
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Helene Semb

Optimizing a neural network with
genetic algorithm and background
removal for instance segmentation
of infrastructural damages

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Marius Andersen, Ole Øystein Knudsen, Robin
Vacher
June 2023

Helene Semb

Optimizing a neural network with
genetic algorithm and background
removal for instance segmentation of
infrastructural damages

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Marius Andersen, Ole Øystein Knudsen, Robin Vacher
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

This thesis aims to study and assess strategies of improving a an instance segmentation
model for detecting and segmenting corrosion damages from bridge inspections. To eval-
uate the impact of the images, the dataset was narrowed down to include only images
with red corrosion, i.e steel corrosion. Subsequently, three strategies were employed to
assess the potential improvements in accuracy: data augmentation, hyperparameter op-
timization using the Genetic Algorithm, and a background removal network specifically
designed to eliminate sky regions from the images. These strategies were implemented
and tested on five backbone models using Mask R-CNN.

The results indicate that each method has its own strengths and limitations for detect-
ing different types of red corrosion, but none of them are able replace the deficient quality
of the dataset, as the only remarkable improvement comes from the reduction in dataset.
While both automatic hyperparameter tuning and change of backbone indicate some im-
provement, there are still challenges of generalizing such a broad dataset, that the images
should either be expanded threefold to improve the network’s capabilities, or sharpen its
focus on one specific damage. The Genetic Algorithm does have potential for further de-
velopment of the network, but suffers from a small search space and limited population
size. The sky removal network did no visible improvement to the accuracy, making the
pre-processing step redundant. Further research should be done on a better augmenta-
tion scheme than the one presented in this assignment. The sky removal network did no
visible improvement to the accuracy, making the pre-processing step redundant. Other
further improvements suggested are to use RGB-D images, synthetic data or to consider
other networks than Mask R-CNN.

iii

Sammendrag

Denne oppgaven tar sikte på å studere og vurdere strategier for å forbedre et nevralt for
å oppdage og segmentere korrosjonsskader fra broinspeksjoner. For å evaluere effekten
av bildene, ble datasettet innsnevret til kun å inkludere bilder med rød korrosjon. Der-
etter ble tre strategier brukt for å vurdere potensielle forbedringer i nøyaktighet: data-
forstørrelse, hyperparameteroptimalisering ved bruk av den genetiske algoritmen, og et
bakgrunnsfjerningsnettverk spesielt designet for å eliminere himmelregioner fra bildene.
Disse strategiene ble implementert og testet på fem ryggradsmodeller ved bruk av Mask
R-CNN.

Resultatene indikerer at hver metode har sine egne styrker og begrensninger for å
oppdage ulike typer rød korrosjon, men ingen er i stand til å erstatte den mangelfulle
kvaliteten på datasettet, da den eneste bemerkelsesverdige forbedringen kommer fra re-
duksjonen i datasettet. Mens både automatisk hyperparameterinnstilling og endring av
ryggrad indikerer en viss forbedring, er det fortsatt utfordringer med å generalisere seg
til et så bredt datasett. For å løse disse utfordringene bør datasettet utvides tre ganger for å
forbedre nettverkets muligheter, eller begrense til en skade for skjerpe fokuset til nettver-
ket. Den genetiske algoritmen har potensial for videreutvikling av nettverket, men lider
av liten søkeplass og begrenset populasjonsstørrelse. Det bør forskes videre på bedre data-
forstørrelse teknikker enn det som er presentert i denne oppgaven. Skyfjerningsnettverket
gjorde ingen synlig forbedring av nøyaktigheten, noe som gjorde forbehandlingstrinnet
overflødig. Andre ytterligere forbedringer som foreslås er å bruke RGB-D-bilder, syntet-
iske data eller å vurdere andre nettverk som har prestert bedre enn Mask R-CNN i andre
eksperimenter.

iv

Preface

This master’s thesis marks the conclusion of my five-year degree at the Department of
Engineering Cybernetics, and is the result of a collaboration between NTNU and SINTEF.
The task was assigned January 16th 2023 and was delivered June 12th 2023, and is a
continuation of my pre-project assignment written in the fall of 2022. The thesis is written
entirely by me. All contributions, text and figures are original works by me. The dataset is
provided by SINTEF, with the Norwegian Public Roads Administration providing images
from real bridge inspections, along with relevant corrosion images taken from stock image
collections, and code implementation for Mask R-CNN and YOLO is provided by Meta AI
and Ultralytics respectively. Relevant code contributions can be found in the appendices
and on my GitHub for those interested. The pre-project contains a lot of important back-
ground information and theory that this thesis is based on, and it is recommended to read
through it before starting on this thesis. Citations are provided in the specific sections, and
the project thesis is delivered along with this thesis.

The work has been trisected. The first part was spent on setting up the network with a
new framework, Detectron2 and training backbone models on the existing and evaluating
current solution paths, basically picking up where I left off in the pre-project, which fell
short in some training evaluation. The second part of the project consisted of implement-
ing the Genetic Algorithm and the sky segmentation network with YOLO and training
them. The last month was spent on running the final networks and analyzing and sum-
marizing the results.

This has been at times a frustrating thesis, and exploring the world of deep learning
networks has been a challenging, but fun task nonetheless. Because this project operates
in such a narrow field, a lot of freedom was given to me to explore the methods I deemed
interesting, however little impact they had on the network. All network training was done
on the Idun cluster provided by the HPC group at NTNU, and I am grateful to them
for providing me with lifesaving software. Without Idun, this assignment would not be
possible.

I would like to thank my four supervisors Annette Stahl (NTNU), Marius Andersen
(SINTEF), Ole Øystein Knudsen (SINTEF) and Robin Vacher (SINTEF). Andersen and
Vacher have provided me with guidance and ideas when I have felt stuck, while Knudsen
and Stahl have provided me with valuable discussion points and guidance on how to
structure a good master’s thesis.

Deep learning is a field in rapid development, and I am afraid this thesis may already
be irrelevant by the time it is published. But hopefully, it may provide some insights into
working with neural networks and what we can learn from the challenges.

Helene Semb
NTNU, Trondheim
June 13th, 2023

v

vi

Contents

Abstract . iii
Sammendrag . iv
Preface . v
Contents . vii
Figures . x
Tables . xii
1 Introduction . 1

1.1 Motivation and Background . 1
1.2 Aim and scope of the thesis . 2
1.3 Previous work . 3

1.3.1 Damage segmentation . 4
1.3.2 Automatic hyperparameter tuning . 4

1.4 Contributions . 5
1.4.1 Dataset construction for sky segmentation 5
1.4.2 Code and implementation . 5
1.4.3 Format conversion . 5

2 Preliminaries . 6
2.1 Neural Network Optimization . 6

2.1.1 Evaluation metric . 6
2.1.2 Hyperparameter optimization . 8
2.1.3 Choice of backbone . 10
2.1.4 Image processing . 12

2.2 The YOLO network . 14
2.2.1 Detection . 14
2.2.2 Architecture . 14
2.2.3 Loss function . 14

2.3 Genetic Algorithm . 16
2.3.1 Genetic operators . 17
2.3.2 Fitness function . 18

3 Neural network for corrosion segmentation . 19
3.1 Dataset . 19
3.2 Model . 19
3.3 Implementation . 19

3.3.1 Dataset conversion . 20
3.3.2 Choice of architecture and transfer learning 20
3.3.3 Choice of evaluation metrics . 21

3.4 Training process . 21
3.5 Results and evaluation of performance . 22
3.6 Dataset limitations . 24

vii

4 Methods and Implementation . 27
4.1 Dataset reduction and augmentation . 27
4.2 Genetic Algorithm . 29

4.2.1 Chromosome . 29
4.2.2 Dataset . 30
4.2.3 Fitness function . 31
4.2.4 Algorithm pipeline . 31
4.2.5 Results . 33

4.3 Sky segmentation and removal (SkySeg) . 34
4.3.1 Model . 34
4.3.2 Dataset . 34
4.3.3 Training and testing . 36
4.3.4 Background removal . 36

4.4 Experiment . 37
4.4.1 Backbones . 38
4.4.2 Methods . 38
4.4.3 System . 40

5 Results and Discussion . 41
5.1 Augmentations . 41

5.1.1 Light augmentation . 41
5.1.2 Heavy augmentation . 43

5.2 Genetic Algorithm . 45
5.3 SkySeg . 49
5.4 Summary of results and analysis . 51

6 Conclusion and further work . 54
6.1 Conclusion . 54

6.1.1 Dataset . 54
6.1.2 Genetic Algorithm for automatic hyperparameter tuning 55
6.1.3 SkySeg . 55

6.2 Further work . 55
6.2.1 Introduce a combination of FPN and dilated convolutions 56
6.2.2 Multiple classes . 56
6.2.3 Change of network . 56
6.2.4 RGB-D Images and Depth-Aware CNNs 56

Bibliography . 57
A Dataset conversion . 62

A.1 Binary masks to COCO format . 62
A.2 ADE20K to YOLO format . 63

B Mask R-CNN . 65
B.1 Data augmentation . 65
B.2 Configuration . 65
B.3 Main . 65

C Genetic Algorithm . 67
C.1 Adaptive mutation . 67
C.2 Genetic algorihtm . 67

D SkySeg . 69
E Network plots . 70

E.1 Light augmentation . 70
E.1.1 ResNet-50 + FPN . 70
E.1.2 ResNet-101 + FPN . 71

viii

E.1.3 ResNet-50 + DC5 . 71
E.1.4 ResNet-101 + DC5 . 72

E.2 GA tuned . 72
E.2.1 ResNet-50 + FPN . 72
E.2.2 ResNet-101 + FPN . 73
E.2.3 ResNeXt-101 + FPN . 73
E.2.4 ResNet-50 + DC5 . 74
E.2.5 ResNet-101 + DC5 . 74

ix

Figures

1.1 Nordhordland bridge . 2
1.2 The goal of the model versus the detections the model currently produces . 2
1.3 False prediction of sky from the model . 3
1.4 The goal of a sky network would be to remove unimportant pixels from

images to have less disturbances for the Mask R-CNN. 4

2.1 Visualization of the three primary evaluation metric equations. Blue de-
notes the area of the nominator (true positive), while green plus blue de-
notes the area of the denominator . 8

2.2 Example comparison of two learning rates on four iterations of SGD. 9
2.3 Comparing predictions with two thresholds. 10
2.4 Visualization of how automatic tuning operates 10
2.5 Side-by-side comparison of the two backbone networks, a layer is shown

with (# in-channels, filter size, # out-channels). 11
2.6 Comparing a regular 2x2 convolution wtih a dilated convolution with dila-

tion factor 1 . 12
2.7 The detection pipeline of YOLO . 15
2.8 Representation of population, individual and gene in the Genetic Algorithm 17
2.9 Representation of the selection operator on a set of 6 individuals with a

given fitness score. In (a) only the individuals with the best fitness can
reproduce, while in (b) random individuals are first picked, and then sorted. 17

2.10 Representation of the crossover operator in GA 18
2.11 Representation of the mutation operator in GA, which chooses random

genes and replaces them with a new value . 18

3.1 Example of one image written in the COCO-format 20
3.2 Corrosion IoU per image in validation set, with ResNet-101 backbone 22
3.3 Total training loss per step with the backbone structure 23
3.4 Ratio of false negatives vs false positives per epoch with the backbone struc-

ture . 24
3.5 Mean IoU over the iterations on the validation dataset 25
3.6 Examples of predictions on the validation dataset, ResNet-101+FPN 26

4.1 Histogram of dataset and percent of corroded pixels (bin=20) 28
4.2 Heavy augmentations of one image . 29
4.3 The Genetic Algorithm run per generation . 31
4.4 Excerpt of genes and results from Genetic Algorithm testing with simple

mutation . 32

x

4.5 Excerpt of genes and results from Genetic Algorithm testing with adaptive
mutation . 33

4.6 Example from ADE20K dataset . 35
4.7 Metadata for SkySeg . 35
4.8 The pipeline of converting a ADE20K mask to YOLO format. (a) The ori-

ginal mask corresponding to the image in fig. 4.6. (b) The instance mask
for the class sky is located, all other classes are removed, making the image
a binary mask. (c) The polygon coordinates are normalized and written to
a text file in YOLO format. 35

4.9 Labeling with Roboflow . 36
4.10 Loss functions from training YOLO on the sky dataset 37
4.11 Predictions from the SkySeg model on the validation dataset 38
4.12 Background removal with SkySeg . 38

5.1 Plots from default run, Light augmentation, ResNet-101+DC5 42
5.2 Comparing predictions on ResNet-101 backbone 43
5.3 Plots from default run, Heavy augmentation, ResNet-101+DC5 44
5.4 Comparing predictions on ResNet-101+DC5 with light augmentation(LA)

and heavy augmentation(HA) . 45
5.5 Plots from GA-tuned run, ResNet-101+DC5 . 46
5.6 Plots from GA-tuned run, ResNet-101+FPN . 46
5.7 Comparing predictions with left-side vs right sided values in table 4.6, with

ResNet-101+FPN . 48
5.8 Example of poor pre-processing with SkySeg, the masking removes part of

the bridge where corrosion is present . 50
5.9 Example where the mask itself is detected as corrosion 51
5.10 Comparing predictions with and without SkySeg to the Ground Truth, the

prediction with pre-processing performs slightly better 51
5.11 Comparing predictions from ResNet-101+DC5 with and without SkySeg to

the Ground Truth. the predictions are completely alike. 52
5.12 IoU per confidence threshold for ResNet-101+DC5 52
5.13 Final predictions on validation dataset, with ResNet-101+DC5 53

xi

Tables

3.1 Current results from the Detectron2 Mask R-CNN on the validation dataset 22

4.1 Augmentation schemes. Heavy augmentation 28
4.2 The hyperparameters chosen for the Genetic Algorithm and their value in-

tervals . 30
4.3 Genetic Algorithm parameters . 32
4.4 Hyperparameter values for YOLO network . 36
4.5 Total outline over all experiments . 37
4.6 Hyperparameters comparison between the default values and those used

in the GA experiment . 39
4.7 Hardware configuration . 40
4.8 Software configurations . 40

5.1 Results on default configuration, Light augmentation 41
5.2 Results on normal configuration, Heavy augmentation 44
5.3 Results from GA tuned run . 45
5.4 Current results on the validation dataset, with SkySeg 49
5.5 Mean IoU comparison for all experiments . 51
5.6 Results from one final run with ResNet-101+DC5, with a lowered threshold 53

xii

Chapter 1

Introduction

1.1 Motivation and Background

Bridges are critical components of any transportation infrastructure, and ensuring their
safety and longevity is of paramount importance. The Norwegian Public Roads Admin-
istration (NPRA) is responsible for maintaining and inspecting over 6000 bridge con-
structions in Norway, spending over 500 million NOK each year[1]. However, one of the
significant concerns in relation to steel bridges is corrosion, which can severely impact
the bridge’s carrying capacity and deteriorate its lifetime. The most common examples of
this are bridges close to seawater and in harsh weather conditions, which includes many
on the coast of Norway, like the Nordhordaland bridge, seen in Figure 1.1.

When NPRA deems a bridge to be critically damaged, it needs to be closed for main-
tenance, leading to huge repair costs and high CO2 emissions. Therefore, NPRA needs
to achieve the designated lifetime of a bridge and discover corrosion and other damages
before they become critical. To prevent corrosion, the NPRA applies a zinc coating on the
steel structure as sacrificial protection, in addition to a protective layer of paint. However,
regular recoating is an expensive task that requires a thorough assessment of when it is
needed.

Currently, the main inspection is done every 5 years, and it involves manual on-site
inspections by qualified engineers and inspectors[1]. This process is time-consuming, re-
quiring extensive gear and personnel, and can be prone to human errors, leading to con-
flicting views on the degree of damage.

Recently, advancements in computer vision have made it a realistic goal to implement
techniques such as object detection and image segmentation into infrastructural tasks,
mostly related to inspection[2, 3]. An automated algorithm to detect corrosion on images
would save hours of tedious inspection and remove the issue of human subjectivity. With
the increasing use of drones, there is a potential for an end-to-end automated inspection,
a cost-efficient method that reduces time and risk, as the drone can access spots on the
bridge that would usually require scaffolding, climbing gear and an underbridge inspec-
tion truck. Moreover, more frequent inspections can lead to early detection of damages,
reducing the need for huge repairs, as studies from the World Corrosion Organization
suggests that between 25% and 30% of costs related to repair can be reduced in optimal
damage reduction [4].

Although many recent advances have been made in models and algorithms that can
segment corrosion and similar damages, the focus of this thesis is on using Mask R-CNN
developed by He et al. at Meta AI [5], which Fondevik further develops in order to seg-

1

ment corrosion damages in the spring of 2020[6]. During the pre-project conducted in
the fall of 2022, an assessment of the current network revealed suboptimal performance,
characterized by low accuracy and a high rate of false predictions[7]. A notable instance
of these misclassifications is illustrated in fig. 1.2. The pre-project identified several chal-
lenges faced by the network, including significant data variation, untuned hyperparamet-
ers, and the presence of noisy backgrounds. Potential solutions were discussed to address
these issues.

