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Abstract
This thesis investigates the application of unpaired image-to-image translation

techniques and generative models for generating synthetic data to enhance the

milliAmpere 2’s autonomous systems. The study focuses explicitly on generating

infrared (IR) images from electro-optical (RGB) images, enabling improved maritime

object detection and recognition. A comprehensive literature review and experimental

evaluation of existing state-of-the-art unpaired image translation methods and relevant

strategies were performed, leading to the selection of CycleGAN as the most suitable

model for this task.

An extensive amount of time was devoted to testing and implementing different types of

generative models, as well as exploring configurations to achieve optimal performance.

The dataset creation process involved addressing the challenges arising from the data

exploration and previous discoveries from the Specialization Report. The baseline

models, CycleGAN, CUT, GcGAN, and StarGAN-v2, were implemented and evaluated

using the quantitative Fréchet Inception Distance (FID) metric and a qualitative custom

visual evaluation scheme. CycleGAN emerged as the top-performing model, generating

the best images based on visual quality for this dataset.

The results from the various tuning experiments showed a modified CycleGAN model

with a ResNet-based architecture in the generator, Xavier weight initialization, ReLU as

the non-linear activation, and a learning rate of 1𝑒−4
to be the best configuration. This

modified model generated the most realistic infrared images, reaching a visual

evaluation score of 3.75/5 and an FID score of 135. These results indicate a direct

improvement compared to the Specialization Report, where an FID score of 195 was

reached. However, the model’s performance was still limited by object imbalances and

inherent dataset challenges, such as object imbalance, available images, resolution, and

the field-of-view difference between the electro-optical and infrared camera outputs.

In conclusion, the findings demonstrate the feasibility of leveraging synthetic data for

improving autonomy system performance in maritime applications while shedding

light on potential research directions. Future work should focus on expanding the

dataset, addressing the challenges within the dataset, exploring recent trends within

the space of generative models, and investigating evaluation metrics suitable for

infrared imagery. The research conducted in this thesis provides a foundation for

further improvements and refinements to the unpaired image-to-image translation

methods, which could become a valuable tool for incorporating infrared cameras into

the milliAmpere 2’s autonomy system, improving the vessel’s situational awareness

during nighttime and in poor weather conditions.
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Sammendrag
Denne masteroppgaven undersøker anvendelsen av uparede bilde-til-bilde

oversettelsesteknikker og generative modeller for å generere syntetiske data for å

forbedre milliAmpere 2’s autonome systemer. Arbeidet fokuserer eksplisitt på å

generere infrarøde (IR) bilder fra elektro-optiske (RGB) bilder, noe som muliggjør

forbedret deteksjon og gjenkjenning av maritime objekter. En omfattende

litteraturgjennomgang og eksperimentell evaluering av eksisterende toppmoderne

uparede bildeoversettelsesmetoder og relevante strategier ble utført, noe som førte til

valget av CycleGAN som den mest egnede modellen.

En betydelig mengde tid ble viet til testing og implementering av flere ulike modeller

og utforsking av konfigurasjoner for å oppnå optimal ytelse. Opprettelsen av et nytt

datasett involverte å håndtere utfordringene som oppstod fra datautforskningen og

tidligere funn fra forprosjektet. Referansemodellene, CycleGAN, CUT, GcGAN og

StarGAN-v2, ble implementert og evaluert ved hjelp av den kvantitative Fréchet

Inception Distance (FID) metrikken og et kvalitativt tilpasset visuelt evalueringsskjema.

CycleGAN fremsto som den beste modellen, og genererte de beste bildene basert på

realisme og bildekvalitet for dette datasettet.

Resultatene fra de ulike tuningseksperimentene indikerte at en modifisert

CycleGAN-modell med en ResNet-basert arkitektur i generatoren, Xavier

vektinitialisering, ReLU som ulineær aktiveringen, og en læringsrate på 1𝑒−4
som den

beste konfigurasjonen. Denne modifiserte modellen genererte de mest realistiske

infrarøde bildene, og oppnådde en visuell evalueringsscore på 3,75/5 og en FID-score

på 135. Disse resultatene viser til en direkte forbedring sammenlignet med

forprosjektet, der en FID-score på 195 ble oppnådd. Imidlertid var modellens ytelse

fortsatt begrenset av utfordringer med datasettet, som skjevfordeling av objekttyper,

antall tilgjengelige bilder, bildeoppløsning og ulikheter i synsfelt mellom de

elektro-optiske og infrarøde kameraene.

Avslutningsvis viser funnene gjennomførbarheten av å utnytte syntetiske data for å

forbedre autonomisystemets ytelse i maritime applikasjoner, samtidig som det kaster

lys over potensielle forskningsretninger. Fremtidig arbeid bør fokusere på å utvide

mengden på datasettet, håndtere utfordringene i datasettet, utforske nyere trender

innen generative modeller og undersøke evalueringsmetrikker som passer bedre for

bilder i gråskala. Denne oppgaven har lagt grunnlaget for videre forbedringer av

uparede bilde-til-bilde oversettelsesmetoder, noe som kan bidra til å optimalisere

bruken av infrarøde kameraer i milliAmpere 2’s autonomisystem og dermed forbedre

fartøyets evne til å navigere og oppfatte omgivelsene under nattlige og utfordrende

værforhold.
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1Introduction
1.1 Background and Motivation

In an increasingly digitalized world, the development of autonomous electric vehicles

and vessels, a constantly evolving field, contributes to reducing the overall impact of

transportation on the environment while enhancing efficiency and safety. Numerous

sectors within the transport and mobility domain can mitigate the environmental foot-

print caused by transportation on a global scale. The history of transportation has

evolved from fossil-fuel-powered vehicles to electric vehicles (EVs) - developed to reduce

pollution and emissions.

Advancements in Airborne, Land-based, and Maritime transportation

Commercial airplanes have adopted advanced autopilot systems in airborne transporta-

tion, controlling various aspects such as altitude, speed, and direction during most flight

phases. Pilots typically handle takeoff and landing manually, although advanced sys-

tems can assist. Despite the efforts to automate airborne transportation, human pilots

remain crucial for safety and efficiency.

In the land-based transportation sector, many standard vehicles, such as buses and

cars, have been leading the path in terms of transportation. Regarding travelling between

destinations, private cars still reign on top as the most commonly used transport method.

Industry car brands continue to adopt the latest and most remarkable technologies to

improve their capability. Tesla, a leading actor, has developed their autonomous driver-

assistance system (ADAS) - called Autopilot1. ADAS systems are a recent breakthrough

in the transport domain and are a profound step towards expanding the boundaries of

autonomous transportation.

In the maritime environment, similar analogies can be made for autonomous driving.

Larger vessels such as container ships and cruise ships are using self-driving assistance

systems, such as Yara Birkeland2. As technology advances, the potential for entirely end-

to-end autonomous maritime operations increases, bringing benefits such as improved

safety, efficiency, and reduced environmental impact. Various companies are destined

to tackle this challenge of developing autonomous control and advanced perception sys-

tems for marine vessels. Honourable mentions such as the US company Sea Machines

Robotics3, the Finnish company Wärtsilä4, the south Korean Avikus5, and the Norwe-

1
Visit https://www.tesla.com/autopilot for more information

2
See info at https://www.yara.com/news-and-media/media-library/press-kits/

yara-birkeland-press-kit/
3
See details at https://sea-machines.com/ai-powered-vessel-vision/

4
See more at https://www.wartsila.com/voyage/autonomy-solutions

5
Visit https://avikus.ai/eng/product/hinas for more information

1

https://www.tesla.com/autopilot
https://www.yara.com/news-and-media/media-library/press-kits/yara-birkeland-press-kit/
https://www.yara.com/news-and-media/media-library/press-kits/yara-birkeland-press-kit/
https://sea-machines.com/ai-powered-vessel-vision/
https://www.wartsila.com/voyage/autonomy-solutions
https://avikus.ai/eng/product/hinas
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gian Kongsberg Maritime6 are all actively researching this area. Another honourable

mention from Norway is Zeabuz (in collaboration with NTNU). In late 2022, Zeabuz and

NTNU demonstrated the world’s first urban autonomous passenger ferry, milliAmpere

2, capable of transporting up to 20 people simultaneously.

The Role of Cameras

The milliAmpere 2 ferry, owned by NTNU, visualized in Figure 1.1, is a battery-powered

and environmentally friendly transportation vehicle. The vessel has various sensors and

computing hardware, including RTK GNSS (Real-Time Kinematic Global Navigation

Satellite System), radar, lidar, electro-optical, and infrared cameras. The autonomy sys-

tem, developed by Zeabuz, comprises four core parts7: See, Understand, Plan, and Act.

In this thesis, the research is motivated by cameras’ vital role in the See and Understand

components. While radar and lidar work in tandem to detect and track objects in the

maritime environment, cameras can capture helpful information such as color, texture,

shape, size, type of object, and movement, offering a more comprehensive and detailed

visual understanding.

Infrared Cameras and Their Potential

In the maritime environment, infrared cameras provide valuable information during

nighttime and in poor weather conditions. Combined with electro-optical cameras, they

provide essential input for the planning and execution of safe and efficient routes while

navigating between destinations. By continuously reevaluating its planned path and

speed and considering the images captured by these cameras, the milliAmpere 2 ferry can

apply appropriate adjustments based on situational awareness. Unlike their counterparts

that capture visible light, thermal cameras offer visibility in the infrared spectrum. They

effectively complement visible spectrum cameras, proving particularly useful for tasks

such as robot localization and navigation in visually challenging environments [24]. For

example, as one can observe from Figure 1.2, the information captured with one electro-

optical and one infrared camera is quite significant.

Addressing Data Imbalance with Synthetic Data

While the current autonomy system is a significant step towards the complete autonomy

of the milliAmpere 2, there is still room for improvement. The current detection system

deployed on the ferry needs to be more robust to handle all possible scenarios across all

weather conditions. Infrared cameras present a potential visual enhancement, as they are

less sensitive to lighting conditions and can detect objects with large thermal gradients,

such as swimmers or kayakers. This makes infrared cameras highly suited for certain

6
See more athttps://www.kongsberg.com/maritime/products/bridge-systems-and-control-centres/

navigation-systems/autopilot/
7
Find out more at https://www.zeabuz.com

https://www.kongsberg.com/maritime/products/bridge-systems-and-control-centres/navigation-systems/autopilot/
https://www.kongsberg.com/maritime/products/bridge-systems-and-control-centres/navigation-systems/autopilot/
https://www.zeabuz.com


1.1. BACKGROUND AND MOTIVATION 3

Figure 1.1: Overview of milliAmpere and its camera components. Left-image shows the

ferry itself. Top-right shows the electronic box capsuling the various EO and IR cameras.

Bottom-right shows the dual-camera setup of a single angle with the infrared lens at

the top and electro-optical at the bottom. Left-image is sourced with approval from

Universitetsavisa by photographer Oda Eriksen Haugland.

types of object detection in the maritime environment and could significantly enhance the

safety and robustness of the milliAmpere 2’s autonomy system. The current autonomy

does not use infrared cameras as of 12th May 2023; hence enabling such cameras would,

in addition to mentioned advantages, act as a redundancy guarantee, in conjunction with

the current electro-optical camera system.

The Growing Role of Synthetic Data in Various Fields

This thesis aims to explore the use of synthetic data to improve the performance of the

milliAmpere 2’s autonomy system. The vast majority of the open-world image datasets

have been captured during daytime under ideal conditions in the visual spectrum. There

is limited maritime traffic during nighttime or in poor weather conditions. Consequently,

there is a significant lack of infrared images and datasets that can be utilized for training

the detection system to handle such situations. The thesis seeks to address this data

imbalance by employing existing daylight images and translating them to the infrared

spectrum using generative models. Although there have been notable advancements
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Figure 1.2: Illustration showcasing the visibility of the boat taken with an electro-optical

(left-side) and infrared (right-side) camera in pitch-dark environments. Image is sourced

from [16] with permission.

in unpaired image-to-image translation, including near-infrared to RGB and thermal in-

frared to visible color tasks, there remains a gap in the literature concerning direct RGB

to IR translation, the exact focus of this thesis. Using deep learning techniques to auto-

matically generate infrared images from RGB images, one could leverage considerably

larger data resources which, in turn, can be used to retrain detection systems.

The Importance of AI and Synthetic Data

Synthetic data has been used for a long time in various fields, including computer graph-

ics, animation, and gaming. In recent years, the adoption of synthetic data in fields such

as robotics, self-driving cars, and medical imaging has led to significant success. Syn-

thetic data can be generated using methods like procedural generation, physics-based

simulations, and deep learning techniques like generative adversarial networks (GANs).

An NVIDIA blogpost8 cites a Gartner study on synthetic data, which predicts that by

2030, the majority of data utilized in AI will be artificially created using methods such

as rules, statistical models, simulations, and other techniques. The potential solution

to the problem of limited infrared images in the maritime environment could be ad-

dressed by generating synthetic infrared images, which could provide a larger dataset

for training object detection models. Synthetic data has several advantages, including

creating diverse and balanced datasets and eliminating privacy concerns. However, it

may not always accurately represent real-world scenarios, and its usefulness depends

on the quality of the generated data. The importance of AI in the modern world cannot

be overstated, as it has become integral to a wide range of industries and applications.

The synergy between various techniques, such as machine learning, computer vision,

and generative models, fosters innovation and drives the progress of advanced systems

across multiple domains.

8
See https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/

https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/
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Unpaired Image-to-Image Translation

Adopting synthetic data in autonomous systems is a promising development, as these

systems rely heavily on robust detection systems for safe and efficient operation. Research

in computer vision and deep learning has enabled the generation of synthetic data,

potentially improving various systems’ performance. Synthetic data is created primarily

using generative models and image-to-image translation techniques, which offer unique

capabilities for diverse applications.

At the core of this research topic is unpaired image-to-image translation, a concept

closely related to the context described above. It involves synthetically converting data

from a source domain to a target domain without paired examples. Achieving accurate

translation could significantly impact the industries mentioned, other researchers, and

the overall effectiveness of autonomous systems. In this thesis, enabling a model to

generate realistic synthetic infrared images from RGB images could provide a valuable

resource for enhancing the detection capabilities of future autonomous systems.

1.2 Research Objectives

• Literature Review: Conduct a comprehensive survey of existing unpaired image

translation methods and relevant strategies. Based on this review, evaluate whether

the techniques studied in the Specialization Project [38] should be further explored

or if alternative methods hold greater promise. Make informed decisions regarding

selecting methods for further investigation and experimental testing.

• Method Implementation: Identify the most suitable method(s) for the task and

determine an appropriate testing environment, considering both remote and local

resources. Implement the selected method(s) for experimental evaluation, empha-

sizing the need for longer training durations and choice of hyperparameters.

• Dataset Assessment and Expansion: Evaluate the existing dataset, considering

factors such as the presence of foreground objects and the environments in which

they were captured. Based on this assessment, create a new and more specific

dataset.

• Case Study Design and Execution: Plan and conduct relevant case studies employ-

ing the chosen methods and strategies. Utilize applicable data from the maritime

domain, focusing on the environment in which smaller passenger ferries operate.

• Qualitative Performance Analysis: Perform a qualitative and quantitative analysis

of the experimental performance using data from milliAmpere’s sensor rig, which

incorporates co-localized infrared and daylight cameras. Evaluate the effectiveness

of the selected method(s) on industry-standard evaluation metrics, and identify

potential areas for improvement.
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1.3 Contributions

• A thorough exploratory analysis of all available data from the milliAmpere’s sensor

rig.

• The creation of a refined and condensed dataset consisting of only images with

foreground objects in focus during maritime traffic.

• A proper investigation using various state-of-the-art generative adversarial net-

works.

• An extensive experimental comparison of four generative adversarial networks,

where each model has been configured, trained and evaluated on industry-standard

evaluation metrics.

• A broad exploration of various hyperparameters used to improve the realism and

quality of the generated images.

• A customizable framework for future research and applications in the field of com-

puter vision and generative models, allowing for easy integration and adaptation

of new techniques and models.

• An intuitive web application for manual image classification.

1.4 Report Outline

• Chapter 2: Background Theory and Related Work - This chapter provides an

overview of the fundamental concepts and previous research in the field of gener-

ative models.

• Chapter 3: Methods - This chapter describes the research design, data sources, and

analytical techniques employed to address the research objectives.

• Chapter 4: Implementation - This chapter outlines the practical realization of the

proposed research, explaining the process of model development, optimization,

and training.

• Chapter 5: Results and Discussion - This chapter presents the research findings,

assesses the developed models’ performance and discusses the implications of the

results in both theoretical and practical aspects.

• Chapter 6: Conclusion - This chapter summarizes the key findings, discusses the

study’s limitations, and provides recommendations for future research.



2Background Theory and Related Work
This chapter provides the reader with an overview of the essential background theory

and related work that establish the research presented in this thesis. The chapter be-

gins by discussing the fundamental concepts of machine learning and deep learning and

highlighting the key differences between them, followed by an introduction to genera-

tive models, focusing on deep generative models and their corresponding architectures,

which are crucial for understanding the nuances of image translation.

For transparency, some theoretical details about GANs and Image-to-Image transla-

tion, in Sections 2.2.2 and 2.3, are taken from the Specialization Report [38].

2.1 Deep Learning

Deep learning is a sub-field of machine learning that focuses on algorithms inspired

by the structure and function of the human brain, called artificial neural networks.

While machine learning consists of various techniques and algorithms, deep learning

involves using deep neural networks with multiple hidden layers. Due to its ability to

model complex data and abstract features, deep learning has advanced several domains,

including computer vision, natural language processing, and reinforcement learning.

