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Abstract

Over the last few years, there has been an evolution in technology that has caused
a demand for increasing abilities to navigate in various environments. The well-
known, and widely used, Global Navigation Satellite Systems (GNSS) provide ad-
equate navigation accuracy, but they are limited to navigation outdoors and with
meter-level accuracy. New methods that can provide robust navigation with a sub-
meter level accuracy indoors and outdoors are advantageous to explore.

This thesis explores the possibilities of utilizing various Bluetooth Low Energy
(BLE) sensors for navigation. BLE has two ways of positioning: Direction Find-
ing or beacons for distancing. The thesis demonstrates how Bluetooth sensors can
be used to provide viable navigation solutions when GNSS are not available by
simulating two scenarios: one situated outdoors and the other indoors. The out-
door scenario considers an Unmanned Aerial Vehicle (UAV) that needs navigation
when flying toward a landing net. The navigation is performed by estimating the
UAV’s state with an Extended Kalman Filter (EKF), then the achievable precision
is evaluated using the Cramér-Rao Lower Bound (CRLB) method. The other scen-
ario mimics an autonomous warehouse scenario, requiring constant monitoring
of moving robots. To classify the obtained coverage by the Bluetooth sensors, a
maximum likelihood estimator is used to evaluate how well every point in the
warehouse is covered. The CRLB is also applied in this case to assess the method.

Throughout the thesis, a more thorough understanding of how Bluetooth devices
can be used for navigational purposes is provided, with a special focus on the op-
timization of sensor positions for ideal geometry to limit the number of sensors
needed. Bluetooth devices are easy to deploy and low-cost. However, BLE commu-
nicates with radio frequency (RF) signals which makes them prone to errors and
noises. However, the results provided in this thesis demonstrated how it is possible
to obtain accurate navigation while remaining a low-cost system. The conclusion
is that it is possible to implement a navigation system with Bluetooth devices with
respect to the wanted use case. The necessary accuracy can be achieved if one is
willing to invest in equipment.
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Sammendrag

I løpet av de siste årene har det vært en utvikling innen teknologi som har forår-
saket et behov for økende evne til å navigere i ulike miljøer. De velkjente og
velbrukte Global Navigation Satellite Systems (GNSS) gir tilstrekkelig navigas-
jonsnøyaktighet i mange tilfeller, men de er begrenset til navigasjon utendørs og
med nøyaktighet på meternivå. Nye metoder som har mulighet til å gi robust nav-
igasjon med en nøyaktighet på under en meter, både innendørs og utendørs, er
gunstig å utforske.

Denne oppgaven utforsker mulighetene for å bruke ulike Bluetooth-sensorer
for navigasjon. Bluetooth Low Energy (BLE) har to måter oppnå posisjonsinformas-
jon på, enten ved å finne retningen (Direction Finding) eller distansen (beacon
range). Avhandlingen har som mål å demonstrere hvordan Bluetooth-sensorer kan
brukes til å gi robuste navigasjonsløsninger ved å utføre to analyser: ett utendørs
og det andre innendørs. Utendørsscenarioet tar for seg en Unmanned Aerial Vehicle
(UAV) som trenger navigering når den flyr mot et landingsnett. Navigasjonen ut-
føres ved å estimere UAV-ens tilstand med et Extended Kalman Filter (EKF), der-
etter evalueres den mulige nøyaktigheten ved å bruke Cramér-Rao Lower Bound
(CRLB) metoden. Det andre scenarioet forestiller et autonomt lager-scenario, som
krever konstant overvåking av roboter i bevegelse. For å klassifisere den oppnådde
dekningen av Bluetooth-sensorene, brukes en maksimal sannsynlighetsestimator
for å evaluere hvor godt hvert punkt på lageret er dekket av sensorer. CRLB brukes
også i dette tilfellet for å vurdere nøyaktigheten av metoden.

Målet med oppgaven er å gi en mer grundig forståelse av hvordan Bluetooth-
enheter kan utnyttes til navigering. Fokuset er på å optimalisere sensorposisjonene
for ideell geometri for å begrense antall sensorer som trengs. Bluetooth-enheter
er enkle å bruke og rimelige, men kommunikasjonsmetoden er ved bruk av radi-
ofrekvenssignaler (RF) som gjør dem utsatt for diverse feil og støy. Resultatene
i denne oppgaven demonstrerte imidlertid hvordan det er mulig å oppnå nøyak-
tig navigasjon samtidig som det forblir et lavkostsystem. Konklusjonen er at det
er mulig å implementere et navigasjonssystem med Bluetooth-enheter med hen-
syn til ønsket bruk. Nødvendig nøyaktighet kan oppnås dersom man er villig til å
investere i utstyr.
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Chapter 1

Introduction

The evaluation of technology and trends over the past decades has led to an in-
creasing desire to improve the ability to navigate in various environments. Nav-
igation capability has become standard practice, and many applications require
a sub-meter level of accuracy [1]. Global Navigation Satellite Systems (GNSS)
are the leading outdoor navigation and localization standard today. With GNSS,
a user can obtain globally precise positioning, navigation, and timing (PNT) at
a low cost [2]. However, GNSS suffer from disadvantages caused by its nature -
using satellite systems. The low signal power causes GNSS to be highly sensitive
to intentional jamming and spoofing, resulting in a big issue for safety-critical sys-
tems. In addition, the receivers need to be in a line-of-sight to the satellites, which
limits the ability for indoor navigation [3]. The drawbacks of GNSS motivate the
need for other navigation techniques which can provide adequate navigation in
scenarios where there are limitations with GNSS.

Radio frequency (RF) technology can be applied as an alternative approach
to GNSS for navigation and localization. There are many RF technologies already
explored, such as Phased-Array Radio System (PARS) [2], Radio Frequency Iden-
tification (RFID) [4], Wi-Fi [5], and Ultra-Wideband (UWB) [6]. Recently, there
has been a growing interest in using Bluetooth as a location technology. Bluetooth
utilizes a standardized technology that operates on the open radio spectrum and
has so far been the most successful wireless technology [7]. Bluetooth is easy
to deploy at low-cost, making it an attractive technology to explore and utilize
further. It has been shown that both Wi-Fi and UWB technologies provide more
accurate positioning than Bluetooth, but they are more expensive and have tech-
nical limitations [5]. Previous experiments with Bluetooth RF signals have focused
on using Bluetooth Low Energy (BLE) beacons and calculation of the Radio Sig-
nal Strength Indicator (RSSI) for ranging solutions [8–11]. A more recent method
based on phased-based ranging has also been tested for indoor localization [12].
Location information is acquired by employing a trilateration algorithm, requir-
ing multiple ranges available. There are many shortcomings when using RSSI.
The main limitation is propagation effects, making it difficult to obtain accurate
location information [8].

1
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The Bluetooth Special Interest Group (SIG) is constantly working on improv-
ing Bluetooth technology. In 2019 a new Bluetooth version was released; core
specification 5.1. This version introduced a new feature called Direction Finding,
enabling the use of Bluetooth devices for high-accuracy localization [13]. Multiple
tests have been performed on utilizing Direction Finding for short-range indoor
localization [14–16], resulting in sub-meter levels of accuracy. While most of the
previous tests have been indoors, [17] and [18] also performed experiments with
Bluetooth Direction Finding for outdoor navigation where longer ranges were
proven feasible. Indoor localization has proven to be more error-prone than out-
door, as a result of signals being easier reflected and obstructed in closed envir-
onments.

It is necessary to perform additional testing of Bluetooth for navigational pur-
poses. Previous experiments have confirmed that it is possible to obtain accurate
localization information, but it is still not acknowledged as a robust navigation sys-
tem. Bluetooth navigation is limited by a relatively short feasible range, bounding
the operational area. With the high-accuracy Direction Finding feature, Bluetooth
still suffers from RF disadvantages, such as reflection errors like multipath and
blockage of the signal [17]. Hence, systems relying solely on Bluetooth naviga-
tion might not be sufficiently robust. The fusion of multiple Bluetooth sensors has
the potential to generate a complete 3D position; however, it may be necessary to
integrate additional metrics to ensure robust accuracy for navigation [19].

1.1 Main Contributions

The purpose of this thesis is to provide additional analysis of cases where using
Bluetooth for navigation can be advantageous. A greater understanding of its po-
tential use cases is achieved by demonstrating two different scenarios where the
use of Bluetooth provides sufficient accuracy for navigation. Both traditional BLE
beacons for range measurements and newer Bluetooth Direction Finding devices
will be used. The simulation study investigates how sensor placement and the
number of available sensors affect the accuracy of the systems. The systems can
be optimized to achieve the best possible accuracy by leveraging knowledge about
the uncertainties in Bluetooth measurements. This optimization is achieved by ex-
ploring the Cramér-Rao Lower Bound (CRLB) of the variances for the various cases
[20]. The variances enable a determination of whether Bluetooth can be used for
navigation while maintaining adequate precision.

The approach is to provide two distinct scenarios that require different func-
tionality from the navigation system. One scenario is placed indoors where mul-
tiple Bluetooth sensors are needed to provide sufficient coverage in a warehouse.
This case provides knowledge of how Bluetooth sensors can be used for indoor
industrial navigation systems where good accuracy is critical. The other scenario
is with an Unmanned Aerial Vehicle (UAV) flying outdoors. This requires sufficient
navigation accuracy to properly land. There are sensors placed in the landing area,
and some additional sensors are placed nearby to support the measurements. In
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the UAV case, the noises present in the Bluetooth measurements are handled using
the Extended Kalman Filter (EKF) as an estimator. A maximum likelihood estim-
ator is utilized for the indoor positioning scenario. The goal for both scenarios
is to optimize the sensor placements such that the CRLB is below a threshold to
provide robust navigation and localization.

1.2 Organization

First, the theoretical foundation is described in Chapter 2, including limitations of
GNSS and how Bluetooth can be used for navigation. Thereafter, relevant theory
of EKF and CRLB calculations is included. Chapter 3 covers how the two scenarios
will be simulated, and Chapter 4 provides the different mathematical models of
the systems and how the estimation and optimization are performed. The obtained
results are presented in Chapter 5 and then discussed in Chapter 6. The discussion
evaluates the obtained results and possible limitations of the implemented meth-
ods. Lastly, Chapter 7 contains a conclusion of how using Bluetooth to navigate
these cases works, including thoughts about further work.



Chapter 2

Background Material

2.1 Bluetooth

Bluetooth is said to be the most successful wireless technology in history [7]. It is
wildly used today in everyday life. The technology has for a long time been the
leader in audio space but is now experiencing increased usage for
non-communication purposes. There are several benefits with Bluetooth: such as
low-cost, low energy consumption, independent of networks, easy to deploy, open
radio spectrum, and more. With these benefits and the broad use of Bluetooth,
extending the Bluetooth functionality is a popular topic of research [19].

Bluetooth is a wireless communication technology that communicates using
low-power radio waves. BLE is a subset of the Bluetooth protocol. It is designed
for low power consumption and machine-to-machine communication. Bluetooth
uses signals with frequencies between 2.40-2.41GHz. BLE divides the band into
40 channels, each with 2GHz width. The messages either contain data or advert-
isement. Advertisement messages are needed to enable communication and are
therefore the chosen message type for positioning [21].

2.1.1 Limitations in Other Navigation Techniques

One of the most known navigation techniques is GNSS. A well-known system like
this is the Global Positioning System (GPS). GNSS are available worldwide and
can be used for navigation on land, sea, and in the air. Both civilians and high-level
security services as the military are using GNSS navigation. It includes an end user
which is equipped with low-cost, lightweight receivers that measure the GNSS
data signals transmitted from various satellites. From these signals, the end user
can derive information about its location with high accuracy. Stand-alone GNSS
are typically able to provide user positioning with an accuracy of approximately
4m [22].

Due to its attractive features, GNSS are the primary positioning solution when
working with UAVs [23]. However, there are issues with this navigation tech-
nique. One of the issues is to accurately determine the position of the satellite at

4
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a given time. When calculating the end user’s position, the system needs informa-
tion about when the signal was transmitted and when it was received. This makes
the results dependent on two clocks, one on the satellite and one on the receiver.
As a result, there will be a clock bias in the range measurements. Therefore, the
derived results are only pseudo-ranges [24]. Other errors in the pseudo-ranges are
orbital errors, measurement noises, and different delay factors. There are meth-
ods for reducing these errors following the issue with GNSS, however, there will
still be some localization errors present.

Other issues that can disturb the navigation with GNSS are caused by radio
frequency interference (RFI). Due to GNSS’s low signal-to-noise ratio (SNR), the
systems are prone to both intentional and unintentional interference. Intentional
interference such as jamming and spoofing makes the GNSS services vulnerable
to malicious attacks that are designed to mislead the navigation. This type of in-
terference may be critical for the navigation of a system. One way of trying to
reduce these errors is to use extra navigation systems to support the GNSS [23].
Another vulnerability of the systems is that the GNSS signals are very weak when
they reach the Earth’s surface. This makes the signals prone to disturbance and
blockage. Furthermore, it is not possible to use in tunnels or inside buildings as
they cannot pierce through concrete [22]. Therefore, it is necessary to have other
reliable navigation systems for these use cases.

Since GNSS are not usable for indoor positioning and localization, other meth-
ods must be applied. Indoor positioning has been a research topic for over two dec-
ades, where most of the focus has been on using Wi-Fi and RFID [25]. However,
compared to the accuracy provided by GPS, these indoor position techniques do
not provide a robust implementation in the consumer market. Using Wi-Fi for pos-
itioning can be beneficial as it is a widespread technology [26]. It can be provided
through already existing infrastructure, but the access points (APs) are primar-
ily designed for communication and not positioning. The APs may be owned by
organizations that have the ability to modify or deactivate them, which creates
greater unpredictability. Moreover, deploying a large number of APs for position-
ing purposes leads to significant expenses [21]. RFID systems can be active or
passive and consist of three components; the reader, the antenna, and the tag.
The positioning is based on using RSSI, Angle-of-Arrival (AoA), fingerprint, and
more. It has the advantages of being lightweight, low-cost, and suited for asset
tracking by using RFID tags. However, it requires additional infrastructure and is
difficult to deploy for indoor positioning [25]. BLE has a relatively new position-
ing technology. It is of growing interest in studying BLE for indoor positioning
methods due to its potential and advantages.

