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Executive summary

This research aims to estimate the growth states of the cultivated kelp species
Saccharina latissima.

The escalating trend of kelp farming in Norway calls for advanced knowledge
and potential solutions in the areas of modeling and automation, intending to en-
hance production scalability and efficiency in the seaweed aquaculture industry.
An established growth model for Saccharina latissima offers application poten-
tial in resolving aquaculture-related issues, including assessing nutrient absorption
capabilities and evaluating kelp’s potential as a bioenergy production resource. En-
hancing the accuracy of state estimation for growth is a subject of interest, as it is
crucial for making the growth model more robust and refining the precision of its
predictions.

The growth states in this model are the area, nitrogen, and carbon content of
the kelp. The outcomes of this thesis illustrate that an ensemble Kalman filter can
beneficially be used to estimate these states. Moreover, the ensemble Kalman filter
demonstrated proficiency in estimating some model parameters and enhancing the
precision of the kelp growth predictions.

The twin experiment investigated the model’s theoretical aspects and filter im-
plementation. For precise growth estimates, all three states should be measured
every other week. Once this is achieved, obtaining an even better estimate is pos-
sible by including parameter estimation for the key model parameters related to
uptake, photosynthesis, and biomass development.

From a practical perspective, when only measurements of the frond area are
available, it would be beneficial to include parameter estimation for the parameters
related to biomass development. The precision of the prediction weakens towards
the end of the growth period, suggesting the need for more frequent measurements
in this part.

To summarize, the findings of this project indicate that state estimation via
the ensemble Kalman filter effectively enhances the accuracy of growth estimates.
This study can also serve as a starting point for real-time estimates of kelp growth
for Saccharina latissima.
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Samandrag

Denne forskinga har som mål om å estimere veksttilstandane til den dyrka
tarearten Saccharina latissima.

Den auka trenden for taredyrking i Noreg stiller krav til avansert kunnskap og
potensielle løysingar innan modellering og automatisering. Dette med intensjon
om å forbetre produksjonskapasiteten og effektiviteten i oppdrettsnæringa av tang.
Ein etablert vekstmodell for Saccharina latissima byr på moglegheiter for å løysa
problemstillingar knyta til akvakultur, inkludert vurdering av næringsopptaksevner
og evaluering av taren sin levedyktigheit som ein ressurs for bioenergiproduksjon.
Det er ønskeleg å forbetre nøyaktigheita i estimata av tilstandane for vekst for å
gjere modellen meir robust, og samt auke presisjonen i predikasjonane.

Tilstandane for vekst i denne modellen er areal, nitrogen og karbon. Resultata
frå dette prosjektet viser at eit ensemble Kalman-filter kan fordelaktig bli brukt til å
estimere desse tilstandane. I tillegg klarte filteret å estimere nokre av parameterane
for modellen. Dette resulterte også til betre predikasjonar av tareveksten.

Tvillingeksperimentet vart nytta for å undersøke dei teoretiske aspekta ved
modellen og implementasjonen av filteret. For nøyaktig predikasjon av vekt bør
alle tre tilstandane målast annankvar veke. Når dette er oppnådd, er det mogleg å få
eit endå betre estimat ved å inkludere parameterestimering for nøkkelparameterane
relatert til opptak, fotosyntese og biomasseutvikling.

Frå eit praktisk synspunkt, når berre målingar av bladområdet er tilgjengelege,
vil det vere fordelaktig å inkludere parameterestimering for parameterane relatert
til biomassen. Presisjonen av predikasjonane svekkast mot slutten av vekstperio-
den, noko som tydar på at det er eit behov for hyppigare målingar i denne delen.

For å summere opp, indikerer funna i dette prosjektet at tilstandsestimering
via ensemble Kalman-filter vil effektivt forbetra nøyaktigheita av vekstpredikasjo-
nane. Dette studiet kan også fungere som eit utgangspunkt for sanntids tilstand-
sestimering av tarevekst for Saccharina latissima.
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1
Introduction

This section introduces the problem that has been investigated in this project. Parts
of section 1.1 are restated material from the project thesis, with some minor mod-
ifications incorporated [37].

1.1 Background

Cultivation of kelp has become a new investment area within aquaculture in Nor-
way, with the first permit issued in 2014 [16]. The UN Food and Agriculture
Organization reports that global seaweed production reached 34.7 million tons in
2019, predominantly produced in Asian countries like China and Indonesia [12].
Compared to Asia, the production volume and the number of species in seaweed
cultivation are far behind here in Norway [20]. Nevertheless, interest in seaweed
cultivation is rapidly expanding. There are 539 permits for macroalgal cultivation
distributed across 105 locations and 23 companies in Norway [16]. Predictions
state that kelp farming in Norway alone will reach 20 million tons by 2050, mark-
ing a substantial increase from the 180 tons produced in 2021 [16][34].

There are several reasons for increasing kelp production. Kelp serves as a
potential solution to climate change and ocean acidification, given its capability
to absorb CO2 and its role in mitigating coastal eutrophication by removing extra
nutrients from water caused by agricultural, industrial, or fish farming activities.
Cultivated kelp can also contribute to enhancing marine habitats and promoting
biodiversity. Moreover, kelp finds several commercial applications, ranging from
bioenergy to food, cosmetics, material for packaging, and pharmaceuticals [4][38].

In the past decade, expertise in cultivating and harvesting seaweed for various
applications has significantly advanced [11][43]. The overarching objective has
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1 Introduction 1.1 Background

been to establish a Norwegian bio-economy centered around cultivated seaweed
[42]. Comprehensive understanding of the growth potential and quality of S. latis-
sima along Norway’s extensive coastline would aid farmers in making informed
decisions regarding deployment and harvest locations and timings to maximize
production while minimizing losses. Several initiatives have been implemented
to achieve this goal, such as establishing the Norwegian Test Center for Seaweed
Cultivation and Utilization Technologies, Norwegian Seaweed Technology Center
(earlier RI seaweed), in 2021. This research infrastructure, operated by SINTEF
AS and NTNU, aims to support the Norwegian industry and public sector in cre-
ating a new economy based on seaweed cultivation and processing. As part of this
effort, test facilities will be built, three at sea and two on land. Norwegian Sea-
weed Technology Center aims to advance technology related to industrial seaweed
cultivation, harvesting, processing, and applications in Norway [2][39][18].

Furthermore, in July 2022, SINTEF, DNV, Equinor, and Aker BP collaborated
to initiate the world’s first pilot project focused on active, nature-based carbon cap-
ture in marine environments. The objective is to develop technology and method-
ologies to capture several million tonnes of CO2 utilizing kelp [14].

Additionally, a notable effort in Norway is displayed in the Green Platform
(GP) Seaweed project, led by SINTEF Ocean. The Research Council of Norway
granted this initiative 50 million NOK as part of the Green Platform Initiative. It
aims to enhance technology and knowledge concerning the expansion and mod-
ernization of kelp farming and to foster the development of new, environmentally
friendly products derived from farmed kelp for use in blue-green value chains.
The objectives further include expanding kelp cultivation’s growth and position-
ing Norway as a global leader in kelp and kelp cultivation. The main emphasis
is on products within four market segments: food, animal feed, substitutes for
biodegradable plastic, and fertilizers/biocarbon [41].

Numerous challenges must be tackled to establish a novel marine industry
around cultivated kelp. To this date, Norwegian companies have yet to possess
extensive expertise in kelp farming, making it crucial to bridge the knowledge gap
in the initial stages. As the industry expands, there will be a growing demand for
enhanced knowledge and automation in areas such as seedling production, deploy-
ment, monitoring, harvesting, and storing large quantities of biomass. Optimizing
the location of kelp farming to maximize biomass production will also be crucial.
This can be accomplished by utilizing kelp growth models and actual environ-
mental measurements or by employing ocean models like SINMOD [27]. If the
ideal location for kelp farming lies offshore, it will pose additional challenges and
require more advanced technology [35]. To address the increasing demand for
kelp and the associated knowledge requirements, developing effective solutions
for modeling and automating kelp farming is vital for scaling up and optimizing

2



1 Introduction 1.2 Problem description

the industry.

1.2 Problem description

SINTEF Ocean has already developed a dynamic system that is being used to
simulate growth and biomass in kelp aquaculture. It is known that some of the
most important environmental variables for kelp growth are light, temperature,
salinity, and nutrient concentrations [9]. This model can be run using measured
and simulated environmental conditions as input data. During the project thesis
conducted in autumn 2022, the model’s sensitivity was examined regarding the
initial values, parameters, and input values [37]. This thesis, however, aims to
utilize an ensemble Kalman filter for model correction and parameter estimation
through measurements. The choice of which parameters should be estimated will
be based on the sensitivity analysis conducted in the project thesis. The objectives
for achieving this task are listed below.

• Implementation of the ensemble Kalman filter and selection of parameters
for estimation.

• Test the implementation using a twin experiment where synthetic observa-
tions are generated from running the kelp model.

• Test the estimator with data from real kelp experiments.

• Assessment of the results of the state and parameter estimation.

1.3 Delimitations

In this thesis, the focus is solely on improving the state and parameter estimation
of the model without making any other adjustments.

The conclusions made apply solely to the specific growth model of Saccharina
latissima and are not relevant for any other varieties of kelp.

It is important to note that the dataset utilized for this analysis includes only
data from March to June, thus limiting the predictions to this specific time range.

The data represent Trøndelag exclusively, meaning that the conclusions drawn
from this study only apply to this region and no other areas in Norway. While
some similarities may exist, and a certain degree of knowledge can be transferred,
this transferability is expected to be limited.

The ensemble Kalman filter was the only technique employed for estimating
the states and parameters. Alternative methods were not explored, which may have
yielded more accurate estimates.

3
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Another delimitation of the project is that the perturbations introduced to the
model are intended to account for the uncertainty in the model rather than address-
ing the biological diversity within kelp.

1.4 Structure of the report

The organization of this report is as follows. Section 2 provides the study’s the-
oretical foundation, containing topics such as farmed kelp, Saccharina latissima,
data assimilation, Monte Carlo simulation, ensemble Kalman filter, and the growth
model.

Section 3 outlines the methodologies employed in this project, containing de-
tails about the software utilized, the dataset, the growth model implementation,
and the configuration of the ensemble Kalman filter.

Section 4 presents the project outcomes, which are further analyzed in Sec-
tion 5 along with recommendations for future research. Section 6 summarises the
findings to conclude the report.

4



2
Theory

This section introduces the foundational theoretical concepts upon which this project
is built. Section 2.1, 2.2.2, and 2.3 are restated material from the project thesis,
with some modifications incorporated [37].

2.1 Kelp

Kelp is a brown algae made of stipes and lamina and can be found all along the
coast of Norway, including Svalbard. The most common species include Lami-
naria cloustonii, Laminaria digitata, and Saccharina latissima. These submarine
forests live in cool waters, close to shore, and from 1 meter to 30 meters depth
[1]. The combination of high kelp productivity in environments with the potential
for high disturbance rates can make these forests relatively short-lived. Entire kelp
beds can be eliminated by thermal events, storms, or outbreaks of herbivores and
disappear within a year, but can also return nearly as quickly [47].

