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Abstract

As the applications of unmanned aerial vehicles (UAVs) increase, controllers that
are able to operate under severe weather conditions are soughed. In this thesis,
nonlinear model predictive control (NMPC) is explored, taking into account a UAV
operating in icing conditions, including asymmetric icing on the wings.

In previous work, the NMPC controller was used together with a disturbance ob-
server to handle the effects of icing, considering it a disturbance the NMPC has
no knowledge of. The focus of this thesis lies on increasing the robustness of the
NMPC controller, making it more suitable for icing conditions. This was done by
updating the aerodynamic model used in the NMPC formulation, as well as in-
cluding the effects of icing and icing asymmetry in its model. The NMPC control-
ler without icing in its model is compared to the NMPC controller with icing in a
series of simulations, testing their performance with disturbances such as reduced
airspeed and severe wind conditions.

The NMPC controllers are also compared to previously developed PID and MRAC
controllers. The results show a similar performance of the PID, MRAC and NMPC
without icing controllers, depending on the simulation run. The NMPC without
icing is shown to be better suited to handle reduced airspeed, but shows a slower
response in the other simulations, compared to the PID and MRAC. However, the
results show a clear improvement in performance when icing and asymmetry are
included in the model of the NMPC. This NMPC outperforms all controllers in all
simulations when it comes to pitch and airspeed tracking, and has the second-best
roll tracking, only surpassed by the PID.

The path-following abilities of the four controllers are also tested with severe wind
conditions, where the NMPC with icing and the MRAC have the best performances.
Knowing that the NMPC run in practice might not be able to detect the icing level
or estimate the disturbance observer states to the same degree of precision, addi-
tional simulations are performed where this is taken into account. These scenarios
were not found to compromise the performance of the NMPC controller.
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Sammendrag

Norwegian translation of the abstract
Etterhvert som bruken av små ubemannede luftfartøy (UAV) øker, etterlyses regu-
latorer som er i stand til å operere under krevende værforhold. I denne oppgaven
blir NMPC (nonlinear model predictive control) utforsket, hvor det er tatt i betrakt-
ning at UAV-en kan operere under isingsforhold, og asymmetrisk ising på vingene
er inkludert.

I tidligere arbeid ble NMPC-regulatoren brukt sammen med en disturbance ob-
server for å håndtere effekten av ising, som var sett på som en forstyrrelse NMPC-
en ikke har kjennskap til. Fokuset i denne oppgaven ligger på å øke robustheten
til NMPC-regulatoren, og gjøre den mer egnet for isingsforhold. Dette ble gjort
ved å oppdatere den aerodynamiske modellen brukt i NMPC-formuleringen, samt
inkludere effektene av ising og isingsasymmetri i modellen sin. NMPC-regulatoren
uten ising i modellen sammenlignes med NMPC-regulatoren med ising i en serie
simuleringer, som tester ytelsen med forstyrrelser som redusert lufthastighet og
harde vindforhold.

NMPC-regulatorene sammenlignes også med tidligere utviklede PID- og MRAC-
regulatorer. Resultatene viser en lignende ytelse av PID, MRAC og NMPC uten
icing-regulatorene, avhengig av hvilken simulering det er kjørt. NMPC uten ising
er vist å være bedre egnet til å håndtere redusert lufthastighet, men viser en lang-
sommere respons i de andre simuleringene, sammenlignet med PID og MRAC.
Resultatene viser imidlertid en klar forbedring i ytelsen når ising og asymmetri er
inkludert i modellen til NMPC-en. Denne NMPC-en viser en bedre evne til å følge
pitch og lufthastighet enn de andre regulatorene i alle simuleringer, og er den nest
beste til å følge rullreferansen, kun overgått av PID-en.

Banefølgingsevnene til de fire regulatorene er også testet med harde vindforhold,
der NMPC-en med ising og MRAC-en viser den beste ytelsen. I tillegg, NMPC-en
kjørt i praksis vil kanskje ikke være i stand til å oppdage isingsnivået eller estimere
forstyrrelsesobservatørens tilstander med samme grad av presisjon. Derfor blir yt-
terligere simuleringer utført, der dette er tatt i betraktning. Disse scenariene ble
ikke funnet å kompromittere ytelsen til NMPC-regulatoren.
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs), as the name suggests, are aircraft that do not
operate with a pilot on board. They are smaller in size than manned aircraft, giv-
ing them the possibility to access remote or challenging locations, and their use
across various applications is rapidly increasing as a result. However, because of
the difference in size and weight compared to manned aircraft, they are also more
severely affected by weather conditions. UAVs are an emerging technology, so a
way to combat these challenges has not been researched to the same extent. This
thesis focuses on one of these challenges in particular: in-flight icing [2]. In-flight
icing has been shown to lead to a degradation of the aerodynamic performance of
the aircraft, including a significant decrease in lift, an increase in drag, and a de-
terioration of the stall limits[3], [4]. The severity of the performance degradation
depends on the type of ice being formed, where complex ice geometries, such as
horn-like shapes, as shown to increase it [4]. In the case of a UAV in icing con-
ditions, the ice accretion will make up a more significant part of its total weight,
so its performance would be affected more severely than in the case of a manned
aircraft. In addition, the ice conditions cannot be identified by a pilot in this case,
so the controllers used must be able to handle the effects of icing and ensure the
safety of the UAV.
Due to the fast dynamics of a UAV, the controllers typically used are inner-loop PID
controllers, where the model is linearized around trim states. Because nonlinearit-
ies are neglected, the model is less accurate the further away from the trim states.
Nonlinear Model Predictive Control (NMPC), on the other hand, would allow for
the nonlinear effects to be taken into account, but due to large computational
time, they have typically been too slow to be used. Progress has been made on
the topic, where the NMPC controllers developed by Reinhardt [5], for example,
were shown to have equal or superior performance when tested together with
the ArduPilot [6] controller, a widely used open-source drone software. In the au-
thor’s pre-master project [1], the NMPC controller was shown to also work with
the icing problem and have similar performance as previously developed PID and
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MRAC controllers. This thesis explores how the NMPC controller can be modified
to increase the controller’s robustness and performance when subject to icing and
other disturbances.

1.2 Previous Work and Contributions

The Nonlinear Model Predictive Controller used as a starting point in this thesis
is based on the research performed by Reinhardt in his doctoral thesis [5]. His
controllers were developed in Python using the package Acados [7], and showed
a great performance, but they were not tested in icing conditions. This was done
in the pre-master project [1], and compared to the performances of previously
developed PID and Model Reference Adaptive Control (MRAC) controllers. The
PID controller, based on Beard & McLain [8], and the MRAC, based on Lavretsky
and Wise [9], were tuned for icing conditions and implemented in a Matlab/ Sim-
ulink simulator by Högnadóttir [10]. The simulator was first developed by Gryte
[11], and later improved with the UAV’s aerodynamic data in icing conditions,
found by Winter [12], and with Kleiven’s extended model to account for asym-
metric icing on the wings. [13]. In the pre-project thesis, the simulator was also
extended to include the effects of icing on the propeller, which is shown to result
in a significant decrease in thrust and increase in torque [14],[15]. This was done
following Müller’s work [16]. The propulsion model was also further improved by
implementing the model proposed by Coates [17], which was shown to predict
thrust better than the Fitzpatrick model [18],[19] previously used, with a root
mean square error of 2.20− 4.52 percent, compared to Fitzpatrick’s 6.56 percent
[17].

This thesis continues the work from the project thesis [1], in which the NMPC
developed by Reinhardt was implemented in the Matlab/ Simulink simulator and
compared to the PID and MRAC controllers. However, its aim is to improve the
NMPC controller, focusing on the icing problem, and making it more robust against
the effects of icing and icing asymmetry. The previously developed NMPC is first
improved by updating its model with the "clean" aerodynamic coefficients from
Winter’s work [12], matching the model used in the simulator. This NMPC con-
troller relies on a disturbance observer to counteract the effects of icing, as well
as the effects of other disturbances. In this case, the NMPC has no knowledge of
icing. In this thesis, a new NMPC is explored, in which the icing model and asym-
metry model implemented in the simulator are also implemented in the model of
the NMPC. Its performance is compared to the one of the NMPC without icing in
its model, and to the previously mentioned PID and MRAC controllers.
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1.3 Report Outline

This thesis is organized in several parts. In the first part, Chapter 2, the theory
used throughout the thesis will be introduced, including the mathematical model
of the UAV with its forces and moments, as well as the icing and wind models.
The NMPC controller is introduced in Chapter 3. In Chapter 4, the simulator is
explained with the implementation of its different parts (reference generation,
controllers, physical model). The tuning and implementation of the NMPC con-
trollers is also explained here, as well as the different simulation cases. Finally,
the simulation results will be presented and discussed in chapters 5 and 6.

In this thesis, the NMPC controller will be compared to a proportional-integral-
derivative (PID) controller, and to a model reference adaptive controller (MRAC)
controller, based on Gryte [11] and Högnadóttir [10]. As the purpose is to com-
pare the NMPC to existing, well-tuned controllers, their background theory and
implementation are outside the scope of this thesis, but they were described in
the author’s project thesis, and given in Appendix A.





Chapter 2

Theory

As this master thesis is a continuation of the author’s project thesis [1], the theory
necessary to understand the UAV system and the forces, moments and disturb-
ances acting on it, is the same as described in the project thesis. Therefore, this
chapter’s content is repeated from [1] and slightly updated where more inform-
ation was needed. The mathematical models explained here are the background
for the simulations, and some will also be used in formulating the controllers.

2.1 Coordinate Frames

The UAV model will be described by kinematic and dynamic equations of motion.
These equations, however, can be expressed in different coordinate frames, and
doing so will have its advantages depending on the controller used, as will be
explained in the following sections. Therefore, the most common frames will be
introduced, as well as the transformation between them. They are the body-fixed
frame {b}, inertial frame NED {n}, stability frame {s} and wind frame {w}. In
this thesis, a vector v described in reference frame {a} will be written as v a,
and a rotation transforming vector v a to vector v b (described in reference frame
{b}), will be given by the rotation matrix Rba, so that v b = Rbav a. Similarly,
v a = Rabv b = R⊤bav b is the opposite rotation.

The position and attitude of the vehicle are usually expressed in NED (North-
East-Down) frame, which is assumed to be the inertial frame for a small UAV. This
is a local reference frame, so the position and orientation of the UAV are expressed
relative to a fixed location on Earth, which is a good approximation if the UAV is
limited to a small area. It is characterized by the x n axis pointing to the North,
the zn axis pointing to the direction of gravity, and yn = zn × x n. The linear and
angular velocities of the aircraft, on the other hand, are usually represented in the
body-fixed reference frame, which is fixed to the airframe of the vehicle. In this
case, the x b axis points forward through the nose of the UAV, the zb axis points
downwards, and y b = zb × x b.

The coordinate frames stability and wind will also be used in this thesis, but
in order to understand them, some aerodynamic concepts need to be introduced
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first. These are the airspeed Va, the angle of attack α, and the sideslip angle β ,
given by:

Va = ||v b
r ||=
q

u2
r + v2

r +w2
r , (2.1a)

α= arcsin
�

wr

ur

�

, (2.1b)

β = arcsin
�

vr

Va

�

, (2.1c)

where the vector v b
r = [ur , vr , wr]⊤ is the relative velocity vector, given by v b

r =
vb

nb − R⊤nbvn
nw, v b

nb is the velocity vector of the UAV decomposed in body frame,
and vn

nw is the wind velocity vector in inertial frame.
The stability frame depends on the air surrounding the UAV, and its axes, starting
in the body-fixed reference frame, are defined as a right-hand rotation about y b =
y s, with rotation angle equal to the angle of attack α, as seen on Figure 2.1. On
the other hand, starting in the stability frame, the wind frame is defined as a right-
hand rotation about zs = zw, with rotation angle equal to the sideslip angle β , as
seen on Figure 2.2.

Figure 2.1: Rotation between the
body and stability coordinate

frames.

Figure 2.2: Rotation between the
stability and wind coordinate

frames.

The previously mentioned rotations can be described by rotation matrices. The
rotation matrix that transforms a vector given in the body-fixed reference frame
to the stability frame { s} is given by Rsb(α):

Rsb(α) =





cosα 0 sinα
0 1 0

− sinα 0 cosα



 , (2.2)

and the transformation from the stability frame to the wind frame {w} is given
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by Rws(β):

Rws(β) =





cosβ sinβ 0
− sinβ cosβ 0

0 0 1



 . (2.3)

Then, the transformation from { b} to {w} is given by:

Rwb(α,β) = Rws(β)Rsb(α). (2.4)

2.2 The UAV Model

In this section, the typical mathematical model that is used to describe the state of
a fixed-wing UAV will be described. This model is composed of the kinematic and
dynamic equations, which include a model for the forces and moments as well as
the control surfaces. These equations are derived in [8] and are given by:

ṗn
nb = R(Θnb) v

b
nb (2.5a)

Θ̇nb = T(Θnb)ω
b
nb (2.5b)

v̇ b
nb =

1
m
(F b

a + F b
g + F b

t )−ω
b
nb × v b

nb (2.5c)

J b ω̇b
nb = S(J bωb

nb)ω
b
nb +M b. (2.5d)

The kinematics describe the relationship between position and velocity, and are
given by (2.5a) and (2.5b). The vector pn

nb = [pn, pe, pd]⊤ describes the inertial
position of the UAV in the NED coordinate frame {n}, and v b

nb = [u, v, w]⊤ is
the velocity vector in { b}, where u, v and w are the forward, lateral and vertical
velocities, respectively. The vector Θnb = [φ, θ , ψ]⊤ contains the Euler angles,
where φ, θ , and ψ are the roll, pitch and yaw angles, respectively, and are given
in {n}. The rotational motion can be described by the angular velocity vector
ωb

nb = [p, q, r]⊤, given in { b}, where p, q, and r are the roll, pitch and yaw rates.
The dynamic equations are given by (2.5c) and (2.5d), they are derived using
Newton’s second law of motion, and describe the relationship between motion
and forces. The sum of all external forces acting on the UAV, in { b}, is given by
F b = F b

a +F b
g +F b

t , and M b is the total moment, given in { b}. They will be further
described in section 2.4.1.
From (2.5) we also have J b = (J b)⊤, which denotes the inertia matrix and is given
by

J b =





Jx x 0 −Jxz
0 Jy y 0
−Jxz 0 Jzz



 , (2.6)

with the parameters in the inertia matrix given in Table 4.9. The matrices R(Θnb)
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and T(Θnb) are given by

R(Θnb) =





cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ sφcθ cφcθ



 , (2.7)

T(Θnb) =





1 sinφ tanθ cosφ tanθ
0 cosφ − sinφ
0 sinφ secθ cosφ secθ



 . (2.8)

Here the notation sx and cx is used as a compact form to write sin x and cos x ,
respectively.

