
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Daniel Dreyer Svendsen

Implementation and Comparison of
Nonlinear State of Charge Estimators
using Equivalent Circuit Models for
Two Lithium-Ion Battery Cell
Chemistries

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Walter Caharija and Daniel Grübl
June 2023





Daniel Dreyer Svendsen

Implementation and Comparison of
Nonlinear State of Charge Estimators
using Equivalent Circuit Models for
Two Lithium-Ion Battery Cell
Chemistries

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Walter Caharija and Daniel Grübl
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract

Lithium-ion batteries are extensively used as an energy storage technology. They provide
benefits such as low weight, high energy density, and durability, and can be pivotal in the
process of reaching climate neutrality. Continuous optimization of the batteries’ opera-
tion and safety is essential, where monitoring important internal states such as the State of
Charge is a fundamental part. This state cannot be directly measured and must be estimated
by a battery management system purely based on current and voltage measurements. For
model-based estimation, accurate lithium-ion battery models are necessary. These models
are not easy to produce due to the batteries’ nonlinear behavior and sensitivity to noise.

This thesis implements and compares three nonlinear State of Charge (SOC) estimators
with three different equivalent circuit models for two different lithium-ion battery cells.
The estimators are the Extended Kalman filter (EKF), the Sigma Point Kalman filter
(SPKF), and the Moving Horizon Estimator (MHE). The models are the Rint (R) model,
the Thevenin (1RC) model, and the enhanced self-correcting (ESC) model, presented in
order of increasing complexity. All combinations of the estimators and models are im-
plemented and evaluated using battery data for an NMC cell and an LFP cell, which both
represent two commonly used cell chemistries in lithium-ion batteries. Here dynamic load
current profiles retrieved from an Electric Vehicle (EV) are used as input for performance
evaluation. The cell types demonstrate different characteristics, of which their open-circuit
voltage is of great importance for SOC estimation.

The results showed that the estimators demonstrated a very similar SOC estimation per-
formance in three different simulation scenarios. This was true for many of the model-cell
combinations, where it can be argued that the 1RC model offered the overall best perfor-
mance. The estimation accuracy was considerably worse for the LFP cell when compared
to the NMC cell. This was likely due to the flat open-circuit voltage characteristics of the
LFP cell inflicting observability issues on the models. The SOC root-mean-square esti-
mation error reached as low as approximately 0.45 % for the NMC cell using the 1RC
or ESC model, and as low as 2.74 % for the LFP cell using the R model. The latter re-
sult was inconsistent with what kind of EV load current profile was applied to the LFP
models. Due to the heavy computational complexity of the MHE, and the theoretical com-
plexity of the SPKF, it was concluded that the EKF marginally was the better-performing
estimator.
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Sammendrag

Litium-ion-batterier blir omfattende brukt som en energilagringsløsning. De gir fordeler
som lav vekt, høy energitetthet og holdbarhet, og kan være avgjørende for å oppnå kli-
manøytralitet. Kontinuerlig optimalisering av batterienes drift og sikkerhet er viktig, der
overvåking av viktige interne tilstander som restkapasitet er en grunnleggende del. Denne
tilstanden kan ikke måles direkte og må derfor estimeres av et batteristyringssystem basert
utelukkende på strøm- og spenningsmålinger. Nøyaktige litium-ion-batterimodeller er
nødvendige for modellbasert estimering. Disse modellene er ikke enkle å produsere på
grunn av batterienes ulineære oppførsel og sensitivitet for støy.

Denne masteroppgaven implementerer og sammenligner tre ulineære tilstandsestimatorer
for restkapasiteten med tre forskjellige ekvivalent-krets modeller for to ulike litium-ion-
battericeller. Estimatorene er det utvidede Kalman-filteret (EKF), et sigma-punkts Kalman-
filteret (SPKF) og en bevegelig horisont estimator (MHE). Modellene er Rint (R) mod-
ellen, Thevenin (1RC) modellen og den forbedrede selvjusterende (ESC) modellen, pre-
sentert i stigende kompleksitet. Alle kombinasjonene av estimatorer og modeller ble im-
plementert og evaluert ved bruk av batteridata for en NMC-celle og en LFP-celle, som
begge representerer to vanlig brukte cellekjemier i litium-ion-batterier. Her brukes dy-
namiske belastningsstrømprofiler hentet fra en elektrisk bil som inngangssignal for prestas-
jonsvurdering. Celletypene viser forskjellige egenskaper, hvor åpenkretsspenningen deres
er av stor betydning for estimering av restkapasiteten.

Resultatene viste at estimatorene hadde svært lik ytelse for restkapasitetsestimering i tre
forskjellige simuleringscenarier. Dette gjaldt for mange av kombinasjonene av modell og
celle, der det kan hevdes at 1RC-modellen ga den beste totale ytelsen. Videre var det ty-
delig at estimatnøyaktigheten var betydelig dårligere for LFP-cellen sammenlignet med
NMC-cellen. Dette skyldtes antakeligvis den flate karakteristikken til åpenkretsspenn-
ingen for LFP-cellen, som reduserte modellenes observerbarhet. Den kvadratisk gjennom-
snittlige feilen i estimert restkapasitet nådde så lavt som omtrent 0,45 % for NMC-cellen
ved bruk av 1RC- eller ESC- modellen, og så lavt som 2,74 % for LFP-cellen ved bruk av
R-modellen. Det siste resultatet var inkonsistent med hvilken type belastningsstrømprofil
som ble brukt for LFP-modellene. På grunn av den tunge beregningskompleksiteten til
MHE og den teoretiske kompleksiteten til SPKF, ble det konkludert med at EKF marginalt
var den bedre ytende estimatoren.
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1
Introduction

1.1 Background
The usage of Lithium-Ion Batteries (LIBs) as an energy storage technology is widespread
and continues to grow across various applications. LIBs offer significant advantages such
as high energy density, lightweight design, and long lifespan, and can be instrumental in
achieving energy sustainability [1]. Particularly in Electric Vehicles (EVs) like electric
cars and electric ships, where safety and reliability are essential [2], LIBs have emerged as
a preferred power source. It is expected that the cost of batteries will decline to 150 C/kWh
by 2025, which implies that an EV can reach cost parity with the Internal-Combustion-
Engine Vehicle (ICEV) in a few years’ time, making it economically viable to continue de-
veloping EVs [3]. In worldwide transport, the total number of EVs on roads is predicted to
exceed 300 million by 2030, where the required installed capacity of LIBs will be around
3000 GWh [4]. In the maritime sector, there is an ambition to decrease Greenhouse Gas
(GHG) emissions by at least 40 % by 2030 and further by 70 % by 2050 when compared to
2008, as a part of the Initial International Maritime Organization (IMO) Greenhouse Gas
Strategy [5]. To follow this trend, it is essential to continuously improve and ensure the
optimal performance and safety of LIBs. These tasks are handled by a Battery Manage-
ment System (BMS), which among other things monitors important internal states of the
battery cells within the battery packs. Failing this task may lead to serious consequences,
such as thermal runaway [6].

Monitoring and controlling internal states such as State of Charge (SOC), State of Health
(SOH), State of Power (SOP), and State of Energy (SOE) in LIBs is critical for ensuring
safe operation [7]. These internal states cannot be measured directly, requiring a BMS to
provide accurate state estimates in real-time based on measurements such as current, volt-
age, and temperature. This is a difficult task due to the time-varying and nonlinear nature
of batteries, as well as their sensitivity to temperature and noise, making accurate modeling
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1 Introduction 1.2 Previous work

difficult [8]. The SOC is a fundamental state to estimate accurately, because the other in-
ternal states, such as the ones mentioned above, are based on the SOC [4]. While methods
like Coulomb counting, which directly measures the charge going in and out of the battery,
do not rely on models, model-based estimation is more suitable for EV applications due
to improved estimation accuracy and other advantages [9] [10]. Battery models can be
classified into three categories: physics-based electrochemical models, Equivalent Circuit
Models (ECMs), and data-driven models [8]. Of these, the ECMs possess the least com-
plicated structure, easiest implementation, and lowest computational complexity, making
them widely used. However, they are not able to extract hidden features inside the battery,
which can be provided by for example an electrochemical model [4].

1.2 Previous work
SOC estimation using nonlinear ECMs has been extensively researched over recent years.
In particular, different Kalman filter algorithms have been employed for model-based SOC
estimation with overall good results [11]. Several studies in i.a. [12, 13, 14, 15] have
investigated the performance of the Moving Horizon Estimator (MHE) relative to the Ex-
tended Kalman filter (EKF) and/or the Unscented Kalman filter (UKF), suggesting that
the MHE is the superior estimator for SOC estimation accuracy as well as battery con-
straint handling capabilities. The specific choice of ECM and the cell chemistry it models
is of significance for estimation accuracy. In [16] a comparative study on the performance
of different ECMs employed for four different, commonly used LIB cell chemistries was
conducted. It was concluded that a Thevenin (1RC) model offered a good balance between
estimation accuracy and complexity for an NMC-type cell, whereas for an LFP-type cell,
the 1RC model with a hysteresis element was the best option. The latter model is the same
as the enhanced self-correcting (ESC) model used in this thesis.

1.3 Problem description
This master’s thesis compares the SOC estimation performance of three different non-
linear state estimators using three ECMs, applied to two different LIB cell chemistries.
The nonlinear estimators are namely the EKF, the Sigma-Point Kalman filter (SPKF), and
the MHE. The variant of the SPKF implemented in this thesis is the Central Difference
Kalman filter (CDKF), which is simply and mostly referred to as the SPKF throughout the
thesis. The UKF is the other variant of the SPKF. The ECMs are the Rint (R), the 1RC,
and ESC models. The two different battery cells are the NMC and LFP type cells, which
among other things, have different open-circuit voltage characteristics, that are of great
concern for model-based SOC estimation.

1.4 Delimitations
The scope of this thesis has been delimited to SOC estimation using ECMs only. Thus
other internal states such SOH, SOP, and SOE, which are also important to monitor in
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a BMS, have been disregarded. Other methods for SOC estimation such as data-driven
methods are also not covered herein.

1.5 Contributions
The main contribution of this report is the comparison between the EKF, SPKF, and MHE
for SOC estimation performance using the R, 1RC, and ESC models for both an NMC
cell and an LFP cell. A side contribution is the investigation of the MHE SOC estimation
performance using the ESC model.

1.6 Structure of the thesis
This thesis is divided into eight chapters, starting with the current, Chapter 1, as an intro-
duction. Chapter 2 will provide the necessary theoretical foundation for understanding and
performing state estimation of lithium-ion batteries, as well as theory relevant to the state
estimators themselves. In Chapter 3, the focus will shift to the modeling of lithium-ion
batteries. The state estimators used in conjunction with these models will be presented
in Chapter 4. Chapter 5 will elaborate on the methodology of the work in the thesis,
while the obtained results are presented in Chapter 6. The final two chapters, Chapter 7
and Chapter 8, are dedicated to a structured discussion and conclusion of these results,
respectively.

3



2
Theory

This chapter presents the relevant theory of concepts and methods used in this thesis. The
first section, Section 2.1, presents the relevant theory of LIBs. The main focus here is
put on the concepts that are directly relevant to the understanding and intuition of state
estimation of LIBs. Note that section is similar to the corresponding section in the special-
ization project written by the same author [17]. Section 2.2 proceeds with the theoretical
basis for the Kalman filter algorithms used herein, and Section 2.3 presents theory around
optimization problems that is relevant to the MHE. The last section, Section 2.4, presents
nonlinear observability which forms the basis for a nonlinear observability analysis later
in the thesis.

2.1 Lithium-ion batteries

2.1.1 Basic working principle

A lithium-ion battery can consist of a single lithium-ion cell or several interconnected
lithium-ion cells, depending on its application. Here the basic working principle of a sin-
gle lithium-ion cell is covered. A lithium-ion cell consists of four major elements: two
electrodes: anode and cathode, a separator, and electrolyte [18]. These elements can be
seen in the illustration of a lithium-ion cell during a discharge process in Figure 2.1.
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2 Theory 2.1.2 NMC and LFP type cells

Figure 2.1: The setup of a LIB during a discharge process [19].

The anode consists of an active material, in which the lithium-ions intercalate and dein-
tercalate, and a current collector. Here intercalation refers to the reversible process of
lithium-ions being inserted in between the layers or voids of the crystalline structure of the
active material in the electrodes during charging and discharging of the cell [20]. In LIBs,
the anode active material is typically made of graphite and amorphous carbon compounds,
whereas the anode current collector can consist of copper. The cathode typically has an
active material of mixed oxides, and a current collector of for example aluminum. The
two electrodes are surrounded with lithium-ion conducting electrolyte and are electrically
isolated from each other by a separator. The separator allows for a flow of lithium ions
between the electrodes, but not electrons. Thus by connecting the two electrodes together
with an external conductive cable, a flow of electrons, or current, can occur [19].

During discharge, due to a difference in electrochemical potential energy between the
electrodes creating an electromotive force, the favored reaction is that the active material
in the anode releases lithium-ions into the electrolyte, and electrons into the external circuit
via the current collectors. The resulting flow of electrons can be utilized to do useful work,
e.g. powering a device. During charging, the mentioned reaction is reversed [21].