Figure 1.1: Nordhordland bridge

(a) Corroded bridge part (b) Ground truth (c) Current model prediction

Figure 1.2: The goal of the model versus the detections the model currently produces

1.2 Aim and scope of the thesis

The project thesis conducted in the previous fall offers a comprehensive examination of
potential enhancements to the network, drawing upon a thorough literature review. From
the array of solutions presented, a careful selection was made, considering the project’s
time constraints and the potential for promising outcomes. A notable challenge identified
in the pre-project phase revolved around the substantial variation among images within
the dataset, despite its relatively small size. These variations encompass differences in cor-
rosion proximity, damage types, structural characteristics, and viewing angles, collectively

2

Figure 1.3: False prediction of sky from the model

posing a challenge to the model’s generalization capability. Although expanding the data-
set remains the optimal approach for any neural network task, this thesis proposes data
augmentation as a pragmatic short-term solution. The second point the pre-project em-
phasizes is the importance of hyperparameters, but as manual tuning is a time-consuming
labour, the potential of using the Genetic Algorithm to automatically tune the model’s hy-
perparameters could save both time and provide a better result. Lastly, from reviewing
the test images it seems that the model struggles with incorrectly detecting parts of the
background as corrosion. These false predictions are specially related to clouds when they
are present in the images, or water reflections of the sky. An example can be viewed in
fig. 1.3, where the model mistakes a cloud for corrosion. The idea is to implement an in-
dependent network to segment the background, specifically the sky, to remove the pixels
as a pre-processing step for the images. The result would ideally look like fig. 1.4. Based
on the limited time for the experiment and reviewing the different methods, this thesis
will implement and assess these methods:

• The Genetic Algorithm for hyperparameter tuning
• A second independent network for detecting and removing sky regions from the

images.

The primary objective of this thesis is to evaluate the potential performance enhancements
achieved through these methods, specifically in terms of increased IoU, which serves as
the primary evaluation metric for the entire project. Building upon the results obtained
from the corrosion detection model, this thesis aims to determine whether these solutions
effectively enhance accuracy and warrant further consideration for future applications,
or if alternative approaches should be explored. The methods under investigation are
grounded in theoretical foundations established in similar tasks, as outlined in Chapter
5 of the pre-project. However, there is limited empirical evidence available regarding
the extent to which these methods can improve the network’s performance in real-world
scenarios. Consequently, a comparative analysis will be conducted among these strategies,
traditional data augmentation techniques, and various backbone configurations of the
Mask R-CNN model.

1.3 Previous work

This section presents an overview of previous work on which these solutions are based.
A review of previous work on corrosion damages has been covered extensively in section

3

(a) Image before the preprocessing (b) Image after preprocessing

Figure 1.4: The goal of a sky network would be to remove unimportant pixels from images
to have less disturbances for the Mask R-CNN.

3.3 by the pre-project[7].

1.3.1 Damage segmentation

After the literature review conducted in December 2022[7], there has been limited recent
work on corrosion detection using Mask R-CNN. The only notable project in this domain
is the study conducted by Lemos et al., which focuses on detecting corrosion on industrial
building rooftops[8]. They achieve a recall of 85.8% and precision of 84.0% by leveraging
a monotonous and large dataset comprising of images captured from a fixed distance.
This approach simplifies the task compared to this project’s current dataset, which re-
quires detecting corrosion from various angles and structures. Multi-class segmentation
for structure inspection seems to be the primary objective in current research, specifically
crack and delamination detection. Bai et al.[9] in their project provide the most recent in-
sight on automatic inspection where they use several deep learning methods and models
for Structural Damage Detection(SSD).

1.3.2 Automatic hyperparameter tuning

Automatic hyperparameter optimization is a common procedure when tuning neural net-
works. The most significant complex algorithm used especially for Convolutional Neural
Networks is the Genetic Algorithm. The work on the Genetic Algorithm for this project
is mostly based on the paper by Gerbet et al. for segmentation of rust maize on plants,
as the project also used Mask R-CNN. The paper is discussed in section 5.1 in the pre-
project[7]. Another notable project which has used the Genetic Algorithm for tuning is by
Rodrigues et al., who compared the Genetic Algorithm and other optimization methods
on three fundamental parameters; learning rate, dropout and momentum, for the purpose
of classifying acute lymphs[10]. In the paper, they concluded that the Genetic Algorithm
achieved the best results with a 98.46% accuracy compared to Bayesian optimization
(80.39%) and Random search(62.31%).

Lee et al. presented another way of implementing the Genetic Algorithm, by using it to
design and optimize the architecture for their own Convolutional Neural Network, testing
it on a brain image dataset used for Alzheimer’s disease diagnosis[11]. Their model cre-
ated its own architecture by first encoding the connections between convolutional layers
as potential candidates. Then, it applied the Genetic Algorithm to select candidates with
the best performance.

4

1.4 Contributions

1.4.1 Dataset construction for sky segmentation

To save time annotating a whole new dataset for sky segmentation, the network primarily
used existing datasets which contain sky regions as a labelled class. The largest dataset is
ADE20K, providing around 9,000 images with the class sky, along with 149 other classes.
A simple code was constructed to extract one class so that "sky" was the only class being
segmented. The code can easily be transferred to extract other classes in the dataset. A
small custom dataset is also created from existing images of bridges taken by Orbiton[12]
of typical bridges in Norway, in order to improve the model’s capabilities to detect sky for
these types of images.

1.4.2 Code and implementation

Mask R-CNN

This thesis changed the framework from the original Mask R-CNN implementation from
the pre-project[7], replacing it with Meta AIs own library Detectron2[13]. The model was
implemented with customized configurations and augmentations, and with modules for
training, evaluating and predicting the corrosion dataset.

Genetic Algorithm

The Genetic Algorithm implemented in this project was a modified version of an imple-
mentation regarding the knapsack problem [14]. The changes allowed a structure for
more complex genes other than a binary value, making the chromosome type dictionary
instead of a list. In addition, I have implemented two different mutation functions, one
that allows for random value assignments in a hyperparameter, and one which chooses
a random value in a range from the parameter’s original value, where the range shrinks
according to its generation.

Sky segmentation and removal

This assignment involved utilizing the YOLO model (You Only Look Once) to detect and
segment sky regions in the corrosion dataset. These identified sky regions were then trans-
formed into binary masks which were used to black out the sky pixels in each image. This
network was called SkySeg for the sake of simplicity.

1.4.3 Format conversion

The annotations for both datasets are in the form of binary mask images, while the models
require a specific text format (COCO for Detectron2, YOLO for YOLO). This thesis imple-
mented the two types of dataset conversions for adapting the binary masks to the assorted
texted format by locating the contours of the mask images and deriving the polygon co-
ordinates.

5

Chapter 2

Preliminaries

The chapter will introduce background theory on deep learning optimization and new
concepts implemented in this thesis. Theory on Convolutional Neural Networks and Mask
R-CNN has been covered in chapter 2 of the pre-project[7].

2.1 Neural Network Optimization

Handling large Convolutional Neural Networks (CNNs) such as Mask R-CNN with over
60 million parameters[5] can be difficult, as there are several factors, including dataset,
weights, activation functions, that contribute to the performance. The only way to eval-
uate where the model underperforms is through metrics such as training or validation
loss. Even these metrics aren’t able to provide a clear direction on how to improve the
network. The literature behind neural networks does however present a variety of ways
to improve and test accuracy, some of which the pre-project also presents in chapter 3 and
chapter 5[7]. This section provides a short summary of the background on neural network
improvements, which also provides the context of implementations further in this thesis.

2.1.1 Evaluation metric

Evaluation metrics are an important factor in assessing the performance of deep learning
models. These metrics provide quantitative measures to understand the model’s capabil-
ities, identify areas for improvement, and compare different approaches.

Selecting the appropriate evaluation metric is a critical decision during the pre-work
phase as it ensures that the chosen metric aligns with the specific task requirements and
accurately measures the model’s performance.

In instance segmentation and classification, it is common to use the terms true posit-
ives(TP), i.e correctly predicted pixels as corrosion, true negatives (TN) which are pixels
correctly predicted as background, and false positives(FP) and false negatives(FN) which
are incorrect predictions in each class. From these terms, several important metrics are
defined. The comparison of the three metrics discussed in this thesis can be seen in fig. 2.1

Accuracy

Accuracy is a measure of the overall correctness of a classifier. It represents the proportion
of correctly predicted instances (both positive and negative) out of the total instances.

6

Accuracy=
T P + T N

T P + T N + F P + FN
Accuracy is a commonly used evaluation metric, but it can be misleading when the

classes in the dataset are imbalanced. If the dataset has a large number of instances from
one class and very few from the other, a classifier that always predicts the majority class
can achieve high accuracy without actually performing well. For example in this corrosion
dataset, where in general the image consist of 80% background[7], the accuracy can reach
over 90% accuracy without actually predicting corrosion correctly.

Precision

Precision, shown in fig. 2.1a, measures the proportion of correctly predicted positive in-
stances (TP) out of the total instances predicted as positive (TP + FP). It focuses on the
accuracy of positive predictions. High precision indicates that the classifier has a low rate
of falsely predicting positive instances.

Precision=
T P

T P + F P
Precision is useful when the cost of false positives is high, such as in medical treatment.

But to achieve 100% precision comes at the cost of risking a negative output, i.e. predict
no pixel as corrosion.

Recall

Recall(fig. 2.1b), also known as sensitivity, measures the proportion of correctly predicted
positive instances (TP) out of the total actual positive instances (TP + FN). It focuses
on the classifier’s ability to find all positive instances. It is in many ways the inverse of
precision, and sense to reduce the number of false negatives.

Recall=
T P

T P + FN
As with precision, the risk of getting 100% recall is to set all pixels as positive, which

serves little practical use.
The weight of precision versus recall depends on the computer vision task, as methods

done on the network can have positive implications on one metric, but negative on the
other. It’s therefore more valuable to find other metrics to evaluate the optimal value for
both precision and recall.

Intersection over Unit

Intersection over Union (IoU), shown in fig. 2.1c, is a commonly used evaluation metric in
computer vision tasks, particularly in object detection and segmentation. It measures the
overlap between the predicted bounding box or mask and the ground truth annotation,
providing a quantitative assessment of the accuracy of the predictions. IoU is calculated
by dividing the area of intersection between the predicted and ground truth regions by the
area of their union. The resulting value ranges from 0 to 1, where a value of 1 indicates
a perfect overlap between the predicted and ground truth regions, while a value of 0
indicates no overlap at all.

IoU=
T P

T P + FN + F P

7

IoU is an effective metric for assessing the localization accuracy of objects or regions
of interest in an image. It evaluates how well the model captures the spatial extent of the
objects being detected or segmented. A higher IoU indicates a better alignment between
the predicted and ground truth regions, reflecting a higher level of precision in the model’s
predictions.

IoU is often reported as a mean IoU (mIoU), which is the average IoU across multiple
objects or classes. It provides an overall measure of the model’s performance by consid-
ering the IoU values for all the predicted objects or classes.

(a) Precision (b) Recall (c) Intersection over Unit

Figure 2.1: Visualization of the three primary evaluation metric equations. Blue denotes
the area of the nominator (true positive), while green plus blue denotes the area of the
denominator

2.1.2 Hyperparameter optimization

Hyperparameters, settings configured external to the model, contribute largely to how
the model performs on different data patterns. For a machine learning model to optimally
solve the given task, hyperparameter optimization, also known as tuning, is an essential
part of working with neural networks[15].

An important hyperparameter is the learning rate. During weight optimization with
Stochastic Gradient Descent(SGD), which is the most popular optimization technique and
the one used in Mask R-CNN[5], the learning rate is the step size taken in the gradi-
ent’s direction. The simplest equation of updating the parameter θ j with SGD is shown
in eq. (2.1). J(θ) is the loss function, and α is the learning rate. Deciding the step size
can have a large impact on the quality of optimization. An example in fig. 2.2 shows the
graph of running SGD with two different learning rates. Choosing a large learning rate,
especially close to the global minima, can cause the optimization to "jump" over the op-
timal parameter value as seen in fig. 2.2a. Choosing a small learning rate will however
cause the model to slow down, risking the potential of not reaching an optimal value
before training is over, as seen in fig. 2.2b. A small step size also increases the risk of the
parameter reaching a local optimal value.

θ j = θ j −α
∂

∂ θ j
J(θ j) (2.1)

Another notable hyperparameter is the minimum confidence threshold. As all predic-
tions come with a class probability, it is up to us to decide the threshold for the model to

8

(a) α too large (b) α too small

Figure 2.2: Example comparison of two learning rates on four iterations of SGD.

classify the detection as corrosion. Setting the threshold higher lowers the probability for
faulty background detections for example, but if the model already fails to detect the tar-
get, a high threshold can lead to degradation of performance, as fig. 2.3b shows. Lowering
the threshold allows for more detections, but increases the risk of wrong predictions, as
in fig. 2.3a. The point should therefore be to find the optimal threshold between false
predictions. This could be done with normal experimentation, as in fig. 2.3, in order to
assign an optimal value which does not degrade the IoU. The training and dataset quality
impact this hyperparameter and sets a roof for the highest IoU achieved by optimizing
the threshold, as class probability can fail due to poor training.

All though hyperparameter tuning is important, the task can be time-consuming and
tedious, as it involves manually setting and evaluating each hyperparameter against each
other, requiring countless training hours that are often wasted on tuning redundant val-
ues. It is therefore often better to use automatic optimization methods. The most used
traditional methods for automatic tuning are grid search and random search, both visual-
ized in fig. 2.4. Grid search is a systematic brute-force application that trains a model with
a combination of all hyperparameter values within a given interval in order to cover the
entire search space, seen in fig. 2.4a. Random search, depicted in Figure 2.4b, employs a
straightforward approach by randomly sampling values from the search space in order to
discover the optimal solution. While this technique offers a time-efficient approach, the
limited search space can restrict the exploration to only local minima.

While simple algorithms can be effective for small models with limited hyperparamet-
ers, they may not scale well to more complex optimization problems with larger search
spaces. As the need for efficiency increases, the use of metaheuristic algorithms becomes
more prominent.

Metaheuristic algorithms are techniques that guide the search for optimal solutions
in complex and large-scale optimization problems[16]. They offer an effective approach
for hyperparameter optimization, outperforming the traditional techniques[15]. By em-
ploying heuristic rules and randomization, metaheuristics can efficiently navigate through
the search space, searching for promising regions and avoiding getting trapped in local
optima. Examples of popular metaheuristic algorithms for hyperparameter optimization
include the Genetic Algorithm, which is discussed further in section 2.3, Particle Swarm
Optimization and Grey Wolf Optimization.

9

(a) Threshold 0.5 (b) Threshold 0.9

(c) Ground truth

Figure 2.3: Comparing predictions with two thresholds.

2.1.3 Choice of backbone

Section 2.2 of the pre-project[7] explained the architecture of Convolutional Neural Net-
works and introduces the concept of a backbone network in Mask R-CNN. As Mask R-CNN
is a two-stage network[17], it consists of backbone CNN whose goal is to perform basic
feature extraction. The backbone chosen can be a variety of architectures, but the most
used are residual networks[5], or ResNets[18], which use a simple module architecture
of stacking layers of the same size on top of each other and adds a residual block at the
end of a convolution to avoid disappearing gradients in backpropagation. Mask R-CNN
generally uses ResNet-50 or ResNet-101, where 50 and 101 denote the number of layers
in the network.

The ResNeXt architecture, developed by Xi et al. in 2017[19], serves as an exten-
sion to the ResNet framework and has gained popularity as a backbone model for Mask

(a) Grid search (b) Random search

Figure 2.4: Visualization of how automatic tuning operates

10

R-CNN in various applications[5]. Its primary objective is to enhance classification accur-
acy without increasing the complexity of the network. ResNeXt achieves this by introdu-
cing the concept of "cardinality," which serves as an additional dimension to the width
and depth of the network. By combining the repeating-layer strategy of ResNet with the
split-transform-merge strategy known from Inception networks[20], ResNeXt achieves
improved efficiency and performance. The block comparison between ResNet and Res-
NeXt can be viewed in fig. 2.5

This approach addresses some limitations of ResNet. The structure of stacking simple
layers on top of each other can face challenges in adapting to more complex tasks due
to the increasing number of hyperparameters associated with deeper networks. In con-
trast, Inception networks have carefully designed topologies to achieve good accuracy
with low theoretical complexity. In one module, the input is split into lower-dimensional
embeddings with 1x1 convolutions, transformed by a set of filters such as 3x3 or 5x5
convolutions, and merged by concatenation. that balances accuracy and computational
complexity[20].

While ResNet has shown strong performance in image classification tasks, the ResNeXt
architecture has emerged as the best-performing backbone model in combination with
Mask R-CNN on the COCO dataset[5, 21]. Its utilization in the corrosion detection model
is a promising avenue for future exploration.

The choice of backbone architecture plays a crucial role in the performance of Mask R-
CNN, with larger and more complex networks generally being suitable for larger datasets,
while simpler networks may suffice for smaller datasets.

(a) Block of ResNet (b) Block of ResNeXt with cardinality 32

Figure 2.5: Side-by-side comparison of the two backbone networks, a layer is shown with
(# in-channels, filter size, # out-channels).

Feature extraction

How the backbones perform feature extraction is also an additional architecture choice.
The simplest option is a normal convolutional extraction as seen in fig. 2.6a, at the final
layer of the fourth block in ResNet, denoted as C4. Faster R-CNN network utilizes this
type[17], but there are no remarkable results from the operator being used with Mask
R-CNN.

11

A method that the pre-project discussed in section 2.2[7] is the Feature Pyramid Net-
work(FPN) developed by He et. al[22]. Mask R-CNN uses this feature extraction as default
in the original paper[5] and in an experiment testing the robustness of these feature ex-
tractors, FPN showed the most promising results[23].