2.3 The UAV Model in Stability-Wind Frame Representa-
tion

For the formulation of the NMPC, based on Reinhardt’s work [5], a model of
the UAV in stability and wind frame representation is used instead of the model
presented in Section 2.2. Doing so, the airspeed Va, angle of attack α and sideslip
angle β can be included in the state vector, as well in its OCP and constraint for-
mulation. This way, both attitude and airspeed control can be achieved by the
NMPC. In this model, δr is not included, as the UAV studied in this thesis does not
have a rudder.

In order to obtain a globally unique and non-singular attitude representation
for this model, the attitude is represented using the rotation matrix from the body-
fixed frame { b} to the inertial frame {n}, Rnb, instead of the Euler angles that were
used in (2.5), and is equivalent with Rnb = R(Θnb) given by (2.7). The matrix Rnb
can be written as Rnb = [rx , ry , rz], where r{x ,y,z} are the axis of the body-fixed
frame expressed in the coordinates of the inertial frame. Then, we define the state
vector x ∈ Rnx and the input u ∈ Rnu as:

x = [Va β α r⊤x r⊤y r⊤z (ω
s
nb)
⊤ δa δe δt]

⊤, (2.9)

u = [δ̇a δ̇e δ̇t]
⊤, (2.10)

with nx = 19 and nu = 3. The states Va, α and β are the airspeed, angle of attack
and sideslip angle, respectively, and given by (2.1). The vector ωs

nb is the angular
velocity decomposed in { s} given by ωs

nb = Rsbω
b
nb, with Rsb given by (2.2). The

dynamic and kinematic equations for the state variables are given by:




V̇a

β̇Va
α̇Va cosβ



=
1
m
(Fw

a +RwbF b
T ) +RwbR⊤nbg n −ωw

nb × vw
r (2.11a)

Ṙnb =
�

ṙx ṙy ṙz
�

= RnbS(R⊤sbω
s
nb) (2.11b)

ω̇s
nb = −ω

s
bs ×ω

s
nb + (J

s)−1(Rsbτ
b −ωs

nb × J sωs
nb), (2.11c)
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where we notice that ωw
nb is the angular velocity vector decomposed in the wind

frame {w} and given by ωw
nb = Rwbω

b
nb, with Rwb given by (2.4). The matrix J s

is the inertia matrix decomposed in the stability frame { s}, ωs
bs is the angular

velocity of { s} relative to the body-fixed reference frame and decomposed in { s},
and vw

r is the relative velocity vector decomposed in {w}. They are given by

J s = RsbJ bR⊤sb, ωs
bs = [0 α̇ 0]⊤, and vw

r = [Va 0 0]⊤, (2.12)

with J b given by (2.6).

2.4 Forces and Moments

The total forces and moments acting on the UAV will be described in this section.
They are given by:

F b = F b
g + F b

a + F b
t , (2.13)

M b = M b
a +M b

p , (2.14)

where the total force in body-fixed reference frame F b is given by the sum of the
gravity force F b

g , the aerodynamic force F b
a and the propulsion force F b

p . The total

moment in body-fixed frame is equal to the sum of the aerodynamic moment M b
a

and the propulsion moment M b
p . In this case, however, the propulsion moment

is assumed to be very small, and due to its modelling complexity in the NMPC
problem, it was assumed to be negligible, so M b

p ≈ 0.

2.4.1 Aerodynamic forces and moments

The aerodynamic forces in body-fixed reference frame are given by

F b
a = R⊤wbFw

a = R⊤wb





−Fdrag
Fside
−Fl i f t



 , (2.15)

with the drag force Fdrag , side force Fside and lift force Fl i f t given by:




Fdrag
Fside
Fl i f t



=
1
2
ρV 2

a S





CD(α, q,δe)
CS(β , p, r,δa,δr)

CL(α, q,δe)



 , (2.16)

where ρ is the air density and S is the wing area, given in Table 4.9. Based on
Beard & McLain [8] and Winter [12], the aerodynamic coefficients are given by:

CD = CD(α) + CDq
(α)

c
2Va

q+ CDδe
δe, (2.17)

CS = CS(β) + CSp
(β)

b
2Va

p+ CSr
(β)

b
2Va

r + CSδa
δa + CSδr

δr , (2.18)

CL = CL(α) + CLq
(α)

c
2Va

q+ CLδe
δe, (2.19)
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where b is the wingspan and c is the mean chord, given in Table 4.9. The aerody-
namic moment vector M b

a , modelled in the body-fixed frame, is given by:

M b
a =





l
m
n



=
1
2
ρV 2

a S





bCl(β , p, r,δa,δr)
cCm(α, q,δe)

bCn(β , p, r,δa,δr)



 , (2.20)

where the aerodynamic coefficients are given by:

Cl = Cl(β) + Clp
(β)

b
2Va

p+ Clr
(β)

b
2Va

r + Clδa
δa + Clδr

δr , (2.21)

Cm = Cm(α) + Cmq
(α)

c
2Va

q+ Cmδe
δe, (2.22)

Cn = Cn(β) + Cnp
(β)

b
2Va

p+ Cnr
(β)

b
2Va

r + Cnδa
δa + Cnδr

δr . (2.23)

As the Skywalker X8 does not have a rudder, it is to be noted that δr = 0 in this
case.

2.4.2 Gravitational forces

The gravitational force acts on the zn axis direction, and following Newton’s
second law it is equal to gn

z = mg, where m is the mass of the UAV and g is
the gravitational constant. In body-fixed reference frame, the gravitational force
is then given by:

F b
g = R⊤nbmg n = R⊤nb





0
0

mg



 , (2.24)

where Rnb is given by (2.7).

2.4.3 Propulsion forces

The propeller model used is based on Coates [17], and describes the propeller
thrust T as a function of the thrust coefficient CT :

T =
ρD4

2π2
CTω

2, (2.25)

where ρ is the air density,ω is the propeller speed in rad/s and D is the propeller
diameter. The propeller on the X8 Skywalker is the Aeronaut CamCarbon 14x8",
which is 14 inches in diameter, giving D = 0.3556 m . The thrust coefficient CT is
given as a first order approximation, which depends on the advance ratio J :

CT (J) = CT,0 + CT,1J , (2.26)

J =
2πVa

ωD
, (2.27)
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where Va is the airspeed, and CT,0 = 0.126, CT,1 = −0.1378. As the propeller force
is generated in the body x-axis, it is given by:

F b
prop =





T
0
0



=





ρD4

2π2 CT (J)ω2

0
0



 . (2.28)

The propeller speed ω is proportional to throttle δt ∈ [0,1], where δt = 1 is
equivalent to ω = ωmax . Therefore, Eq. (2.28) can be rewritten to include δt in
the expression:

F b
prop =





T
0
0



=





ρD4

2π2 CT (J)(δtωmax)2

0
0



 . (2.29)

2.5 Actuation

The actuators of a UAV typically include a throttle, δt , together with the control
surfaces aileron, elevator and rudder, represented by δa, δe, δr . These variables
have been recurrent in various equations throughout Section 2.4.1. Deflecting
the control surfaces can change the aerodynamic forces and moments of the UAV,
following equations (2.17)-(2.23), which leads to attitude control. Although there
is coupling between the states, δa is mainly in charge of controlling roll, while δe
and δr mainly control pitch and yaw, respectively. The throttle, on the other hand,
is responsible for altering the propulsion forces.
The Skywalker X8 is a type of UAV called a flying wing, which does not have a
rudder and is equipped with a throttle and two pairs of elevons, replacing the ail-
eron and the elevator. There is a direct relationship between aileron and elevator
and the left and right elevons, δel and δer . This relationship is given by:

�

δer
δel

�

=

�

1 −1
1 1

��

δe
δa

�

. (2.30)

Because of this, δa and δe are still used when calculating the forces and moments,
but they are mapped to the pair δer and δel when applying the actuation to the
physical system.

2.6 Icing Model

Ice accretion on the UAV affects the aerodynamic forces and moments acting on
the UAV, as well as the propulsion forces. Using Kleiven’s work [13], a linear inter-
polation can be used to describe how the aerodynamic coefficients change based
on the icing level on the wings:

Ck(ζ) = ζCk,iced + (1− ζ)Ck,clean,
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where ζ ∈ [0,1] denotes the level of icing for each wing, with ζ= 0 describing no
ice on the wing (clean), and ζ = 1 describing a fully iced wing. The coefficients
Ck,iced and Ck,clean are found in the work of Winter [12], and more details are
given in Section 4.3.1. In addition, as ice can fall from one wing while the other
remains iced, icing can have an asymmetric effect on the aerodynamic forces and
moments of the UAV. Therefore, the icing model used in this thesis includes an
asymmetric aerodynamic icing model, explained in the next section, as well as a
model that describes the effects of icing on the propulsion forces, introduced in
Subsection 2.6.2.

2.6.1 Asymmetric Icing Model for Aerodynamic Forces and Moments

The asymmetric icing model for the wings was developed in Kleiven’s thesis [13]
by considering asymmetry in the aerodynamic forces and moments acting on the
aircraft. In the model, the UAV is divided into a left and right side, so that the
aerodynamic forces acting on it are given by

Fk = Fk,r + Fk,l , for k = drag, l i f t, side, (2.31)

where Fk,r and Fk,l represent the drag, lift, and side forces acting on the right and
left side, respectively. On the other hand, the asymmetric aerodynamic moment
is given by

Ma,as ym = Ma,0 +
∑

k

(rk × Fk,r + lk × Fk,l), for Fk,r , Fk,l /∈ Ma,0, (2.32)

where Ma,0 is the symmetric aerodynamic moment, given in (2.20), and the second
term describes the asymmetry. The vectors rk and lk represent the distance from
the center of mass to the point of attack on the right and left wing, respectively.
The asymmetric forces and distances can be visualized in Figure 2.3, from Kleiven
[13].

Figure 2.3: Asymmetric forces, from Kleiven [13].
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2.6.2 Propulsion Icing Model

Based on the work of Müller [16], a model for the thrust coefficient in icing con-
ditions can be given by:

CT,iced = CT (J) (1+min(TW C , TW Cmax)∆CT (T )), (2.33)

∆CT (T ) =∆CT,0 +∆CT,1T +∆CT,2T2 (2.34)

where CT (J) is given by (2.26), T is the temperature in [◦C], TW C is the total
water collected on the propeller, and TW Cmax is the maximum amount of water
collected on the propeller before an ice shedding event is expected. They are given
by:

TW C = t LW Cω
D
2

, (2.35)

TW Cmax =
Amax
D
2ω

2
, (2.36)

Amax = Amax ,0 + Amax ,1T2. (2.37)

Eq. (2.37) describes the adhesion forces of the ice on the propeller, given by a
second-order approximation and dependent on the temperature T . As the forces
acting on the ice on the propeller are centrifugal and aerodynamic forces caused
by the rotation of the propeller, they are proportional to the rotation rate, as seen
in Eq. (2.36). In the same equation it can also be seen that Amax is calculated
depending on the maximum amount of ice that can be collected on the propeller
before ice shedding occurs. This relationship shows that there is an equilibrium
between Amax and TW Cmax , when the amount of ice collected is too large, the
adhesion forces can no longer hold it, and the shedding occurs.
Similarly, icing also affects the power P and power coefficient CP , given by the
following set of equations, as described in Müller [16]:

P = CPρn3D5, n=
ω

2π
(2.38a)

CP,iced = CP(J) (1+min(TW C , TW Cmax)∆CP(T )), (2.38b)

CP(T ) =∆CP,0 +∆CP,1T +∆CP,2T2, (2.38c)

∆CP(T ) =∆CP,0 +∆CP,1T +∆CP,2T2. (2.38d)

2.7 Wind model

To simulate wind disturbances, the wind gusts are usually modeled by the von
Karmen model, given in Beard and McLain [8]. In this thesis, similarly to Hög-
nadóttir and Kleiven’s previous work [10], [13], an approximation of the von
Karman model is used, called the Dryden model. The model consists of six filters
with white noise passing through, describing the wind effect on the transnational
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and rotational velocities, given based on the military specification MIL-F-8785C
[20] as:

Hu(s) = σu

√

√ 2Lu

πVa

1

1+ Lu
Va

s
,

Hv(s) = σv

√

√ Lv

πVa

1+
p

3Lv
Va

s

(1+ Lv
Va

s)2
,

Hw(s) = σw

√

√ Lw

πVa

1+
p

3Lw
Va

s

(1+ Lw
Va

s)2
,

Hp(s) = σw

√

√0.8
Va

( π4b )
1
6

L
1
3
w(1+

4b
πVa

s)
,

Hq(s) =
− s

Va

1+ 4b
πVa

s
Hw(s),

Hr(s) =
s

Va

1+ 3b
πVa

s
Hv(s),

where b is the wingspan of the UAV, σ{u, v, w} are the turbulance intensities and
L{u, v, w} are the turbulence scale lengths, given by

Lw = h,

Lu = Lv =
h

(0.177+ 0.000823h)1.2
,

σw = 0.1V20,
σu

σw
=
σv

σw
=

1
(0.177+ 0.000823h)0.4

,

which are given for altitudes below 1000 feet, with V20 being the wind speed at
20 f t ≈ 6.1 m [20].



Chapter 3

Nonlinear Model Predictive
Control (NMPC)

This chapter describes the Nonlinear Model Predictive Controller (NMPC) pro-
posed by Reinhardt in his work [5]. Based on the background theory described
here, it will later be explored in Chapter 4 how this NMPC controller can be im-
proved to be better suited for the icing problem. As Reinhardt’s NMPC controller
was used in the author’s project thesis [1], the theory is repeated in the following
sections but updated where relevant. As seen in Section 3.0.3, the reference vector
was updated, and an angular velocity reference was added to the cost function of
the NMPC to add a damping effect to the response.

The Model Predictive Control (MPC) solves an optimization problem in order to
find the optimal input needed to follow a desired reference. The optimal input
minimizes a cost function, which is chosen as the error between the state and the
desired reference, and is subject to constraints on the states, inputs, or other sys-
tem variables. This is a key feature of the MPC, as actuator and safety limits can
be taken into account. The MPC solves the optimization problem within a defined
time horizon and predicts the optimal states and inputs over the given horizon
length. Only the first input in the sequence is executed, allowing for the predicted
states and optimal input to be adjusted in the next time step when the optimiza-
tion problem is solved again. As the kinematic and dynamic equations that form
the mathematical model of the UAV are nonlinear, the MPC used in this thesis for
the inner-loop control of roll, pitch and airspeed is a nonlinear model predictive
controller (NMPC).