The key difference between classical machine learning and deep learning is their

architecture and applicability. Classical machine learning techniques, such as linear

regression, support vector machines, and decision trees, do not rely on layers like deep

learning algorithms do. Instead, they have different structures and methodologies for

learning patterns from primarily structured data. They can be powerful and effective

for specific tasks but may be less suitable when dealing with unstructured data such as

images or sounds.

Deep learning is characterized by deep architectures, such as deep neural networks,

consisting of multiple layers (input layer, multiple hidden layers, and output layer). This

enables deep learning models to capture intricate relationships and learn abstract rep-

resentations from large datasets, making them suitable for tasks that require high-level

feature extraction and complex decision-making. Deep learning has been the driving

force behind significant advances in AI, such as the development of OpenAI’s generative

languages models ChatGPT [40] and its successor GPT-4 [39], or the state-of-the-art text-

to-image models Stable Diffusion [46] from Stability AI and Midjourney from Midjour-

ney’s research lab [34]. Deep learning models can be costly in computation, necessitate

substantial training data, and are occasionally perceived as black-box models because of

their complex inner workings.

2.1.1 Fundamentals

In generalized terms, deep neural networks comprise multiple layers of interconnected

artificial neurons or nodes. Each layer receives input from the previous layer, performs

7
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a non-linear transformation, and passes the output to the subsequent layer. A deep

neural network typically has many hidden layers, allowing it to learn and represent more

intricate and sophisticated features from the data, thus enhancing its problem-solving

capabilities.

Training deep neural networks involves a process called backpropagation, which

adjusts the weights of the connections based on the errors between the predicted and

actual output. This optimization uses gradient descent and its variants, which minimize

a specified loss function. For instance, adjusting the learning rate, a hyperparameter

controlling the update step size is commonly fine-tuned to achieve an optimal trade-off

between convergence speed and stability.

Deep learning has several additional hyperparameters that influence the model’s

performance, such as the number of neurons per layer, activation functions, and regu-

larization techniques. The choice of these hyperparameters can significantly impact the

model’s ability to generalize to unseen data and prevent overfitting.

2.1.2 Architectures

Multi-Layer Perceptrons (MLPs) are fundamental deep learning architectures with mul-

tiple layers of fully connected neurons. They connect each neuron in one layer to every

neuron in the subsequent layer, with non-linear activation functions enabling the mod-

eling of complex relationships. MLPs are versatile and can be used for various tasks,

such as classification and regression, making them a foundation for understanding more

advanced deep learning architectures.

Convolutional Neural Networks (CNNs) are favored for computer vision tasks. They

are unique due to their use of convolutional layers, which learn local spatial patterns in

input data, such as images. These layers apply filters to the input, allowing CNNs to

effectively capture hierarchical features in visual data. As a result, CNNs excel in tasks

like image classification, object detection, and semantic segmentation.

Recurrent Neural Networks (RNNs) are designed for sequential data and natural

language processing tasks. What sets them apart is their internal memory cells, which

maintain information from previous time steps, letting them model temporal dependen-

cies in data. RNNs are particularly suitable for tasks involving time-series data, text

generation, and sentiment analysis, as they can capture patterns and relationships across

sequences.

Recently, transformer-based architectures have gained popularity due to their ability

to model long-range dependencies in sequential data, outperforming RNNs and CNNs

in specific language processing tasks. Transformers employ self-attention mechanisms,

focusing on different parts of the input sequence, which has led to their success in machine

translation, text summarizing, and other natural language understanding tasks.

Specialized architectures such as Generative Adversarial Networks (GANs) and Vari-

ational Autoencoders (VAEs) have been developed for unsupervised learning tasks, in-

cluding image synthesis and data generation. These generative models learn to capture
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the underlying data distribution and generate new samples resembling the original data,

enabling applications from image-to-image translation to anomaly detection.

2.2 Generative Models

Historically, generative models relied on statistical methods such as Kernel Density Es-

timation1 and Gaussian mixture models2. However, they often produced suboptimal

results due to the
. . . . . . . . . . . . . . . .
assumptions3 made about the underlying distributions in the datasets.

With the emergence of deep learning, deep generative models have gained consid-

erable attention and become highly influential in generative modeling. These models,

driven by deep neural networks, demonstrate remarkable performance in learning com-

plex data distributions. Autoencoders (AE), first introduced in the 1980s [48], and Vari-

ational Autoencoders (VAE), introduced in 2013 [25], are widely used deep generative

models that learn a compact, lower-dimensional representation of the data and gener-

ate new samples by sampling in the learned latent space. These models can generate

high-quality images, text, and other data types. Generative models aim to learn the

underlying distribution of a given dataset and generate new samples that share similar

characteristics. Discriminative models, conversely, learn a decision boundary between

classes and classify new data points based on that boundary.

2.2.1 Architectures

Recent trends in deep generative models have led to the development of new architec-

tures such as Generative Adversarial Networks (GANs), famously introduced by Ian J.

Goodfellow [13], Flow-based Generative Models, and Diffusion Models. These deep gen-

erative models have demonstrated impressive capabilities in synthesizing realistic and

diverse samples, further emphasizing the role of deep neural networks in advancing the

field of generative modeling.

1
A non-parametric method for estimating the probability density function of a random variable using a

weighted sum of kernel functions

2
A probabilistic model representing a mixture of multiple Gaussian distributions to describe the underlying

distribution of a dataset

3
Assumptions regarding specific parametric distributions, feature independence, linearity, and ho-

moscedasticity
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Figure 2.1: Overview of different types of Generative Models.

GANs, VAEs, Flow-based, and Diffusion-based models, as visualized in Figure 2.1,

are all generative models but differ in the methods and architecture they use to synthesize

data.

GANs, initially introduced by Ian J. Goodfellow [13], are deep neural networks that

consist of two parts, a generator network and a discriminator network, that are trained

together in a competitive game. The generator network produces new data samples,

while the discriminator network tries to distinguish between real data and the samples

generated by the generator. GANs have been used to generate realistic images, videos,

and even audio.

VAEs [26][45] are an extension of autoencoders, where they optimize a lower bound on

the data likelihood using variational inference. Unlike autoencoders, VAEs learn a

probabilistic mapping between the data and latent spaces by introducing a Gaussian

prior to the latent variables. This prior helps VAEs generate more realistic and diverse

samples than regular autoencoders, thus making VAEs particularly suitable for

generative modeling tasks.

Flow-based models [10][11] are another class of generative models that learn an

invertible mapping from the data to a latent space, which can be sampled to produce

new data. This mapping ensures that the generated data samples are well-represented

by the learned distribution. Flow-based models have demonstrated state-of-the-art

results in generating high-quality images.

Diffusion models are a class of generative models that can model high-dimensional
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distributions using the process of diffusion. Various concepts of diffusion processes for

generative modeling have been proposed, such as diffusion probabilistic models [49],

noise-conditioned score network [50], and denoising diffusion probabilistic models [17].

Diffusion models use an iterative sampling process from a diffusion process to generate

new data samples. This process can generate high-fidelity images and videos that

surpass the quality of other generative models.

While both supervised and unsupervised generative models exist, utilizing

unsupervised methods like unsupervised image translation can help naturally deal

with the absence of paired data, making them suitable for tasks like RGB-to-Infrared

image translation, where obtaining perfect paired images could be challenging.

2.2.2 Generative Adversarial Networks

GANs aims to generate realistic data through an adversarial strategy involving two

neural networks, as mentioned in Section 2.2. In the training process, the generator

and discriminator engage in ongoing competition. The generator strives to produce

more convincing fake samples, while the discriminator constantly refines its capacity to

differentiate between actual and generated samples. This adversarial dynamic enhances

the performance of both networks, ultimately leading to the generation of realistic data.

When using GANs for image tasks, the generator receives a random noise vector

sampled from the latent space as input. The generator, consisting of for instance convo-

lutional layers, normalization techniques, and activation functions, then uses the latent

space noise to create something akin to an image. With a similar architecture, the dis-

criminator processes both the generated image and a sample from the real image dataset,

attempting to classify the authentic images by comparing them to the ground truth using

a cost function. The parameters for both networks (generator and discriminator) are

subsequently updated using backpropagation.
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Figure 2.2: The illustrations portrays the learning process of a general Generative Adver-

sarial Network (GAN), which involve two components - a generator and a discriminator.

The generator attempts to generates samples similar to the real dataset. The discriminator

is then asked to guess which of the two sets of images are real or fake.

Loss Functions

Loss functions play a significant role in the GANs learning process. The adversarial

loss, a classical GAN function described below, theoretically makes generated images

indistinguishable from actual images. This aligns with the primary goal of computer

graphics, making the adversarial loss function particularly effective for tasks involving

image creation. However, GAN training can be challenging due to mode collapse, van-

ishing gradients, or unstable convergence. Some techniques exist to help mitigate these

issues, such as Wasserstein GANs [2] or Spectral Normalization [36].

Adversarial Loss

The adversarial loss function is used in the context of generative adversarial networks

(GANs) to measure the discrepancy between the distributions of real and generated data.

The GAN model has two parts, one for training the discriminator network and the other

for training the generator network, each with its loss function. The interaction of these

loss functions produces the adversarial loss function. The generator wants to minimize

the objective, while the discriminator wants to do the opposite, maximize it, as shown

by equation (2.1).

min

𝐺
max

𝐷
𝑉(𝐷, 𝐺) = E𝒙∼𝑝

data
(𝒙)[log𝐷(𝒙)] + E𝒛∼𝑝𝒛(𝒛)[log(1 − 𝐷(𝐺(𝒛)))] (2.1)

In this function:
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• 𝑧, a random noise sample (latent vector), typically from a Gaussian or uniform

distribution.

• 𝐷(𝑥), the discriminator’s estimation of the probability that the real input data 𝑥 is

genuine.

• 𝐺(𝑧), the output of the generator when given noise 𝑧.

• 𝐷(𝐺(𝑧)), the discriminator’s estimation of the probability that the generated input

data 𝐺(𝑧) is genuine.

• E𝒙 ∼ 𝑝data (𝒙), the expected value calculated over all instances of real input data.

• E𝒛 ∼ 𝑝𝒛(𝒛), the expected value calculated over all instances of random input to the

generator.

The generator’s primary goal is to create images with a data distribution closely

resembling the real data. Ideally, the real and generated data would be indistinguishable,

causing the discriminator to make a random guess with a 50%-50% chance of being

correct. This scenario occurs when the data distribution of both image types is so

similar that they appear to have come from the same dataset. However, achieving this

perfect alignment is rarely possible in practice, as training GANs are known to be a

challenging task. Initially, the data distributions might differ significantly, but as the

training progresses, the generated data distribution aligns more closely with the real

data distribution.

Applications

GANs have demonstrated impressive results in various applications, such as transform-

ing a scribble into a photo-like image [18] and converting footage of a horse into a running

zebra [59], all without the need for laboriously annotated training data. This has led to sig-

nificant advancements in various applications such as image synthesis, super-resolution,

and data augmentation, to mention a few. In image synthesis, GAN architectures like

Progressive GANs [23] and StyleGAN [22] generate high-quality, realistic images, such

as artwork, faces, and scenery. Super-resolution GANs, like SRGAN [30], enhance the

resolution of low-quality images, finding applications in video streaming, satellite im-

agery, and medical imaging. GANs can also be used as a data-augmentation technique

to generate extra training data to improve machine learning model performance, par-

ticularly in situations with imbalanced datasets or when obtaining additional labelled

data is challenging. These applications showcase the versatility of GANs across diverse

research fields.

Key Architectures and their Advancements

In the vanilla implementation of the GAN architecture in 2014, the authors used Mul-

tilayer Perceptrons (MLP) for both the generator and the discriminator. MLPs are feed-
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forward networks and are "linear" in their basic form, as they consist of multiple layers

of nodes (neurons), where each layer is fully connected to the next one. Shortly af-

ter, architectures like ResNet [14], and U-Net [47] were incorporated in GAN design

for more complex tasks. ResNet, short for Residual Networks, is characterized by its

unique skip connections or shortcut connections, which allow the gradient to be directly

backpropagated to earlier layers. On the other hand, U-Nets are a unique convolutional

neural network architecture designed for efficient and accurate image segmentation.

They employ a symmetric encoder-decoder structure, which enables precise localization

of features, allowing the combination of high-resolution features from the contracting

path with the expanding path. Over the years, several innovative architectures have

been developed, each building on the original concept and introducing new techniques

to improve performance, image quality, and domain-specific applications. Some of the

key architectures include:

• Conditional GANs (2014): This architecture extends traditional GANs by condi-

tioning the generator and discriminator on additional information such as class

labels or text descriptions, enabling the model to generate images based on specific

attributes [35].

• Deep Convolutional GANs (2015): This architecture replaces fully connected layers

with convolutional neural networks (CNNs) in both the generator and discrimina-

tor, leading to more stable training and higher-quality images while maintaining

the structure of the generated images [44].

• InfoGAN (2016): This architecture introduces an information-theoretic framework

to GANs that maximizes the mutual information between a subset of the generator’s

input and the output, enabling the model to learn interpretable and disentangled

representations [6].

• CycleGAN (2017): This architecture can learn to translate between two domains

without paired examples, using cycle consistency loss to ensure that the mapping

from one domain to the other and back is consistent, resulting in improved domain

translation quality [59].

• Progressive GANs (2017): This architecture introduces a training procedure that

generates high-resolution images by gradually adding layers to both the genera-

tor and discriminator during training, allowing the model to learn coarse-to-fine

features and improving stability [23].

• StarGANs (2018, 2020): These architectures enable image-to-image translation

across multiple domains using a single model, focusing on cross-domain trans-

lation for images. StarGAN-v2 addresses quality, diversity, and scalability issues

present in the original StarGAN [7][8].
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• StyleGANs (2018, 2020, 2021): These architectures introduce adaptive instance

normalization (AdaIN) to control style at different levels of granularity, allowing

for unprecedented control over the generated image’s appearance and the ability

to separate content from style [20][22][21].

• BigGAN (2019): This architecture scales up GANs using large-scale distributed

training, achieving high-quality image generation at high resolutions, setting new

benchmarks for image synthesis [5].

• Contrastive GANs (2020, 2021): These architectures incorporate contrastive learn-

ing techniques into the GAN framework, attempting to learn a contrastive loss

function that encourages similar samples to be close together in latent space while

pushing different samples apart, leading to improved image quality and diversity

[42][52][19].

2.2.3 Evaluation Metrics

Evaluating the performance of generative models is challenging due to the nature of the

generative models, which produce novel samples instead of replicating training data.

Using effective and fair evaluation metrics is essential for evaluating GAN models, mon-

itoring their training progress, and validating their usability in real-world scenarios.

Some key evaluation metrics include Inception Score (IS), Structural Similarity Index

(SSI), Learned Perceptual Image Patch Similarity (LPIPS), Fréchet Inception Distance

(FID), and visual examination. In the landscape of metrics, one can observe their main

properties in Tables 2.1, 2.2, 2.3, 2.4, and 2.5.

The following metrics are described and inspired by Ali Borji’s two research experiments

on "Pros and Cons of GAN Evaluation Measures" [3][4]

Inception Score (IS)

Description Measures the quality and diversity of generated images by utiliz-

ing a pretrained InceptionV3 model. It calculates the KL diver-

gence between the conditional and marginal class distribution of

generated samples.

Pros Is simple to compute and can provide a quantitative measure of

image quality and diversity

Cons Does not capture intra-class diversity (variations of the same class

in different images).

Table 2.1: Inception Score (IS): A quantitative metric for evaluating GANs
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Structural Similarity Index Measure (SSIM)

Description Quantifies the structural similarity between two images by con-

sidering luminance, contrast, and structure.

Pros More reliable than pixel-wise comparisons like MSE.

Cons Sensitive to small structural misalignments.

Table 2.2: Structural Similarity Index Measure (SSIM): A quantitative metric for evaluat-

ing GANs

Learned Perceptual Image Patch Similarity (LPIPS)

Description Measures the perceptual similarity between two images. Ex-

tracted high-level features from pre-trained networks (e.g.

AlexNet [28]) are compared to calculate the degree of similar-

ity.

Pros Considers high-level semantic features and spatial relationships

in images.

Cons Requires a reference image for comparison - can be challenging

diversely generated samples without direct correspondences.

Table 2.3: Learned Perceptual Image Patch Similarity (LPIPS): A quantitative metric for

evaluating GANs

Fréchet Inception Distance (FID)

Description Measures the similarity between the distributions of real and

generated images in the feature space of the pre-trained model

(InceptionV3).

Pros More robust and sensitive to image quality variations than IS, as

it compares the statistics of entire distributions, not individual

samples.

Cons High bias: requires huge sample size (often above 50 000). Any-

thing lower will cause the FID to be overestimated the actual

value.

Table 2.4: Fréchet Inception Distance (FID): A quantitative metric for evaluating GANs
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Manuel Inspection

Description Qualitative assessment of generated images by human evaluators,

considering factors like realism, sharpness, and content preser-

vation.

Pros Performs quite well for assessing image quality, as humans have

a very natural perception of realism.

Cons Is subjective and suffers from evaluator bias. It may require do-

main expertise, and often limited by the number of images that

can be examined within a practical timeframe.

Table 2.5: Manuel Inspection: A qualitative metric for evaluating GANs

Employing appropriate evaluation metrics does not guarantee success. Acknowl-

edging that researchers often face challenges or difficulties when using these metrics is

essential. Some of these include:

• Mode collapse: Evaluation metrics may not adequately detect mode collapse, a

phenomenon in which a GAN generates only a limited variety of samples, leading

to low diversity in the output.

• Sensitivity to model choice: Some metrics, such as FID and IS, rely on specific

pre-trained models (e.g., InceptionV3) for evaluation. The choice of the model can

affect the evaluation results and may not be relevant to certain domains or tasks.