2.1.2 NMC and LFP type cells
Lithium-ion batteries can be based on different cell chemistries. Depending on which
active material is used in the anode and cathode, changes to energy density and cost-
effectiveness occur. Of relevance for this thesis are the NMC and LFP type cells, which
consist of different cathode active materials. The Lithium Nickel Manganese Cobalt Ox-
ide (NMC) cell has a layered cathode structure of Li(NixMnyCoz)O2 where the molar
fractions (x, y, z) add up to one. The Lithium Iron Phosphate (LFP) cell has an olivine
cathode structure made of iron phosphate (FePO4) [16]. There are differences and varia-
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tions within the cell types themselves, but in general, the LFP chemistry has lower cutoff
voltages and a flatter open-circuit voltage behavior than the NMC chemistry. Also, LFP
cells are inherently safer from thermal runaways and are cheaper to produce when com-
pared to NMC cells. The NMC-type cells have a higher energy density, and both cell types
offer long durability [22]. The chemical reaction equations for the two cell types can be
seen in and Table 2.2, and the battery data for two specific cells that are used in this thesis
can be seen in Table 5.1.

Electrode Electrochemical Reactions

Anode LinC6 ⌦ Li0C6 + nLi
+ + ne

�

Cathode Lim�n(NixMnyCoz)O2 + nLi
+ + ne

� ⌦ Lim(NixMnyCoz)O2

Overall LinC6 + Lim�n(NixMnyCoz)O2 ⌦ Li0C6 + Lim(NixMnyCoz)O2

Table 2.1: The chemical reaction equations for the NMC type cell [16].

Electrode Electrochemical Reactions

Anode LinC6 ⌦ Li0C6 + nLi
+ + ne

�

Cathode Lim�nFePO4 + nLi
+ + ne

� ⌦ LimFePO4

Overall LinC6 + Lim�nFePO4 ⌦ Li0C6 + LimFePO4

Table 2.2: The chemical reaction equations for the LFP type cell [16].

2.1.3 Capacity C
To orderly define other relevant and important internal states of the battery later in the
report, a clear definition of a battery’s capacity C is needed. The actual capacity C of
a battery is the amount of electric charge that a fully charged battery can deliver under
predetermined reference conditions and is given in units of ampere-hours (Ah). The fully
charged and empty state of the battery is defined by the manufacturer. Due to aging of
the battery during its lifetime, the actual capacity will continuously decrease from the
beginnng of life (BOL) until its end of life (EOL) [23]. The specified capacity given by a
manufacturer is termed the nominal or rated capacity and is denoted Cn. Hence in theory,
at BOL for a fully charged battery, the actual capacity and nominal capacity of the battery
are equal. For current rates, 1C is the relative measure of current that explains how much
constant current is needed to completely discharge the battery in one hour [21].

2.1.4 State of Charge
The LIB’s State of Charge can be defined as the ratio between the available capacity
and the total available capacity of a fully charged battery under reference conditions. In
short:
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2 Theory 2.1.5 Open-circuit voltage

SOC = SOC(t) =
q(t)

C
(2.1)

where q(t) is the available capacity, or equivalently, the stored electric charge in the bat-
tery at a given point in time [23]. The SOC is a unitless number in the range [0 1] or
[0% 100%], where 100 % SOC implies a fully charged battery and 0 % SOC implies a
fully discharged battery [21]. Throughout the thesis, the SOC is also denoted by the letter
z.

2.1.5 Open-circuit voltage
The battery’s open-circuit voltage (OCV) is the voltage between the terminals of the bat-
tery when there is no battery current. In general, since stored electric charge q(t) is de-
pendent on time, and since the open-circuit voltage is dependent on the stored electric
charge in the battery, the OCV(t) can also be seen as time-dependent. Since the SOC is
dependent on q(t), the OCV can be described as dependent on the SOC of the battery
[23]. The latter relationship will be used in this report, and it is often a static function
that is found experimentally in laboratories under specific conditions, such as constant
temperature for instance [21]. For further reading, this relationship is described by the
function OCV (z(t)), and referred to as the OCV-SOC relationship, or simply the OCV
curve.

2.1.6 Polarization voltages
Polarization in lithium-ion batteries refers to the voltages that create a notable deviation
in terminal voltage and open-circuit voltage due to a current running in or out of the cell
[21]. There are several different polarization phenomena present in a LIB during charge
and discharge cycles, and they all have in common that they cause loss of energy and
decrease the efficiency of the cell. Typical forms of polarization are ohmic polarization,
activation polarization, and concentration polarization. These occur in different parts of
the cell, and their individual voltage contributions vary with the external cell excitation
current [24]. In [25], the deviation is formulated as

Vbat � VOCV = Vohmic + Vf,pos + Vf,neg + Vact,pos + Vact,neg + Vcon (2.2)

where Vf,pos and Vf,neg represent the voltage drop due to passivation films or layers on
the positive and negative electrodes, and Vf,act and Vf,act are voltage drops due to inter-
facial charge-transfer reactions at the electrodes. Vcon adds the polarization obtained from
phenomena such as lithium diffusion.

Ohmic polarization represents the general limitation in conductivity of ions and electrons
in the current collectors, active materials, terminals, connectors, and electrolyte [25]. This
can be modeled through Ohm’s law with a resistor R0 to indicate the near-instantaneous
voltage drop that occurs when a battery current is passing through the cell, such that
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2 Theory 2.1.7 Warburg impedance

Vohmic = R0ibat (2.3)

where ibat is the battery current [21].

Activation polarization occurs since the electrochemical reaction rate at the electrodes is
lower than the electron velocity [26], This phenomena will not be elaborated or explored
in any greater detail. Concentration polarization implies voltage drops due to effects such
as diffusion, migration, and convection [25]. Of relevance for this report is the diffusion
dynamics.

2.1.7 Warburg impedance

For alternating current excitations of batteries, the electrochemical interface of the battery
shows resistance in terms of impedance. This can be modeled and explained with an
equivalent circuit, namely the Randles circuit depicted in Figure 2.2.

Figure 2.2: The Randles circuit [27].

The resistor Rb represents the bulk resistance of the cell, where the resistance in the ionic
conductivity in the electrolyte, separator, and electrodes is considered. The resistor Rct

models the charge transfer resistance and the capacitor Cdl stands for the double-layer
capacitance. These two in combination contribute to the activation polarization. The War-
burg impedance element Zw models the impedance due to the diffusion of lithium-ions
in the cell [27], which is part of the concentration polarization. The Warburg impedance
element may be described by

Zw =
Aw
p
j!

(2.4)

where Aw is called the Warburg coefficient and frequency ! is given in rad
s . A Nyquist

plot of the cell impedance is shown in Figure 2.3.
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Figure 2.3: Nyquist plot of a realistic cell’s electrochemical impedance spectrum (EIS). The utilized
model here is the 1RC model found in Section 3.2. [21].

Here it can be observed that at low frequencies, a straight line of 45� appears in the EIS,
which is due to the 45� phase shift that is contributed by the Warburg element to the cell.
For the intermediate frequencies, the charge transfer dynamics are represented, which are
modeled by the RC pair. At the intersection between the curve and the real axis, the
impedance in the cell in the form of pure ohmic resistance Rb is found [21].

As there is no simple ordinary-differential equation for the dynamics of the Warburg
impedance element, simulations using Randle’s circuit becomes cumbersome. In order
to model and simulate these dynamics, the Warburg element can be approximated by mul-
tiple resistor-capacitor subcircuits in series, as illustrated in Figure 2.4.

Figure 2.4: Approximation of the Warburg impedance element using RC subcircuits [21].

To be equivalent to the original Warburg element, an infinite number of RC subcircuits is
required. However, over some frequency range, a reasonably small number of RC subcir-
cuits can model the diffusion effects very well [21].

2.1.8 Hysteresis
The OCV, modeled as a voltage source, is present in most ECMs. The OCV as a function
of the SOC is principal in model-based state estimation of LIBs. If the OCV-SOC relation-
ship is well known, the SOC can be determined based on the OCV, under certain no-load
conditions. However, this assumes a one-to-one relationship between the two, which is not
the case if hysteresis is present [28]. In short, hysteresis in LIBs originates from entropic
stress, mechanical stress, and microscopic distortions within the active materials in the
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electrodes [29]. A consequence of this is that the cell relaxes to a different OCV depend-
ing on if the cell was last charging or discharging, which implies that there exist several
possible open-circuit voltages for the same SOC. This can cause significant inaccuracy in
SOC estimation. To improve on this accuracy, some knowledge of the charge-discharge
history must be included in the modeling [28]. However, it is, in general, difficult to model
hysteresis because it is not a phenomenon that is very well understood [21]. In Figure 2.5
a fully charged cell has first been discharged to 0 % SOC with a C/30 rate, and charged
back up 95 % SOC with the same rate, then discharged to 5 % SOC, and so forth. The
low C-rate ensures that the cell is very close to equilibrium rest voltage. As seen there
exist several rest voltages per SOC, giving evidence to the presence of voltage hysteresis
[21].

Figure 2.5: Evidence of hysteresis [21].

2.2 Sequential probabilistic inference
The sequential probabilistic inference problem tries to estimate a state (or parameter) of a
system such that it minimizes the mean-squared error between the true state and the state
estimate. In this process, all observed measurements of the input and output up until the
current time step are taken into consideration when estimating the unknown state [30].
Consider the discrete-time state-space system on the form

xk = f(xk�1,uk�1,wk�1) (2.5)

yk = h(xk,uk,vk) (2.6)

where xk 2 Rn is the state vector at time step k, yk 2 Rm is the measurements and
uk 2 Rp is the input. Here (2.5) is the state equation representing the system dynamics,
and (2.6) is the output equation representing the measurements. The stochastic variable
wk 2 Rn models unmeasured noise, disturbance, or uncertainty that affects the states
of the system, and vk 2 Rm is the stochastic variable that models sensor noise that im-
pacts the measurements of the system in a memoryless way without directly impacting the
states.
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Since the stochastic noise variables directly affect the states and measurements, the state
estimates and the observed measurements are not deterministic. Thus, through probabilis-
tic inference one attempts to form an estimate of the system state given all observations
Yk = {y0,y1, ...,yk}, which can be expressed with an estimator based on the conditional
mean such that

x̂k = E [xk | Yk] =

Z

Rxk

xkp (xk | Yk) dxk (2.7)

where Rxk is the set of valid xk. Finding the optimal solution to this problem requires
the computation of the posterior probability density p (xk | Yk), which is done recursively
with two steps per iteration. These are namely the prediction and update steps. The pre-
diction step yields a prediction of xk given all previous observations by

p (xk | Yk�1) =

Z

Rxk�1

p (xk | xk�1) p (xk�1 | Yk�1) dxk�1 (2.8)

and the update step updates the prediction with the new measurement through

p (xk | Yk) =
p (yk | xk) p (xk | Yk�1)

p (yk | Yk�1)
(2.9)

where Bayes’ rule is applied. Note that it is assumed that observation yk is conditionally
independent of previous measurements given the state xk. The probabilities in (2.9) can
be calculated as

p (yk | Yk�1) =

Z

Rxk

p (yk | xk) p (xk | Yk�1) dxk (2.10)

p (xk | xk�1) =
X

{w:xk=f(xk�1,uk�1,w,k�1)}

p(w) (2.11)

p (yk | xk) =
X

{v:yk=h(xk,uk,v,k)}

p(v) (2.12)

However, calculating these probabilities is not a trivial task, and is often unmanageable in
real-time applications. If the system at hand allows the computational expense required,
Monte Carlo methods such as particle filters approximate the multi-dimensional integrals
above very accurately. However, in a BMS that governs tens or hundreds of battery cells,
this solution is often economically infeasible.

If one assumes that all probability densities are Gaussian, a simplified solution can be
made. This implies that rather than needing to propagate the entire density function
through time, one only has to compute the conditional mean and variance of the states
once each sampling time. This approximation is what forms the basis for the recursive
algorithms of the EKF and the SPKF [31].
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2.3 Optimization problem
2.3.1 Nonlinear programming
Nonlinear programming is the process of optimizing a nonlinear objective function in the
presence of equality and inequality constraints, which may also be nonlinear. Generally,
the nonlinear program (NLP) can be formulated in standard form as

Minimize f(x)

subject to gi(x)  0 for i = 1, ...,m

hi(x) = 0 for i = 1, ..., l

x 2 X

(2.13)

where f is a single-valued objective function and x = [x1, ...,xn]T is a vector of n com-
ponents, often referred to as optimization variables or decision variables. That is, these
are the variables that need to minimize the objective function subject to the inequality
constraints g(x) and equality constraints h(x), while also being contained within the set
X . This set typically includes upper and lower bounds on the optimization variables. A
vector x that satisfies all these constraints, is called a feasible solution to the problem. The
domain of these solutions is termed the feasible region, and thus the objective is to find
the optimal feasible solution [32]. Note that an NLP can have several optimal solutions,
such that there may exist a global optimum and/or one or more local optimums inside the
feasible region [33].