Another popular convolutional operation is using dilated convolutions at the fifth
block in ResNet, denoted as DC5[24]. Dilated convolutions stand apart from standard
convolutions by introducing gaps between the filter elements, allowing for an expanded
receptive field without increasing the number of parameters or the computational cost
significantly, shown in fig. 2.6b. The "dilation factor" determines the spacing between the
elements of the filter. By using dilated convolutions, models can capture both local and
global information in an efficient manner. It has been particularly useful in tasks that
require a broader context.

Testing these feature extractors with different backbones against each other can provide
useful information on what methods work best with the given task.

(a) Regular convolution (b) Dilated convolution

Figure 2.6: Comparing a regular 2x2 convolution wtih a dilated convolution with dilation
factor 1

2.1.4 Image processing

In many cases when a deep learning model struggles with accuracy, the cause usually falls
on the training data instead of the model itself. The quality of images is an important factor
that hugely impacts the model performance, either because the dataset is too monotonous
or too small. Increasing the dataset is always a viable option, but data acquisition is a
process that takes time, as the pre-project also mentioned in section 3.4.3[7]. Therefore,
the alternatives are to work with the available images instead.

Data augmentation

Data augmentation is a widely used technique in computer vision that involves apply-
ing various transformations to the training data to artificially increase its size and di-

12

versity[25]. By augmenting the data, deep learning models can improve robustness, gen-
eralization, and performance. The most popular augmentation techniques are listed below

• Color Augmentation:

◦ Brightness adjustment: Altering the brightness level of the image by scaling
the pixel values up or down.
◦ Contrast adjustment: Modifying the contrast of the image by rescaling the

pixel values to increase or decrease the difference between the bright and
dark regions.
◦ Saturation adjustment: Changing the saturation level of the image by scaling

the color intensities.
◦ Hue adjustment: Shifting the hue values of the image, which alters the color

appearance.

• Geometric Transformations:

◦ Rotation: Rotating the image by a certain angle, either in a clockwise or coun-
terclockwise direction.
◦ Scaling: Rescaling the image by either enlarging or reducing its size while

maintaining the aspect ratio.
◦ Translation: Shifting the image horizontally and vertically by a certain num-

ber of pixels.
◦ Flipping: Flipping the image horizontally or vertically to create a mirror im-

age.
◦ Shearing: Distorting the image by tilting it along one of the axes.

These transformations can be combined and applied in various ways to generate di-
verse training samples. For example, multiple transformations can be randomly applied
to each image during training. The parameters for each transformation, such as rotation
angle, scaling factor, or brightness range, can also be randomized to introduce further
variation in the augmented data.

Background removal

Background removal is an underutilized technique in image pre-processing, but previ-
ous studies have demonstrated its successful application in improving the performance
of simple image classification tasks[26, 27]. The hypothesis is that by removing the back-
ground, which reduces irrelevant information and clutter, from an image, the classifier
can focus solely on the foreground objects or regions of interest, leading to enhanced
classification accuracy.

The effectiveness of background removal depends however on the specific dataset, the
nature of the background, and the characteristics of the objects being classified. In some
cases, the background may provide contextual information that is crucial for accurate
classification. In cases with complex tasks, it can therefore be more practical to instead
introduce more data in the training with a variety of background elements to make the
model more robust to background elements.

There exist several methods for background removal, depending on the complexity
of the dataset, ranging from simple thresholding[28] to fully fleshed neural networks.
BackgroundRemover by nadermx[29] is a popular tool for standard background removal
and uses U2-net[30]. Choosing the right method could be difficult given the wide variety,
but it also opens up possibilities to choose according to the preference of system, library
and framework.

13

2.2 The YOLO network

You Only Look Once (YOLO) is a state-of-the-art object detection algorithm, introduced
in 2015 by Redmon et al. in their famous research paper “You Only Look Once: Unified,
Real-Time Object Detection”[31]. While Mask R-CNN, like the other R-CNN architectures,
is a two-stage model. meaning they use the Regional Proposal Network to select certain
regions of interest and then perform classification on those regions with an additional
network head. YOLO, as its name indicates, uses a single network to perform detection
from the entire image in one evaluation. This makes the YOLO algorithm outperform
many neural network models in terms of speed, with the original version reaching a speed
of 45 frames per second(FPS), in comparison Faster R-CNN reaches about 5 FPS[32].

2.2.1 Detection

YOLO differs from Mask R-CNN and other detection models in that it frames object de-
tection as a regression problem instead of a classification task. Instead of dividing the
task into separate classification and localization steps, YOLO treats directly predicts the
bounding boxes and associated class probabilities in a single pass.

The system divides the input image into a S x S grid, in which the grid cell containing
the centre of an object is responsible for detecting that object, each grid cell predicts B
bounding boxes with four predictions, the x- and y- coordinate relative to the bounds of
the cell, the width and height of the box relative to the whole image and associated con-
fidence scores. The confidence score is calculated as Pr(Object) * IoU, in which Pr(Object)
is the probability that the cell contains an object.

Each cell generates C class predictions, where C represents the number of classes,
indicating the probabilities of containing each class. The network makes class-specific
confidence scores at test time by multiplying the class probability with the object confid-
ence score, and the class corresponding to the highest confidence score gets assigned to
the box. YOLO also applies Non-minimum Max Suppression(NMS) as in Mask R-CNN to
remove and concatenate overlapping prediction boxes. The detection task is visualized in
fig. 2.7.

2.2.2 Architecture

The architecture behind YOLO builds on 24 convolutional layers followed by 2 fully con-
nected layers which varies based on the version and model of the algorithm, but bases the
architecture on the same pipeline as normal CNNs. The authors specify the main attributes
of the architecture like this:

• Resize input image to 448x448, to save computational power
• For each block, apply 1x1 convolution to reduce the number of channels, followed

by a 3x3 convolution to generate a cuboidal output.
• The activation function mainly used is leaky-ReLU, except for the last layer which

uses a linear function.
• Add additional techniques to reduce overfitting, such as dropout and batch normal-

ization

2.2.3 Loss function

To train the network, The YOLO loss function combines the following:

14

S x S grid on input Final detections

Class probability map

Bounding boxes + confidence

Figure 2.7: The detection pipeline of YOLO

Ltotal = Lloc +Lconf +Lcls

The total loss of the YOLO network is the sum of the localization loss(Lloc]), confidence
loss(Lconf), and class loss(Lcls), each weighted by hyperparameters determined during
training.

The localization loss:

Lloc = λcoord

S2
∑

i=0

B
∑

j=0

1
ob j
i j

h

(x i − x̂ i)
2 + (yi − ŷi)

2 + (
p

wi −
Æ

ŵi)
2 + (
Æ

hi −
q

ĥi)
2
i

The confidence loss:

Lconf =
S2
∑

i=0

B
∑

j=0

�

1
ob j
i j

�

Ci − Ĉi

�2
+λnoobj1

noob j
i j

�

Ci − Ĉi

�2�

The class loss:

Lcls = λcls

S2
∑

i=0

1
ob j
i

∑

c∈classes

(pi(c)− p̂i(c))
2

where:

• λcoord is the localization loss weight, set to 5 in the paper
• λnoobj is the weight for confidence loss on background (no object) predictions, set

to 0.5 in the paper
• S is the grid size

15

• B is the number of anchor boxes per grid cell
• 1ob j

i j is an indicator function that evaluates to 1 if the jth anchor box in the ith grid
cell is responsible for detecting an object
• 1noob j

i j is an indicator function that evaluates to 1 if the jth anchor box in the ith
grid cell does not contain an object
• x i , yi , wi , hi are the predicted bounding box coordinates of the ith grid cell
• x̂ i , ŷi , ŵi , ĥi are the ground truth bounding box coordinates of the ith grid cell
• Ci is the predicted objectness score of the ith grid cell
• Ĉi is the ground truth objectness score of the ith grid cell

The localization loss measures the error in predicting the bounding box coordinates (x,
y, width, height) of the detected objects. It uses the mean squared error (MSE) to calculate
loss, but uses the square root on width and height to remedy that small deviations in large
boxes should not matter as much as with small boxes.

The confidence loss is responsible for evaluating the accuracy of the predicted confid-
ence score associated with each bounding box. YOLO calculates the confidence loss using
the binary cross-entropy loss between the predicted objectness scores and the ground
truth.

The class loss measures the error in predicting the class probabilities of the detec-
ted objects. YOLO employs the categorical cross-entropy loss to compute the class loss
between the predicted class probabilities and the ground truth class probabilities.

The ultimate objective of the network is to optimize average precision across all classes,
which entails giving the highest weight to the localization loss among the three loss func-
tions. By carefully balancing these loss functions together, YOLO achieves a remarkable
balance between speed and accuracy, resulting in high-performance object detection.

2.3 Genetic Algorithm

The Genetic Algorithm (GA) is a well-known metaheuristic algorithm used to solve com-
plex optimization problems in engineering, economics, and management[33]. First pro-
posed by J.H. Holland in 1992 the algorithm takes inspiration from the Darwin evolution-
ary process, in which only the individuals best adapted to their environment survive. The
advantage of this algorithm and other population-based algorithms is that they propose
diversification methods to escape local minima[15].

There are different variants to the Genetic Algorithm, but the main idea remains the
same. GA consists of a population of individuals, where each individual represents a po-
tential solution to the optimization problem built up by a combination of parameter val-
ues, which are called genes[33]. The population is visualized in fig. 2.8. The individuals
compete for the chance to survive and mate, but only the fittest individuals are allowed
to create more offspring than others and are able to continue to the next generation. The
genes from the fittest individuals propagate to their offspring, meaning one offspring will
have a combination of genes from two well-performing parents. Thus each successive
generation is better adapted to their environment, outperforming their parents. Once the
offspring has no significant difference from their parents and they perform mostly the
same, the algorithm has converged. To avoid premature convergence in local minima,
mutation can be applied to certain offspring, with the change of random genes.

16

Figure 2.8: Representation of population, individual and gene in the Genetic Algorithm

2.3.1 Genetic operators

• Selection: The selection operator, shown in fig. 2.9 determines which individuals
are chosen to reproduce and continue to the next generation. Two common methods
are fitness-based selection, where the fittest half of the population mates randomly
with each other, and tournament selection, where for each new individual a ran-
dom subset of individuals competes for reproduction, with the two fittest chosen as
parents.
• Crossover: Mating of the two parents once they are selected. As in normal mating,

the offspring is a combination of genes from both parents, chosen at random. Cros-
sover could be done either by choosing a random crossover site, where the offspring
gets 50% of parent one’s genes on the left of the crossover site, and 50% from par-
ent two on the right, or by iterating through each gene and randomly picking one
of the parent’s gene, as visualized in fig. 2.10.
• Mutation: To maintain diversification in the population, the algorithm includes a

mutation operator to allow for changes to some of the genes during the creation of
new individuals. A mutation, visualized in fig. 2.11, will mean that for every gene
in the individual, there is a small percentage chance that the value will be random,
instead of inherited from one of the parents.

(a) Fitness-based (b) Tournament-based

Figure 2.9: Representation of the selection operator on a set of 6 individuals with a given
fitness score. In (a) only the individuals with the best fitness can reproduce, while in (b)
random individuals are first picked, and then sorted.

17

Figure 2.10: Representation of the crossover operator in GA

Figure 2.11: Representation of the mutation operator in GA, which chooses random genes
and replaces them with a new value

2.3.2 Fitness function

The fitness function is a custom function whose purpose is to calculate the individual’s
ability to compete and adapt to the environment. The function assigns a fitness score
to each individual, where the algorithm chooses the individuals with the optimal fitness
score. Choosing a score and function depends on the problem GA is trying to optimize.
The problem can either be to minimize a loss function or maximize accuracy. In hyper-
parameter optimization (HPO) problems, the score could be an evaluation metric such
as average precision or IoU. As long as the score is easily computed and measurable, it is
possible to use it in the Genetic Algorithm.

18

Chapter 3

Neural network for corrosion
segmentation

This chapter presents the corrosion network as it is and the current results. The goal
is to provide an extended overview of the challenges the network faces and a base of
comparison when trying out the new strategies

3.1 Dataset

The dataset is identical to the one presented in section 4.1 in the pre-project[7]. This
dataset consisted of 1632 images for training, and 358 images for validation, annotated
in Darwin by V7 labs[34]. Corrupted images, where the mask did not correspond to the
correct image, were removed before training started, resulting in 1584 images for training
and 323 images for validation. No new images have been added to the dataset, and by
default there was no data augmentation besides horizontal flipping with a 50% rate

3.2 Model

The model currently in use is Mask R-CNN from Meta AI[5] as used throughout the pre-
project. Mask R-CNN is a state-of-the-art model for instance segmentation, and although
newer models such as YOLOv8[35] have surpassed it in speed and accuracy for the COCO-
dataset[21], the complexity and the size of the network give an advantage for corrosion
detection. As the focus of the pre-project revolved around Mask R-CNN, it is the sole
model trained and tested for the corrosion task. However, the methods discussed in future
chapters also apply to other convolutional neural networks.

3.3 Implementation

In the pre-project, the research primarily relied on the Mask R-CNN implementation by
Matterport Inc.[36], which is based on Python, Keras, and the TensorFlow framework.
However, the current repository has not been updated since April 2019, which poses chal-
lenges due to subsequent upgrades in TensorFlow from version 1.9 to 2.12. Keeping up
with the rapid advancements in the field of computer vision, adapting libraries, datasets,
and custom functions to recent research becomes increasingly challenging, particularly

19

{
"image_id": 0,
"width": 200,
"height": 200,
"file_name": "path/to/image",
"annotations" : [{

"iscrowd": 0,
"segmentation": [p1.x, p1.y, p2.x, p2.y, ...],
"bbox": [x, y, w, h],
"bbox_mode": BoxMode.XYWH_ABS,
"category_id": 0,

}]
}

Figure 3.1: Example of one image written in the COCO-format

when working with outdated implementations, which is why this thesis disregards this
version of Mask R-CNN.

Two new frameworks are instead proposed; Detectron2, developed by Meta AI[13]
and MMdetection by MMlab[37]. Both are platforms based on PyTorch[38] for object de-
tection and segmentation. They provide toolboxes and support a variety of models and
algorithms and come with an easy-to-use interface and several pre-trained models, includ-
ing Faster R-CNN and Mask R-CNN. Both platforms are continuously updated to support
new models and library updates, which make them adaptable to recent and forthcom-
ing changes in further research. In the end, it was an arbitrary choice between the two
toolboxes, but as Detectron2 is developed by the same company behind Mask R-CNN
and comes with easier documentation[39], it is the framework for all further neural net-
work training. The implementation of Mask R-CNN using Detectron2 can be viewed in
appendix B.

3.3.1 Dataset conversion

The Detectron2 Dataloader requires the COCO-format on all data, which is a JSON-file
written like fig. 3.1. To ensure compatibility with the format, the original dataset, which
consists of instances represented as binary mask images, needs to undergo a conversion
process. The key step in this transformation is converting the binary mask images into
polygon format before annotating them in the COCO format. The OpenCV library in Py-
thon[40] assists in creating the polygons from the mask images with the inbuilt function
find_contours(). The full code implementation can be viewed in appendix A. For fu-
ture work when using Detectron2, labelling should be automatically converted to COCO-
format, as it is provided by most labelling softwares such as V7.

3.3.2 Choice of architecture and transfer learning

The model zoo in Detectron2 consists of a collection of pre-trained models that have
been trained on large-scale benchmark datasets. These models cover a wide range of vis-
ion tasks, including object detection, instance segmentation, and more. Each model in the
zoo is pre-configured with the network architecture, weights, and other necessary com-
ponents for performing specific tasks. The theory behind transfer learning was explained
in section 2.3 in the pre-project[7]. Instead of training models from scratch, which can be
computationally expensive and time-consuming, Detectron2 provides pre-trained models

20

that suit a variety of tasks. The pre-trained models are typically trained on large-scale
datasets such as COCO (Common Objects in Context)[41].

To assess the performance of the network and evaluate the compatibility of the new
library with the corrosion task, three main backbone architectures, namely ResNet-50,
ResNet-101, and ResNeXt-101, are employed in conjunction with Mask R-CNN. These
backbones, as described in the original Mask R-CNN paper[5], run with FPN and are pre-
trained on the COCO dataset.

3.3.3 Choice of evaluation metrics

As IoU, and particular mIoU, has been the preferred method for evaluating instance seg-
mentation both in previous literature and in the pre-project, class-wise IoU and mIoU will
be reported for each tested model to obtain consistency to the previous work done. The
same function for computing IoU described in section 4.2 of the pre-project[7] will be
used, as Detectron2 does not produce IoU in its own evaluation. The instance segment-
ation predictions are all merged into one mask and evaluated the corresponding merged
ground truth, as Fondevik developed it[6]. This was to avoid unreasonably bad IoUs be-
cause of difference in specific mask predictions.

Detectron2 does not automatically calculate validation loss or perform cross valida-
tion, the method where a new subset is chosen for validation per epoch to avoid over-
fitting. This is unfortunately a major hindrance, as it removes an important metric for
evaluation. It is possible to extend the Trainer module to add custom loss calculations,
but the version found was heavily reliant on the Detectron2 evaluator, which returned
no usable results. The customization was therefore scrapped, but can later be fixed and
used if possible. The training results and the custom IoU evaluator, including reviewing
pictures, were the metrics used for this dataset.