2.1.1 Saccharina latissima

Saccharina latissima is among Norway’s most common kelp species. It is distinct
from its relatives in that it has a long lamina with folds along the edge and a
relatively wide and uneven middle section. The lamina of S. Latissima can grow
up to 4 meters in length and 30 cm in width [21]. Approximately 50% of the
world’s natural sugar kelp beds are located along the coast of Norway [32].

The sporophyte of S. latissima consists of a lamina, stipe, and haptera. The
lamina grows from an intercalary meristem located between the lamina and the
stipes [19]. The zoospores are released from the sporangia of the kelp and de-
velop into male and female gametophytes. Male gametophytes are thin and heavily
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2 Theory 2.1.2 Farmed kelp

branched, while females have thicker and less branched cells. Here, the kelp enters
the reproductive phase induced by optimal conditions like light and temperature.
The female gametophytes produce eggs, while the male gametophytes produce
spermatozoids with two flagella. The egg release pheromone, which attracts the
spermatozoids. It then swims over and fertilizes the egg [33]. The fertilized egg
then develops into a sporophyte. The life cycle of S. latissima is visualized in
Figure 2.1.

Figure 2.1: Life cycle of Saccharina latissima [45].

2.1.2 Farmed kelp

In farmed kelp, the first half of the life cycle mentioned in section 2.1.1 is executed
in a controlled environment in the laboratory. This enhances the prospects for op-
timal growth and survival [17]. Spores are gathered from a mature sporophyte and
then seeded onto ropes. In the study by Broch and Alver, the seedlings measured
1-5 mm before the ropes were deployed into the sea [6]. Typically, kelp is posi-
tioned between 2 and 15 meters deep in the ocean and harvested once it achieves
the desired length. S. Latissima experiences its fastest growth rate from late winter
to spring, at approximately 1.1 cm/day. As a result, kelp is frequently deployed
into the sea in late autumn [46]. However, according to Forbord, cultivation in
Norway is optimal during autumn, winter, and spring. S. Latissima is commonly
deployed in September and February and harvested before summer, usually in May

6



2 Theory 2.1.2 Farmed kelp

or June [19]. A visualization of the production cycle of Laminaria japonica can be
seen in Figure 2.2. This figure is to some extent alienable with S. Latissima. The
phases of the production cycle of S. Latissima can however be seen in Figure 2.3

It is customary to take measurements to know when to harvest the kelp. The
most common methods for assessing seaweed growth, according to Forbord, are
frond elongation or biomass increase between two registration points. Frond elon-
gation involves measuring length by tracking the movement of a point in the meris-
tem over time or measuring the entire lamina’s length from above the stipe to the
distal end. Measuring frond elongation does not necessitate biomass destruction
and can be performed on seaweed still attached to the cultivation lines. In con-
trast, measuring the total biomass yield requires weighing the cultivation, which is
challenging while the biomass remains attached to the cultivation lines. Although
assessing the dry weight of the kelp is more accurate, it necessitates harvesting
and destroying the biomass, which is not always feasible [19]. The current method
for measuring the carbon and nitrogen content in the kelp involves harvesting and
destroying the biomass [44].

Figure 2.2: Production cycle of Laminaria japonica [13].
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2 Theory 2.2 Data assimilation

Figure 2.3: Phases of kelp production. Adapted from Broch [7].

2.2 Data assimilation

Data assimilation (DA) is a technique used to combine observation data and the
underlying dynamical principles governing the system to provide an estimate of
the system’s state which is better than what could be obtained using just the data
or the model alone. Several different data assimilation methods exist, such as
the Cressman analysis method, the optimal interpolation method, the three-/four-
dimensional variational analysis, and the Kalman filter (KF). In all these methods,
the final estimate is chosen to minimize the uncertainty of the final estimate [49].

2.2.1 State and parameter estimation

Evensen states that the parameter estimation problem for a dynamical model can
generally be formulated as determining the joint probability density function of the
parameters and model state, given a set of measurements and a dynamical model
with known uncertainties [15].

State estimation refers to employing a system’s input and output measurements
to conclude the current values of its internal variables, also called the system’s
state. It uses available data to infer the system’s status at a specific point in time.
State estimation can be a practical and cost-effective substitute for real measure-
ments. The more information the controller has about the process it manages, the
more precise its control can be. The Kalman Filter is a crucial algorithm for state
estimation [25].

Parameter estimation involves determining the values of unknown parameters
in a mathematical model based on observed data. It is frequently used to enhance
a model’s accuracy or better understand a system’s behavior. This is particularly
important when the true values of the parameters are unknown, and the model is
used to make predictions or optimize an aspect of the system’s performance [36].

2.2.2 Monte Carlo simulation

Monte Carlo simulation refers to system simulation using random sequences as
inputs. As explained by Brown and Hwang, such methods are often helpful in un-
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derstanding the behavior of stochastic systems that are not amenable to analysis by
usual direct mathematical methods. These methods involve setting up a statistical
experiment that matches the physical problem of interest, repeating the experiment
repeatedly with typical sequences of random numbers, and finally, analyzing the
experiment’s results statistically [10]. It can also be used to estimate uncertainty in
the problems using statistical sampling [15]. As an example, the input can be gen-
erated by N inputs from a Gaussian distribution (Equation 2.1) and further asses
the outputs from the simulation by, for example, the expected value (Equation 2.2).

X ∼ N (µ, σ2) (2.1)

E(X) =
1

N

N∑
n=1

xn (2.2)

2.2.3 Ensemble Kalman filter

The Kalman filter is an algorithm designed to estimate the state of a linear system
based on measurements observed over time. This project exclusively utilizes an
ensemble Kalman filter (EnKF) for state and parameter estimation due to the char-
acteristics of the growth model. Consequently, the EnKF is the only filter that will
be presented.

The EnKF is employed for large-scale nonlinear systems. The basic and ex-
tended Kalman filter pose challenges for these systems, often stemming from ex-
tensive computation time and complexity in managing nonlinear dynamics. The
main limitation usually involves the computation of the error covariance matrix.
Within the EnKF framework, the estimation of this covariance matrix (denoted as
P ) is facilitated through both prediction and analysis based on ensemble statistics.

The EnKF is a method developed by Geir Evensen and is often used for weather
forecasting, oceanography, and oil reservoir management. The theoretical formu-
lation of the EnKF will be described in this section. A more detailed explanation
can be found in Evensen’s book [15]. This explanation, however, including equa-
tions, is based on the description of the filter provided by Houtkamer and Zhang
[23].

The EnKF is a sequential data assimilation scheme that integrates observation
data into a dynamical system obeying Kalman filter theory and the Monte Carlo
method [15]. The EnKF can be regarded as an approximation of the Kalman fil-
ter, wherein the state distribution is characterized by an ensemble drawn from the
distribution. This ensemble is advanced through time and updated as new data
emerges. The ensemble representation is a dimensionality reduction technique,
enabling computational feasibility for high-dimensional systems. EnKF maintains
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2 Theory 2.2.3 Ensemble Kalman filter

and processes N vectors (ensemble members) with a length of n, and the estimated
Kalman gain can be computed efficiently. In theory, as N → ∞, the EnKF con-
verges to the (exact) Kalman filter for linear Gaussian models, but large values for
N are typically infeasible in real-world applications [26].

Within the EnKF framework, there are two primary approaches for parameter
estimation. The first approach is state augmentation, which involves treating the
parameters as time-varying quantities with slight artificial evolution noise. The
states and parameters are combined in an augmented state vector, and an EnKF
is run on this augmented state vector to obtain posterior estimates of states and
parameters at each time, t [26].

The second approach for parameter estimation within the EnKF framework re-
lies on constructing approximated likelihood functions using the output from the
EnKF. Parameters are estimated through maximum likelihood or Bayesian meth-
ods. This method typically performs well for instances with relatively few param-
eters. Still, additional work is needed for scenarios where both parameters and
states are high-dimensional [26].

The EnKF updates a previous estimate of the state, called forecast, denoted
as xf (t), at a certain time t, by incorporating new observational data, yo. This
assimilation generates an improved estimate of the state vector, xa(t), as depicted
in Equation 2.3. The Kalman gain matrix, K, assigns appropriate weight to the
observations, which come with an error covariance R, and to the forecast values,
associated with an error covariance P f , as shown in Equation 2.4. The forward
operator, H, maps from the model space to the observation space. Finally, a fore-
cast model, M, is needed to transport the new estimate xa(t) to the following
analysis time as in Equation 2.5 [23].

xa(t) = xf (t) +K[yo −Hxf (t)] (2.3)

K = P fHT (HP fHT +R)−1 (2.4)

xf (t+ 1) = M[xa(t)] (2.5)

In a Monte Carlo implementation, the ith element of an N -element analysis
ensemble is derived by assessing Equation 2.3. This is done by applying a vector of
observations, yo

i , that has been randomly altered and by utilizing a corresponding
ensemble member from the forecast, as illustrated in Equation 2.6.

xa
i (t) = xf

i (t) +K[yo
i −Hxf

i (t)], i = 1, . . . , N (2.6)
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2 Theory 2.2.4 Twin experiment

Similarly, to obtain a member of the forecast ensemble valid at time t + 1,
Equation 2.5 can be used with a corresponding member of the analysis ensemble
and a realization of the forecast model M, seen in Equation 2.7.

xf
i (t+ 1) = Mi[x

a
i (t)], i = 1, . . . , N (2.7)

The ensembles, which are produced by evaluating Equation 2.6 and 2.7, can
be utilized to estimate the analysis error covariance matrix, denoted as P a(t), and
the forecast error covariance matrix, represented as P f (t).

In an EnKF, there is no requirement for a comprehensive covariance matrix
such as P f in the model state space. Instead, when calculating the Kalman gain,
K, as displayed in Equation 2.4, the method relies on ensemble-based approxima-
tions of P fHT and HP fHT , as illustrated in Equation 2.8 and 2.9.

P fHT =
1

N − 1

N∑
i=1

(xf
i − xf )(Hxf

i −Hxf )T (2.8)

HP fHT =
1

N − 1

N∑
i=1

(Hxf
i −Hxf )(Hxf

i −Hxf )T (2.9)

Here xf and Hxf are given by Equation 2.10 and 2.11.

xf =
1

N

N∑
i=1

xf
i (2.10)

Hxf =
1

N

N∑
i=1

Hxf
i (2.11)

2.2.4 Twin experiment

In the context of EnKF, a twin experiment is a simulation-based study designed
to evaluate the performance of the EnKF algorithm within a controlled setting,
wherein the true system state is known. This involves running two parallel exper-
iments that are identical, with the exception that one employs the actual system
state while the other utilizes the estimated state derived from the EnKF [48].

In this study, the twin experiment is used to investigate the filter in a controlled
environment, which is not possible in real-world scenarios because the true state of
the system is not known. It makes it possible to investigate the parameter tuning of
the assimilation algorithm to understand how different settings impact the results,
as well as give a better understanding of how model and observation errors affect
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2 Theory 2.3 The growth model

the assimilation results. These insights can then be used to refine the filter and
improve its performance in real-world applications.