• Perceptual inconsistency: Evaluation metrics may not always align with human

perception, potentially leading to discrepancies between quantitative scores and

qualitative human evaluations.

• Subjectivity: Visual examination, a common qualitative evaluation approach, is

inherently subjective and can suffer from evaluator bias, inconsistencies, and scal-

ability issues.

• Lack of ground truth: In unsupervised image-to-image translation, there is no

single correct output for a given input. The absence of a ground truth complicates

the evaluation process and makes defining "good" or "bad" results challenging.

• Disentangling quality and diversity: Quantitative evaluation metrics might not

effectively disentangle the quality of generated samples from their diversity, making

it difficult to assess these aspects independently.

2.3 Image-to-Image Translation

Suppose you have captured a beautiful picture of your dog and wish to turn it into a

comic book-style illustration; how can one programmatically use computer-based tools
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to achieve this artistic conversion? This kind of research falls under the category of

the image-to-image translation [18][41] and has emerged as a significant research area

in generative models and deep learning, aiming to convert images from one domain to

another while preserving contextual information.

2.3.1 Fundamentals

The primary objective of image-to-image translation is to learn a mapping between dis-

tinct image domains, utilizing various techniques to address the challenges associated

with diverse image properties and structures. The translation involves learning a map-

ping function 𝐺 to convert an input image 𝑥 from domain 𝑋 to an output image 𝑦 in

domain 𝑌 to minimize the difference between the translated image and the ground truth

image. Mathematically, this can be represented as 𝐺 : 𝑋 → 𝑌 with 𝑦 = 𝐺(𝑥).

2.3.2 Paired Image-to-Image Translation

In paired image-to-image translation, the model learns a mapping between two image

domains using a dataset containing aligned image pairs, where the input and output

images share a one-to-one correspondence.

In the case of paired image-to-image translation, we have a dataset of paired images

(𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌.

2.3.3 Unpaired Image-to-Image Translation

Conversely, unpaired image-to-image translation involves learning a mapping between

two image domains without direct correspondence, requiring the model to understand

the relationship between the domains without paired training examples.

For unpaired image-to-image translation, one does not have paired samples. Instead,

one often uses adversarial training with an additional discriminator network 𝐷. The

discriminator distinguishes between real samples from domain𝑌 and generated samples

from 𝐺(𝑋).

2.3.4 Key Architectures and Objective Functions

Several key architectures, showcased in Section 2.2.2, have been developed for both paired

and unpaired image-to-image translation, each with unique characteristics. In addition

to continuous progression in GAN (generator and discriminator) architecture, more

meaningful objective functions have also been developed. For instance, the introduction

of cycle-consistency loss by CycleGAN [59], the introduction of conditional adversarial

loss by Pix2pix [18], the introduction of style reconstruction loss by StarGAN-v2 [8], the

introduction of contrastive learning by combining adversarial loss and PatchNCE loss

[42], and the introduction of shared-latent space learning with VAE-GAN [32] have all

contributed to the improvement of image-to-image translation quality.
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Challenges and Limitations

Despite their advantages, there are challenges and limitations associated with using

GANs for image-to-image translation:

• Training Stability: GAN training can be unstable, leading to mode collapse, van-

ishing gradients, and unstable convergence. Techniques like Wasserstein GANs

and Spectral Normalization can help address these challenges, as Section 2.2.2

mentions.

• Evaluation Difficulty: Evaluating GAN-generated images is challenging due to the

lack of ground truth for unsupervised tasks, and the image’s quality vs. diversity

trade-off complicates the evaluation process.

• Computational Requirements: Training GANs, especially for high-resolution im-

age synthesis, can be computationally expensive and usually require significant

training data.

2.4 Related Work

The field of unpaired image-to-image translation has picked up academic interest in

recent years, with notable developments in pure visual (RGB-to-RGB) translation tasks.

Several methods, mostly revolving around models presented in Section 2.2, have demon-

strated significant success in unpaired image-to-image translation. However, less work

has focused on the more challenging task of visual to "non-visual" (RGB-to-Infrared)

translation.

NIR-to-RGB: The study "Colorizing Near Infrared Images Through a Cyclic Adver-

sarial Approach of Unpaired Samples" [33] explores colorizing Near Infrared Images

(NIR) using cyclic adversarial methods. Image colorization has been a topic of prior

research [37]. This study investigates NIR-to-RGB translation as opposed to RGB-to-IR.

The crucial distinction between NIR and IR images is the wavelength range and image

type. As illustrated in Figure 2.3, NIR bands span 750 to 2500 nm, whereas the IR cameras

utilized in this thesis (see Section 3.1 in Specialization Project [38]) cover 7500 nm – 13500

nm. This range corresponds to the long-wave infrared (LWIR) region.
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Figure 2.3: Wavelength spectrum, showing the area of the IR range. Image source:

https://learn.sparkfun.com/tutorials/light/infrared-light

TIR-to-CV: Another work investigates unpaired thermal infrared image translation [53].

They propose a method called GMA-CycleGAN (Gray Mask Attention-CycleGAN) that

translates thermal-infrared images into realistic color visible images. The approach

begins with thermal-infrared-to-greyscale-visible translation, followed by

greyscale-visible-to-color-visible translation. Although this study investigates thermal

infrared image translation, it falls short of providing details on end-to-end inference

speed and practical use-cases.

LWIR-to-RGB: Another work investigates unsupervised object detection via long-wave-

length infrared (LWIR) to RGB translation [1]. Specifically, they emphasize the goal of

creating quality object detectors for IR images using only RGB images for training data. In

short, using CycleGAN, they attempt image translation between LWIR and RGB imagery.

Instead of creating a specific infrared detector, it seems they translate LWIR images to

RGB and then use a trained RGB detector. There are no details regarding end-to-end

inference speed or their actual use cases in practice.

Misalignment Issue: "Cross-Modal Alignment Meets RGB-Infrared Vehicle Detection"

[54] addresses the misalignment issue between RGB and IR images in the context of

multi-spectral aerial detection. Misalignment arises primarily due to position, scale, and

rotation deviations when capturing the same scene with two different cameras (RGB and

IR), as seen in Figure 2.4.

https://learn.sparkfun.com/tutorials/light/infrared-light
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Figure 2.4: A depiction of the misalignment issue in cross-domain translation. Image

segments (a) and (b) are visual representations from ground truth annotations. These

segments are cropped from the same position of RGB-IR image pairs. Yellow and red

boxes signify the annotations of identical objects within infrared and visible images,

respectively. Image is sourced from the authors paper [54] with permission.

The field of NIR-to-RGB and other similar domain-specific translation tasks has seen

significant progress, yet the literature reveals a slight gap in RGB-to-IR translation. Ad-

dressing this gap could provide substantial benefits with the increasing need for cross-

domain image translation in various applications such as object detection, remote sensing,

and safety detection systems.

This need is primarily fueled by the rising use of autonomous systems across various

sectors, including transportation and surveillance. These systems heavily rely on camera

technology, and the capability to process and comprehend images across different do-

mains, particularly RGB and infrared, is essential for efficient performance under diverse

environmental conditions. Infrared cameras offer a distinct advantage over RGB cameras

in certain conditions as they can capture invaluable data in low-light or poor visibility

scenarios, thereby enhancing the robustness and reliability of autonomous systems.

However, the major hurdle in this area is the need for paired RGB and infrared datasets

that can be used to train robust object detection models. Most existing image datasets

are usually RGB and have been captured under normal daylight conditions. While

methods for unpaired image translation for RGB-to-RGB or NIR-to-RGB tasks exist, the

literature concerning direct RGB-to-IR translation needs further exploration. Specifically,

the challenge of utilizing current RGB datasets to boost infrared object detection systems

remains unsolved. Hence, exploring generative models for unpaired image-to-image

translation from RGB to IR becomes an important research topic to pursue and could

mark a significant advancement in autonomous systems.
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2.5 Key Concepts

Fundamental concepts and terminologies that establish the groundwork for this project

are summarized in the following list:

• Machine Learning: A field of study focused on algorithms and statistical models

that enable computers to perform tasks without explicit programming. These tasks

often involve prediction, classification, or clustering.

• Deep Learning: A subset of machine learning that uses deep neural networks with

multiple layers to understand complex patterns in datasets. Typical applications

include image and speech recognition.

• Neural Network Components Techniques: These are the fundamental elements of

neural networks like backpropagation, gradient descent, activation functions, and

regularization techniques that control the learning process and prevent overfitting.

• Generative Models: These machine learning models can generate new data re-

sembling input data. Types include Generative Adversarial Networks (GANs),

Variational Autoencoders (VAEs), and other deep generative models.

• Generative Adversarial Networks (GAN): A generative model consisting of a

generator and a discriminator. The generator "generates" realistic data while the

discriminator "discriminates" if the data is realistic or fake. The two components

are trained jointly in a process that resembles a game, hence the term "adversarial".

• Image-to-Image Translation: This involves techniques that use generative models

to convert images from one domain to another, like changing day scenes into night

scenes or converting sketches into realistic images.

• Conditional GANs: GANs that generate data with specific attributes or conditions,

often used in tasks such as image synthesis and image-to-image translation.

• Unpaired Image-to-Image Translation: A technique often used in GANs where the

model learns to translate between two image domains without paired examples,

i.e., it can learn to convert horses into zebras from unpaired images of horses and

zebras.

• Paired Image-to-Image Translation: Unlike unpaired translation, this technique

requires paired training examples in both source and target domains. For instance,

to convert black and white photos to color, the model would need paired black and

white and color images.

• Cycle Consistency Loss: A concept often used in unpaired image-to-image trans-

lation that enforces consistency between the original and the translated image. If

an image is translated from one domain to another and then back to the original
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domain, the cycle consistency loss encourages the twice-translated image to match

the original image.

• Evaluation Metrics for GANs: These are measures used to assess the performance

of GANs. Typical metrics include Inception Score (IS), Fréchet Inception Distance

(FID), and others. They evaluate aspects like image quality and diversity.

• Fréchet Inception Distance (FID): A evaluation metric that calculates the distance

between the distribution of generated images and the distribution of real images

in the feature space of a pre-trained Inception Network. Lower FID scores indicate

that the two distributions are closer and, therefore, the quality of the generated

images is higher.





3Methods
This chapter outlines the methods and procedures used to address the challenges and

goals associated with unpaired image-to-image translation. The chapter begins with a

discussion of the data sources utilized, followed by an exploration of the dataset. Next,

the selected translation models are presented, along with a description of the evaluation

metrics used to assess their performance.

For transparency, some theoretical concepts and equations about CycleGAN and CUT,

in Sections 3.3.1 and 3.3.2, have been copied from the Specialization Report [38].

3.1 Data Source

Figure 3.1: Greyscale map of the harbor in Trondheim, Norway. The approximate data

collection area is marked in red. Screenshot captured from https://www.norgeskart.
no/

The images utilized in this thesis stem from special files called rosbags, collected

through sea trials conducted by NTNU. As previously stated in the Specialization Project

[38], rosbags consisted of various sensor data from the milliAmpere’s sensor rig, where

25
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https://www.norgeskart.no/
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precisely the images are of interest. The raw rosbag images consisted of various driving

scenarios, both inside and outside the harbor of Trondheim, recorded by the milliAmpere

1 ferry. The area of data collection is limited to specific boundaries, as seen in Figure 3.1,

bounded by two regions outlined in red. The upper region primarily involved stationary

data collection, during which various boats were observed traversing the cameras’ field

of view at medium to far distances (roughly 30-300 m). Conversely, the lower region of

the collection area consisted of image captures during stationary positioning and while

driving across the channel. The lower area consists of a considerably smaller drivable

area than the upper area. The channel’s visual context consists of various boats docked

at the harbor. As a result, the autonomous ferry was in closer proximity (roughly 5-50

m) to other boats, both docked and in traffic, leading to image captures at much closer

distances.

3.2 Data Exploration

This thesis continues with the same camera configuration, stated in Table 3.1 in the

Specialization Project [38] and restated as Table 4.1 in this thesis. As previously stated,

all raw real-world images are captured using five infrared and five electro-optical cameras

mounted on the ferry. Compared to the Specialization Report, where only the 2021-05-
05-10-58-01 dataset was used, this thesis now considers all of the readily available data

(rosbags) from NTNU - a total of 202 GB. The raw images in the thesis, extracted from

each rosbag, consist of 143 117 infrared and 89790 electro-optical images, totaling 232 907

unprocessed images. Post extraction, the images represent a total size of 98 GB as seen

in Table 3.1.
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RosBag Image Optical Infrared Size (GB)
2021-05-04-09-54-21 16310 6878 9432 7.0

2021-05-04-10-02-07 12480 5262 7218 5.3

2021-05-04-10-09-41 12799 5397 7402 5.5

2021-05-04-10-17-43 14804 6242 8562 6.4

2021-05-04-10-26-22 18608 7847 1076 8.0

2021-05-05-10-52-10 11901 4383 7518 5.4

2021-05-05-10-58-01 13319 4905 8414 6.1

2021-05-05-11-06-46 8057 2970 5087 3.7

2021-05-05-11-13-36 9941 3661 6280 4.4

2021-05-05-11-34-47 8293 3056 5237 3.8

scenario_1_2021-12-17-10-36-01 10737 3956 6781 4.7

scenario_2_2021-12-17-10-40-17 9387 3458 5929 3.8

scenario_3_2021-12-17-10-44-20 9155 3373 5782 3.7

scenario_4_2021-12-17-10-49-19 12342 4547 7795 4.9

scenario_5_2021-12-17-10-53-56 11735 4322 7413 4.6

scenario_6_2021-12-17-10-58-25 8132 2994 5138 3.2

scenario_7_2021-12-17-11-03-59 6769 2493 4276 2.7

scenario_8_2021-12-17-11-12-56 7813 2875 4938 3.1

scenario_9_2021-12-17-11-16-36 5818 2143 3675 2.3

scenario_10_2021-12-17-11-21-01 6768 2494 4274 2.6

scenario_11_2021-12-17-11-27-31 10670 3930 6740 4.0

scenario_12_2021-12-17-11-33-21 7069 2604 4465 2.7

SUM 232907 89790 143117 97.9

Table 3.1: All of the available RosBags from NTNU
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A grid collection of randomly sampled electro-optical images from all rosbags

Figure 3.2: 15 randomly sampled optical images from the Rosbags in Table 3.1
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A grid collection of randomly sampled infrared images from all rosbags

Figure 3.3: 15 randomly sampled infrared images from the Rosbags in Table 3.1
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3.2.1 Data Investigation

Upon examining the image collections in Figures 3.2 and 3.3 of electro-optical and infrared

images, respectively, it is evident that the occurrence of objects in reasonable proximity

to the milliAmpere ferry is a rarity. Both sets of domain images have a small number of

images with actual objects of interest in the frame.

Upon further inspecting the electro-optical preview figure, it can be observed that

only one out of fifteen images showcases objects of significance. The image indexed at 15
captures a scene of the harbor where only a tiny portion of the image contains the object

of interest. In contrast, four out of fifteen images from the infrared collection include

interesting objects. Notably, the image indexed at 1 shows the outline of the ferry’s pipe,

which protrudes in front of the lens, partially obscuring the area immediately beneath it.

It is important to note that several electro-optical images, enumerated as 1, 2, 5, 8, 9,

11, and 12, exhibit occlusion due to water droplets on the lens. This occlusion results in

blurry and unclear images, rendering them unusable for analysis. The same occlusion

effect is reflected in the infrared images indexed at 4, 9, and 14 (possibly 1 as well), where

water droplets are reflected as white zones/spots, further adding to the challenge of

utilizing these images for analysis.

With this in mind, the water droplets effect on the lenses poses an additional problem.

It renders a substantial number of images almost
. . . . . . . . .
useless1. Consequently, it is necessary

to carefully consider data points for analysis to ensure the exclusion of irrelevant or

occluded images. It is essential to note that the reduction in the dataset’s size leads to

a loss of training data. However, to achieve the intended outcomes of the thesis, an

extensive and rigorous filtering process is necessary to eliminate irrelevant images to

raise the overall quality of the final dataset.

Developing techniques to mitigate the occlusion effect due to environmental factors

could improve the quality and utility of the collected data. The process of removing water

droplets from images is referred to as image de-raining or rain removal in the research

community and has been studied by various researchers [57][55][56]. The task itself is

concretely defined as an image-restoration2 problem, in-which similar to this thesis, uses

generative models.

Depending on the camera angle from which the image is taken (five in total), the

objects of interest in the lower section of the images (in both domains) may become

occluded by the ferry’s hull, possibly rendering the image unusable.

Another interesting detail, represented by a smaller amount of images, is the effect of

blurring. Visual observation reveals that as the object of interest moves in the opposite

direction of the camera, certain objects become slightly blurred or less detailed.

1
Useless in the context of creating an ideal dataset. The result of creating ideal lab-conditions relies on using

the best quality data available

2
The goal of image restoration is to enhance the quality of the degraded image and restore it as closely

as possible to its original state, thereby improving its visual appearance and facilitating further analysis or

processing
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According to Table 4.1, later presented in Section 4.1.1, the difference in the field

of view indicated by the supplier, as well as the focal length, indicates that while the

electro-optical and infrared cameras capture the same visual scenery, the objects may

be represented at different scales and distances. Due to differences in resolution and

field of view, only images with objects predominantly in the center of the frame are

valuable, as they are more equally represented in both domains. Additionally, the

distance between the camera and the object must be considered, as objects may appear

significantly smaller in the infrared camera at far distances than in the electro-optical

camera. This misalignment between the domains, as shown in Figure 3.4, causes several

deviations, such as differences in scale, position, and slight rotation. These deviations

are calculated using Euclidean distance and can be found in Appendix C. Specifically,

the position (158.41 px) and scale (106.04 px) are significantly different, likely increasing

the complexity of image translation between the domains.