2.1.2 Bluetooth Direction Finding

In 2019, the Bluetooth Special Interest Group (SIG) presented Bluetooth Core
Specification v5.1 [13]. This version introduced a new direction finding feature
that made it possible for Bluetooth devices to determine the direction of a trans-
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Figure 2.1: The left figure illustrates AoA where the antenna array is the receiver.
The right figure illustrates AoD where the antenna array is the transmitter.

mitted Bluetooth signal with high accuracy. The BLE controller has been enhanced
so that it contains specialized hardware with an antenna array. The array can be
used in the calculation of the receiving signal’s direction.

Bluetooth Direction Finding offers two different methods for positioning which
use the same underlying basis, but the preferred method differs based on the situ-
ation. The methods are Angle-of-Arrival (AoA) and Angle-of-Departure (AoD). In
both cases, the direction finding signals are transmitted by one device and then
received by another device which uses the signal to calculate its direction [27].

In AoA, there is one moving tag which is the transmitter. A base station with
multiple receivers is placed in an antenna array. The receiving part then calcu-
lates the direction from which the signal comes. AoA can be a preferred method
in scenarios where there is one moving device and multiple receivers that want to
measure the direction simultaneously. However, if there is more than one trans-
mitting device, there may be issues with colliding signals. This results in erroneous
signals reaching the antennas, hence calculating the wrong directions. In this case,
AoD is the preferred method. In the AoD case, the antenna array is the transmitter,
while the moving devices are the receivers. It is the moving device’s job to calcu-
late where the antenna is placed, and determine its position from this information
[17]. The difference between AoA and AoD is shown in Figure 2.1.

The data used when calculating the direction is based on some of the fun-
damental properties of radio signals. The frequency of a radio signal varies de-
pending on which channel the BLE device uses. The wavelength of a signal is
depending on the frequency. Wavelength is a measure of the distance between
the start and end of one wave cycle and is an important factor when calculating
the signal’s direction. Another value that explains a radio signal is its phase. The
phase is measured as an angle from 0 degrees at the start of the wave cycle, in-
creasing throughout the cycle, until it reaches 360 degrees at the end. The phase
is measured as the angle of the signal as it passes through an antenna.

When a Bluetooth signal passes over an antenna, the phase at that moment is
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Figure 2.2: Calculation of Angle-of-Arrival, close up of two antennas receiving a
signal. Figure taken from [28].

measured. If another antenna is placed in the same area as the first one, but at a
slightly different distance from the transmitting device, the antenna will be able to
measure the same Bluetooth signal. However, when measuring both phases at the
exact same time, the measured phases in the two antennas are slightly different
due to the different travel distances of the signal. With a known frequency of the
signal, i.e., known wavelength, and known distance between the two antennas,
it is possible to calculate the direction of the transmitted signal. A figure of the
explained principle is shown in Figure 2.2. The angle of arrival θ can be calculated
as

θ = arccos
�

ψλ

2πd

�

, (2.1)

where λ is the wavelength, the measured phase difference is ψ, and d is the
distance between the antennas [27].

The design that the antennas are placed in, as well as the number of antennas
used in an antenna array, can vary. This makes it possible to decide the complexity
of the calculations and which angles the array measures. Given a linear array
where all the antennas are placed in one line results in simple calculations of a
single angle. This is shown in the example Figure 2.2. A more complex design as
a rectangular array is able to calculate two angles, for example both azimuth and
elevation.

Bluetooth signals transmit information by using two frequencies that alternate
between representing binary 1 and 0. One frequency corresponds to a 1, while the
other corresponds to a 0. As the wavelength of a signal is dependent on its fre-
quency, the wavelength changes with the alternating frequencies. Accurate phase
measurements are crucial in the direction calculations, and these depend on hav-
ing a constant wavelength. To overcome this issue, a Constant Tone Extension
(CTE) is added to the end of the Bluetooth signals. The CTE consists of a series of
symbols each representing binary 1. When a series of binary 1s are sent, the fre-
quency and wavelength remain constant. This makes it possible for the antennas
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in the array to correctly measure the phases [27].
In the direction calculation process, all antennas in the array measure the same

Bluetooth signal. By utilizing the known distance between them and the emitted
signal’s wavelength, the direction can be calculated. However, the antennas do
not measure the signal simultaneously. Instead, a switching technique is used to
enable one antenna to measure at a time, thus keeping the hardware system at
a low-cost. As a result, phase measurements are taken sequentially. This requires
a more complex software system than if the measurements were taken simultan-
eously. The incoming signals are sampled by taking measurements at given inter-
vals. The sampling process In-Phase and Quadrature (IQ) measures the phase and
amplitude of signals in a logical sequence, allowing for the data to be compared
and processed by each antenna. This makes it possible to determine the angle at
which the signals arrive [27].

Sollie et al. [17] experimented on how the new Direction Finding feature can
be utilized to estimate direction. In their study, they had an array consisting of
12 antennas and wanted to estimate the AoA of a fixed-wing UAV. The method of
estimating the angles based on the IQ measurements consisted of four steps res-
ulting in values for the azimuth and elevation angle. During the estimation, there
were factors that needed to be accounted for. Some of the factors were the carrier
frequency offset (CFO), far-field assumptions to obtain plane waves, and assump-
tions related to multipath. Multipath is when the signal has been reflected by a
surface before it reaches the receiver. The reflection changes the direction of the
signal, which results in wrong information regarding where the signal was sent
from. Sollie et al. [17] concluded that they were able to sample measurements at
a maximum rate of 10Hz. This was in order to stay within the link limit and be
able to identify the measurements in time. They were able to use Direction Find-
ing for outdoor navigation with a distance of up to 700m without a significant
reduction in accuracy. The azimuth angle had the best accuracy with a standard
deviation (std) of 1◦. The elevation angle was harder to obtain accurately. The el-
evation suffered from multipath, which created unreliable and erroneous results.
The main issue in outdoor navigation is multipath caused by the ground surface,
resulting in large errors in the elevation direction. Different factors affect the el-
evation error, such as the height of the UAV over a surface, the signal frequency,
the antenna pitch angle, and antenna size. It is to some extent possible to remove
the multipath effect by calibration. However, as the factors are depending on the
environment, this is not possible to implement in general [17].

2.1.3 Bluetooth Range Estimation

Direction Finding is a feature that recently got included in the BLE specification
for supporting high-accuracy direction results. There is not yet released a feature
in the Bluetooth specification for high-accuracy range estimation. However, as of
May 2023, the Bluetooth SIG is working on adding a growing set of position-
ing capabilities to the technology, including high-accuracy range estimation. The
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current positioning technology contains advertising for presence, RSSI for basic
distancing, and Direction Finding. With a high-accuracy distancing feature, it is
possible to create locating systems which provide an even higher level of accuracy
than with the current technology [29].

The current distance measurements are performed with BLE beacons which
were introduced in 2010. The beacons use RSSI methodology to calculate the
range. The obtained positions from the calculations are based on received signal
power or strength, which provides limited accuracy. The calculation of the dis-
tance is generally performed by using the logarithmic distance path-loss model.
This model takes the measured RSSI, a path-loss parameter, and a Gaussian ran-
dom variable, and calculates the assumed distance between a receiver and a trans-
mitter. The limited accuracy from RSSI distancing comes from multiple factors,
such as noise present in the signal, time-varying characteristics in the BLE signal,
and environmental issues such as multipath [30]. Typical accuracy can vary from
2− 10m. This may be acceptable in multiple use cases, but not accurate enough
to compete with new high-accuracy positioning systems [31]. However, there are
benefits of selecting Bluetooth technology for location instead of other traditional
radio frequency devices. The accuracy of beacon positioning can be improved by
relying on multiple measurements and investigating different filtering techniques
to reduce the fluctuations. The works of Sukmar [19] have looked into the de-
tails of how distancing with Bluetooth technology can be improved using various
ranging techniques. It is shown that combining the RSSI distance with direction
finding technologies improves the accuracy compared to RSSI alone. However,
adding the additional capabilities results in increased complexity of the systems
and raises the infrastructure cost. Other options for increasing the accuracy of
Bluetooth ranging can be to measure the time of flight and the phase of the sig-
nal.

Experiments with phase-based ranging to provide high-accuracy distancing
with BLE were performed by Zand et al. [12]. A phase-based solution uses the
number of signal-phase shifts during the signal propagation between the transmit-
ter and receiver. The method is able to reduce the multipath problem by utilizing
two devices that measure the phase changes over multiple frequencies. The pro-
cedure of using multi-frequencies for phase-based ranging is called Multi-Carrier
Phase Difference (MCPD). MCPD can be used for ranging with BLE by utilizing
the channels for hopping between tones in the entire BLE frequency band. The
conclusion formed by Zand et al. [12] was that different factors would affect the
ranging error. However, many of the parameters in the system are known before-
hand, making the ranging error predictable.

2.1.4 Limitations with Bluetooth

The use of Bluetooth signals for direction and range estimation is subject to sev-
eral limitations that may hinder its use for navigation purposes. Unlike GNSS,
navigation with BLE does not have global coverage. The navigation only works in
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predefined areas where the sensors are placed in suitable positions with respect
to what they are measuring. This results in a limited area where the navigation
is accessible. The need for relative positioning limits the range and accuracy of
the possible operational area for BLE navigation. Direction Finding devices have
been shown to have a feasible range of up to 700 meters [17]. On the other hand,
the range measuring beacons appears to be limited by a feasible range of only
125 meters. This ranging result was obtained by a colleague Hanne Loftsnes. Her
work concluded that MCPD gives the best range estimates. If navigation is only
performed using one measurement for range and one for direction, the final feas-
ible distance to obtain a 3D position is then limited by the measurable range. This
is because both measurements are needed for a full position calculation.

The limited area is known to the user beforehand. Consequently, the user is
able to take it into account when designing the navigation system. In navigation
scenarios where BLE navigation is considered, there are cases where there is a
need for local navigation within a specified area. Hence, the impact of that issue
is reduced. Nonetheless, there are other issues that need to be taken into account.
For instance, the fact that the sensors are measuring a signal traveling from one
part to another. This makes the signal vulnerable to errors such as obstruction
and reflections. An obstruction is when something is in the way and blocking
the signal from reaching the receiving antenna. In the case of an obstruction,
the sensors are not able to measure the signal and remain clueless. If a traveling
signal hits an object, the signal may be reflected, and its direction changes. If a
reflected signal reached a receiving antenna, the signal has traveled further than
the original distance and the angle has been modified. This results in the receiving
antenna calculating a totally wrong position of where the signal was sent from.

How much the issues of obstruction and reflection are affecting Bluetooth Dir-
ection Finding were tested by Sambu et al. [18]. They performed experiments both
indoors and outdoors in order to see how much obstructions and reflections by
the environment affected the accuracy. Their results showed that the error was
smaller when measured in an outdoor environment than indoor. The angle error
outdoor was on average 0.48◦, with a standard deviation of 0.28◦. On the other
hand, the error indoor averaged at 1.83◦, with a standard deviation of 1.1◦. From
these results, the angular error for outdoor environments was measured as 73%
smaller than for indoor environments. Sambu et al. [18] also performed position-
ing experiments, where the results for outdoor positioning had an average error
of 22cm while the indoor average was 36.5cm.

According to a technical overview by SIG member Woolley [27], the Bluetooth
Direction Finding feature can be utilized to develop positioning systems that can
operate with sub-meter accuracy. The paper mentions examples of indoor use
cases such as positioning and asset tracking. The inaccuracy in the range sensors
varies more than the direction sensors. The error is dependent on the type of
ranging method used, the distance between the two points, and the utilized al-
gorithm. The results Zand et al. [12] obtained indicated a ranging error of ap-
proximately 1 meter with one method, but another method indicated an average
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error of up to 5 meters.

2.1.5 Combination of Bluetooth Measuring Devices

A BLE device is only able to either measure the direction of a transmitter or the
range between two devices. Given one of these measurements, it can only be
deducted that the transmitting device is somewhere on a circle with a specified
radius or on the line of direction. As a result, in order to determine a position
using these sensors, it is necessary to have access to measurements coming from
multiple sensors.

A position can be determined from range measurements given that the sensor
positions are known. If a sensor measures the distance to a point, it can only de-
termine that the point is situated on a circle with a radius equal to the measured
distance from the sensor. If two distance measuring sensors are used, their respect-
ive circles will intersect at two points. Therefore, the target could potentially be
located at either intersection. However, adding one more distance sensor to the
scene allows for the identification of a single intersection point where all three
circles intersect. The intersection then represents the location of the target. The
technique is called trilateration, where a minimum of 3 range measurements are
required to determine a position [9]. The position of the target is then calculated
by solving a set of equations based on the measured ranges and corresponding
sensor position. For n measuring sensors in a 2D case, the set of equations will be

d1 =
q

(xu − x1)
2 + (yu − y1)

2

...

dn =
q

(xu − xn)
2 + (yu − yn)

2,

(2.2)

where (xu, yu) is the target’s position and d• is the relative distance. An issue
with this positioning technique is the uncertainties in the distance measurements.
BLE range measurements can contain a great amount of errors. Hence, when cal-
culating the position of the target, the result will depend on these errors. The
intersection points of the ranges can be explained as an area. The size of the area
is decided by the assumed errors as well as the geometry of the sensors. The po-
sitioning of the sensors with respect to each other plays a role in the accuracy of
the calculated position. This geometric influence is known as Dilution of Precision
(DOP), and represents how much the accuracy of the solution is diluted due to the
sensor-target geometry [32]. How trilateration works are visualized in Figure 2.3.
The figure shows the true distances as d•, while the striped lines illustrate the pos-
sible measured ranges due to the errors. The red dot is the actual position, while
the red area illustrates where the position may be deduced to be due to the errors.
Good geometric diversity of the sensors reduces the size of the error area, hence
improving the accuracy of the position estimation [22].

One measure to improve the trilateration results is to over-determine the sys-
tem. This is done by using more sensors than required to determine the intersec-
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Figure 2.3: Illustration of trilateration using three sensors. The red dot is the
actual position, while the colored area is possible placements due to errors in
range measurements.

tion of the circles. This gives a greater number of equations than the number of
unknowns and reduces the impact of the error.