2.3 The growth model

The mathematical model used in this project is a dynamical model for simulating
the growth of the brown algae Saccharina latissima. It is developed by Broch and
Slagstad [9]. All the following equations, states, and parameters are collected from
their report unless specified otherwise, and a summary of these equations can be
found in Table 2.1, as well as an overview of the model variables in Table 2.2. In
this thesis, temperature, irradiance, nutrient concentration, and current are referred
to as the environmental or input variables.

The estimations of the model parameters can be seen in Table 2.3. These values
have been collected and estimated from the literature but may not be specifically
tailored to the Norwegian environment. In some cases, there is limited data avail-
able on these values, which can contribute to uncertainty in the estimates. The
same can be concluded about the initial values of the model. Some key parameters
in the sensitivity analysis (SA) will be further presented in subsection 2.3.10.

A schematic representation of the model is shown in Figure 2.4. This illustra-
tion reveals that carbon and nitrogen reserves are the most important factors for
kelp growth.
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2 Theory 2.3 The growth model

Figure 2.4: Schematic overview of the growth model. Adapted from Broch and Slagstad
[9].
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Table 2.1: Model variables and calculated quantities. Adapted from Broch and Slagstad
[9].

Eq. Description

2.12 dA/dt = (µ− ν)A Rate of change of frond area

2.13 µ = fareafphotoftempmin (1-Nmin/N, 1−Cmin/C) Specific growth rate

2.14 farea(A) = m1 exp(−(A/A0)
2) +m2 Effect of size on growth rate

2.15 ftemp(T ) =


0.08T + 0.2 for − 1.8 ≤ T < 10

1 for 10 ≤ T ≤ 15

19/4− T/4 for 15 < T ≤ 19

0 for T > 19

Effect of temperature on growth
rate

2.16 fphoto(n) = a1(1 + sgn(λ(n))|λ(n)|1/2) + a2 Seasonal influence on growth
rate

2.17 ν(A) = 10−6 exp(εA)

(1+10−6(exp(εA)−1))
Frond erosion

2.18 dN/dt = k−1
A J − µ(N +Nstruct) Rate of change in nitrogen re-

serves

2.19 J = Jmax
X

KX+X
( Nmax−N
Nmax−Nmin

)(1−exp(−U/U0.65) Nitrate uptake rate

2.20 dC/dt = k−1
A (P (I, T )(1− E(C))−R(T ))

− (C + Cstruct)µ
Rate of change in carbon re-
servese

2.21 P (I, T ) = PS(1− exp(− αI
PS

)) exp(− βI
PS

) Gross photosynthesis

2.25 R(T ) = r1 exp(
TA
T1

− TA
T
) Temperature dependent respira-

tion

2.26 E(C) = 1− exp(γ(Cmin − C)) Carbon exudation
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2 Theory 2.3 The growth model

Table 2.2: Model variables and calculated quantities. Adapted from Broch and Slagstad
[9].

Symbol Unit Description

A dm2 Frond area, state variable

C gC(gsw)−1 Carbon reserves, relative to Ws, state variable

N gN(gsw)−1 Nitrogen reserve, relative to Ws, state variable

µ day−1 Specific growth rate (area), derived variable

Ww g Total wet weight of sporophyte, derived variable

Wd g Total dry weight, derived variable

Ws g Dry weight of the structural mass, derived variable

β gO2dm−2h−1(µmol
photons m−2 s−1)−1

Photoinhibition parameter, auxiliary variable

Ps gO2dm−2h−1 Photosynthesis parameter, auxiliary variable

I µmol photons s−1m−2 Irradiance (PAR), environmental variable

T ◦C Water temperature, environmental variable

U ms−1 Water current speed, environmental variable

X µmol N m−3 Substrate nutrient concentration, environmental vari-
able
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2 Theory 2.3 The growth model

Table 2.3: Model parameters. Adapted from Broch and Slagstad [9].

Symbol Value Unit Description

A0 6 dm2 Growth rate adjustment parameter

α 3.75 ×10−5 gC dm−2h−1

(µmol
photons m−2

s−1)−1

Photosynthetic efficiency

Cmin 0.01 gC(gsw)−1 Minimal carbon reserve

Cstruct 0.20 gC(gsw)−1 Amount of carbon per unit dry weight of structural
mass

γ 0.5 gCg−1 Exudation parameter

ε 0.22 A−1 Frond erosion parameter

Isat 200 µmol photons
m−2 s−1

Irradiance for maximal photosynthesis

Jmax 1.4×10−4 gNdm−2h−1 Maximal nitrate uptake rate

kA 0.6 gdm−2 Structural dry weight per unit area

kdw 0.0785 Dry weight to wet weight ratio of structural mass

kC 2.1213 g(gC)−1 Mass of carbon reserves per gram carbon

kN 2.72 g(gN)−1 Mass of nitrogen reserves per gram nitrogen

m1 0.1085 Growth rate adjustment parameter

m2 0.03 Growth rate adjustment parameter

µmax 0.18 day−1 Maximal area specific growth ratio

Nmin 0.01 gN(gw)−1 Minimal nitrogen reserve

Nmax 0.022 gN(gw)−1 Maximal nitrogen reserve

Nstruct 0.01 gN(gw)−1 Amount of nitrogen per unit dry weight of struc-
tural mass

P1 1.22×10−3 gCdm−2h−1 Maximal photosynthetic rate at T = T ◦
P1

K

P2 1.44×10−3 gCdm−2h−1 Maximal photosynthetic rate at T = T ◦
P2

K

a1 0.85 Photoperiod parameter

a2 0.3 Photoperiod parameter

R1 2.785×10−4 gCdm−2h−1 Respiration rate at T = TR1

R2 5.429×10−4 gCdm−2h−1 Respiration rate at T = TR2

TR1 285 Reference temperature for respiration

TR2 290 Reference temperature for respiration

TAP 1694.4 Arrhenius temperature for photosynthesis

TAPH 25924 Arrhenius temperature for photosynthesis at high
end of range

TAPL 27774 Arrhenius temperature for photosynthesis at low
end of range

TAR 11033 Arrhenius temperature for respiration

U0.65 0.03 ms−1 Current speed at which J = 0.65Jmax

KX 4 µmol N m−3 Nitrate uptake half saturation constant
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2 Theory 2.3.1 Frond area

2.3.1 Frond area

Equation 2.12 represents the the rate of change in frond area A with respect to
time. Function µ is a gross area-specific instantaneous growth rate, and function ν
is the rate of frond loss.

dA

dt
= (µ(A,N,C, T, t)− ν(A))A (2.12)

2.3.2 Specific growth rate

The gross growth rate µ depends on size, carbon, nitrogen, temperature, and pho-
toperiod and can be seen in Equation 2.13. Here farea takes the effect of size into
account, ftemp takes temperature into account, and fphoto takes time of the year
into account.

µ(A,N,C, T, t) = fareaftempfphoto ×min(1−Nmin/N, 1− Cmin/C) (2.13)

2.3.3 Effect of size

The gross specific growth rate depends on the size of the plant. Small sporophytes
will grow relatively faster than larger ones. When the frond area is large, the
growth rate is limited, and when the frond areas are close to 0, the growth rate stays
high. A0 determines in what area the specific growth rate will drop significantly.

farea(A) = m1 exp(−(A/A0)
2) +m2 (2.14)

2.3.4 Effect of temperature

The equation for the effect of temperature is given by Equation 2.15. Here the
temperature is given in degrees Celsius.

ftemp(T ) =


0.08T + 0.2 for − 1.8 ≤ T < 10

1 for 10 ≤ T ≤ 15

19/4− T/4 for 15 < T ≤ 19

0 for T > 19

(2.15)

2.3.5 Photoperiodic effect

fphoto decreases the growth rate whenever the day length decreases and increases
when the day length increases. This is because the day length triggers changes in
the growth pattern. Equation 2.16 takes this into account.
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2 Theory 2.3.6 Apical frond loss

fphoto(n) = a1(1 + sgn(λ(n))|λ(n)|1/2) + a2 (2.16)

2.3.6 Apical frond loss

The two most dominating factors for apical frond loss are the age of tissue and
water motion. Longer laminae more easily erode than short ones. In this case, the
age of the tissue is not taken into account, but rather the size of the frond. When
the frond is very small, the erosion is negligible. The model does not consider the
water movement effect on frond erosion because little quantitative information is
available.

ν(A) =
10−6 exp(εA)

(1 + 10−6(exp(εA)− 1))
(2.17)

2.3.7 Nitrogen reserves and nutrient uptake

The total amount of nitrogen in the organism is the sum of structural and reserve
nitrogen. A fixed fraction of the structural mass is devoted to nitrogen, which is
the variable Nstruct. Reserve nitrogen is spent on the growth of the structural mass
and is the variable N . N has the maximal and minimal value Nmax and Nmin. The
total minimal nitrogen content per unit structural mass is given by Nstruct+Nmin.
The differential equation for the rate of change in nitrogen reserves is given in
Equation 2.18.

dN

dt
= k−1

A J − µ(N +Nstruct) (2.18)

The nutrient uptake rate per unit area, J , is given by Equation 2.19 where X is
the external nutrient concentration, KX is the half-saturation constant for nitrogen
uptake, U0.65 is the current speed at which the uptake is 65% of the optimal up-
take and Jmax is the maximal theoretical uptake rate under ideal conditions. The
rightmost factor is a Holling type 2 functional response. The factor in the middle
considers internal nutrient reserve concentration. The leftmost factor takes water
current speed on the uptake rate into consideration.

J = Jmax
X

KX +X

(
Nmax −N

Nmax −Nmin

)(
1− exp

(
−U

U0.65

))
(2.19)

2.3.8 Carbon reserves, photosynthesis, and respiration

The total amount of carbon is the sum of structural and reserve carbon. The frac-
tion of structural carbon to structural dry weight is Cstruct, with a minimum value
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of Cmin and no maximal value. The minimal carbon content is Cstruct + Cmin.
The differential equation for carbon is given in Equation 2.20. The function P and
R give the gross photosynthesis and respiration. E describes the exudation rate
that combines exuded and leaked carbohydrates. µ is given by Equation 2.13 and
kA and Cstruct are constants found in Table 2.3. While C is the carbon content in
that respective time step.

dC

dt
= k−1

A (P (I, T )(1− E(C))−R(T ))− (C + Cstruct)µ (2.20)

Gross photosynthesis, P , is given by Equation 2.21. I is irradiance, and α
is photosynthetic efficiency found in Table 2.3. β and PS(T ) is given by Equa-
tion 2.22 and Equation 2.23.

The photoinhibition parameter, β, is calculated by solving Equation 2.23 by
Newton’s method, with start value β0 = 1× 10−9 and ten iterations. This value is
then used to calculate Equation 2.22.

P (I, T ) = PS

(
1− exp

(
− αI

Ps(T )

))
exp

(
− βI

Ps(T )

)
(2.21)

PS =
αIsat

ln(1 + α/β)
(2.22)

Pmax =
αIsat

ln(1 + α/β)

(
α

α+ β

)(
β

α+ β

) β
α

(2.23)

The temperature also decides the maximal photosynthetic rate Pmax. We there-
fore need to include Equation 2.24, when calculating β in Equation 2.23. P1 is the
maximal photosynthetic rate at reference temperature TP1. TAP , TAPL and TAPH

are estimated Arrhenius temperatures. All of these are found in Table 2.3.