3.4 Training process

The current training has not undergone significant tuning. To closely match the original
version of the network run in the pre-project, a base learning rate was set to 0.0005 along
with a learning rate scheduler set to halving the value at every tenth epoch. he confidence
threshold is set to 0.8, and other parameters remain at default values. The training will
span approximately 25 epochs. The number of epochs is derived from the number of
iterations, which is determined by the batch size and the number of GPUs used. In this
case, a single GPU with a batch size of 1 is employed, processing one image per iteration.
The calculation of epochs can be determined using the equations in eq. (3.1).

I MAGES_PER_I T ERAT ION = NU M_GPUS ∗ BAT CH_SI Z E (3.1a)

I T ERAT ION_PER_EPOCH =
TOTAL_NU MBER_I MAGES
I MAGES_PER_I T ERAT ION

(3.1b)

I T ERAT IONS = EPOCHS ∗ I T ERAT IONS_PER_EPOCH (3.1c)

For 25 epochs, the corrosion detection model would then use 39600 iterations.

21

Backbone Corrosion IoU Background IoU Mean Iou
ResNet-50 54.5% 84.1% 69.3%
ResNet-101 57.3% 86.1% 71.7%
ResNeXt-101 55.9% 84.9% 70.4%

Table 3.1: Current results from the Detectron2 Mask R-CNN on the validation dataset

Figure 3.2: Corrosion IoU per image in validation set, with ResNet-101 backbone

3.5 Results and evaluation of performance

Upon evaluating the validation dataset in table 3.1, it can be observed that the mean
IoU ranges approximately between 69% and 72% for all three models. Additionally, the
corrosion IoU indicates that 56% of the predicted corrosion mask aligns with the ground
truth. These results already showcase an improvement compared to the findings presented
in chapter 4 of the pre-project[7]. However, it is likely attributed to the difference in
default hyperparameters between Detectron2 and Matterport.

The corrosion IoU, which is the most critical metric, for each image in the validation
dataset is illustrated in fig. 3.2. The analysis reveals that the majority of the images exhibit
an IoU greater than 0.5, indicating a satisfactory level of accuracy in the predictions.
However, the lower section of the figure presents a subset of 50 images with an IoU below
0.25. These images, some depicted in fig. 3.6, demonstrate instances where the model’s
predictions are notably inaccurate.

Another notable aspect regarding the current results is that the model performs com-
parably regardless of the backbone network. Considering the results obtained from the
COCO dataset[5], one might expect ResNet-101 and ResNeXt-101 to outperform ResNet-
50 when applied to a complex task like corrosion segmentation. This observation suggests
a potential issue of overfitting across all networks, indicating a requirement for a more
extensive dataset to effectively train the larger backbone networks.

Evaluating the loss functions in fig. 3.3 provides several insights. Firstly, it is evident
that there is noise in the output from each iteration due to the batch size of 1, causing
the model to calculate the loss for a single image. This notion highlights the presence of
outliers within the training dataset, where the model exhibits significantly better perform-
ance on certain subsets of images compared to others. While some training progress can
be observed, it occurs at a relatively slow pace for all model backbones. Notably, the Res-
NeXt model demonstrates the most substantial reduction, with an average loss per epoch
of approximately 1.7, ultimately converging to a loss below 1.0, a level not achieved by

22

(a) ResNet-50 (b) ResNet-101

(c) ResNeXt-101

Figure 3.3: Total training loss per step with the backbone structure

any other models. An interesting aspect to consider is the average ratio of false positives
and false negatives per image in one epoch. Both metrics play a crucial role in evaluating
corrosion segmentation. False detections, such as paint streaks, clouds, and background
elements, often lead to significantly low IoU scores. For instance, as seen in fig. 3.6, a
flawed mask results in a remarkably low corrosion IoU of 0.8%. However, reducing false
negatives is of greater importance since a corrosion network that fails to accurately de-
tect corrosion becomes ineffective. In fig. 3.4, there is a general improvement across all
networks, with the rate of false negatives slightly surpassing that of false positives. This
observation aligns with the high confidence threshold applied. Generally, the ResNeXt-
101 backbone performs the best, with a false negative rate of 0.138 and a false positive
rate of 0.108, but the differences between the backbones are marginal. While a small per-
centage of incorrectly detected pixels can be tolerated due to inconsistent masking and
corrosion annotations, the goal is to reduce false positives and false negatives to below
0.1 if possible.

Several observations arise when evaluating the IoU over time in fig. 3.5. For ResNet-50,
the accuracy fluctuates, while the IoU score remains stagnant for the two other models.
The question remains as to why there seems to be limited improvement in IoU calcula-
tions compared to the advancements in training loss, with only moderate improvements
observed in the ResNet-101 model. The reason might be again overfitting to some data-
types, which leads to underfitting for other datatypes in the image set.

23

(a) ResNet-50 (b) ResNet-101

(c) ResNeXt-101

Figure 3.4: Ratio of false negatives vs false positives per epoch with the backbone structure

3.6 Dataset limitations

The inability to achieve an accuracy higher than 60% for corrosion masks may be closely
tied to the organization and composition of the dataset. As mentioned in chapter 3 of
the pre-project[7], the quality of the dataset can have a huge impact on the performance,
and there are many factors to the current state of this dataset that makes it suboptimal. In
the evaluation of the dataset for detecting corrosion, several faults have been identified
and examples of these are visualized in fig. 3.6. These faults have implications for the
performance of the model and highlight areas of improvement.

Firstly, the incorporation of other damages such as white corrosion or paint flaking
into the dataset confuses the network’s learning process. Although the dataset contains a
limited number of images depicting these damages, the model is expected to detect them
with the same level of accuracy as red corrosion. This imbalance introduces a bias within
the dataset against red corrosion, resulting in the model struggling when presented with
images showcasing other types of damage. The inclusion of other damages within the
same class challenges the model’s ability to correctly identify distinctive patterns associ-
ated with corrosion. Consequently, false positives may arise, such as misclassifying clouds
or background elements as corrosion. Instead of focusing on specific characteristics like
colour or structure, the model is trained to generalize that "anything irregular or contrast-
ing with the background is corrosion."

Secondly, the model faces challenges when dealing with images that depict corrosion
at a distance. Since the model lacks an understanding of distance in images, it is unable
to differentiate between close-up shots of corrosion and images taken from a distance
showing the entire structure of a bridge along with background noise. This limitation can
result in the model failing to detect subtle instances of corrosion and falsely identifying

24

(a) ResNet-50 (b) ResNet-101

(c) ResNeXt-101

Figure 3.5: Mean IoU over the iterations on the validation dataset

background elements as corrosion.
Furthermore, disturbances such as sunlight and shadows affect the quality of the im-

ages, leading to performance degradation. Degradation could be in the form of the model
failing to detect corrosion because of poor lighting or the model falsely detecting the
shadows themselves. Enhancing the image quality and avoiding images captured under
unfavourable lighting conditions can contribute to alleviating this problem. Additionally,
it is crucial to exclude images containing irrelevant objects like tools or humans, which
can introduce noise and confuse the model.

Lastly, incorporating more worst-case scenarios into the training dataset is essential.
The model struggles to accurately identify corrosion-like patterns, which could be caused
by gravel, like in fig. 3.6, moss, or forest elements.

25

Original Prediction Ground Truth

Figure 3.6: Examples of predictions on the validation dataset, ResNet-101+FPN

26

Chapter 4

Methods and Implementation

4.1 Dataset reduction and augmentation

To address the issues outlined in the discussion section 3.6, it is crucial to ensure the
quality of the images before proceeding with the implementation of strategies. One of the
objectives is to find solutions for detecting white corrosion or blistering in the images, as
well as improving the detection of other types of damages that the current model fails to
predict accurately.

The implementation of a multi-class model has been suggested as a potential solution
both by Fondevik[6] and in section 5.2 in the pre-project[7]. However, developing such a
model requires an evenly distributed dataset in terms of classes. Therefore, it is necessary
to carefully assess the dataset and address any issues related to class imbalances of cer-
tain damage types. When manually going through the dataset, 100 images are denoted
as "other damages". The amount is not a good enough distribution, and implementing
multi-class would not be efficient enough. The short-hand solution is to remove these
100 images from the dataset completely in order to properly assess the improvement of
the accuracy, making the model focus more on red corrosion, ignoring other damages.

Removing these images could introduce some other potential challenges. One is that
only images where the dominant damage present was not red corrosion. There are still
several images with smaller masks that correspond to other damages present, meaning
that the model will struggle even more to correctly detect them. The removal could po-
tentially lower the IoU for some images with several different types of damages, but as
the masks are scarce and small, it shouldn’t affect the mean IoU on a significant scale.

Another challenge is that reducing the dataset increases the risk of overfitting. Al-
though the changes sharpen the model towards red corrosion, it could also make it more
vulnerable to corrosion-like background. The ideal solution would be to incorporate more
worst-case scenarios and more varied backgrounds with red corrosion, but this study is
of course limited by the images at disposal.

The final dataset which was used for the corrosion detection model consisted of a
total of 1772 images, with 1503 for training and 269 for validation, in contrast to the old
dataset which consisted of 1996 images. The distribution of instance sizes, compared to
the size of their images, is shown in fig. 4.1.

Data augmentation served as a temporary solution to compensate for the reduced
dataset, mitigating the scarcity of samples. While there exist numerous approaches to
augmenting images, the vastness of the search space necessitates a focused selection based
on previous research findings [42, 43] and traditional methods.

27

(a) Train (b) Validation

Figure 4.1: Histogram of dataset and percent of corroded pixels (bin=20)

Detectron2 provides a comprehensive set of built-in augmentation methods. Lever-
aging these functions, we devised two augmentation strategies tailored for our model.
The first strategy, denoted as light augmentation, consists of conservatively flipping the
images horizontally and vertically. Considering that corrosion is generally invariant to dir-
ection and the corrosion dataset encompasses images captured from various angles, this
scheme serves as a simple yet effective approach to expanding the number of images for
training, and represents the most fundamental configuration of the corrosion detection
model.

In the second strategy, light augmentation is combined with a more advanced scheme
incorporating color transformations, denoted as heavy augmentation. This approach
aims to enhance the model’s resilience to variations in lighting conditions, which can
significantly impact the appearance of corrosion patterns. Given that corrosion exhibits
variations in red colors and is often influenced by outdoor environmental factors, this aug-
mented scheme holds potential for improving the model’s generalization capabilities. The
augmentation pipeline comprises various transformations, exemplified in fig. 4.2, which
facilitate adjustments to pixel values, contrast, brightness, and other relevant image at-
tributes. The two strategy schemes can be viewed in table 4.1, with the parameters for
light augmentation showing the probability of an image being flipped, while for heavy
augmentation they show the range of color adjustment, with a random value chosen for
every image.

Augmentation Value
Light augmentation
Resize 800x800
Horizontal flip 0.5
Vertical flip 0.5
Heavy augmentation
Brightness 0.8-1.8
Contrast 0.6-1.3
Saturation 0.8-1.4

Table 4.1: Augmentation schemes. Heavy augmentation

28

(a) Brightness

(b) Contrast

(c) Saturation

Figure 4.2: Heavy augmentations of one image

4.2 Genetic Algorithm

The Genetic Algorithm was here specifically implemented for hyperparameter optimiza-
tion of the Mask R-CNN network, with the implementation inspired from Gerbet et al.[44].

4.2.1 Chromosome

The full list of hyperparameters available for Mask R-CNN in Detectron2 can be found in
the configuration file[39], where the most relevant have been chosen as a chromosome.
The config file differs from the Matterport version used in previous work, and some para-
meters were not present in the file, which means the experiment can’t fully replicate the
project from Gerber et al.[44]. Most of the chosen hyperparameters focus on either the
Region Proposal Network, the first stage of Mask R-CNN, or the ROI (Region Of Interest)
heads, which are the two branches for predicting boxes and masks at the end of the model.
Other relevant hyperparameters not specific to Mask R-CNN are learning rate, learning
momentum, weight decay, epochs and image dimensions. The hyperparameters chosen
specific to Mask R-CNN are:

• RPN NMS threshold: The threshold of the IOU between two proposal boxes. The
proposal with the highest confidence score is compared to all other proposals one-
by-one. If the IOU is higher than the given threshold, the proposal will be removed
to avoid several proposals detecting the same object.

29

• RPN batch size: Number of region proposals per image in the RPN
• RPN Pre NMS limit: Upper limit for number of top scoring RPN proposals to keep

before applying NMS
• RPN Post NMS limit: Number of top proposals of RPN to keep after applying NMS,

there are two separate values for training and inference
• ROI batch size: Number of region proposals in ROI heads.
• ROI positive ratio: target fraction of foreground boxes per ROI batch
• Detection confidence threshold: The threshold of confidence for the final box

predictions, all box predictions below this threshold will be removed. Removes po-
tential false positives, but at the cost of potentially removing true positives with a
low confidence score.
• ROI IoU threshold: Overlap threshold for an ROI to be considered foreground (if
>= threshold)

The most relevant effects these hyperparameters have on the predictions are the num-
ber of the box predictions generated and the threshold of classifying the boxes as objects.
It is uncertain of different combinations of the hyperparameters work together, and we
have yet to see the effect they have on the accuracy of corrosion detection. The complete
chromosome and search space can be viewed in table 4.2. The values from the rust maize
project[44] decide the the intervals for the hyperparameters. The table is almost a copy
of table 5.1 from the pre-project[7], but differs in that the hyperparameters not available
in Detectron2 have been removed.

RPN_NMS_THRESHOLD 0.5-1
RPN_BATCH_SIZE [64, 128, 256, 512, 1024]
PRE_NMS_LIMIT 4000-8000

POST_NMS_ROIS_TRAINING 1000-3000
POST_NMS_ROIS_INFERENCE 600-2000

ROI_BATCH_SIZE [64, 128, 256, 512, 1024]
ROI_IOU_THRESHOLD 0.3-0.7
ROI_POSITIVE_RATIO 0.3-0.8

DETECTION_MIN_CONFIDENCE 0.3-0.9
LEARNING_RATE 0.0001-0.001

LEARNING_MOMENTUM 0.75-0.95
WEIGHT_DECAY 0.00007-0.000125

EPOCHS 20-40
IMAGE_MIN_SIZE 500-1000
IMAGE_MAX_SIZE 700-1200

Table 4.2: The hyperparameters chosen for the Genetic Algorithm and their value intervals

4.2.2 Dataset

Using the Genetic Algorithm for hyperparameter optimization involves training a separate
network for N individuals for M generations, resulting in a significantly longer training
period compared to conventional training approaches. To mitigate the computational and
time requirements associated with this extensive training process, a reduced subset of the
available images is employed. Specifically, a subset consisting of 200 images was used for
training, while an additional set of 40 images was allocated for validation purposes. This
reduced subset strikes a balance between expediting the training process and providing

30

the model with sufficient data to adapt effectively.

4.2.3 Fitness function

Given that the primary objective of this thesis is to enhance the mean Intersection over
Union (IoU) metric, the evaluation of IoU serves as the fitness function employed within
the Genetic Algorithm. The particular emphasis is placed on assessing the mean corro-
sion IoU for the validation dataset, as it represents the most crucial metric for evaluating
the performance of the algorithm. By prioritizing the mean corrosion IoU, the algorithm
focuses on achieving accurate and precise segmentation results specifically for corrosion,
which is a critical aspect in the context of this research.

4.2.4 Algorithm pipeline

The pipeline of the algorithm is relatively simple, shown in fig. 4.3 for generation i with
a population of 4. The same pipeline is used for our run of the algorithm, using the para-
meters in table 4.3. An initial population of 20 with random hyperparameter values define
20 separate models that will each train on the small dataset independently. The model
chosen for training is ResNet-50, as a smaller model is needed to avoid overfitting for
the 200 images. The algorithm then evaluates the models on the validation dataset and
calculates sorts the fitness scores. When a new generation is made, the selection operator
chooses the best half of the previous population, also called the elite, by the highest cor-
rosion IoU. The elite automatically continues to the next generation without any change,
and they will also be the parents of the new half of the population.

When the crossover operator creates a new individual, two random individuals from
the elite are chosen as the parents, and the new individual inherits one of their value,
chosen at random. The individual then undergoes mutation. With a mutation rate of 0.2,
there is a 20% chance of a gene being mutated. This mating process is repeated until
the algorithm works with a new population of 20 individuals, ready for the next training
and evaluation round. At the last generation the fittest individual’s hyperparameters will
be chosen for the complete corrosion detection model. Either after 15 generations or
the fitness function has reached a minima threshold, which in this case is a corrosion
IoU of 0.65. This threshold value could also be experimented with, but with the few
hyperparameters available, it is not likely that the IoU will rise significantly beyond the
point of 0.65.

MutateCrossover

Population

ResNet-50

ResNet-50

ResNet-50

ResNet-50

Evaluate and
select

Top individuals New population

Crossover Mutate

Figure 4.3: The Genetic Algorithm run per generation

31

Generations 15
Population 20

Selection rate 0.5
Mutation rate 0.2
Train set size 200
Val set size 40

Table 4.3: Genetic Algorithm parameters

Run with standard mutation

The simple GA mutation function takes 20% of the hyperparameters and change it with
a random value in the range set by table 4.6. It was however discovered with small ex-
periments that using this type of mutation led to divergence in the training. Evaluating
the graphs in fig. 4.4, the corrosion IoU reaches its maximum in generation 11, but it
is then reduced in the succeeding training, meaning the values from the last generation
are not the optimal hyperparameters. Some gene values such as the minimum confidence
manages to converge to a single value, but the learning rate continuously diverges. the
performance can suggest that the mutation is too rapid for such a small population, so
the algorithm never finds back to the optimal value after a mutation.