2.3.2 Optimal control problem
Optimization problems within control engineering are often formulated as finite horizon
optimal control problems (OCPs), also for state estimation problems. In discrete time, a
simple, general formulation can be set up as

min
x,u

N�1X

k=0

L(xk,uk) + E(xN )

s.t. xk+1 = f(xk,uk); k = 0, ..., N � 1

x0 = x̄0

uk 2 U, k = 0, ..., N � 1

xk 2 X, k = 0, ..., N

(2.14)

where the optimization variables x and u are found such that they minimize the cost func-
tion L as well as a terminal term E, subject to the given constraints over the horizon N .
Note that the system dynamics, given by the function f(xk,uk), is included as an equality
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constraint. The OCP is often nonlinear due to the nature of the system that is meant to be
optimized [33, 34, 35].

2.3.3 Simultanous vs sequential approach
The OCP in (2.14) has both states and control input as optimization variables, and can
therefore be constructed as a large and structured NLP in standard form that can readily
be solved by an NLP solver. This approach is termed the simultaneous approach since the
NLP solver has to solve both the simulation problem and the optimization problem simul-
taneously. For most NLP solvers, the model as an equality constraint will only be satisfied
once the NLP iterations have converged. The OCP in (2.14) can be reduced to only having
the control input u as an optimization variable, reducing the variable space compared to
the original problem. As a consequence, the simulation problem and optimization prob-
lem are solved sequentially, which is why this approach is termed the sequential approach.
Simultaneous methods include direct multiple shooting and direct collocation, whereas a
sequential method is direct single shooting. When based on Newton-type optimization,
simultaneous approaches typically offer faster local convergence rates when compared to
a sequential approach, in particular for unstable or highly nonlinear systems [35, 36]. In
this thesis, multiple shooting is utilized.

2.4 Nonlinear observability
When performing state estimation using a state space model, it is necessary that the model
is observable. For linear time-invariant state space models, it is well-known that if the
observability matrix has full rank, then the system states are observable. However, for
nonlinear models, observability is not as straightforward [37].

2.4.1 Distinguishability and observability
Consider the nonlinear state space model

ẋ = f(x) +
mX

i=1

uigi(x) (2.15a)

y = h(x) (2.15b)

where x 2 X is the state and X is an open subset of Rn, ui 2 R is the input, and y 2 Rp

is the output. Further, f : X ! Rn, gi : X ! Rn and h : X ! Rp are smooth functions.
The following definition is introduced [37]:

• Definition 1: Suppose the system in (5.1) has two states: x1 and x2, where the
system output at time t with initial state xi and input u is denoted as y(xi, u, t) for
i = 1, 2. Then x1 and x2 are distinguishable if there exists an input function u such
that y(x1, u, t) 6= y(x2, u, t) for a finite t. The system (5.1) is locally observable at
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x1 if there exists a neighborhood N of x1 such that the only state in N that is not
distinguishable from x1 is x1 itself. The system is said to be locally observable if
this holds for every x 2 X .

For nonlinear systems, two states may be distinguishable even if y(x1, u, t) = y(x2, u, t),
in contrast to linear systems where the above definition holds. Thus it is, in general, more
difficult to distinguish between two states in a nonlinear system, since finding an input
function u that gives different output functions may be difficult. It is also worth noting
that local observability for linear systems implies global observability, which is not the
case for nonlinear systems.

2.4.2 Observability rank test
The observability of a nonlinear system can be checked by performing an observability
rank test [37]. This involves calculating Lie-derivatives of the system and inspecting the
rank of an observability matrix containing these derivatives. Let h(x) = [h1(x), h2(x),
..., hp(x))]T be a p-dimensional vector function on X , where the jth component hj(x) is
a real-valued smooth function. Then the gradient of hj is

dhj =
h
@hj

@x1

@hj

@x2
· · ·

@hj

@xn

i
(2.16)

and the Lie-derivative of hj with respect to f(x) = [f1(x), f2(x), ..., fn(x))]T is a real-
valued function defined by

Lfhj = dhj · f =
nX

i=1

fi
@hj

@xi
(2.17)

Here the zeroth-order Lie-derivative is defined as L0
fhj = hj , and the second-order Lie-

derivative e.g. is defined as L2
fhj = LfLfhj . Then observability is given by

• Theorem 1: The system in (5.1) is locally observable at x0 2 X if there are n

linearly independent rows in the set

(dLzs Lzs�1 ... Lz1hj)(x0) (2.18)

where s � 0, zk 2 {f, g1, ..., gm} for k = 1, ..., s and j = 1, ..., p. If s = 0 the
expression is defined as dhj(x0).

It is important to note that this is a sufficient condition, but not a necessary condition for
system (5.1) to be locally observable. Another important thing to note is that an observ-
ability analysis of the linearization around x0 of (5.1) may suggest that the system is un-
observable at x0, whereas an application of Theorem 1 confirms observability [37]. Thus
the observability of the linearized system is not a necessary condition for the nonlinear
system to be locally observable.
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Modeling of battery cells

In this chapter modeling of battery cells is presented [17]. All models that will be presented
here are equivalent-circuit models and are represented by circuit diagrams, as can be seen
in the following sections. The circuit dynamics is meant to approximate the behavior of
a battery cell with regards to how voltage responds to different input currents [21]. For
all the models both the continuous-time differential equations as well as the discrete-time
difference equations will be given. This is because these models are intended for use in a
discrete computer system in a BMS for real-time applications, but also because they are
applied with the discrete-time algorithms of the Kalman filters.

3.1 The Rint model
One of the simplest Equivalent-Circuit models is the Rint (R) model [21, 38], which is
represented by the circuit diagram shown in Figure 3.1. The ideal voltage source models
the open-circuit voltage of the battery, which is a static function of the SOC, z(t). The
resistor R0 tries to model the behavior of the cell in terms of resistance, and i(t) is the load
current defined as positive in its shown direction. This direction of load current implies a
discharge of the battery cell.

�

+
OCV (z(t))

R0 i(t)

+

�

v(t)

Figure 3.1: The Rint ECM.
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The behavior of this model in continuous time can be described by

ż(t) = �⌘(t)
i(t)

Q
(3.1)

v(t) = OCV (z(t))�R0i(t) (3.2)

or in discrete-time as

zk+1 = zk �
�t

Q
⌘kik (3.3)

vk = OCV (zk)�R0ik (3.4)

where ⌘(t) is the coulombic efficiency and Q is the actual capacity in units ampere-seconds
As. Throughout the thesis, the coulombic efficiency is assumed to be 1.

3.2 The Thevenin model
Another popular ECM is the Thevenin (1RC) model [38][21], illustrated in the circuit
diagram in Figure 3.2. The difference from the Rint model is that an RC subcircuit has
been added, in order to model the slow diffusion process of lithium-ions in the battery cell.
These voltages are referred to as diffusion voltages.

�

+
OCV (z(t))

R0

C1

R1 iR1

i(t)

+

�

v(t)

Figure 3.2: The Thevenin ECM.

The dynamics of the model may be described by

ż(t) = �⌘(t)
i(t)

Q
(3.5)

i̇R1(t) = �
1

R1C1
iR1(t) +

1

R1C1
i(t) (3.6)

v(t) = OCV (z(t))�R1iR1(t)�R0i(t) (3.7)

or in discrete time
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3 Modeling of battery cells 3.3 The enhanced self-correcting model

zk+1 = zk �
�t

Q
⌘kik (3.8)

iR1,k+1 = exp

✓
�t

R1C1

◆
iR1,k + exp

✓
1�

�t

R1C1

◆
ik (3.9)

vk = OCV (zk)�R1iR1,k �R0ik (3.10)

3.3 The enhanced self-correcting model
A slightly more advanced ECM compared to the preceding models, namely the enhanced
self-correcting (ESC) model [21], can be observed in Figure 3.3. In addition to the ele-
ments found in the previous models, the ESC model also contains a nonlinear hysteresis
element to account for voltage hysteresis in the battery cell.

�

+
OCV (z(t))

hyst

C1

R1

R0 i(t)

+

�

v(t)

Figure 3.3: The enhanced self-correcting ECM.

Here a nonlinear time-varying system, as proposed in [21], is used to model hysteresis
h(t) somewhat simplified. The differential equation of the element is given by

ḣ(t) = �

����
⌘(t)i(t)�

Q

����h(t) +
����
⌘(t)i(t)�

Q

����M(z, ż) (3.11)

whereas in discrete-time the difference equation when using the simple representation
M(z, ż) = sgn(ik) becomes

hk+1 = exp

✓
�

����
⌘kik��t

Q

����

◆
hk +

✓
exp

✓
�

����
⌘kik��t

Q

����

◆
� 1

◆
sgn(ik) (3.12)

where in addition to the previously defined parameters, � > 0 tunes the rate of decay for
the hysteresis voltage. The state hk accounts for dynamic hysteresis. By also adding a
memory variable sk, instantaneous hysteresis is accounted for in the measurement equa-
tion. Let
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3 Modeling of battery cells 3.3 The enhanced self-correcting model

sk =

⇢
sgn(ik), |ik| > 0
sk�1 otherwise (3.13)

The full model is represented by

zk+1 = zk �
�t

Q
⌘kik (3.14)

iR1,k+1 = exp

✓
�t

R1C1

◆
iR1,k + exp

✓
1�

�t

R1C1

◆
ik (3.15)

hk+1 = exp

✓
�

����
⌘kik��t

Q

����

◆
hk +

✓
exp

✓
�

����
⌘kik��t

Q

����

◆
� 1

◆
sgn(ik) (3.16)

vk = OCV (zk) +Mhk +M0sk �R1iR1,k �R0ik (3.17)
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4
Nonlinear State estimation

4.1 Extended Kalman filter
In this section, the extended Kalman filter (EKF) is presented, which applies to nonlinear
systems [17]. Recall the general form of a discrete-time nonlinear system

xk+1 = f(xk,uk,wk)

yk = g(xk,uk,vk)
(4.1)

where additive Gaussian distributed process noise wk measurement noise vk is included in
the model. The working principle of the EKF is similar to that of the linear Kalman filter in
terms of prediction and correction steps, but due to the nonlinearities of the system, a lin-
earization is performed each time step [30]. The EKF makes two simplifying assumptions
in order to apply the sequential probabilistic inference equations to a nonlinear model.
Firstly, the approximation E[f(x)] ⇡ f(E[x]) is used, which essentially states that the ex-
pected value of a nonlinear function f evaluated at the unknown state x is approximately
the same as the nonlinear function f evaluated in the expected value of the unknown state
x. This is strictly exact only for linear systems, and therefore the approximation becomes
worse the more nonlinear the function f is. Secondly, when computing the covariance
matrices, EKF only uses a first-order Taylor series expansion when linearizing the system
around the current operating point, and truncates the higher-order terms. This is also a rea-
son that the EKF performs better for systems with mild nonlinearities. The EKF algorithm
based on [39] and [30] used here is summarized below.
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4 Nonlinear State estimation 4.1 Extended Kalman filter

Algorithm 1 The extended Kalman filter

Nonlinear state-space model:

xk = f(xk�1,uk�1,wk�1)

yk = g(xk,uk,vk)

where wk are vk are independent samples from Gaussian distributions with means w̄ and
v̄ and covariance matrices ⌃w̄ and ⌃v̄.

Define linearization:

Âk =
@f(xk,uk,wk)

@xk

����
xk=x̂+

k

, B̂k =
@f(xk,uk,wk)

@wk

����
wk=w̄k

Ĉk =
@g(xk,uk,vk)

@xk

����
xk=x̂�

k

, D̂k =
@g(xk,uk,vk)

@vk

����
vk=v̄k

Initialize: For k = 0

x̂+
0 = E[x0]

⌃+
x̄,0 = E[(x0 � x̂+

0 )(x0 � x̂+
0 )

T ]

Computation: For k = 1,2, ... end, calculate:

Prediction part

A priori estimate: x̂�
k = f(x̂+

k�1,uk�1, w̄k�1)

A priori state error-covariance matrix: ⌃�
x̄,k = Âk�1⌃

+
x̄,k�1Â

T
k�1+B̂k�1⌃w̄B̂T

k�1

Output estimate: ŷ�
k = g(x̂�

k ,uk, v̄k)

Correction part

Kalman gain matrix: Lk = ⌃�
x̄,kĈ

T
k [Ĉk⌃

�
x̄,kĈ

T
k + D̂k⌃v̄D̂

T
k| {z }

⇡⌃ỹ,k

]�1

A posteriori estimate: x̂+
k = Ax̂�

k + Lk(yk � ŷk)

A posteriori state error-covariance matrix: ⌃+
x̄,k = ⌃�

x̄,k � Lk⌃ỹ,kLT
k
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4 Nonlinear State estimation 4.2 Sigma-Point Kalman filter

4.2 Sigma-Point Kalman filter
The simplifying assumptions in the EKF causes reduced estimation accuracy for highly
nonlinear systems, which merits the use of the Sigma-Point Kalman filter (SPKF) [17, 40].
The SPKF substitutes local linearization with evaluation of the statistical distribution of the
nonlinear system output by deterministic sampling [41]. More specifically the SPKF esti-
mates the mean and variance of the outputs of a nonlinear function using a small, fixed set
of function evaluations called sigma-points. For this purpose, a set of input sigma-points
are carefully chosen such that the mean and covariance of the input points coincide with
the mean x̄ and the covariance ⌃x̄ of the random variable that is normally used as input to
the nonlinear function. The input sigma-points are then propagated through the nonlinear
function individually, yielding a transformed set of output sigma-points [30]. This trans-
formation of sigma-points is referred to as the unscented transform [42]. In Figure 4.1 the
difference between the actual sampling of the mean and variance of a transformed random
variable x is shown and compared to that of the EKF and SPKF transformations. Notice
how accurate the SPKF transformation is compared to the EKF transformation.