Figure 3.4: Illustration showing the object translation between going from one domain

to another. The yellow rectangle indicates the true location and the red rectangle indi-

cates translated location. Note: Both images are approximately taken at the same time.

Disclaimer: The IR image has been resized to match the size of the RGB image (from

625x448 to 1122x888) to enhance the visualization.

Various attempts have been made using calibration techniques such as homography to

align the two domains correctly without success. Experiments around similar issues

(RGB-to-IR) have been researched [29][58], which have revealed extensive techniques to

mitigate this such issues. In addition to not having access to any calibrations measure at

hand, approaches such as COLMAP3 could be utilized but requires multiple images of

the same scene from different viewpoints.

An important finding related to the infrared domain is that it appears to be represented

in two distinct styles, as seen by indices 14 and 15 in Figure 3.3. The first style, visible

in index 15, is characterized by a clear separation between dark and bright grayscale

values, typically observed during clear daylight conditions with direct sunlight. In

contrast, the second style, visible at index 14, appears more grainy and exhibits less

3
COLMAP, an open-source software used for reconstructing the structure of a scene (3D) or object by

analyzing multiple images (2D). Uses structure-from-motion and multi-view stereo techniques.
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clear separation between dark and bright grayscale values. Cloudy conditions and more

uniform temperatures in the scenery will likely cause this style.

In short, the exploration of the raw datasets presents the following challenges:

1. Limited occurrence of objects of interest in both electro-optical and infrared image

collections, with only a few images containing meaningful objects.

2. Occlusion due to water droplets on the lens in several images, resulting in blurry

and unclear images, rendering them unusable for analysis.

3. Object obstruction: lower section of all the images affected by the structure of the

ferry itself, inducing problems when objects of interest become occluded by the

ferry’s structure.

4. Effect of blurring due to moving objects in conjunction with the camera.

5. Difference in field of view and camera configuration between electro-optical and

infrared cameras, resulting in objects being represented in different scales and

distances.

6. Misalignment between the two image domains in scale, position, and rotation

increases the complexity of the image translation process.

7. Infrared style varies depending on weather conditions, resulting in clear or grainy

images with varying separation between dark and bright grayscales.

3.3 Model Selection

The subsequent subsections discuss four distinct unpaired image-to-image translation

approaches chosen for implementation in this thesis. Analogous to the goal of this

project (RGB-IR), these implementations strive to learn a mapping from some domain

(A) to another domain (B). Continuous advancements in the unpaired image-to-image

translation are often driven by insights accumulated from the foundational CycleGAN

architecture. These advancements encompass refinements in objective functions, often

inspired by the original adversarial loss [13], network architecture enhancements, and

new training techniques.

Numerous models have been considered for selection and evaluation, but some have

fallen short for various reasons. Specifically, eligible models should include a functional

source implementation code (minor refactors are acceptable). Some interesting research

papers on diffusion models have not yet open-sourced their code implementations. While

some research papers have been promoting exciting results, they have yet to be further

experimented with due to poor code implementation quality. They have been excluded

from the process because the time required for refactoring was extreme.



3.3. MODEL SELECTION 33

3.3.1 CycleGAN

CycleGAN [59] was chosen because of its previous result in the Specialization Report.

Maintaining a reference or baseline to the previous helps to evaluate the progress. Cy-

cleGAN employs a cycle consistency constraint that ensures that the learned mappings

are consistent from one domain to the other. This attribute of CycleGAN makes it a

good candidate for RGB-to-IR image translation tasks, where obtaining perfectly paired

matching images is challenging.

The approach presented in their paper does not only learn some mapping G from

domain X → Y, but the newly established cost function, which essentially focuses on

reconstructing the image backward, that is, learning a mapping F : Y → X. Using the term,

cycle-consistency, which adds more structure to the objective function, and has become

the standard method for enforcing coherence between domains. The cycle-consistency
attempts to learn an inverse mapping from the output domain back to the input and

checks if the input can be reconstructed.

The full loss objective function consists of the regular adversarial loss in addition to

the cycle-consistency loss. More specifically, the authors formulate their total objectives as

ℒ (𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌) = ℒGAN (𝐺, 𝐷𝑌 , 𝑋, 𝑌)
+ ℒGAN (𝐹, 𝐷𝑋 , 𝑌, 𝑋)
+ �ℒcyc(𝐺, 𝐹)

(3.1)

where specifically they formulate their adversarial loss function ℒGAN similar to (2.1)

and the new cycle-consistency loss (3.2)

ℒcyc (𝐺, 𝐹) = E𝑥∼𝑝
data

(𝑥) [∥𝐹(𝐺(𝑥)) − 𝑥∥1]
+ E𝑦∼𝑝

data
(𝑦) [∥𝐺(𝐹(𝑦)) − 𝑦∥1] .

(3.2)

with the notations

• 𝐺: generator, maps input images from domain 𝑋 to domain 𝑌.

• 𝐹: generator, maps input images from domain 𝑌 to domain 𝑋.

• 𝑝
data

(𝑥): probability distribution of images in domain 𝑋.

• 𝑝
data

(𝑦): probability distribution of images in domain 𝑌.

• E𝑥 ∼ 𝑝
data

(𝑥): expectation over samples 𝑥 drawn from the probability distribution

𝑝
data

(𝑥).

• E𝑦 ∼ 𝑝
data

(𝑦): expectation over samples 𝑦 drawn from the probability distribution

𝑝
data

(𝑦).

• | |𝐹(𝐺(𝑥)) − 𝑥 | |1: L1 norm between the generatd and reconstructed image 𝐹(𝐺(𝑥))
and the original image 𝑥.
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• | |𝐺(𝐹(𝑦)) − 𝑦 | |1: L1 norm between the reconstructed and generated image 𝐺(𝐹(𝑦))
and the original image 𝑦.

The adversarial loss ensures that the generated images are indistinguishable from the

target domain images, while the cycle consistency loss enforces consistent translation

between the domains. Together, these two losses help to learn a mapping between the

input and output domains.

3.3.2 CUT

Contrastive Unpaired Translation [42] was picked due to being a continuation from the

efforts presented in the Specialization Report. Developed by the same group behind

CycleGAN, CUT can be considered a successor to that algorithm.

CUT combines adversarial loss with PatchNCE loss, a patch-wise contrastive loss,

to encourage consistent and meaningful local image representations. This combination

enables the model to preserve local structure and content from the input images.

The objective function consists of the adversarial loss, which ensures that the gen-

erated images are indistinguishable from real images in the target domain, and the

PatchNCE loss acts as a regularizer to maintain local consistency and minimize the

semantic gap between the input and output images. CUT does not use CycleGAN’s

cycle-consistency but instead focuses on maximizing mutual information using a noise

contrastive estimation framework. The final objective function can be formalized as (3.3)

ℒGAN(𝐺, 𝐷, 𝑋, 𝑌) + �𝑋ℒPatchNCE
(𝐺, 𝐻, 𝑋) + �𝑌ℒPatchNCE

(𝐺, 𝐻,𝑌) (3.3)

Denoting the symbols 𝐺 as the generator, 𝐷 as the discriminator, and 𝐻 as a small

two-layer MLP network. Besides the images 𝑋 and 𝑌 from their respective domains, the

notations can be explained as

• �𝑋 , regularization term weighted by some scalar

• �𝑌 , regularization term weighted by some scalar

• ℒGAN, the adversarial loss function

• ℒ
PatchNCE

, the noise-contrastive estimation loss function

where specifically they formulate the adversarial loss function as

ℒGAN(𝐺, 𝐷, 𝑋, 𝑌) = E𝒚∼𝑌 log𝐷(𝒚) + E𝒙∼𝑋 log(1 − 𝐷(𝐺(𝒙))) (3.4)

Using this loss, the generator 𝐺 aims to generate realistic images, while the discrim-

inator 𝐷 strives to distinguish between real and generated samples. For ℒ
PatchNCE

, we

have the objective
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ℒ
PatchNCE

(𝐺, 𝐻, 𝑋) = E𝒙∼𝑋
𝐿∑
𝑙=1

𝑆𝑙∑
𝑠=1

ℓ
(
�̂�𝑠𝑙 , 𝒛

𝑠
𝑙
, 𝒛𝑆\𝑠

𝑙

)
(3.5)

which attempts to measures the similarity between corresponding input-output patches

and pushes unrelated patches apart in the learned feature space.

• E𝒙∼𝑋 : This is the expected value or mean over all images 𝒙 drawn from the distri-

bution X. The idea is to calculate the PatchNCE loss over all images in the source

domain X.

• ℓ
(
�̂�𝑠𝑙 , 𝒛

𝑠
𝑙
, 𝒛𝑆\𝑠

𝑙

)
: This is a loss function ℓ that takes as input three arguments. �̂�𝑠𝑙

represents the predicted or generated output at the l-th layer and s-th patch. 𝒛𝑠
𝑙

is the actual output at the l-th layer and s-th patch, and 𝒛𝑆\𝑠
𝑙

represents all other

outputs at the l-th layer excluding the s-th patch.

• 𝒛 and �̂�: These are vector representations of the patches in the feature space at a

specific layer.

3.3.3 GcGAN

The reason for selecting GcGAN [12] was primarily due to its exciting take on its

geometry-consistency constraints for one-sided unsupervised domain mapping. The

idea of preserving the geometry of a scene during translation is essential. The con-

straints consist of taking the original image and its geometrically transformed counter-

part as inputs and generating two images in the new domain while maintaining geometry

consistency.

GcGAN sets itself apart from other models by utilizing geometry consistency con-

straints. This property ensures that fundamental geometric transformations do not

change the semantic structure of the images. As a result, GcGAN claims to prevent

mode collapse, a common issue with standard GANs, by effectively translating networks

on original and transformed images via co-regularization. This approach also helps to

reduce semantic distortions during translation.

The full loss objective function for GcGAN is given in Eq. ((3.6)):

ℒ𝐺𝑐𝐺𝐴𝑁

(
𝐺𝑋𝑌 , 𝐺�̃��̃� , 𝐷𝑌 , 𝐷�̃� , 𝑋, 𝑌

)
=ℒgan (𝐺𝑋𝑌 , 𝐷𝑌 , 𝑋, 𝑌)
+ ℒ𝑔𝑎𝑛

(
𝐺�̃��̃� , 𝐷�̃� , 𝑋, 𝑌

)
+ �ℒ𝑔𝑒𝑜

(
𝐺𝑋𝑌 , 𝐺�̃��̃� , 𝑋, 𝑌

) (3.6)

composed of the three following terms. The first two, being variations of the adversarial

loss (3.7). Using the first term as an example, the formulation is as follows
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ℒ𝑔𝑎𝑛 (𝐺𝑋𝑌 , 𝐷𝑌 , 𝑋, 𝑌) =E𝑦∼𝑃𝑌
[
log𝐷𝑌(𝑦)

]
+ E𝑥∼𝑃𝑋

[
log (1 − 𝐷𝑌 (𝐺𝑋𝑌(𝑥)))

] (3.7)

• 𝐺𝑋𝑌 : The generator model that maps input images from domain 𝑋 to domain 𝑌.

• 𝐷𝑌 : The discriminator model that distinguishes between real images from domain

𝑌 and generated images from domain 𝑋.

• 𝑋: The set of images in domain 𝑋.

• 𝑌: The set of images in domain 𝑌.

• 𝑃𝑋 : The probability distribution of images in domain 𝑋.

• 𝑃𝑌 : The probability distribution of images in domain 𝑌.

• E𝑦 ∼ 𝑃𝑌 : The expectation over samples 𝑦 drawn from the probability distribution

𝑃𝑌 .

• E𝑥 ∼ 𝑃𝑋 : The expectation over samples 𝑥 drawn from the probability distribution

𝑃𝑋 .

This term represents the standard generative adversarial loss for the generators (𝐺𝑋𝑌

and 𝐺�̃��̃�) and discriminators (𝐷𝑌 and 𝐷�̃�) networks, considering the original (𝑋, 𝑌) and

translated (�̃� and �̃�) image respectively. Lastly, the geometry-consistent objective (3.8),

formulated as

ℒ𝑔𝑒𝑜

(
𝐺𝑋𝑌 , 𝐺�̃��̃� , 𝑋, 𝑌

)
=E𝑥∼𝑃𝑋

[𝐺𝑋𝑌(𝑥) − 𝑓 −1
(
𝐺�̃��̃�( 𝑓 (𝑥))

)
1

]
+ E𝑥∼𝑃𝑋

[𝐺�̃��̃�( 𝑓 (𝑥)) − 𝑓 (𝐺𝑋𝑌(𝑥))


1

]
.

(3.8)

enforces the geometry-consistency constraint between the generated images by both

generators (𝐺𝑋𝑌 and 𝐺�̃��̃�) in the new domain. The constant � is a hyperparameter that

regulates the importance of this constraint.

3.3.4 StarGAN-v2

StarGAN-v2 [8] was chosen primarily due to its promising image quality results and

multi-domain translation capabilities. In addition to showing SOTA results for various

evaluation metrics, the idea of investigating whether similar approaches would work for

translating images from the visible domain to the infrared was decided. StarGAN-v2

uses various tricks to help the learning process, such as alignment models to assert that

each image is re-positioned so that the eye sockets are precisely at the same pixel position

for all images. Not directly transferable to the data in this thesis, as aligning objects is

an inherently tricky challenge as discovered during the data investigation presented in

Section 3.2.1, it was still an exciting idea open to be explored.
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What makes StarGAN-v2 unique compared to other models is its ability to generate

output images with various styles across different domains, outperforming previous

state-of-the-art methods. It utilizes a single framework to address diversity and scalability

challenges, common issues in image-to-image translation models. StarGAN-v2 utilizes a

multi-task learning setup and an adaptive instance normalization technique that injects

style codes into the generator.

The objective function can be expressed as follows:

min

𝐺,𝐹,𝐸
max

𝐷
ℒ𝑎𝑑𝑣 + �𝑠𝑡𝑦ℒ𝑠𝑡𝑦

− �𝑑𝑠ℒ𝑑𝑠 + �𝑐𝑦𝑐ℒ𝑐𝑦𝑐

(3.9)

which consist of several components weighted by various lambda parameters. Firstly,

an adversarial objective (3.10), similar to what has been discussed previously.

ℒ𝑎𝑑𝑣 =Ex,𝑦
[
log𝐷𝑦(x)

]
+

Ex,�̃� ,z

[
log

(
1 − 𝐷�̃�(𝐺(x, s̃))

)]
(3.10)

Secondly, an reconstruction objective (3.11) which encourages the generator to utilize

the style code when generating the output image.

ℒ𝑠𝑡𝑦 = Ex,�̃� ,z
[̃s − 𝐸�̃�(𝐺(x, s̃))


1

]
(3.11)

Thirdly, a style diversification objective (3.12) which attempts to regularizes the gener-

ator to create diverse output images by minimizing the similarity between outputs given

different style codes.

ℒ𝑑𝑠 = Ex,�̃� ,z1 ,z2
[∥𝐺 (x, s̃1) − 𝐺 (x, s̃2)∥1

] , (3.12)

Fourthly, it has a preserving-source-characteristics objective (3.13) which ensures that

the generator maintains domain-invariant characteristics of the input image. This could

for instance be pose, in the output image by employing a cycle-consistency loss.

ℒ𝑐𝑦𝑐 = Ex,𝑦,�̃� ,z [∥x − 𝐺(𝐺(x, s̃), ŝ)∥1] (3.13)

In short, these four objective functions collaborate to ensure that the StarGAN-v2

model effectively generates diverse images across multiple domains. Without repeating

similar notations used in previous subsections, the following symbols can be further

explained:

• z: This is typically a random noise vector input to the generator in a generative

adversarial network (GAN). The randomness of z helps to generate diverse output

images.
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• s̃: This represents a style code used to control the style of the output image in

StarGAN-v2. The style code s̃ is typically sampled from a distribution (hence the

tilde).

• s1, s2: These represent different style codes. In the context of the style diversification

loss, s1 and s2 are different style codes, and the goal is to encourage the generator

to produce diverse output images when given these different style codes.

3.4 Evaluation Metrics

This thesis uses two evaluation metrics to measure the performance of unpaired image-

to-image translation models. As mentioned in Section 2.2.3, many different quantitative

metrics exist for generative models. For simplicity, the thesis uses one quantitative and

one qualitative evaluation metric. Using the Fréchet Inception Distance (FID) and Manual

Inspection (visual observation), common in research papers for GANs, the results become

more understandable and easier to compare with other research experiments.

3.4.1 Fréchet Inception Distance

The FID metric provides a reliable assessment4 of the generated images’ quality and

diversity have been shown to correlate well with human judgment. It measures the

statistical similarity between the generated and target images by comparing their feature

distributions in the InceptionV3 [51] network’s intermediate layer. It offers an objective

way to compare different models and identify which generates images closer to the

target distribution. For image-to-image translation models, FID has become an industry-

standard evaluation technique due to its ability to capture the diversity and quality of

the generated images. Not all metrics are perfect, and some sensitivity issues exist as

previously mentioned in Section 3.8.1 in the Specialization Project [38].

FID was chosen over other metrics because it is widely used and well-established in

the research community for GANs. Using industry-standard evaluation metrics natu-

rally makes comparing with equivalent research experiments easier, leading to a more

comprehensive understanding of the problem.

3.4.2 Visual Observation

Visual observation is a qualitative evaluation method that relies on manually inspecting

the generated images to assess their quality and similarity to the target images. This

evaluation method considers several factors, such as realism, consistency, detail preser-

vation, sharpness, and the presence of artifacts. While visual observation is subjective

4
Regarding "reliable assumptions", if the real images are complex or have high variability in their features,

it can be difficult for the generator to capture the underlying distribution, leading to a higher FID score. Hence,

it is essential to consider the complexity and variability of the real images when interpreting FID scores.
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and can vary between evaluators, it is essential to determine the real-world applicability

and usefulness of the generated images.