As proposed by Reinhardt [5], the NMPC’s dynamic model is described in Section
2.3, where Eq. 2.11 can be written as the continuous ODE ẋ = f (x , u). This is
discretized using an explicit Runge-Kutta method of order 4, becoming x (k+1) =
fRK4(x (k), u(k)), and used where applicable.

15
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3.0.1 Reduced attitude parametrization

Following Reinhardt’s work [5], the reduced attitude vector Γ ∈ S2 is used in order
to control roll and pitch. It is defined as the representation of the vertical axis of
the inertial frame e3 = [0, 0, 1]⊤, expressed in the body frame:

Γ = R⊤nbe3. (3.1)

The reduced attitude vector can be parameterized as:

Γ (φ,θ ) =
�

− sinθ cosθ sinφ cosθ cosφ
�⊤

, (3.2)

were roll is given byφ ∈ [−π, π], pitch is given by θ ∈ [−π2 , π2 ], and, as observed,
it is independent of yaw.

3.0.2 Disturbance observer

In order to account for unmodeled dynamics, modeling inaccuracies as well as
disturbances, a disturbance observer is included in the NMPC model with the
purpose of obtaining offset-free attitude stabilization. The disturbance observer,
based on Reinhardt’s work [5], affects airspeed Va, sideslip angle β , angle of attack
α and angular velocity ωs

nb. The difference between the observed state and the
one predicted by the controller at each time instant is given by:





∆Va(t)
∆β(t)
∆α(t)



=





Va(t)
β(t)
α(t)



−





Va,mpc(t)
βmpc(t)
αmpc(t)



 (3.3)

∆ωs
nb(t) =ω

s
nb(t)−ω

s
nb,mpc(t) (3.4)

The disturbance estimates are then updated together with the NMPC by

d f (t)← d f (t) + L f

�

∆Va(t) ∆β(t) ∆α(t)
�⊤

, (3.5)

dm(t)← dm(t) + Lm∆ω
s
nb(t), (3.6)

where d f and dm are the force and moment disturbances, respectively, and ini-
tialized as d f (0) = dm(0) = 03×1, and with L f and Lm given by

L f = diag(lVa
, lβ , lα), Lm = diag(lp, lq, lr). (3.7)

The gains lVa
, lβ , lα, lp, lq, lr are given in Table 4.6, and the disturbances are finally

added to f :

f (x , u,d)≜ f (x , u) +
�

d⊤f 01×3 d⊤m
�⊤

(3.8)
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3.0.3 Nonlinear Program

The NMPC tracks the reference vector r , defined as

r ≜
�

Va,re f Γ⊤re f ω⊤re f

�⊤
, (3.9)

where the angular velocity vectorωre f is added to the reference vector and to the
cost function to add a damping effect, in order to achieve a smoother response,
and Γ re f is parameterized using the references for roll and pitch, φre f and θre f ,
as shown in Eq. (3.2). The way the reference angles have been generated in this
thesis is explained in Section 4.1. Next, to formulate the NMPC scheme, the stage
cost is defined as

l(x , u, r ) = qVa
(Va − Va,re f )

2 + ||Γ − Γ re f ||2QΓ + ||ω−ωre f ||2Qω + ||u||
2
R, (3.10)

which is a sum of quadratic terms, where qVa
is the weighting scalar that penalizes

the Va error, and QΓ ∈ R3×3, Qω ∈ R3×3 and R ∈ Rnu×nu are the weighting matrices
for attitude error, angular velocity and input, respectively. The cost function in Eq.
(3.11) can also be written in a more compact form as:

l(x , u, r ) = r⊤Qr + u⊤Ru, (3.11)

where Q and R are given as:

Q =



















qVa 0 0 0 0 0 0
0 qΓ1 0 0 0 0 0
0 0 qΓ2 0 0 0 0
0 0 0 qΓ3 0 0 0
0 0 0 0 qp 0 0
0 0 0 0 0 qq 0
0 0 0 0 0 0 qr



















, R =





rδ̇a
0 0

0 rδ̇e
0

0 0 rδ̇t



 (3.12)

The OCP over a prediction horizon T is then given by:

min
x (·),u(·)

∫ T

0

l(x (τ), u(τ), r (τ)) dτ+
1
2

s⊤Ps , t ∈ [0, T ) (3.13a)

s. t. x (0) = x0 (3.13b)

ẋ (t) = f (x (t), u(t),d(0)), t ∈ [0, T ) (3.13c)

h(x (t), u(t), s)≥ 0, t ∈ [0, T ) (3.13d)

where f (x (t), u(t), d(0)) is the augmented system given in equation (3.8), and
the term 1

2 s⊤Ps was added to penalize the vector of slack variables s = [s⊤x s⊤x ]
⊤

with the symmetric, positive-definite matrix P ∈ Rns×ns . All constraints on state
x and output u, as well as their respective slack variables, are included in the
constraint h(x(t), u(t), s). This is explained in Section 3.0.4. Discretizing 3.13
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into N steps with shooting interval∆t = T/N gives the nonlinear problem (NLP):

min
x (·),u(·)

N−1
∑

k=0

l(x (k|t), u(k|t), r (k|t)) +
1
2

s⊤Ps , k ∈ [0, ..., N) (3.14a)

s. t. x (0|t) = x (t) (3.14b)

x (k+ 1|t) = fRK4(x (k|t), u(k|t),d(0|t)), k ∈ [0, ..., N) (3.14c)

h(x (k|t), u(k|t), s)≥ 0, k ∈ [0, ..., N), (3.14d)

where x (·|t) ∈ Rnx×(N+1) and u(·|t) ∈ Rnu×N are the predicted state and input
sequence, respectively. The MPC scheme is based on solving the NLP given by Eq.
(3.14) at time t, for the predictions k ∈ [0, ..., N].

As the variables [δa,δe,δt]⊤ are included in the state vector x , the control
input applied to the UAV is extracted from the optimal state after one shooting
interval, given by x ∗(1|t), obtained after solving the NLP. This is given by:

uuav(t) =
�

0nu×(nx−nu) Inu×nu

�

x ∗(1|t) (3.15)

3.0.4 Constraints

One of the key features of the NMPC is the possibility to add constraints on the
state and output as a part of the NLP to be solved. This takes into consideration
safety and the physical limits of the UAV. Let the constraints on the state x and
the constraints on the input u to be given by X and U , respectively:

X ≜ {x ∈ Rnx |h(x , s)≥ 0} (3.16)

U ≜ {x ∈ Rnu |u − u ≥ 0∧−u + u ≥ 0} (3.17)

When choosing the constraints on the state x , limits on airspeed, sideslip and
angle of attack are set for safety reasons and to avoid stalling. The same is true
for the limits on the angular rates and the actuators, which express the actual
surface deflection limits of the elevons. All state constraints are given by:

Va − V a + sVa
≥ 0

β − β + sβ ≥ 0

α−α≥ 0

ps − p
s
≥ 0

qs − q
s
≥ 0

rs − rs ≥ 0

δa +δe −δel ≥ 0

−δa +δe −δer ≥ 0

δt −δt ≥ 0

−Va + V a + sVa
≥ 0

−β + β + sβ ≥ 0

−α+α≥ 0

−ps + ps ≥ 0

−qs + qs ≥ 0

−rs + rs ≥ 0

−δa −δe +δel ≥ 0

δa −δe −δer ≥ 0

−δt +δt ≥ 0,

(3.18)
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where the slack variables ensure the feasibility of the quadratic problem by allow-
ing constraint relaxation, and are given by

s = [s⊤Va s⊤β ]
⊤ ≥ 0. (3.19)

Eq. (3.18) can be summarised by the function h(x , s) ≥ 0, and (Eq. 3.17) with
(Eq. 3.18) can be written together as h(x , u, s)≥ 0.





Chapter 4

Method

Given the theory in Chapter 3, this chapter explores different variants of the NMPC
controller, evaluating what changes can be made to improve its performance in
icing conditions. This chapter explains how the controllers were implemented,
which simulations were performed, as well as the simulator in which the control-
lers were tested. The NMPC controllers were compared to previously developed
PID and MRAC controllers [10], and their implementation and tuning are given
in Appendix A, as no changes to them were made in this thesis.

In a classic control loop, the reference is generated, and the error between the
reference and the current state of the UAV is found and sent to the controller,
which finds the appropriate input and sends it to the physical model. The Matlab/
Simulink simulator used in this thesis, first developed by Gryte [11] and then
extended by Högnadóttir [10], can be divided into three blocks: the Reference
Generation block, the Controller block and the Physical Model block. This is illus-
trated in Figure 4.1. Following the same structure, the reference generation will
be explained in Section 4.1, the NMPC controllers are explored in 4.2, and the
implementation of the icing models into the simulator are described in Section
4.3. In addition, Section 4.4 will describe the simulations performed.

Figure 4.1: Overview of the simulator in Matlab/ Simulink, the subsections in
which each part is explained.

21
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4.1 Reference Generation

In order to simulate the performance of the two NMPC controllers developed in
this thesis, and compare them to the PID and MRAC controllers, two types of
simulations are performed. First, the controllers need to be able to follow some
commanded roll and pitch angles. Next, it is interesting to compare their abilities
to follow a given path as well, by following commanded roll and pitch angles
found by a guidance controller. Given a commanded roll and pitch angle, either
chosen by us or by the guidance controller, the simulator generates a reference for
the controllers to follow, using the methods described in this section. Parts of this
section were described in the author’s project thesis [1] and are repeated below.

4.1.1 Roll and Pitch Reference Model

The reference model that drives the roll and pitch angles to certain commanded
angles, φcmd and θcmd , is described as the following second-order transfer func-
tion:

φre f

φcmd
(s) =

ω2
n,φ

s2 + 2ζφωn,φs+ω2
n,φ

, (4.1a)

θre f

θcmd
(s) =

ω2
n,θ

s2 + 2ζθωn,θ s+ω2
n,θ

, (4.1b)

where ωn,{φ,θ} and ζ{φ,θ} are the natural frequency and the damping factor, re-
spectively. They are design parameters chosen depending on the desired reference
model response. Using Högnadottir’s results [10], they are set asωn,φ =ωn,φ = 4
and ζφ = ζθ = 1.

4.1.2 Angular Velocity Reference Model

In addition to roll and pitch, the NMPC controllers also follow a desired angular
velocity ωs

re f . The reference model for φ̇re f and θ̇re f can be generated from the
roll and pitch reference model, described in equation (4.1), by representing it as
a linear time invariant (LTI) system:

φ̇re f = Aφφre f + Bφφcmd , (4.2)

θ̇re f = Aθ θre f + Bθθcmd , (4.3)

(4.4)
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where

Aφ =

�

0 1
−ω2

n,φ −2ζφωn,φ

�

, Bφ =

�

0
ω2

n,φ

�

, (4.5)

Aθ =

�

0 1
−ω2

n,θ −2ζθωn,θ

�

, Bθ =

�

0
ω2

n,θ

�

. (4.6)

In this case, ψ̇ can be found by using the expression for coordinated turn, from
Beard & McLain [8]:

ψ̇re f =
g
Va

tanφre f (4.7)

Finally,ωs
re f is found by first transforming Θ̇re f to body frame, and then to stability

frame:

ωs
re f = Rsb(α)

⊤





1 0 − sinθ
0 cosφ sinφ cosθ
0 − sinφ cosφ cosθ



 Θ̇re f , (4.8)

where Rsb(α) is given by 2.2 and α is the angle of attack.

4.1.3 Commanded Roll and Pitch from the Guidance Controller

The path-following abilities of the controllers are tested by letting them follow the
commanded roll and pitch angles found by a guidance controller. When the guid-
ance controller is used, it is included as part of the Referance Generation block, as
seen in Figure 4.1, since it will be providing the commanded roll and pitch angles,
φcmd and θcmd , that the UAV should follow. Given φcmd and θcmd , the references
φre f and θre f , and ps

re f and qs
re f , are found following the procedures described in

the Subsection 4.1.2. This section describes the guidance controller used to find
the commanded roll and pitch angles, based on the path to be followed, which
is given as a set of waypoints. The guidance laws are given in the lateral and
longitudinal directions.

Based on Fossen [21], the propotional line-of-sight (LOS) guidance law is
given by a course controller, which tracks a desired course angle χd and calcu-
lates the corresponding roll angle reference as:

φcmd = kpχ (χd −χ) +
kiχ

s
(χd −χ). (4.9)

The desired course angle χd is given by:

χd = χp − tan−1

�

y p
e

∆lat

�

, (4.10)
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where the path-tangential angle χp and the cross-track error ye are found by:

χp = atan2(yk+1 − yk, xk+1 − xk) (4.11)

ye = −(x(t)− xk) sinχp + (y(t)− yk) cosχp. (4.12)

The current position of the UAV is given by (x(t), y(t)), while the position of the
current waypoint and the next waypoint are given by (xk, yk) and (xk+1, yk+1),
respectively.

Similarly, based on Nevstad [22] and You [23], a flight path angle controller,
which tracks a desired flight path angle γd and calculates the corresponding pitch
angle reference is given by:

θcmd = −c1(γ− γd) + γd +αt r im, (4.13)

where the desired flight path angle is given by:

γd = γp + tan−1

�

kphze + kih

∫

zedτ

∆lon

�

. (4.14)

The longitudinal look-ahead distance ∆lon is given by ∆lon =
Æ

R2
max − z2

e , while
γp and the vertical cross-track error ze are found by:

γp = atan2(−(zk+1 − zk), Lx y), (4.15)

ze = Sx y sin(γp) + (z(t)− zk) cos(γp). (4.16)

Sx y and Lx y are the projection of the along-track distance and the projection of
the path onto the xy-plane, respectively, and given by:

Sx y = cos(χp)(x(t)− xk) + sin(χp)(y(t)− yk) (4.17)

Lx y =
Æ

(xk+1 − xk)2 + (yk+1 − yk)2. (4.18)

Finally, when using the guidance controller references, the airspeed controller
used together with the PID and MRAC controllers is modified to include the feed-
forward term kpze

ze(t), and given by:

δt = δ
∗
t + kpV

(Va,cmd − Va) +
kiV

s
(Va,cmd − Va) + kpze

ze(t). (4.19)

The tuning parameters used in the guidance controller come from the results of
Högnadottir’s work [10], and given in Table 4.1.
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Parameter Value
∆lat 33
kpχ 2
kiχ 0.1
kph 0.8
kih 0.1
Rmax 20◦

c1 0.001
kpV

0.6
kiV 0.01
kpze

0.1
δ∗ 0.44

Table 4.1: Tuning parameters of the guidance controller

When using the guidance controller, a reference for ψ̇re f can be found more dir-
ectly than the one from Eq. (4.7) by derivating the LOS guidance law in Eq. (4.10),
and using the relationship between yaw, course and crab angle:

ψ= χ − βc (4.20)

Following Gryte’s derivations in his dissertation [24], derivating Eq. (4.10) gives

χ̇d = −
∆

∆2 − y2
e

ẏe + χ̇p. (4.21)

By derivating Eq. (4.20) and inserting it into Eq. (4.21), it results in

ψ̇d = χ̇d − β̇c,d = −
∆

∆2 − y2
e

ẏe + χ̇p − β̇c,d (4.22)

ψ̇d = −
∆

∆2 − y2
e

ẏe, χ̇p ≈ 0, β̇c,d ≈ 0, (4.23)

as both χ̇p and β̇c,d can be assumed to be 0. Finally, ωs
re f is found by following

Eq. (4.8).