Figure 4.1: Illustration of the difference between actual sampling, linearized EKF transformation
and the SPKF uscented transformation, in that order [42].

For details of how the different steps in the algorithm is derived, consult [30] for a com-
prehensive deduction. For the purpose of reasonable simplicity, a summary based on the
same reference is provided below. As mentioned in the introduction, the SPKF comes in
two variants, namely the CDKF and the UKF. The CDKF is implemented in this thesis
and is mainly just referred to as the SPKF.

21



4 Nonlinear State estimation 4.2 Sigma-Point Kalman filter

Algorithm 2 The Sigma-Point Kalman filter

Nonlinear state-space model:

xk = f(xk�1,uk�1,wk�1)

yk = g(xk,uk,vk)

where wk are vk are independent samples from Gaussian distributions with means w̄

and v̄ and covariance matrices ⌃w̄ and ⌃v̄.

Define:

xa
k = [xT

k ,w
T
k ,v

T
k ]

T
, X

a
k = [(X x

k )
T
, (Xw

k )T , (X v
k )

T ]T (sigma-points)
p = 2⇥ dim (xa

k)

Initialize: For k = 0

x̂+
0 = E[x0], ⌃+

x̄,0 = E[(x0 � x̂+
0 )(x0 � x̂+

0 )
T ]

x̂a,+
0 = E[xa

0 ] = [(x̂+
0 )

T
, w̄, v̄]T

⌃a,+
x̃,0 = E[(xa

0 � x̂a,+
0 )(xa

0 � x̂a,+
0 )T ] = diag(⌃+

x̃,0,⌃w̃,⌃ṽ)

Computation: For k = 1,2, ... end, calculate:

Prediction part

A priori estimate:

X
a,+
k�1 =

⇢
x̂a,+
k�1, x̂a,+

k�1 + �

q
⌃a,+

x̂,k�1 , x̂a,+
k�1 � �

q
⌃a,+

x̃,k�1

�

X
x,�
k,i = f

⇣
X

x,+
k�1,i0uk�1,X

w,+
k�1,i

⌘

x̂�
k =

pX

i=0

↵
(m)
i X

x,�
k,i

A priori state error-covariance matrix:

eX x,�
k,i = X

x,�
k,i � x̂�

k

⌃�
x̃,k =

pX

i=0

↵
(c)
i

⇣
eX x,�
k,i

⌘⇣
eX x,�
k,i

⌘T
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4 Nonlinear State estimation 4.3 Moving Horizon Estimator

Output estimate:

Yk,i = h
⇣
X

x,�
k,i ,uk,X

v,+
k�1,i

⌘

ŷk =
pX

i=0

↵
(m)
i Yk,i

Correction part

Kalman gain matrix:

Ỹk,i = Yk,i � ŷk

⌃ỹ,k =
pX

i=0

↵
(c)
i

⇣
Ỹk,i

⌘⇣
Ỹk,i

⌘T

⌃�
x̃x̃,k =

pX

i=0

↵
(c)
i

⇣
eX x,�
k,i

⌘⇣
Ỹk,i

⌘T

Lk = ⌃�
x̃ȳ,k⌃

�1
ỹ,k

A posteriori estimate:

x̂+
k = Ax̂�

k + Lk(yk � ŷk)

A posteriori state error-covariance matrix:

⌃+
x̄,k = ⌃�

x̄,k � Lk⌃ỹ,kLT
k

4.3 Moving Horizon Estimator

The Moving Horizon Estimator (MHE) is a powerful state estimator that has obtained in-
creasing success over recent years. The MHE takes into consideration a series of noisy
measurements over a fixed horizon N backward in time and solves an optimization prob-
lem that yields an optimal state estimate each time step k. The optimization problem can
be formulated as a linear, quadratic, or nonlinear program with constraints, implying that
the MHE is able to handle both linear and nonlinear systems as well as system constraints
during state estimation. Obtaining the solution to the optimization problem requires the
use of a mathematical programming solver for each iteration, which can be a computation-
ally expensive task [17, 43].

Consider again the general nonlinear discrete-time system on the form
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4 Nonlinear State estimation 4.3 Moving Horizon Estimator

xk+1 = f(xk,uk,wk)

yk = g(xk,uk,vk)
(4.2)

From a probabilistic point of view, the state estimation problem can be expressed as a
discrete-time Markov process [44] [13]. This is equivalent to assuming that the process
noise wk is independent. Since the measurements are correlated with the states, the goal is
to find the conditional probability density function of the state evolution {x0,x1, ...,xk}

given the measurements {y0,y1, ...,yk}, i.e.

p (x0,x1, ...,xk | y0,y1, ...,yk) (4.3)

such that the optimal state estimates {x̂i}
k
i=0 can be found by the maximum a posteriori

Bayesian (MAP) estimate

{x̂i}
k
i=0 = argmax

x
p (x0,x1, ...,xk | y0,y1, ...,yk) (4.4)

By making the following simplifying assumptions

1. The disturbances wk are mutually independent

2. f(xk,uk,wk) = f(xk,uk) +wk

3. The probability density functions of wk and vk are Gaussian with zero mean and
variances Q and R respectively.

4. The probability density function of x0 is Gaussian with mean x̄ and variance P0

the solution to (4.4) can be stated as

argmin
x

= kx̂0 � x̄0k
2
P�1

0
+

kX

i=0

kyi � g(xi,ui)k
2
R�1

k�1X

i=0

kxk+1 � f(xi,ui)k
2
Q�1

(4.5)

which is defined as the full information estimation problem (FIE). Notice that this problem
increases in size as new measurements are received, which is computationally infeasible
in practical applications [14]. Thus, by introducing constraints to the problem, as well as
setting a fixed horizon of the N last measurements, a nonlinear optimization problem over
a fixed horizon backward in time can be formulated. This forms the MHE. In general, the
MHE can be implemented by solving a nonlinear program (NLP) each time step k on the
form
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4 Nonlinear State estimation 4.3 Moving Horizon Estimator

min
xk�N ,{ŵi}k

i=0

= kx̂k�N � x̄k�Nk
2
P�1

k�N
+

kX

i=k�N

kvik
2
R�1

+
k�1X

i=k�N

kwik
2
Q�1

s.t.

xi+1 = f(xi,ui) +wi, i = k �N, ..., N � 1

yi = g(xi,ui) + vi, i = k �N, ..., N

wi 2 Wi, xi 2 Xi

(4.6)

where the solution to the NLP yields the optimal state estimates {x̂i}
k
i=k�N and distur-

bance estimates {ŵi}
k
i=k�N over the horizon N . Thus the optimal state estimate at time

step k is the last element in the solution, denoted x̂k. The second and third term in the cost
function above is penalized with the inverse constant weighting matrices Q and R, which
represents the covariance of the process and measurement noise respectively. Moreover,
these matrices represent the confidence in the model and measurements respectively. If
Q is small relative to R, then the model is trusted more than the measurements, and vice
versa. Along with the horizon length N , these matrices are considered tuning parameters
for the MHE.

The first term in the cost function is the arrival cost. This cost is an approximation that
takes into account the information received up until i = k�N , i.e. prior to the start of the
current estimation horizon. Here the deviation between the initial estimate x̂k�N in the
current horizon and the a priori estimate x̄k�N is penalized with the inverse covariance
matrix P�1

k�N of the a priori estimate. The a priori estimate in the current horizon is
the optimal estimate computed at k � N time steps back. The covariance matrix Pk�N

represents the confidence in the initial estimate in the horizon and is typically updated via
the EKF state error covariance updates, and stored for use N timesteps later.
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5
Methodology

5.1 Dataset
For model fitting and estimator performance evaluation, an open online battery dataset was
used [45] [46]. The dataset is provided by the Center for Advanced Life Cycle Engineering
(CALCE) group at the University of Maryland, and contain both OCV measurements as
well as dynamic load current profiles for several different cell chemistries at different
ambient temperatures. In this thesis the OCV measurements and load profiles for the INR
18650-20R (NMC) and the A123 (LFP) cylindrical type cells at an ambient temperature of
25 �C were used. The specifications for the two cell types can be seen in Table 5.1.

Type Nominal
voltage

Nominal
capacity

Upper/lower
cut-off voltage Max. current Operating

temperature

INR 18650-20R 3.6 V 2.0 Ah 4.2 V/2.5 V 22 A 0-50 �C

A123 3.3 V 1.1 Ah 3.6 V/2.0 V 30 A -30-50 �C [47]

Table 5.1: LIB cell specifications.

5.1.1 OCV-SOC tests
In [45] and [46], they measured the static OCV-SOC relationship of the two cell types by
performing a low current OCV-SOC test on each cell. The first step of this test involved
charging the cell with a 1C rate until it reached its upper cut-off voltage and a reduction
in current to around 0.01C. The cell was thereafter fully discharged with a low current of
C/20 to its lower cut-off voltage, before fully charging the cell again at the same rate until
the upper cut-off voltage was reached. The full test for the two cell types can be seen in
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5 Methodology 5.1.1 OCV-SOC tests

Figure 5.1 and Figure 5.2. Note that measured temperature data was only available for the
LFP cell.
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Figure 5.1: Full OCV-SOC test for the INR 18650-20R (NMC) cell conducted at an ambient tem-
perature of 25 �C.
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Figure 5.2: Full OCV-SOC test for the A123 (LFP) cell conducted at an ambient temperature of 25
�C.
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5 Methodology 5.1.2 Load current profiles

From the resulting voltage measurements and the accumulated measured discharge and
charge ampere-hours, both a charge and discharge OCV curve as a function of the SOC
could be derived. Note that this requires the appropriate conversion of accumulated ampere-
hours to SOC, such that the lower and upper cut-off voltages correspond to the open-circuit
voltage of the cell at 0% SOC and 100% SOC, respectively. The reason for using a low
charge and discharge current was to avoid exciting the dynamic parts of the cell, i.e. to
minimize the effects of ohmic and diffusion polarization. Also, each test was performed at
a constant ambient temperature, where heat generation caused by ohmic resistance in the
cells is negligible due to low current [21].

It should be mentioned that in reality, some ohmic polarization and hysteresis are present
during these tests, which cause the charge and discharge OCV curves to be somewhat
different from one another. The average of the two curves can be used as the approximate
static OCV-SOC curve in state estimators.

5.1.2 Load current profiles
The CALCE battery dataset contains several load current profiles with corresponding volt-
age measurements for the NMC and LFP cells. The ones used in this thesis are namely
the Dynamic Stress Test (DST), the Federal Urban Driving Schedule (FUDS), and the US
Highway 06 (US06) load profiles, and one cycle of each profile can be seen in Figure 5.3.
The DST is designed by the US Advanced Battery Consortium (USABC), and it simulates
the expected demands of an EV battery. The FUDS and US06 are also dynamic load cur-
rent profiles, but they are more complex than the DST in regards to the charge/discharge
rate of the current and are based on the time-velocity profile of an industry-standard EV
[45] [46]. The FUDS cycle simulates urban driving, and the US06 simulates highway
driving [48]. Note that these load profiles are scaled to fit each relevant cell. In the experi-
mentation conducted in this thesis, the DST was used as input for parameter identification
of the models presented in Chapter 3, whereas the FUDS and US06 were used as input for
estimator performance evaluation. This is the same approach taken in the research papers
that have used the same data, referenced earlier in this section [45] [46].
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5 Methodology 5.2 OCV-SOC relationship
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Figure 5.3: The load current profiles in the CALCE dataset for the NMC cell at an ambient temper-
ature of 25 �C.

5.2 OCV-SOC relationship
5.2.1 OCV-SOC curve approximation
The final charge, discharge, and average OCV curves for the two cell types were estab-
lished by using the parts of the OCV-SOC tests above where only a low current was ap-
plied. This was done to avoid including the parts of the curve that results from slow
lithium diffusion rather than an imposed current and consequently a change in SOC. The
reference SOC was determined by the measured accumulated discharge ampere-hours at
each time step divided by the total capacity of the cell. Here the discharge capacity of
the cell was the measured discharge capacity during the low current OCV-SOC test, which
was Q = 2.0802 Ah for the NMC cell and Q = 1.0636 Ah for the LFP cell. Moreover, the
discharge and charge ampere-hours at the start of the discharge and charge steps were not
exactly zero, and therefore a subtraction of this value to the rest of the measured charge
and discharge ampere-hours was performed to achieve a defined OCV curve at the end-
points of 0 % SOC and 100 % SOC.
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5 Methodology 5.2.1 OCV-SOC curve approximation

The approximated OCV curve for both cells is the average of the discharge and charge
OCV curves, with a minor modification. The modification is needed because, for both
cells, the charge curve does not reach 100 % SOC before it reaches its cut-off voltage.
This is due to the small ohmic polarization that is present during the tests [30]. Hence
when averaging the two curves, there are no defined OCVs for the higher SOCs along the
average OCV curve. For the NMC cell, the last points on the average OCV curve was
found by simply creating a line of datapoints between the last available datapoint until the
cut-off voltage at 100 % SOC. For the LFP cell, the average OCV curve was extrapolated
manually by adding the OCV points from the discharge curve plus the difference between
the last point on the average curve and the corresponding point on the discharge OCV
curve. The resulting curves for both cells can be seen in Figure 5.4 and Figure 5.5. With
the mentioned approximations and modifications, the conditions that the OCV-SOC curve
shall not have any abrupt transitions nor be defined outside the cut-off voltage interval are
satisfied [21].