Evaluation Scheme

A visual evaluation scheme has been developed to assess generative models’ performance

qualitatively. This evaluation scheme is based upon the principles of the Likert-scale

[31]. In short, the scheme relies on the criteria: realism, consistency, detail preservation,

sharpness, and the presence of artifacts. By assigning a score between 1 and 5 for each

criterion, one can compare the models and identify their strengths and weaknesses. Table

3.2 presents the visual evaluation scheme used in this thesis:

Criteria Weight Score (1-5)
Realism 0.25 1: Highly unrealistic 5: Highly realistic

Consistency 0.20 1: Highly inconsistent 5: Highly consistent

Detail Preservation 0.20 1: Poor detail preservation 5: Excellent detail preservation

Sharpness 0.20 1: Highly unsharp 5: Highly sharp

Artifacts 0.15 1: Numerous artifacts 5: Minimal artifacts

Table 3.2: Visual Evaluation Scheme for Generative Image Translation Models

Each criterion is weighted by its importance. Even though the nuances between them

are subtle, the justification for each weight is described as follows:

• Realism (0.25): Models generate synthetic data, hence achieving realistic transla-

tions with appropriate heat signatures is the main contributing factor to a well-

translated image.

• Consistency (0.20): The translation between the two domains involves a resolution

and field of view change. Consistently maintaining these aspects is essential for a

well-translated image. It is less critical than Realism, so a slightly lower weight is

assigned.

• Detail Preservation (0.20): Details may carry important information about the

object’s properties. Translation from a high-resolution image to a lower one reduces

image quality - hence loss of details.

• Sharpness (0.20): Balancing the Sharpness between the domains may hinder identi-

fying specific details or patterns in the image provided, especially with challenging

images affected by water droplets or blurring effects. However, Sharpness is slightly

less important than Realism, as the latter encompasses the overall appearance of

the generated image.

• Artifacts (0.15): Even though minimizing artifacts is an essential factor of quality

translated images, it is considered somewhat less important than the other criteria

since certain artifacts may not hinder the identification or interpretation of objects.
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To calculate the final score for each model, the weighted average method is used for

each criterion and their respective weights. In short, the final score can be calculated as

Final Score =

5∑
𝑖=1

(𝑊𝑖 × 𝑆𝑖)

where 𝑊𝑖 denotes the weight for criteria 𝑖, and 𝑆𝑖 denotes the score for criteria 𝑖.

To enhance the readers interpretation of the visual scheme, a few examples is provided

below in Figure 3.5.

Figure 3.5: Illustration showing the three different images generations: from reference

images to into generated images.

Without evaluating in-depth, one can note the following discrepancies in the figure.

Observing case (a), a translation of a ferry, one can note that the heat signatures are

misplaced comparing the reference and generated images, contributing to a lower realism

score - even though it uses the correct grayscale color combinations. In case (b), detail

preservation is lacking throughout the translation. It incorrectly introduces some new

details not found in the reference image, such as the wave reflection from the surface in

front of the boat. Observing case (c), the translation of the research ferry lacks sharpness,

resulting in a more blurred expression than the reference. Also, similar to (b), the

translation does not correctly preserve the correct details, as one can note the NTNU

logo’s outline on the hull’s side. This suggests various issues, such as incorrect heat

signatures, as the logo would disappear in true infrared.



4Implementation
This chapter reviews the application of the methods and techniques presented in the

previous chapter. It enlightens the process of creating a new, customized dataset tailored

to the thesis’s specific research goals and offers insights into the employed hardware

configuration and training pipeline. The experimental setup section outlines the dataset

split, pre-processing techniques, and training details for the investigated models. In

addition, the evaluation details section highlights the quantitative and qualitative metrics

used to conduct the performance of the models on the unpaired image translation task.

For transparency, Table 4.1 is copied from the Specialization Report [38].

4.1 Creating a new Dataset

Deep learning models’ efficacy often depends on the datasets employed. Models learn

patterns, distributions, and relationships in the data, so if the dataset is biased, un-

balanced, or not representative of the real-world problem, it can lead to poor model

performance and generalization. In other words, the success of deep learning models is

substantially reliant on data quality. However, an exception to the data quantity require-

ment exists for pre-trained models. In such cases, specific partitions of the pre-trained

model may be trained, given the model’s previous training on other datasets.

Previous Dataset

In the previous Specialization Project, the dataset consisted of full-resolution images.

This resulted in inferior translation performance (see Section 5.3 and 5.4 in the report

[38]), and thus, a new dataset is proposed using the approach of only object crops. There

are reasons to believe this new approach will result in better performance.

Advancements

Firstly, by employing object crops, the focus is placed on specific objects of interest,

effectively reducing image complexity and ensuring that images are more concentrated

on the desired subject matter. This eliminates much of the background information in

the dataset, such as houses and open waters, streamlining the training process.

Secondly, using object crops allows the capture of fine-grained details of the objects,

which is crucial for learning a realistic quality translation between the two visual

domains.

Thirdly, object crops provide a consistent and standardized view of the objects, which

helps reduce issues such as different lighting, unfortunate camera angles, and

perspectives in full-size raw images.

41
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Reducing full-resolution images down to image crops involves an image annotation

process, often a time-consuming process, especially when dealing with large datasets.

By utilizing a dataset consisting of object crops, models can be trained to focus on

smaller objects instead of a high-dimensional image, resulting in better accuracy and

more targeted output. Consequently, the additional effort required for image

annotation and dataset creation may pay off in terms of performance and realistic

quality image translation.

4.1.1 Preparing the Dataset

The data-preparation pipeline for attempting to create a high-quality, customized dataset

requires extensive image processing and filtering. Specifically, the steps needed to con-

dense the enormous 98 GB (see Table 3.1) of raw images into useful image crops require

the following steps:

1. RosBag to Image

2. Image Filtering

3. Image Downsampling

4. Image Annotation

5. Image Cropping

6. Image Removal

Step 1: RosBag to Image

The initial step in the data pipeline is to convert the data from RosBag1 files to individual

images. This process involves the extraction of the sensor data from the RosBags using the

CvBridge2 from ROS (Robot Operating System), followed by the conversion of the sensor

data into individual images. The images are then saved in their respective directories

for further processing. This step is identical to the similar process in the Specialization

Project. For more details about extracting and undistorting the raw images, please see

Section 4.1.1 from the report [38].

1
A RosBags file is a binary file that contains a collection of ROS messages that can be played back in a ROS

system at a later time. It can be used for recording and playback of messages, including sensor data, robot state

information, and other data exchanged between ROS nodes.

2
CvBridge is a software library in ROS that provides a bridge between ROS messages and OpenCV images
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Step 2: Image Filtering

Due to the challenges presented in Section 3.2.1, a crucial step in the data pipeline is

image filtering. This step involves removing all irrelevant images, images occluded by

water droplets, or even the ferry’s structure. The filtering process is a crucial step in

the data pipeline, as it involves careful visual inspection and selection of each image to

ensure that only those containing objects of interest are retained in the data pipeline. For

this thesis, this step resulted in the removal of the majority of available data, as most

driving scenarios consisted of sequential image series where both domain cameras were

active at all times, regardless of the presence of objects. This resulted in long series of

images where objects such as boats, ships, and kayaks were only present at specific time

intervals. The inspection also shows many duplicate infrared images, most likely due to

the reduced video rate legislated by the U.S. government. As FLIR states themselves:

"Thermal cameras operating at 60 fps and/or 30 fps (NTSC) or 50 / 25 fps

(PAL) video rates are export-controlled by the U.S. government."

3. The duplication of infrared images is likely a result of trying to produce the same

number of images despite the reduced frame rate. A hash-based approach can be used to

remove duplicate images from a dataset. The following code snippet involves computing

hash values for each image, comparing them to identify duplicates, and then removing

them.

1 import os

2 import hashlib

3 from PIL import Image

4

5 def remove_duplicates(directory: str) -> None:

6 hash_dict = {}

7 for subdir, _, files in os.walk(directory):

8 for file in files:

9 full_path = os.path.join(subdir, file)

10 with Image.open(full_path) as img:

11 file_hash = hashlib.md5(img.tobytes()).hexdigest()

12 if file_hash in hash_dict:

13 os.remove(full_path)

14 else:

15 hash_dict[file_hash] = full_path

Step 3: Image Downsampling

Data downsampling is necessary because the electro-optical and infrared images have

been sampled at frequencies 5 and 9 FPS, respectively. As a result, there are more

3
https://www.flir.com/support-center/oem/as-far-as-30-fps-vs.-9-fps-video-rates-are-concerned-why-

use-one-over-the-other/
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infrared images than electro-optical images. To address the sampling issue, the scenery

of each image series’s first and last frame should be identical to retain the same amount

of information in both domains, and any "extra" images should be removed uniformly

in the excess domain. Moreover, a few images might have negligible movement or

standstill, rendering them redundant. Depending on the degree of movement in the

view anywhere between 50% (i.e., every other image) to 75% (i.e., three subsequent

images) of the images can be removed. This will guarantee that the final dataset has an

equal representation of the electro-optical and infrared domains while including only the

most relevant images. Including numerous images from a specific scene may accidentally

introduce an undesirable bias in the overall training data.

Step 4: Image Annotation

After filtering the images, the next step is image annotation. Annotation involves man-

ually creating bounding boxes around objects of interest in the images. As mentioned,

this thesis focuses on objects of particular interest instead of the whole image, as the Spe-

cialization Project did. This involves objects that are important to detect for the ferry’s

operation, such as other vessels, swimmers, and kayaks. The annotation process was

done using a specialized annotation tool, LabelImg4, where each object was centered

inside a bounding box.

Step 5: Image Cropping

After the annotation process, the next step involves generating image crops using the

XML5 annotation files generated by LabelImg as reference. The purpose of cropping is

to extract only the object of interest from the original image without too much scenery

background. This process involves using the bounding box annotations to generate new

images containing the object of interest. Subsequently, one original image can turn into

multiple image crops, each containing a specific object of interest.

Step 6: Image Removal

Following image cropping, a two-stage removal process was implemented. Stage A
involved filtering out low-resolution image crops, while stage B focused on removing

excess domain images.

A: When cropping images, bounding boxes can be created in all types of resolution. In

this case, many image crops, particularly from the infrared domain, resulted in low

resolution due to the differences in the field of view and resolution between the RGB

and IR cameras. Due to the different sensor sizes and focal lengths for these cameras, as

4https://github.com/heartexlabs/labelImg
5
XML stands for eXtensible Markup Language and is a markup language used for structuring and storing

data in a format that is both human-readable and machine-readable.

https://github.com/heartexlabs/labelImg
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stated in Table 4.1, electro-optical objects are larger than their corresponding infrared

versions, particularly at far distances.

Specs FLIR BlackFly 2 Flir Boson 640
Sensor electro-optical infrared

Type of lens Kowa LM6JC Kowa LM6JC

Focal length 6 mm 4.9 mm

Sensor size 2/3 2/3

Max resolution 2448 x 2048 640 x 512

HFOV according to supplier 81.9 deg 95 deg

Interface GigE USB 2.0

Max framerate 22 FPS 9 FPS

Table 4.1: Hardware specification for both of the cameras used on the milliAmpere ferry.

Consequently, bounding boxes can become quite small, resulting in image crops that

need more pixel details to determine if an object is present accurately. In such

situations, removing the image entirely from the dataset is more appropriate, as it is not

possible to distinguish between noisy objects and small class objects. To this end, a

minimum width and height threshold of 30 pixels was established, and all square

images below this threshold were removed from the dataset. This approach was

adopted to maintain the quality and accuracy of the dataset, particularly in cases where

low-resolution images could impact the performance of the deep learning models.

B: One ensures that the electro-optical and infrared domains are equally represented in

the dataset by removing excess images from the larger domain. This step involves

counting the number of images in each domain and removing the excess images from

the larger domain until the number of images in each domain is equal. This process

ensures that the dataset is balanced and that the deep learning models trained on the

dataset are not biased towards any particular domain. The filtering method consisted of

sorting the excess domain images by resolution and removing the lower 𝑁 images,

where N is the difference in the number of images between the domain. In practice, this

processing step removed numerous infrared images as they were tiny compared to their

approximate electro-optical equivalent. This removal led, again, to the removal of

electro-optical images to balance the counts.

4.1.2 Final Dataset

The final dataset was created by following the steps detailed in Section 4.1.1 to ensure

that the resulting dataset is of higher quality and not affected by the issues highlighted

in Section 3.2.1.

The condensed dataset consists of 3551 image crops from the optical and infrared

domains in various sizes. As shown in Table 4.2, the average resolution of the image
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crops from the optical domain is approximately 200𝑥200 pixels, while in Table 4.3, the

average resolution of the image crops from the infrared domain is approximately 100𝑥100

pixels.

A significant effort was made to ensure that both cameras captured the same visual

content. However, due to the differences in the field of view and the depth information

for each camera, perfect pixel-to-pixel matches per object could only be achieved in

some cases. In addition, the raw mean width and height for both domains, at 1102x872

and 619x443, respectively, mean that objects are represented differently in each domain,

making unpaired image translation across resolutions more challenging.

count mean std min 25% 50% 75% max
raw width 3551 1102 8 1094 1096 1096 1110 1122

raw height 3551 872 6 867 869 869 877 888

crop-width 3551 207 104 92 133 174 248 672

crop-height 3551 206 102 91 132 174 248 665

Table 4.2: Electro-optical image statistics

count mean std min 25% 50% 75% max
raw width 3551 619 2 617 617 620 621 625

raw height 3551 443 8 438 438 441 445 468

crop-width 3551 104 51 30 67 90 130 337

crop-height 3551 104 51 30 67 90 130 336

Table 4.3: Infrared image statistics

In order to efficiently investigate the object distributions of the dataset, a web applica-

tion and application programming interface was developed as a part of this thesis for the

purpose of manually classifying images. Attempts to use pre-trained image classifiers

were made but without sufficient success. This approach was taken due to the difficulty in

skimming through 3551 electro-optical images in a folder using a standard file explorer.

The web application was developed using Python libraries such as FastAPI, Uvicorn,

and TinyDB for handling the backend services. At the same time, the user interface was

created with React and Ant Design for a simplistic and elegant front-end experience. See

more details in Appendix D. This greatly facilitated the manual classification process and

allowed storing of a JSON database containing images and their respective class labels.

As a result of this approach, a significant amount of effort was dedicated to manually

classifying all 3551 electro-optical images in the dataset. Preemptively, the investigation

assumed similar characteristics in both domains; hence, only one was explored. The class

investigation revealed the following properties, as visualized in Figure 4.1.
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Figure 4.1: The multi-plot shows the distribution of object images in the dataset. Each

subplot shows the histogram and kernel-density-estimate contour for each object. The

"Sum" in each cell (top-right corner) indicates the total number of image objects, while the

percentage indicates its proportion of the whole dataset. Note: image crops are square;

hence size = width = height.

Furthermore, the figure reveals the following observations:

• Class Imbalance and Diversity: The dataset exhibits a certain degree of class

imbalance, with the number of samples for each class varying notably. For instance,

ferries and white boats account for almost 47% of the total images, while kayaks

represent just over 6%.

• Volume and Complexity: The dataset comprises images of varying resolutions

with different complexities. The variability in resolution and complexity can pose

challenges during training, as the model must learn to adapt to different image sizes

and object details. The dataset contains 3,551 images per domain, which may be

considered a moderate-sized dataset for training deep learning models. However,

the limited volume for specific classes, such as kayaks, may affect the model’s ability

to effectively learn the features of these less-represented classes. By comparing the

class imbalance and the mode of each class, one can observe that, even though

images of speed boats are more frequent than kayaks, the mode of kayaks is higher,

indicating a potentially higher quality of image translation for kayaks.

• Resolution and Distance: By comparing the distribution of each respective object,

one can observe significant variations in pixel resolutions. A smaller range of

pixel resolutions may indicate images taken at a consistent distance from the boat.
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In comparison, a more extensive range of pixel resolutions may indicate images

taken at varying distances from the boat. This may affect the quality of the image

translations, as the model may not be able to learn the features of the objects

effectively. Infrared images have lower resolution than electro-optical images. This

could make it challenging to generate high-quality infrared images that closely

resemble the corresponding optical images. To address this, one could investigate

advanced approaches such as applying super-resolution [30] to enhance the spatial

resolution of an image. These techniques aim to reconstruct a higher-resolution

image from one or more low-resolution versions of the same image.

4.2 Hardware and Software

Hardware configuration is crucial for practical training of deep learning models, with

access to high-end Graphics Processing Units being a determining factor in ensuring the

use of computation resources necessary for efficient training.

A remote computer at NTNU with three NVIDIA GeForce RTX 3090s was utilized to

conduct model development and training experiments in this thesis. Access to powerful

hardware is highly beneficial for more straightforward experimentation setup, training,

and testing, with its impact being most pronounced in the actual possibility of training

large generative image models. Such models are computationally intensive and require

significant resources and time to train accurately.

Compared to cloud-based services like Paperspace6, access to local resources via

NTNU significantly reduced the overall experimentation time without the complexity

and cost of using cloud providers that require subscription payments.

In terms of software implementations, the model implementations, training, and

testing processes were carried out using the Python7 programming languages with Py-

Torch [43], an open-source machine learning library that supports comprehensive tensor

computations and deep learning support.

4.3 Training Pipeline

The training pipeline for this thesis involves the remote PC described earlier. To test

models and architectures, one can connect to the remote PC via SSH while connected to

the NTNU network. If not connected to the network, one can use NTNU’s VPN to log

into the school intranet and reach the remote PC via SSH.