(a) Learning rate (b) Minimum confidence

(c) Corrosion IoU

Figure 4.4: Excerpt of genes and results from Genetic Algorithm testing with simple muta-
tion

32

Run with adaptive mutation

To further ensure that the algorithm converges to the optimal hyperparameters, a more
complex mutation function has also been added. Firstly mutation is added after a child
has been created from two parents, and the child’s gene is then mutated in a range from
that given value, instead of it being given a completely new random value. The range of
mutation is decided by the current generation, meaning that the higher the generation
number, the smaller the mutation range gets. Using this type of logic avoids too high
divergence as the algorithm should be free to explore the search space in the beginning,
but get closer to the optimal values in the later generations. The graphs in fig. 4.5 show
some convergence for the learning rate, while the confidence threshold fluctuates between
two values. Comparison of the standard and adaptive mutation shows however that the
adaptive is better suited for hyperparameter tuning, and will be used in the tuning going
forward. For further details the updated mutation function can be seen in appendix C.

(a) Learning rate (b) Minimum confidence

(c) corrosion IoU

Figure 4.5: Excerpt of genes and results from Genetic Algorithm testing with adaptive muta-
tion

4.2.5 Results

Analyzing the evaluation of the best performing individuals in fig. 4.5c there is again
a president for the Genetic Algorithm not converging towards the optimal value, as it
reaches its maximum in generation 7 before quickly deteriorating. The lack of conver-
gence could again be that the population or number of generations is too small to ac-
commodate for the mutation rate. The corrosion detection model will therefore run with
results from generation 7, which produces the highest corrosion IoU. The best hyperpara-
meters produced by the algorithm can be viewed in table 4.6.

33

4.3 Sky segmentation and removal (SkySeg)

This section introduces a novel network, referred to as SkySeg, designed specifically for
detecting and removing the sky from the corrosion dataset. The implementation involves
selecting, training, and evaluating a separate model independent of the main corrosion
detection model. SkySeg has not been extensively optimized for achieving 100% accuracy
in sky removal, as doing so would require significant time and resources and is not part
of this thesis’ main objectives. Instead, the goal is to attain a satisfactory level of accuracy
to evaluate the impact of removing the sky from the images and assess if the predictions
improve as a result.

4.3.1 Model

SkySeg implements YOLO as its model for instance segmentation of the sky regions. The
requirements for a background removal algorithm are primarily efficiency and accuracy.
It should add little complexity to add this type of image processing in the damage detec-
tion pipeline. The model should be accurate enough in order to not confuse the corrosion
detection model any further. YOLO provides remarkable accuracy at a fast rate. It is also
cutting edge and easy to implement, making it a contender for future networks to evaluate
and use in future projects. Originally YOLO was only intended for box predictions, but the
fifth version of the network, YOLOv5, added a mask head identical to the fully connected
network in Mask R-CNN to the architecture, making YOLO able to do instance segmenta-
tion. The newest version, YOLOv8, was released in January 2023 by Ultralytics[35]. The
version further enhances performance and simplifies the process, making the library the
suitable choice for further development of SkySeg.

4.3.2 Dataset

As it is time-consuming to collect and annotate a completely new and separate dataset for
sky segmentation, data acquisition was instead spent on finding datasets where a sky class
already existed. The choice landed on using the ADE20K dataset from MIT CSAIL[45]. The
dataset is originally created for semantic segmentation, but it is possible to use the data-
set for instance segmentation as well[46]. Originally ADE20K composes of 27,574 images
(25,574 for training and 2,000 for testing) spanning 150 classes from indoors and out-
doors objects, such as walls, floors, grass, persons and mountains. The dataset presents
annotation with a gray scale image mask for each image, where the pixels have one as-
signed value between 0 and 150 (0 for background, and the number 1-150 corresponding
to the given pixel’s class). An outdoor image and its mask can be viewed in fig. 4.6.

Out of the total number of images, 9,040 of them contains the class "sky". These spe-
cific images were selected in the creation of a new dataset for training the model. To
create a single-class dataset, the segmentation masks, as in fig. 4.8a, are reduced to a
binary segmentation mask similar to the ones in the damage dataset, with all sky pixel
values set 255(white), and the rest set to 0 (black), as seen in fig. 4.8b.

To convert the masks into the YOLO format, seen in fig. 4.8c, each mask is trans-
formed into a text file. The YOLO format uses a line-by-line representation, where each
line contains the class number ("0" for sky) followed by the normalized coordinates of
the polygon. The dataset metadata, including the paths to the datasets, can be stored in a
YAML file[47] for easy organization, exemplified in fig. 4.7. There is a possibility to extend
this network to classify more background elements such as water or forest, both of which
are present in the ADE20K dataset, but due to time constraints this thesis focused on a

34

(a) Image (b) Corresponding mask

Figure 4.6: Example from ADE20K dataset

path: /cluster/home/helensem/Master/sky_data # dataset root dir
train: images/train # train images (relative to ’path’)
val: images/val # val images (relative to ’path’)
test: /cluster/home/helensem/Master/damage_data # test images

Classes
names:
0: sky

Figure 4.7: Metadata for SkySeg

single class network. The code implementation of the full dataset conversion in fig. 4.8
can be seen in appendix A.

Additional dataset

To extend the network capabilities to detect sky where a bridge was present, a set of bridge
images were added to SkySeg dataset. Adding relevant images aims to mitigate issues with
the current ADE20K dataset and narrow the SkySeg model towards the corrosion dataset.
The outdoor images are mostly with a straight horizon, where the sky always occurs in
the upper parts of the image. This is not the case for many bridge images, where the
sky can appear both above and under the bridge, as in fig. 1.3 and fig. 3.6. ADE20K is a
dataset originally meant for semantic segmentation, and consists mostly of one instance

(a) Original mask (b) Transformed binary mask (c) YOLO format of the mask

Figure 4.8: The pipeline of converting a ADE20K mask to YOLO format. (a) The original
mask corresponding to the image in fig. 4.6. (b) The instance mask for the class sky is
located, all other classes are removed, making the image a binary mask. (c) The polygon
coordinates are normalized and written to a text file in YOLO format.

35

per image. SkySeg works with instance segmentation where the sky regions can appear
in several parts of the image and be occluded by the bridge, as in section 3.5.

The additional set of bridge images are from earlier bridge inspections on the Fre-
drikstad bridge, provided by Orbiton[12]. These are images where no corrosion is present,
but are useful in that parts of the sky are occluded by bridge parts. Images were annot-
ated in Roboflow[48], which is powered by Meta AI’s new segmentation tool; the Segment
Anything Model (SAM)[49]. The model has been trained on a dataset of 11 million im-
ages and 1.1 billion masks, allowing for some of the fastest annotation tools today. The
example in fig. 4.9 shows how easily the model recognizes the correct polygons, making
labeling easy and less time consuming. 156 images of the bridges were annotated and
added to the train dataset.

Figure 4.9: Labeling with Roboflow

4.3.3 Training and testing

The YOLO network runs with custom sky dataset using the default hyperparameters de-
scribed in table 4.4. To verify that the model meets the standards of sky segmentation, the
results from the validation dataset are briefly evaluated. From the predictions in fig. 4.11
the model performs up to standard when detecting the sky and the loss functions in
fig. 4.10 show an optimal training loss decline for the network, with the validation loss
showing no signs of overfitting.

Epochs 100
Optimizer SGD

Learning rate 0.001
Image size 640
Batch size 16

Confidence threshold 0.6

Table 4.4: Hyperparameter values for YOLO network

4.3.4 Background removal

The weights from the pre-trained sky segmentation model will be used to predict masks on
any incoming picture. The sky predictions with a confidence higher than a given threshold

36

(a) Localization loss (b) Class loss

(c) Segmentation loss

Figure 4.10: Loss functions from training YOLO on the sky dataset

will be used to create binary masks, 0 for sky and 1 for background, which will be multi-
plied with the original image to zero out any pixel with the sky in it, using the OpenCV
library[40]. The process is shown in fig. 4.12 and the implemented code can be seen in
appendix D, where the finished input to the corrosion detection model should look like
fig. 4.12c.

4.4 Experiment

The experiment table is displayed in table 4.5, each block represent one evaluation. LA
denotes light augmentation and HA denotes heavy augmentation.

Backbone Feature extractor
LA HA GA-tuned SkySeg

DC5
FPN
DC5
FPN

ResNeXt-101 FPN

Method

ResNet-50

ResNet-101

Table 4.5: Total outline over all experiments

37

Figure 4.11: Predictions from the SkySeg model on the validation dataset

(a) Original image (b) With sky predictions (c) Masking

Figure 4.12: Background removal with SkySeg

4.4.1 Backbones

The corrosion detection model will train with three backbone architectures: ResNet-50,
ResNet-101, and ResNeXt-101 (with a cardinality of 32). FPN will serve as the main fea-
ture extraction method, but the model will also undergo testing with dilated convolutions,
specifically DC5 as discussed in section 2.1.3. This approach aims to widen the scope of
the model and assess if there exist any simple techniques that can be employed to improve
the network’s accuracy.

All these models are available in the model zoo of Detectron2 with pre-trained weights
from the COCO dataset[41], as explained in section 3.3.2. ResNext architectures do not
have the option of dilated convolutions in Detectron2 as of now, which results in 5 dif-
ferent combinations of backbone structures, which all will be tested with the different
strategies below.

4.4.2 Methods

This chapter has so far explained three separate methods, data augmentation with light
and heavy schemes, hyperparameter optimization and SkySeg, which results in four in-
dependent evaluations on the validation dataset with the corrosion detection model.

Augmentation

Mask R-CNN will train once with light augmentation and once with heavy augmentation.
Since the light augmentation scheme is as conservative as it is, it serves as the base of

38

comparison to both the reduction in the dataset and between the backbones. Based on
the reduced dataset, it makes however more sense to compare every strategy to results
from light augmentation in table 5.1 than those from chapter 3.

Other than augmentations, the model will run on default configuration with little tun-
ing done on the hyperparameters. The only change done between the two augmentation
schemes is that the batch size was increased from 1 to 2, with the only noticeable con-
sequence being the number of iterations was cut in half. Both models were trained on 25
epochs with the same learning rate scheduler from chapter 3, with a base rate of 0.0005
which was then halved by the 10th and 20th epoch. All the other hyperparameters can
be seen on the left side of the table in table 4.6.

GA tuning

The results from GA will in the end be a comparison of hyperparameters. Looking at
table 4.6 the backbone models with normal augmentations will run on default configur-
ations, while a new training run will be done with the configurations resulted by tuning
with GA. The hyperparameter values differ quite from another, the goal will be to assert
both the effectiveness of changing hyperparameters in regard to corrosion detection, and
the effectiveness of the Genetic Algorithm for this goal.

SkySeg

This experiment differs from the others in that no network training is done, with the
only variation being the inclusion of SkySeg as a pre-processing step for the validation
dataset. Training with SkySeg as a part of the model may result in reduced robustness and
potential false positives, which could negatively impact the images. Therefore, it is more
appropriate to train the dataset using normal configurations and evaluate the performance
on the validation dataset to observe if the model improves in focusing on the structure
rather than the background. The only results retained from this experiment are the mean
IoU and prediction outputs from the validation dataset.

Parameter Default value GA value
RPN_NMS_THRESHOLD 0.7 0.642

RPN_BATCH_SIZE 256 1024
PRE_NMS_LIMIT 12000 6857

POST_NMS_ROIS_TRAINING 2000 2224
POST_NMS_ROIS_INFERENCE 1000 885

ROI_BATCH_SIZE 512 128
ROI_POSITIVE_RATIO 0.25 0.49
ROI_IOU_THRESHOLD 0.5 0.35

DETECTION_MIN_CONFIDENCE 0.8 0.76
LEARNING_RATE 0.0005 0.0007

LEARNING_MOMENTUM 0.9 0.95
WEIGHT_DECAY 0.0001 0.00012

EPOCHS 25 29
IMAGE_MIN_SIZE 800 989
IMAGE_MAX_SIZE 1333 1148

Table 4.6: Hyperparameters comparison between the default values and those used in the
GA experiment

39

4.4.3 System

All experiments were run on the Idun cluster provided by the High Performance Comput-
ing Group at NTNU[50]. The cluster provides a variety of cores and GPUs, meaning the
hardware configurations varied for each training. Table 4.7 shows the configuration most
often used by Idun, while software modules and libraries are shown in table 4.8.

CPU Intel Xeon Gold 6148 (20 cores @ 2.40 GHz)
GPU NVIDIA V100 tensor core (16GB)

Table 4.7: Hardware configuration

Compiler GCC v.11.3.0
Python v.3.10.4
Pytorch v.1.13.1

Torchvision v.0.14.1
CUDA v.11.7.0

CuDNN v.8.4.1

Table 4.8: Software configurations

40

Chapter 5

Results and Discussion

This chapter presents the most relevant results and findings from the 15 training schedules
and 20 evaluations done over the course of this thesis. Additional plots related to the
network training with light augmentation and GA tuning can be found in appendix E.
The three first sections discuss the three different strategies on how they compare to
results presented in chapter 3. The summary in compares the strategies to each other
and across the backbones, with the key takeaways from the evaluations. Readers that are
only interested in the main results may see the mean IoU for all evaluations in table 5.5.

5.1 Augmentations

5.1.1 Light augmentation

Mask R-CNN was trained using only vertical and horizontal flipping on 25 epochs with a
batch size of 1, with the simple default configurations from Detectron2. Resulting class-
wise IoU and mean IoU on the validation dataset are listed in table 5.1. Results from the
backbone model, ResNet-101+DC5 are plotted in fig. 5.1, where the loss function presents
per batch loss and per epoch loss. Predicted segmented masks are visualized in fig. 5.2.

Backbone Corrosion IoU Background IoU Mean Iou
ResNet-50 + FPN 61.4% 86.5% 74.0%
ResNet-101 + FPN 61.2% 86.2% 73.7%
ResNeXt-101 + FPN 62.0% 87.0% 74.5%
ResNet-50 + DC5 60.9% 87.0% 73.9%
ResNet-101 + DC5 62.5% 87.9% 75.1%

Table 5.1: Results on default configuration, Light augmentation

41

(a) Total training loss (b) False predictions

(c) IoU per iteration

Figure 5.1: Plots from default run, Light augmentation, ResNet-101+DC5

Discussion

By comparing table 3.1 and table 5.1, notable improvements can be observed in the FPN
models. The results indicate that by reducing the dataset, there is an average increase
in mean IoU of 6.78% for ResNet-50, 2.79% for ResNet-101, and 5.68% for ResNeXt-
101. This improvement can largely be attributed to the removal of images that previously
resulted in the poorest performance by the model. For the FPN models, the best perform-
ing by a small margin is ResNeXt-101, which makes sense due to the complexity of the
model compared to ResNet-50, and its performance being the best in the original paper on
Mask R-CNN[5]. It is however disappointing to see such a small increase in performance
between ResNet-50 and ResNeXt-101 with doubling of layers and higher complexity.

By introducing dilated convolutions, there is no remarkable improvement for ResNet-
50, but sees another 1.9% increase for ResNet-101 in mean IoU, which makes ResNet-101
with DC5 the best-performing model. As FPN is a more complex convolutional operator
than DC5 and is used more widely in literature on Mask R-CNN[5, 21, 23], it was initially
expected that FPN would provide better results for the corrosion model. The expectation
was that FPN’s ability to capture features at various scales would benefit the model by
providing more comprehensive information about the image.

However, the results suggest that a larger receptive field, which can capture a broader
context of the regions of interest, may have advantages when distinguishing corrosion
from the surrounding environment. In the comparison in fig. 5.2 the DC5 predicted images
show both a smaller degree of false positives and more coherent masks than with the
standard FPN. Analyzing the plots from ResNet-101+DC5 in fig. 5.1, the standard loss
curve falls to an impressing 0.5 compared to the models in fig. 3.3 which barely reached
below 1. The amount of false positives has also been reduced to below 10%, which was
one of our desired goals.

42

The ratio of false negatives leaves still a lot to be desired, and there are some images
that the model struggles with, especially those still with masks from the other damages
mentioned earlier. Even if the model has improved on misclassification, it seems to still fail
on some hard-to-spot corrosion details. This could be altered by lowering the confidence
threshold. The challenges with the validation dataset can also be seen when evaluating
the IoU over the epochs in fig. 5.1c, as this model, as the previous models in fig. 3.5,
fluctuates in accuracy over the iterations. The reason could be that the model generalizes
to one type of image, which in consequence leads it to fail on other types of images. It
could be improved by increasing the number of epochs.

All in all, DC5 outperforms FPN in general as a feature extractor for the assignment of
corrosion detection, with ResNet-101 as the preferred backbone. FPN does still have some
advantages such as high resolution, which is why it may be useful to incorporate it in the
architecture alongside DC5, meaning the model extract feature maps from each convolu-
tional block, but use dilated convolutions when extracting. Guan et al. design a similar
backbone for the Faster R-CNN network, called dilated convolutional feature pyramid
network (DCFPN)[51], for the purpose of detecting thigh fracture. In the new design, the
network works as described for FPN[22], but between the stages in the backbone net-
work, normal convolutional blocks are replaced with dilated bottle blocks to enlarge the
receptive field of each feature map extracted. The method outperforms the traditional
Faster R-CNN with normal FPN. For future research, this might be an extension worth
implementing to improve detection of small corrosion spots.