4.2 Implementation of the NMPC Controllers

This thesis explores how the accuracy of the NMPC’s model, more specifically
how including the modeled icing effects, affects the robustness and performance
of the controller when subjected to the mentioned disturbances. For this purpose,
an NMPC controller without icing in its model is compared to an NMPC control-
ler which includes the effects of icing on the aerodynamic forces and moments
in its model, including asymmetry, as explained in Section 2.6. Both NMPC con-
trollers are based on the NMPC controller developed by Reinhardt in his doctoral
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thesis [5], written in Python using the software package Acados [7]. However, Re-
inhardt’s NMPC used the parameters from Gryte [25] to model the aerodynamic
forces and moments. This was updated in this thesis to use Winter’s model, with
the parameters found in his work [12], to match the model used in the Matlab/
Simulink simulator and reduce model mismatches. In Sections 4.2.2 and 4.2.3 this
is explained in more detail, as well as how the icing model is implemented in the
case of the NMPC with icing in its model.
The NMPC in Python, based on Reinhardt’s work [5], discretizes Eq. (3.13), in
this case into N = 35 steps, using direct multiple-shooting with a fourth-order
explicit Runge-Kutta integrator. The nonlinear problem in Eq. (3.14) is solved
using a real-time iteration sequential quadratic programming (RTI SQP) together
with the high-performance interior point method for the solutions of the quadratic
problems, where the QP solver relies on the numerical subroutines of BLASFEO.
All this is available in the Acados package mentioned.
The constraints used in the NLP are given in Table 4.2, where the constraints on
δ× are given by the real actuator limits. When it comes to the angle of attack α, the
upper and lower bounds should be chosen as the stall limit for a fully iced wing.
The stall angle is however not yet clearly determined in the existing literature.
Winter finds αstal l to be ≈ 10◦ [12], but Högnadóttir describes it might be closer
to αstal l ≈ 4◦ [10]. In the author’s project thesis [1], α was set to 4◦ to test the
abilities of the NMPC controller. Although it worked, more research needs to be
made in order to conclude that the stall limit is in fact as low as 4◦, so in this
thesis, the limit 10◦ was assumed instead. To ensure that it is not crossed, α was
set to 8◦. When it comes to airspeed, the lower and upper limits are set as the
safety limits of Va = 15 m/s and Va = 25 m/s.

Variable Value
Va, Va 15, 25 m/s

β , β -90, 90 deg
α, α -8, 8 deg
ps, ps; qs, qs; rs, rs -180, 180; -180, 180; -180, 180 deg/s
δa, δa -35, 35 deg
δe, δe -35, 35 deg
δr , δr 0, 0 deg
δt , δt 0, 1 -
δel , δel , δer , δer -30, 20, -30, 20 deg

Table 4.2: Inequality constraints in the NMPC controller

To implement the NMPC controller into the Matlab/ Simulink simulator, C code
was generated from the Python code and interfaced with the simulator through
an S-function, following the examples in the Acados documentation [26]. To solve
the optimization problem, the S-function containing the NMPC takes in a series of
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inputs, containing information about the reference to be followed, the constraints
and the disturbances, as illustrated in Figure 4.2. A list with all the input signals
to the S-function block and the information they contain is given in Table 4.3.
The disturbance observer, as well as the information about the icing level, are
implemented through the input parameters. When the NMPC controller without
icing implemented in its model is run, the icing level input is always set to 0
(clean state). This way, the controller assumes that there is no ice on the wings,
and icing is treated as another disturbance that the NMPC has no knowledge of,
to be handled by the disturbance observer.

Figure 4.2: The NMPC controller implemented as an S-function block, with its
inputs and outputs, calculated as described in Table 4.3.

Input

ubx_0
�

Va α β r⊤x r⊤y r⊤z ωs⊤ δa δe δt

�⊤

lbx_0
�

Va α β r⊤x r⊤y r⊤z ωs⊤ δa δe δt

�⊤

parameters
�

Vn
wind

⊤ d⊤F d⊤M icing_left_wing icing_right_wing
�⊤
× N + 1

yref_0
�

Va,re f Γ1,re f Γ2,re f Γ3,re f ωs
re f
⊤ 0 0 0
�⊤

yref
�

Va,re f Γ1,re f Γ2,re f Γ3,re f ωs
re f
⊤ 0 0 0
�⊤
× N − 1

yref_e
�

Va,re f Γ1,re f Γ2,re f Γ3,re f ωs
re f
⊤
�⊤

lbx
�

V a α β ωs⊤ δa δe δt

�⊤
× N − 1

ubx
�

V a α β ωs⊤ δa δe δt

�⊤
× N − 1

lbu
�

δ̇a δ̇e δ̇t

�⊤ × N

ubu
�

δ̇a δ̇e δ̇t

�⊤
× N

lh
�

δel δer

�⊤ × N

uh
�

δel δer

�⊤
× N

Table 4.3: Inputs into the S-function block that contains the NMPC controller.
Using these inputs, the NMPC finds an optimal solution to the NLP, and the input
to be used by the actuators.
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4.2.1 Tuning of the NMPC

The NMPC was tuned by adjusting the weighting matrices Q and R, given by Eq.
(3.12), as well as the disturbance observer’s weighting matrices L f and Lm, given
by Eq. (3.7). The values for the disturbance observer were found first, to cor-
rect a large offset error that was observed in roll, pitch and airspeed when the
disturbance observer was turned off (l× = 0). The original weights chosen were
lVa
= lβ = 0.01, lα = ln = 0.1, ll = lm = 0.5, since the largest offset error was

observed in roll and pitch, and a lower weight on airspeed seemed sufficient to
remove the airspeed offset error. Then, the first set of Q and R weights were found.
The tuning process involved changing individual weights of the two matrices at
a time based on the response obtained, to observe the impact it has on the per-
formance and whether it improves as a result. To find an optimal tuning, the roll
angle reference was changed while pitch was kept constant at 0 degrees and vice
versa, similar to the simulations performed later in Section 4.4. The performance
was considered in the case of 100 % icing on both wings, 100 % asymmetry, and
in the case of no ice on the wings. In addition, reduced airspeed was also tested
and, as the tuning of the NMPC improved, severe wind conditions were taken into
consideration as well. The first four tuning cases are shown in Table 4.4, and their
results can be seen in Figure 4.3, where the blue, red and green background colors
represent the time intervals in which the wings were iced, asymmetric (one iced
and one clean) and clean, respectively.

With Tuning 1, an aggressive pitch response was observed in Figure 4.3b during
the 100 % asymmetry, reduced airspeed case. This was improved in Tuning 2 by re-
ducing the weight on airspeed qVa

, although the airspeed performance worsened,
as expected. As throttle had a lower weight than aileron and elevator, and with
the idea to improve the roll and pitch tracking performances, rδ̇a

and rδ̇e
were

reduced in Tuning 3. This improved the roll performance significantly in Figure
4.3a, but the pitch response during the asymmetry, low airspeed interval became
again very aggressive, as well as the roll during this interval, as seen in Figure
4.3b. This suggests that the weight on rδ̇e

is perhaps too low. However, since an-
gular velocity is part of the cost function, increasing the weight on pitch rate qq
should lead to a damping effect, so this approach was inspected next in Tuning 4.
This resulted in a slower, more controlled pitch response during the asymmetry
interval, but oscillations appeared during the iced interval in both pitch and roll,
as seen in Figure 4.3.

qVa
qΓ1 qΓ2 qΓ3 qp qq qr rδ̇a

rδ̇e
rδ̇t

lVa
lβ lα ll lm ln

Tuning 1 — 0.1 10 10 10 1 1 1 1 1 0.01 0.01 0.01 0.1 0.5 0.5 0.1
Tuning 2 — 0.01 10 10 10 1 1 1 1 1 0.01 0.01 0.01 0.1 0.5 0.5 0.1
Tuning 3 — 0.01 10 10 10 1 1 1 0.1 0.1 0.01 0.01 0.01 0.1 0.5 0.5 0.1
Tuning 4 — 0.01 10 10 10 1 10 1 0.1 0.1 0.01 0.01 0.01 0.1 0.5 0.5 0.1

Table 4.4: First round of tuning.



Chapter 4: Method 29

(a) Roll response.

(b) Pitch response.

Figure 4.3: Roll and pitch responses with the tuning parameters given in Table
4.4, and with two different airspeed references. The background colors represent
the icing level simulated: blue for 100 % icing, red for 100 % asymmetry and
green for the clean state (no ice).
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A second round of tuning options is presented in Table 4.5, which in this case
were tested with severe wind conditions as well to ensure the robustness of the
final tuning.

The results are shown in Figures 4.4 and 4.5. With the added challenge of wind
disturbances, it was observed that modifying some of the weights of the NMPC
was not sufficient to both improve the performance and keep the NLP feasible
under these severe wind conditions. Therefore, slightly adjusting the disturbance
observer was found to be more beneficial, as shown by Tuning 5. The weights
were found by trial and error, but increasing lVa

helped reduce the offset error in
airspeed, as seen more clearly during the iced and clean time intervals in Figure
4.4. As the weight on the angle of attack was high compared to the one on airspeed
and sideslip angle, lα was decreased and it was found to work well. The weights on
roll and pitch moment were also decreased, which helped reduce the "noisiness"
when the wind disturbances were on, as seen in Figures 4.4 and 4.5 in the roll,
pitch, aileron and elevator responses. In Tuning 6, the effects of the weights on Γ ,
the reduced-attitude vector, are explored. Following Reinhardt’s explanations in
his work [5], higher weights on Γ1 and Γ2 would result in a tighter tracking of the
pitch and roll angles, respectively, but higher Γ1 and Γ2 compared to Γ3 can also
temporarily increase the cost function, and might require a longer horizon N to
be able to converge. Increasing all three Γ1, Γ2 and Γ3 to 100 was found to be too
aggressive, while the final Tuning 6 gave more favorable results. As pitch is also a
part of Γ2 and Γ3, this tuning keeps the horizon N short while improving both pitch
and roll, although favoring roll. In addition, increasing qVa

improved the airspeed
tracking, as seen in both Figure 4.4 and 4.5. A more aggressive pitch tracking,
however, brings back the problem of oscillations during the reduced airspeed,
iced and asymmetry intervals.

qVa
qΓ1 qΓ2 qΓ3 qp qq qr rδ̇a

rδ̇e
rδ̇t

lVa
lβ lα ll lm ln

Tuning 4 — 0.01 10 10 10 1 10 1 0.1 0.1 0.01 0.01 0.01 0.1 0.5 0.5 0.1
Tuning 5 — 0.01 10 10 10 1 10 1 0.1 0.1 0.01 0.03 0.01 0.01 0.4 0.2 0.1
Tuning 6 — 0.1 10 100 100 1 10 1 0.1 0.1 0.01 0.03 0.01 0.01 0.4 0.2 0.1
Tuning 7 — 0.1 20 100 100 1 1 1 0.2 7 0.05 0.03 0.01 0.01 0.4 0.1 0.1

Table 4.5: Second round of tuning.
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Figure 4.4: Roll response with the tuning parameters given in Table 4.5, given
two different airspeed references and severe wind conditions. The background
colors represent the icing level simulated: blue for 100 % icing, red for 100 %
asymmetry and green for the clean state (no ice).
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Figure 4.5: Pitch response with the tuning parameters given in Table 4.5, given
two different airspeed references and severe wind conditions. The background
colors represent the icing level simulated: blue for 100 % icing, red for 100 %
asymmetry and green for the clean state (no ice).
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Finally, Tuning 7 was found by examining how changing the different weights of
Q and R affected the performance under the different disturbances, based on the
other tuning options presented. Generally, more aggressive roll and pitch control-
lers worsen the performance in the reduced airspeed case, as they add oscillations
and, in some cases, can make the NLP unfeasible. However, a faster controller is
necessary under severe wind conditions. As the oscillations in pitch were more
severe, the pitch tuning was prioritized. Increasing qq resulted in oscillations dur-
ing the iced interval, as seen by Tuning 4 in Figure 4.5, as well as a slower pitch
response. Therefore, in Tuning 7, rδ̇e

is increased instead in order to restrict elev-
ator, and qΓ1 is increased to improve the pitch tracking. Aileron and throttle are
also slightly more restricted. Increasing the elements in the R matrix reduces many
of the oscillations in aileron, elevator and throttle during the wind conditions, as
seen in Figures 4.4 and 4.5. These improvements, however, slightly reduce the
roll tracking performance.

The final weights that performed the best among the other options tested were
found by trial and error. Tuning 7 is the final tuning chosen for the NMPC con-
troller without icing included in its model, and it is the one used in the future
simulations, described in Section 4.4. When it comes to the NMPC with icing in
its model, which is to be explained in Section 4.2.3, it was tuned more aggress-
ively, as it will be shown to be able to handle the disturbances caused by the icing
conditions better. In its case, Tuning 7 was taken as the starting point, and the qΓ
weights were increased as R was decreased to make the controller more aggress-
ive and improve its performance. This was done by trial and error. The tuning
parameters for both controllers are presented in Table 4.6.