After cloning the desired code repository, Visual Studio Code8 was used to configure

the training parameters, set up the correct training configurations, and validate the pre-

processing techniques.

6https://www.paperspace.com/
7https://www.python.org/
8https://code.visualstudio.com/

https://www.paperspace.com/
https://www.python.org/
https://code.visualstudio.com/
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The experimentation and logging tracking are performed using an ML Ops platform

called Weights and Biases9. Weights and Biases (W&B) is a platform that provides re-

searchers with tools to manage and track their machine learning experiments, visualize

results, and collaborate with their teams. Once the necessary setup is complete, a training

script is executed inside a terminal multiplexer, which supports background processing.

This enables the user to detach (exit) the SSH connection without interrupting any ongo-

ing training processes on the computer.

W&B provides various tools for tracking training processes in the cloud. For example,

receive alerts (via E-mail or Slack) when training sessions crash, view metrics, and

monitor ongoing image generations. This setup enables continuous monitoring of the

model’s performance and makes the overall training process quite structured.

4.4 Experimental Setup

This section outlines the dataset split, pre-processing, and training details employed to

train the various models. See Appendix A for references to detailed code implementa-

tions.

4.4.1 Dataset

In order to achieve the objective of obtaining models with satisfactory performance and

good generalization capabilities to previously unseen data, the study employs a train/test

split methodology. The dataset is divided into two subsets: training and testing sets.

The division follows an 80/20 ratio, with 80 percent of the dataset used for training and

20 percent for testing.

The customized dataset, which consists of 3551 images in each domain, is divided

into the following splits:

• The RGB training set = 2840 images.

• The RGB testing set = 711 images.

• The IR training set = 2840 images.

• The IR testing set = 711 images.

The purpose of the train/test split is to evaluate the chosen models’ performance on

unseen data to evaluate generalizability. Using a separate testing set, one can obtain an

unbiased estimate of the model’s performance and ensure that it can generalize well to

new data. All subsequent models use this train/test split.

9https://docs.wandb.ai/

https://docs.wandb.ai/
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4.4.2 Training Details

Throughout the course of this semester, as part of the thesis, a considerable amount

of time was dedicated to implementing and experimenting with various GAN models.

Although these experimentations are not directly discussed in the thesis, as they do not

contribute to the immediate results, they played a crucial role in the selection process of

the final base models. Additional factors such as time spent on implementation, refactor-

ing time, and the quality of the code provided by the paper’s authors were all considered

in determining the most suitable models for the research.

Following subsections reveals the training configurations used in each experiment with

the baseline and final models.

Baseline Models

When comparing different models, it is essential to maintain a consistent experimental

setup across all models to ensure a fair comparison. However, specific models might have

different optimal hyperparameters, which could lead to suboptimal performance under

the same experimental setup. For instance, some models may perform better with a

smaller batch size, while others might benefit from a larger one for optimal performance.

In this thesis, the four baseline models—CycleGAN, CUT, GcGAN, and StarGAN-

v2— have been trained under a near-consistent setup of identical epochs, learning rate,

batch size, train-test split, optimizers, and learning rate decay. In concrete terms, the

default settings have been used, inspired by the original implemented training details

used for each model in their respective paper, outlined in Section 7 [59], Appendix C [42],

Section 4 [12], and Appendix B [8]. This means extensive exploration of architectural

hyperparameters or model-specific data augmentations has not been pursued, as the

primary goal of the early-stage experiments involves understanding what models are

better suited for the image translation task under a unified setting.

The training configuration for each baseline model is triggered by the following

command-line scripts in Appendix A and baseline configuration in Appendix C. In ad-

dition, the link to the original and thesis codebase for each model is attached below the

script. The listed training configuration should allow the models to use the same param-

eters, though this is hard in practice as some rely on architectural model parameters.

Various pre-processing methods are added to each training session. The following

list shows the common data-augmentation technique used for all the baseline models:

• Resize(size=[256, 256], interpolation=bilinear, max_size=None)
Resizes the input images to a fixed size (256x256).

• RandomHorizontalFlip(p=0.5)
Horizontally flips the input images with 50% probability.

• ToTensor()
Converts the input images to PyTorch tensors.
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• Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
Normalizes images by setting the channel-wise mean and the standard deviation.

The baseline models were trained on a single GPU rather than all three to ensure

comparability (similar configurations as used in research papers), simplify the process,

and maintain generalizability. Training on a single GPU allows for fair comparisons

between models under the same hardware constraints and makes it easier to identify

bottlenecks and limitations.

Each model was trained for 400 epochs using a learning rate 2𝑒−4
with a linear decay

starting at epoch 200 and a batch size of 8 to maximize VRAM usage. For optimizing the

parameters of the neural networks, the models employed the Adam optimizer [27] with

betas=[0.5, 0.999]. This optimizer is widely used and tested in various deep learning tasks

and offers several benefits, such as fast convergence and robustness to noisy gradients.

Final Model

Oppose to the baseline training configuration, the training configuration for tuning the

final model utilizing all three GPUs with the same baseline configuration C and only

scaling the learning rate and batch size by a factor of three. This effectively means

multiplying the learning rate, the number of workers10, batch size, increasing from 2𝑒−4

to 6𝑒−4
, 4 to 12, and 8 to 24, respectively. This ensures a similar training process while

taking advantage of the additional computational resources the three GPUs provide.

The tuning configuration aims to accelerate the training process and potentially achieve

better performance with the larger batch size and increased learning rate.

The experimentation plan is structured in a way that first investigates the most com-

mon hyperparameters before gradually narrowing down to fine-tuning more specific

parameters. The idea is to create a systematic and structured approach to hyperparame-

ter tuning while following good practices in deep learning research.

The following explorations are to be explored and can be explained in the following

way:

1. Learning Rate
A reasonable learning rate greatly impacts the model’s convergence and perfor-

mance, making it crucial to explore various learning rates to find the optimal value.

2. Image Resolution and Scaling
Different image resolutions for the dataset can impact the model’s ability to capture

relevant features and details. To continue with it confidently, an investigation to

see if deviating from the standard 256x256 resolution is required.

10
In PyTorch, the "number of workers" refers to the number of processes or threads used to load and

preprocess data during the training process.
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3. Model Architecture and Initialization
Different architectures and weight initialization methods can influence the model’s

convergence and stability, making it essential to investigate their impact on perfor-

mance.

4. Data Augmentation and Preprocessing
Various augmentation and preprocessing techniques can enhance the model’s ro-

bustness and generalization, making it valuable to experiment with different ap-

proaches.

5. Reducing Color Channels: Converting RGB images to grayscale can reduce the

input complexity and improve model performance. It is an exciting experiment to

explore how the impact of reduced color channels alters the translation quality.

6. Manipulating the Loss Function
The idea of adjusting the final model’s loss function to prioritize translation di-

rection is found to be of interest, as the direction from the RGB domain to the IR

domain is of particular interest, not the other way around.

4.4.3 Evaluation Details

Two widely-used evaluation metrics have been implemented to evaluate the performance

of the various generative models in this thesis: FID and visual observations. As stated

in Section 4.4.1, 711 images from each domain are used. Furthermore, during FID

calculations, a batch size of 9 (a multiple of 711) was used to comply with the number of

images available. The FID is calculated using the code implementation from the authors

of StarGAN-v2 (see Appendix A).

One important consideration to keep in when using FID as an evaluation metric for

this thesis is that the Inception network used to calculate the FID score is purely trained

on ImageNet [9], which consists of colored images, even though this is not explicitly

stated in their documentation. Therefore, while applying the FID metric to grayscale

images, it is essential to note that this may not produce optimal results and will likely

affect the final evaluation score.

As described in Section 3.4, visual observations involve qualitatively assessing the

generated images by visually inspecting them to evaluate their quality, realism, and

adherence to the target domain. This evaluation method allows researchers to iden-

tify artifacts, inconsistencies, or other issues that quantitative metrics like FID may not

capture.

By combining the quantitative FID and the qualitative visual observations supported

by an evaluation scheme, one can comprehensively analyze the performance of the un-

paired image-to-image translation models in this thesis. This approach allows for a

robust assessment of each model’s strengths and weaknesses, facilitating informed deci-

sions regarding the most suitable model.



5Results and Discussion
This chapter presents both quantitative and qualitative results from various model exper-

iments conducted. It provides a fair comparison of the tested models based on established

metrics and benchmarks, discusses the strengths and limitations of each model, and offers

insights into their performance in terms of image-to-image translation quality.

Some upcoming visualizations in this chapter are of high DPI, ensuring good image

quality and detail. Therefore, readers are encouraged to zoom into the visualizations for

a closer examination and better understand the presented data.

5.1 Model Capacities

The baseline training results, using the configuration in Section 4.4.2 and summarized in

Table 5.1 below, provide an overview of the resources and performance associated with

each model. Specifically, one can observe that the correlation between model size and

training times is tightly coupled for each baseline model. A more detailed overview of

the number of model parameters can be found in Appendix B.

Model Training Time Generator Size
CycleGAN 33h 04m 11.37M

CUT 26h 15m 11.38M

GcGAN 17h 56m 7.84M

StarGAN-v2 57h 29m 33.89M

Table 5.1: Comparison of time spent training and generator size

As one can observe from the various training sessions in Table 5.1, GcGAN has the

shortest training time, while StarGAN-v2 requires the longest. It is important to note

that a more extensive network size may contribute to longer training times and increased

computational requirements.

53
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5.2 Baseline Results

Figure 5.1: Baseline model comparison 1: CUT (left) and CycleGAN (right). The first row

(source) presents six hand-picked RGB images from the validation set used to evaluate

the translation quality for each object. The last row (reference) displays the closest real

IR images, representing the desired appearance. The intermediate rows contain samples

generated using various checkpoints from the training sessions. This setup remains

identical throughout the chapter.
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Figure 5.2: Baseline model comparison 2: GcGAN and StarGAN-v2. The row arrange-

ment is the same as in Figure 5.1. It should be noted that StarGAN-v2 used iterations for

sampling, leading to a discrepancy when converting iterations to epochs. However, this

inconsistency likely does not significantly impact the final results.

The baseline model comparisons, displayed in Figures 5.1 and 5.2, show the various model

improvements during the training session. By displaying epoch-by-epoch translation

results, one can see how the models learn certain features over time. For evaluating the

models with the evaluation scheme (from Section 3.4.2), the final epoch (400) is used as

the primary observation indicator, with secondary observations being anything between

0 and 400. For readability purposes, the following sections use the notation of (1), (2), ...,

(6) to the corresponding columns (1), (2), ..., (6) in the generated image-grid - e.g., wooden
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boat (1), kayak (2), etc. By monitoring the generation result of each specific object, one

can quite quickly notice deviations.

CUT

By observing the image progress in Figure 5.1 by CUT, it becomes apparent that pixel

textures and the hidden outlines of the structure in the image are pretty preserved. How-

ever, the grayscale heat signature is not correct, resulting in overly bright color gradients,

specifically for the unique objects centered in the image. Compared with the real image,

objects such as the kayak (2) and white boat (5) are generated quite bleached, which does

not sufficiently match the reference real infrared image. In terms of the structural posi-

tioning, most of the objects are well preserved. The objects in the image are translated

without any significant change in position in the scene while maintaining proper shape

and size. Observing the model, epoch by epoch, one could see that the model struggles

with applying correct gradients and color changes, producing a mix of purple and yel-

low tints instead. The correct sharpness of the generated images is subpar, as too many

details from the electro-optical domain are preserved. The blurred objects and edges

around them, in conjunction with artifacts such as unnatural textures and color-bleeding

surrounding them, resulting in a poor translation. In sum, by summarizing the results

in Table 5.2, the model is given a score of 2.

Criteria Weight Score Weighted Scored
Realism 0.25 2 0.50

Consistency 0.20 4 0.80

Detail Preservation 0.20 1 0.20

Sharpness 0.20 1 0.20

Artifacts 0.15 2 0.30

Sum 2.00

Table 5.2: Evaluation Scheme: CUT

CycleGAN

By viewing the image generations from CycleGAN, one can immediately see that some

outputs, particularly the vessel (3) and speedboat (4), are, in fact, quite realistic. Using

the speed boat as an example, one could observe that the image exhibits realistic col-

ors, contrast, and brightness levels in significant similarity to the true infrared image.

The background elements, such as the bridge and the water in the foreground, look

moderately natural and plausible.

In terms of consistency, the physical positioning of the object is accurate, except for the

research ferry (6). Purely observing the focused object’s boundaries, they all (except 6)

have the correct direction/pose considering the slight differences in the field of view and

depth information between RGB and IR. As mentioned, regarding background elements,
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the wave-formations in the water look realistic - though with subtle deviations. For

instance, looking at the wooden boat (1), one could see that the water surfaces look

plausible, perhaps with too much detail. However, as the dataset contains "two styles of

infrared," one could accept either style compared to the real infrared.

This relates well to detail preservation, as surface details seem intact in some regions.

Using the big vessel (3) as an example, one can see that the color gradient around the

heated windows seems realistic. Another sign of this quality is the vessel’s hull, generated

as a solid color instead of a separation between white and blue.

In terms of sharpness, most of the object boundaries show the same level of sharp-

ness/blurriness as the true infrared image. For instance, compared to the true equivalents

- the speedboat (4) shows signs of a higher sharpness while the big vessel (3) is lower.

Prominent for CycleGAN is the presence of artifacts, specifically by comparing the

wooden boat, kayak, and ferry. Multiple instances of the generated images exhibit uneven

or unnatural textures. The addition of what looks like an extra person in the wooden

boat, the kayak’s lack of color, and the ferry’s misplaced features all support this claim.

In sum, by summarizing the results in Table 5.3, the model is given a score of 3.5.

Criteria Weight Score Weighted Scored
Realism 0.25 4 1.00

Consistency 0.20 4 0.80

Detail Preservation 0.20 3 0.60

Sharpness 0.20 4 0.80

Artifacts 0.15 2 0.30

Sum 3.50

Table 5.3: Evaluation Scheme: CycleGAN

GcGAN

In evaluating the result for GcGAN, one can immediately see that most objects are

translated into shape variations of the ferry (6), signifying an unrealistic translation.

This might indicate that the model is suffering from mode collapse, a common issue in

generative models as described in Section 2.2.3. In short, the model seems unresponsive

to input variations. However, the color consistency appears to be accurate. While looking

at the ferry (6), one can see similar levels of color and brightness, making it look natural

to a certain degree.

Even though multiple outputs display the same object class (6), the object sizes and

proportions seem consistent with the true input image. For instance, by looking at the

speedboat (4), the object orientation, position, and size of the object in both the generated

and the actual look relatively the same - which indicates some level of consistency.

Regarding detail preservation, the generated images do not retain essential features

and information from the source images, as most images are incorrectly translated. With

this in mind, the translation does still have color gradients intact.
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For the correctly translated images, wooden boat (1), kayak (2), and ferry (6) all

indicated a low level of sharpness compared to the real image. The image clarity is not

maintained throughout the translation leading to an unclear and blurred expression.

Finally, the artifacts represented by the misplaced features (3-4-5) exhibit uneven or

unnatural textures. In addition, even though the kayak (2) is correctly translated, the

overall image is affected by color bleeding and bizarre color transitions leading, indicated

by the higher brightness and the blurred edges around the central object. With all criterias

evaluated, the final score of GcGAN is 1.85 as summarized in Table 5.4

Criteria Weight Score Weighted Scored
Realism 0.25 3 0.75

Consistency 0.20 2 0.40

Detail Preservation 0.20 1 0.20

Sharpness 0.20 1 0.20

Artifacts 0.15 2 0.30

Sum 1.85

Table 5.4: Evaluation Scheme: GcGAN

StarGAN-v2

At various training epochs, StarGAN-v2 produces a few realistic translations, ferry (6) at

epoch 140, wooden boat + person (1) at epoch 197, kayak (1) at epoch 225, and speedboat

(4) at epoch 253. This indicates that the model can learn to a certain degree but struggles

to be consistent for all classes simultaneously. However, there are often more failure

cases than consistent translation leading to an overall poor realism impression.

Regarding consistency, the orientations and positions are also out of order for a few

outputs. For instance, looking at the speedboat (4), the actual objects’ position in the true

input image is centered, while in the generated image - the boat is in the upper section

of the image in the early training stages. With this in mind, it is still accurate for other

objects such as the wooden boat (1), kayak (2), and white boat (5).

By observation, the translated images have their color gradients intact to some de-

gree. Nonetheless, the generated features are still incorrect, with low to no information

preserved from the input images.

As for sharpness, the generated images exhibit a slightly lower level of sharpness

compared to the true infrared. Though the object is correctly translated (1), the edges in

the generated image are not equally crisp and well-defined resulting in blurring during

translation.

Unnatural textures, such as the outline of two persons on the ferry (6), contribute to

the ghosting effect of the translation. There are also a lot of inconsistent features from

one epoch to another. For instance, the details tend to disappear at certain stages, like

one can observe early for the vessel (3) or late for the kayak (2). In short, in addition to
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the previous deficiency mentioned above, these misplaced features result in a score of

1.65, as summarized in Table 5.5.

Criteria Weight Score Weighted Scored
Realism 0.25 2 0.50

Consistency 0.20 1 0.20

Detail Preservation 0.20 2 0.20

Sharpness 0.20 2 0.40

Artifacts 0.15 1 0.15

Sum 1.65

Table 5.5: Evaluation Scheme: StarGAN-v2

5.2.1 Summary

In addition to the evaluation schemes above, the baseline model comparisons, displayed

in Figure 5.1 and 5.2, one can see how the FID scores fluctuate as each checkpoint is

evaluated on the 711 validation images (see evaluation details in Section 4.4.3) in Figure

5.3

Figure 5.3: Showing FID progression during training

Using the last epoch for evaluation, one can visualize a correlation in performance by

combining the results from the visual evaluation schemes with the final FID scores. An

illustrative scatter plot, shown in Figure 5.20, exhibits the relationship between the two

evaluation metrics for each of the four models under experimentation: CycleGAN, CUT,

GcGAN, and StarGAN-v2.