Pmax(T ) =
P1 exp

(
TAP
TP1

− TAP
T

)
1 + exp

(
TAPL
T − TAPL

TPL

)
+ exp

(
TAPH
TPH

− TAPH
T

) (2.24)

The respiration is also temperature dependent and obeys Equation 2.25. r1
is the respiration rate at the reference temperature TR1 . TAR is the Arrhenius
temperature estimated from respiration rates at TR1 and TR2 . These are constants
found in Table 2.3.

R(T ) = r1 exp

(
TA

T1
− TA

T

)
(2.25)

19



2 Theory 2.3.9 Nitrogen and carbon content

The carbon exudation rate is given by Equation 2.26. This is deducted directly
from photosynthesis. γ controls the rate at which carbohydrates are exuded, and
both Cmin and the exudation parameter are displayed in Table 2.3.

E(C) = 1− exp(γ(Cmin − C)) (2.26)

2.3.9 Nitrogen and carbon content

The nitrogen and carbon content, represented as a fraction of dry weight, are com-
puted based on Equation 2.27 and Equation 2.28, respectively. The total carbon
and nitrogen contents are calculated by Equation 2.29 and Equation 2.30. The dry
weight, Wd, is calculated according to Equation 2.31, and the structural weight,
Ws, is given by Equation 2.32.

Ncontent =
Ntotal

Wd
(2.27)

Ccontent =
Ctotal

Wd
(2.28)

Ntotal = (N +Nstruct)Ws (2.29)

Ctotal = (C + Cstruct)Ws (2.30)

Wd = kA(1 + kN (N −Nmin) +Nmin + kC(C − Cmin) + Cmin)A (2.31)

Ws = kAA (2.32)

2.3.10 Model parameters

This model’s photosynthetic efficiency, α, were selected based on literature from
Lüning [28][29], with a value slightly higher than that used in his study.

The irradiance for maximal photosynthesis, Isat, is reached when the maxi-
mal photosynthetic rate, Pmax, is achieved. Photoinhibition occurs at irradiances
higher than this value. The Isat value is taken from Bartsch et al. [3], with an
average of 215 µmol photons m−2 s−1, although the values show considerable
variability.

Jmax represents the maximal theoretical uptake rate under ideal conditions.
The maximal nitrate uptake rates for S. latissima reported in the literature vary sig-
nificantly. Broch et al. highlight values ranging from 4.6 to 14.6 µmol g dw−1h−1
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[9]. The growth model uses uptake rates per unit projected frond area, selecting
the value 10 µmol g dw−1h−1, resulting in Jmax = 1.4× 10−4 g N dm−2h−1.

kA is the structural dry weight per unit area. This value is chosen based on
literate giving the dry weight per unit area. Values range from 0.18 to 1.35 g dw
dm−2. Broch et al. obtained values of 0.89-1.46 g dw dm−2 by subtracting the
laminaran and mannitol from the results in Lüning [28]. The actual dry weight per
area may be significantly greater.

The mass of carbon reserves per gram carbon, kC , is estimated from the as-
sumption that the carbon reserves are composed, in molar amounts, of 70% man-
nitol and laminaran, 10% alginate, and 20% of the reserve is stored as carbon. It
is assumed that mannitol and laminaran exist in equal molar amounts, resulting in
that 1 gram of carbon corresponds to 2.1213 g reserves.

Nmin represents the minimal reserve nutrient (nitrogen) level, while Nmax is
the maximal nitrogen reserve. Nitrogen content lies within the range of 0.7-4.5%
of dry weight, while carbon content ranges from 19-38% of dry weight [40][3].
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3
Method

This section documents the work performed in this project and how the results
were archived. Section 3.1, 3.2, 3.3.1 and 3.3.2 are restated material from the
project thesis, with some minor modifications incorporated [37].

3.1 Software

In this thesis, the growth model and ensemble Kalman filter were implemented
using MATLAB, a versatile and powerful programming language suitable for sim-
ulating complex systems. MATLAB’s matrix calculations and data visualization
capabilities make it an ideal choice for such tasks.

3.2 Dataset

SINTEF Ocean provided the measured values for temperature, irradiance, and nu-
trient concentration. These values were used in their GENIALG report from 2021
[8]. The dataset contained measured temperature, irradiance, and nutrient concen-
tration taken every 15 minutes at four different depths, 2,5, 3, 4, and 5 meters,
from March 6th 2018 to June 13th 2018. These values represent typical values for
the growth season and are well-equipped for implementing the growth model and
developing the EnKF. The measurements are from the Seaweed Solutions farm at
Frøya, Trøndelag, Norway. In this project, only the results for 3 meters depth were
used. The development of the environmental conditions can be seen in Figure 3.1.
This figure represents the environmental conditions using daily mean temperature,
nutrient concentration, and daily total irradiance. The measurements taken every
15 minutes were used in the simulation. As shown in the figure, temperature,
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3 Method 3.2 Dataset

and irradiance increase as the season progresses while nutrient concentration de-
creases. This is due to higher temperatures promoting the growth of phytoplankton
and other microorganisms that consume nutrients, as well as increased irradiance
promoting the growth of photosynthetic organisms such as plants and algae, which
consume nutrients during photosynthesis. This results in lower nutrient concentra-
tion in the waters [5].

(a) Daily mean temperature (◦C). (b) Daily total irradiance (mmol photons
s−1m−2).

(c) Daily mean nutrient concentration (µmol N
m−3).

Figure 3.1: Daily environmental data at 3 meters depth from dataset.

The initial values for the frond area of the kelps were also provided by the
GENIALG report by SINTEF Ocean [8]. The dataset contained measurements
from five ropes, each containing ten kelp plants, resulting in 50 data points. Each
data point represents the frond area of a single kelp plant. These values can be
seen in Table 3.1.
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Table 3.1: Measured values of frond area (dm−2) of kelp.

Rope 1 Rope 2 Rope 3 Rope 4 Rope 5

0.6216 0.1757 0.8029 0.4144 0.444

0.296 0.2775 0.5698 0.8584 0.8954

0.09435 0.43735 0.1776 0.185 0.222

0.0555 0.6512 0.0888 0.4144 0.9657

0.3108 0.444 0.3552 0.1628 0.1332

0.1332 0.26825 0.1628 0.2664 0.68265

0.30535 0.111 0.4403 0.5661 0.58275

0.30525 0.666 1.073 1.2617 0.5957

0.2035 0.0888 0.3515 0.4736 0.259

0.2035 0.6993 0.3774 0.6808 0.7992

The measured values for the area throughout the season were also obtained
from the GENIALG report by SINTEF Ocean [8]. The dataset comprised mea-
surements from five ropes, with each rope containing ten kelp plants, yielding a
total of 50 data points. These measurements were conducted six times between
the beginning of March to mid-June. The progression of these 50 data points over
time can be observed in Figure 3.2. The observed value in the EnKF was deter-
mined as the average value of these 50 data points.
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3 Method 3.3 Implementation

Figure 3.2: Development of the mean value and the standard deviation of the measured
frond area of all of the five ropes.

3.3 Implementation

3.3.1 Growth model

The growth model described in section 2.3 was implemented in MATLAB. All
parameters from Table 2.3 were initially defined. Since most variables were time-
dependent, the script incorporated a loop that iterated over the duration of the
growth period. In this manner, the current values for area, nitrogen, and carbon
were employed to compute the time derivative of their respective values at each
time step.

The initial values for the model are presented in Table 3.2. A0 represents the
mean of all values, as illustrated in Table 3.1. N0 and C0 were gathered from
the GENIALG project [8]. The Forward Euler method was employed to solve the
ordinary differential equations for An+1, Nn+1, and Cn+1.
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Table 3.2: Initial values for the growth model.

State Unit Value

A0 dm2 0.4352

N0 gN(gw)−1 0.01

C0 gC(gw)−1 0.05

The Forward Euler formula can be seen in Equation 3.1. This is a first-order
numerical method for solving ordinary differential equations with a given initial
value. In this formula, Yn denotes the current time step, F symbolizes the differ-
ential equation, and h represents the time step size. The current values of A, N ,
and C at each time step were used to compute their respective rates of change.
These values and h were utilized to determine the next time step values for A, N ,
and C. The dataset mentioned in section 3.2 contained temperature, irradiance,
and nutrient measurements at 15-minute intervals. The rates of change for area,
nitrogen, and carbon were expressed in units of change per day. Consequently, h
equaled 15/1440 (since there are 1440 minutes in a day). Calculations for the rates
of change and the values of A, N , and C were carried out for each time step in the
dataset, corresponding to 9505 dates.

Yn+1 = Yn + hF (xn, yn) (3.1)

In the present simulation, fphoto was assigned a constant value of 2. This
parameter signifies the seasonal impact on the growth rate. Since only a short
period was investigated, the minor variations in this value that may occur between
March and June were insignificant and did not need to be considered.

To calculate the value of β discussed in subsection 2.3.8, the MATLAB func-
tion fminsearch was employed to identify the minimum of the function derived
by subtracting Equation 2.23 from Equation 2.24 and appending a negative sign.
fminsearch is a non-derivative technique for discovering the minimum of a mul-
tivariate, unconstrained function. It initiated with β0 equal to 1 x 10−9 and located
a local maximum for the function due to the sign alteration. The MATLAB code
presented below illustrates the application of this concept, where Pmax was defined
according to Equation 2.24.
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3 Method 3.3.2 Ensemble model

1 %% Finding the maximum value of beta
2 B = zeros(Nsample, 1);
3 B_0 = 1*10ˆ(-9);
4 for i = 1:Nsample
5 fun = @(B) -((alpha(i)*I_sat(i))/
6 (log(1+alpha(i)/B)) * (alpha(i)/(alpha(i)+B)) *
7 ((B/(alpha(i)+B))ˆ(B/alpha(i))) - P_max(i));
8 B_new = fminsearch(fun, B_0);
9 B(i) = B_new;

10 end

3.3.2 Ensemble model

Ensemble simulation was accomplished by transforming the environmental vari-
ables and initial values into vectors containing N perturbed samples of the entire
dataset. This approach enabled the creation of multiple system simulations by em-
ploying distinct input values, parameters, or initial conditions for each simulation.
The EnKF utilizes a N ensemble of state estimates, each generated by randomly
perturbing the initial estimate using a set of noise parameters. These perturbations
are a method for sampling the potential range of solutions to the system’s equa-
tions and representing the uncertainty in the model and the initial values. This
is crucial when handling high-dimensional, nonlinear systems and is not there to
address the biological diversity within the kelp.

In each time step for each of the N samples, the environmental variables tem-
perature, irradiance, and nutrient concentration, not current, were perturbed by
adding Gauss-Markov noise to the dataset, seen in Table 3.3. A Gauss-Markov
process is characterized by a noise following a Gaussian distribution that accounts
for the previous time step. One of the main properties of this process, and the pri-
mary reason for its use in this thesis, is its exponentially decreasing autocorrelation
[10].