Original FPN DC5 Ground Truth

Figure 5.2: Comparing predictions on ResNet-101 backbone

5.1.2 Heavy augmentation

Mask R-CNN was trained using the heavy augmentation scheme in table 4.1 on 25 epochs
with a batch size of 2, with the simple default configurations from Detectron2 and a learn-
ing rate scheduler. The resulting mean IoU on the validation dataset is listed in table 5.2.
Results from the backbone model, ResNet-101+DC5 are plotted in fig. 5.3, where the loss
function presents per batch loss and per epoch loss.

43

Backbone Corrosion IoU Background IoU Mean Iou
ResNet-50 + FPN 58.0% 86.1% 72.0%
ResNet-101 + FPN 59.1% 86.2% 72.6%
ResNeXt-101 + FPN 58.9% 86.4% 72.7%
ResNet-50 + DC5 58.5% 85.7% 72.1%
ResNet-101 + DC5 59.6% 85.5% 72.5%

Table 5.2: Results on normal configuration, Heavy augmentation

(a) Total training loss (b) False predictions

(c) IoU per iteration

Figure 5.3: Plots from default run, Heavy augmentation, ResNet-101+DC5

Discussion

Comparing table 5.1 and table 5.2 shows reduced accuracy for heavy augmentation on
all backbone models. When evaluating ResNet-101+DC5 infig. 5.3, the overall perform-
ance is degraded, with a larger amount of misclassifications than the light augmentation
scheme in fig. 5.1 and less improvement in IoU over the iterations.

The model does also seem to not train very well, showing a clear effect of underfitting
when comparing the loss function in fig. 5.1 and fig. 5.3. This seems to be an indication
that the variation and colour augmentation of the dataset has grown beyond what the
model manages to adapt to. As these types of data augmentation are uncontrolled and
performed by Detectron2, it is difficult to fully evaluate the quality of the augmented
images and which of the techniques are failing. It could likely be that for example lowering
the contrast removes the visible borders between corroded and non-corroded material and
that the heavy saturation leads to unnatural images.

Comparing the predictions between light augmentation training and heavy augment-
ation training also sees a decrease in quality predictions. Taking a few sample images

44

in fig. 5.4 it’s evident that the heavy augmentation scheme has led the model to fail in
generalizing corrosion patterns, and simply detects large masks of saturated areas. Even
with the same confidence threshold of 0.8, the heavy augmentation scheme leads to large
amounts of false positives.

As a result, we have decided to discard this particular augmentation approach, which
expands the range of potential data augmentation techniques that can be considered to
enhance the dataset. One alternative is to explore other geometric transformations, such
as rotation, or adjust the scale of colour transformations to make them more versatile.
Additionally, more advanced options include generating synthetic data using techniques
like Generative Adversarial Networks (GANs)[52]. Furthermore, if the goal is to imple-
ment multi-class detection for less common damage types, oversampling techniques like
Synthetic Minority Over-sampling Technique (SMOTE)[53] or class weights[54] can be
considered. Just as an excessive amount of any substance can be toxic, the same can be
said for a deep learning approach. While data augmentation is a widely recognized and
effective technique in machine learning, it is essential to carefully consider its purpose,
the model being used, and the characteristics of the dataset.

Original LA HA Ground Truth

Figure 5.4: Comparing predictions on ResNet-101+DC5 with light augmentation(LA) and
heavy augmentation(HA)

5.2 Genetic Algorithm

The final results can be viewed in table 5.3, with some visual comparisons between
tuned and untuned network predictions in fig. 5.7. The results from ResNet-101+DC5
and ResNet-101+FPN are plotted in fig. 5.5 and fig. 5.6 respectively.

Backbone Corrosion IoU Background IoU Mean Iou
ResNet-50 + FPN 60.1% 86.6% 73.3%
ResNet-101 + FPN 60.7% 85.7% 73.2%
ResNeXt-101 + FPN 62.6% 87.0% 74.8%
ResNet-50 + DC5 60.7% 86.7% 73.7%
ResNet-101 + DC5 62.7% 87.5% 75.1%

Table 5.3: Results from GA tuned run

45

(a) Total training loss (b) False predictions

(c) IoU per iteration

Figure 5.5: Plots from GA-tuned run, ResNet-101+DC5

(a) Total training loss (b) False predictions

(c) IoU per iteration

Figure 5.6: Plots from GA-tuned run, ResNet-101+FPN

46

Discussion

The results from table 5.3 show a mean IoU between 73.2% and 75.1%, with the only
general improvement from light augmentation in table 5.1 being in ResNeXt-101 + FPN,
which had a 0.5% increase in mean IoU.

By only looking at the corrosion IoU, which defines the fitness score of the Genetic
Algorithm, there has been an increase for both ResNeXt and ResNet-101+DC5, but the
noticeable is that background IoU has stagnated or decreased, resulting in no growth in
mean IoU. Utilizing GA tuning did however not have a substantial effect, as the corrosion
IoU for ResNet-101+DC5 only increases a mere 0.3%. Overall the average performance
of the model decreases.

The difference is nore distinct when overlooking the plots of fig. 5.5 and comparing
them to the plots from light augmentation in fig. 5.1. Although the predictions starts of
worse with a greater loss and lower IoU, the training curve is more coherent and shows
progress, in contrast to the basic run in fig. 5.1 which does not improve IoU that much.
This could be a sign of the model escaping local minima, but the plots also suggest that
the number of iterations should be higher, since the loss function does not converge as
of yet, and does not reach the same minima as the light augmentation training loss in
fig. 5.1.

The plots for ResNet-101+FPN in fig. 5.6 still show suboptimal performance, when
compared to the DC5 equivalent. One is the loss function converging early, which is a
problem also seen earlier in fig. 3.3, but at a worse point than before. The second point
is that there is a consistent increase in IoU until the second half of the iteration, when it
starts fluctuating again, and the degradation is more severe. The plots show a lot of the
same problems as previously discussed, i.e. the model tries to adapt one type of damage,
which leads it to fail on other damages.

Taking the example predictions from fig. 5.7, the updated model demonstrates hyper-
sensitivity to various types of red irregularities. It generates multiple small and overlap-
ping masks with confidence levels ranging from 75% to 100%. This outcome indicates that
the new approach successfully identifies corrosion instances that were previously over-
looked by the traditional model. Furthermore, the generation of smaller masks suggests
improved segmentation with enhanced detail. However, a drawback of the new approach
is its tendency to incorrectly detect background regions. This can result in overlaps and
misclassifications in the predicted masks. To address this issue, one potential solution is
to adjust the confidence threshold. By carefully tuning the threshold, it is possible to re-
duce the number of false positive detections and mitigate the impact of the reduced IOU
threshold.

Since the model responds better to red corrosion, tuning mitigates some of the issues
with falsely classifying corrosion-like patterns. This issue is particularly evident in the FPN
models, which were initially challenged by non-red misclassifications. Conversely, the DC5
models had already addressed this problem and exhibited improved performance in that
regard.

The suboptimal output of the algorithm, particularly in the case of the fitness score
being highest at generation 7 instead of the intended generation 15, presents uncertain-
ties regarding the factors contributing to this outcome. One possible reason could be the
limited number of individuals and generations in the Genetic Algorithm, which restricts
the search space and may result in exploring only a few combinations of hyperparameters.
Additionally, the algorithm’s constraint to run on ResNet-50+FPN and a dataset of only
200 images could lead to overfitting.

To address these issues, several potential solutions can be considered. Firstly, intro-

47

ducing the backbone as an additional gene in the Genetic Algorithm can enhance the
exploration of different network architectures and further optimize the model’s perform-
ance. This allows for the selection of an optimal backbone architecture based on the given
task and data.

Furthermore, creating additional datasets and randomly selecting one set for training
can help reduce overfitting and improve the model’s generalization capabilities. By aug-
menting the available data with diverse samples, the algorithm can learn from a wider
range of variations and better capture the underlying patterns.

Another reason behind GA failing is that there are hyperparameters not available in the
Detectron2 config file, such as the loss weights. The pre-project emphasized the import-
ance of these parameters in section 2.3[7]. On an additional note Redmon et al. configured
their loss weights for YOLO to best suit its purpose[31]. Including the loss weights could
therefore be useful when further expanding the search space for the genetic algorithm.
Running with GA tuning, though not as successful as expected, still highlighted the im-
portance of hyperparameters. The predictions in fig. 5.7 indicate that they can affect the
model in different ways, but it is obvious that these are not the best-fitted hyperparamet-
ers, contrary to what the genetic algorithm outputs. Overall, the new approach shows po-
tential for addressing specific challenges in the original model, but the Genetic Algorithm
has produced far from the optimal values for this specific model. Further exploration and
refinement of the method could lead to more accurate and robust corrosion detection and
segmentation.

Original image Prediction (no tuning) Prediction (GA tuned) Ground Truth

Figure 5.7: Comparing predictions with left-side vs right sided values in table 4.6, with
ResNet-101+FPN

48

5.3 SkySeg

The weights from the light augmentation run in table 5.1 remains unchanged, but the
validation dataset pass through SkySeg before the corrosion detection. The results from
the new predictions are shown in table 5.4, with output predictions in fig. 5.8, fig. 5.9,
fig. 5.10 and fig. 5.11.

Backbone Corrosion IoU Background IoU Mean Iou
ResNet-50 + FPN 61.6% 86.7% 74.1%
ResNet-101 + FPN 61.0% 86.2% 73.5%
ResNeXt-101 + FPN 62.1% 86.9% 74.5%
ResNet-50 + DC5 60.7% 87.0% 73.8%
ResNet-101 + DC5 62.3% 87.8% 75.1%

Table 5.4: Current results on the validation dataset, with SkySeg

Discussion

The results show little to no improvement when comparing table 5.1 and table 5.4. The
only way to properly assess SkySeg is to analyze the output pictures, which show several
reasons behind the failure of SkySeg to demonstrate any improvement.

The most prominent aspect is SkySeg corrupting the images by removing parts of the
bridge, as seen in fig. 5.8 and fig. 5.9. This misclassification leads to two distinct issues, one
is that the bridge part removed actually contains labelled corrosion, which the corrosion
model is not able to predict because SkySeg has removed them, fig. 5.8 illustrates this
challenge. The other is that the corrosion model falsely predicts the removed pixels as
corrosion, as seen in fig. 5.9. This degradation in performance despite good results from
training is unexpected, as sky segmentation seems at first an easy task for the YOLO model
to understand. The challenges stem most likely from limited research on the YOLO model,
leading to similar challenges with the dataset and hyperparameters as with the corrosion
model.

The corrosion dataset differentiates heavily from the ADE20K dataset. As the training
dataset is quite monotonous, SkySeg overfits to images similar to fig. 4.11, but struggles
with bridge images where the parts of the sky are occluded. Adding 150 images with
bridges does not do enough to mitigate this issue, suggesting that the model requires a
larger custom dataset of bridge images.

The model struggles too with images where no sky is present, which is often what
leads to false predictions. The model should therefore only perform on images which
contain sky in order to avoid misclassifications.

Upon analyzing the images where SkySeg demonstrates successful performance, spe-
cifically those with a clear horizon and a distinct border between the sky and the bridge,
it is observed that there are only a few instances where the pre-processing has noticeably
improved corrosion detection. An example of such a notable difference can be seen in the
prediction shown in fig. 5.10. However, in most instances where the SkySeg model per-
forms adequately, the difference in predictions is minimal. This challenges the hypothesis
put forth in the pre-project, which suggested that the corrosion detection model made
mistakes in detection by misinterpreting the background as the structure and clouds as
corrosion. The results from fig. 5.11 indicate the contrary. It is possible that the exclusion
of white corrosion images during pre-processing and introducing DC5 models, which ex-

49

hibit greater robustness to the background, have also enhanced the corrosion model’s
ability to handle clouds, which relegates SkySeg’s role.

In the current state of the images, SkySeg appears to be redundant since the corrosion
model can effectively distinguish between the structure and the background in such in-
stances. The poor performance of the sky network complicates the evaluation of its impact
on the corrosion model, as it either confuses the network or fails to introduce significant
changes to the images. As a result, it becomes challenging to determine how SkySeg truly
affects the corrosion model’s performance, as it either hampers the network’s performance
or fails to make a substantial difference.

Alternative approaches

Considering the effort required to implement and fine-tune a sky segmentation network
solely for background removal purposes, it may be worthwhile to explore alternative ap-
proaches that offer greater efficiency. One possible solution could be expanding the data-
set to include more diverse backgrounds. This would provide the network with a broader
range of background variations to learn from. Additionally, the DC5 models exhibit greater
robustness to false positives, as demonstrated in fig. 5.2, suggesting that they may be a
more effective solution for handling background-related challenges.

Another large-scale alternative to removing sky pixels is to introduce depth as an extra
dimension to the images, so-called RGB-D (Red Green Blue - Depth) images. As sky and
background are an unavoidable part of bridge images and the model as of now has no
account of how far away the structure is, it is currently impossible for the model itself to
understand the difference between noisy background and actual corrosion. Introducing
depth per pixel, where the sky and background would be infinitely away, could lead to
the model being more aware of where the structure is and in consequence, where the
corrosion is. Depth-aware CNNs have been in development[55, 56], but they suffer from
high computational complexity and a lack of datasets with RGB-D images. With the oc-
currence of higher quality drones, RGB-D images are possible to render either directly
from the drone or with depth estimation tools, so this could be a future direction of im-
provement.

(a) Original image (b) Prediction (SkySeg) (c) Ground Truth

Figure 5.8: Example of poor pre-processing with SkySeg, the masking removes part of the
bridge where corrosion is present

50

(a) Original image (b) Prediction (SkySeg) (c) Ground Truth

Figure 5.9: Example where the mask itself is detected as corrosion

(a) Prediction(normal) (b) Prediction(SkySeg) (c) Ground Truth

Figure 5.10: Comparing predictions with and without SkySeg to the Ground Truth, the
prediction with pre-processing performs slightly better

5.4 Summary of results and analysis

Table 5.5 summarizes the mean IoU from all runs discussed in the preceding sections.
Comparing the results shows some prominent factors. In general, it is the reduction of the
dataset that induces the largest increase in mean IoU, as well as introducing DC5 models,
where ResNet-101 with DC5 performs the best across all strategies with an average mIoU
of 74.5%. ResNext comes in second place with 74.1%. These are the two models suggested
to be used for further work. ResNet-101+FPN performs the worst of all models, which is
surprising considering its likeness to ResNet-50+FPN and ResNet-101+DC5.

The differences are small across backbone models and strategies, ranging between
72.0% as the worst value and 75.1% as the best. The stagnant values show the clear
diversity in the dataset, where models with a certain strategy work better on some images,
such as the GA tuning on hard-to-spot red corrosion, but falter on other types. Even with
the reduction in the dataset, there are limitations which reduce the model’s full potential.
This is evident by the lack of performance over the iterations when evaluating fig. 5.1.
There is no "one strategy fixes all" solution, but expanding and focusing on the dataset

Backbone Feature extractor
LA HA GA-tuned SkySeg

FPN 74.0% 72.0% 73.3% 74.1%
DC5 73.9% 72.1% 73.7% 73.8%
FPN 73.7% 72.6% 73.2% 73.5%
DC5 75.1% 72.5% 75.1% 75.1%

ResNeXt-101 FPN 74.4% 72.5% 74.8% 74.5%

Strategy

ResNet-50

ResNet-101

Table 5.5: Mean IoU comparison for all experiments

51

Original image Prediction (normal) Prediction (with SkySeg) Ground Truth

Figure 5.11: Comparing predictions from ResNet-101+DC5 with and without SkySeg to
the Ground Truth. the predictions are completely alike.

might strengthen the model going forward.
Using the hyperparameters from GA tuning had little effect on the mean IoU, but

showed some increase in the corrosion IoU for ResNet-101+DC5 and ResNeXt, which
shows some progress by changing hyperparameters. Hyperparameters still play a big
role despite the underperformance of the current GA. The grid search on the confidence
threshold, as shown in fig. 5.12, indicates that lowering the threshold below GA’s sugges-
ted 0.76 improves the model’s mean IoU. This suggests that a lower threshold value is
preferable for better performance.

Running the final evaluation from the lessons in this discussion and taking the results
from fig. 5.12, the threshold is set to 0.65 on ResNet-101+DC5 with light augmentation
and default configuration. The final result is shown in table 5.6. With a mean IoU of 75.7%
and corrosion IoU of 63.3%, this evaluation is the best result achieved in this thesis and
shows that some small tweaking can still improve the network.

Figure 5.12: IoU per confidence threshold for ResNet-101+DC5

A 63% corrosion IoU is still far from ideal, and there are many challenges that are yet
to be solved. Even though the effect of lowering the threshold on average increases mean
IoU, it still poses problems with false positive predictions of gravel and red background

52

Backbone Corrosion IoU Background IoU Mean Iou
ResNet-101 + DC5 63.3% 88.0% 75.7%

Table 5.6: Results from one final run with ResNet-101+DC5, with a lowered threshold

such as in fig. 3.6. This refers again to the diversity in the dataset.
Other challenges where the mIoU is still low can be viewed in fig. 5.13. These examples

show images where the corrosion is obvious, but the model still fails to detect it. As of
now, there is no clear-cut answer to why this happens or how to fix it, but assessing the
model with a larger or more focused dataset may offer up good points for analysis.

Original Prediction Ground Truth

Figure 5.13: Final predictions on validation dataset, with ResNet-101+DC5

53

Chapter 6

Conclusion and further work

6.1 Conclusion

The goal of this master thesis has been to probe and assess new methods for improving
the accuracy of corrosion detection with Mask R-CNN. The work contains three main
contributions. Each contribution is concluded below.