Note that due to a difference in sampling time for the charge and discharge steps for the
NMC cell, linear interpolation was used to make the datasets equal in length. Specifically
the MATLAB function interp1 was used.
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Figure 5.4: Final OCV-SOC curves for the INR 18650-20R (NMC) cell at an ambient temperature
of 25 �C.
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Figure 5.5: Final OCV-SOC curves for the A123 (LFP) cell at an ambient temperature of 25 �C.

5.2.2 OCV-SOC polynomial approximation
For the state estimation part of this thesis, the determined, average OCV-SOC relationship
presented in the previous subsection was further approximated by a 12th-order polyno-
mial. Here the MATLAB function polyfit was used to fit a polynomial function to the
determined average OCV curve. The reason for this was mainly due to the structure of
the MHE, which required the OCV curve to be expressed as a function rather than e.g.
a lookup table, in order for the measurement equation to be included in the optimization
problem. Moreover, it simplified the process of finding the (smoothed) derivative of the
OCV-SOC curve, which is required in the EKF implementation. Often this derivative is
found empirically and can therefore be noisy [21]. For this purpose the MATLAB function
polyder was used with the OCV polynomial. The order of the polynomial approximation
was chosen to be a high number to get a very accurate approximation, minimizing the
propagation of error into the state estimation. Also, the order was chosen to be an even
number to avoid the function crossing the upper cut-off voltage before 100 % SOC.

5.3 Parameter identification
For parameter identification of the models presented in Section 3.3, MATLAB code based
on [16] was used. The script utilizes nonlinear regression and the DST load current as
input to find the model parameters that make the model output fit the measured DST volt-
age. Specifically, the MATLAB function nlinfit and several cycles of the DST load current
profile as input was used for identifying the R, RC1, and ESC model parameters of both
cell types. For the NMC cell identification, 28 DST cycles were used, which corresponded
to a change in SOC from 80% to 6%. For the LFP cell, 18 DST cycles were used, which
corresponded to a change in SOC from 100% to 17%. Here it should be noted that the
SOC range for which the model identification was performed was retracted somewhat, to

31



5 Methodology 5.4 Observability analysis

achieve reasonable model parameters. This was possibly due to the strong nonlinearities
present at the end of the SOC range around 0 % SOC, which turned out to cause rank de-
ficiencies that had a negative impact on the utilized regression method, which then again
resulted in very poor and unrealistic parameter estimates. Note also that the battery data
for the two cell types differ slightly, considering the LFP cell had available DST data for
the entire SOC range, whereas the NMC cell only had available data for SOC  80%.

Early experimentation showed that the SOC range over which the model parameter identi-
fication was performed, had a significant impact on the estimated model parameters. What
was equally important to note, was that due to the nonlinear nature of the models, reason-
able initialization of the parameter values was also crucial [21]. This was especially true
for the ESC model, which could achieve several different parameter values depending on
the set initial value of the parameters and the set SOC range the parameters were estimated
over. This was not put too much effort into, due to the wide scope of the thesis. Therefore
the model identification was limited to the description above.

5.4 Observability analysis
Observability analysis of nonlinear battery ECMs has to some degree been researched in
the literature, and to the extent that it will be adopted for the models used in this thesis.
The 2RC model, which is similar to the 1RC model but only with a second RC sub-circuit,
has been investigated previously in i.a. [37], where a slightly different choice of model
states has been used. The analysis can be simplified and modified somewhat for the 1RC
model used here, which is what will be presented in the following.

The continuous time 1RC model presented in Section 3.2 can be written on the form

ẋ = f(x) + gu (5.1a)
y = h(x)�R0u (5.1b)

where x = [z, iR1 ]
T , u = i, y = v and

f(x) =


0

�
1

R1C1
iR1

�
, g =


�

1
Q
1

R1C1

�
, h(x) = OCV (z)�R1iR1

Then, based on theory introduced in Section 2.4, the gradient of h(x) is

dh =
⇥
dOCV

dz �R1

⇤

and it can be shown by mathematical induction that

32



5 Methodology 5.4 Observability analysis

dLk
fh =

h
0 �

R1

(�R1C1)k

i
, dLk

gh =
h

1
(�Q)k

dk+1OCV
dzk+1 0

i

Then the 1RC model is locally observable at a point x0 if the rank of the matrix

O =

2

66666664

dh
dLfh

dLgh

dL2
fh

dL2
gh

...

3

77777775

(5.2)

evaluated at x0 has rank n = 2. It can be verified that this is the case if and only if there
exists a positive integer k 2 Z+ such that

✓
d
k
OCV

dzk

◆
(x0) 6= 0 (5.3)

meaning the 1RC model is observable at a point x0 if all derivatives of the OCV curve
evaluated at that point are not zero simultaneously. This requirement will have to be satis-
fied for guaranteeing the observability of the R model as well.

Observability analysis of the ESC model is more laborious due to the increased complexity
of the model. In [49] an observability analysis was carried out of the ESC model by ex-
amining the minimum singular values of the observability matrix. It was found that if the
load current i = 0, then the observability matrix loses rank, resulting in an unobservable
model. The same conclusion was presented in [50]. It is crucial to note that the result in
[49] is based on an assumption of a monotonically increasing OCV-SOC curve. Thus the
remarks on the partial derivatives of the OCV curve in the preceding paragraph may also
be relevant for the ESC model, because the OCV-SOC curve is not necessarily monotoni-
cally increasing. Also it should be noted that the instantaneous hysteresis memory variable
sk was not included in the measurement equation in these analyses.

In general, it is not enough for the observability matrix to have full rank (i.e. be nonsingu-
lar) to guarantee accurate state estimation. This is because the model may contain weakly
observable modes. A weakly observable mode occurs when the observability matrix is ill-
conditioned, or equivalently, close to being singular [51]. In [50], the condition number of
the observability matrix for the ESC model with a constant load current was checked. The
conclusion was that the SOC estimation problem using the ESC model was well-posed
since the condition number was not considered too high for a 3x3 matrix.
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Based on the above, it is clear that the nonlinearity of the OCV curve is of great signifi-
cance for the observability of a given ECM. If the OCV curve is very flat or linear, potential
zero crossings of the derivative of the OCV curve may be present, which can render the
model unobservable or weakly observable, resulting in poor state estimation results. It is
interesting to note that if the OCV derivative becomes zero, then the EKF, which is based
on a first-order linearization of the model, is, in fact, unobservable at these specific points
[37]. Moreover, steady-state SOC estimation using the ESC model with zero load current
may be more problematic compared to when the system is excited with a dynamic load
current.

5.5 Estimator initialization analysis
In order to quantify and understand the significance of reasonable initialization of the given
nonlinear estimators, a full factorial experiment was performed. Here the two varying fac-
tors were the initial SOC state error covariance, i.e. the first entry in the Kalman filter
covariance matrix, and the initial SOC guess error. The initial state error covariance repre-
sents the uncertainty in the initial SOC guess. The corresponding performance metric was
the SOC RMS estimation error. For this purpose, two sets of 11 initial values for the SOC
and the SOC covariance were set to

z0 =
⇥
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

⇤

�z,0 =
⇥
1 10�1 10�2 10�3 10�4 10�5 10�6 10�7 10�8 10�9 10�10

⇤

For evaluation of each combination from these two sets on the estimator performance, 11⇥
11 = 121 simulations using the full FUDS cycles run for the NMC cellt was performed.
Here the true initial SOC was 80 %, while the uncertainties of the current sensor (process
noise) and the voltage sensor ( measurement noise) was set to

�w = 0.12, �v = 0.12

respectively. Finally, the initial covariance of the two remaining states in the utilized 1RC
model was held constant at �iR,0 = 0.012, while the initial value of the state itself was set
to 0 throughout the whole experiment.
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5 Methodology 5.6 State estimator implementation

5.6 State estimator implementation
5.6.1 EKF
The extended Kalman filter (EKF) was implemented in MATLAB based on code found
in [30], which is a realization of algorithm 1. Here some changes to the code were made,
so that the filter could be used with three different models. This essentially required the
implementation of three similar EKFs. Since the ESC model contains all the states of the
R and RC1 models, the derivation, also based on [30], of the EKF matrices is presented
below only for the ESC model. In order to implement the EKF with the ESC model,
some assumptions were made. First, the process noise was assumed to represent the cur-
rent sensor measurement error, such that the true cell current was ik + wk. This implied
that the measured cell current was ik. This assumption was only used when deriving the
linearized state matrices and not the linearized output matrices, to avoid creating a corre-
lation between process noise and overall noise in the output measurement. Secondly, the
couloumbic efficiency was assumed to be ⌘k = 1, which simplified the model. This was
reasonable since the EKF’s adaptive capability can handle any small error caused by this
assumption. In the implementation of the EKF, the true cell current was ik and the process
noise was assumed to have zero mean, i.e. w̄ = 0. Thus, when the state vector was defined
as xk = [zk, iR1,k, hk]T , the final linearized and implemented state and output matrices
became

Âk =
@f(xk,uk,wk)

@xk

����
xk=x̂+

k

=

2

4
1 0 0
0 exp(� �t

R1C1
) 0

0 0 AH,k

3

5 (5.4)

where

AH,k = exp

✓
�

����
ik��t

Q

����

◆

B̂k =
@f(xk,uk,wk)

@wk

����
wk=w̄k

=

2

64
�

�t
Q

1� exp(� �t
R1C1

)

�

�����t
Q

���AH,k(1 + ikĥ
+
k )

3

75 (5.5)

Ĉk =
@g(xk,uk,vk)

@xk

����
xk=x̂�

k

=

"
@OCV (zk)

@zk

����
zk=ẑ�

k

�R1 M

#
(5.6)

where @OCV (zk)
@zk

����
zk=ẑ�

k

is the partial derivative of the OCV polynomial approximation

evaluated at the a priori SOC estimate ẑ
�
k .
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D̂k =
@g(xk,uk,vk)

@vk

����
vk=v̄k

= 1 (5.7)

Then the final tuning of the EKF resulted in the following covariance matrices:

⌃w̃ = 0.12, ⌃ṽ = 0.12.

⌃x̃,0 =

2

4
0.12 0 0
0 0.012 0
0 0 0.012

3

5
(5.8)

5.6.2 SPKF
The version of the Sigma-Point Kalman filter that was chosen for implementation in this
thesis was the Central Difference Kalman filter (CDKF). The main reason for this was that
it had fewer tuning parameters than the UKF, which made for a simpler implementation.
The code is based on the MATLAB code found in [30], which is a realization of algorithm
2. Also here three different versions of the CDKF were implemented, in order to evaluate
the CDKF performance using three different ECMs. The tuning parameter h was set to

p
3

since the noise is assumed to be Gaussian [30]. All tuning parameters were set to

� ↵
(m)
0 ↵

(m)
k ↵

(c)
0 ↵

(c)
k

p
3 �

2
3

1
6 �

2
3

1
6

Table 5.2: Tuning parameters of the CDKF.

⌃w̃ = 0.12, ⌃ṽ = 0.12.

⌃x̃,0 =

2

4
0.12 0 0
0 0.012 0
0 0 0.012

3

5
(5.9)

5.6.3 MHE
The MHE was implemented with inspiration from MATLAB code produced by Dr. Mo-
hamed W. Mehrez, available on GitHub at [52] and demonstrated through video at [53].
His code is a combined implementation of a Model Predictive Controller (MPC) and a
Moving Horizon Estimator (MHE) for a non-holonomic mobile robot, using the CasADi
optimization toolbox in MATLAB. When setting up the nonlinear program (NLP) to be
optimized, he utilizes multiple shooting. The MHE implemented in this thesis took ad-
vantage of the same techniques when adopting the nonlinear ECMs for the NMC and LFP
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cells for SOC estimation. The reason for using multiple shooting was mostly based on
the fact that early experimentation showed that this approach could achieve more accurate
state estimations when compared to using single shooting, which was to be anticipated for
reasons stated in Section 2.3.3. Hence the optimization variables of the nonlinear program
became the system states x as well as the control input u for all models and cells. The
implementation is also based on the total least squares MHE (TLS-MHE) as formulated
in [13], which essentially co-estimates the state and input of the model. Thus the MHE
formulation opted for in this thesis was set up as

min
x̂,û

kx̂k�N+1 � x̄k�N+1k
2
P�1

k�N+1
+

kX

i=k�N+1

kyi � h(x̂i, ûi)k
2
R�1

+
kX

i=k�N+1

kui � ûik
2
Q�1

s.t.

x̄k�N+1 given

yk�N+i given; i = 1, ..., N

uk�N+i given; i = 1, ..., N

x̂k�N+i+1 = f(x̂k�N+i, ûk�N+i); i = 1, ..., N

0 < ẑk < 1

(5.10)

where f(x̂k�N+i, ûk�N+i) is the dynamic state equations evaluated in the state and input
estimates, and h(x̂i, ûi) is the output equation for the relevant model also evaluated in
the estimates. The arrival cost penalization matrix was approximated by running the EKF
state error covariance updates from Section 5.6.1 in parallel with the MHE. One subtlety
is that the MHE for each time step k also computed the predicted state for time step k+1.
This prediction was stored and used as the a priori state estimate x̄k�N+1 in the arrival
cost next time step [54]. This ensured that all information from measurements prior to
the current estimation horizon was contained in the arrival cost, thus avoiding using any
given measurement twice. The NLP solver that was used was the IPOPT solver, which
was part of the CasADi toolbox. The operation of the MHE algorithm in this thesis can be
summarized as

1. Initialize Q, R, P, N and x̂0

2. If k  N solve the full information estimation problem, i.e. with increasing horizon
length for each iteration until k = N . Obtain the optimal solutions {x̂i}

k
i=k�N+1

and load current estimates {ûi}
k
i=k�N+1. Store these as initial conditions for the

next iteration.