When representing uncertainty in input values for temperature, irradiance, and
nutrient concentration, it was reasonable to assume that if an error occurred in
interpreting a value, the same error was likely to happen in the future or had already
occurred. The deviation in the Gauss-Markov process depends on the error in the
previous time step, in contrast to white noise, where the value is independent. The
autocorrelation in the Gauss-Markov process should match the expected rate of
change of the error in the input values, which was related to the rate of change of
the variables for nutrient concentration, irradiance, and temperature.

The equations for simulating the next value xt+1 of a Gauss-Markov process
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with parameters β, σ, and time step ∆t is shown in Equation 3.2. The equations
for the Gauss-Markov process were taken from the book of Brown et al. [10].

Perturbations were only added to the irradiance data during the daytime, as the
irradiance value is 0 at night.

xt+1 = fxt +
√

1− f2 N (0, σ2) (3.2)

f = e−β∆t

Table 3.3: β, σ and ∆t values for perturbations.

Environmental condition β σ ∆t

Temperature 0.4 0.708 0.0104 day−1

Irradiance 0.4 19.634 0.0104 day−1

Nutrient Concentration 0.4 0.305 0.0104 day−1

In this study, the initial values and parameters were perturbed by incorporating
Gaussian noise, as detailed in Table 3.4. The initial area was perturbed using
the mean value obtained from the measured data presented in Table 3.1. For the
parameters, a standard deviation (σ) corresponding to 20% of their initial values
was utilized for perturbation.

Table 3.4: σ values for perturbation of parameters and states.

State Non perturbed value σ

A0 0.4352 0.087

N0 0.01 0.002

C0 0.05 0.01

kA 0.03 0.006

Nmin 0.01 0.002

Jmax 1.4 ×10−4 2.8 ×10−5

α 3.75 ×10−5 7.5 ×10−6

Isat 200 40

kC 2.1213 0.04243

3.3.3 Ensemble Kalman filter

In this study, the ensemble Kalman filter was implemented to be active at each
time step where an observation was available. Without observations, the output
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variables for area, nitrogen, and carbon were predicted solely based on the math-
ematical growth model presented in section 2.3, and no correction step was per-
formed.

The article by Halvorsen et al. is used for inspiration to explain how the EnKF
was implemented [22]. The forecast ensemble consisted of N ensemble members,
each containing n state variables, which can be written as the n×N matrix, Equa-
tion 3.3. Here, the column vectors were the state vectors xi of dimension n. The
forecast step was given by adding the forecast-model error, wi, with the expecta-
tion value 0 and variance corresponding to the values in Q. The values in Q were
decided in advance. The ensemble mean was given by Equation 3.4.

xf = [x1, . . . ,xN ], xi = xa
i−1 +wi wi ∼ N (0, Q) (3.3)

E(xf ) =
1

N

N∑
k=1

xk (3.4)

The ensemble spread is defined by Equation 3.5. The vector e, whose entries
are all ones, was introduced as it is closer in terms of notation to how the averaging
is implemented numerically.

A = xf − E(xf ) = xf − 1

N
(xfeN×1)e1×N (3.5)

This gave the ensemble covariance matrix, shown in Equation 3.6

P f =
AAT

N − 1
(3.6)

Measurements were organized in a vector, d, with a size equal to the number of
measurements, m × 1. The corresponding measurement error covariance matrix,
R, was of size m × m. Independent random perturbations were drawn from a
normal distribution with expectation 0 and variance corresponding to the values in
R. The values in R were decided in advance. These perturbations were added to
N instances of the measurement vector d to form a measurement matrix D with
size m×N , seen in Equation 3.7.

D = [d1, . . . ,dN ], dj = d+ vj , vj ∼ N (0, R) (3.7)

Here vj was the independent random perturbations with standard deviation
corresponding to the uncertainty of each measurement. The analysis step was then
given by

xa = xf + P fHT (HP fHT +R)−1(D −Hxf ) (3.8)
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Here, H was the observation matrix with rows indicating the linear combina-
tion of state variables corresponding to each measurement.

To avoid computing P f directly Equation 3.8 was rewritten to Equation 3.9.

xa = xf +
1

N − 1
A(HA)TP−1(D −Hxf ) (3.9)

where

P =
1

N − 1
HA(HA)T +R (3.10)

HA = Hxf − 1

N
((Hxf )eN×1)e1×N (3.11)

A simplified illustration of the EnKF’s implementation can be seen in Fig-
ure 3.3.

Figure 3.3: Streamlined depiction of the EnKF’s workflow as applied to this project. The
primary step is the initial ensembles. Visualization inspired by the flow chart for the EnKF
in the book by Brown et al. [10].

Parameter estimation was implemented using a similar setup as described above;
by incorporating the parameters into the state vector in Equation 3.3. Unlike the
area, carbon, and nitrogen variables, the forecast values for the parameters were
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solely determined by the previous parameter estimation, with perturbations, as the
parameters did not possess derivatives like the model states. Only one parameter
was examined at a time during the parameter estimation to prevent the parameters
from influencing each other and yielding inaccurate results.

3.3.4 Twin experiment

The twin experiment was carried out by creating a duplicate of the model, referred
to as the true value. This duplicate did not undergo any analysis or correction
steps but solely relied on the calculations derived from the mathematical model,
as explained in subsection 3.3.1. In the twin experiment, the true value is the
measurement vector, corresponding to d in Equation 3.7. This approach provides
observations for all three output values: area, nitrogen, and carbon. As for param-
eter estimation, it is not anticipated that these will be directly measurable; thus, no
parameter observations were included.

During the twin experiment simulation, the actual value for kA was set to be
0.039 gdm2, while the estimated value was kept at the prescribed level of 0.03.
This systematic error was deliberately introduced to ensure a distinction between
the twin model and the estimation model. This discrepancy allows for a more
in-depth understanding of the corrections introduced by the filter. The rationale
behind embedding the error into the parameter kA is due to its impact on the results
of all three individual states, enabling conclusions to be drawn from each state.
This feature was integrated into all simulations except for the parameter estimation
phase.

The twin experiment has primarily been used to ascertain if any recommen-
dations can be drawn. Assessing the twin experiment was employed to examine
hypothetical cases, determining whether they could apply to real-world measure-
ments. If a scenario is not theoretically possible, it is likely not feasible in reality;
conversely, if it is theoretically possible, it may also be achievable in real-life situ-
ations.

3.3.5 Parameter estimation

The parameter selection used for parameter estimation was based on the sensitivity
analysis conducted in the project thesis [37]. This sensitivity analysis reveals that
the model’s sensitivity varies depending on which output values, such as area,
carbon, or nitrogen, are being examined. However, a general conclusion drawn
from the analysis is that the model is susceptible to changes in kA, Nmin, Nmax,
Jmax, α, Isat, and kC . Since the model is sensitive to these parameters, they
significantly impact the system’s output, making it crucial to obtain accurate values
for these parameters. As mentioned in section 2.3, many parameters have been
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collected and estimated from literature but may not be specially tailored to the
Norwegian environment. In some cases, limited data is available for these values,
which can contribute to uncertainty in the estimates.

More specifically, the predictions of the frond area are sensitive to the parame-
ters Nmin, kA, Jmax, and Nmax. The values of Nmax and Nmin are used together
in Equation 2.19; since they produce a ratio, the primary focus has been on esti-
mating Nmin. The nitrogen predictions are sensitive to the parameters α and Isat.
Carbon predictions are also sensitive to α as well as kC .

3.4 Evaluation

This section will present various case studies explored to examine the application
and derive insights from it. A summary of the tests for the twin experiment is
presented in Table 3.8 and further elaborated in the following sections.

In testing the implementation, a distinction is made between measurements and
twin experiments. Some tests have been conducted solely for the twin experiment,
while others have been performed for both the twin experiment and with actual
field data.

3.4.1 Metrics

Pearson’s correlation coefficient was used to investigate the correlation between
the different states, given in Equation 3.12. In this context, µA and σA denote the
mean and standard deviation of A, while µB and σB signify the mean and standard
deviation of B. The correlation coefficient of two random variables quantifies their
linear interdependence [30]. This coefficient ranges from -1 to 1, with -1 suggest-
ing a perfect negative correlation and 1 indicating a perfect positive correlation. In
other words, if one variable increases, the other variable decreases in a negative
correlation, while both variables increase in a positive correlation. A correlation
coefficient of 0 signifies no observable relationship between the variables. The
correlation coefficient was calculated for the entire ensemble at each time step to
monitor the evolution of the correlation over time. The correlation analysis was
restricted to the output of area and nitrogen and area and carbon and only applied
to the estimations derived from field data, not the twin experiment.

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(3.12)

Various approaches have been employed to assess the accuracy of the estimates
obtained from the different cases. One method involves calculating the error be-
tween the mean value of the ensemble and the measurement. The formula for this
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is shown in Equation 3.13, where y represents the true value or measurement value
and ŷ stands for the estimated value. In some cases, to assess the precision of the
prediction, the absolute error was utilized, shown in Equation 3.14.

E = y − ŷ (3.13)

AE = |y − ŷ| (3.14)

Another approach to evaluate the accuracy of predictions is the root mean
square error (RMSE). The equation for RMSE is given in Equation 3.15. RMSE
quantifies the discrepancy between the true values and the predicted values by tak-
ing the square root of the average of the squared differences between the actual and
predicted values [31]. Both RMSE and absolute error suggest that lower values in-
dicate a better fit of the predictions to the actual model. A value of zero would
imply a perfect prediction. Throughout this project, an estimation close to the true
or measurement value has been used as a benchmark for assessing the accuracy of
the prediction.

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(3.15)

In order to represent the precision of the prediction with a single value, the
mean value of the RMSE has been employed, as referenced Equation 3.16. The
smaller this value is, the more accurate the prediction.

RMSEmean =
1

N

N∑
i=1

√√√√ n∑
i=1

(yi − ŷi)2

n
(3.16)

3.4.2 Measurement frequency

The frequency of measurements, or sampling strategy, was examined using the
twin experiment. This was accomplished by altering the availability of the true
values. The various cases investigated are presented in Table 3.5.
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Table 3.5: Sampling strategies.

Sampling

Once a day

Every other day

Once a week

Every other week

Once a month

Once a month to mid-May, then once a week after mid-May

Once a week after mid-May

Every other day after mid-May

3.4.3 Available measurements

Another scenario investigated involved varying the availability of measurements.
This was done to comprehend how the measures influence the estimates of the
different states. The cases examined are listed in Table 3.6 and were only carried
out on the twin experiment.

Table 3.6: The different cases for available measurements.

State

Area

Area and carbon

Area and nitrogen

Area, nitrogen, and carbon

Nitrogen

Nitrogen and carbon

Carbon

3.4.4 Consistency in measurements

To investigate the importance of maintaining consistency in the measurements, the
filter was simulated ten times with the true value made available from 0 to 2 days
before and after the original measurement date, which was set precisely seven days
apart. This test was conducted solely on the twin experiment.
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3.4.5 Parameter estimation

In the twin experiment, the precision of parameter estimation, as discussed in sub-
section 3.3.5, was examined in two ways. Firstly, the stability of parameter estima-
tion was assessed by verifying whether the estimate tracked the true value from the
twin when the parameter value for the twin was altered. The modified values are
presented in Table 3.7. The parameter value for the twin experiment was increased
by 30% of the value specified in Table 2.3 in mid-April.

