image_ids:
image_example_dir = os.path.join(dataset_dir, image_id)
(_, _, file_names) = next (os.walk (image_example_dir))
file_name = file_names[0]
image_path = os.path.join (image_example_dir, file_name)
image = skimage.io.imread (image_path)
height, width = image.shape[:2]

.add_image (

" damage’

image_id=image_id, # use ids from LabeBox

path=image_path,

width=width, height=height)

load_mask (self, image_id) :
"""Generate instance masks for an image
Returns
masks: A bool array of shape [height , width , instance count] with
one mask per instance
class_ids : a 1D array of class IDs of the instance masks
W
info = self.image_info[image_id]
Get mask directory from image path
mask_dir = os.path.join(os.path.dirname (info[’path’]), ’masks’
Read mask files from .png images
mask = []
for £ in next (os.walk (mask_dir)) [2]:
if f.endswith(’.png’) and (’corrosion’ or ’'grov_merking’ in f):
m = skimage.io.imread(os.path. join(mask_dir, £f))
len (m.shape) > 2:
m=m[:, :, O]

m = m.astype (b

as_gray=True) .astype (bool)

mask .append (m)
mask = np.stack (mask, axis—=—1)
class_ids = np.ones([mask.shape[—1]], dtype=np.int32)
Return mask, and array of class IDs of each instance
return mask.astype (bool), class_ids,

load_mask_semantic(self, image_id) :
"""Generate instance masks for an image
Returns
masks: A bool array of shape [height , width , instance count] with
one mask per instance
class_ids : a 1D array of class IDs of the instance masks
W
info = self.image_info[image_id]
Get mask directory from image path
mask_dir = os.path.join(os.path.dirname (info[’path’]), "masks"
Read mask £ i 1 e s from .png images
mask = None
mask_initialized = False
for £ 1 next (os.walk (mask_dir)) [2]:
f.endswith(".png") :
if not mask_initialized:
mask = skimage.io.imread(os.path.join (mask_dir, f),
as_gray=True) .astype (np. ®

mask_initialized = True

m = skimage.io.imread(os.path.join(mask_dir, f),
as_gray—=True) .astype (np.bool)

mask = np.add(mask, m)

mask = [mask]

mask = np.stack (mask, axis—=1)

class_ids = np.ones([mask.shape[—1]], dtype=np.int32)

Return mask, and array of class IDs of each instance

return mask.astype (np.bool), class_ids

44

123
124 def image_reference (self, image_id) :

125 """Return the path of the image . """

126 info = self.image_info[image_id]

127 if info[" source "] — " damage ":

128 return info["path"]

129 e1s

130 super (self.__class__, self).image_reference (image_id)
131

132

133 def lr_scheduler (epoch, 1lr):

134 decay_rate = 0.5

135 decay_step = 10

136 print (epoch, 1lr)

137 © int (epoch) % decay_step = 0 and epoch != 0:

138
139

rint (lr = decay_rate)
oat (lr = decay_rate)

140 els
141
142 return float (1r)
143
144
145 lef train(model) :
146 """Train the model."""
147 dataset_train = DamageDataset ()
148 dataset_train.load_damage (ROOT_DIR, ’train’)
149 dataset_train.prepare ()
150
151 # Validation dataset
152 dataset_val = DamageDataset ()
153 dataset_val.load_damage (ROOT_DIR, ’'val’)
154 dataset_val.prepare ()
155 # Custom callbacks
156 change_lr = LearningRateScheduler (1lr_scheduler, verbose=l)
157 print (" Training network heads")
158 print (model.config.LEARNING_RATE)
159 model.train(dataset_train, dataset_val,
160 learning_rate=model.config.LEARNING_RATE,
161 epochs=80,
162 custom_callbacks=[change_lr],
163 augmentation—=aug_flipping(),
164 layers='all’)
Inference and Visualization
1 local_class_colors = [(0, 0, 0), (0, 0, 255)]
2 mask_rcnn_colors = local_class_colors
3 def apply_inference (model, image_path=None) :
4 # Load image
5 print (image_path)
6 image = skimage.io.imread (image_path)
7 # Run detection
8 results = model.detect ([image], verbose=l)
9 # Visualize results
10 r = results([0]
11 class_names = ["BG", "corrosion"]
12 visualize.display_instances (image, r[’rois’], r[’masks’],
13 r[’class_ids’],
14 class_names, r[’scores’])
15
16 def evaluate_model (model, dataset_val):
17 dataset_val.load_damage (ROOT_DIR, "wval")
18 dataset_val.prepare ()
19 image_ids = dataset_val.image_ids
20 iou_corr_list = []
21 iou_bg_list = []

22 for image_id in image_ids:

23
24
25
26
27
28
29
30
31
k)
33
34
35
36
37
38
39
40
41
pu.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6

62
63
64
65
66
67
68
69
70
7

72
73
74
75
76
77
78
79
80
81
82
83
84
85
36

88
89
90

image = dataset_val.load_image (image_id)

mask_gt, class_ids = dataset_val.load_mask (image_id)
mask_gt = combine_masks_to_one (mask_gt)

result = model.detect ([image], verbose=0) [0]