(a) Tuning matrices of NMPC without icing

Parameters
Q diag[0.1, 20, 100, 100,1, 1,1]
R diag[0.2, 7, 0.05]
P diag[1, 1, 1, 1]

(b) Tuning parameters of the disturbance ob-
server with the NMPC without icing

Parameters
lVa, lβ , lα 0.03, 0.01, 0.01
ll , lm, ln 0.4, 0.1, 0.1

(c) Tuning matrices of NMPC with icing

NMPC without icing
Q diag[0.1, 100, 200, 200,1, 1,1]
R diag[0.2, 1, 0.01]
P diag[1, 1, 1, 1]

(d) Tuning parameters of the disturbance ob-
server with the NMPC without icing

Value
lVa, lβ , lα 0.03, 0.01, 0.01
ll , lm, ln 0.4, 0.1, 0.1

Table 4.6: Tuning parameters of the NMPC controller.
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4.2.2 NMPC without icing: updated model

In the NMPC controller developed by Reinhardt, the model that describes the
aerodynamic forces and moments is based on the model and aerodynamic coeffi-
cients found by Gryte [25]. Compared to the Matlab simulator, which uses Winter’s
model [12], including iced and clean values for the aerodynamic coefficients, the
NMPC’s model is outdated. Therefore, although the first NMPC controller does not
include the effects of icing, its model is updated based on the results from Winter’s
work [12], where only the "clean" aerodynamic coefficients are implemented into
equations (2.17)-(2.23). In his work, the aerodynamic coefficient data was found
by experiment for a given angle of attack and sideslip angle, and interpolation
was used to find the aerodynamic coefficients between these data points. As the
NMPC controller is written in Python, which is later converted into C code and
used in the Matlab simulator, using interpolation in the same way as described
in Section 4.3.1 is not possible, as look-up tables were not supported as a part of
the OCP problem. The NMPC model uses therefore first-order polynomial approx-
imations of the aerodynamic coefficients, found by curve fitting in Winter [12],
which are generally good in the angle of attack interval α ∈ [−5,10] degrees. The
coefficients are then modeled as

Ck(x) = Ck1
x + Ck0

, (4.24)

where x = α,β , based on which angle the coefficient is dependent on. When it
comes to the drag coefficient CD, Winter did not include an approximation in his
work, so a third-order polynomial was found to ensure a good fit:

CD(α) = CD3
α3 + CD2

α2 + CD1
α+ CD0

. (4.25)

The parameters used are given in Table 4.7.

Ck3
Ck2

Ck1
Ck0

CD(α) 1.605 0.823 0.010 0.016
CL(α) 0.0 0.0 4.06 0.03
CLq
(α) 0.0 0.0 -0.381 4.653

Cm(α) 0.0 0.0 -0.61 0.0
Cmq
(α) 0.0 0.0 -0.0955 -1.987

CS(β) 0.0 0.0 -0.27 0.0
Cl(β) 0.0 0.0 -0.101 0.0
Cn(β) 0.0 0.0 0.0297 0.0

Value Value
CDq

0.0
CSr

0.005 CLδe
0.2780

CSp
-0.085 CDδe

0.0633
Clr

0.039 Cmδe
-0.2060

Clp
-0.409 CSδa

0.0433
Cnr

-0.022 Clδa
0.1200

Cnp
0.027 Cnδa

-0.00339

Table 4.7: Parameters of the clean aerodynamic coefficients.

4.2.3 NMPC with icing in its model

This thesis aims to improve the robustness of the previously described NMPC and
make it more suitable for icing conditions. For this purpose, the mathematical
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model of the NMPC has been extended to include the aerodynamic, asymmetric
icing model developed by Kleiven [13] and described in Section 2.6, together with
the iced aerodynamic coefficients found in Winter’s work [12]. The iced coeffi-
cients were implemented in the same way as the clean coefficients, following the
same procedure described in Section 4.2.2. Curve fitting, more specifically first
or third-order polynomials were used again to approximate the measured coeffi-
cients. The parameters used are given in Table 4.8.

Ck3
Ck2

Ck1
Ck0

CD(α) -6.454 4.041 0.043 0.0428
CL(α) 0.0 0.0 3.26 0.01
CLq
(α) 0.0 0.0 -1.9099 -3.243

Cm(α) 0.0 0.0 -0.32 0.0
Cmq
(α) 0.0 0.0 -1.528 -1.957

CS(β) 0.0 0.0 -0.23 0.0
Cl(β) 0.0 0.0 -0.861 0.0
Cn(β) 0.0 0.0 0.0348 0.0

Value Value
CDq

0.0
CSr

0.002 CLδe
0.2780

CSp
-0.133 CDδe

0.0633
Clr

0.158 Cmδe
-0.2060

Clp
-0.407 CSδa

0.0433
Cnr

-0.049 Clδa
0.1200

Cnp
0.017 Cnδa

-0.00339

Table 4.8: Parameters of the iced aerodynamic coefficients.

4.2.4 Binary NMPC with icing in its model

The NMPC with icing in its model takes the icing level on each wing as a para-
meter and calculates the corresponding aerodynamics coefficients, following Eq.
(2.6). The forces and moments are calculated taking asymmetry into account,
following the icing model presented in Section 2.6. Throughout this thesis, the
icing level on each wing has been assumed to be known, so it has been sent from
the simulator to the NMPC as it is. In practice, the icing level can be estimated
[27][28] or measured, but the same precision will not be achieved. Because of
that, it is interesting to see how the NMPC with icing in its model performs when
the information it gets about the icing level is less accurate. Assuming that the
UAV will use an icing sensor to detect icing, its minimal requirement would be
to detect whether the wing is in a clean or iced state. Taking this scenario into
account, another NMPC is explored, which, as the title of this section suggests,
only gets minimal information about the icing level, either clean (0) or iced (1).
In this case, it is assumed that the shift in the state happens somewhere in the
middle, so that under 50 % icing level the wing is assumed to be clean, and over
50 % it is assumed to be iced. By placing a sensor on each wing, the effects of
asymmetry would also be taken into account. The performance of the NMPC in
this scenario is tested in Section 5.4. Under the simulations, a spike was observed
when the controller would suddenly get a shift in icing state, so a low-pass filter
was used in this case to make the icing level transition smoothly into a different
state.
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4.3 Implementation of the Physical Model

This section describes how the physical model of the UAV, following the equations
of motion described in Section 2.2, as well as the icing models described in Section
2.6, were implemented. As this was done in the project thesis and no changes were
made, this section is repeated from [1].

4.3.1 Icing on the Wings

The physical model was implemented in the Matlab/ Simulink simulator by im-
plementing the UAV equations of motion described in Section 2.2, together with
the forces and moments described in Section 2.4.1, and using the physical para-
meters from Table 4.9. When it comes to the aerodynamic forces and moments,
the asymmetric model described in Section 2.6.1 was implemented, to account for
the effects of asymmetric icing on the wings. The aerodynamic coefficients were
found based on Winter’s work [12], where they are described in clean and iced
state. As some of the coefficients were non-linear, they are given for a specific
sideslip and angle of attack, and interpolated in the simulator by the Simulink
block n-D Lookup Table [29], as done in Högnadóttir’s work [10]. As the aerody-
namic coefficients are given for the either clean or iced case, a linear interpolation
is used, following Kleiven’s work [13], to find the coefficients in an intermediate
ice state:

Ck(ζ) = ζCk,iced + (1− ζ)Ck,clean,

where ζ ∈ [0, 1] denotes the level of icing for each wing, with ζ = 0 describing
no ice on the wing (clean), and ζ= 1 describing a fully iced wing.

Parameter Value
Air density ρ 1.2250 kg/m3

Mass m 3.364 kg
Wing span b 2.1 m
Mean chord c 0.3571 m
Wing area S 0.75 m2

Propeller diameter d 0.3556 m
Jx x 0.335 kgm2

Jy y 0.140 kgm2

Jzz 0.400 kgm2

Jxz -0.029 kgm2

Table 4.9: Physical parameters of the Skywalker X8.

4.3.2 Propeller Icing

The propeller icing model was implemented following Müller’s explanations [16]
and his help. For the development of the model, the wind-tunnel experiments
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Müller conducted were performed on the Mejzlik 21x13E propeller, and the para-
meters given in his work are valid for a propeller of the same size and material.
The propeller the Skywalker X8 uses is a Aeronaut CamCarbon 14x8” (foldable),
where the diameter is of 14 inches, as the name states. The propeller parameters
therefore need to be adjusted to match the propeller used. When it comes to the
thrust coefficients in the clean state, CT,clean, the parameters are the same as the
ones found in Coates’ work [17]. The clean power coefficients CP,clean are taken
from [30], where the data is found from experiments with the Aeronaut CamCar-
bon 14x8” propeller, so it is assumed to be valid. The parameters for the clean
coefficients are then found in Table 4.10.

(a) CT parameters

Parameter Value
CT,0 0.126
CT,1 -0.1378
CT,2 0

(b) CP parameters

Parameter Value
CP,0 0.032989
CP,1 0.0866
CP,2 -0.1623

Table 4.10: Parameters the clean thrust and power coefficients estimation.

When it comes to the adhesion force Amax , it depends on the material and
surface finish of the propeller, so it is assumed to be the same, as both the Mejzlik
and Aeronaut propellers are carbon fiber propellers. The∆CT and∆CP , however,
depend on the twist and chord distribution of the propeller blades. The Mejzlik
propeller is close to the propeller the UAV uses in terms of pitch to diameter ratio,
so the twist distribution is expected to be similar. Because of lack of time and blade
geometry data about the two propellers, the ∆CT and ∆CP found by Müller were
assumed to be transferable as well. The final parameters used are given in Table
4.11.

(a) ∆CT parameters

Parameter Value
∆CT,0 0.0233
∆CT,1 0.0254
∆CT,2 0.00140

(b) ∆CP parameters

Parameter Value
∆CP,0 -0.00890
∆CP,1 -0.0166
∆CP,2 -5.79e-04

(c) Amax parameters

Parameter Value
Amax ,0 37.250
Amax ,1 1223

Table 4.11: Parameters for the ∆CT , ∆CP and Amax estimation.

Looking at Eq. (2.33) and (2.35), describing the ice model for the propeller, we
see that the performance depends on the time t the propeller has been under icing
conditions, the temperature T , the liquid water content LW C , and the advance
ratio J . The advance ratio will depend on the airspeed of the aircraft and rotation
speed of the propeller, so it will be given by the simulator. As it is more interesting
to simulate the worst performance degradation case, the CT and CP have been
plotted for different temperatures and for a given time, using a standard J = 0.6
and LW C = 0.44 g/m3. Given the results in Figure 4.6, the worst final perform-
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ance degradation was given at T = −15◦C after 100 seconds. Therefore, to add
the effects of propeller icing to the simulator, the thrust model in Eq. (2.26) was
implemented with the thrust coefficient given by Eq. (2.33), choosing T = −15◦C ,
LW C = 0.44 g/m3, and t = 200s, to simulate the performance after the propeller
has been in icing conditions for a longer period of time. The power coefficient was
not implemented however, as it affects the propeller torque, which was assumed
to be negligible as previously explained in Section 2.4.3. Given the case simulated
in Figure 4.6, the power coefficient, and subsequently the torque, were not shown
to increase substantially, so the previous claim is assumed to remain valid.

Thrust and power coefficients at J = 0.6
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Figure 4.6: Thrust and power coefficient of the propeller for an advance ratio of
J = 0.6 and LWC of 0.44 g/m3.

4.4 Simulations

This section describes the simulations performed in this thesis to test the perform-
ance of the NMPC controllers when subjected to icing conditions, together with
other severe disturbances, and compare it to the PID and MRAC controllers, given
in Appendix A. To test the performance of the controllers, a set of simulations
was run in which the roll and pitch angles were driven to a given angle, while
the icing level and disturbance type varied. These simulations are given in Sec-
tion 4.4.2 and 4.4.3. Section 4.4.4 describes the guidance simulations, in which
the path-following performance of the controllers was tested, while subjected to
icing and wind disturbances. In Section 4.4.5, additional simulations that test the
performance of the NMPC controllers specifically are described. To be able to ob-
jectively analyze the performance of each controller, the simulations in Section
4.4.2 use the Integral Absolute Error (IAE) performance metric, presented in the
next section.
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4.4.1 Performance Metric

The Integral Absolute Error (IAE) of the reference error of a variable a is given
by:

IAE =

∫ t

0

|ea(τ)|dτ. (4.26)

Since the three controllers are following references for roll, pitch and airspeed, the
reference errors, in this case, are eφ = φre f −φ, eθ = θre f −θ and eVa

= Vare f
−Va.

To assess performance, the IAE values of each controller are compared under a
certain time interval. A higher IAE indicated a larger error. By comparing how fast
the IAE changes during, for example, a time interval in which icing asymmetry is
simulated, we can see which controllers are more affected by it.

4.4.2 Baseline simulation

The first simulation that is run is referred to as the baseline simulation, as it does
not include any disturbances other than icing, and serves as a baseline for the
next two simulations in Section 4.4.3. Throughout the simulation, the airspeed
reference is set to Va = 20 m/s. As illustrated in Figure 4.7, the simulation starts
with an excitation of the MRAC controller that lasts for 50 seconds, and which
is run to ensure that its states converge to a good tuning. This is done while the
references for roll and pitch of the NMPC and PID controllers are kept at the trim
states of φcmd = 0◦ and θcmd = 2.659◦, respectively. After the excitation period,
the first half of the simulation is run. Here, the reference in roll varies between
0 and 30 degrees while pitch is kept at 2.66 degrees, throughout different icing
level intervals: once without icing, the second time as the icing level on each wing
builds up, the third time during the iced state in which both wings have reached a
maximum ice accretion point, and the last time during the 100 % icing asymmetry
interval. In the second part of the simulation, the same is repeated this time with
pitch, varying between 2.66 and 30 degrees while roll is kept at 0 degrees.
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Figure 4.7: Roll, pitch, airspeed and icing level references in the baseline
simulation.

4.4.3 Reduced airspeed and wind conditions

Based on the baseline simulation described in the previous section, two more sim-
ulations are performed to test the performance of the controllers with additional
disturbances: reduced airspeed and severe wind conditions. The references for roll
and pitch, as well as the icing level, are the same as in the previous simulation, and
illustrated in Figure 4.7. In the reduced airspeed simulation, the airspeed is set to
Va = 20 m/s. When it comes to the simulation with severe wind conditions, the
airspeed reference is set back to Va = 17 m/s, the wind static velocity component
is set to Vwind = 10 m/s, and severe wind gusts are turned on. To simulate severe
gusts, the wind gusts chosen correspond to a static velocity of Vwind = 23 m/s. For
this simulation, the wind direction was set to ψw = 180 degrees.

4.4.4 Guidance simulations

Various guidance simulations were run in order to test the path-following per-
formance of the different controllers. The path was chosen as a set of waypoints,
as illustrated in Figure 4.8. The roll and pitch references to be tracked were given
by the guidance controller described in Section 4.1.3. In addition, the guidance
simulations were run under the same severe wind conditions described in the pre-
vious section. It was observed that the performance varied significantly based on
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the wind direction angle,ψw, as well as on the simulated icing state of the wings.
Different scenarios have therefore been tested. During these simulations, the icing
state of the wings remained the same during the entire duration of the simulation,
in order to see whether poor performance could be attributed to the wind con-
ditions or to the icing conditions. A total of six simulations were run, all with a
static wind of Vwind = 10 m/s together with severe gusts, as done in the previous
section. Three simulations were run with 100 % icing on both wings, each with a
wind direction ofψw = 90◦,ψw = 180◦ orψw = 270◦, as they were found to give
different performances, and, in some cases, severe deviations from the path. The
next three simulations were run with 100 % icing asymmetry instead, keeping one
wing fully iced while assuming the other one is fully clean, and with each of the
previously mentioned wind directions.