Table 3.7: The parameter values for the twin experiment conducted to evaluate parameter
estimation.

Parameter Original value Modified value

Nmin 0.01 0.013

Jmax 1.4 ×10−4 1.82 ×10−4

kA 0.03 0.039

α 3.75 ×10−5 4.875 ×10−5

Isat 200 260

kC 2.1213 2.7577

The second approach to examine the parameter estimation outcome involved
analyzing the results of the estimates of the states. The question was whether al-
lowing parameter estimation led to more precise state estimates. This case was
tested by setting the parameter value for the twin experiment equal to the modified
value listed in Table 3.7 for the whole simulation. Measurements were only avail-
able up until the 1st of May. The simulation results with parameter estimation were
compared to those with only state estimation. As mentioned in subsection 3.3.3,
only one parameter was investigated at a time.

In the context of field data, parameter estimation was explored similarly to
the twin experiment. The first aspect of this investigation was to examine the
stability of the parameter estimation, ensuring that the parameter did not display
divergence. Subsequently, the study focused on whether the parameter estimation
yielded more precise predictions than what could be obtained without including
the parameter in the state vector.

3.4.6 Standard deviation for measurement error

This study also examined the filter’s reaction to variations in the standard devia-
tions for the measurement error. This analysis was done by changing the respective
value and was undertaken only when actual field data for the frond area was avail-
able.
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Table 3.8: Summary of the different cases investigated on the twin experiment.

σR σQ

Case A N C A N C Time
step

Sampling Once a day
Strategy Every other day

Once a week
Every other week
Once a month
Once a month to mid-
May, then once a week
after mid-May

0.5 5×10−4 0.01 0.2 0.0001 0.005 -

Once a week after mid-
May
Every other day after
mid-May

Available Area 0.5 - -
measure-
ments

Area and nitrogen 0.5 5×10−4 -

Area and carbon 0.5 - 0.01
Area, nitrogen and car-
bon

0.5 5×10−4 0.01 0.2 0.0001 0.005 Every
other
week

Nitrogen - 5×10−4 -
Nitrogen and carbon - 5

×10−4
0.01

Carbon - - 0.01

Consistency
in measure-
ments

0.5 5×10−4 0.01 0.2 0.0001 0.005 Once a
week ±
0-2 days

Parameter Nmin

estimation Jmax Once a
kA 0.5 0.001 0.01 0.2 0.0001 0.005 week to
α 1st of
Isat May
kC
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4
Results

In this section, the results from the simulations of the model are presented, along
with the ensemble Kalman filter’s state and parameter estimation, both with the
twin experiment and with the use of field data.

4.1 Twin experiment

The outcome of solely estimating the states and incorporating measurements for
the states’ area, nitrogen, and carbon every 14 days is illustrated in Figure 4.1. The
blue shaded bars represent the estimated states using the EnKF, while the black
line indicates the true values derived from the twin experiment. The green shaded
bars result from only using the growth model to predict the states. The bold blue
and green line signifies the mean value across the ensemble, and the shaded error
bar denotes the ensemble’s standard deviation.
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Figure 4.1: Mean value and standard deviation of estimated area, nitrogen, and carbon
with and without the use of the EnKF. The black line represents the true value obtained
from the twin experiment.

4.1.1 Sampling

Figure 4.2 displays the error for the three different output values using various
sampling strategies. The error represents the deviation between the estimates’ true
and mean values. The figure illustrates the eight sampling approaches in Table 3.5.

From Figure 4.2, it is evident that the smallest error for area, nitrogen, and
carbon is achieved with a daily sampling strategy. More significant deviations
from the true value are observed when the sampling rate is reduced. Nonetheless,
as the sampling rate increases toward the end of the simulation, the filter rapidly
converges toward the true value.
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Figure 4.2: The error associated with various sampling strategies for measurements.

The impact of having measurements for only a subset of values requiring es-
timation is illustrated in Figure 4.3. The graph reveals that measuring at least the
area is necessary to obtain a more accurate estimate of the frond area. The lowest
error across the ensemble is achieved for carbon when the carbon and at least one
additional variable are measured. In the case of nitrogen, the deviations between
the different scenarios are not as substantial as in carbon and area. Still, the highest
accuracy is when nitrogen and at least one of the other states are measured.
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Figure 4.3: The discrepancy between the true values and the estimates of various output
values when different measurements were available.

The significance of measurement consistency can be observed in Figure 4.4. In
this context, consistency refers to providing measurements precisely every seventh
day. The figure illustrates that all ten simulations yield approximately the same
degree of error.
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(a) (b)

(c)

Figure 4.4: Examination of the impact of consistent measurements.

4.2 Parameter estimation

Figure 4.5 illustrates the response of various parameters when incorporating pa-
rameter estimation in the EnKF. The black line represents the true value, while the
blue shaded error bar indicates the filter’s response. The blue line is the true value
being changed throughout the simulation. The green-shaded error bar displays the
EnKF’s response to this change. As observed, all parameters, except for kC , do
not diverge but follow the true value.
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Figure 4.5: Evolution of the various parameters during the simulation when EnKF was
implemented with parameter estimation.

The impact of incorporating parameter estimation in the EnKF can be observed
in Figure 4.6, as tested under the approach described in subsection 3.4.5. The blue
graph represents the case where the parameter was included in the state vector,
while the green graph represents the filter without parameter estimation, focusing
solely on state estimation. As evident from Figure 4.6, including estimation of
Nmin, Jmax, and ka results in significantly more accurate estimates of the area,
whereas the same cannot be said for α, Isat, and kC . Estimating kA, Isat, and
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α leads to more precise estimates of carbon, while estimating Nmin and Jmax

enhances the accuracy of nitrogen estimates.
A summary of the diverse scenarios explored in the twin experiment, along

with the mean value of the RMSE across the ensemble and the entire simulation,
can be found in Table 4.1 and 4.2.

Table 4.1: Mean value of RMSE for the different cases studied in the twin experiment.

Case RMSEmean

area
RMSEmean

nitrogen
RMSEmean

carbon

Sampling Once a day 0.1837 4.9012 ×10−4 0.0102

strategies Every other day 0.2319 5.8081 ×10−4 0.0127

Once a week 0.3172 7.3226 ×10−4 0.0201

Every other week 0.4241 7.9999 ×10−4 0.0247

Once a month 0.5937 8.8804 ×10−4 0.0372

Once a month to mid-
May, once a week after

0.4862 8.4719 ×10−4 0.0305

Once a week after mid-
May

0.7124 9.5574 ×10−4 0.0381

Every other day after
mid-May

0.6671 9.1714 ×10−4 0.0361

Measurements Area 0.6009 9.1915 ×10−4 0.0494

on different Area and nitrogen 0.4067 7.9964 ×10−4 0.0485

values Area and carbon 0.5595 9.0398 ×10−4 0.0245

Area, nitrogen and car-
bon

0.3172 7.3226 ×10−4 0.0201

Nitrogen 1.3569 0.0011 0.0535

Nitrogen and carbon 0.6937 8.1428 ×10−4 0.0247

Carbon 1.3188 0.0011 0.0500

Consistent 1 0.3220 7.3225 ×10−4 0.0207

measurements 2 0.3325 7.3743 ×10−4 0.0201

3 0.3453 7.4311 ×10−4 0.0212

4 0.3213 7.3788 ×10−4 0.0210

5 0.3369 7.3940 ×10−4 0.0206

6 0.3227 7.3263 ×10−4 0.0207

7 0.3189 7.2913 ×10−4 0.0211

8 0.3481 7.4229 ×10−4 0.0200

9 0.3343 7.3886 ×10−4 0.0197

10 0.3552 7.5143 ×10−4 0.0212
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Figure 4.6: Estimation error for area, nitrogen, and carbon compared to the true values of
the states, with measurements available until May 1st.
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Table 4.2: Mean value of RMSE for the parameter estimation in the twin experiment.
Measurements until May 1st.

RMSEmean area RMSEmean nitrogen RMSEmean carbon

Parameter With Without With Without With Without

Nmin 0.5424 0.9860 0.0017 0.0024 0.0299 0.0201

Jmax 0.5469 0.6985 9.8055 ×10−4 0.0012 0.0247 0.0265

kA 0.4380 0.7217 7.8032 ×10−4 8.6786 ×10−4 0.0292 0.0374

α 0.3774 0.3828 7.2740 ×10−4 6.9035 ×10−4 0.0465 0.0557

Isat 0.350 0.3873 6.2539 ×10−4 6.8717 ×10−4 0.0481 0.0491

kC 0.3829 0.4330 6.2109 ×10−4 6.0612 ×10−4 0.0207 0.0233

4.3 Measurements

In this section, the results of the EnKF with available measurements are presented.
The measures from the GENIALG report, mentioned in section 3.2, provided mea-
surements only for the area, resulting in Figure 4.7. The mean value of this data
is used as the measured value. The box plot is used to visualize the measured
area. On each box, the central mark denotes the median, while the bottom and top
edges represent the 25th and 75th percentiles, respectively. The whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted in-
dividually using the plus sign. Unless specified otherwise, the standard deviation
for the measurement error used was 0.5 dm2, and the standard deviation for the
model error was 0.2 dm2 for the area, 0.0001 gN(gsw)−1 for nitrogen, and 0.005
gC(gsw)−1 for carbon.
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(a) Estimation of frond area. Box plot of the
observations.

(b) Nitrogen, no observations

(c) Carbon, no observations.

Figure 4.7: Estimations of area, nitrogen, and carbon with measurements available for the
area.

The progression of the correlation coefficient between area and nitrogen and
area and carbon across each ensemble at every time-step is visualized in Figure 4.8.

The impact of varying the standard deviation of the measurement errors can
be observed in Figure 4.9. The figure displays a heat map of the absolute error
between the mean of the measured frond area and the mean of the estimated frond
area when the standard deviation of the error in the measurement in the EnKF is
altered. Corrections were made until April 26th, with the last measure used for
comparing the results. The absolute error exhibits notable differences between
the various standard deviation for measurement errors. In the heat map, the x-
axis represents the dates, while the y-axis displays the outcomes of the different
standard deviations. The data with the most significant error in each time step is
marked by the most intense color, whereas the faintest color indicates the data with
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Figure 4.8: The progression of the correlation coefficient between area and nitrogen, and
area and carbon.

the slightest error.

Figure 4.9: The absolute error between measured and estimated area of different standard
deviation for measurement errors. The last correction was on April 26th.

Figure 4.10 illustrates the distinction between the predictions of the frond area
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utilizing the ensemble Kalman filter and those without its application. The blue
graph displays the estimate derived from the EnKF and the mathematical model,
while the green graph represents the prediction generated solely by the growth
model.

(a) Estimation of the frond area with and without
using EnKF together with the growth model. Box

plot of the observations.

(b) Root mean square error between the estimates
and the mean value of the observations.

Figure 4.10: Comparison between the estimates of the area with and without the use of
the ensemble Kalman filter.
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4.3.1 Parameter estimation

The results of the individual parameter estimations are illustrated in Figure 4.11
and Figure 4.12. As observed in Figure 4.12, the values for kC , Isat, and α diverge
throughout the simulation. This is not the case for Nmin, Jmax, and kA.