For Direction Finding devices, a single sensor only knows where on a line
the target is positioned based on the calculated elevation and azimuth. With two
sensors measuring the direction of the same target point, the location of that target
can be derived using the two measured angles and the known positions of the two
sensors. This is illustrated in Figure 2.4. There is also some error present in the
direction finding techniques, which may result in uncertainty in the localization
of a target. Improvement can be made by using extra measuring devices to reduce
the impact of errors.

Using a combination of a direction finding Bluetooth device and a range-
estimating beacon also results in position estimation. However, since range estim-
ation results in relatively crude distance estimation, the final location calculation
may not be very accurate. It can be improved by using the Direction Finding device
together with multiple beacons. This benefits from the accuracy of Bluetooth Dir-
ection Finding and limits the range error by trilateration [27].
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ψ1

ψ2
senso or 2

Figure 2.4: Illustration of target localization using two direction finding devices.
Target is the red dot and the direction lines pass through it.

2.2 Inertial Navigation System

An Inertial Navigation System (INS) consists of an Inertial Measurement Unit
(IMU) and numerically integrated kinematic equations. An IMU typically contains
a three-axis accelerometer and a three-axis rate gyro. Sometimes it also contains
a three-axis magnetometer. The INS is able to estimate the position, velocity, and
attitude of a device it is mounted on. The position is obtained by integrating the ac-
celeration measurements twice while the gyro measurements are integrated once
to obtain the orientation. The kinematic equations expressing the position and
velocity states

ṗn
m/n = vn

m/n (2.3)

v̇n
m/n = Rn

b(Θ)(a
b
imu − bb

acc) + gn (2.4)

where ab
imu and Θ is the measured acceleration and rotation respectively. {b} is

the body frame of the moving device, {m} is the local INS measurement frame
and {n} is the North-East-Down (NED) frame. Rb

n(Θ) is the rotation matrix from
{b} to {n}. bb

acc is the accelerometer biases and gn is the gravitation constant,
gn ≈ [0, 0,9.81m/s2]⊤. It is possible to include a state to estimate the bias as well
[33].

If the measurements from an IMU were perfect, a stand-alone INS would be
able to determine the exact position and orientation of a moving device relative
to its initial state. However, this is not the case in reality as navigation depending
solely on the INS leads to a drift in the computed outputs due to biases that exist in
the sensors. The sensors can be calibrated before usage to remove the run-to-run
internal biases. However, in-run biases change during navigation may be caused
by misalignments and temperature changes affecting the output. In addition, there
are some noises affecting the measurements, even though they generally are low.
As a result, an INS is not adequate for navigation by itself, but may have beneficial
effects when combined with another navigation system [33].
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The gyroscope and accelerometer are the key components of an IMU. The
classic gyroscope consists of a spinning wheel to measure the angular velocity.
The wheel rotates about an axis and belongs to a gimballed system. This utilizes
the conservation of momentum to measure the rotation. An accelerometer meas-
ures the result of forces acting on a body, and different principles can be used. A
mechanical accelerometer is the simplest form and can consist of a pendulum. It
measures acceleration by using Newton’s second law of motion, F = ma. a is the
acceleration caused by the force F acting on the body with a mass m. A vibratory
accelerometer measures the frequency shifts resulting from the tension of a string
being decreased or increased. The acceleration is proportional to the change in
frequency [33].

The measurement equations for the acceleration and the angular velocity from
the IMU is

ab
imu = Rb

n(Θ)(v̇
n
m/n − gn) + bb

acc + w b
acc (2.5)

and
ωb

imu =ω
b
m/n + bb

g y ro + w b
g y ro (2.6)

respectively. The frames are the same as expressed above. bb
acc and bb

g y ro are biases

in the accelerometer and gyro, respectively. w b
acc and w b

g y ro are the zero-mean
noises added to the sensors measurements [33].

The use of an INS has several advantages. It does not rely on external signals
as it is completely self-contained, making it unexposed to external factors. An IMU
operates at a high frequency, and the obtained measurements typically have low
levels of noise. This results in smooth position and attitude outputs. These benefits
are great when an INS is integrated with another navigation system which may
suffer from loss of measurements or receives the measurements at a slow rate. In
these cases, the other navigation system can handle the drift caused by the IMU by
compensating with its own measurements, while the INS can be used to estimate
the position and attitude in between the other system’s measurements. This is a
method where the two navigation systems are of complementary nature where the
benefits of one compensate for the drawback of the other [34]. Including an INS
in such systems also works as a security plan in case the other system is disturbed
or blocked.

2.3 Estimators

Estimators are mathematical functions that use data to estimate the value of an
unknown parameter or variable [35]. In navigation problems, estimators are often
used to estimate the state of a system using measurements from various sensors.
An example of such an estimator is the EKF. The precision and accuracy of an
estimator can be evaluated using statistical metrics such as bias, variance, and
Mean Squared Error (MSE) [36].
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Given an unknown quantity x , an estimator is deriving information about x
from some data z which is related to x . The relationship between x and z can be
described by the probability density function (PDF) f (x |z), which is the probabil-
ity of x given data z. The likelihood of an estimator is the probability of observing
the data z given that x occurred, L(z|x).

An estimator is a function that tries to guess a concrete value of what x is
given the data z. If x ∈ χ and z ∈ Z, the estimator is a function f : χ → Z, such
that x̂ = f (z). x̂ denotes the estimate of x [35].

The Bayesian estimator is an example of an estimator following the criteria
explained above. In this approach, the prior knowledge of x is given as a prob-
abilistic model p(x) as well as the relationship p(z|x). A Bayesian estimator can
be either maximizing or averaging. In the maximizing scenario, the aim is to find
the best value of x given z. Averaging estimators return a value of x which best
represents the knowledge of x given z [35]. The EKF is an example of a Bayesian
estimator [37].

The observed data that is used to estimate x will not perfectly resemble the
true state. Different types of errors can occur during data collection such as meas-
urement errors. Since the estimate is a guess based on the observed data, the
estimated value differs from the true value. This results in an estimation error
x̃ = x − x̂ . The evaluation of an estimator’s accuracy is done by considering its
bias, variance, and MSE. The bias explains the expected error of the estimation,
denoted as E[ x̃]. An unbiased estimator has the expected error E[ x̃] = 0. The
variance explains how much the estimator spreads its estimates. MSE is a combin-
ation of both bias and variance, providing an explanation of the average squared
difference between the estimates and the true value [35].

The variance expresses how precise the estimator is, i.e., the degree of repeat-
ability. This tells how consistent the results from measurements are if repeated
many times. Precision is not related to how close to a true value the results are.
Accuracy on the other hand relates to how well the measurements indicate the
true value. With good accuracy, the expected value is close to the true value. The
accuracy is typically indicated by an estimator’s bias [38].

2.4 Extended Kalman Filter

A Kalman Filter (KF) is a recursive filter that is able to take a series of noisy
measurements and estimate the state of a dynamic system. The filter works for
both linear and nonlinear systems. The use of KF is popular in navigation sys-
tems since it is able to remove both white and colored noise in the measurements
from the estimated states. Furthermore, it can reconstruct states in case of miss-
ing measurements. A KF is divided into two steps; one for prediction and one for
correction. The prediction step is only dependent on previous state estimates and
possible internal measurements. The prediction is able to work even during loss
of measurements or external sensor failure. In these cases, the filter acts as a pre-
dictor and the estimated states are based on the filter’s knowledge of the system’s
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state. The prediction rarely works perfectly, causing a drift from the true states
if not corrected for a long time. The corrector step of the KF executes as soon as
measurements are available. It considers the estimated states and the incoming
measurements and corrects the predictions in order to minimize the variance of
the state estimates [33].

2.4.1 Discrete-Time Extended Kalman Filter

If the system to be estimated is nonlinear, an extension of the linear KF must be
applied. This is known as the Extended KF (EKF). The EKF is capable of handling
nonlinearities in the process model and the measurement model with respect to
the process [39].

EKF is still able to use linear estimation techniques by handling the nonlinear-
ities in the system by linearization. As a result of this, the EKF is mostly used when
the nonlinearities are mild and easy to linearize. Different linearization techniques
can be utilized. One of the techniques is to linearize around an operating point
where the operating point needs to be decided. The linearization in EKF is taken
around the estimated state from the previous step at each iteration [35].

In order to filter and estimate states using incoming measurements from dif-
ferent sensors, the EKF must be in a discrete-time format. This is due to the fact
that all measurements are obtained through sampling and therefore sent to the
filter at discrete time intervals.

Derivation of the EKF Equations

The EKF is a result of the Bayes filter after constraining the belief to be Gaussian,
assuming the noise to be Gaussian, and performing linearization of the models.
The constrained belief function considers the probability of having a state xk given
the prior belief and the measurements up to and including this time step. This is
the same as the PDF representing the likelihood of xk. The Gaussian belief can
be expressed as shown in (2.7). The left-hand side of the equation expresses the
likelihood of the state xk, and the right-hand side shows that the likelihood is
Gaussian distributed with mean x̂k and covariance P̂k [37]. x̂k is the a posteriori
estimated state based on the a priori estimated state x̌k. A priori refers to the es-
timation performed before new measurements are included. x̌k is solely based on
the previous estimate of x and current control inputs and calculated using the pro-
cess model equations. The a posteriori estimate is the estimated state computed
from both the a priori state and new measurements and is found as the mean of
the probability distribution.

p (xk | x̌0,u1:k−1,y1:k−1)∼N (x̂k, P̂k), (2.7)

A nonlinear system with additive noise can be expressed on the discrete-time
form
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ẋk = f (xk−1,uk) +wk (2.8)

yk = g (xk) + vk, (2.9)

where k expresses the current time step, and k − 1 refers to the states at the
previous time step. The additive noises

wk ∼N (0,Qk) (2.10)

vk ∼N (0,Rk) (2.11)

are assumed to be Gaussian with zero mean and covariances Qk and Rk, respect-
ively.

The functions f(·) and g(·) are nonlinear and therefore need to be linearized
around the mean of the current state estimate. The linearized functions are cre-
ated from the Taylor expansion and can be written on the form

f (xk−1,uk)≈ x̌k−1 + Fk−1 (x̂k−1,uk) x̃k−1 (2.12)

g (xk)≈ y̌k +Gk

�

x̂k|k−1

�

x̃k, (2.13)

where x̃• = x• − x̂• is the error variables, and Fk−1 and Gk are the Jacobians of
the nonlinear functions. The calculations of Fk−1 and Gk are performed by taking
the Jacobians of f and g with respect to xk−1 and xk [35]:

Fk−1 (x̂k−1,uk) =
∂

∂ xk−1
f (xk−1,uk)

�

�

�

�

xk−1=x̂k−1

(2.14)

Gk

�

x̂k|k−1

�

=
∂

∂ xk
h (xk)

�

�

�

�

xk=x̂k|k−1

(2.15)

The calculation of the a priori state and measurement estimations can be writ-
ten on the form

x̌k = f (x̂k−1,uk) (2.16)

and
y̌k = g (x̂k) (2.17)

respectively.
By analyzing the current state xk given the previous state xk−1 and the current

control input uk, the statistical properties yields

p (xk | xk−1,uk)≈N (x̌k + Fk−1x̃k−1,Qk) . (2.18)

The statistical properties for the current measurement given the current state can
be expressed as
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p (yk | xk)≈N (y̌k +Gkx̃k,Rk) . (2.19)

These two PDFs can be used to arrive at the final Gaussian PDF expression for
the state estimation as explained in (2.7). The resulting PDF is shown in (2.20)
[37]. The Kalman gain is expressed as Kk and is used as a weighting factor in
the filter. The matrix Kk is multiplied with the innovation, yk − y̌k, and controls
how much the recent measurements are affecting the state estimation. With a high
Kalman gain, the measurements are heavily weighted, resulting in the state tightly
following the new measurements. A small gain can imply that the measurements
are noisy and erroneous, resulting in more trust in the model predictions [39].

N (x̂k, P̂k) =N
�

x̌+Kk(yk − y̌k), (I−KkGk)(Fk−1P̂k−1F⊤k−1 +Qk)
�

, (2.20)

With all the above equations derived, the recursive EKF algorithm can be im-
plemented. The steps in the algorithm are described in Algorithm 1.

Algorithm 1 Discrete-time extended Kalman Filter

Initialize:
x0 = x(0)
P0 = E[(x0 − x̂0)(x0 − x̂0)⊤]
Design matrices Qk = Q⊤k > 0, Rk = R⊤k > 0
for k = 1 to N do

Prediction step:
P̌k = Fk−1P̂k−1FT

k−1 +Qk

P̌k =
1
2(P̌k + P̌⊤k ) ▷ Ensures P̌k = P̌⊤k

x̌= f (x̂k−1,uk)

Kalman Gain:
Kk = P̌kGT

k

�

GkP̌kGT
k +Rk

�−1

Correction step:
if Available measurements yk then

P̂k = (I−KkGk) P̌k (I−KkGk)
⊤ +KRK⊤

x̂k = x̌k +Kk (yk − g (x̌k))
end if
return x̂k and P̂k

end for

2.5 Cramér-Rao Lower Bound

Cramér-Rao Lower Bound (CRLB) is a lower limit of the variance of an unbiased
estimator. The bound explains the best possible precision the given estimator
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is able to achieve. With CRLB it is possible to, among other things, determine
whether it is achievable to improve the performance if a more advanced estim-
ator is used, if using time to tune the filter will be worth it, and if it is theoretically
possible to achieve some accuracy requirements with this estimator [40].