Figure 4.8: Path to be followed.

4.4.5 Additional simulations

This section goes through the additional simulations performed to test the NMPC
controllers specifically, and how they perform with possible limitations taken into
account. The two NMPC variants explored are an NMPC which does not include
the effects of icing in its model and an NMPC which does. The NMPC without
icing relies solely on a disturbance observer, described in Section 3.0.2, to handle
the icing effects, by considering icing as any other unknown disturbance. To illus-
trate why the disturbance observer is necessary, and how it combats the effects
of icing, an additional baseline simulation is performed, as explained in Section
4.4.2, using the NMPC without icing in its model and having the disturbance ob-
server turned off.

The disturbance observer removes the offset error between the reference and the
NMPC response, where the error is found as the difference between the state of



42 :

the UAV and the state predicted by the NMPC. While simulating the response in
the simulator, the state of the UAV is always known. In practice, the state would
have to be measured or estimated. While airspeed Va and the angular velocity can
be measured, the UAV is not equipped with sensors that can measure the angle
of attack α or sideslip angle β , as these sensors are often too expensive, large
and heavy. Instead, α and β can be estimated using the standard sensor suite of
a UAV, composed of a GNSS (Global Navigation Satellite System), IMU (Inertial
Measurement Unit), and pitot-static tube, and kinematic relationships together
with a Kalman filter [31][32]. Research on this topic finds that the angle of at-
tack can be estimated with an RMSE of 0.56 degrees [32], while another article
[33] finds an angle of attack and sideslip angle estimation accuracy of 1.2-1.3 de-
grees. Implementing these methods is outside the scope of this thesis, but these
results are taken into account. In order to ensure that the disturbance observer
would manage to perform similarly in practice, additional simulations are per-
formed, in which the angle of attack and sideslip angles include an error of +1.5
degrees first, and -1.5 degrees next, simulating an estimation error. In the case of
the NMPC with icing in its model, this was tested on a baseline simulation. When
it comes to the NMPC without icing, it was assumed to be affected more, so the
reduced airspeed simulation was tested with the estimation error in order to push
the controller.

Additionally, the scenario in which the NMPC with icing can only take binary
information about the icing level, either 0 for clean or 1 for iced, as explained in
Section 4.2.4, is also tested with the baseline simulation.
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Results

This chapter presents the results obtained after running the simulations described
in 4.4. To assess the performance of the different controllers objectively, the In-
tegral Absolute Error (IAE) is used as a performance metric, as described in 4.4.1.
The IAE of the states being tracked (roll, pitch and airspeed) is therefore plotted
for every simulation, and given as a part of the results.

5.1 Baseline simulation

The baseline simulation is run as described in Section 4.4.2, where the airspeed
reference is kept at an optimal 20 m/s, and no wind disturbances are present.
The response after the first half of the simulation is shown in Figure 5.1, with
t ∈ (60, 120). The reference for roll oscillates between 0◦ and 30◦, while keeping
the pitch angle at 2.6595◦ and varying the icing level on the wings. During this
time period, both the PID and MRAC have a faster response to the changes in the
roll angle, resulting in a smaller roll-tracking error, as seen in Figure 5.1 and 5.3,
but they react more aggressively to the sudden changes in icing level, at t = 100
and t = 110, when it is simulated that the UAV loses all the ice on the right and
left wing, respectively. It can also be seen that the pitch response of the PID and
MRAC varies more with the changes in roll angle than the two NMPCs, and this
increases during the ice asymmetry interval at t ∈ (100,110), especially with the
PID controller. During this interval, the roll, pitch and airspeed tracking perform-
ance of the NMPC controller that does not include icing in its model also worsens
visibly, where the most significant errors can be seen in pitch and airspeed, with a
maximum airspeed error of eVa = 0.52 m/s. As this NMPC is tuned to be less ag-
gressive, the aileron, elevator and angle of attack responses also vary more during
the asymmetry interval, where the highest angle of attack of α= 4.13◦ is reached.
Including icing in the mathematical model of the NMPC reduced these issues sig-
nificantly and enabled a more aggressive tuning, giving a better and less affected
by asymmetry, pitch and airspeed tracking performance.

43
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Figure 5.1: Baseline simulation for t ∈ (60,120), with a varying reference in
roll from φcmd = 0◦ to φcmd = 30◦, constant θcmd = 2.659◦, constant

Va,re f = 20 m/s, and no wind disturbances.

The roll simulation finishes at t = 120 s, and in Figure 5.3 it can be seen that
up until this point, the two NMPCs have a larger error in roll tracking performance,
as they are slower, but a better pitch response than the PID and MRAC controllers.
The airspeed response is more varied, with the NMPC without icing being better
than the MRAC but worse than the PID. Generally, the NMPC that includes icing
in its model always performs better than the NMPC that does not, and it also sur-
passes both the PID and MRAC controllers in terms of pitch and airspeed tracking
performance.

Figure 5.2 shows the response of the baseline simulation between t ∈ (120,180),
where the roll reference is kept at 0◦ while the pitch oscillates between 2.6585◦

and 30◦, and the icing level on the wings varies. In this case, the airspeed tracking
performance of both NMPCs is more affected by the changes in pitch than they
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were by the previous changes in roll, with the largest errors during the iced and
asymmetric time intervals, as well as right after the ice on the left wing "falls", at
t = 170 s. The error is smaller for the NMPC that includes icing in its model, which
quickly goes back to the airspeed reference. The PID and MRAC airspeed tracking
performance is also more affected in this case, and the errors persist longer than
with the NMPC controllers. The iced and asymmetry intervals also induce some
oscillations in airspeed with these two controllers. In this figure as well as in Fig-
ure 5.3 it can be seen that the NMPC with icing in its model has a significantly
better roll performance, while the most affected is the MRAC controller, followed
by the NMPC without icing. The NMPC with icing has also the best pitch-tracking
performance, while the other three controllers have similar responses, with the
exception of a drop in performance by the NMPC without icing during the iced
state. During the iced time interval, the highest angle of attack is achieved by
the NMPC with icing, with αmax = 7.57◦. When it comes to elevator, aileron and
throttle it can be seen that the response of the two NMPC controllers generally
oscillates less.
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Figure 5.2: Baseline simulation for t ∈ (120, 180), with a varying
reference in pitch from θcmd = 2.659◦ to θcmd = 30◦, constant φcmd = 0◦,

constant Va,re f = 20 m/s, and no wind disturbances.
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Figure 5.3: IAE of roll, pitch and airspeed throughout the baseline
simulation, with a constant Va,re f = 20 m/s and no wind disturbances. In
grey, the responses with reduced airspeed and severe wind are shown for

reference, but can be better seen in figures 5.6 and 5.9 respectively.

The results of the baseline simulation can be summarized by Figure 5.3. The
best roll tracking performance was achieved by the PID controller, with the NMPC
with icing in its model coming second due to its good performance in the second
part of the simulation, when it was the least affected by the changes in pitch
reference, with the MRAC controller being the most affected. The NMPC with
icing is also the best at tracking pitch and airspeed, while the NMPC without icing
has generally the worse performance, only surpassed by the PID’s pitch and the
MRAC’s airspeed tracking performance.

5.2 Reduced airspeed simulation

The reduced airspeed simulation is run as described in Section 4.4.3, with the
airspeed reference set to Va,re f = 17m/s and without any wind disturbances. As
in the baseline simulation, in the first half of the simulation (t ∈ (60, 120)) the
reference in roll changes while pitch and airspeed remain constant, this is shown
in Figure 5.4. When the airspeed is reduced, the effect of icing asymmetry on
the wings is very apparent in the case of the PID controller, which can barely
handle the roll maneuver, causing a spike to φmax = 60.65◦, a drop in pitch to
θmin = −53.1◦ and increase in airspeed to Vamax = 24.69 m/s, as throttle satur-
ates to 0. This is solely caused by the asymmetry, since the PID handles the iced
state well. The asymmetry interval also affects the MRAC more apparently than
the two NMPC controllers, as seen by a drop in pitch, and significant oscillations
in elevator, angle of attack and sideslip angle. The highest angles of attack are
achieved by the PID and MRAC controllers, at αmax = 6.49◦ and αmax = 6.22◦,
respectively. In addition, both the MRAC and PID are quite sensitive to the sudden
loss of ice on the left wing at t = 110 s, causing oscillations in roll, aileron and
sideslip angle. When it comes to the NMPC controllers, the NMPC which includes
icing in the model is, as expected, less affected by the asymmetry, being able to
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follow the roll and pitch references well. The airspeed tracking performance is
however more impacted by the asymmetry than with the MRAC controller, but
less than with the NMPC without icing in its model.

Up until this point, the roll, pitch and airspeed performances can also be seen
more objectively in Figure 5.6, in the interval t ∈ (60, 120). Here too it can be seen
that the PID’s roll, pitch and airspeed performances deteriorated drastically after
the severe asymmetric case. Asymmetry did not affect the two NMPC’s roll and
pitch tracking performance, but it did affect the airspeed. The opposite is true in
the MRAC controller’s case, where the roll and pitch tracking performances were
affected, but the airspeed was not. Other than in the asymmetric time interval, the
reduced airspeed does not impact the performance of the controllers significantly.

Figure 5.4: Reduced airspeed simulation for t ∈ (60, 120), with a varying
reference in roll from φcmd = 0◦ to φcmd = 30◦, constant θcmd = 2.659◦,

constant Va,re f = 17 m/s, and no wind disturbances.

The results of the reduced airspeed simulation in the interval t ∈ (120,180)
are shown in Figure 5.5, where the reference in pitch was changing while the roll
reference was kept constant. The PID controller’s inability to handle asymmetry
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and reduced airspeed simultaneously persists here as well, with severe spikes in
pitch (θmin = −62.63◦), airspeed (Vamax = 25.1 m/s) and roll (φmin = −79.28◦).
The PID’s throttle saturates in this case too. The asymmetry interval also affects
the MRAC controller’s pitch and roll-tracking performance more than the clean
and iced intervals, as well as the NMPC controllers’ airspeed performance, with a
maximum airspeed of Vamax = 20.26 m/s by the NMPC with icing in its model.
During the asymmetry interval, more oscillations can however be observed in the
NMPC without icing’s overall response. These issues are fixed by including icing
and asymmetry in the NMPC model, as seen by the response of the NMPC with
icing. This controller however also has the highest angle of attack, at αmax = 8.6◦,
during the iced interval. The PID and MRAC controllers have their maximum at
αmax = 7.59◦ and αmax = 8.19◦, respectively.

Figure 5.5: Reduced airspeed simulation for t ∈ (60, 120), with a varying
reference in roll from φcmd = 0◦ to φcmd = 30◦, constant θcmd = 2.659◦,

constant Va,re f = 17 m/s, and no wind disturbances.

The results of the reduced airspeed simulation are summarized in Figure 5.6.
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It can be seen that the PID performance is overall severely impaired compared
to the baseline simulation shown in Figure 5.3, and to the other two controllers,
whose performance is not affected to the same degree. In this simulation, both
NMPC controllers become the best at tracking roll and pitch, with the NMPC with
icing in its model also being the best at tracking airspeed. In this simulation as well
it can be seen that the NMPC’s performance improves greatly when the effects of
icing and asymmetry become a part of its model.

Figure 5.6: IAE of roll, pitch and airspeed throughout the reduced airspeed
simulation, with a constant Va,re f = 17 m/s and no wind disturbances. In grey,

the baseline and severe wind responses are shown for reference, but can be
better seen in figures 5.3 and 5.9 respectively.

5.3 Wind disturbance simulation

The wind disturbance simulation is run as described in Section 4.4.3, by keeping
the airspeed constant at the optimal Va = 20 m/s, while adding wind disturb-
ances, with a static wind of Vwind = 10 m/s together with severe wind gusts. The
response of the first half of the simulation, in the interval t ∈ (60,120)s, is shown
in Figure 5.7. The roll tracking performance is difficult to judge from Figure 5.7,
but Figure 5.9 shows that the PID is the least affected, while the other three con-
trollers show similar performance. When it comes to pitch tracking, both figures
show that the two NMPC controllers follow the reference better. During this in-
terval, the MRAC controller is the one which struggles the most with roll, pitch
and airspeed tracking in the case of severe wind conditions. The most notable dif-
ference between the two NMPCs and the PID and MRAC is the throttle response,
which oscillates significantly more with the PID and MRAC controllers. The over-
all aileron, elevator and angle of attack responses also seem to be less "noisy" with
the NMPC controllers than with the PID and MRAC. In this simulation, the highest
angles of attack are reached by the MRAC and PID controllers, at αmax = 7.31◦

and αmax = 6.34◦, respectively.
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Figure 5.7: Wind conditions simulation for t ∈ (60,120), with a varying
reference in roll from φre f = 0◦ to φre f = 30◦, constant θre f = 2.659◦, constant

Va,re f = 20 m/s, and Vwind = 23 m/s.

The results in the interval t ∈ (120, 180), when the pitch reference changes and
roll is kept constant, can be seen in Figure 5.8. The pitch response seems similar for
all controllers, but Figure 5.9 shows that the NMPC without icing in its model has a
notable drop in performance during this time interval. However, the performance
improves significantly if icing and asymmetry are added to the model of the NMPC.
The NMPC without icing in its model also struggles more to keep the roll reference
during the icing asymmetry interval. This is also the case for the MRAC and PID
controllers. It can be seen that the two NMPC controllers are better at tracking
airspeed, and their throttle and aileron responses oscillate significantly less that
the PID and MRAC controllers. The angle of attack performance is similar, with the
highest angles given by αmax = 8.29◦, αmax = 8.19◦, αmax = 8.01◦ and αmax =
7.03◦ by the NMPC without icing, the NMPC with icing, the MRAC and the PID,
respectively. The minimum angle of attack, αmin = −2.71◦, is given by the MRAC.
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Figure 5.8: Wind conditions simulation for t ∈ (60,120), with a varying
reference in roll from φcmd = 0◦ to φcmd = 30◦, constant θcmd = 2.659◦,

constant Va,re f = 20 m/s, and Vwind = 23 m/s.
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Figure 5.9: Baseline simulation for t ∈ (60,120), with a varying reference in roll
from φcmd = 0◦ to φcmd = 30◦, constant θcmd = 2.659◦, constant Va,re f = 20 m/s,

and Vwind = 23 m/s. In grey, the baseline and reduced airspeed responses are
shown for reference, but can be better seen in figures 5.3 and 5.6, respectively.