#frame = Image.open (image_path) .convert (' RGB’)

frame = np.array (image)

CLASS_NAMES_MASKRCNN = [’background’, ’corrosion’]

r = result

fig, (axl, ax2) = plt.subplots(l, 2)

visualize.display_instances (frame, r[’rois’],
r[’masks’], r[’class_ids’],
CLASS_NAMES_MASKRCNN, r[’scores’],
figAx—=(fig, axl) ,show_caption=False)

predicted_masks = result["masks"]

1 £ predicted_masks.shape[—1] — O0:

continue

mask_pred = combine_masks_to_one (predicted_masks)

iou_corr = compute_overlaps_masks (mask_gt, mask_pred) [0] [0]

iou_bg = compute_overlaps_masks (mask_gt, mask_pred, BG=True) [0] [0]

print (image_id, "IoU =", (iou_corr, iou_bg))

iou_corr_list.append(iou_corr)

iou_bg_list.append(iou_bg)

mean_corr_iou = sum(iou_corr_list) / len(iou_corr_list)
mean_bg_iou = sum(iou_bg_list) / len(iou_bg_list)

print ("Total mean values ")

print (" Corrosion IoU =", mean_corr_iou)

print ("BG IoU=", mean_bg_iou)

print ("Mean IoU =", (mean_corr_iou + mean_bg_iou) / 2)

)

combine_masks_to_one (masks) :

combined_mask = masks[:, :, 0]

for i in range (masks.shape[—1]) :
combined_mask += masks([:, :, 1i]

return np.expand_dims (combined_mask, 2)

def compute_overlaps_masks (masksl, masks2, BG=False):
"""Computes IoU overlaps between two sets of masks
masksl, masks2: [Height , Width , instances]

nun

If either set of masks is empty return empty result

if masksl.shape[—1] =— 0 or masks2.shape[—1] =— O0:
return np.zeros ((masksl.shape[—1], masks2.shape[—1]))
£f 1 at t e n masks and compute their areas
if BG:
masksl = np.reshape (masksl < .5,
(—1, masksl.shape[—1])) .astype(np.float32)
masks2 = np.reshape (masks2 < .5,
(—1, masks2.shape[—1])) .astype (np.float32)
masksl = np.reshape (masksl > .5,
(—1, masksl.shape[—1])) .astype (np.float32)
masks2 = np.reshape (masks2 > .5,
(—1, masks2.shape[—1])) .astype (np.float32)
areal = np.sum(masksl, axis=0)
area2 = np.sum(masks2, axis=0)

intersections and union

intersections = np.dot (masksl.T, masks2)

union = areal[:, None] + area2[None, :] — intersections
overlaps = intersections / union

return overlaps

def overlay_prediction_single_maskrcnn (pr=None, inp=None,
out_dir—=None,
overlay_img=True,
colors=mask_rcnn_colors) :

46

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

if

if

assert le

sinstance (pr, six.string_types):

pr = cv2.imread(pr, 0)

< stance (inp, six.string_types):

out_fname = os.path.join(out_dir, os.path.basename (inp))
inp = cv2.imread(inp[:—4] + ".Jpg")

n(inp.shape) =— 3, "Image should be h,w,3 "

seg_img = visualize_segmentation(pr, inp, colors=colors,

overlay_img—overlay_img,)

if out_fname is not None:

cv2.imwrite (out_fname, seg_img)

return pr

fo

T

def overlay_predictions_all_maskrcnn (pr_dir=None, inp_dir=None,

out_dir=None,

overlay_ img=True, colors—mask_rcnn_colors):

f in t (os.walk (pr_dir)) [2]:
print ("File name =", f)

if " DS_Store " in f:
0 t (" Skipping DS_Store file")

cO C nue
if f.endswith(".png"):
pr = os.path.join(pr_dir, f)
inp = os.path.join(inp_dir, f)
overlay prediction_single_maskrcnn (pr, inp,
out_dir, overlay_img, colors)

47

	Executive summary
	Abbreviations
	Introduction
	Motivation
	Background
	Objectives
	Structure of the report

	Theoretical background
	Classification, object detection and segmentation
	Convolutional Neural Networks
	Overall architecture

	Mask R-CNN
	Architecture
	Loss function
	Evaluation metric
	Transfer learning
	Hyperparameters

	Image segmentation on structure damages
	Goal of automated inspection
	Current state
	Related research
	Object detection of damages
	Corrosion detection

	Challenges
	Bridges
	Detecting corrosion
	Dataset

	Implementation
	Dataset
	Image acquisition
	Image processing
	Image annotation

	Distributed code
	Mask R-CNN
	Custom dataset

	Training and configuration of the corrosion dataset
	Testing
	Results

	Discussion and suggestions of improvements
	Refinement and tuning of hyperparameters
	Improving backbone network
	Two stage neural networks
	Other suggestions
	Transfer learning
	Multi-class detection
	Increase efficiency and training time
	Automatic image annotation

	Conclusion and further work
	Conclusion
	Dataset
	Implementation

	Further work
	Delimitations

	Bibliography
	Appendix
	Distributed code