60 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.4: Visualizing baseline model performance by comparing evaluation score with

FID. The top-left section indicates higher performance, lower-right section indicates lower

performance. Note the limit for FID is set to an arbitrarily large limit, while the evaluation

score follows the Likert scale.

Upon close inspection of the plot, a clear negative correlation between FID scores

and visual observation scores is noticeable, indicating that a decrease in the FID score

corresponds to an improvement in the visual quality of the generated images. This

correlation aligns with theoretical expectations since lower FID values often reflect a

superior performance in terms of visual quality.

In short, by analyzing the models, it becomes evident that StarGAN-v2 outperforms

the other models in the present baseline experimentation, with the lowest FID score

of 118. For comparison, CycleGAN got a score of 143 and also had the highest visual

observation score of 3.50. Since the FID score and visual generations do not correlate

sufficiently, the best performance is demonstrated by CycleGAN, as visual observation is

the most important indicator. This shows that the CycleGAN inhabits the more significant

potential of success, given the baseline training settings as previously described in Section

4.4.2.

5.3 Tuning Results

Based on the performance analysis from the experiments conducted in Section 5.2, Cycle-

GAN emerged as the preferred model for continued tuning in this research. It exhibited

the highest visual observation score while achieving a competitive FID score and utilized

adequate resources, notably in training time.

The transition from a single GPU to a setup employing three GPUs was a significant
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development in the model training process. This change significantly reduced train-

ing time by approximately 47%, decreasing from 33h 04m (refer to Section 5.1) to 13h

47m. This modification illustrates the benefits of parallelizing the training process across

multiple GPUs, facilitating quicker convergence and more efficient hyperparameter ex-

ploration.

With this improved efficiency, the final model of CycleGAN was further tuned to en-

hance its translation capabilities. As described in the experimentation plan, Section 4.4.2,

the following subsections will alleviate and highlight the main results from the various

tuning studies. For clarity and brevity, only the final and best checkpoint (epoch 400) for

each experiment is used in image generation comparisons, as seen below. Metrics and

image generations were logged every 25th epoch during each experiment run, providing

comprehensive data for analysis. More information about the frequency of logging can

be found in the training configuration in Appendix C.

5.3.1 Learning Rate Exploration

Figure 5.5 below visualizes the relationship between various learning rates and their

respective FID scores. The results indicate that lower learning rates contribute to less

spiky and more consistent evaluation scores. Slower learning rates often lead to longer

training sessions. For this particular case, the difference between the lowest and highest

learning rate is ∼ 15 minutes.

Figure 5.5: LR Experimentation: Illustration compares FID score and varying learning

rates. The vertical dashed line at epoch 200 indicates the starting point of the linear

learning rate scheduler. Note: two identical configurations can produce two slightly FID

plots. Sources of randomness include data shuffling, weight initialization, and batch

sampling. When using GPUs, setting the random seed might not guarantee the same

results due to non-deterministic implementations of some GPU operations.

Figures 5.6 and 5.7 illustrate the diminishing returns of training the model for more

extended periods with the same learning rate. From 400 to 600 epochs, the model’s
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visual quality visibly deteriorates, suggesting an overfitting scenario where the model

no longer generalizes well to unseen data.

Figure 5.6: Model generations: baseline model trained with learning rate = 1𝑒−4
for 400

epochs. The row arrangement is similar to the previous figures.

This reinstates that a sufficient length of 400 epochs is a practical choice for this model

and dataset, balancing training time and the output quality. It becomes evident that

extending the training duration beyond this point does not bring additional benefits but

rather contributes to a degradation in model performance.

To investigate this further, a model with similar configurations was trained for a more

extended period - totaling 1200 epochs. Interestingly enough, the FID score continued

to improve (decline). However, observing ongoing image generations during training

showcased profound mode-collapse, where one object often translated into another. As

one can observe, by looking at the three samples (A), (B), and (C) in Figure 5.8, the model

confuses objects and generates incorrect representation. Looking at case (A) with a kayak

as input, the model generates a mix of a kayak and the same infrared style as commonly

seen for the wooden boat. For case (B), the model generates something more similar to

the white boat when the input is the research vessel, while for case (C), the speedboat is

translated into a representation much like a wooden boat instead.

While a learning rate of 1𝑒−4
was optimal in this context, it may not be the most

suitable for all models and datasets. The optimal learning rate varies depending on the

dataset’s complexity and characteristics and the selected model’s architecture. Training

for prolonged periods did not result in any immediate improvements, which might

indicate that the model has reached its capacity to learn or effectively generalize from

this specific dataset. In the particular scenarios above, even with a lower learning rate

and increased training duration, the model seemed to have hit a performance plateau,

and further training even led to degradation in the form of mode collapse. Measures such
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Figure 5.7: Model generations: baseline model with trained with learning rate = 1𝑒−4
for

600 epochs.

Figure 5.8: Three randomly sampled generations outputs during the last training phase

for 1200 epochs. The model used the default configuration. Case (A) is given a kayak as

input, case (b) is given a vessel as input and case (C) is given the speed boat as input.

as early stopping are often implemented for deep learning models, typically monitoring

a particular metric. As neither the model’s loss metrics nor FID score does not correlate

sufficiently with image quality, this becomes a difficult challenge to solve.
. . . . . . . . . .
Moving
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original
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rate
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of
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. This decision is based on the experimental results indicating that this

rate provides optimal performance in terms of FID scores and the visual quality of the

generated images. For the sake of brevity, subsequent references to the ’baseline’ in this

context will refer to the model configuration with this adjusted learning rate.

5.3.2 Exploring Image Resolution

Using high-resolution images allows for potentially more detailed and precise trans-

lations but also demands substantial computational resources. Previous efforts in the

Specialization Project used full-size images that often contained a visual context without
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boats, kayaks, vessels, etc. As this thesis works with image crops of objects, investigat-

ing appropriate crop resolutions becomes an interesting topic, as the data exploration

revealed various sizes in both the electro-optical and infrared domains.

Figure 5.9 visually represents this exploration, highlighting the varying FIDs scores

resulting from the training. These scores strongly correlate with the image generations

presented in Figure 5.10, further emphasizing the potential impact of image resolution

on model performance.

Figure 5.9: Image generation with three different models, where each model uses image

at various resized resolutions from the dataset.

Interestingly, modifying the resolution of the images had a direct impact on the

models’ performance. Compared to the original size of 256 px, the 196 px and 128 px do

not yield additional performance. The current generator architecture in the CycleGAN

model, a ResNet[14]-based generator with 9 ResNet-blocks, is explicitly designed for

256x256 images. Hence, comparisons with lower resolution are not entirely fair, as one

could benefit from using fewer ResNet blocks when using lower-resolution images.

The thesis’s initial decision to use a resolution of 256x256 was driven by the desire

to maintain compatibility with industry standards. However, this resolution may not

be optimal for the specific characteristics of the dataset. For instance, working with

an average resolution of 200 px for RGB images and 100 px for IR images, as seen in

Tables 4.2 and 4.3, suggests that we could potentially benefit from conducting additional

experiments to strike a balance between the different domains.
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5.3.3 Exploring Model Architecture and Initialization

The upcoming section tests various model architectures and weight initialization strate-

gies to understand their influence on the generative model’s performance. Specifically,

the experiments investigate different generator architectures, such as ResNet and Unet

(briefly described in Section 2.2.2, and alternative activation functions and weight initial-

ization methods.
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Figure 5.10: The first (source) and last (reference) row presents six hand-picked RGB

images from the validation set used to evaluate the translation quality for each object

in their respective domain. The intermediate rows show baseline model generations

trained on (1) 256x256 images, (2) 196x196 images, and (3) 128x128 images sampled from

the final checkpoints.

Figure 5.11 illustrates the result of these experiments. While the models seem to

converge to similar scores, there are slight differences. Notably, the UnetGenerator,

denoted in orange, exhibits minor fluctuations in its early checkpoints.

From the generations, studying Figure 5.12, it seems evident that using the profound

ResNet-architecture in the generator appears to contribute to the best visual performance,

comparing (1), (2), (3), and (4). Comparing (1) ResNetGenerator and (2) UnetGenera-

tor, one can observe the following indications. By assessing class by class, the overall

impression of the ResNetGenerator seems to reign in performance. For instance, by ob-

serving column 1, the generation of the wooden boat for each architecture differs a lot.

The ResNetGenerator creates something similar to the reference infrared in realism and

overall positional structure, contributing to a decent translation. Compared with the Un-

etGenerator, the same class deviates from its original features and converges to features
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Figure 5.11: FID scores with varying generator architecture and weight-initialization

method. Blue indicates the baseline model, which uses the generator’s ResNet architec-

ture (default). The orange represents the Unet-architecture in the generator instead. The

green represents the baseline model but with LeakyReLU instead of ReLU (default). The

red represents the baseline model with Xaiming weight-initialization instead of Xavier

(default).

more similar to the ferry than the wooden boat itself. Only the positional structure of the

wooden boat seems to be in place.
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Figure 5.12: Image generations with varying generator architecture and weight initial-

ization method. Like previous image class generations, the top row consists of the source

RGB image, while the last row is the reference infrared image. Rows in between are the

best and final checkpoint (epoch 400) from each experiment;

(1): ResNetGenerator with ReLU and Xavier (Baseline)

(2): UnetGenerator with ReLU and Xavier

(3): ResNetGenerator with LeakyReLU and Xavier

(4): ResNetGenerator with ReLU and Kaiming

Continuing with the ResNetGenerator for both weight initialization experiments, the

baseline configuration continues to reign on top, similar to previous results. When using

the ResNet architecture in the generator, its common practice to use ReLU as the nonlinear

activation function. Since ReLU activations are predominantly used, using Kaiming (He)

[15] initialization is recommended for weight initialization by default. However, it is
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essential to note that in the conducted experiments, the Kaiming initialization with ReLU

activations is similar to the default Xavier initialization regarding visual performance.

It generates realistic vessels and speed boats but fails to translate the wooden boat and

ferry, as the necessary heat signatures of the person are gone, and the logo on the ferry

is still intact.

From the analysis presented above, several key findings emerge: the ResNet generator

consistently outperforms the Unet-generator, and the default settings employing ReLU as

the activation function remain superior. Both weight initialization methods demonstrate

similar performance, producing satisfactory visual results. These findings underscore

that, at least for this specific dataset and task, the default settings are typically the most

effective choice. Additionally, the results show that even when the default Xavier initial-

ization is selected, the Kaiming initialization coupled with ReLU activations performs

comparably well. However, it’s crucial to emphasize that these results are specific to the

current dataset and might lack generalizability to other datasets or tasks. Further ex-

perimentation is necessary to pinpoint the optimal architecture and weight initialization

method for varying scenarios. According to the authors of the CycleGAN paper, they

have also observed the best results using the ResNet architecture.

5.3.4 Data Augmentation techniques

The scale varies considerably due to the significant discrepancy in image resolution

across domains within the dataset. As discussed in Section 3.2.1, the scale difference

approximates around 100 pixels. When resizing all images to a uniform resolution,

256x256 pixels, in this case, each domain encapsulates two distinct sets of resolution -

one higher and one lower.

Resizing images to a uniform resolution inevitably affects image quality. For higher-

resolution images, downsizing to 256x256 pixels may lead to a loss of detail and po-

tentially introduce artifacts. Conversely, resizing to 256x256 pixels for lower-resolution

images may cause pixelation and a general loss of clarity due to upscaling.

This experiment adds Gaussian noise to the RGB images to emulate the degraded

quality often seen in infrared images. This was an attempt to bridge the gap between

the two different resolution types in the dataset. The impact of this data augmentation

technique on the FID scores is shown in Figure 5.13.

As one can see in the figure, the RGB added noise is controlled by parameters used

in the first noise experiment with mean �1 = 0 and standard deviations 𝜎1 = 1 and in

the second with mean �2 = 0 and standard deviations 𝜎2 = 10. Immediate observation

suggests that increasing the standard deviation of the noise makes it more challenging

to learn while using a more conservative value of 1 seems to be competitive with the

baseline model. To test whether this correlates to image quality, one can compare with

the generations in Figure 5.14.

Comparing the baseline (1 - no noise) with the added noise models (2) and (3), one

can see that; generally, the baseline model generates fewer failure cases. Comparing
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Figure 5.13: Effect of adding data-augmentation to RGB images. The comparison shows

the baseline (blue) with no noise, baseline with noise �1 = 0 and 𝜎1 = 1 (orange), and

baseline with noise �2 = 0 and 𝜎2 = 10 (green).

Figure 5.14: Image comparison of baseline model generations with varying RGB noise.

Specifically, the comparison shows (1) no noise, (2) added noise with �1 = 0, and 𝜎1 = 1,

and (3) added noise with �2 = 0 and 𝜎2 = 10.
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the vessels (column 3), one can see that model (3) captures more realistic features than

(1) and (2) but does not preserve the heat signature around the bridge, resulting in an

overall inconsistent image translation. The model (3) also outputs the most realistic speed

boats (column 4), where the shape, size, and relative position seem correctly placed with

relatively correct heat signatures.

5.3.5 Exploring reduced Color Channels

To investigate the impact of color information in the electro-optical images, this subsection

explores the idea of reducing from 3-channel (RGB) to 1-channel (grayscale) images. By

converting the images to grayscale, the model relies solely on the intensity values rather

than color in both the source (input) and target (output) domains. Observing the FID

score results in Figure 5.15 between the baseline and the grayscale model, they both

output similar results.

Figure 5.15: Effect of using purely grayscale images. Specifically, the input channels are

changed from 3 to 1.

Comparing the baseline (1) and grayscale (2) models, column by column, both models

generate decent results with a few failure cases. As ferries are the most frequent class

in the dataset, it is natural to expect such generations to be superior. Comparing (1)

and (2), the baseline model generates more or less something akin to the ferry, with a

minor loss of preservation at the ferry’s front. While for the grayscale model, it struggles

with capturing the general features of the ferry, resulting in an obscure output with

deficiencies such as incorrect heat signatures and infrared textures.
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Figure 5.16: Visual generations of the various class objects in the dataset, Specifically,

row 2 and 3 represents (1) the baseline model trained on 3-channel RGB input images,

and (2) a grayscale model, trained on 1-channel black and white input images.

5.3.6 Regularizing the Loss Objective

The following section investigates whether favoring a translation direction is beneficial.

Specifically, prioritizing translation direction in the cycle loss for the CycleGAN model. In

this case, the direction of the translation in the CycleGAN’s cycle loss is prioritized from

the RGB domain to the IR domain. Figure 5.17 shows the respective scores, where regu-

larizing the cycle loss results in worse initial scores while still converging to approximate

the same score, as the baseline, at the end of the training regardless.

Figure 5.17: Altering the weights of the cycle consistency loss (3.2) with �𝐴 = 15 for the

forward cycle loss and �𝐵 = 5 for the backward cycle loss.
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One reason for changing the weight values in the cycle consistency loss was to priori-

tize the translation from the RGB domain to the IR domain by assigning a higher weight

to the forward cycle loss (�𝐴) compared to the backward cycle loss (�𝐵). The primary

focus of the study is to achieve high-quality translations from RGB to the IR domain,

and the weight adjustments reflect this objective. Giving a higher weight means that the

model is penalized more for errors in translating from the RGB domain to the IR domain

than vice versa. The higher weight on �𝐴 encourages the model to pay more attention to

producing accurate translations in the forward direction (RGB to Infrared).

Interestingly enough, regularizing the cycle loss generates similar images as the

grayscale model in Figure 5.18. Notably, one can observe the same color intensity for the

wooden boat (column 1), slightly better textures for the vessel (column 3), and close to

identical representations of speed boats (column 4). This could be hints of stagnation, as

the multiple models seem to converge to similar features - indicating a lack of diversity

in the generated images, a potential sign of overfitting, or an indication that the models

are reaching a limit in their capacity to learn from the given dataset.

Figure 5.18: Image generations: comparing two models, (1) the baseline model and (2)

the cycle-loss regularized model, by visualizing six unique object generations.

Furthermore, one can observe by comparing the baseline (1) model with the regu-

larized model (2) that some classes are generated better than others. For example, (1)

produces more realistic wooden boats and ferries, while (2) produces more realistic ships

and speed boats. One might instinctively assume that the quality of generated images for
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each class would be proportional to the number of training images for that class in the

dataset. This is, of course, a simplification, as the complexity of the various scenes varies

greatly. For instance, the kayak is one of the least represented classes but arguably is in

the most contrasted scene with little-to-none other objects surrounding it. Comparably,

the ferry, one of the more frequent objects, is, by observation, a more complex object

with more unnatural features, such as illuminating lights and see-through walls. Hence,

due to its complexity combined with various other background elements such as poles,

high-voltage lines, and bridges, it naturally becomes harder to translate.

5.3.7 Final Model

Based on the various experiments and analyses presented previously in the results,

the most effective model for image-to-image translation using the given dataset is a

CycleGAN model with a ResNet-based generator and the default configuration settings.

This includes a ReLU activation function, Xavier weight initialization, and an optimal

learning rate of 1𝑒−4
. With these settings, the model produces the best quality images and

competitive FID scores while achieving a balance between training time and translation

quality.

Using the selected final model, the following image generations can be visualized.