2.5.1 Fisher Information

The Fisher information is a measure of how much information it is possible to
extract about the parameter of the random variable’s PDF [41]. Let a random
variable z follow a conditional PDF f (z|x), where x is the parameter of the distri-
bution. Assuming that the PDF has twice continuous partial derivatives, the Fisher
information can be calculated by the negative expected value of the twice partial
derivative with respect to x of the log-likelihood function [40]. The reason for us-
ing the log-likelihood is that maximizing the likelihood is equivalent to taking the
max of the log-likelihood, except the log-likelihood function is more convenient to
work with. The Fisher information measures the curvature of the log-likelihood.
The curvature is related to the accuracy of x̂: a low curvature says that the like-
lihood surface is flat near its maximum which makes it difficult to obtain the op-
timal parameter, versus a strong curvature which comes from a strong peak and
a clearly defined maximum [42]. The Fisher information can then be written on
the form

I(x) = − E

�

∂ 2 ln p(z | x)
∂ x2

��

�

�

�

x=x0

= E

�

�

∂ ln p(z | x)
∂ x

�2��
�

�

�

x=x0

= E [H(x)]|x=x0
,

(2.21)

where the p(z|x) is the likelihood and x0 is the true value of x [43]. The matrix
H(x) is the Hessian of the log-likelihood with respect to the parameter x . If the
parameters are of multiple dimensions, the Fisher information is often specified as
the Fisher information matrix (FIM), calculated as shown in (2.22). The operator
∇x denotes the partial derivative with respect to x, and∆x

x =∇x∇⊤x is the Hessian.

I(x) = − E
�

∆x
x ln p(z | x)
��

�

x=x0

= E
�

(∇x ln p(z | x)) (∇x ln p(z | x))⊤
��

�

x=x0

(2.22)

In this thesis, it is assumed that the parameter to be estimated is multivariate, i.e.,
x ∈ Rn×1. Hence, the FIM is used further in this thesis.

2.5.2 Cramér-Rao Lower Bound Calculation

The CRLB is an inequality that is calculated by taking the variance of any unbiased
estimator x̂ bounded from below the inverse of the FIM. This can be expressed as

cov(x̂(z)) = E
�

(x̂(z)− x) (x̂(z)− x)⊤
�

≥ I(x)−1, (2.23)
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where I(x)−1 is the CRLB, expressing the lower bound of the estimator’s vari-
ance. The CRLB explains the best possible variance an estimator is able to achieve
given its probability distribution. If an estimator’s variance is equal to I(x)−1, the
estimator is called efficient [43].

Due to the twice partial derivation in the equation for the CRLB, the calculation
may be complex. However, there are some cases that lead to simplifications of the
CRLB calculation. One of these is the parametric CRLB. Given a predetermined
trajectory, it is possible to calculate the CRLB for each point of that trajectory
expressed as

PCRLB
k|k (x1:k). (2.24)

In this case, the calculation of (2.24) equals the Riccati equation on the same form
as the one for calculating the error covariance matrix P̂ in the EKF [40]. As the
CRLB is an evaluation of an estimator given the perfect estimates, the CRLB of a
predetermined trajectory can be calculated by using the known states as inputs
instead of the previously estimated state. This results in the same algorithm as
EKF, Algorithm 1, the only difference being that all the expressions are evaluated
based on the true trajectory instead of the previous predicted state [44].



Chapter 3

Simulator Design

This thesis examines the feasibility of utilizing Bluetooth signals as a navigation
system in a variety of environments. To achieve this objective, two distinct ana-
lyses will be performed to evaluate the robustness of Bluetooth-based navigation.
The objective is to determine whether Bluetooth navigation can replace traditional
navigation techniques in situations where the latter may not be appropriate or ef-
fective.

The two cases being tested involve the navigation of a UAV in an outdoor en-
vironment and the navigation of robots in an indoor warehouse setting. As neither
of the scenarios has been tested in real-life, simulations will be used to replicate
expected real-life behavior.

3.1 Net-Landing Scenario of a Fixed-Wing UAV

In the net-landing case, a fixed-wing UAV is expected to follow a trajectory that
starts from far away and moves closer to a net that can catch the UAV. In this case,
the UAV does not need a runway to land, and since the only requirement is that the
UAV lands within the net, it is the size of the net that decides the required accuracy.
This is a case that may be relevant if the UAV is used to explore something on the
ocean, and needs to land on a boat. A video illustrating a net-landing experiment
similar to this scenario is shown in [45].

3.1.1 Trajectory Simulation

A simulation of the scenario is necessary to create measurements that can be used
to test how the system works with BLE sensors. The simulation is performed us-
ing the Matlab UAV Toolbox and its functionality for data processing and scenario
simulation. The function minjerkpolytraj is used to create a realistic trajectory. This
function takes in a set of input waypoints and their corresponding time points and
generates a minimum jerk polynomial trajectory based on the inputs. By enabling
TimeAllocation to true, the function optimizes a combination of jerk and total seg-
ment time cost, hence treating the input time points only as an initial guess for

21
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the arrival at each time point. The outputs are positions, velocities, accelerations,
and jerks at the given number of samples specified by numSamples and a new set
of time points that corresponds to the new output vectors [46]. The resulting
positions, velocities, and time points can then be used as inputs to the function
waypointTrajectory. This Matlab function takes in a set of waypoints, the corres-
ponding velocities, and the time of arrivals and generates a trajectory based on
these values. From the output trajectory, it is possible to extract position, velocity,
and acceleration expressed in NED frame [47].

The simulation is created with respect to one origin, which is placed in the
antenna array. Since the simulation results in positions in the NED frame, it is
possible to use the Matlab function ned2aer to express the azimuth, elevation, and
range values measured from the array. These values are then divided into two lists,
one containing the angles and another with the ranges to represent the differ-
ent measurements. There are also assumed measurements coming from beacons
somewhere in the simulation space. The ranges from the beacons are also calcu-
lated by ned2aer, only moving the origin from the array to the beacon positions,
and then extracting the range.

3.1.2 Simulation Results

The sample rate used to create the measurements was set to 250Hz. This is the rate
at which the IMU is assumed to provide the acceleration measurements [2]. This
equals new measurements every 4ms. The BLE measurements are limited to an
update rate of 10Hz, resulting in new measurements every 0.1s [17]. This means
that the accelerometer measures 25 times for every incoming BLE measurement.
To deal with the difference in sample rate in the simulated measurements, only
every 25th measurement was considered for the direction and range sensors.

The chosen waypoints were created so that the trajectory would mimic a real-
istic trajectory of a UAV. The UAV performs a big turn before it tries to navigate
straight toward the landing net. The trajectory is shown in Figure 3.1 and the ac-
celerations are shown in Figure 3.2. The position values from the trajectory are
the ones that will be used for angle and range calculations, while the accelerations
are needed to mimic the IMU measurements.

Additional results from the UAV flight simulation are shown in Figure 3.3 and
the trajectory shown from above is illustrated in Figure 3.4.
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Figure 3.1: 3D plot of planned trajectory for the UAV flying towards the landing
net in [0; 0; 0]. The red circles represent the chosen waypoints.
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Figure 3.2: The acceleration of the UAV throughout the trajectory.
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Figure 3.3: Results from simulation of UAV trajecotry
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Figure 3.4: Trajectory of the UAV as seen from above.
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3.1.3 Creating Erroneous Measurements

The simulation resulted in perfect measurements, making it necessary to define
noises that were added to the measurements to create a realistic scenario. From
the theory on Bluetooth sensors and their errors, Section 2.1.4, the white noises
added to the direction measurements have a standard deviation of σα = σψ =
0.28◦ while the range measurements have noises with standard deviation σρ =
2m added. Additionally, it needed to be added both noises and biases to the ac-
celeration measurements. The chosen values were taken from Gryte et al. [2],
where the acceleration variances were set to σ2

acc = 6.588× 10−4m2/s3, and the
biases were set to bacc = 50mg = 50 · 9.81/1000m/s2 with variances σ2

bacc
=

4.150× 10−6m2/s3. The biases were set to the maximum bias expected in an ac-
celerometer. However, in reality, they can be both smaller and of negative value.
The noisy azimuth and elevation measured by the antenna array are shown in Fig-
ure 3.5. Figure 3.6 shows the acceleration measurements where both noise and
bias were added.
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Figure 3.5: Direction measurements with added white noise.
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Figure 3.6: Acceleration measured by the IMU. Noise and bias are present.

3.1.4 Separate Measurements

Due to the sensors being placed at different points in the simulated area and hav-
ing limits for the possible ranges they can measure, it is not expected that all
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sensors generate valid measurements at all points in time. The array which meas-
ures the direction has the longest range, while the range-measuring devices have
a shorter reach. This means that the simulated scenario needs to be partitioned
into when the different sensors are close enough to measure the UAV.

The division of the measurements is done by inspecting all the UAV position
samples and calculating the distance between each sensor and the UAV. If the UAV
is within a sensor’s feasible radius, the measurements are added to the sensor’s
measurement list. All samples that are outside are classified as "nan".

3.2 Warehouse Scenario for Navigation of Robots Indoor

The warehouse scenario is made to replicate the AutoStore concept. AutoStore
is a high-density, robotic storage and retrieval system designed for warehouse
and distribution center operations. It is designed to maximize storage density by
stacking packets on top of each other in a grid. The robots are moving on top
of that grid guided by a control system that optimizes the storage and retrieval
of goods based on real-time data on inventory levels, order volume, and other
factors. The robots are tracked using a combination of sensors and cameras that
are installed throughout the warehouse, and the information is sent to the control
system [48].

3.2.1 Scenario Setup

Since these experiments have not been conducted in a real warehouse environ-
ment using actual sensors, it is necessary to create a scenario that closely re-
sembles the circumstances of a real warehouse. This makes the simulation ac-
curately reflect how the navigation system would perform in a warehouse setting.

The warehouse is set to be a room, where the 2D grid the robots are moving on
is expected to be of n×m m2. The grid covers the whole room, meaning the robots
can move over the entire area. Beneath the robots are the stacks of packages, but
they are not necessary to consider here since the sensors only need to be able
to cover the plane of motion. Independent systems are expected to be used for
controlling the packages. With the 2D grid for the robots being set, it is possible
to consider the areas where the sensors can be placed. Since the robots move on
the ground area, the sensors are limited to at least being placed one meter above
them. The maximum height the sensors can have is limited by the roof of the
warehouse. If the sensors are placed by the wall or to the roof, they are simply
assumed to be attached to the material there. If some sensors are placed in the
middle of the room, and not high enough to reach the roof, it is assumed that the
sensors are hanging in rods. The available 3D space for the sensors is therefore of
size n×m× h m3, where h= room_height − 1 m.

To make the scenario as realistic as possible, it is assumed that some poles
are placed in the room to support the roof. The robots are therefore not able to
move in the areas where the poles are placed. The radio signals are not able to
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Figure 3.7: A representation of the warehouse as seen from above. Assumed that
the robots can move on all the gray squares in the grid.

penetrate through the poles which will limit the reachable distance for sensors
close to the poles, hence resulting in an increasing number of sensors needed to
cover the entire area.

3.2.2 Scenario Results

The grid on which the robots move on was set to have the dimensions 40 × 40
m2. This resulted in 1600 positions on the plane where the robots could move.
The space where the sensors could be placed had the same dimensions for width
and length as the grid but with an additional three meters in height. The possible
height for the sensors was set to be 1 meter to 4 meters above them, where the
roof was assumed to be 4 meters above the plane. The sensors needed to be placed
at least one meter above the robots to avoid them from being in the robots’ paths.
This resulted in the 3D grid of 40×40×3 possible positions of the sensors, which
enables a total of 4800 places for the sensors. To mimic a real warehouse, it was
assumed that poles were placed in the room to support the weight of the roof.
There were a total of 9 poles placed as shown in Figure 3.7, which is an illustration
of the warehouse seen from above. Each pole was made with an area of 1× 1m2

and reaches from the grid to the roof.
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Estimator Design

In this chapter, the methods for evaluating the robustness of using BLE sensors for
navigation in the two scenarios created in Chapter 3 will be presented. In order to
achieve this, models explaining the different systems must be constructed. To ac-
count for the presence of noises and fuse the different measurements together for
higher accuracy, an EKF will be used to estimate the desired states in the UAV scen-
ario. The state estimation in the warehouse scenario will be performed through a
maximum likelihood estimator. Lastly, the objective is to evaluate the robustness
of Bluetooth-based navigation in both cases. This will be accomplished by using
the CRLB to calculate the minimum variance of the estimators. Both cases have
some accuracy requirements for the estimates which is used when evaluating if
the navigation is robust enough in the two cases.

4.1 Estimator Design and Optimization of Net-Landing
Scenario

This scenario was created in Section 3.1 and is assumed to take place over water,
minimizing objects which may block or reflect the Bluetooth signals. The UAV
is assumed to be equipped with an INS. The INS has an IMU that can measure
acceleration. The data from the IMU is expected to contain some noises and biases.
For additional navigation resources, an antenna array is placed right behind the
landing-net. This array is able to measure the direction of the incoming Bluetooth
signal and obtain azimuth and elevation values using AoA principles. There will
also be a possibility to include a range-measuring sensor together with the antenna
array. These measurements are assumed to be independent of each other, as there
are two distinct methods for measuring range and directions.

Navigation using only an IMU and one antenna array measurement may not
be able to provide satisfactory robustness as it will be vulnerable to only rely on
one external sensor. Additional range sensors elsewhere in the simulated area will
also be included in the analyses to hopefully improve the robustness. As discussed
in Section 2.1.4, they can measure ranges up to a limited distance. Due to their

28
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limited feasible range, the beacons will not be able to measure the UAV’s whole
trajectory, hence the placement of the beacons decides when the UAV is measured
and may affect where the system is robust.

4.1.1 System Model

Since the simulation is made with respect to one frame, the rotation of the UAV
is the same for all sensors. This results in the option of using the same frame for
all the incoming values. Although this simplification neglects the importance of
rotations in a real-world scenario, the inclusion of rotation is not expected to have
that big of an effect on the system. The position error is caused by errors in the
velocity, as the position is the time derivative of velocity. The velocity is dependent
on the orientation, which makes the uncertainty of the orientation affect the ve-
locity which as a result affects the position. The position is still only dependent on
the velocity error when neglecting the rotation error [49]. Including the rotation
may increase the system’s covariance a bit as it is one extra error component that
potentially could affect the velocity error and, consequently, the position error.
However, neglecting the orientation will not affect the sensor placements effect
on the positions covariance. The considered frame is seen from the antenna array,
i.e., right by the landing net, and is expressed in NED.