Figure 4.11 illustrates that the estimation of Nmin, Jmax, and kA decreases the
error between the observed and estimated frond area, especially in the initial stage
of the simulation. Incorporating α, Isat, and kC in the estimation yields results
approximately equivalent to those obtained with state estimation alone.

(a) Frond area under different parameter
estimation scenarios. Box plots are the observed

frond areas.

(b) Error between estimated and measured values
when incorporating parameter estimation.

Figure 4.11: Outcomes for frond area with varying parameters incorporated in the param-
eter estimation process.

49



4 Results 4.3.1 Parameter estimation

Figure 4.12: Parameter estimation for ensemble Kalman filter with measurements for the
area.

A summary of the mean value of the RMSE over the ensemble and the duration
of the study for the various scenarios explored in the application of the EnKF when
measurements are available is provided in Table 4.3.
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Table 4.3: The mean value of RMSE for the cases studied when measurements were
available.

Case RMSE Area

Different σ, 0.05 1.0448

measurement end 0.2 1.1607

April 26th 0.5 1.3249

1 1.4733

2 1.7277

Measurements on dif-
ferent values

Area 0.9505

Parameter Nmin 0.5684

estimation Jmax 0.9268

kA 0.8406

α 0.8990

Isat 0.8696

kC 0.9570
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5
Discussion

In this section, the results of the work are explained and discussed. Possible system
weaknesses and sources of errors will be considered, as they could affect the result.
The primary focus for discussion is the frond area of the kelp, as it represents a
key state variable that is relatively easy to measure. Moreover, it directly reflects
the growth and productivity of the kelp population and, in this dataset, is the only
state with actual field data.

To discuss the results from the work, primarily the error graphs and the tables
for the mean value of the RMSE are used. The graphs are advantageous because
they display temporal progression. On the other hand, the RMSE tables provide
an efficient way to assess the estimates’ precision quickly. However, they are in-
sufficient when specific simulation parts are of interest. Additionally, these tables
are primarily utilized to support the conclusions.

5.1 Twin experiment

In Figure 4.1, it can be observed that when using the standard deviations for the
measurement and model error provided in Table 3.8 as the default values for the
standard deviation for this project, the estimates for all three states are reasonably
accurate. The estimates for area and carbon demonstrate a high level of precision,
while the estimate for nitrogen is not as accurate. This trend is consistent across
other cases examined in this study. Despite reducing the standard deviation of
the nitrogen measurement error, achieving a precise estimate remains challenging.
Nonetheless, using the EnKF leads to more precise estimations for all three states
compared to what could be achieved without its use.

In Figure 4.1, it can also be observed that the accuracy of the area estimation
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diminishes towards the latter part of the simulation. This observation suggests that
increasing the measurement frequency during the final stages of the kelp’s growth
period could be beneficial.

5.1.1 Sampling strategies

Figure 4.2 indicates that some specific sampling strategies outperform others. As
anticipated, the filter demonstrates enhanced performance with more frequent mea-
surements. Since kelp farms are currently situated at sea, obtaining the desired
measurements of area, nitrogen, and carbon for kelp is challenging and resource-
demanding. Consequently, it is essential to identify a more practical measure strat-
egy that continues to yield valid results.

Regarding the estimation of area, the error in the estimate is more significant
when the measurement strategy is every other week or less frequently. This can
be seen from the mean value of the RMSE in Table 4.1. When choosing a strat-
egy, the importance of estimation precision must be considered. As mentioned
in section 1.1, if the aim is to aid kelp farmers in estimating the frond area, thus
enabling them to identify the best harvest time, which is when the frond area is at
its largest and thereby providing the highest biomass yield. In this case, the end of
the simulation is of the highest importance.

For this scenario, a less frequent measurement strategy may be adequate. As
seen in Figure 4.2, this could involve measurements taken once a month or no
measures until mid-May, followed by more frequent measurements. Suppose the
accuracy of the result at the end of the growth period is crucial. In that case, mea-
surements should be conducted every other day after mid-May, which, towards
the end of the simulation, yields the same outcome as measuring every other day
throughout the whole simulation period. However, if the precision of the predic-
tions for the whole simulation period is essential, this is not sufficient.

Table 4.1 shows that the different measurement strategies result in different
mean values for the RMSE. Drawing from the manual of seaweed farming for the
red algae Eucheuma, which may apply to other types of kelp, it is recommended
that plants be measured either weekly or every 15 days to minimize stress on the
plants [24]. With this in mind, and with a sufficiently low RMSE, it can be rea-
soned that a sustainable measurement strategy might involve measurements taken
every other week, which may also lead to adequate resources being put into the
task.

Referring to nitrogen in Figure 4.2, it is evident that the error between the
estimated and true value is relatively small across all cases. However, it is clear
from Table 4.1 that some sampling strategies are better than others. If maintaining
precise predictions throughout the simulation is crucial, then a frequent sampling
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strategy should be emphasized, preferably once a day. Nonetheless, every other
week, the same sampling strategy used for the area may be sufficient. On the other
hand, if accuracy towards the end of the simulation is of utmost importance, the
findings from Figure 4.2 suggest that a more frequent strategy in the later stages,
such as once a week after mid-May, is appropriate.

For carbon, a more considerable discrepancy between various strategies is ob-
served throughout the simulation. It exhibits a response akin to the area where the
error for measurements daily to every other week is smaller than the other cases.
However, similar to the area, the error towards the end of the simulation remains
relatively consistent. This implies that the measurement strategy chosen for the
area, every other week, might also be appropriate for carbon.

As evident from Figure 4.3, obtaining an accurate estimate of the area requires
at least measuring the area itself. Including carbon or nitrogen measurements can
further improve the estimation. The most precise estimate is achieved when all
states are measured. This is further confirmed by the mean of the RMSE in Ta-
ble 4.1. The table also indicates that only measuring nitrogen and carbon can have
almost the same accuracy as measuring only the area. However, the resulting pre-
cision is still too low to be considered a valid measurement strategy.

Among the measurements, the area is the simplest to measure as it can be
determined for seaweed still attached to the cultivation line, as mentioned in sub-
section 2.1.2. Therefore, the optimal scenario would involve obtaining the most
accurate estimate using only area measurements without considering the two other
states. This approach would minimize the required resources and time investment.
However, Figure 4.3 demonstrates that this is not the case, necessitating further
exploration of alternative measurement strategies.

The imprecision resulting from measuring area alone is evident in the predic-
tion of carbon. It is essential to include measurements of carbon and at least one of
the other states to obtain reliable carbon estimates. The same response can also be
seen for nitrogen. The measurement strategies that yield estimates closest to the
true value involve measuring nitrogen alongside at least one of the other states.

This suggests that each state must be measured to obtain a reliable estimate for
growth. A different approach could be not to measure all the conditions every time,
instead alternating the states measured throughout the growth period. However,
this particular scenario has not been investigated in this thesis.

Regarding the significance of measurement consistency, as shown in Figure 4.4,
there is little to no difference between the various scenarios, which is further
confirmed in Table 4.1. This suggests that measuring the states precisely on the
planned date is not crucial, which is advantageous because the state measurements
depend on weather and other unforeseen events.
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5.1.2 Parameter estimation

From the inclusion of parameter estimation in the twin experiment, as illustrated in
Figure 4.5, it becomes apparent that all parameters to which the states are particu-
larly sensitive can be effectively estimated, except for kC . This may also indicate
that the model is not especially sensitive to this parameter after all; thus, estimating
it is unnecessary. This inference for the estimable parameters can be made since
the variance is constant over time, which signifies that the distribution’s dispersion
remains stable. The values do not diverge as observed for kC . Additionally, when
the value of a specific parameter in the twin experiment is altered, it can be noticed
that the estimations track this change, again with the exception of kC . This further
reinforces that parameter estimation is advantageous and feasible.

The advantage is further confirmed in Figure 4.6, which illustrates that per-
mitting the estimation of specific parameters yields improved state estimates com-
pared to those obtained without parameter estimation. This finding is additionally
verified in Table 4.2. However, given the interest in examining the response after
the ending of the correction steps, the most critical aspect of this experiment is the
simulation’s end. Consequently, the charts are more interesting to investigate.

Estimating Nmin results in more precise forecasts, particularly for area and
nitrogen, but not for carbon. The same enhancement in the estimation can be ob-
served when estimating Jmax. This aligns with the findings obtained from the SA.
Despite Nmin and Jmax not being the parameters that nitrogen is most sensitive
to, it still plays crucial roles in predicting the nitrogen content in the kelp [37].
Nmin is the parameter the area is the most sensitive to, which is reflected in both
Table 4.2 and Figure 4.6. Conversely, according to the SA, carbon is not sensitive
to Jmax, but an enhancement in this state estimate is observed when the estima-
tion includes this parameter. This suggests that Jmax has a more significant role in
predicting the carbon content than initially anticipated.

Estimating kA yields better predictions for area, nitrogen, and carbon. α es-
timations do not improve area and nitrogen prediction but significantly enhance
carbon prediction. The same effect is observed for Isat. The results for kA are
consistent with those from the SA. However, a heightened response in nitrogen
was anticipated when incorporating estimates of Isat and α, considering these are
among the parameters to which nitrogen is most responsive [37]. Nevertheless,
this response was absent. This may indicate that the model state of nitrogen is
not that sensitive to this parameter after all. It is also worth noting that the SA
is conducted on the nitrogen and carbon content of the kelp, whereas this thesis
solely focuses on the kelp’s carbon and nitrogen. As shown in section 2.3, the
computation of nitrogen and carbon content contains additional factors beyond the
mere computation of solely nitrogen and carbon. Thus, using carbon and nitrogen
content in this study might have yielded a different result.
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As mentioned earlier for kC , estimating this parameter does not yield better
estimates for area, nitrogen, and carbon than scenarios without parameter estima-
tion.

When the difference between the models, with and without parameter esti-
mations, is minimal, it is challenging to confirm whether this outcome is ran-
dom—suggesting that in subsequent simulations, the model with parameter es-
timation could produce a higher mean RMSE than the one without—or whether
this outcome is accurate. It would have been beneficial to run multiple simulations
to assess the randomness of the results.

5.2 Estimation using field data

In Figure 4.7, it is evident that an estimate consistent with the measurements can be
obtained given a sufficiently large ensemble size and a standard deviation of 0.5 for
the measurement error of the frond area and 0.2 for the area, 0.0001 for nitrogen,
and 0.005 for carbon for the model error. However, due to the absence of cor-
responding measures, limited conclusions can be drawn for nitrogen and carbon.
Despite this, some correction steps reveal updates in nitrogen and carbon. This
suggests a correlation between nitrogen, carbon, and the area, a conclusion that is
further supported in Figure 4.8. It is noticeable that the area and nitrogen primar-
ily exhibit a positive correlation that fluctuates over time, with varying degrees of
correlation ranging from non-existent to weak and even strong. Conversely, the
area and carbon mainly display a negative correlation, which is not as pronounced
as between the area and nitrogen.