Moreover, as one can observe in Figure 5.19, there is a gradual improvement in the quality

of image translations as the model progresses through the training epochs.
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Figure 5.19: Illustration shows progressive image generations from the final model during

training. The first (SRC) and last (REF) rows present six hand-picked RGB images from

the validation set used to evaluate the translation quality for each object in their respective

domain. The intermediate rows show sampled model outputs.
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To expand on the evaluation of the final model, the visual scheme used earlier is

reused, as described in Section 3.4.2. To recall, the model is evaluated on the following

criteria: realism, consistency, detail preservation, sharpness, and artifacts. As previously

stated, this is a subjective process; thoroughly scrutinizing every aspect of the images is

quite challenging. Hence, a systematic review process is followed using an evaluation

scheme. The final epoch (400) is used as the primary observations, with secondary

observations being anything between 0 and 400. A time-lapse video of all sampled

images during training can be found in Appendix E.

Observing the output progress makes it apparent that some generations look plausi-

ble. At first glance, the wooden boat (1), the speedboat (4), the white boat (5), and the

ferry (6) look like something that could represent an infrared object. A more detailed

look indicates that the wooden and white boats might look the most realistic out of the

four, with similar heat signatures as the reference image. Poor heat signatures can be

seen for the kayak (2) and the vessel (3), as the overall translation could be more precise

towards the later stages of training. Comparing initial samples with later samples, the

model learned to invert colors, then transformed them into more plausible grayscale-

looking images. For instance, at epoch 25, the white boat is translated to black - then

progressively altered into nuanced grayscale, similar to the true image.

The physical positioning of the objects is preserved, as the outline of each object

matches the input images respectively. The field of view and distance seems also pre-

served, as one can notice with the kayak (2). Comparing the source image with the

reference image, the kayak looks more zoomed in. It contains less background informa-

tion than the reference, which is also the case for the generated image. This becomes

evident as one can see the size difference between the row at epoch 400 and the reference

row.

Immediately, by observing the wooden boat (4), one can see that the surface details

in the image are pretty aligned with the reference image. Specifically, the infrared style

is well-captured, leading to a believable translation and overall impression. Looking

at the ferry (6), one can notice that the model struggles a lot in the early stages since it

fluctuates between various heat signatures and details but learns the important ones over

time, resulting in a more or less decent infrared ferry, when not considering the outline

contour of the ferry.

Regarding sharpness, almost all object edges and textures seem plausible and radiate

the same level of blurriness/sharpness as the true infrared. Ignoring the failed heat

signatures for the kayak (2) and the vessel (3), the rest looks close to the reference.

Slight inconsistent textures or ghosting effects for the kayak (2) and the vessel (3)

result in an unnatural translation. Looking at previous epochs, one can notice that from

epochs 100 to 125, a sudden irregular heat signature is generated and causes anomalies

in later generations to appear. For the other classes, the widespread presence of artifacts

is not significant.

In short, by summarizing the evaluation of the visual performance in Table 5.6, the



76 CHAPTER 5. RESULTS AND DISCUSSION

model is a given a score of 3.75.

Criteria Weight Score Weighted Scored
Realism 0.25 3 1.00

Consistency 0.20 5 0.80

Detail Preservation 0.20 3 0.60

Sharpness 0.20 4 0.80

Artifacts 0.15 4 0.30

Sum 3.75

Table 5.6: Final Evaluation Scheme: CycleGAN

Onwards, one can observe minor improvements overall by comparing tuning results

with baseline results. By looking at Figure 5.20, one can see that both CycleGAN (blue)

and CycleGAN* (purple) perform well, with CycleGAN* taking the overall lead in terms

of FID score and visual evaluated score, at 135 and 3.75 respectively.

Figure 5.20: Visualizing final vs. baseline models by visual evaluation score and FID.

The top-left section indicates higher performance, lower-right section indicates lower

performance. Note the limit for FID is set to an arbitrarily large limit, while the evaluation

score follows the Likert scale.

5.4 Discussion

From the research conducted in this study, key findings emerge.
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The CycleGAN model and the various explorations from the parameter tuning formed

a significant part of this study. The experiments aimed to tune the CycleGAN model

yielded discoveries on multiple fronts. First, it was shown that adjusting learning rates

impacted image translation performance, with a learning rate of 1𝑒−4
seen to be the most

effective choice. Second, the findings on various model architectures at least indicate that

the ResNet generator outperforms the Unet generator. Continuing with default settings,

such as ReLU activation and Xavier weight initialization, generally provided the best

results.

A further interesting finding is that changing the image resolution did not necessarily

improve performance, leading to a decision to maintain the original 256x256 resolution.

Additionally, the results demonstrated that regularizing the forward and backward cycle

loss in CycleGAN’s objective did not yield significant improvements in image-to-image

translation quality as initially hypothesized. Nor did the measure of incorporating data

augmentation techniques and different weight initialization methods.

The results indicate that using a modified CycleGAN model with a ResNet-based gen-

erator, ReLU activation, Xavier weight initialization, and a learning rate of 1𝑒−4
balances

training time and performance. These modifications deliver better image quality in most

objects studied within the presented dataset, achieving a final visual evaluation score of

3.75. However, it is essential to recognize the training limitations of the work presented,

such as the lack of concrete methods, such as early stopping to guide the training process,

which may be beneficial to avoid overfitting or model degradation.

In comparison to prior studies, such as the Specialization Report [38] reporting an

evaluation FID score of 195 using the same model architecture, the decision to use smaller

image crops as opposed to full-resolution images significantly improved the overall visual

quality and led to a final FID score of 135. However, the dataset itself might still present

learning limitations due to the misalignment and disparity in representations between

the electro-optical and infrared camera outputs, which reflect different perspectives of

the same underlying scene. These differences between the two domains are critical

issues preventing the accomplishment of better scores. Furthermore, the dataset lacks

sufficient diversity (e.g., objects with various backgrounds) and representatives (e.g.,

multiple wooden boats), leading to overfitting and generalization issues.

Accounting for the dataset’s underlying challenges, the minor improvements achieved

by the final model are valuable. This demonstrates that additional tuning and exper-

imentation allow the model to learn meaningful features and patterns in the dataset,

despite the constraints. However, one should note that the improvements are limited,

and the model might have reached its maximum potential, given the data available.

The complexity and variability of the image data, coupled with the limited dataset

size of 2840 images per domain, may impose constraints on the model’s learning capa-

bilities. Despite careful parameter tuning, the model could face difficulties detecting

subtle patterns, differentiating between subtle differences, and generalizing to unseen

data. These limitations, made worse by potential imbalances in the dataset, could hinder

significant improvements in the model’s performance.
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The method of assessing performance via evaluation schemes and metrics might only

be partially appropriate as they could fail to encapsulate the many subtleties tied to the

visual quality and various aspects of the translated images. This might lead to less than

optimal tuning of the model’s parameters. While our previous decision to utilize the

FID metric enables comparison with standards set by the community and the industry,

there may be more suitable choices for this dataset. Listed as a disadvantage, in Section

2.2.3, the metric has a bias since it requires typically big sample sizes to estimate the

value reasonably. The pretrained InceptionV3 model, which uses color images (RGB)

from ImageNet and FID relies on, is used during the validation stages on two sets of

grayscale images - the real and generated. In conjunction with the sample size, this

aspect is believed to introduce certain biases or limitations in the evaluation process.

Various tuning experiments of the model were tested, yet improvements over the

default configuration remained minimal. This could be attributed to the already well-

optimized CycleGANs model’s default parameters, as the paper authors have extensively

researched and optimized for a wide range of datasets. Therefore, the default settings

may already be close to the optimal values for this dataset.



6Conclusion
This thesis investigated the potential of unpaired image-to-image translation methods

applied to co-localized electro-optical (RGB) and infrared (IR) image domains in the

maritime scenery. The research objectives were accomplished through exploratory data

analysis and dataset creation, various model implementations, and evaluation and op-

timization of the top-performing models. Existing unpaired image translation methods

and techniques were thoroughly reviewed, leading to the selection of CycleGAN as the

most suitable model for this task.

Various models were implemented and evaluated using the quantitative Fréchet In-

ception Distance (FID) metric and a qualitative custom visual evaluation scheme. The

results from the baseline models, CycleGAN, CUT, GcGAN, and StarGAN-v2, indicated

that CycleGAN generated the best images based on visual quality for this particular

dataset. Based on the metrics implemented, the model reached a visual evaluation score

of 3.5 and an FID score of 143.

The results from the various tuning experiments showed a modified CycleGAN model

with a ResNet-based architecture in the generator with Xavier weight initialization, ReLU

as the non-linear activation, and a learning rate of 1𝑒−4
to be the best configuration. This

modified model generated the most realistic infrared images, reaching a visual evaluation

score of 3.75/5 and an FID score of 135. These results indicate a direct improvement to

the Specialization Report, where an FID score of 195 was reached. Although the results

are promising, with realistic translation for frequent objects in the dataset, such as boats

and ferries, it performs worse on less frequent objects, such as kayaks and vessels.

Limitations such as object imbalance, the available amount of images, resolution, and

the field-of-view difference between the electro-optical and infrared camera outputs are

the dataset’s underlying challenges, believed to prohibit the improvement of creating

realistic infrared images.

In its current state, the model is not directly suitable for real-world practice due to

these limitations. However, the research conducted in this thesis provides a foundation

for further improvements and refinements to the unpaired image-to-image translation

methods. Addressing the limitations and enhancing the model’s performance could

become a valuable tool for incorporating infrared cameras into the milliAmpere 2’s

autonomy system, improving the vessel’s situational awareness during nighttime and in

poor weather conditions.

The research in the field of unpaired image-to-image translation has made significant

progress, mainly in the visual spectrum. There is still room for further exploration across

domains, such as from the visible to non-visible (infrared) spectrum. The experiments

presented in this thesis could have been further enhanced by exploring additional mod-

els, verifying the generalization capabilities of the proposed approach, or customizing

evaluation schemes to assess the model’s output thoroughly.

79
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6.1 Further Work

To advance in this field, several avenues for future research are proposed, listed in

prioritized order:

Improving the Dataset: Collecting a more diverse and representative dataset that

includes various types of boats and scene backgrounds could improve model learning.

Additionally, ensuring better alignment of images in terms of field of view, perspective,

and resolution could enhance the model’s translation capabilities.

Model Exploration: Exploring models with more parameters may provide further

improvements in translation quality beyond the capabilities of the current CycleGAN

model. Utilizing diffusion models, recently made popular [46][34], may be a valid

option when applicable code implementations become readily available.

Exploration of Alternative Evaluation methods: To better inform model tuning and

optimization efforts, alternative evaluation metrics that are more closely aligned with

the nuances of visual performance should be investigated. Appropriately aligning such

a metric with image quality would open the possibility for implementing early stopping

strategies, which helps reduce overfitting and model degradation during training.

Transfer Learning: Exploring transfer learning techniques to leverage pre-trained

models and knowledge from other domains, such as the automotive dataset, Teledyne

FLIR ADAS, from FLIR and exploring whether land-based traffic detection transfers

appropriately into the maritime environment. This can help reduce the required

training time and computational resources while potentially enhancing the system’s

overall performance.

Automated Model Optimization: Implementing automated hyperparameter

optimization techniques, such as grid or random search, could lead to a more

systematic discovery of optimal model parameters and improved model performance.
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Appendices

A Training Scripts

Various training scripts used for training each baseline model.

CycleGAN

1 python train.py \

2 --dataroot /home/andreoi/data/autoferry \

3 --name autoferry_cyc \

4 --model cycle_gan \

5 --input_nc 3 \

6 --output_nc 1 \

7 --batch_size 8 \

8 --phase train \

9 --save_by_iter \

10 --lambda_identity 0.0 \

11 --preprocess resize \

12 --load_size 256

Original implementation: https://github.com/taesungp/contrastive-unpaired-translation
Thesis implementation: https://github.com/andreasoie/cutslim

CUT

1 python train.py \

2 --dataroot /home/andreoi/data/autoferry \

3 --name autoferry \

4 --model cut \

5 --input_nc 3 \

6 --output_nc 3 \

7 --batch_size 8 \

8 --phase train \

9 --save_by_iter \

10 --preprocess resize \

11 --load_size 256

Original implementation: https://github.com/taesungp/contrastive-unpaired-translation
Thesis implementation: https://github.com/andreasoie/cut
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GcGAN

1 python train.py

2 --dataroot /home/andreoi/data/autoferry \

3 --name rgb2ir \

4 --phase train \

5 --model gc_gan_cross \

6 --pool_size 50 \

7 --no_dropout \

8 --loadSize 256 \

9 --which_model_netG resnet_6blocks \

10 --which_direction AtoB \

11 --dataset_mode unaligned \

12 --resize_or_crop resize \

13 --batchSize 8 \

14 --nThreads 4 \

15 --input_nc 3 \

16 --output_nc 3 \

17 --identity 0.3 \

18 --geometry rot \

19 --niter 200 \

20 --niter_decay 200

Original implementation: https://github.com/hufu6371/gcgan
Thesis implementation: https://github.com/andreasoie/gcgan

StarGAN-v2

1 python main.py \

2 --mode train \

3 --num_domains 2 \

4 --w_hpf 0 \

5 --lambda_reg 1 \

6 --lambda_sty 1 \

7 --lambda_ds 1 \

8 --lambda_cyc 1 \

9 --train_img_dir data/autoferry/train \

10 --val_img_dir data/autoferry/val \

11 --total_iters 71000

Original implementation: https://github.com/clovaai/stargan-v2
Thesis implementation: https://github.com/andreasoie/starganv2
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B Network Capacities for the Baseline models

CycleGAN

netG_A netG_B netD_A netD_B
11.37M 11.37M 2.76M 2.77M

Table B.0.1: The number of parameters for the CycleGAN networks

CUT

netG netF netD
11.38M 0.56M 2.77M

Table B.0.2: The number of parameters for the CUT networks

GcGAN

netG_AB netG_gc_AB netD_B netD_gc_B
7.84M 7.84M 2.76M 2.76M

Table B.0.3: The number of parameters for the GcGAN networks

StarGAN-v2

netG netM SE netD
33.89M 2.44M 20.92M 20.85M

Table B.0.4: The number of parameters for the StarGAN-v2 networks
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C Code Snippets

Calculating Misalignment

1 import numpy as np

2

3 def get_bbox_info(bbox):

4 xmin, ymin, xmax, ymax = bbox

5 width = xmax - xmin

6 height = ymax - ymin

7 center_x = xmin + width / 2

8 center_y = ymin + height / 2

9 angle = np.arctan2(height, width)

10

11 return center_x, center_y, width, height, angle

12

13 def compare_bboxes(bbox1, bbox2):

14 center_x1, center_y1, width1, height1, angle1 = get_bbox_info(bbox1)

15 center_x2, center_y2, width2, height2, angle2 = get_bbox_info(bbox2)

16

17 position_deviation = np.sqrt((center_x2 - center_x1)**2 + (center_y2 - center_y1)**2)

18 scale_deviation = np.sqrt((width2 - width1)**2 + (height2 - height1)**2)

19 rotation_deviation = np.abs(angle2 - angle1)

20

21 return position_deviation, scale_deviation, rotation_deviation

Baseline Configuration

1 baseline_config = {

2 'batch_size': 8,

3 'batch_size_fid': 9,

4 'beta1': 0.5,

5 'beta2': 0.999,

6 'checkpoints_dir': 'checkpoints',

7 'continue_train': False,

8 'crop_size': 256,

9 'dataroot': '/home/andreoi/data/autoferry',

10 'dataset_mode': 'unaligned',

11 'direction': 'AtoB',

12 'epoch': 0,

13 'epoch_count': 1,

14 'freq_display': 400,

15 'freq_log': 100,

16 'freq_save_epoch': 25,
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17 'gan_mode': 'lsgan',

18 'gpu_ids': [0],

19 'init_gain': 0.02,

20 'init_type': 'xavier',

21 'input_nc': 3,

22 'isTrain': True,

23 'lambda_A': 10,

24 'lambda_B': 10,

25 'lambda_identity': 0,

26 'load_size': 256,

27 'lr': 0.0002,

28 'lr_decay_iters': 50,

29 'lr_policy': 'linear',

30 'max_dataset_size': inf,

31 'model': 'cycle_gan',

32 'n_epochs': 200,

33 'n_epochs_decay': 200,

34 'n_layers_D': 3,

35 'name': 'autoferry_cycle_gan',

36 'ndf': 64,

37 'netD': 'basic',

38 'netG': 'resnet_9blocks',

39 'ngf': 64,

40 'no_antialias': False,

41 'no_antialias_up': False,

42 'no_dropout': True,

43 'no_flip': False,

44 'normD': 'instance',

45 'normG': 'instance',

46 'num_threads': 4,

47 'outdir': 'outputs',

48 'output_nc': 1,

49 'phase': 'train',

50 'pool_size': 50,

51 'preprocess': 'resize',

52 'pretrained_name': None,

53 'random_scale_max': 3,

54 'save_by_iter': False,

55 'serial_batches': False,

56 'shuffle': True,

57 'stylegan2_G_num_downsampling': 1,

58 'suffix': '',

59 'verbose': False,

60 'wandb': True

61 }
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D Web Application: Annotating Images

Created a web appliation for manually classifying images

The application can be found in https://github.com/andreasoie/imagelabeler.

It contains both the UI and the API required to run the image-labeling application.

Figure .1: The user-interface of the image-labeling application. Image shows the rescaled

image-crop from the dataset with several labels to chose between.

https://github.com/andreasoie/imagelabeler
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E Example Video

Time-lapse of generated class-objected using the Final Model

The video shows various generated infrared image outputs during training. The images

were sampled every 400 iteration (as stated in the Baseline Configuration from Appendix

C).

Video: https://www.youtube.com/watch?v=pmbXAHC8r3o

https://www.youtube.com/watch?v=pmbXAHC8r3o
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