6.1.1 Dataset

The work of this thesis started with a dataset consisting of 1990 images with varying
degrees of patterns, backgrounds, angles and types of damage. After removing a batch of
images because of corruption and then again another batch where the focal damage was
not red corrosion, the final number of images was 1772. The reduction in images led to
the most obvious improvement in accuracy, which speaks to the importance of good and
diverse data when training the network. The quality of the dataset is probably the main
contributor to why the accuracy does not improve in a significant way over the course
of the thesis. The model’s difficulty in generalizing to basic corrosion patterns can be
attributed to the significant variety of corrosion damages present in the images. Factors
such as large distances to the damage, noisy backgrounds, and disturbances like shadows
contribute to the challenges faced by the model in accurately detecting these patterns.

To address these issues, it is necessary to expand the dataset by including images of
other damage types, excluding irrelevant objects, and introducing worst-case scenarios for
better generalization. By addressing these concerns, the model’s performance in detecting
corrosion can be significantly improved.

Data augmentation was used as a temporary solution to mitigate these issues, and it
was shown that conservative methods of flipping horizontally and vertically had a good
effect on accuracy. Trying however to expand the methods of data augmentation with
colour transformations such as contrast, brightness and saturation seemed to decrease
the IoU and resulted in a higher ratio of false positives, which shows that the search space
needs to be opened wider for further experimentations if data augmentations should be
further uses.

In conclusion, the goal of the model should guide the selection of images for training.
If the model should only detect red corrosion on bridges, it is crucial to curate a dataset
that primarily consists of images depicting this specific type of damage. If the goal is to
detect several types of damage on other infrastructures, the dataset has to be expanded
greatly in order to accommodate those high expectations.

54

6.1.2 Genetic Algorithm for automatic hyperparameter tuning

This thesis has implemented and adapted the Genetic Algorithm to find the optimal com-
bination of hyperparameters to get the highest accuracy possible, with both simple muta-
tion, which was shown to create divergence in the algorithm, and adaptive mutation
which had the most promising results.

The results show only minor performance gain using GA-tuned hyperparameters, but
the limitations could also be due to the quality of the dataset as mentioned before, lim-
ited access to hyperparameters by Detectron2, too small population and overfitting on
the small subset of training images. Overall the Genetic Algorithm shows an effective
way of tuning hyperparameters without the need for human interaction, which could be
expanded on in further work by introducing more hyperparameters. Indeed, while hyper-
parameters play a crucial role in optimizing neural networks, it is important to recognize
that the model’s performance will ultimately be constrained by the quality and diversity
of the dataset it is trained on. Therefore, before delving into the development of the Ge-
netic Algorithm for hyperparameter optimization, it is advisable to focus on expanding
the dataset.

6.1.3 SkySeg

An independent network called SkySeg, utilizing the state-of-the-art YOLO model, was im-
plemented to detect the sky in the corrosion dataset. The objective was to assess whether
removing the background, specifically the sky, would have any impact on the accuracy of
the corrosion detection model. The newly constructed dataset was created by incorporat-
ing images from the ADE20K dataset.

The results of this experiment did not demonstrate any significant improvement in
accuracy. In many images where the sky was not present, YOLO instead falsely detected
parts of the bridge and removed crucial segments, leading to a decrease in IoU. In cases
in which SkySeg successfully removed the sky, the predicted masks from the corrosion
detection model were identical to the masks without background removal, rendering the
sky masking process redundant. The results from earlier implementations such as incor-
porating dilated convolutions and removing images with white corrosion had a greater
effect on reducing false positives of clouds.

Overall, the implementation of a background removal network did not contribute to
enhancing the accuracy of the corrosion detection model. SkySeg has therefore been con-
cluded to not improve the model in such a way that it is worth the cost of implementing
a new network with its own dataset. The easier and more robust solution would be to
expand the dataset with more background variety, including the sky. Another solution
that has been mentioned for further work is introducing RGB-D images where depth is a
fourth dimension, allowing the model to generalize based on the distance to the structure
and learn efficiently what parts are background and can be ignored.

6.2 Further work

This thesis has provided insights into the field of image segmentation, particularly in the
context of corrosion detection. However, there are several avenues for further exploration
and improvement. The following suggestions outline potential directions for future work
in this area.

55

6.2.1 Introduce a combination of FPN and dilated convolutions

All though most projects use FPN as a feature extractor with Mask R-CNN, the results sug-
gest that the corrosion model prefers DC5. As the methods are not mutually exclusive, a
potential enhancement is to incorporate the Dilated Convolutional Feature Pyramid Net-
work (DCFPN) into the Mask R-CNN architecture. By combining the strengths of Feature
Pyramid Network (FPN) and DC5, the model can potentially achieve improved perform-
ance in terms of both accuracy and computational efficiency.

6.2.2 Multiple classes

Multi-class segmentation is a topic mentioned both by Fondevik[6] and in the pre-project[7],
where several damage types are added as their own separate class, but has not been im-
plemented due to the lack of data. In this thesis, the focus has primarily been on detecting
corrosion as a single class. However, further work can involve extending the model to de-
tect and classify multiple types of damage. The previous results of the network indicate
that the damage types differ from each other too much for the model to be able to detect
all of them under the same class. By implementing multi-class segmentation, the model
would be more effective in generalizing each damage type. To accomplish this, the model
requires additional data specific to these damage types. Synthetic data generation tech-
niques, such as GAN, SMOTE, or class weighting, can be explored to augment the dataset
and improve the model’s ability to detect and classify different damage types.

6.2.3 Change of network

While Mask R-CNN has demonstrated promising performance in this thesis, it is worth-
while to explore alternative instance segmentation models that have shown superior res-
ults in other instance segmentation tasks. The COCO test competition is a place to start
finding and evaluating new instance segmentation models, and every year there comes a
new model or implementation that outperforms the current model.

6.2.4 RGB-D Images and Depth-Aware CNNs

To enhance the model’s capability for detecting corrosion, the dataset can be extended
to include RGB-D images. By incorporating depth information alongside RGB data, the
model can potentially leverage the additional depth cues to improve segmentation accur-
acy and robustness.

56

Bibliography

[1] ‘Norwegian public roads administration,’ [Online]. Available: https://www.vegvesen.
no/en/?lang=en (visited on 14/03/2023).

[2] D. J. Atha and M. R. Jahanshahi, ‘Evaluation of deep learning approaches based on
convolutional neural networks for corrosion detection,’ Structural Health Monitor-
ing, vol. 17, no. 5, pp. 1110–1128, 2018. DOI: 10.1177/1475921717737051. eprint:
https://doi.org/10.1177/1475921717737051. [Online]. Available: https://
doi.org/10.1177/1475921717737051.

[3] R. Howells. ‘Keeping norwegian bridges safe through intelligent asset monitoring
and industry 4.0.’ (2020), [Online]. Available: https://www.forbes.com/sites/
sap/2020/06/18/keeping-norwegian-bridges-safe-through-intelligent-
asset-monitoring-and-industry-40/?sh=e6b5c146b792 (visited on 18/05/2023).

[4] G. Schmitt, M. Schütze, G. Hays, W. Burns, E.-H. Han, A. Pourbaix and G. Jacobson,
‘Global needs for knowledge dissemination, research, and development in materi-
als deterioration and corrosion control,’ World Corrosion Organization, p. 14, Jan.
2009.

[5] K. He, G. Gkioxari, P. Dollár and R. Girshick, ‘Mask r-cnn,’ 2017. DOI: 10.48550/
ARXIV.1703.06870. [Online]. Available: https://arxiv.org/abs/1703.06870.

[6] S. K. Fondevik, Image segmentation of corrosion damages in industrial inspections us-
ing state-of-the-art neural networks, 2020. [Online]. Available: https://ntnuopen.
ntnu.no/ntnu-xmlui/handle/11250/2780881?locale-attribute=no.

[7] H. Semb, Challenges of image segmentation of corrosion damages using mask r-cnn,
Specialization thesis, Dec. 2022.

[8] R. Lemos, R. Cabral, D. Ribeiro, R. Santos, V. Alves and A. Dias, ‘Automatic de-
tection of corrosion in large-scale industrial buildings based on artificial intelli-
gence and unmanned aerial vehicles,’ Applied Sciences, vol. 13, no. 3, p. 1386, Jan.
2023, ISSN: 2076-3417. DOI: 10.3390/app13031386. [Online]. Available: http:
//dx.doi.org/10.3390/app13031386.

[9] Y. Bai, B. Zha, H. Sezen and A. Yilmaz, ‘Engineering deep learning methods on
automatic detection of damage in infrastructure due to extreme events,’ Structural
Health Monitoring, vol. 22, no. 1, pp. 338–352, 2023. DOI: 10.1177/14759217221083649.
eprint: https://doi.org/10.1177/14759217221083649. [Online]. Available:
https://doi.org/10.1177/14759217221083649.

[10] L. F. Rodrigues, A. R. Backes, B. A. N. Travençolo and G. M. B. de Oliveira, ‘Optimiz-
ing a deep residual neural network with genetic algorithm for acute lymphoblastic
leukemia classification,’ Journal of Digital Imaging, vol. 35, no. 3, pp. 623–637,
2022.

57

https://www.vegvesen.no/en/?lang=en
https://www.vegvesen.no/en/?lang=en
https://doi.org/10.1177/1475921717737051
https://doi.org/10.1177/1475921717737051
https://doi.org/10.1177/1475921717737051
https://doi.org/10.1177/1475921717737051
https://www.forbes.com/sites/sap/2020/06/18/keeping-norwegian-bridges-safe-through-intelligent-asset-monitoring-and-industry-40/?sh=e6b5c146b792
https://www.forbes.com/sites/sap/2020/06/18/keeping-norwegian-bridges-safe-through-intelligent-asset-monitoring-and-industry-40/?sh=e6b5c146b792
https://www.forbes.com/sites/sap/2020/06/18/keeping-norwegian-bridges-safe-through-intelligent-asset-monitoring-and-industry-40/?sh=e6b5c146b792
https://doi.org/10.48550/ARXIV.1703.06870
https://doi.org/10.48550/ARXIV.1703.06870
https://arxiv.org/abs/1703.06870
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2780881?locale-attribute=no
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2780881?locale-attribute=no
https://doi.org/10.3390/app13031386
http://dx.doi.org/10.3390/app13031386
http://dx.doi.org/10.3390/app13031386
https://doi.org/10.1177/14759217221083649
https://doi.org/10.1177/14759217221083649
https://doi.org/10.1177/14759217221083649

[11] S. Lee, J. Kim, H. Kang, D.-Y. Kang and J. Park, ‘Genetic algorithm based deep learn-
ing neural network structure and hyperparameter optimization,’ Applied Sciences,
vol. 11, no. 2, p. 744, Jan. 2021, ISSN: 2076-3417. DOI: 10.3390/app11020744.
[Online]. Available: http://dx.doi.org/10.3390/app11020744.

[12] ‘Orbitron.’ (), [Online]. Available: https://orbiton.no/ (visited on 05/06/2023).

[13] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo and R. Girshick, Detectron2, https://github.
com/facebookresearch/detectron2, 2019.

[14] A. Bhayani, Genetic algorithm to solve the knapsack problem, https://github.com/
arpitbbhayani/genetic-knapsack, 2022.

[15] L. Yang and A. Shami, ‘On hyperparameter optimization of machine learning al-
gorithms: Theory and practice,’ Neurocomputing, vol. 415, pp. 295–316, 2020,
ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2020.07.061.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231220311693.

[16] M. Abdel-Basset, L. Abdel-Fatah and A. K. Sangaiah, ‘Chapter 10 - metaheuristic
algorithms: A comprehensive review,’ in Computational Intelligence for Multimedia
Big Data on the Cloud with Engineering Applications, ser. Intelligent Data-Centric
Systems, A. K. Sangaiah, M. Sheng and Z. Zhang, Eds., Academic Press, 2018,
pp. 185–231, ISBN: 978-0-12-813314-9. DOI: https://doi.org/10.1016/B978-
0-12-813314-9.00010-4. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780128133149000104.

[17] S. Ren, K. He, R. Girshick and J. Sun, ‘Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,’ DOI: 10.48550/ARXIV.1506.01497. [Online].
Available: https://arxiv.org/abs/1506.01497.

[18] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’
CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online]. Available: http:
//arxiv.org/abs/1512.03385.

[19] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, Aggregated residual transformations
for deep neural networks, 2017. arXiv: 1611.05431 [cs.CV].

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, Going deeper with convolutions, 2014. arXiv: 1409.4842
[cs.CV].

[21] ‘Instance segmentation on coco test-dev.’ (Jan. 2023), [Online]. Available: https:
//paperswithcode.com/sota/instance- segmentation- on- coco (visited on
01/06/2023).

[22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, Feature pyramid
networks for object detection, 2017. arXiv: 1612.03144 [cs.CV].

[23] S. Altindis, Y. Dalva and A. Dundar, Benchmarking the robustness of instance seg-
mentation models, Sep. 2021.

[24] F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 2016.
arXiv: 1511.07122 [cs.CV].

[25] D. A. van Dyk and X.-L. Meng, ‘The art of data augmentation,’ Journal of Com-
putational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001. DOI: 10.1198/
10618600152418584. eprint: https://doi.org/10.1198/10618600152418584.
[Online]. Available: https://doi.org/10.1198/10618600152418584.

58

https://doi.org/10.3390/app11020744
http://dx.doi.org/10.3390/app11020744
https://orbiton.no/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/arpitbbhayani/genetic-knapsack
https://github.com/arpitbbhayani/genetic-knapsack
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.061
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://doi.org/https://doi.org/10.1016/B978-0-12-813314-9.00010-4
https://doi.org/https://doi.org/10.1016/B978-0-12-813314-9.00010-4
https://www.sciencedirect.com/science/article/pii/B9780128133149000104
https://www.sciencedirect.com/science/article/pii/B9780128133149000104
https://doi.org/10.48550/ARXIV.1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://paperswithcode.com/sota/instance-segmentation-on-coco
https://paperswithcode.com/sota/instance-segmentation-on-coco
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1511.07122
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584

[26] W. Fang, Y. Ding, F. Zhang and V. S. Sheng, ‘Dog: A new background removal for
object recognition from images,’ Neurocomputing, vol. 361, pp. 85–91, 2019, ISSN:
0925-2312. DOI: https://doi.org/10.1016/j.neucom.2019.05.095. [On-
line]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0925231219308963.

[27] S. B. Park, J. W. Lee and S. K. Kim, ‘Content-based image classification using a
neural network,’ Pattern Recognition Letters, vol. 25, no. 3, pp. 287–300, 2004,
ISSN: 0167-8655. DOI: https://doi.org/10.1016/j.patrec.2003.10.015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167865503002253.

[28] C. Sun, G. Arr, R. Ramachandran and S. Ritchie, ‘Vehicle reidentification using mul-
tidetector fusion,’ IEEE Transactions on Intelligent Transportation Systems, vol. 5,
pp. 155–164, Sep. 2004. DOI: 10.1109/TITS.2004.833770.

[29] J. Nader, ‘Backgroundremover,’ GitHub repository, 2021.

[30] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane and M. Jagersand, ‘U2-net:
Going deeper with nested u-structure for salient object detection,’ Pattern recogni-
tion, vol. 106, p. 107 404, 2020.

[31] J. Redmon and A. Farhadi, ‘Yolov3: An incremental improvement,’ 2018. DOI: 10.
48550/ARXIV.1804.02767. [Online]. Available: https://arxiv.org/abs/1804.
02767.

[32] S. Sánchez Hernández, H. Romero and A. Morales, ‘A review: Comparison of per-
formance metrics of pretrained models for object detection using the tensorflow
framework,’ IOP Conference Series: Materials Science and Engineering, vol. 844,
p. 012 024, Jun. 2020. DOI: 10.1088/1757-899X/844/1/012024.

[33] A. Lambora, K. Gupta and K. Chopra, ‘Genetic algorithm- a literature review,’ in
2019 International Conference on Machine Learning, Big Data, Cloud and Paral-
lel Computing (COMITCon), 2019, pp. 380–384. DOI: 10.1109/COMITCon.2019.
8862255.

[34] ‘Darwin from v7 labs,’ [Online]. Available: https://darwin.v7labs.com (visited
on 02/05/2023).

[35] G. Josher, A. Chaurasia and J. Qiu, Yolov8, developed by ultralytics, https : / /
github.com/ultralytics/ultralytics, 2023.

[36] W. Abdulla, ‘Mask r-cnn for object detection and instance segmentation on keras
and tensorflow,’ GitHub repository, 2017.

[37] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,
Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai,
J. Wang, J. Shi, W. Ouyang, C. C. Loy and D. Lin, ‘MMDetection: Open mmlab
detection toolbox and benchmark,’ arXiv preprint arXiv:1906.07155, 2019.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, ‘Pytorch: An
imperative style, high-performance deep learning library,’ in Advances in Neural
Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.
[Online]. Available: http://papers.neurips.cc/paper/9015- pytorch- an-
imperative-style-high-performance-deep-learning-library.pdf.

59

https://doi.org/https://doi.org/10.1016/j.neucom.2019.05.095
https://www.sciencedirect.com/science/article/pii/S0925231219308963
https://www.sciencedirect.com/science/article/pii/S0925231219308963
https://doi.org/https://doi.org/10.1016/j.patrec.2003.10.015
https://www.sciencedirect.com/science/article/pii/S0167865503002253
https://www.sciencedirect.com/science/article/pii/S0167865503002253
https://doi.org/10.1109/TITS.2004.833770
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.48550/ARXIV.1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.1088/1757-899X/844/1/012024
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1109/COMITCon.2019.8862255
https://darwin.v7labs.com
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[39] Detectron2 documentation. [Online]. Available: https://detectron2.readthedocs.
io/ (visited on 12/04/2023).