Kinematics

The state of the fixed-wing UAV is explained by

x= [pN , pE , pD, vN , vE , vD, bacc,N , bacc,E , bacc,D]
⊤, (4.1)

which can be simplified to x = [p,v,bacc]⊤ ∈ R9×1. p is the position, v is the
linear velocity, and bacc is the acceleration bias in the IMU, all expressed in the
NED frame.

Including bias in the state makes it possible to estimate the accelerometer
biases as they may be varying. It also works as an estimator for other forces and
errors which are not taken into account in the model but will affect the UAV when
flying. The kinematic model can be expressed as

ẋ=





ṗ
v̇

ḃacc



=





v
f+ g

−T−1
accbacc +wbacc



=





v
facc − bacc + g
−T−1

accbacc +wbacc



 , (4.2)

which is similar to the kinematic equations in an INS from Section 2.2. f is the
forces acting on the UAV, and is modeled as f = facc − bacc . facc is the measured
accelerations from the IMU. As mentioned, they are affected by noise and bias,
which can be expressed by facc = acc+bacc +wacc, where acc is the true acceler-
ations and wacc is additive noise in the measurements. The gravitational constant
g = [0,0, 9.81]⊤m/s2 is added to cancel the gravitation from the accelerometer
to correctly derive the velocity. Tacc is the time-constant referring to how long it
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is expected to take before the accelerometer biases drift and is set to 3600s [2].
wbacc

is the assumed errors in the accelerometer’s biases.
Writing (4.2) with respect to the states x from (4.1), classifying the IMU meas-

urements as control input u= facc+g, and the errors as w= [wacc ,wbacc
]⊤ results

in

ẋ= Fx+Bu+ Ew, (4.3)

where

F=





03×3 I3 03×3
03×3 03×3 −I3

03×3 03×3 − 1
Tacc

I3



 , (4.4)

B=





03x3
I3

03x3



 , (4.5)

and

E=





03x3
I3
I3



 . (4.6)

Writing the equations on this form shows that the kinematic model is linear in
x. From the motion equations, it shows that it is possible to determine the UAV’s
position solely based on the measured acceleration, given that the initial position
is known. However, since there are some error factors that affect the resulting
states, extra measurements are necessary to avoid a drift over time.

Measurements

There are four sensors that are used to aid the IMU’s acceleration measurements
to determine the UAV’s state. The antenna array placed in local origin generates
a bearing vector, ηa, and a BLE range beacon by the array measures the relative
distance from the array, ρa. There are two beacons placed somewhere in the grid,
pb1 and pb2, that measure the relative distances between their position and the
UAV, ρb1 and ρb2, respectively. The bearing measurements are expressed as a unit
vector in NED, R3×1, while the distances are single metrics in meters, R1×1. The
incoming measurements in total can then be expressed as

y= [ηa,N ,ηa,E ,ηa,D,ρa,ρb1,ρb2]
⊤ ∈ R6×1. (4.7)

Antenna array

The antenna array measures the direction of the Bluetooth signal. In the same
coordinates as the array, there is assumed to be a range-measuring BLE beacon.
The direction is given by azimuth and elevation values, ψa and αa respectively.
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These values can be combined to express the bearing ηa(ψa,αa). As the array is
aligned with the NED frame, the azimuth is representing the east angle, while the
elevation represents the down angle. The conversion from direction to bearing
values is shown in (4.8).

ηa =





ηa,N
ηa,E
ηa,D



=





cos(ψa) · cos(αa)
sin(ψa) · cos(αa)
− sin(αa)



 (4.8)

The measurements obtained by both the antenna array and the range beacon are
assumed to contain noises. The antenna array measurements can be expressed as

yψa
=ψa + ϵψ (4.9)

yαa
= αa + ϵa, (4.10)

and the distance measurements can be expressed as

yρa
= ρa,t rue + ϵρa

, (4.11)

where ϵ• is assumed to be white Gaussian noise. White Gaussian noise is expressed
as shown in (4.12), where the PDF has zero mean and σ2

• variance.

ϵ• ∼N (0,σ2
•) (4.12)

The additive noises in the direction measurements, (4.9) and (4.10), needs
to be taken into account when calculating the bearing, (4.8). The result of this
is illustrated in (4.13), where the parameters bψ and bα are used to debias the
measurements. This is performed due to the nonlinear mapping from the spher-
ical coordinates of azimuth and elevation to the Cartesian NED coordinates in
the model [2]. This is needed since the effect of the errors change when trans-
formed which is necessary to include to obtain reasonable values of the bearing.
The parameters are calculated based on the noises in the azimuth and elevation
measurements as shown in (4.14) and (4.15).

yηa
(ψa,αa) =





b−1
ψ
· b−1
α · cos(ψa) · cos(αa)

b−1
ψ
· b−1
α · sin(ψa) · cos(αa)
b−1
α · sin(αa)



 (4.13)

b−1
ψ = E[cos(ωψ)] = e−

σ2
ψ
2 (4.14)

b−1
α = E[cos(ωα)] = e−

σ2
α

2 (4.15)
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BLE beacons

The range measurements taken by the BLE beacons are of the same type as the
range measurement taken by the antenna array, as shown in (4.16) and (4.17).

yρb1
= ρb1,t rue + ϵρb1

(4.16)

yρb2
= ρb2,t rue + ϵρb2

(4.17)

4.1.2 State Estimation with Extended Kalman filter

From the measurement equations, it shows that all the measurements are affected
by some noise. Calculating the UAV’s state solely based on these measurements
will therefore result in erroneous state values. Hence, to get more reliable know-
ledge about the UAV’s position, the incoming measurements are processed via an
estimator. The applied estimator is the EKF, which works with the nonlinear nature
of the measurement model with respect to the states. The goal of using the EKF is
to filter the noises in the measurements, fuse the measurements together, and get
results that are robust enough for the navigation case. The choice of implement-
ing the EKF for this scenario is also due to the fact that it works even during loss
of measurements. This is valuable as there is no guarantee that the system always
receives measurements, as discussed in Section 2.4.

In order to apply the EKF to the presented system, the system equations need
to be discretized. This is a result of the measurements being sampled at discrete in-
tervals, hence incoming data are of discrete-time format. The discrete-time quant-
ities are found by using forward Euler integration [50]. The state estimate of x is
then

x̌k ≈ x̂k−1 + dT · (Fk−1x̂k−1 +Bk−1uk−1), (4.18)

where k is used to express the system at time step k and k − 1 is the state of the
previous interval. dT is the update rate with respect to the control inputs, i.e., the
accelerometer’s update rate. In (4.18), x̂k−1 is the previous estimated state. x̌k is
the new calculated state solely based on previous estimates and incoming control
signals.

The state transition matrix F is discretized by integration from 0 to dT , result-
ing in (4.19). The matrix F is the same as in (4.4) which is time-invariant, hence
causing Fk to be continuous.

Fk = I9 +

∫ dT

0

Fτ dτ (4.19)

The noise w from (4.3) is assumed to be white Gaussian noise with zero mean
and Q covariance matrix. Q is dependent on the variances of the additive process
noises, as shown in (4.20). This matrix then needs to be mapped from the input
space to the state space through a similarity transform as shown in (4.21). In this
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case, since both the process noise variances and F are time-invariant, the resulting
Qk is constant and can be calculated beforehand.

Q=

�

σ2
acc 0
0 σ2

bacc

�

∈ R6×6 (4.20)

Qk = FkEQF⊤k E⊤ ∈ R9×9 (4.21)

The measurements can be expressed in two different ways. One is as expressed
in equations (4.13), (4.11), (4.16) and (4.17), which is directly related to what
the sensors measure. The other method is to calculate the expected measurements
by using the estimated position of the UAV and the known position of the sensors.
These estimates will be labeled ŷ•. For the different range sensors, this can be
calculated as shown in (4.22). p̌UAV,k is the position extracted from the estimated
state calculated as shown in (4.18).

ŷρ•,k = ∥p̌UAV,k − p•∥2, (4.22)

The expected bearing can also be calculated based on the estimated UAV position
and the sensor position as

ŷηa ,k =
p̌UAV,k − pa

∥p̌UAV,k − pa∥2
∈ R3×1. (4.23)

The equations for the expected measurements are all nonlinear with respect
to the position of the UAV, which, as shown in (4.1), is a part of the state x. To
utilize the EKF, it is necessary to linearize the measurement models. The meas-
urement matrices are found by taking the Jacobian of the measurement models
with respect to x about the current state estimate mean. The measurement mat-
rix for the ranges with respect to the position estimates is calculated as shown in
(4.24). Note that the partial derivative of y with respect to the rest of the states,
v and bacc , will be zeros since the measurement models are only dependent on
the position states. The total Jacobian matrix for a range measurement is shown
in (4.25).

∂ yρ,k

∂ x k

�

�

�

�

x k=p̌UAV,k

=
∂ yρ,k

∂ p̌UAV,k
=

�

p̌UAV,k − p•
�⊤



p̌UAV,k − p•




2

(4.24)

Gρ,k =
�

(p̌UAV,k−p•)⊤

∥p̌UAV,k−p•∥2
01×6

�

∈ R1×9 (4.25)

The measurement matrix for the bearing is calculated as shown in (4.26), which
leads to the full R3×9 Jacobian matrix shown in (4.27).
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∂ yη,k

∂ x k

�

�

�

�

x k=p̌UAV,k

=
∂ yη,k

∂ p̌UAV,k
=
−S2(ŷηa ,k)


p̌UAV,k − pa





2

(4.26)

Gη,k =
h

−S2(ŷηa ,k)

∥p̌UAV,k−pa∥2
03×6

i

∈ R3×9 (4.27)

The errors which follow from the range measurements can be expressed in
a measurement noise covariance matrix, as shown in (4.28). The measurement
noise covariance matrix for the bearing is shown in (4.29).

Rρ =





σ2
ρ,a 0 0
0 σ2

ρ,b1
0

0 0 σ2
ρ,b2



 (4.28)

Rη =





σ2
η,N 0 0
0 σ2

η,E 0
0 0 σ2

η,D



 (4.29)

An issue which occurs with Rη is that it has dimension R3×3, but only depends
on the two measurements ψa and αa. The obtained measurement noise covari-
ance matrix from the antenna array is

Rdir,a =

�

σ2
ψ

0
0 σ2

α

�

, (4.30)

which must be mapped into the R3×3 bearing noise covariance matrix. The map-
ping is performed as shown in (4.31). The mapping matrix Mη transforms the
measurement noises from spherical to Cartesian coordinates. The calculation of
Mη is provided in Appendix A [51].

Rη = MηRdir,aM⊤η ∈ R
3×3 (4.31)

With Rη only depending on 2 measurements, the resulting matrix has rank 2, and
is therefore only positive semidefinite. This can cause a problem of unrealistic
large Kalman gains during the correction step. A method to overcome this issue
is to add a scaled matrix to the measurement noise covariance matrix. Equation
(4.32) shows the scaling of Rη. κ is the scaling value and can be assigned a small
value to assure that the matrix is positive definite.

Rη =
�

MηRdir,aM⊤η + κ · I3×3

�

> 0 (4.32)

The total measurement noise covariance matrix can be expressed as shown in
(4.33).

R= blkdiag(Rη,Rρa
,Rρb1

,Rρb2
) (4.33)

With the measurements being independent of each other and not available
at all times, the EKF needs to be able to handle missing measurements. This is
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done by creating the vectors as shown in (4.34). When some measurements are
missing, the corresponding elements in the vectors are left empty.

y =
�

yη, yρa
, yρb1

, yρb2

�⊤

ŷ =
�

ŷη, ŷρa
, ŷρb1

, ŷρb2

�⊤

R = blkdiag
�

Rη,Rρa
,Rρb1

,Rρb2

�

G =
�

Gη,Gρa
,Gρb1

,Gρb2

�⊤

(4.34)

The above equations can then be used in the EKF algorithm, and by testing
and tuning, hopefully yield reasonable results for the estimated states.

4.1.3 Optimization of Sensor Placements

In order to test whether the system is able to provide robust navigation, CRLB is
used to give a metric for the lower bound on the variance the EKF estimator is able
to achieve given a perfect trajectory. Since the EKF is a Gaussian estimator and the
trajectory is known prior to the estimation it is possible to use the parametric CRLB
for the Gaussian case as mentioned in Section 2.5 [44]. By this assumption, the
CRLB is calculated identically to how the error covariance matrix P̂ is calculated
in the EKF, as shown in (4.35). (4.36) and (4.37) represent the Riccati equations
to calculate the recursive CRLB, which are the same as used in the EKF.

cov(x̂)⪰ I−1(x) = PCRLB
x (4.35)

PCRLB
k+1|k = FkPCRLB

k|k F⊤k +Qk (4.36)

PCRLB
k+1|k+1 = (I−KkGk)P

CRLB
k+1|k(I−KkGk)

⊤ +KkRkK⊤k (4.37)

In order to utilize the EKF to calculate the CRLB instead of estimating the
states, the true states from the simulated trajectory are used as state inputs instead
of the previously estimated states. Therefore, all the expressions in the algorithm
are evaluated based on the true trajectory. This will result in a different Gk, as
it in the EKF was linearized around x̂k, but will here be linearized around the
true xk. The sensor measurements still contain the expected noises and errors,
causing the resulting covariance matrix to be solely based on how the filter is able
to perform given true states with faulty measurements. This equals a case where
the estimator is perfect, i.e., representing the best results it is possible to obtain
with the EKF for this system.