3. If k > N solve the NLP in (5.10) and obtain the optimal solutions {x̂i}
k
i=k�N+1

and load current estimates {ûi}
k
i=k�N+1. Store these as initial conditions for the

next iteration.
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4. At time k + 1 get the new measurements yk+1 and uk+1 and discard the first mea-
surements in the horizon from time step k, then return to step 3 again.

The final tuning parameters of the MHE were set to

Q = 0.12, R = 0.12, N = 10

⌃x̃,0 =

2

4
0.12 0 0
0 0.012 0
0 0 0.012

3

5
(5.11)

5.6.4 Tuning
The tuning process of the estimators involved choosing the constant weighting matrices
⌃w̃ and ⌃ṽ for the Kalman filters, and Q and R for the MHE, which was defined to rep-
resent the uncertainties in the current and voltage measurements respectively. The tuning
also included setting the initial state error covariance matrix ⌃x̃,0 for all the estimators,
as well as choosing a horizon length N for the MHE and the tuning parameter h for the
SPKF. The strategy for setting the covariance matrices was to use an initial guess based
on the measurement uncertainties for the Arbin BT2000 battery test bench, from which
the battery test data was collected, which is below 0.1% for both the current and voltage
sensors [55]. Hence a standard deviation of 0.001 and consequently a covariance of 0.0012
was set initially for all covariance matrices. Afterward, the strategy was simply based on
trial and error to achieve a reasonably good tuning. The initial SOC state error covariance
was set to the square of the difference between the initial guess SOC and the true initial
SOC, where the true SOC has been defined by the dataset to be 0.8. Hence the initial SOC
covariance represents confidence in the initial guess SOC. Note that it is not possible to
know this difference exactly in a real-time BMS application, only in simulations where
a ground truth has been established in order to perform a performance evaluation of the
estimators. When using the RC1 or ESC model, the covariances of the RC-sub-circuit
current and hysteresis states were set quite low because one with high confidence can say
that these are close to zero initially assuming the cell has been resting for a while. For a
fair comparison of the estimators, a similar tuning for all estimators regardless of model
and cell type was chosen. Therefore the tuning parameters are presented only for the ESC
model. The tuning also holds for the lower-order models. Here the redundant entries in
the matrices were simply omitted, whereas the relevant entries remained unchanged.

When choosing the horizon length N for the MHE, the FUDS cycles with additive random
noise (see Section 5.7.3) and the NMC-ESC model were used for experimentation. Differ-
ent horizon lengths were evaluated against the corresponding RMS SOC estimation error
and the average required computation time per iteration, to find an appropriate horizon
length that yielded a low estimation error at a reasonable computational cost. This horizon
length was held fixed for all models, cells, and inputs. The experiment is summarized in
Table 5.3. For fair comparison and a reasonable balance between estimation performance
and computational cost, a horizon length of N = 10 was chosen.
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Avg. computation
N RMSE time per iteration

2 2.42 % 0.0174 s

5 2.29 % 0.0281 s

10 2.17 % 0.0444 s

20 2.02 % 0.0779 s

50 1.78 % 0.178 s

100 1.57 % 0.348 s

200 1.39 % 0.682 s

Table 5.3: Summary of sub-experiment for finding a reasonable MHE horizon length N .
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5.7 Simulation setup
For the performance evaluation of the state estimators with the different models and cell
chemistries, three different simulation cases were set up. All simulations were run in
MATLAB on the NTNU master office computer with 11th gen. Intel Core i7-11700 @
2.50 GHz, 32 GB RAM, and Windows operating system. For all subsequent dynamic sim-
ulations, the initial SOC of the estimators was set erroneously to 0.7, which corresponded
to an initial SOC estimation error of 10 %.

5.7.1 Ground truth
Although it is impossible to define the absolute true SOC of a battery, it can be established
accurately with the coulomb counting method under controlled conditions. Since the cur-
rent data from the dataset have been collected by lab-grade equipment (the Arbin BT2000
battery test bench) at a constant temperature [45, 46], it is assumed that the current is mea-
sured perfectly. The ground truth has therefore been established by integrating the relevant
current data with the MATLAB function cumtrapz. The accumulated charge in and out of
the battery divided by the nominal capacity at a given timestep subtracted to the true initial
SOC of 0.8, resulted in the SOC ground truth. The estimation performance of the estima-
tors was quantified by taking the root mean square error (RMSE) and the mean absolute
error (MAE) between the ground truth and the SOC estimates.

5.7.2 Simulation 1 - Dynamic load profiles
The first simulation case was purely based on using the dynamic load profiles from FUDS
and US06 directly as input for all estimator/model/cell combinations and comparing the
estimation accuracy. The full current and voltage measurement data for the FUDS run is
shown for the NMC cell in Figure 5.6, whereas the full US06 input is shown for the LFP
cell in Figure 5.7.
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Figure 5.6: The full FUDS load profile for the NMC cell at 25 �C.

0 1000 2000 3000 4000 5000 6000

-2

0

2

4

C
u

rr
e

n
t 

[A
]

0 1000 2000 3000 4000 5000 6000

Time [s]

2.5

3

3.5

V
o

lta
g

e
 [

V
]

Figure 5.7: The full US06 load profile for the LFP cell at 25 �C.

5.7.3 Simulation 2 - Dynamic load profiles with added measurement
noise

In the second simulation case, heavy simulated EMI noise was added to the measurements,
to investigate the performance under non-ideal working conditions, as can often be the case
in real-world EV applications. Here only the FUDS cycles were used, with added random
noise to both current and voltage measurements. Most commercial current and voltage
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sensors in Battery Management Systems have a measurement error of 0.1 % to 1 % [56]
of the measurement range. Based on this, random current and voltage sensor noise with
a standard deviation of 240 mA and 80 mV respectively were added to the input data,
to simulate noisy measurements. These values correspond to approximately 4 % of the
relevant measurement range. It should be mentioned that any larger values seemed to
cause unacceptable estimation performance.

5.7.4 Simulation 3 - Dynamic load profiles with resting periods
The third simulation was set up to investigate the steady-state estimation performance of
the estimators, by adding resting periods to the dynamic load profiles. This was imple-
mented by adding steady-state input data to the start, middle, and end of the dynamic load
profile runs. The length of these periods was set to 1 hour. During a resting period, zero
load current was applied to the models, and the newest reasonable steady-state voltage
measurement was held constant. Here only the FUDS cycles were used as the dynamic
profile.
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6
Results

This section documents the results from the the methodology of this thesis presented in
Chapter 5. Here the results of the OCV-SOC polynomial approximations are presented in
Section 6.1, the results of the model identifications in Section 6.2, the estimator initializa-
tion results in Section 6.3 and the final dynamic simulation results in Section 6.4.

6.1 OCV-SOC polynomial approximation
In Figure 6.1 and Figure 6.2 the 12th-order polynomial OCV curve fitted to the approxi-
mated average OCV curve for each cell can be observed. In Table 6.1 the coefficients of the
polynomial for each cell are listed. Thus the OCV-SOC curve, as seen by the estimators,
is represented by the function

OCV (z) =
nX

i=0

aiz
i
, z 2 [0, 1] (6.1)

where n is the polynomial order. The resulting partial derivative of each OCV polynomial,
@OCV (z)

@z , can be seen in Figure 6.3 and Figure 6.4.
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Figure 6.1: Polynomial approximation of the average OCV-SOC curve for the INR 18650-20R
(NMC) cell at an ambient temperature of 25 �C.
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Figure 6.2: Polynomial approximation of the average OCV-SOC curve for the A123 (LFP) cell at
an ambient temperature of 25 �C.
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NMC LFP

a0 2.8518 2.5375
a1 28.5684 24.7599
a2 -575.5558 -417.4004
a3 6.3657e3 4.0803e3
a4 -4.2526e4 -2.5009e4
a5 1.8416e5 1.0106e5
a6 -5.3862e5 -2.7705e5
a7 1.0848e6 5.2184e5
a8 -1.5061e6 -6.7378e5
a9 1.4155e6 5.8439e5
a10 -8.5947e5 -3.2440e5
a11 3.0415e5 1.0373e5
a12 -4.7628e4 -41

Table 6.1: The identified coefficients of the 12th-order OCV-SOC polynomial approximation of
each cell at an ambient temperature of 25�C.
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Figure 6.3: Partial derivative of polynomial OCV-SOC curve for the INR 18650-20R (NMC) cell at
an ambient temperature of 25 �C.
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Figure 6.4: Partial derivative of polynomial OCV-SOC curve for the A123 (LFP) cell at an ambient
temperature of 25 �C.
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6.2 Identified models
This section summarizes the results from the model identification of each cell using non-
linear regression. The identified models output can be seen in Figure 6.5 for the NMC-R
model, and in Figure 6.6 and Figure 6.7 for the LFP-RC1 and LFP-ESC models, respec-
tively. All parameters for each cell type and model combination can be seen in Table 6.2,
along with the corresponding RMS model fit error.
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Figure 6.5: Identified R model output for the INR 18650-20R (NMC) cell at an ambient temperature
of 25 �C.
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Figure 6.6: Identified RC1 model output for the A123 (LFP) cell at an ambient temperature of 25
�C.
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Figure 6.7: Identified ESC model output for the A123 (LFP) cell at an ambient temperature of 25
�C.

R0(⌦) R1(⌦) C1(F ) M(V ) M0(V ) � RMSE

NMC-R 0.0855 - - - - - 0.0182

NMC-RC1 0.0758 0.0302 2037.0 - - - 0.0102

NMC-ESC 0.0732 0.0171 1467.2 0.0131 1.7796e-6 54.86 0.0098

LFP-R 0.1825 - - - - - 0.0365

LFP-RC1 0.1634 0.0749 1767.2 - - - 0.0142

LFP-ESC 0.1595 0.0365 2590.3 0.0381 9.3765e-4 93.63 0.0122

Table 6.2: Identified R, RC1 and ESC model parameters for NMC and LFP cell at an ambient
temperature of 25 �C.
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6.3 Estimator initialization
Below the results of the full factorial experiment on the SOC initialization of the estimators
are presented. In each figure the SOC RMS estimation error after a full run of FUDS cycles
using the NMC-1RC model is given along the z-axis. Along the right-hand side horizontal
axis represents the initial SOC guess, and the left-hand side horizontal axis represents the
initial SOC covariance in the Kalman filter covariance matrix. Recall that the true SOC is
defined as 0.8.

Figure 6.8: Surface plot of the full factorial experiment of the EKF initialization using a full run of
FUDS cycles and the NMC-1RC model.
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Figure 6.9: Surface plot of the full factorial experiment of the SPKF initialization using a full run
of FUDS cycles and the NMC-1RC model.

Figure 6.10: Surface plot of the full factorial experiment of the MHE initialization using a full run
of FUDS cycles and the NMC-1RC model.
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6.4 Nonlinear state estimator performance
For each simulation case below, comparison plots that include a best-performing estimator-
model combination for each cell type are given. Comparison plots that include one of the
worst-performing combinations are also presented. The remaining results are summarized
in tables. The relevant results are SOC estimation accuracy, MHE load current estimation
accuracy, and estimator voltage output estimation accuracy. In the first simulation case, a
comparison of the running times of the different estimators is presented, to evaluate their
relative computational complexity.

6.4.1 Simulation 1 - Dynamic load profiles
FUDS

In Figure 6.11, the SOC estimates from all the nonlinear estimators are plotted using the
NMC-ESC model with FUDS cycles as input. In this plot, a zoomed-in window has been
included to highlight the difference in the estimates and the ground truth. The correspond-
ing voltage estimates can be observed in Figure 6.12. The MHE load current estimates
are found in Figure 6.13. All SOC results using the FUDS cycles are summarized in table
Table 6.3, the output estimation results in Table 6.4 and MHE load current estimates in
Table 6.5. In this subsection only, the average required computation time per iteration for
the nonlinear estimators is presented in Table 6.6. For the discussion of the results, see
Section 7.1.
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Figure 6.11: SOC estimation comparison using the NMC-ESC model during FUDS cycles at an
ambient temperature of 25 �C. An additional zoomed-in plot of the highlighted box period is added
in the bottom left corner.
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Figure 6.12: Output voltage estimation comparison using the NMC-ESC model during FUDS cycles
at an ambient temperature of 25 �C.
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Figure 6.13: MHE load current estimation using the NMC-ESC model during FUDS cycles at an
ambient temperature of 25 �C.
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EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 1.50 % 1.44 % 1.51 % 1.44 % 1.51 % 1.44 %

NMC-RC1 0.46 % 0.42 % 0.47 % 0.42 % 0.47 % 0.42 %

NMC-ESC 0.45 % 0.41 % 0.46 % 0.42 % 0.45 % 0.41 %

LFP-R 10.37 % 10.05 % 10.74 % 10.38 % 10.39 % 10.06 %

LFP-RC1 3.38 % 2.97 % 3.52 % 3.09 % 3.32 % 2.91 %

LFP-ESC 4.90 % 4.41 % 4.79 % 4.30 % 4.76 % 4.28 %

Table 6.3: Summary of SOC estimation RMSE and MAE for the estimators using different model
and cell chemistry combinations with FUDS cycles as input.

EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 2.17 % 1.44 % 2.17 % 1.44 % 2.15 % 1.42 %

NMC-RC1 1.64 % 0.82 % 1.64 % 0.82 % 1.62 % 0.81 %

NMC-ESC 1.34 % 0.72 % 1.34 % 0.72 % 1.51 % 0.73 %

LFP-R 4.00 % 2.74 % 4.05 % 2.76 % 3.96 % 2.65 %

LFP-RC1 2.01 % 1.13 % 2.01 % 1.14 % 1.95 % 1.09 %

LFP-ESC 1.62 % 1.10 % 1.58 % 1.07 % 1.99 % 1.10 %

Table 6.4: Summary of output voltage estimation RMSE and MAE for the estimators using different
model and cell chemistry combinations with FUDS cycles as input.

MHE load current estimate (û)

RMSE MAE

NMC-R 0.18 % 0.12 %

NMC-RC1 0.12 % 0.061 %

NMC-ESC 0.11 % 0.053 %

LFP-R 0.68 % 0.48 %

LFP-RC1 0.32 % 0.18 %

LFP-ESC 0.31 % 0.18 %

Table 6.5: Summary of the MHE load current estimation RMSE and MAE with the FUDS cycles.
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Average computation time per iteration

EKF SPKF MHE

NMC-R 8.38e-6 s 2.76e-5 s 0.0411 s

NMC-RC1 1.21e-5 s 3.75e-5 s 0.0416 s

NMC-ESC 1.56e-5 s 4.25e-5 s 0.0456 s

LFP-R 9.77e-6 s 3.06e-5 s 0.0406 s

LFP-RC1 1.26e-5 s 3.45e-5 s 0.0412 s

LFP-ESC 1.66e-5 s 4.71e-5 s 0.0441 s

Table 6.6: Summary of average computation time required per iteration for the different estimator
and model/cell type combinations during simulations with FUDS cycles.
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US06

In Figure 6.15, the SOC estimates obtained from all the nonlinear estimators are plotted
using the LFP-ESC model with US06 cycles as input. This was picked as the worst-
performing cell-model combination in this case. The corresponding voltage estimates can
be observed in Figure 6.16. The load current estimates obtained from the moving horizon
estimator (MHE) are shown in Figure 6.17. All the SOC results using the US06 cycles are
summarized in Table 6.7, the output estimation results are provided in Table 6.8, and the
MHE load current estimates in Table 6.9. An additional SOC estimates comparison of the
best-performing model-cell combination for the LFP cell is observed in Figure 6.14. For
the discussion of the results, see Section 7.1.
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Figure 6.14: SOC estimation comparison using the LFP-R model during US06 cycles at an ambient
temperature of 25 �C.
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Figure 6.15: SOC estimation comparison using the LFP-ESC model during US06 cycles at an
ambient temperature of 25 �C.

0 1000 2000 3000 4000 5000 6000
2.5

3

3.5

V
o

lta
g

e
 [

V
]

True

EKF estimate

0 1000 2000 3000 4000 5000 6000
2.5

3

3.5

V
o

lta
g

e
 [

V
]

True

SPKF estimate

0 1000 2000 3000 4000 5000 6000

Time [s]

2.5

3

3.5

V
o

lta
g

e
 [

V
]

True

MHE estimate

Figure 6.16: Output voltage estimation comparison using the LFP-ESC model during FUDS cycles
at an ambient temperature of 25 �C.
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Figure 6.17: MHE load current estimation using the LFP-ESC model during FUDS cycles at an
ambient temperature of 25 �C.

EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 1.35 % 1.32 % 1.35 % 1.33 % 1.36 % 1.33 %

NMC-RC1 0.43 % 0.31 % 0.44 % 0.31 % 0.44 % 0.31 %

NMC-ESC 0.46 % 0.25 % 0.45 % 0.26 % 0.46 % 0.26 %

LFP-R 2.49 % 2.11 % 2.53 % 2.15 % 2.55 % 2.19 %

LFP-RC1 11.82 % 11.49 % 12.10 % 11.77 % 11.69 % 11.38 %

LFP-ESC 16.86 % 16.45 % 17.28 % 16.84 % 16.75 % 16.34 %

Table 6.7: Summary of SOC estimation RMSE and MAE for the estimators using different model
and cell chemistry combinations with US06 cycles as input.
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EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 1.03 % 0.82 % 1.03 % 0.82 % 1.02 % 0.81 %

NMC-RC1 1.49 % 0.81 % 1.49 % 0.67 % 1.48 % 0.80 %

NMC-ESC 1.43 % 0.78 % 1.45 % 0.79 % 1.42 % 0.78 %

LFP-R 2.81 % 2.06 % 2.81 % 2.06 % 2.74 % 2.00 %

LFP-RC1 1.20 % 1.00 % 1.20 % 1.00 % 1.16 % 0.97 %

LFP-ESC 1.67 % 1.37 % 1.63 % 1.34 % 1.62 % 1.33 %

Table 6.8: Summary of output voltage estimation RMSE and MAE for the estimators using different
model and cell chemistry combinations with US06 cycles as input.

MHE load current estimate (û)

RMSE MAE

NMC-R 0.090 % 0.069 %

NMC-RC1 0.11 % 0.060 %

NMC-ESC 0.10 % 0.057 %

LFP-R 0.50 % 0.37 %

LFP-RC1 0.20 % 0.16 %

LFP-ESC 0.26 % 0.21 %

Table 6.9: Summary of the MHE load current estimation RMSE and MAE with the US06 cycles.
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6.4.2 Simulation 2 - Dynamic load with noisy measurements
Figure 6.18 compares the SOC estimates obtained from all using the NMC-1RC model
with noise-corrupted FUDS measurements as input. This particular combination repre-
sents a best-performing scenario in this simulation case. The corresponding voltage esti-
mates can be observed in Figure 6.19. The load current estimates obtained from the mov-
ing horizon estimator (MHE) are shown in Figure 6.20. A plot of the best-performing LFP
model for SOC estimation is included in Figure 6.21. Also, plots of the worst-performing
combination, obtained using the LFP-ESC model, are provided in the Figure 6.22, Fig-
ure 6.23 and Figure 6.24. The plots are in the same order as the previous plots. As in
the preceding subsections, all results are summarized in Table 6.10, Table 6.11, and Ta-
ble 6.12. For the discussion of the results, see Section 7.1.
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Figure 6.18: SOC estimation comparison using the NMC-1RC model during FUDS cycles with
noisy measurements at an ambient temperature of 25 �C.
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Figure 6.19: Output voltage estimation comparison using the NMC-1RC model during FUDS cycles
with noisy measurements at an ambient temperature of 25 �C.

0 2000 4000 6000 8000 10000 12000

Time [s]

-4

-2

0

2

4

6

C
u
rr

e
n
t 
[A

]

True

MHE estimate

Figure 6.20: MHE load current estimation using the NMC-1RC model during FUDS cycles with
noisy measurements at an ambient temperature of 25 �C.
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Figure 6.21: SOC estimation comparison using the LFP-1RC model during FUDS cycles with noisy
measurements at an ambient temperature of 25 �C.
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Figure 6.22: SOC estimation comparison using the LFP-ESC model during FUDS cycles with noisy
measurements at an ambient temperature of 25 �C.
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Figure 6.23: Output voltage estimation comparison using the LFP-ESC model during FUDS cycles
with noisy measurements at an ambient temperature of 25 �C.
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Figure 6.24: MHE load current estimation using the LFP-ESC model during FUDS cycles with
noisy measurements at an ambient temperature of 25 �C.
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EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 1.48 % 1.39 % 1.49 % 1.39 % 1.49 % 1.40 %

NMC-RC1 0.56 % 0.45 % 0.56 % 0.45 % 0.56 % 0.45 %

NMC-ESC 2.23 % 1.74 % 2.20 % 1.75 % 2.17 % 1.67 %

LFP-R 10.79 % 10.24 % 11.13 % 10.53 % 10.70 % 10.15 %

LFP-RC1 4.21 % 3.57 % 4.42 % 3.74 % 4.17 % 3.55 %

LFP-ESC 14.77 % 11.04 % 8.06 % 6.00 % 8.64 % 6.47 %

Table 6.10: Summary of SOC estimation RMSE and MAE for the estimators/model/cell combina-
tions with noisy FUDS measurements.

EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 3.00 % 2.26 % 3.00 % 2.26 % 2.98 % 2.24 %

NMC-RC1 2.47 % 1.76 % 2.47 % 1.76 % 2.46 % 1.74 %

NMC-ESC 2.18 % 1.68 % 2.18 % 1.67 % 2.20 % 1.67 %

LFP-R 6.11 % 4.70 % 6.15 % 4.72 % 5.99 % 4.59 %

LFP-RC1 4.40 % 3.34 % 4.40 % 3.34 % 4.28 % 3.26 %

LFP-ESC 5.56 % 3.58 % 4.02 % 3.16 % 4.15 % 3.16 %

Table 6.11: Summary of output voltage estimation RMSE and MAE for the estimator/model/cell
combinations with noisy FUDS measurements.
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MHE load current estimate (û)

RMSE MAE

NMC-R 24.01 % 19.06 %

NMC-RC1 24.05 % 19.09 %

NMC-ESC 24.06 % 19.10 %

LFP-R 23.40 % 18.54 %

LFP-RC1 23.53 % 18.63 %

LFP-ESC 23.56 % 18.66 %

Table 6.12: Summary of the MHE load current estimation RMSE and MAE with noisy FUDS
measurements.
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6.4.3 Simulation 3 - Dynamic load with resting periods
In Figure 6.25 the comparison of the SOC estimates obtained from using the LFP-ESC
model and FUDS with resting periods as input. This particular combination represents a
best-performing LFP model in this simulation case. The corresponding voltage esti- mates
can be observed in Figure 6.26. The load current estimates obtained from the MHE are
shown in Figure 6.27. The same setup of plots is arranged for the best-performing NMC
model, the NMC-1RC model, in Figure 6.28, Figure 6.29 and Figure 6.30. As previously,
all results are summarized in Table 6.13, Table 6.14 and Table 6.15. For the discussion of
the results, see Section 7.1.

Figure 6.25: SOC estimation comparison using the LFP-ESC model during FUDS cycles with
resting periods at an ambient temperature of 25 �C. An additional zoomed-in plot of the highlighted
box period is added in the bottom left corner.
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Figure 6.26: Output voltage estimation comparison using the LFP-ESC model during FUDS cycles
with resting periods at an ambient temperature of 25 �C.
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Figure 6.27: MHE load current estimation using the LFP-ESC model during FUDS cycles with
resting periods at an ambient temperature of 25 �C.

66



6 Results 6.4.3 Simulation 3 - Dynamic load with resting periods

0 0.5 1 1.5 2 2.5

Time [s] 104

0

20

40

60

80
S

O
C

 [
%

]
True

EKF

SPKF

MHE

Figure 6.28: SOC estimation comparison using the NMC-1RC model during FUDS cycles with
resting periods at an ambient temperature of 25 �C.

Figure 6.29: Output voltage estimation comparison using the NMC-1RC model during FUDS cycles
with resting periods at an ambient temperature of 25 �C.
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Figure 6.30: MHE load current estimation using the NMC-1RC model during FUDS cycles with
resting periods at an ambient temperature of 25 �C.

EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 1.25 % 1.04 % 1.25 % 1.04 % 1.14 % 0.94 %

NMC-RC1 0.93 % 0.66 % 0.94 % 0.67 % 0.70 % 0.54 %

NMC-ESC 0.92 % 0.64 % 0.97 % 0.69 % 0.65 % 0.50 %

LFP-R 9.14 % 8.83 % 9.14 % 8.83 % 9.00 % 8.47 %

LFP-RC1 7.25 % 7.02 % 7.24 % 7.01 % 7.03 % 6.64 %

LFP-ESC 5.22 % 4.15 % 5.44 % 4.54 % 4.73 % 3.67 %

Table 6.13: Summary of SOC estimation RMSE and MAE for the estimators/model/cell combina-
tions with resting periods added to the FUDS cycles.
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EKF SPKF MHE

RMSE MAE RMSE MAE RMSE MAE

NMC-R 3.52 % 1.72 % 3.52 % 1.72 % 14.59 % 7.29 %

NMC-RC1 3.25 % 1.40 % 3.25 % 1.40 % 14.53 % 6.99 %

NMC-ESC 1.71 % 0.98 % 1.88 % 1.08 % 14.05 % 6.62 %

LFP-R 3.71 % 1.38 % 3.70 % 1.38 % 27.39 % 13.71 %

LFP-RC1 3.18 % 1.27 % 3.18 % 1.27 % 27.26 % 13.55 %

LFP-ESC 0.98 % 0.48 % 1.17 % 0.75 % 25.71 % 12.33 %

Table 6.14: Summary of output voltage estimation RMSE and MAE for the estimator/model/cell
combinations with resting periods added to the FUDS cycles.