As a result of the severe wind conditions, the response of all controllers oscil-
lates more, but the effects of the 100% asymmetric icing case do not impact the
performance as severely in this case as they did in the reduced airspeed case. Look-
ing at the IAE of roll, pitch and airspeed in Figure 5.9, and especially at the two
NMPC controllers, the error increases more linearly as time passes, indicating that
the severe wind conditions affect the performance of the controllers more than the
changes in icing level. The MRAC controller is generally the most affected by the
wind conditions, while the PID is the best at tracking roll and the NMPC with icing
in its model is the best at tracking pitch and airspeed. The NMPC without icing
has a similar performance to the PID and MRAC controllers, but here too it can
be seen that its performance is improved when icing is included in its model.

5.4 Additional simulations

To further evaluate the performance of the two NMPC controllers, one which in-
cludes icing in its model and the other which does not, additional simulations
have been performed. In the case of the NMPC without icing, it might be inter-
esting to see what the output of the disturbance observer is, and how it manages
to combat the effects of icing and icing asymmetry. For this purpose, the baseline
simulation was run with the disturbance observer turned off. The roll, pitch and
airspeed responses of the NMPC in this case are given in Figure 5.10.
The results show an offset error in airspeed and pitch primarily, which increases
with the level of icing. The roll error also increases with the icing level, becoming
very large during the 100 % icing asymmetry case, resulting in large errors in
pitch and airspeed as well. Figures 5.11 and 5.12 show the NMPC predictions of
the states controlled by the disturbance observer when this is turned off and on,
as well as the disturbances predicted by the observer when it is on. It can be seen
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that there is an increasing error between the NMPC prediction xnmpc and the state
x as the icing level increases while the disturbance observer is off. This is expected
considering the response shown in Figure 5.10. When the disturbance observer is
turned on, it can be seen that the NMPC predictions are corrected, in most cases
almost entirely as they overlap with the state x . The disturbances predicted by the
observer are also plotted, and it can be seen that they correspond to the observed
improvement of the NMPC predictions: an increase or decrease of d follows the
previous errors between xnmpc and x .

Figure 5.10: Response of the NMPC without icing in its model when the baseline
simulation is run while the disturbance observer is off.
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Figure 5.11: The first half of the baseline simulation run with the disturbance
observer on and off. It can be seen how the NMPC predictions of the states con-
trolled by the disturbance observer change with the observer being on or off. The
disturbances d from Eq. Eq. (3.5)-(3.6) when the observer is on are also plotted.
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Figure 5.12: The second half of the baseline simulation run with the disturbance
observer on and off. It can be seen how the NMPC predictions of the states con-
trolled by the disturbance observer change with the observer being on or off. The
disturbances d from Eq. Eq. (3.5)-(3.6) when the observer is on are also plotted.

Next, possible limitations of the NMPC controllers are explored. Because the NMPC
controllers are tested on the simulator, all information about the states is avail-
able. When tested in practice, the angle of attack and sideslip angles, which are
corrected by the disturbance observer, cannot be measured and would need to be
estimated instead. When it comes to the icing level, it can be measured, but it
is safe to assume that not to the same level of precision. Therefore, as explained
in Section 4.4.5, two simulations are performed to test these limitations. Figure
5.13 shows the roll, pitch, airspeed and angle of attack response of the NMPC with
icing in its model with the limitations mentioned. It can be seen that the binary
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NMPC has an identical response to the NMPC with access to full information about
the icing level, except for the moments when the icing state of the binary NMPC
flips from clean to iced as the reference in roll changes. In those cases, there is
a fast, drastic change in the states, but it gets resolved quickly. When it comes
to the NMPC controllers that have a positive or negative error of 1.5 degrees in
both angle of attack and sideslip, it can be seen that this has a minimal impact
on the performance. These controllers have almost the same response as the "per-
fect" NMPC with icing, except for the moments when the 100 % asymmetric icing
interval starts and ends.

Figure 5.13: Baseline simulation response of the NMPC with icing included in its
model, compared to more limited NMPC controllers with icing. Two of them in-
clude simulated estimation errors of +-1.5 degrees in angle of attack and sideslip
angle, while the binary NMPC only has binary information about the icing level,
either clean (0) or iced (1).
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The estimation error of angle of attack and sideslip is also tested with the NMPC
without icing in its model. In this case, the airspeed simulation is performed, as it
is more challenging, with a positive or negative error of 1.5 degrees in both angle
of attack and sideslip. The results are given in Figure 5.14, where it can be seen in
this case too that the estimation errors have a minimal effect on the performance,
although they increase slightly during the asymmetry interval.

Figure 5.14: Reduced airspeed simulation response of the NMPC without icing
included in its model, compared to two more limited NMPC controllers with sim-
ulated estimation errors of +-1,5 degrees in angle of attack and sideslip angle.
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5.5 Guidance simulation

In this section, the results from the guidance simulation described in section 4.4.4
are presented. The simulations are run with 10 m/s wind and severe wind gusts,
changing the wind direction and the icing level, as the results were found to vary
a lot depending on those two factors. The performance of the NMPC with icing in
its model is compared to the one of the NMPC without icing, and to the PID and
MRAC controllers.

Figure 5.15 shows the performance of the four controllers when the wind direction
is ψw = 90◦. The performance in the case of 100 % asymmetry throughout the
simulation time is presented on the left, while the 100 % icing case is presented
on the right. It can be seen that all controllers struggle more to follow the path
in the case of asymmetry than when the wings are fully iced, especially when the
UAV gets closer to take a turn. As observed, the asymmetry also leads to more
height variations across the path. The NMPC with icing in its model is slightly
better at keeping the height closer to the target than the NMPC without icing, but
it is outperformed by both the PID and the MRAC.

When the wind direction is changed toψw = 180◦, the PID controller is no longer
able to keep the path during the 100 % icing asymmetry simulation, and crashes
while trying to take the second turn, as seen in Figure 5.16. The performance of
the two NMPC controllers is also notably impaired, as they struggle to keep the
height after the second turn more than in the 100 % icing simulation on the right.
In general, the controllers are also forced to take larger turns when the direction of
the path changes. When it comes to the difference between the NMPC controllers,
it is not very apparent which one is better in this case, given the described icing
and wind conditions.
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Figure 5.15: Guidance simulation with a static wind velocity of Vwind = 10 m/s,
severe wind gusts and wind direction ψw = 90◦. Run with 100 % asymmetry and
100 % icing level.
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Figure 5.16: Guidance simulation with a static wind velocity of Vwind = 10 m/s,
severe wind gusts and wind direction ψw = 180◦. Run with 100 % asymmetry
and 100 % icing level.
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Figure 5.17: Guidance simulation with a static wind velocity of Vwind = 10 m/s,
severe wind gusts and wind direction ψw = 270◦. Run with 100 % asymmetry
and 100 % icing level.
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In Figure 5.17 we see how well the controllers follow the path when the wind
direction is changed to ψw = 270◦. As can be seen, in the 100 % asymmetry case,
both the NMPC without icing (nor asymmetry) included in its model and the PID
controller crash. As the wind pushes the UAV further from the path during the
swing at the third waypoint, the NMPC without icing does not manage to converge
back. The PID crashes before the swing, unable to both ascend and prepare to turn
left. Although the wind direction pushes the UAV towards the east when taking
the second turn, the effects are more severe when the icing level on the wings is
asymmetric. Including icing in the NMPC model makes it able to follow the path,
but it seems more disturbed than the MRAC controller. In the case of 100 % icing,
on the other hand, the performance of both NMPC controllers improves, and their
response seem to oscillate less than with the MRAC. This can be seen the two times
the UAV ascends to 180 meters, going towards the fourth and the last waypoint.

After running the guidance simulations in different wind conditions and direc-
tions, it was interesting to see how the different controllers perform without any
wind conditions or disturbances present, other than the icing conditions. During
this simulation, it was surprising to see that both NMPC controllers crashed during
the part of the path that descends from 180 to 150 meters, during the 100 % asym-
metry case. This is because the throttle optimal input would saturate at δt = 0.
By reducing the weight on the disturbance observer airspeed error, lVa

, from 0.03
to 0.01, this problem is solved, as shown in Figure 5.19. However, lVa

= 0.03 is
needed when wind disturbances are present, and due to the lack of time, a tuning
that works in both cases has not been found. Using lVa

= 0.01, Figure 5.19 shows
that the NMPC controllers are better at keeping the height reference than the PID
and MRAC controllers.

Figure 5.18: Guidance simulation with the wind turned off. Run with 100 %
asymmetry and 100 % icing level.
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Figure 5.19: Guidance simulation with the wind turned off, and lVa
= 0.01. Run

with 100 % asymmetry and 100 % icing level. In this case, the NMPC controllers
no longer crash.
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Discussion

Based on the simulation results presented in Chapter 5, the performance of the
NMPC controllers will be analyzed and discussed in this chapter, comparing them
to the PID and MRAC controllers, as well as the challenges related to the controller
designs.

6.1 The improved NMPC controllers

The aim of this thesis was to improve the NMPC controller used in the project
thesis [1] to be more suitable in icing conditions. In this thesis, two NMPC con-
trollers were explored: an NMPC with the effects of icing and asymmetry included
in its model, and an NMPC without icing, based on the NMPC developed in the
project thesis [1]. Updating the model of the latter to match the aerodynamic
model by Winter [12] used in the Matlab/ Simulink simulator helped reduce the
offset error in the NMPC response when the disturbance observer was turned off.
The disturbance observer was then mainly used to account for the effects of icing
asymmetry and other disturbances. The most notable improvement, however, was
adding the effects of icing on the wings and asymmetry to the NMPC model. Hav-
ing knowledge on the icing model and how it affects the aerodynamic performance
of the UAV ensured an optimal input even in the case of severe asymmetry, as the
NMPC with icing in its model understands how it works. The effects of icing on the
propeller, however, were not added to this NMPC. This is because the effects are
dependent on the propeller type, and including it in the NMPC model limits the ac-
curacy of the NMPC to only be valid for the Skywalker X8’s propeller. In addition,
the model is dependent on the temperature and the liquid water content (LWC),
which the UAV might not have access to. When adapting the propeller icing model
developed by Müller [16], and valid for the Mejzlik propeller that he used, to the
UAV used in this thesis, there were also many assumptions made. Therefore, al-
though the model is assumed to be good enough to simulate the additional effect
of icing on the propeller, given possible inaccuracies and the mentioned challenges
above, the NMPC might not benefit from including it in its model.
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6.2 Simulations and performance of the controllers

Throughout the simulations performed, it was clear that the effects of asymmetry
in particular deteriorated the performance of the controllers significantly more
than any other icing interval. Adding icing to the model of the NMPC was found
to notably reduce the degradation in performance during the asymmetry interval,
and reduce oscillations compared to the NMPC without icing. The NMPC with
icing in its model had the best IAE pitch and airspeed tracking performance during
the baseline, reduced airspeed and wind conditions simulations, and the second
best roll performance. However, asymmetry still affected the performance of this
controller to some degree, as could be seen more clearly during the guidance
simulations. This could be because of differences between the model used in the
simulator and the model of the NMPC, or possible implementation errors of the
asymmetry model into the NMPC. The guidance simulation with 100 % asymmetry
also crashes with the tuning proposed, and although better tuning was found for
this case, it was not tested for the other simulations. The tuning of the NMPC
controllers needs therefore to be improved. When it comes to the simulations, all
disturbances were planned and simulated in the Matlab/ Simulink simulator, and
had a maximum length of 200 seconds. In the real world, ice would not build and
shed that quickly, leading to the question of whether the scenarios tested were
realistic or too strict. When it comes to the icing conditions, the icing data found
in Winter [12] and used in this model is valid for the most severe icing type, the
mixed icing case. Although the UAV could encounter less severe icing conditions,
the controllers had a bigger issue when severe asymmetry was simulated than
with 100 % iced wings. When it comes to the 100 % asymmetry simulated, when
all ice sheds from one of the wings while the other one remains fully iced, it is the
worst-case scenario but it is also fairly unlikely. How long it would last if it were
to happen is also unknown, so the guidance simulations in which asymmetry lasts
for over 100 seconds might be too strict. However, the NMPC controller with icing
in its model still performed well under almost all simulations.

6.3 Tuning of the controllers

The tuning of the NMPC controllers, and especially of the controller without icing
in its model, was in the end more challenging than expected. As the controller
did not have any information about the icing, trade-offs were needed in the tun-
ing to ensure it worked in both of the most severe icing cases (the 100 % icing
and 100 % asymmetry cases), and together with other severe disturbances. A
more aggressive controller worked well under severe wind conditions, but it of-
ten did not handle reduced airspeed in the asymmetry interval. Improving the
roll performance during this interval often came at the expense of pitch, and vice
versa. The performance during the reduced airspeed simulation was very similar
to the one during the baseline simulation, excepting the icing asymmetry inter-
val. Therefore, choosing a less aggressive tuning because of this interval resulted
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in a slower baseline response as well. In addition, different disturbance observer
parameters had also a great impact on the performance, where different weights
would perform better under certain disturbances or parts of the icing interval,
but poor during others. For example, too little weight on pitch angular velocity lq
would not be sufficient with severe wind conditions, but too much weight would
increase oscillations, as the NMPC "trusts" the disturbance observer more than its
predictions. As seen in Figures 5.18 and 5.19, a too high weight on the disturb-
ance observer airspeed value makes the NMPC controller crash in the absence
of disturbances other than icing asymmetry. This questions the robustness of the
NMPC, since the controller was not proven to work perfectly under all simulation
cases with the tuning chosen. However, given how well it was able to perform in
the rest of the simulations, especially under the asymmetry intervals, it is safe to
say that it was the least affected by the effects of icing asymmetry on the wings,
and that a better tuning is possible to be found.

When it comes to the PID and MRAC controllers, they were used the way they
were developed by Gryte [11] and Högnadóttir [10], and further tuning was left
outside the scope of this thesis, as the focus was on developing robust NMPC con-
trollers. As some changes were made in the Simulink model, the question arises
of whether the PID and MRAC are fairly tuned, and whether their performance is
worsened with the updated model. This topic was explored in the author’s project
thesis [1], but it was found that the updated Simulink model had little impact on
the performance of the PID and the MRAC controllers. This is probably because,
compared to greater disturbances like reduced airspeed and wind conditions, the
differences between the new and old models are not as significant.