Having a method for calculating the CRLB, it is possible to inspect how pre-
cisely the filter can behave for the perfect case. The varying factor which affects
the resulting CRLB is the beacon positions. Since their positions decide when the
UAV is measured through its trajectory, they affect the accuracy of the estimator. To
achieve positions that give acceptable accuracy for the scenario, an optimization
algorithm is applied.
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Algorithm 2 CRLB minimization algorithm, simplified

Initialize:
nmin ≥ N ≥ nmax , emin ≥ E ≥ emax and dmin ≥ D ≥ dmax
Create posi t ions which is a meshgrid of possible positions
Pmin← in f ▷ Set initial CRLB matrix to inf
best_pos← [0 0 0;0 0 0] ▷ Matrix to save the best beacon positions
for i, j = 1 to number of possible positions do

pb1 = posi t ions(i, :), pb2 = posi t ions( j, :)
Calculate distance d between pb1 and pb2
if d ≥ 10m then

Separate measurements with respect to the new positions
Run EKF algorithm to calculate CRLB, returns PCRLB, the trace of the
position’s state covariance
if PCRLB < Pmin then

Pmin← PCRLB

best_pos← [pb1; pb2]
end if

end if
end for

The algorithm iterates through a grid of all possible positions. The positions
have upper and lower bounds based on where in the frame they can be placed.
To reduce the run time of the algorithm, a step size between each possible posi-
tion is set, and the algorithm only runs given that the two positions are a certain
distance away from each other. For all the possible combinations, the measure-
ments from the simulations need to be separated based on when the sensors are
in the range of the UAV, then the EKF algorithm which calculates the CRLB is ex-
ecuted. The chosen CRLB evaluation value is then the same as the diagonal of
the error covariance matrix PCRLB. In the EKF algorithm, there are tests that ana-
lyze the resulting covariance matrix. The tests are only looking at the trace of the
elements corresponding to the UAV’s position since this is a factor of importance.
The trace is returned as the CRLB of the position estimation throughout the tra-
jectory. A pseudo-code of the minimization algorithm implemented is shown in
Algorithm 2. After iterating through all the positions, it will return the positions
that yielded the lowest trace of the covariance matrix.

4.1.4 Performed Experiments

When experimenting with the scenario it is interesting to see how the accuracy
is changing throughout the trajectory based on what the optimization goal is and
how the BLE beacons can be used to help achieve the goal.

First, a scenario with only the antenna array will be tested. Optimization is
not possible in this case, since the antenna array is assumed to have a fixed posi-
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tion. The estimation will then be performed using only the bearing measurements
from the array and the INS. Having this as an initial estimation, it is possible to
compare the results of later estimations where additional beacons are used and
their placements have been optimized.

In order to test how additional beacons affect the navigation accuracy, one
beacon is assumed to be placed by the array, and two beacons are available for
positioning elsewhere. The trajectory of the UAV is planned to start far away from
the landing-net which means that the beacons are unable to measure the range at
all times. The optimization is therefore focused on how the two beacons should
be placed in order to fulfill different requirements. There are different ways the
optimization may be handled based on what the wanted outcome is. One op-
timization technique will focus on finding the beacon positions which give the
overall lowest CRLB throughout the trajectory. However, the positions which give
the best accuracy overall do not have any guarantee that the accuracy when the
UAV is close to the landing-net will be good. For this reason, other optimizations
will be also performed, where some constraints assuring the accuracy close to the
landing-net have been included.

There will be two different techniques for optimizing the positions while as-
suring good accuracy close to the landing-net. The first technique will solely focus
on the accuracy of the estimation when the UAV is moving closer to the landing
net. This means that the algorithm will only compare the CRLB value when it is
closer than a given distance, and choose the positions with the best accuracy close.
The accuracy when the UAV is close will then be the best it can be, but there is no
control over how good the estimation will be for the trajectory far away.

The second technique will try to focus on both good accuracies close to the net
while still maintaining an acceptable accuracy far away. This is done by finding
the trajectory with the lowest CRLB peak, but only taking it into account if the
CRLB is below a given accuracy when the UAV is close.

The three distinct methods of optimizing the problem can result in varying
outcomes for both the accuracies and the positions of the beacons. The most op-
timal solution may differ based on the specific use case.

4.2 Estimator Design and Optimization of Warehouse Scen-
ario

When considering scenarios like AutoStore, a potential approach for locating the
robots involves utilizing Bluetooth sensors. By utilizing a combination of range
sensors and direction finding sensors, it is possible to explore the level of preci-
sion in the positioning that can be achieved. However, there is a trade-off between
the desired level of accuracy and the number of sensors that can be employed to
minimize costs. The optimization problem revolves around finding the optimal
placements with the lowest number of sensors required to achieve sufficient ac-
curacy.
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This section of the thesis focuses on exploring whether the accuracy of nav-
igating the robots in a warehouse scenario can be adequate using BLE sensors.
The accuracy will be measured with respect to how well the sensors can local-
ize each point in the grid, assuming that sufficient localization accuracy provides
an adequate foundation for a navigation system. Given the existence of similar
warehouses in reality, it is worth exploring whether implementing BLE sensors
can potentially reduce the cost of the navigation system compared to the current
system.

4.2.1 Sensor Measurements Model

The Bluetooth devices can either be direction finding devices or BLE beacons for
range estimation. The sensors measure the ranges and angles the same way as
in the net-landing case, Section 4.1. The measured range contains an error ϵρ as
shown in (4.38), and the angles ψ and α are combined to express the bearing as
shown in (4.39). As in the previous scenario, the bearing has to be debiased due
to the noises present in the azimuth and elevation, as shown in (4.40)

yρ = ρt rue + ϵρ (4.38)

η=





ηN
ηE
ηD



=





cos(ψ) · cos(α)
sin(ψ) · cos(α)
− sin(α)



 (4.39)

yη(ψ,α) =





b−1
ψ
· b−1
α · cos(ψa) · cos(αa)

b−1
ψ
· b−1
α · sin(ψa) · cos(αa)
b−1
α · sin(αa)



+ εη (4.40)

The precision of the sensors used in the warehouse directly affects the accuracy
of the robots’ localization. The noises in both the distance and the direction-finding
solution are assumed to be white Gaussian noise. The noises can be expressed on
the form

ϵ• ∼N (0,σ2
•). (4.41)

Given multiple measurements for one position, the variances can be combined
into a noise covariance matrix as shown in (4.42), where u is the number of avail-
able range measurements and v is the number of available direction measure-
ments. The range measurements is one dimensional ερ ∈ R1×1 while the bearing
is of three dimensions εη ∈ R3×3. The mapping performed in the net-landing scen-
ario to transform from spherical to Cartesian coordinates to obtain the bearing co-
variances is not possible in this case. The mapping matrix was dependent on the
angle measurements which are not obtained in this scenario. However, according
to [52, p. 255] there are cases where it is possible to assume the approximation
Rη ≈ I3σ

2
η, creating a nonsingular matrix. σ2

η is the assumed variance from the
direction finding sensors. This assumption on the bearing noises is used, hence
avoiding the need for mapping and ensuring that Rη > 0.
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R= diag(
�

σ2
ρ,1 . . . σ2

ρ,u σ2
η1

. . . σ2
ηv

�

) (4.42)

The measurements in each position can be expressed as

yi = g(θ i) +wi , (4.43)

where θ i = (x i , yi , zi) is position number i in the grid, and g contains the meas-
urements function corresponding to the available sensors. zi in θ i will always
remain zero since the grid is placed aligned with the z-axis, but is included due
to the 3D positions of the sensors. wi ∼ N (0,σ2

i ) is the additive Gaussian noises
with respect to the measuring sensors. The functions in g can take two forms, de-
pending on what the corresponding sensor measures. Assuming available range
measurements, the function has the form

gρ = ||θ − pρ||2 ∈ R1×1, (4.44)

which is the distance between the range sensor and the position in the grid. The
bearing measurements are expressed as

gη =
θ − pη
∥θ − pη∥2

∈ R3×1, (4.45)

resulting in a 3-dimensional vector that explains the angles of where the robot is
with respect to the sensors in the warehouse frame.

The total measurement function g is varying depending on the sensors, and
can be written as

g=



















gρ,1
...

gρ,u
gη,1

...
gη,v



















∈ R(u+3v×1), (4.46)

with u numbers of ranging sensors and v numbers of direction sensors. Performing
an iteration to go through all the possible positions in the grid, the measurement
function will change depending on the sensors which are able to reach the differ-
ent grid positions.

4.2.2 Calculation of Localization Accuracy in every Grid Point

In this scenario, it is only needed to check one position at a time, not the coverage
over a trajectory. This is to ensure that the entire grid will be sufficiently covered,
hence crating reliable navigation in the entire warehouse. To achieve this, it is
possible to use the CRLB to calculate the best accuracy achievable in each of the
points in the grid. This results in the calculation of a single point each time, not
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a recursive algorithm that is dependent on the CRLB in the previous iteration.
The CRLB is found by using the available information about the likelihood of a
position.

The likelihood of obtaining position θ i given the available measurements in
position i takes the form

L(θ i | yi) = p(yi | θ i) =N (yi;g(θ i),Ri). (4.47)

where Ri is the measurement noise covariance matrix based on which sensors are
available and their variances, as stated in (4.42).

With the likelihood available, it is possible to calculate the FIM as (2.22) states.
θ is from here on used instead of θi for a clearer expression. The FIM, I(θ ), can
be derived according to

I(θ ) = E
�

(∇θ ln p(y | θ )) (∇θ ln p(y | θ ))⊤
�

= E
�

G⊤R−1(y− g(θ ))(y− g(θ ))⊤R−1G
�

= G⊤R−1E
�

(y− g(θ ))(y− g(θ ))⊤
�

R−1G

= G⊤R−1G,

(4.48)

where G consist of Gρ and Gη, which are the Jacobians of the measurement func-
tions g•, given as

Gρ =
∂ gρ
∂ θ

=
∂ gρ
∂ θ

=

�

θ̂ − pρ
�⊤



θ − pρ




2

∈ R1×3 (4.49)

Gη =
∂ gη
∂ θ k

=
∂ gη
∂ θ

=
−S2(gη)


θ − pη




2

∈ R3×3. (4.50)

The resulting simplicity of (4.48) is due to the noises being additive Gaussian,
resulting in a special case, mentioned in [43].

The CRLB can then be calculated by taking the inverse of the FIM as in (4.51).
To obtain the positioning accuracy for the entire robot grid, an iteration goes
through all possible robot positions and calculates the CRLB in each step. For
each position, the output value from the CRLB calculation will be stored in a map
with the same size as the grid. For each position in the grid, the corresponding
value in the map will explain the attainable precision at that point.

CRLBθ ≥ I(θ ) −1 (4.51)

4.2.3 Optimization of sensor placements

The variable factors in this scenario are the number of sensors and their place-
ments in the warehouse. It is desirable with an optimization algorithm that finds
a solution with acceptable accuracy over the whole grid while keeping the number
of sensors low.
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The optimization algorithm created for this cause utilizes a greedy search
method to determine the optimal sensor placements. A greedy algorithm is able to
arrive at an optimal solution quicker than a dynamic-programming method. The
greedy method is more efficient since it accepts the best possible choice at the mo-
ment, instead of testing every possible solution before deciding [53]. The first step
is to acquire suitable positions for an initial guess of the number of sensors. With
an assumption that the sensors can be positioned anywhere over the same area as
the n×m m2 grid, and h−1 meters above the grid of robots, the resulting grid of
potential sensor placements is huge. In the previous net-landing scenario, the op-
timization process only involved moving two sensors, allowing for an exhaustive
search of all feasible placements without creating a significantly large optimiza-
tion problem. However, in this current scenario, a larger number of sensors are
required. If every possible combination of sensor placements were to be explored,
the optimization problem would be too large, potentially resulting in impractical
computational time. To address the issue of problem size, the algorithm adapts
a randomized approach where the sensors are positioned randomly in the room
and then tested to determine if they provide sufficient coverage of all points.

Sufficient coverage is decided by how many sensors are within reach for a
single point in the grid. Since the robots can move over all the possible positions
on the grid except through the poles, it is necessary that each possible point is
covered by a given number of sensors. Since one sensor is not able to obtain a
robot’s location information by itself, there need to be at least 3 sensors. The
reason for this is to have enough measurements to use trilateration for position
estimation at each point. Distance sensors localization may be sufficient with only
2 sensors, but 3 is needed if only range sensors are used, cf. Section 2.1.5. This
is solved by creating an n × m dimensional map, where n and m correspond to
the size of the robots’ grid. All the values in the map are initialized to 0. For
each sensor that is placed in the room, the areas which the sensor is covering are
incremented by 1. This continues until all the sensors are placed. If all the points
in the map have a value of 3 or more, the sensor placements are sufficient for
further testing. Otherwise, new randomized placements need to be explored. The
algorithm continues to try new sensor placements until all the areas in the grid
are covered.

An additional check which needs to be performed when placing the sensors
is to take the poles placed in the room into account. Even if a point is within a
sensor’s range, it may not be covered by the sensors if there is a pole between the
points. A check on whether the pole blocks a signal or not is therefore performed.
Given a pole between the sensor and a grid point, the point will not be marked as
covered by that sensor.

Given sufficient cover, the algorithm iterates through all the possible robot po-
sitions and calculates a CRLB value for each point. The goal of the optimization is
to find a viable solution that meets the specified constraints. If such a solution is
found, the algorithm stops rather than continuing the search. An extensive search
could lead to other sensor placements which might offer a slightly better accur-
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acy. However, by having a constraint on the desired level of accuracy, this method
ensures that the chosen sensor placements are meeting the constraints within a
reasonable search time. It also aims to find the lowest number of sensors needed.
This is performed by starting the optimization with only a small amount of avail-
able sensors. If the algorithm has performed many iterations in order to find a
sufficient cover of the grid without success, the number of sensors increases by 1.
The search for sufficient placements then starts over again until the constraints are
met. Sufficient positions do not ensure sufficient accuracy, hence if the accuracy
is too low, the algorithm needs to start over with finding other sensor positions.
The optimization process is described using pseudo-code in Algorithm 3. The al-
gorithm is a simplification, however, it contains the key elements.