This update comes from the Kalman gain. When assimilating observations,
the EnKF computes the Kalman gain, which is used to update the state estimates.
The Kalman gain considers the covariances between state variables and the uncer-
tainties in both the model predictions and the measurements. As a result, when the
filter updates one variable based on new observations, it also adjusts other corre-
lated variables, even if there are no direct measurements for those variables.

As depicted in Figure 4.9, the selection of the configuration values plays a
crucial role. An ensemble size of 200 has been chosen based on several consid-
erations. Firstly, a larger ensemble enables a more comprehensive representation
of the uncertainties inherent in the system, thereby leading to more accurate state
and parameter estimates. The increased ensemble size enhances the filter’s ability
to contain the full spectrum of possible outcomes and provides a more reliable es-
timation. Moreover, it enhances the robustness of the filter, as the large ensemble
size helps mitigate the impact of stochastic errors that may arise from perturbations
throughout the simulation.

Another crucial adjustable parameter is the standard deviation of the measure-
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ment error. If the measurement error is underestimated, the filter may rely too
heavily on the observations, leading to overfitting and poor performance in the
presence of noisy data. Conversely, if the measurement error is overestimated,
the filter may not effectively assimilate the observations, resulting in less accurate
state and parameter estimates.

The standard deviation of the model error is also a critical configurable value.
If the model error is overestimated, it can make the filter put too much weight on
the measurements, resulting in overly responsive noisy estimates. However, an
underestimated value can cause the filter to put too much weight on the model
prediction, making it slow in response to changes in the measurements. There
is a trade-off between these two errors that is crucial when estimating the states.
Numerous model and measurement error combinations were explored to ascertain
an optimal balance. It was decided to assign a slightly smaller value to the model
error than the measurement error, hence moderately favoring the estimates over the
measurements. This approach was considered appropriate due to the anticipated
high degree of uncertainty in the measurements and also in the model.

As displayed in Figure 4.9, the absolute error throughout the ensemble in-
creases with the standard deviation of the measurement error. Interestingly, the
heat map also suggests that larger measurement errors yield the most precise esti-
mates towards the end of the simulation, possibly hinting at a flaw in the math-
ematical growth model. Despite achieving accuracy in the latter stages of the
simulation, the average RMSE across the entire simulation remains notably high
for the highest standard deviation values. Nevertheless, the most commonly used
measurement error had a standard deviation of 0.5 dm2.

Figure 4.10 demonstrates that the EnKF generally offers superior estimates of
the frond area compared to the mathematical model alone. However, toward the
end of the simulation, the mathematical model delivers a more accurate forecast.
This may also expose a potential weakness in the mathematical growth model.
Ideally, for the predictions made by the EnKF, it is preferable that the prediction
of the frond area levels off once the area becomes sufficiently large, a feature
currently lacking in this model. This observation also implies that incorporating
additional measurements could be beneficial due to the non-linear growth of kelp.
If the objective is to maximize biomass yield, the conclusion of the simulation
and growth period becomes even more crucial. As the frond area increases, frond
erosion also increases, making it advantageous to harvest the kelp before erosion
becomes excessive.

The current frequency of area measurements near the end aligns with the bi-
weekly recommendation from the twin experiment. However, this does not yield
adequate estimates, suggesting a revised measurement strategy is needed. This
could involve increasing the frequency of measurements early in the process to
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follow the recommendations of measurements every other week or making mea-
surements more frequently towards the end. Alternatively, it could be insightful
to test whether the existing measurement strategy produces similar results when
applied to a different dataset.

5.2.1 Parameter estimation

In Figure 4.12, it is evident that when only frond area measurements are available,
it is possible to estimate Nmin, Jmax, and kA. This finding aligns with the sen-
sitivity analysis results, which identified the growth model’s frond area as being
most sensitive to Nmin, Nmax, kA, and Jmax [37]. In this case, the inability to
estimate α, Isat, and kC can be concluded due to the divergence in their estima-
tion. It is clear from the figure that in each correction step, the parameter value are
only perturbed, not corrected. The noticeable variation in Nmin, kA, and Jmax at
each correction step suggests that avoiding constant parameter values and includ-
ing variability may enhance the Ensemble Kalman Filter’s performance.

As mentioned in subsection 2.3.10, there is considerable variation in specific
parameter values found in the literature, particularly for Jmax and kA. In light
of this, combined with the outcomes from the parameter estimation, it is possible
that the current parameter values used in the growth model may not be optimal.
Consequently, employing alternative values might enhance the accuracy of both
the model and its predictions.

As observed in Figure 4.11, the most accurate frond area estimate is achieved
when Nmin is included in the state vector. Improved estimates can also be noticed
when estimating Jmax and kA, but this is primarily limited to the initial part of
the simulation. As discussed in section 5.1, this may suggest that having more
frequent measurements towards the end of the growth period is advantageous.

When estimating α, Isat, and kC , the resulting estimates are roughly as accu-
rate as solely estimating the states. This is reasonable, given that these parameters
are crucial for carbon and nitrogen. As no available measurements exist for these
states, the effect of estimating these parameters is not present.

5.3 Limitations

One limitation of these results is that this model’s current was set to a constant of
0.06 ms−1, which is not representative in a real system. Therefore, a time-varying
current could affect the model’s predictions and estimates.

Another area for improvement is the accuracy of the measurements. In this
thesis, only observations for the area were available, but this is hard to measure
and is expected to contain much uncertainty.
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Another limitation is the need for carbon and nitrogen measurements, which
limits the conclusions made in the thesis. It would be advantageous also to have
measurements for carbon and nitrogen to investigate if some of the conclusions
drawn from the twin experiment would be transferable.

In this thesis, nitrogen and carbon have been investigated. However, it would
have been better to study the carbon and nitrogen content of the kelp instead since
these are measurable units and the units upon which the sensitivity analysis was
conducted.

Another limiting factor is the statistical foundation. Even though a sufficiently
large ensemble size should theoretically eliminate any stochastic errors, this may
not always be the case, and the result might represent stochastic values rather than
the actual model.

Lastly, there might be an issue with the configurational values. They might not
have been selected optimally, thereby failing to present an accurate representation
of the ensemble Kalman filter.

5.4 Further work

Based on the results and limitations in this thesis, future points on research and
areas of improvement are suggested.

First, a measurement program for cultivated kelp should be devised, informed
by the recommendations gleaned from this study on sampling strategies.

One of the other vital areas for future work is to use the results from this growth
model with an ensemble Kalman filter to estimate the states and parameters of real-
time kelp growth. As mentioned in section 1.1, a considerable motivation is to help
kelp farmers achieve the largest biomass. It would be interesting to investigate if
this growth model possibly is a tool that could be used for this application.

A further intriguing prospect for future evaluation is obtaining measurements
of carbon and nitrogen content. This could verify if some of the inferences derived
from the twin experiment could be realized in real-life models. Additionally, col-
lecting data from geographical locations beyond Trøndelag would be beneficial to
ascertain if the conclusions are transferable to other areas.

Subsequent efforts might consider enabling the estimation of multiple param-
eters concurrently and examining additional model parameters, in contrast to how
it is implemented in this thesis. It could also be beneficial to explore whether there
are alternative methods to EnKF that may be more proficient in estimating the
states and parameters of this model.

It may also prove helpful to incorporate current measurements and examine
if the growth model with the EnKF can be applicable beyond the temporal scope
addressed in this thesis.
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The findings of this project are specific to this context, yet the approach em-
ployed for the growth of kelp is general. It could potentially apply to species
beyond Saccharina latissima. Further exploration into the feasibility of this appli-
cation would be fascinating.

With time, it may become possible to estimate kelp’s area, nitrogen, and car-
bon content optically. This method could offer more regular measurements of the
kelp as it is less resource-intensive. Consequently, it could lead to more precise
estimates, enabled by a more frequent measurement strategy.

60



6
Conclusion

This study integrated an ensemble Kalman filter for state and parameter estimation
in a growth model for cultivated Saccharina latissima. A sensitivity analysis was
used to select the model parameters for estimation, and the implementation’s effec-
tiveness was evaluated through a twin experiment and real-world kelp experiment
data.

The findings from this thesis suggest that the ensemble Kalman filter can be
effectively employed for estimating the states of growth - area, nitrogen, and car-
bon - as well as the key parameters Nmin, Jmax, kA, α, and Isat. The twin experi-
ment, in particular, demonstrated that estimating these parameters resulted in more
accurate predictions. Furthermore, the findings suggest an optimal measurement
strategy involves measuring all three output states bi-weekly, with allowances for
minor schedule inconsistencies.

Practically, by employing measures focused exclusively on the area from ac-
tual kelp experiments, the growth estimate accuracy can be enhanced by including
parameter estimation for Nmin, Jmax, and kA. Despite these promising results, a
significant decline in the precision of estimates was observed towards the end of
the growth period, indicating a potential system limitation. This limitation can be
restrained with more frequent measurements towards the end of the growth period.

In conclusion, it would be favorable to incorporate field data on nitrogen and
carbon content to ensure accurate state estimates and validate the conclusions
drawn from the twin experiment. This could be vital in optimizing biomass pro-
duction and identifying ideal locations for new kelp farms. Further, it is recom-
mended to establish a measurement program for cultivated kelp, based on the rec-
ommendations presented in this thesis, and to apply the filter on real-time kelp
growth to optimize harvest timing.
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[33] Müller, D., Gassmann, G., Lüning, K., 1979. Isolation of a spermatozoid-
releasing and -attracting substance from female gametophytes of Laminaria
digitata, 279, p. 430–431.

65

https://www.fao.org/3/ac416e/ac416e00.htm
https://www.fao.org/3/ac416e/ac416e00.htm
http://dx.doi.org/https://doi.org/10.1016/j.jprocont.2007.11.004
http://dx.doi.org/https://doi.org/10.1016/j.jprocont.2007.11.004
http://dx.doi.org/10.1080/00031305.2016.1141709
https://www.sintef.no/sintef-ocean/satsinger/sinmod/
https://www.sintef.no/sintef-ocean/satsinger/sinmod/
http://dx.doi.org/10.1002/aqc.3270010208
https://se.mathworks.com/help/matlab/ref/corrcoef.html##buty8g7
https://se.mathworks.com/help/matlab/ref/corrcoef.html##buty8g7
https://se.mathworks.com/help/matlab/ref/corrcoef.html##buty8g7
https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e
https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e
https://niva.brage.unit.no/niva-xmlui/bitstream/handle/11250/213313/5265-2006_200dpi.pdf?sequence=2&isAllowed=y
https://niva.brage.unit.no/niva-xmlui/bitstream/handle/11250/213313/5265-2006_200dpi.pdf?sequence=2&isAllowed=y
https://niva.brage.unit.no/niva-xmlui/bitstream/handle/11250/213313/5265-2006_200dpi.pdf?sequence=2&isAllowed=y


[34] NIVA, 2019. Researcher believes in kelp farmings. Norwegian Institute for
Water Research. Available from: https://www.niva.no/en/news/
researcher-believes-in-kelp-farming (Accessed: February
7th 2023).

[35] Norderhaug, K.M., Skjermo, J., Kolstad, K., Broch, O.J., Ergon, Å.,
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