[40] G. Bradski, ‘The OpenCV Library,’ Dr. Dobb’s Journal of Software Tools, 2000.

[41] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. L. Zitnick and P. Dollár, ‘Microsoft coco: Common objects in context,’
2014. DOI: 10.48550/ARXIV.1405.0312. [Online]. Available: https://arxiv.
org/abs/1405.0312.

[42] D. A. van Dyk and X.-L. Meng, ‘The art of data augmentation,’ Journal of Com-
putational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001. DOI: 10.1198/
10618600152418584. eprint: https://doi.org/10.1198/10618600152418584.
[Online]. Available: https://doi.org/10.1198/10618600152418584.

[43] C. Shorten and T. M. Khoshgoftaar, ‘A survey on image data augmentation for deep
learning,’ Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[44] M. Gerber, N. Pillay, K. Holan, S. A. Whitham and D. K. Berger, ‘Automated hyper-
parameter tuning of a mask r-cnn for quantifying common rust severity in maize,’
pp. 1–7, 2021. DOI: 10.1109/IJCNN52387.2021.9534417.

[45] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba, Semantic
understanding of scenes through the ade20k dataset, 2016. DOI: 10.48550/ARXIV.
1608.05442. [Online]. Available: https://arxiv.org/abs/1608.05442.

[46] H. Zhao, Z. Yu and B. Shou, Places challenge, https://github.com/CSAILVision/
placeschallenge, 2017.

[47] C. Evans. ‘Yaml ain’t markup language,’ YAML.org. (2001), [Online]. Available:
http://yaml.org.

[48] J. Nelson, B. Dwyer and J. Solawetz, Roboflow, version 1.0. [Online]. Available:
https://roboflow.com/.

[49] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A. C. Berg, W.-Y. Lo, P. Dollár and R. Girshick, ‘Segment anything,’ arXiv:2304.02643,
2023.

[50] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An energy-efficient, high-
performance GPGPU computing research infrastructure, 2019. arXiv: 1912.05848
[cs.DC].

[51] B. Guan, J. Yao, G. Zhang and X. Wang, ‘Thigh fracture detection using deep learn-
ing method based on new dilated convolutional feature pyramid network,’ Pattern
Recognition Letters, vol. 125, pp. 521–526, 2019, ISSN: 0167-8655. DOI: https:
//doi.org/10.1016/j.patrec.2019.06.015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167865519301825.

[52] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville and Y. Bengio, Generative adversarial networks, 2014. arXiv: 1406.2661
[stat.ML].

[53] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, ‘SMOTE: Synthetic
minority over-sampling technique,’ Journal of Artificial Intelligence Research, vol. 16,
pp. 321–357, Jun. 2002. DOI: 10.1613/jair.953. [Online]. Available: https:
//doi.org/10.1613%2Fjair.953.

[54] Z. Xu, C. Dan, J. Khim and P. Ravikumar, Class-weighted classification: Trade-offs
and robust approaches, 2020. arXiv: 2005.12914 [stat.ML].

60

https://detectron2.readthedocs.io/
https://detectron2.readthedocs.io/
https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1109/IJCNN52387.2021.9534417
https://doi.org/10.48550/ARXIV.1608.05442
https://doi.org/10.48550/ARXIV.1608.05442
https://arxiv.org/abs/1608.05442
https://github.com/CSAILVision/placeschallenge
https://github.com/CSAILVision/placeschallenge
http://yaml.org
https://roboflow.com/
https://arxiv.org/abs/1912.05848
https://arxiv.org/abs/1912.05848
https://doi.org/https://doi.org/10.1016/j.patrec.2019.06.015
https://doi.org/https://doi.org/10.1016/j.patrec.2019.06.015
https://www.sciencedirect.com/science/article/pii/S0167865519301825
https://www.sciencedirect.com/science/article/pii/S0167865519301825
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1613/jair.953
https://doi.org/10.1613%2Fjair.953
https://doi.org/10.1613%2Fjair.953
https://arxiv.org/abs/2005.12914

[55] W. Wang and U. Neumann, ‘Depth-aware cnn for rgb-d segmentation,’ in Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018, pp. 135–150.

[56] S. Tu, J. Pang, H. Liu, N. Zhuang, Y. Chen, C. Zheng, H. Wan and Y. Xue, ‘Pas-
sion fruit detection and counting based on multiple scale faster r-cnn using rgb-d
images,’ Precision Agriculture, vol. 21, pp. 1072–1091, 2020.

61

Appendix A

Dataset conversion

A.1 Binary masks to COCO format

def find_contours(sub_mask):
"""Generates a tuple of points where a contour was found from a binary mask

Args:
sub_mask (numpy array): binary mask

"""
assert sub_mask is not None, "file␣could␣not␣be␣read,␣check␣with␣os.path.exists()"
imgray = cv2.cvtColor(sub_mask, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
assert len(contours)!= 0, print(contours)
return contours

def create_image_annotation(file_name, width, height, image_id):
return {

"image_id": image_id,
"width": width,
"height": height,
"file_name": file_name,

}

def create_annotation_format(contour):
return {

"iscrowd": 0,
"segmentation": [contour.flatten().tolist()],
"bbox": cv2.boundingRect(contour),
"bbox_mode": BoxMode.XYWH_ABS,
"category_id": 0,

}

def load_damage_dicts(dataset_dir, subset):
"""
Loads the images from a dataset with a dictionary of the annotations in COCO-format
"""
dataset_dicts = []

assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
image_ids = next(os.walk(dataset_dir))[1]

62

for image_id in image_ids:

image_dir = os.path.join(dataset_dir, image_id)
(_, _, file_names) = next(os.walk(image_dir))
file_name = file_names[0]

image_path = os.path.join(image_dir, file_name)
height, width = cv2.imread(image_path).shape[:2]
record = create_image_annotation(image_path, width, height, image_id)
#idx +=1
mask_dir = os.path.join(image_dir, ’masks’)
objs = []
for f in next(os.walk(mask_dir))[2]:

if f.endswith(’.png’) and (’corrosion’ or ’grov_merking’ in f):
mask_path = os.path.join(mask_dir, f)
#print(mask_path)
mask = cv2.imread(mask_path)
if mask is None:

print("Couldn’t␣retrieve␣mask:␣", mask_path)
continue

if mask.shape[0]!=height:
print("MISMATCH:", image_dir)

if not(255 in mask):
continue

contours = find_contours(mask)
for contour in contours:

if len(contour) < 3:
continue

obj = create_annotation_format(contour)
objs.append(obj)

record["annotations"] = objs
dataset_dicts.append(record)

return dataset_dicts

A.2 ADE20K to YOLO format

def load_sky_yolo(root, subset,destination):
"""
Transforms the ADE20K dataset to a binary mask
"""
assert subset in [’train’, ’val’]
if subset == ’train’:

dir = ’training’
else:

dir = ’validation’

source = os.path.join(root, "images", dir)
mask_dir = os.path.join(root, "annotations", dir)
print(mask_dir)
mask_ids = next(os.walk(mask_dir))[2]

for id in mask_ids:
mask_path = os.path.join(mask_dir, id)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
height, width = mask.shape
#print(mask)
#print(mask.dtype)
string = ""
for label in [3]:

mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
height, width = mask.shape
mask = np.where(mask==label, 255,0) #3 for sky
if 255 not in mask:

63

continue
mask = mask.astype(’uint8’)

#print(mask)

contours = find_contours(mask)
for contour in contours:

contour_list = contour.flatten().tolist()
if len(contour_list) < 5:

continue
if label == 3:

string += "0␣"
for i in range(1,len(contour_list),2):

string += str(round(contour_list[i-1]/width,6)) #x coordinate
string += "␣"
string += str(round(contour_list[i]/height, 6)) # y coordinate
string += "␣"

string+= "\n"
if string == "":

continue
image_id = os.path.splitext(id)[0] + ’.jpg’
image_source = os.path.join(source, image_id)
image_dest = os.path.join(destination, "images", subset, image_id)
print("destination:␣", image_dest)
print("source:␣", image_source)
shutil.copy(image_source, image_dest)
print(string)
txt_id = os.path.splitext(id)[0]+’.txt’
txt_path = os.path.join(destination, "labels", subset, txt_id)
print(txt_path)
with open(txt_path, "w") as f:

f.write(string)

64

Appendix B

Mask R-CNN

B.1 Data augmentation

class CustomTrainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):

mapper = DatasetMapper(cfg, is_train=True,
augmentations=
[T.RandomFlip(prob=0.5, horizontal=True, vertical=False),
T.RandomFlip(prob=0.5, horizontal=False, vertical=True),
T.RandomBrightness(0.8, 1.8),
T.RandomSaturation(0.8, 1.4),
T.RandomContrast(0.6, 1.3),
])

return build_detection_train_loader(cfg, mapper=mapper)

B.2 Configuration

B.3 Main

def train_model(cfg, backbone):
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(backbone)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()

def predict(cfg, damage_metadata, segment_sky = False):
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
predictor = DefaultPredictor(cfg)
val_dict = DatasetCatalog.get("damage_val")
apply_inference(predictor, damage_metadata, output_dir, d, segment_sky)

def evaluate(cfg, segment_sky = False):
val_dict = DatasetCatalog.get("damage_val")
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
evaluate_model(cfg, val_dict, True, segment_sky)

65

def inference(cfg):
val_dict = DatasetCatalog.get("damage_val")
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
evaluate_over_iterations(cfg, val_dict, cfg.OUTPUT_DIR, plot=True, segment_sky=False)

if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Custom␣Trainer␣Script")
parser.add_argument("--backbone", type=str, help="Backbone␣model␣to␣use")
parser.add_argument("--output_dir", type=str, help="Output␣directory")
parser.add_argument("--data_dir", type=str, help="Dataset␣directory")
parser.add_argument("--mode", type=str, choices=["train", "predict", "evaluate", "inference"],

help="Execution␣mode")
parser.add_argument("--segment_sky", action="store_true", help="Segment␣sky")

args = parser.parse_args()

mode = args.mode
backbone_model = args.backbone
output_dir = args.output_dir
segment_sky = args.segment_sky
data_dir = args.data_dir
for d in ["train", "val"]:

DatasetCatalog.register("damage_" + d, lambda d=d: load_damage_dicts(data_dir,d))
MetadataCatalog.get("damage_" + d).set(thing_classes=["red␣corrosion"])

damage_metadata = MetadataCatalog.get("damage_train")

cfg = config(backbone_model, output_dir)
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

if mode == "train":
train_model(cfg, backbone_model)

elif mode == "predict":
predict(cfg, damage_metadata, segment_sky)

elif mode == "evaluate":
evaluate(cfg, segment_sky)

elif mode == "inference":
inference(cfg)

else:
print("Invalid␣mode␣chosen")

66

Appendix C

Genetic Algorithm

C.1 Adaptive mutation

def adaptive_mutation(hyperparameters, init_values, generation):
mutated_hyperparameters = hyperparameters.copy()
for param, value in mutated_hyperparameters.items():

Calculate the mutation range based on the current generation
mutation_range = 1.0 / (generation + 1)
if param == "roi_batch_size" or param == "rpn_batch_size":

mutated_value = random.choice(init_values[param])
Mutate the parameter by a random value within the mutation range
else:

mutated_value = value + random.uniform(-mutation_range, mutation_range)
Clip the mutated value within the parameter’s defined range
mutated_value = np.clip(mutated_value, init_values[param].min(),

init_values[param].max())
Update the mutated parameter value
mutated_hyperparameters[param] = mutated_value

return mutated_hyperparameters

C.2 Genetic algorihtm

def genetic_algorithm(population_size, num_generations, mutation_probability, stop_fitness_score):
init_values = generate_hyperparameters()

best_individual = None
best_fitness = None
best_per_gen = []

Initialize the population
population = [dict(zip(init_values.keys(), [random.choice(values)

for values in init_values.values()]))
for _ in range(population_size)]

for generation in range(num_generations):
Evaluate the fitness of each individual in the population
fitness_scores = []
for idx, individual in enumerate(population):

fitness = calculate_fitness(idx, individual, generation+1)
fitness_scores.append((individual, fitness))

Sort the population based on fitness scores in descending order
fitness_scores.sort(key=lambda x: x[1], reverse=True)

67

current_best_individual, current_best_fitness = fitness_scores[0]
best_per_gen.append((current_best_individual, current_best_fitness))
if current_best_fitness >= stop_fitness_score:

best_fitness = current_best_fitness
best_individual = current_best_individual
break

Select the top individuals for reproduction (elitism)
elite_population = [individual for individual, _ in

fitness_scores[:int(0.4 * population_size)]]

Create the next generation through crossover and mutation
next_generation = elite_population.copy()

while len(next_generation) < population_size:
Perform crossover by randomly selecting two parents
parent1, parent2 = random.choices(elite_population, k=2)

Create a new child by combining the hyperparameters of the parents
child = {}
for param in init_values.keys():

Perform uniform crossover by randomly selecting a parent’s value
if random.random() < 0.5:

child[param] = parent1[param]
else:

child[param] = parent2[param]

Perform mutation on the child
if random.random() < mutation_probability:

child = adaptive_mutation(child, init_values, generation)

Add the child to the next generation
next_generation.append(child)

Replace the current population with the next generation

population = next_generation

Evaluate the fitness of the final population
fitness_scores = []
for individual in population:

fitness = calculate_fitness(population_size, individual, num_generations)
fitness_scores.append((individual, fitness))

Sort the final population based on fitness scores in descending order
fitness_scores.sort(key=lambda x: x[1], reverse=True)

Return the best individual (hyperparameters) and its fitness score
best_individual, best_fitness = fitness_scores[0]
best_per_gen.append([best_individual, best_fitness])
return best_individual, best_fitness, best_per_gen

68

Appendix D

SkySeg

def remove_sky(image, pre_trained_model):
"""Removes pixels from an image where a pre-trained YOLO network has detected sky

Args:
image (numpy array): cv2 image

Returns:
numpy array: processed image

"""
model = YOLO(pre_trained_model)
results = model.predict(source=image, save=False, save_txt=False, conf=0.5)
for result in results:

if result.masks is None:
print("no␣detections␣in␣results")
continue

masks = result.masks.masks.cpu().numpy() # masks, (N, H, W)
masks = np.moveaxis(masks, 0, -1) # masks, (H, W, N)
rescale masks to original image
masks = scale_image(masks.shape[:2], masks, result.masks.orig_shape)
masks = np.moveaxis(masks, -1, 0) # masks, (N, H, W)
for mask in masks:

mask = (mask*255).astype("uint8")
mask = cv2.bitwise_not(mask)
image = cv2.bitwise_and(image, image, mask=mask)

return image

69

Appendix E

Network plots

E.1 Light augmentation

E.1.1 ResNet-50 + FPN

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

70

E.1.2 ResNet-101 + FPN

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

E.1.3 ResNet-50 + DC5

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

71

E.1.4 ResNet-101 + DC5

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

E.2 GA tuned

E.2.1 ResNet-50 + FPN

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

72

E.2.2 ResNet-101 + FPN

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

E.2.3 ResNeXt-101 + FPN

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

73

E.2.4 ResNet-50 + DC5

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

E.2.5 ResNet-101 + DC5

(a) Class loss (b) Box loss (c) Mask loss

(d) Total loss (e) False predictions (f) IoU per iteration

74

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Motivation and Background
	Aim and scope of the thesis
	Previous work
	Damage segmentation
	Automatic hyperparameter tuning

	Contributions
	Dataset construction for sky segmentation
	Code and implementation
	Format conversion

	Preliminaries
	Neural Network Optimization
	Evaluation metric
	Hyperparameter optimization
	Choice of backbone
	Image processing

	The YOLO network
	Detection
	Architecture
	Loss function

	Genetic Algorithm
	Genetic operators
	Fitness function

	Neural network for corrosion segmentation
	Dataset
	Model
	Implementation
	Dataset conversion
	Choice of architecture and transfer learning
	Choice of evaluation metrics

	Training process
	Results and evaluation of performance
	Dataset limitations

	Methods and Implementation
	Dataset reduction and augmentation
	Genetic Algorithm
	Chromosome
	Dataset
	Fitness function
	Algorithm pipeline
	Results

	Sky segmentation and removal (SkySeg)
	Model
	Dataset
	Training and testing
	Background removal

	Experiment
	Backbones
	Methods
	System

	Results and Discussion
	Augmentations
	Light augmentation
	Heavy augmentation

	Genetic Algorithm
	SkySeg
	Summary of results and analysis

	Conclusion and further work
	Conclusion
	Dataset
	Genetic Algorithm for automatic hyperparameter tuning
	SkySeg

	Further work
	Introduce a combination of FPN and dilated convolutions
	Multiple classes
	Change of network
	RGB-D Images and Depth-Aware CNNs

	Bibliography
	Dataset conversion
	Binary masks to COCO format
	ADE20K to YOLO format

	Mask R-CNN
	Data augmentation
	Configuration
	Main

	Genetic Algorithm
	Adaptive mutation
	Genetic algorihtm

	SkySeg
	Network plots
	Light augmentation
	ResNet-50 + FPN
	ResNet-101 + FPN
	ResNet-50 + DC5
	ResNet-101 + DC5

	GA tuned
	ResNet-50 + FPN
	ResNet-101 + FPN
	ResNeXt-101 + FPN
	ResNet-50 + DC5
	ResNet-101 + DC5