Algorithm 3 Optimization of sensors placement in warehouse scenario

Initialize:
Create [m× n] matrix of robot grid
Create [m× n× h] possible sensor position
Initialize number of sensors
covered ← 0 · [m× n] ▷ Count number of sensors covering each point
CRLB_grid ← ·[m× n] ▷ To save the CRLB for each point
max_CRLB← λ ▷ Set λ to wanted CRLB limit
while Not sufficient cover or Not sufficient CRLB do

if Iteration > max_iterations then
Increment number of sensors by 1

end if
Randomly place the sensors
Iterate through all points to see how many sensors they are in the range of
if Covered < 3 then

Not sufficient cover
end if
for All points in robot grid do

Create g and R based on sensors available
Calculate Jacobian G
Calculate the CRLB in that point
Insert calculated CRLB to CRLB_grid at same position as the point

end for
if Any point in CRLB_grid < max_CRLB then

Not sufficient CRLB
end if
Increment number of iterations by 1

end while



Chapter 4: Estimator Design 43

4.2.4 Performed experiments

In order to see how the planned system works and how the different sensors af-
fect the accuracy, multiple cases of this scenario will be experimented with. First,
there will be conducted a test where only range sensors are placed in the room to
see how many sensors are needed in order to obtain the wanted accuracy of the
whole room. Then the same test will be performed using only direction sensors.
Then these two will be combined, in order to see if the number of sensors will
be reduced given the same limit on the accuracy. From theory, Section 2.1.4, the
direction sensors have a higher accuracy when measuring, so an interesting factor
will be how the accuracy is changing if only the range or direction is used, and
if the case where both are combined gives the best result. Because of the ran-
domization in the optimization algorithm, the solution may differ between runs.
Multiple optimizations for each test will therefore be performed, where the results
from each run are saved and discussed.

The last test is to adjust the accuracy constraints. Instead of requiring a certain
CRLB value that all the points need to be lower than, an option is to set a limit
that only a certain percentage of the points in the grid are covered. It may not be
necessary that all the points are perfectly covered if many of the points around
it have good enough accuracy. If constraining the accuracy in this way results in
fewer sensors, it may be a valid method in some use cases where strict accuracy
over the whole plane is excessive.

An interesting factor here is whether the accuracy can be kept high while the
number of sensors is low. Since the current sensor system is working as it should
in a warehouse, it is important to see if the cost can be lowered by utilizing BLE
devices instead of the current equipment.
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Results

5.1 Results from the Net-Landing Scenario

5.1.1 Estimation with only Antenna Array Measurements

To see how the initial system with only one measuring element would perform,
only the direction finding antenna array was used to measure in the first test.
An IMU was present on the UAV, providing the process with internal acceleration
measurements. The erroneous antenna array directions and acceleration measure-
ments were presented in Section 3.1, in Figure 3.5 and Figure 3.6, respectively.
The directions were transformed into bearing measurements as stated in (4.13).
The test was performed by estimating the UAV’s state with an EKF as expressed
in Algorithm 1.

The initial error covariance matrix was initialized to

P0 = diag([0.1, 0.12, 0.01 · (50 · 9.81/1000)2]), (5.1)

which were obtained by tuning after an initial guess based on known errors. Each
of the numbers in the matrix is three-dimensional, corresponding to the NED axis,
resulting in a 9× 9 matrix.

The estimation of the UAV’s state was executed and the results after iterating
over the whole trajectory are shown in Figure 5.1. The error plots display an in-
creasing error in the north values in both the position and velocity states. The east
and down errors contained little visible uncertainty, but some sudden jumps are
present in the estimation. However, the east and down position and velocity errors
remained mostly around zero. The variance of the position estimation was taken
from the resulting error covariance matrix P̂. Extracting the position variances
and taking the square root gives the standard deviations, which are shown in Fig-
ure 5.1d. The standard deviation of the north position had an increasing trend,
while east and down appeared to reduce the uncertainty when the UAV moved
closer to the net. The estimated biases appeared to be more varying throughout
the trajectory, as displayed in Figure 5.1c.

44
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(b) Velocity estimation error.
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(d) Component-wise standard deviation of position estimation us-
ing only antenna array measurements.

Figure 5.1: Various plots of the results after estimation using only bearing meas-
urements.
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Table 5.1: Resulting beacon positions with corresponding CRLB peak values after
optimization. σCRLB =

p
PCRLB

σCRLB
max σCRLB

max < 30m Beacon Positions

CRLBoveral l 8.004m 1.920m [80,50,−50] [200,10,−40]
CRLBclose 12.215m 0.655m [40,−50,−50] [40,50,−50]
CRLBboth 8.004m 1.920 [80,50,−50] [200,10,−40]

5.1.2 Optimization of Sensor Placements

The optimization algorithm, Algorithm 2, has a run time that is very dependent
on the number of possible sensor positions since the EKF has to be executed for
each possible combination of positions. To reduce the run time, different actions
were performed. The grid in which the UAV is flying was set to be 500×100×50
meters, as seen in Figure 3.1. However, it was assumed that the beacons were not
placed any further than 200 meters north, substantially reducing the number of
positions. In addition to this, different step intervals were specified when creating
the grid. The north coordinates were 40 meters apart, the east coordinates 20
meters apart, and the vertical positions were separated by 10 meters. This reduced
the search space and prevented the search from exploring positions very close to
each other. If the beacons were placed nearby to each other, the geometry of the
measurements would be bad, and most likely not give good CRLB values. The
resulting CRLB values will be expressed by the standard deviations. The reason
for this is that explaining the error in meters instead of meters squared gives more
understandable values.

Table 5.1 indicates that both the solution which prioritizes the overall best
CRLB value, CRLBoveral l and the solution aiming for a low CRLB overall as well
as close to the net, CRLBboth, yielded the same beacon positions. The CRLB in
these cases had a maximum peak with a standard deviation of 8.004m. However,
the accuracy close to the landing net still achieved a quite low standard deviation
of 1.920m.

The achieved CRLB peak when solely focusing on obtaining the absolute min-
imal variance when the UAV was within 30 meters of the landing net, CRLBclose,
had a standard deviation peak of 12.215m. This is a much larger standard devi-
ation than CRLBbest , which was 8.004m. On the other hand, the accuracy close
to the net had a maximum CRLB value of only 0.655m. This sub-meter level of
accuracy when the UAV is moving closer to the landing net may be preferable.

The beacon positions from the optimizations are illustrated in Figure 5.2. It is
evident from CRLBclose that the beacons are positioned symmetrically with respect
to the antenna array, as seen in Figure 5.2a. By the illustrated feasible radii, both
beacons start to measure the UAV’s trajectory simultaneously. Figure 5.2b shows
that in CRLBoveral l and CRLBboth, beacon 2 is placed further from the antenna
array than beacon 1. Measurements are therefore available from beacon 2 earlier
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(a) Beacon positions from CRLBclose op-
timization
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(b) Beacon positions from CRLBoveral l
and CRLBboth optimization

Figure 5.2: Illustrations of the different beacon positions and the expected UAV
trajectory. The corresponding circle illustrates the feasible range of the same
colored beacon.

than from beacon 1. In addition, both beacons are placed east of the antenna
array.

The evolving standard deviations for the three cases are plotted together in
Figure 5.3. It can be seen that CRLBoveral l and CRLBboth had the same results as
they are overlapping. From here on, only CRLBoveral l will be discussed for simpli-
city. The higher peak of CRLBclose is clearly demonstrated in the figure. Both cases
have an increasing trend in the CRLB value, but CRLBoveral l seems to improve its
estimation earlier than CRLBclose as the standard deviation starts to decrease at
about 16 seconds. The first jump in CRLBoveral l reduced the variance slightly, but
a more significant drop happened at about 22 seconds. The error in CRLBclose con-
tinued to increase longer than CRLBoveral l , but when it first dropped, the change
was sudden and substantial. Both cases resulted in quite low uncertainties for the
last 8 seconds.

To test whether the beacon positions from the optimizations actually resulted
in reasonable navigation solutions, the EKF algorithm was executed with the vari-
ous positions. Both the results from CRLBoveral l and CRLBclose were tested to see
how the EKF estimation was affected by the difference in expected variance.
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Figure 5.3: The three results of CRLB standard deviation traces plotted together.
σoveral l and σboth are equal.

EKF performed with Results from CRLBoveral l

To execute the EKF with the results from CRLBoveral l , the Bluetooth beacon po-
sitions needed to be set with respect to the resulting positions as mentioned in
Table 5.1. With the beacon positions in this case, the resulting noisy range meas-
urements are shown in Figure 5.4. The figure shows that the first range measure-
ment came from beacon 2 and started after about 16.5 seconds. Beacon 1 was
placed so it started to measure from about 22 seconds, and the UAV was within
range of the landing net sensor at about 23.5 seconds. The bearing measurements
and incoming acceleration measurements were the same as in the previous test,
as shown in Figure 3.5 and Figure 3.6, respectively. By comparing the jumps in
CRLB values in Figure 5.3 with when the different measurements started, it can
be seen that the first change in variance happened when the first range meas-
urements started. The second jump was caused by the second beacon starting to
provide measurements.

The results after executing the EKF algorithm are shown in Figure 5.5. Fig-
ure 5.5a shows the estimation error in each of the NED positions. The position
estimation appears quite good in the first 16 seconds. After 16 seconds, the plot
displays a lot of sudden errors. This was when the first Bluetooth range sensor
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Figure 5.4: Range measurements when placing beacons wrt. the CRLBoveral l res-
ults.
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started to provide measurements. The errors are larger compared to when only
using bearing, but it appears to iterate around zero. The errors also appear to re-
duce after approximately 24 seconds, when all three range measurements were
available. Some increasing errors can be seen in the position errors after about
27 seconds, which was when beacon 2 got out of range and stopped measuring.
The same behavior is noticeable in the velocity error plots, as seen in Figure 5.5b.
Figure 5.5c shows the resulting estimated biases, which appear to be a lot more
varying than in Figure 5.1c. These changes also appear to start at the same time
as the first beacon starts to measure range.

The last plot from the EKF is the actual obtained standard deviation values of
the estimation from the error covariance matrix. The actual peak of variance of the
estimation resulted in a standard deviation of 12.056m which is much higher than
anticipated in the CRLB calculation for the optimal trajectory which was 8.004m.
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(a) Position estimation error.
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(b) Velocity estimation error.
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(c) Bias estimates.
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Figure 5.5: Various plots of the results after EKF performed with using beacon
positions from CRLBoveral l .
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EKF performed with Results from CRLBclose

The only factor that changed here concerning the CRLBoveral l case was the beacon
positions. The resulting noisy range measurements are shown in Figure 5.6. It only
appears to be two range measurements available, but as the beacons are placed
symmetrically to each other, they measured almost the same range at all times. As
a consequence, the measurements from beacon 1 and beacon 2 are overlapping
in the plot. The plot shows that the planned beacon positions resulted in all the
range measurements being available relatively late in the trajectory. The time the
sensors started measuring corresponds to the same time the variance from the
CRLB estimation was expected to rapidly fall, from Figure 5.3.

The EKF was executed with the same initial error covariance matrix as before,
(5.1). The results of the estimation are shown in Figure 5.7. The estimation error
in the NED positions can be seen in Figure 5.7a. In all directions, there are some
rapid-changing errors starting at approximately 23 seconds. This was the time
when the two beacons started measuring. At about 24 seconds, the last range
sensor was available, and the errors got instantly smaller. The error remained
stable and small for the rest of the estimation. The velocities, Figure 5.7b, also
displayed some increasing errors when the ranges were available. The estimated
biases acted the same way as in the CRLBoveral l case, by starting to show large
variations when the range measurements were available, shown in Figure 5.7c.
The actual standard deviations from the error covariance matrix of the estimation
are shown in the last plot Figure 5.7d. The CRLB calculated standard deviation
peak for this case was 12.215m, while the actual obtained standard deviation
peak of the completed estimation was 19.971m. The estimation therefore ended
up with almost twice the standard deviation, however, it can be seen from the plot
that the estimation close to the net still was able to obtain low standard deviations.
Looking at the standard deviation from the EKF of CRLBoveral l in comparison with
this, this case was still able to obtain a good accuracy faster, and remained good
for the rest of the estimation.
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Figure 5.6: Range measurements when placing beacons wrt. the CRLBclose res-
ults.
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(a) Position estimation error.
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(b) Velocity estimation error.
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(c) Bias estimates.
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(d) Component-wise standard deviation of position estimation.

Figure 5.7: Various plots of the results after EKF performed with using beacon
positions from CRLBclose.
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5.2 Results from Warehouse Scenario

The only variables which needed to be set to calculate the CRLB of the position
estimation were the different expected variances and the maximum range the
sensors could measure. The expected variances in the range measurements were
set to

σ2
ρ ≈ 2m2, (5.2)

and the bearing variance was taken from [18], and expected to be

σ2
η ≈ 1.2◦. (5.3)

The corresponding limits on the distances were set to be

dρ = 20m and dη = 50m, (5.4)

which are less than the maximum feasible distances with respect to the mentioned
values in theory, Section 2.1.4. However, they were reduced due to the indoor
limitations. If the distances were set to measure up to 100m, the radio signals
would most likely be reflected or blocked by something during propagation.

In all the performed tests below, the acceptable CRLB limit for all possible
grid positions was set to 9m2. This equals a standard deviation of 3m. In this
section, the resulting CRLB values will be discussed by the standard deviations.
The reason for this is that expressing the obtainable precision in meters instead
of meters squared creates more understandable values.

5.2.1 Optimization of Sensors Placements

Range estimating sensors only

The first optimization was performed by only placing sensors that measured range.
The optimization was performed 5 different times, resulting in different values for
the resulting number of sensors needed. The initial number of sensors was set to
38, which was decided by doing some tests with random numbers and choosing
the number which was too low to provide feasible answers. After the 5 iterations, 3
out of 5 optimal solutions required 40 range sensors to provide sufficient coverage
and accuracy. The resulting number of sensors from the different runs are shown
in Table 5.2.

Figure 5.8 shows the resulting CRLB values for one of the results which re-
quired 40 ranging sensors. Big parts of the grid have a dark purple color, meaning
a really low CRLB value. However, the edges have some spikes, causing the high
number of sensors needed.
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(a) 2D plot showing sensor placements and
each grid colored wrt. the CRLB value.

(b) 3D surface plot of CRLB in the grid when
only using range sensors.

Figure 5.8: Illustration of warehouse and sensor placements with corresponding
CRLB values with only range sensors. 40 range sensors used.

(a) 2D plot showing sensor placements and
each grid colored wrt. the CRLB value.

(b) 3D surface plot of CRLB in the grid when
only using direction sensors.

Figure 5.9: Illustration of warehouse and sensor placements with corresponding
CRLB values with only direction sensors. 28 direction sensors were used.