MHE load current estimate (û)

RMSE MAE

NMC-R 0.66 % 0.38 %

NMC-RC1 0.51 % 0.28 %

NMC-ESC 0.43 % 0.24 %

LFP-R 2.92 % 1.53 %

LFP-RC1 2.33 % 1.27 %

LFP-ESC 1.97 % 0.98 %

Table 6.15: Summary of the MHE load current estimation RMSE and MAE with resting periods
added to the FUDS cycles.
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7
Discussion

7.1 Results of SOC estimation

7.1.1 Estimator comparison
Based on all estimation results obtained in Section 6.4, it is clear that the SOC estimation
accuracy of the EKF, SPKF, and MHE was practically indistinguishable. This was the case
for almost all the test scenarios and model-cell type combinations. One discrepancy was
when all estimators performed poorly with noise-corrupted measurements using the LFP-
ESC model, as seen in Figure 6.22. Here the EKF performed notably worse than the other
two. This may be attributed to the fact the EKF is based on a first-order linearization,
which may render the EKF-based LFP-ESC model weakly observable or unobservable
whenever the OCV derivative is zero. Thus when under the influence of noise, SOC esti-
mation becomes troublesome. This reasoning is based on the observation that the largest
estimation deviations were where the derivative of the NMC OCV curve is closest to zero.
For example, observe the high SOC peaks around 50 % SOC in Figure 6.22. This is an
area where the LFP OCV derivative is around zero, as seen in Figure 6.4.

The estimators’ similar estimation performance was also reflected in the initialization anal-
ysis presented in Section 6.3. The surface plots show that each estimator could deliver high
estimation accuracy if a sufficiently high initial covariance is set with a sufficiently close
initial SOC guess. If the estimators had a really low initial covariance, meaning the con-
fidence in the initial guess was high, and a poor initial SOC guess was chosen, it is clear
that high SOC RMSE occurred. This was likely due to the convergence becoming a lot
slower when the initial covariance is set really low. From the plots, it is also observed that
the MHE and SPKF had a slightly better performance than the EKF if a zero SOC initial
guess is set. On the opposite, the EKF had better performance if a 100 % initial SOC is
set. Notice how much larger the errors became if the initial covariance value was below
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7 Discussion 7.1.2 Influence of cell chemistry

⇠ 10�5.

The estimated output of the estimators for all cell-model combinations was also very sim-
ilar, and overall accurate. When assuming perfect measurements with or without resting
periods, the output voltage estimation results were below 4 %, and as low as ⇠ 1 % when
using the 1RC model or the ESC model. When applying noisy measurements as inputs,
these errors increased somewhat, as expected. One exception from accurate output volt-
age estimates is found in Table 6.14 for the MHE. Here the estimation error was much
higher than the rest. This was due to the system constraints included in the MHE, which
imposed a lower SOC bound of zero, forcing the estimated output to settle at the cor-
responding OCV. This is verified in e.g. Figure 6.28, where the EKF and SPKF SOC
estimates reached below zero, whereas the MHE SOC estimates halted at zero.

Due to the choice of using multiple shooting when implementing the MHE, it was able to
provide load current estimates. In simulations 1 and 3, the MHE estimated the battery load
current with a very low estimation error, especially for the NMC cell. Both the RMSE and
MAE were below 0.5 % for all cell-model combinations, which can be verified from e.g.
Table 6.5 and Table 6.15. In simulation 2 when the measurements were corrupted by heavy
noise, the results were poor with estimation errors around 20 %. Hence, under heavy noise
on measurements, the MHE did not provide trustworthy load current estimates.

In the first simulation case, the estimators’ average computation time per iteration was
logged to compare their relative running times. In Table 6.6 it is obvious that MHE was
computationally expensive, being approximately 1000 times slower than the Kalman fil-
ters. The difference in computational cost for the EKF and SPKF was negligible. Thus
it can be argued that there is no incentive to choose the MHE above the simpler Kalman
filters for the SOC estimation problem, other than the fact that the MHE is able to handle
system constraints during estimation. Bearing in mind the theoretical and practical com-
plexity of the SPKF, it may be reasonable to state that EKF was the best-performing state
estimator by a small margin. It should be noted that tuning could have changed the out-
come somewhat. Also, the implementation of a UKF, which has more tuning parameters
than the CDKF, could have shown better results.

7.1.2 Influence of cell chemistry
In general, SOC estimation for the LFP cell was much more troublesome than for the
NMC cell. The RMS SOC estimation error did not go lower than 2.49 % for any of the
LFP models with any of the inputs. One thing to notice here was that estimation accuracy
increased once the estimators were in the lower SOC range, where the OCV-SOC curve
was more nonlinear and not as flat. This observation agrees with the remarks made on the
observability requirements for the given ECMs in Section 5.4. It can be seen in Figure 6.4
that the LFP OCV derivative curve over the SOC range ⇠ 15 % - 0.95 % often is close to
zero and even crosses zero on multiple occasions. This induces weakly observable modes
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and likely also unobservable modes for the LFP models, which causes decreased SOC esti-
mation performance. More intuitively this can be explained by the fact that a small change
in OCV voltage for the LFP cell causes a large change in SOC. Thus if the OCV-SOC
relationship is not very accurate, SOC estimation error is expected.

The estimation results for the NMC cell were overall very accurate. In all test scenarios,
all three estimators managed to achieve a SOC estimation error below 3%, and as low as
⇠ 0.5 % when using the 1RC model. When compared to the LFP cell, this was reasonable
due to the more nonlinear, distinctive, and steeper OCV-SOC curve, which likely enables
a higher degree of observability for the NMC-based models. Intuitively, a monotonic and
steeper OCV-SOC curve yields more room for error because a small error in OCV corre-
sponds to a small error in SOC. Thus any error in OCV does not heavily propagate into
the following SOC estimates.

7.1.3 Model comparison
When evaluated over all three simulation cases and both cell types, the 1RC model gave
the best and most consistent SOC estimation results. Especially in simulation case 2 with
heavy noise on the measurements, the 1RC model gave more accurate SOC estimates by
some distance, highlighting its possibly superior robustness over the other models against
noise. It can be argued that the use of the average OCV-SOC curves provided sufficient
coverage for errors introduced by voltage hysteresis. The overall good performance of the
1RC model highlights the significance of modeling the diffusion dynamics in a LIB. This
argument is based on the notable increase in SOC estimation accuracy when compared to
using the R model, which neglects the slow diffusion dynamics. That being said, the ESC
model also performed well with certain exceptions. These exceptions were more extreme
for the LFP cell, where the ESC model performed inconsistently with large variations.

In simulation case 3 in Section 6.4.3, the steady-state estimation performance of the esti-
mators was looked into. For the LFP cell, as seen in Figure 6.25, the estimated initial SOC
of the model was around 70%. From the initial voltage measurement and the correspond-
ing voltage on the average OCV-SOC curve, it could be verified that this in fact mapped to
that particular SOC. Thus using the average SOC curve instead of the discharge or charge
OCV curves lead to an initial SOC estimation error of around 10%. Here it should be
noted that the previous sign of the load current in the ESC model was unknown, so the
hysteresis elements in the model were not able to counter the hysteresis effect initially. In
the middle resting period, the last sign of the current was known, and therefore the smaller
deviation in SOC could be caused by the activated hysteresis elements in the model. At
lower temperatures where nonlinear hysteresis is a more significant factor [30], it can be
argued that the ESC model is beneficial to use, in particular for LFP cells. One thing to
notice in the scenario in the zoomed-in window in Figure 6.25. Further, it was noted that
in simulation 3, applying zero load current to the ESC model did not seem to cause any
major observability issues, as suggested in Section 5.4.
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The best-performing model for the LFP cell over all the simulations was actually the R
model during US05 cycles in Section 6.4.1. This is however in contrast with the trend
shown during FUDS cycles, where it performed the worst. In fact, all the SOC estimation
results for the LFP cell were inconsistent based on the model choice for simulation 1.
However, the performance during FUDS cycles is more in line with trends shown in the
other two simulation cases, where the 1RC model showed the most consistency. This
is sensible since these were also based on the FUDS cycles with added noise or resting
periods. The reason for the difference in estimation results during US06 cycles for the LFP
cell might be the difference in demanded power from the LIB. The FUDS cycles simulate
urban city driving and the US06 simulates more consistently aggressive and more power-
demanding highway driving, hence the difference in demanded power combined with a
very flat OCV curve may have been the cause of this large discrepancy. For the NMC cell,
all models followed the same trends during both cycles.

7.2 Limitations
The limitations of the work in this thesis are a few. Temperature is a factor that impacts
the accuracy of SOC estimation, and all experimentation conducted in this thesis has been
performed with the assumption of a constant ambient temperature (25 �C) for the LIB
cells. The OCV-SOC curves change as temperature changes, and it is important that this is
accounted for if any state estimator is to be readily implemented in a BMS [21]. As men-
tioned earlier, nonlinear hysteresis, for instance, is more significant at lower temperatures.

For model-based estimation, the importance of model identification should not be under-
estimated. Referring to the remark made on model identification in Section 5.3, it was
observed that depending on what SOC range the model identification was performed over,
different model parameters were obtained. The final parameter values were also equally
dependent on their initial values before applying the nonlinear regression method. This
was especially true for the ESC model, which contained 6 model parameters and was the
only model with a nonlinear state equation. Thus it may be the case that some optimiza-
tion of the model identification procedure used herein could have resulted in an increased
estimation performance. One should be aware that this involves the risk of overfitting the
models [21].

7.3 Further work
Due to the broad scope of this thesis, this section mentions some of the areas further work
can focus on. These topics are mentioned in a recent study in [4] as challenges that are
still relevant in Battery Management Systems in 2023.

Further work can include a LIB cell�s dependence on temperature in the modeling, and
evaluate the estimators’ performance across a range of different temperatures. These are
more realistic circumstances for the battery. Moreover, the parameters in the models used
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7 Discussion 7.3 Further work

herein are in reality time-varying. This means that a BMS should be able to update the
parameters in real time along the lifespan of the LIBs. This is called co-estimation since
a state estimator estimates the internal states and important model parameters in parallel.
This is a difficult task due to the nonlinear and noise-sensitive behavior in LIBs. In EV
applications, temperature and noise variations can be significant.

Moreover, further work can with benefit include state estimation of the other important
internal states in the battery. These are for example the cell or battery’s state of health
(SOH), state of power (SOP), and state of energy (SOE). Many of these states depend on
the SOC of the battery, which has motivated the use of joint estimation techniques, which
can be further developed [4].

On another note, further development of the estimators themselves may also be interesting.
The NLP in the MHE may be formulated in many ways, as for instance in [13]. Hence
different formulations of the mathematical program to be solved each iteration could be
further investigated. This includes ways of approximating the arrival cost, where alterna-
tives to extended Kalman filter covariance updates have been looked into [54].
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Conclusion

This master thesis has presented a comparison of the EKF, SPKF and MHE for SOC
estimation using nonlinear ECMs for two different LIB cell chemistries. The two cell
chemistries were the NMC cell and the LFP cell which differed significantly in open-
circuit voltage characteristics. The ECMs were namely the R, the 1RC, and the ESC
model, listed in order of increasing complexity. The estimators demonstrated a compa-
rable and very similar SOC estimation performance, with SOC RMS estimation errors
reaching as low as 0.5 % for an NMC cell using a 1RC or ESC model, and 2.5 % for an
LFP cell using an R model assuming perfect measurements. Overall the estimation error
increased somewhat for the estimators under the impact of noisy measurements or inputs
with long resting periods. The MHE required an average computation time per iteration
1000 times higher than that of the Kalman filters, highlighting the computational complex-
ity introduced by solving an NLP for every iteration in the MHE. Based solely on these
results, other than providing system constraint handling, there would be low motivation for
using the MHE above the EKF or SPKF for SOC estimation. Thus, due to the difference in
theoretical complexity for the EKF and SPKF and the very similar estimation results, it can
be argued that the EKF was marginally the best-performing estimator. On another note, the
SOC estimation for LFP cells was evidently more difficult than for NMC-type cells. This
was likely due to the flat OCV-SOC curve imposing observability issues on the LFP-based
ECMs. When comparing the influence of model choice, the 1RC model outperformed
the simpler R model for SOC estimation accuracy overall. The performance relative to
the ESC model was on occasion comparable, but sometimes also better, especially with
noise-corrupted measurements. Thus it is reasonable to assume that the 1RC model was
the better-performing model. One discrepancy was for the LFP cell during US06 cycles,
where the R model outperformed the other two by some distance, indicating that the type
of dynamic load profile is of significance for SOC estimation in LFP cells.
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