6.4 Stall angle

One of the key features of the NMPC controller is that it allows for constraints to
be put on the states when formulating the optimization problem, so that physical
and safety limits are taken into account. This way, stalling of the aircraft can be
considered by constraining the angle of attack to not go above the upper bound
αstal l . This is not the case with the PID and MRAC controllers, which currently do
not employ any stalling measures, and the stall limit needs to be checked after run-
ning each simulation to verify it is not crossed. Although stalling was considered
for the NMPC, the actual stall limit is not clear in the literature, with Winter sug-
gesting that α≈ 10◦ in his work [12], while Högnadóttir writes in her thesis that
it might be closer to α ≈ 4◦ [10]. This could be due to the differences between
the configurations used in their simulations, but α ≈ 10◦ was chosen as it is the
one she used in her thesis as well. However, it was observed that although the
predicted state of the NMPC never crossed the upper bound for α, the actual state
did not always follow this limit, due to remaining differences in the simulator
model and the model used by the NMPC. To ensure that the angle of attack stays
well below α≈ 10◦, the upper bound for α was set to α= 8◦. During the reduced
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airspeed simulation, however, the angle of attack reached α= 8.6◦. It is unknown
whether it would have reached 10 degrees under different circumstances, but it is
possible to reduce α even more to ensure it does not happen. In the project thesis
[1] the limit was set to α = 4◦, which kept the maximum angle of attack lower
(around αmax = 6◦), but at the expense of the airspeed tracking performance in
order to keep the optimization problem feasible.
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Conclusion

This thesis explores how the NMPC controller for inner-loop control of roll, pitch
and airspeed, developed by Reinhardt [5] and implemented in the Matlab/ Sim-
ulink simulator developed by Gryte [11], can be modified to be better suited for
the icing problem. The model in the NMPC is first updated to use the aerody-
namic clean coefficients found in Winter’s work [12], to match the model used in
the simulator. Although the model is updated, this NMPC does not include icing
in its model, so the icing conditions are handled by its disturbance observer. Then,
the effects of icing and asymmetry are implemented in the model of the NMPC,
following Winter’s and Kleiven’s work [13], to see to what degree its performance
and robustness improve. The two NMPC controllers, the one with ice in its model
and the one without, are tested and compared in different simulations, run with
icing conditions in addition to other disturbances such as reduced airspeed and
severe wind conditions. Their performance is also compared to the PID and MRAC
controllers, previously developed by Högnadóttir in her thesis [10].

The simulation results have been assessed using the IAE performance metric, and
they show a similar performance of the PID, MRAC and NMPC without icing con-
trollers, depending on the simulation run. The NMPC without icing performs bet-
ter than the PID and MRAC under the reduced airspeed simulation, but shows a
slower response in the other simulations. However, a clear improvement in per-
formance can be seen when icing and asymmetry are included in the model of
the NMPC. In this case, the NMPC outperforms all controllers in all simulations
when it comes to pitch and airspeed tracking, and has the second-best roll track-
ing, only surpassed by the PID. Additional simulations were also performed to test
the performance of the NMPC assuming that the detected icing level or estimated
disturbance observer states are less precise in practice. These scenarios were not
found to compromise the performance of the NMPC controller.

When it comes to the path-following abilities of the controllers, guidance sim-
ulations are performed with different wind directions and icing conditions. When
the simulations are performed with 100 % icing asymmetry, the performance de-
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gradation is the most severe. In this case, the NMPC with icing and the MRAC
have the best performances. The PID controller crashes in two of these simula-
tions. During one of the guidance simulations, the two NMPC controllers crash as
well, due to the weight on the airspeed error of the disturbance observer being too
high. Although it is shown that reducing lVa

solves this issue, it has not been tested
with the other simulations. A better tuning should therefore be found and tested.
However, considering the overall better performance of the NMPC with icing in
its model compared to the other controllers throughout the different simulations,
it can still be concluded that this NMPC controller is more suited to handle the
effects caused by icing asymmetry.

When it comes to further work, better tuning of the NMPC should be found to
ensure that it works in all simulation cases. When it comes to improvements to
the model, both the stall limit and the aerodynamic coefficients between the iced
and clean state of the wing are uncertain, so more experiments are needed to ex-
pand our knowledge on this topic. In addition, the icing on the propeller model
also needs more research, as the original model was developed for another pro-
peller than the one the Skywalker X8 uses. Although the model was assumed to be
valid, a greater understanding of the differences between the two propellers, or
experiments with the correct propeller, would increase the accuracy of the model.
Finally, the NMPC controllers should be tested in practice.
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‘Aerodynamic modeling of the skywalker x8 fixed-wing unmanned aer-
ial vehicle,’ in2018 International Conference on Unmanned Aircraft Systems
(ICUAS) 2018, pages 826–835. DOI: 10.1109/ICUAS.2018.8453370.

https://doi.org/https://doi.org/10.1016/j.expthermflusci.2018.11.008
https://doi.org/https://doi.org/10.1016/j.expthermflusci.2018.11.008
https://doi.org/10.2514/6.2021-2673
https://doi.org/10.2514/6.2021-2673
https://doi.org/10.2514/6.2022-3903
https://doi.org/10.1109/ICUAS.2019.8798082
https://doi.org/10.1109/ICUAS.2019.8798082
https://doi.org/10.2514/6.2012-4674
https://doi.org/10.1109/ICUAS.2018.8453370


Bibliography 73

[26] Matlab + Simulink and Octave Interface, https://docs.acados.org/
matlab_octave_interface/index.html, Accessed: 2022-11-01.

[27] A. Cristofaro, A. P. Aguiar and T. A. Johansen, ‘Icing Detection and Identific-
ation for Unmanned Aerial Vehicles using Adaptive Nested Multiple Mod-
els,’ International Journal of Adaptive Control and Signal Processing, , Vol.
31, pp. 1584–1607, 2017. DOI: 10.1002/acs.2787.

[28] D. Rotondo, A. Cristofaro and T. A. Johansen, ‘Icing diagnosis in unmanned
aerial vehicles using an LPV multiple model estimator,’ IFAC World Con-
gress, Toulouse, 2017. DOI: 10.1002/acs.2787.

[29] N-D Lookup Table, https://se.mathworks.com/help/simulink/slref/
ndlookuptable.html, Accessed: 2022-12-15.

[30] UIUC Propeller Database - Volume 3, https://m-selig.ae.illinois.edu/
props/volume-3/propDB-volume-3.html, Accessed: 2022-12-05.

[31] T. A. Johansen, A. Cristofaro, K. L. Sørensen, J. M. Hansen and T. I. Fosse,
‘On estimation of wind velocity, angle-of-attack and sideslip angle of small
UAVs using standard sensors,’ International Conference on Unmanned Air-
craft Systems, Denver, 2015. DOI: 10.1109/ICUAS.2015.7152330.

[32] A. W. Wenz and T. A. Johansen, ‘Moving Horizon Estimation of Air Data
Parameters for UAVs,’ IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 56, pp. 2101-2121, 2020. DOI: https://doi.org/10.1109/
TAES.2019.2946677.

[33] K. T. Borup, B. B. Stovner, T. I. Fossen and T. A. Johansen, ‘Kalman Filters for
Air Data System Bias Correction for a Fixed-Wing UAV,’ IEEE Transactions
on Control Systems Technology, Vol. 28, pp. 2164-2176, 2020. DOI: https:
//doi.org/10.1109/TCST.2019.2931672.

https://docs.acados.org/matlab_octave_interface/index.html
https://docs.acados.org/matlab_octave_interface/index.html
https://doi.org/10.1002/acs.2787
https://doi.org/10.1002/acs.2787
https://se.mathworks.com/help/simulink/slref/ndlookuptable.html
https://se.mathworks.com/help/simulink/slref/ndlookuptable.html
https://m-selig.ae.illinois.edu/props/volume-3/propDB-volume-3.html
https://m-selig.ae.illinois.edu/props/volume-3/propDB-volume-3.html
https://doi.org/10.1109/ICUAS.2015.7152330
https://doi.org/https://doi.org/10.1109/TAES.2019.2946677
https://doi.org/https://doi.org/10.1109/TAES.2019.2946677
https://doi.org/https://doi.org/10.1109/TCST.2019.2931672
https://doi.org/https://doi.org/10.1109/TCST.2019.2931672




Appendix A

The PID and MRAC Controllers

A.1 Roll, Pitch and Airspeed Control with PID and MRAC

The NMPC controllers were compared to two inner-loop, roll and pitch controllers:
a proportional-integral-derivative (PID) controller and a model reference adaptive
controller (MRAC), developed in the previous work of Gryte [11] and Högnadót-
tir [10], and explained in Subsections A.1.1 and A.1.2. When roll and pitch are
controlled using the PID or the MRAC controllers, the airspeed is controlled using
a proportional-integral (PI) controller, introduced in Subsection A.1.3.

A.1.1 PID

The PID controller used in Högnadóttir’s work [10] is based on Beard & McLain
[8], and it is formed by two PID controllers, one for roll and one for pitch. The
roll PID controller determines the aileron δa needed to driveφ to the commanded
angle φcmd :

δa = kpφ (φcmd −φ) +
kiφ

s
(φcmd −φ)− kdφ p, (A.1)

where the control gains kpφ , kiφ and kdφ are given in Table A.2a.
Similarly, the controller for pitch is a PID controller which determines the elevator
δe needed to drive θ to the commanded angle θcmd :

δe = kpθ (θcmd − θ ) +
kiθ

s
(θcmd − θ )− kdθ q, (A.2)

where the control gains kpθ , kiθ and kdθ are given in Table A.2b.

A.1.2 Model Reference Adaptive Control (MRAC)

The MRAC controllers used in Högnadóttir’s work [10] are based on Lavretsky
and Wise [9], and the most important parts of the theory will be explained in this
section.
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A nonlinear system can be given on the form:

ẋ = Ax + BΛ(u +Θ⊤Φ(x )), (A.3)

where A ∈ Rn×n is the unknown state matrix, B ∈ Rn×m is the known control
matrix, Λ ∈ Rm×m is the unknown control effectiveness matrix, Θ ∈ RN×m is
constant and unknown and Φ(x ) ∈ RN is the known regressor vector [9]. The
objective is to track the reference model given by

ẋre f = Are f xre f + Bre f r (t), (A.4)

where r (t) is the commanded reference. This is achieved with the control law:

u = K̂⊤x x + K̂⊤r r − Θ̂⊤Φ(x ), (A.5)

where K̂ x , K̂ r and Θ̂ are the controller gain matrices, given by:

˙̂K x = Proj(K̂ x ,−Γ x xe⊤PB), (A.6)
˙̂K r = Proj(K̂ r ,−Γ r re⊤PB), (A.7)
˙̂Θx = Proj(Θ̂x ,−ΓΘΦe⊤PB). (A.8)

Proj(·) is a projection operator, defined in [9], the symmetric and positive-definite
matrices Γ x , Γ r and ΓΘ are the adaptive rates, and e = x−xre f is the error between
the state and the reference.
When it comes to roll and pitch tracking specifically, two MRAC control schemes
are developed, chosen as linear models with a bias term to capture the nonlin-
earities and unmodelled effects. From Beard & McLain [8], the roll dynamics are
linearized as:

φ̇ = p+ dφ1
, (A.9)

φ̈ = −aφ1
φ̇ + aφ2

δa + dφ2
, (A.10)

where dφ1
and dφ2

are considered the disturbances of the system. The dynamics
written on the same form as Eq. (A.3) are given by

ẋ = Ax + BΛ(u +Θ⊤Φ(x )), (A.11)
�

φ̇

ṗ

�

=

�

0 1
0 a1

��

φ

p

�

+

�

0
1

�

λ1

�

δa + [θbiasr ol l] [1]
�

, (A.12)

with a1 = −aφ,1, λ1 = aφ,2, θbias,rol l = dφ,2, where (A, BΛ) is controllable for all
aφ,2 ̸= 0. Likewise, the linearized pitch dynamics [8] are given as

θ̇ = q+ dθ1
, (A.13)

θ̈ = −aθ1
θ̇ − aθ2

θ + aθ3
δe + dθ2

, (A.14)
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which on the same form as Eq. (A.3) they become

ẋ = Ax + BΛ(u +Θ⊤Φ(x )), (A.15)
�

θ̇

q̇

�

=

�

0 1
a2 a3

��

θ

q

�

+

�

0
1

�

λ2

�

δe + [θbias,pitch] [1]
�

, (A.16)

with a2 = −aθ ,2, a3 = −aθ ,1, λ2 = aθ ,3 and θbias,pitch = dθ ,2, where (A, BΛ) is
controllable for all aθ ,3 ̸= 0.

A.1.3 Airspeed Controller

When the PID and MRAC controllers are used to control roll and pitch, the air-
speed is controlled by the following PI controller, which determines the throttle
δt needed to drive Va to the commanded airspeed Va,cmd :

δt = δ
∗
t + kpV

(Va,cmd − Va) +
kiV

s
(Va,cmd − Va), (A.17)

where δ∗t is the throttle trim value, and it is given together with the control gains
kpV

and kiV in Table 4.1.

A.2 Implementation of the PID and MRAC Controllers

The PID and MRAC controllers were tuned and implemented in the Matlab/ Sim-
ulink simulator as described in Högnadóttir’s work [10]. The PID controller for
roll and pitch is given by equations (A.1) and (A.2), where the commanded angles
φcmd and θcmd are set equal to the angles φre f and θre f , respectively, obtained
after the reference generation explained in Section 4.1. In addition, anti-windup
mechanisms were implemented in the simulator to prevent the integrators from
winding up. The tuning parameters used were found in Högnadóttir’s work [10],
and can be seen in Table A.1.

(a) Roll controller gains

Parameter Value
kpφ 2.5
kiφ 2
kdφ 0.01

(b) Pitch controller gains

Parameter Value
kpθ 2.5
kiθ 2
kdθ 0.01

Table A.1: Tuning parameters of the PID controller.

When it comes to the MRAC controller, described in Section A.1.2, the reference
model xre f is found as described in Section 4.1, where φcmd and θcmd are the
commanded reference r (t) in the MRAC equations. The MRAC was tuned as de-
scribed in Högnadóttir’s work [10], and the resulting tuning parameters can be
seen in Table A.2.
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(a) Roll adaptive rates

Parameter Value
Q diag[3, 1]
Γ x diag[12, 4]
Γ r 10
ΓΘ 15

(b) Pitch adaptive rates

Parameter Value
Q diag[4, 0.4]
Γ x diag[6, 0.01]
Γ r 5
ΓΘ 10

Table A.2: Tuning parameters of the MRAC controller.
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