Direction Finding sensors only

The tests involving only Direction Finding devices were conducted in a similar
manner to the tests involving only range beacons. The initial number of sensors
was set to 28, as fewer direction sensors appeared to be needed to cover the
whole area after performing some random runs. After the 5 optimization runs,
the number of sensors needed varied from 28 to 30. The different results from the
runs are shown in Table 5.2.

Two of the results agreed that it was sufficient with 28 direction measuring
sensors, and Figure 5.9 shows one of these cases. By comparing this case with
the previous, where only range sensors were used, there are a lot fewer sensors
needed to provide sufficient accuracy. However, by looking at the plots, the overall
accuracy appears to be better when the high number of ranging sensors were used.
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Table 5.2: Resulting number of sensors in the two separate optimizations.

Run 1 2 3 4 5

Range only 41 42 40 40 40
Direction only 28 28 30 30 29

Combination of range and Direction Finding sensors

When both range beacons and Direction Finding devices were experimented with
together, it was assumed that it existed more possible configurations of sensor
placements than in the previous tests. For this reason, the optimization problem
was performed 10 times to accurately determine the best number of sensors.

As the two previous tests confirmed that there were fewer direction sensors
than range sensors needed in the grid, the initial guess for the number of sensors,
in this case, was 9 range sensors and 11 direction sensors. Choosing more direc-
tion sensors may result in fewer sensors needed overall. After 10 iterations, the
resulting number of sensors needed from each run is shown in Table 5.3. The av-
erage total number of sensors needed resulted in 23.2, while the lowest possible
with only one measurement type was 28.

The average number of sensors, after rounding the numbers up, was 11 range
sensors and 13 direction sensors. Figure 5.10 illustrates the results from run 1,
which was the optimization run with the lowest CRLB peak and the same number
of sensors as the average. From the colors in the plots, it can be seen that there
are some small peaks spread over the grid and not one peak that is significantly
larger than the others. Figure 5.10a shows that some of the sensors are clustered
together.

From Table 5.3, it can also be deducted that the run with the fewest sensors
is not necessarily the case with the worst CRLB peak. Run 5 was among the ones
with the lowest number of sensors, but has a lower peak and average standard
deviation than some of the cases where a higher number of sensors were used.
Run 5 is illustrated in Figure 5.11. It can be seen that there are more uncertainties
toward the walls in the room compared to Figure 5.10. However, the peaks remain
under 3m which is within the accuracy limit. This case may be applicable as it uses
the least amount of sensors in total. As Figure 5.11a displays, the sensors appear
to be less clustered than in Figure 5.10a.

In Table 5.3 the average CRLB standard deviation of the entire grid is also
included. It can be seen that the average value is much lower than the peaks for
all cases. None of the averages are over 2m, even though the limit is set to 3m.
This shows that the peaks represent only a small part of the uncertainties and that
most points on the grid have a much lower CRLB value.
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Table 5.3: Resulting number of sensors when optimizing with both types avail-
able. CRLB values are written as the resulting standard deviations.

Run Range sensors Direction sensors Total CRLB peak Avg. CRLB

1 11 13 24 2.75m 1.76m
2 11 13 24 2.92m 1.76m
3 10 13 23 2.97m 1.85m
4 11 13 24 2.93m 1.79m
5 10 12 22 2.84m 1.81m
6 11 13 24 2.85m 1.81m
7 10 12 22 2.97m 1.78m
8 10 13 23 2.95m 1.82m
9 11 12 23 2.75m 1.76m
10 10 13 23 2.96m 1.80m

Average 10.5 12.7 23.2

(a) 2D plot showing sensor placements and
each grid colored wrt. the CRLB value.

(b) 3D surface plot of CRLB when using
both direction and range sensors.

Figure 5.10: Illustration of warehouse and sensor placements with corresponding
CRLB values. Run 1. Average number of sensors with lowest CRLB peak.
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(a) 2D plot showing sensor placements and
each grid colored wrt. the CRLB value.

(b) 3D surface plot of CRLB when using
both direction and range sensors.

Figure 5.11: Illustration of warehouse and sensor placements with corresponding
CRLB values. Run 5. Fewest possible sensors with the lowest peak.
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Reducing the Level of Accuracy to 90% and 95%

The last experiments were performed by removing the constraint that all the
points in the grid must have CRLB standard deviation below 3m. Instead, the
number of points with accuracy over the limit was counted and used to calculate
the percentage of how many of the points had accuracy outside the constraints.
There were two different percentages set as the limit, one being 90% and the other
95%. The 90% limit meant that the optimization problem accepted the sensor
placements if less than 10% of the points had bad accuracy. Similarly for 95%,
only with a stricter limit.

The optimization problem was executed 5 times for each of the percentages,
and the resulting number of sensors in the 90% case are shown in Table 5.4. All
the runs resulted in the same number of sensors, even though the initial sensors
were 5 range sensors and 7 direction sensors. The results from the 95% limitation
are shown in Table 5.5. It displays some variations in the number of sensors, but
on average 8 range sensors and 10 direction sensors. The CRLB peaks from each
run are also shown in the table. It can be seen that the peaks are higher for the
cases of the 90% limit than the 95% limit. In addition, it is clear that even though
all the optimization solutions for the 90% case used the same amount of sensors,
the accuracy in the grids varied greatly, from 4.14m as the lowest to 8.56m as the
greatest. The best and worst cases from the 90% limit tests are shown side by side
in Figure 5.12. Figure 5.12a illustrates the run with the lowest peak, and it can
be seen that the points with CRLB over 3m are spread over the whole grid. The
results from run 2 with the highest peak show that almost all the CRLB values are
gathered in one corner, as seen in Figure 5.12b.

The CRLB peaks from limiting to 95% accuracy are in general lower than
the 90% limit peaks. It can be seen from Table 5.5 that the peaks are generally
still quite close to the CRLB limit of 3m. The lowest peak is obtained in run 4
and shown in Figure 5.13a, and the worst peak is from run 2 and shown in Fig-
ure 5.13b. As in the 90% case, the best case has the high CRLB more spread over
the entire grid, while the worst is gathered in one corner. However, the worst case
with a 95% limit is still quite a lot better than the worst case in the 90% case.

The calculated average values in both cases show that the standard deviation
remains below 3m even for the runs with the worst peaks. The average values for
the 95% case are in general lower than the average deviation in the 90% case,
but the difference is low. From the 90% case, Table 5.4, it can be seen that the
run with the highest peak actually has the lowest standard deviation on average.
Additionally, in the 95% case, Table 5.5, the run with the highest peak has the
second to best average standard deviation.
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Table 5.4: Resulting number of sensors for the 90% percentage limit of accuracy.
s. is short for sensors, Avg. short for average. The CRLB values are written as the
resulting standard deviations.

90%
Runs Range s. Dir s. CRLB peak CRLB Avg.

1 6 9 7.92m 2.48m
2 6 9 8.56m 2.30m
3 6 9 5.11m 2.31m
4 6 9 4.92m 2.38m
5 6 9 4.14m 2.31m

Average 6 9

Table 5.5: Resulting number of sensors for the 95% percentage limit of accuracy.
s. is short for sensors, Avg. short for average. The CRLB values are written as the
resulting standard deviations.

95%
Runs Range s. Dir s. CRLB peak CRLB Avg.

1 8 10 4.39m 2.17m
2 8 10 5.80m 2.15m
3 7 10 4.89m 2.17m
4 8 9 3.73m 2.17m
5 7 10 3.77m 2.09m

Average 7.6 9.8

(a) Run 5. Lowest peak. (b) Run 2. Highest peak.

Figure 5.12: 2D plots of CRLB values from the best and worst peak when using
the 90% limit.
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(a) Run 4. Lowest peak. (b) Run 2. Highest peak.

Figure 5.13: 2D plots of CRLB values from the best and worst peak when using
the 95% limit.
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Discussion

To examine the use of Bluetooth in navigation and localization cases, two differ-
ent scenarios have been assessed. Both scenarios needed to be tested in simulated
environments. As a result, the noises and expected errors were simulated as well.
This is an important aspect that must be taken into account when evaluating the
results. Errors which may be present in a fully operative scenario are hard to im-
itate and prepare for in a simulated scenario. This causes these simulated results
to most probably deviate from expected results in a real test. However, the exper-
iments were designed to include known issues and errors, to be as prepared as
possible for how such systems will behave in real-world scenarios. Even though
the applied estimators were subject to assumptions, the main focus of the thesis
was to analyze how the sensor positions and resulting sensor geometry can be
optimized to lower the uncertainty. The issue of perfecting the estimators may be
a subject of interest after the optimal sensor placements have been found.

6.1 Discussion of the Net-Landing Results

The reason for performing the net-landing experiments was to show that Bluetooth
Direction Finding can be used in navigation outdoors if aided by other measure-
ments. This was done by showing that it is possible to provide robust navigation by
including additional range-measuring beacons that have optimized placements.
The problem was solved by describing the system using process and measurement
models which could be used in an EKF. This allowed for the estimation of how the
Bluetooth measurements were able to navigate in relation to a true trajectory.

During the development of the models, simplifications were made. One of
the simplifications was ignoring orientation as a state of the UAV. The absence of
information about the system’s attitude could potentially have an impact on the
navigation. This also resulted in the absence of rate-gyro in the IMU. Including a
gyro would provide additional measurement in the control input of the process
model which would contribute to better internal navigation, possibly making the
system better at handling missing measurements. On the other hand, the gyro
measurements would include additional errors in the process model, potentially

61
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increasing the position covariance via the variance, cf. Section 4.1.2. However, as
the main objective was to optimize the sensor positions to obtain the best accuracy,
ensuring that the estimator was optimized was not the main focus.

The choice of using an EKF for the estimation was due to the nonlinear nature
of the measurements with respect to the UAV’s state. However, the EKF uses lin-
earization and performs the estimation on the linearized system. This works great
given mildly linear models, but the equations used in this case are quite nonlin-
ear. The linearized system may therefore provide results that deviate from the true
system, and how accurate the linearization is depends on the choice of the oper-
ating point. The system appeared very sensitive to the initialization values, and
a reason for this may be the linearization. With good initialized matrices such as
P0, the system would be less sensitive to the linearization and, as a result, provide
better estimation. Poorly tuned metrics may result in huge deviations from the
true value. Given this weakness in EKF, a possibility may be to evaluate different
estimators. One technique is to use the Unscented Kalman Filter (UKF). While
the EKF only uses one point in its approximation, the UKF uses multiple points
called sigma points. These sigma points are deterministically chosen and repres-
ent the whole distribution, which results in more precise approximations. UKF is
a method that overcomes the limitations that come from linearization in the EKF
[54].

One of the assumptions which resulted in the use of an EKF was that the noises
were Gaussian noise with constant variance. As briefly mentioned in the theory of
Direction Finding, Section 2.1.2, the factors that affect the elevation angle error
create a varying error. This will result in time-varying noises and consequently
a varying measurement noise covariance matrix. Assuming that the noises are
constant will therefore result in some errors when performing these experiments
in the real world. It can therefore be interesting to look into methods for handling
varying errors, such as adaptive filters.

The first test was performed only using the antenna array for navigation. The
antenna array was a Bluetooth Direction Finding device that measured the azi-
muth and elevation directions. These angles were transformed into bearing meas-
urements, describing the relative direction of the UAV with respect to the array.
The estimation results were better than expected. It could be seen from the results
in Figure 5.1 that the filter struggled with the estimation in the north direction,
as the system had no measurements describing how far away UAV was from the
array. The only information deducted from the antenna array was the bearing
unit vector representing where the UAV is on a line. Since the antenna array axis
was aligned with the NED axis, the measured azimuth explained the east angle
while the elevation represented the down angle. As a result, the position estima-
tion in these two directions was quite good as they were able to use both the IMU
and direction measurements in the estimation. An increasing error was present
in the north position as the direction measurements do not contain information
about this and the IMU measurements are not stable enough to solely handle the
navigation. The position error in the north direction in Figure 5.1a illustrates the
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weakness of only relying on the antenna array for incoming measurements.
As the simulated scenario takes place over a relatively short time, the estima-

tion accuracy stays within reasonable values. However, the error covariance mat-
rix values show an increasing trend in the north position. Envisioning a longer
simulation time, the error can be expected to increase a lot more. Consequently,
it can be assumed that the error in the north direction will continue to increase
as there are no additional measurements to correct for this drift. The result of
this consequence is that navigation solely based on the direction will not provide
sufficient accuracy for the UAV to land.

In addition to this, an aspect that is not covered in these tests is reflections
on the water’s surface. The reflection will lead to multipath, creating remarkable
errors in the elevation angle. With only the direction and acceleration measure-
ments, such errors would greatly affect the system as there are no other measure-
ments to prevent these sudden changes. Since the elevation angle is present in
the calculation of all the bearing values, this error will greatly affect the bearing
and consequently the estimation. Considering these real-world issues, a naviga-
tion system only depending on the antenna array can not be considered robust.

The lack of full position observability in only using one antenna array was the
reason for experimenting with additional beacons for range measurements. Even
though it is a fact that BLE beacons measure ranges with a significant amount of
errors, the experiments were performed to see if they can be used to assist the an-
tenna array measurements. The geometry of range sensors has a huge influence
on the accuracy of the object localization, which was a reason for performing an
optimization based on moving the beacons around. The limited feasible range of
the beacons was also a reason for exploring various sensor placements. Where the
beacons are placed with respect to the trajectory would determine when the UAV
is measured, hence affecting the accuracy throughout the trajectory. The accuracy
was calculated by using the CRLB technique. This method was able to calculate
where the beacons should be placed to provide good navigation of the UAV, either
over the entire trajectory or close to the landing net. The resulting CRLB values il-
lustrated how the bacon positions affected the accuracy of the system. The graphs
resulting from the optimizations displayed that the system’s standard deviations
were increasing as long as no beacons were available. However, the moment a
beacon was in the range of the UAV, the standard deviations had a sudden reduc-
tion. The deviations continued to decrease as more beacons got available. This
illustrated the expected improvement in the estimation given additional beacons.

The optimization algorithm resulted in two different positions regarding where
in the trajectory the optimization was focused on obtaining high accuracy. There
were three different optimizations performed, however, two of the results were
identical. Hence, only the cases focusing on good accuracy close to the net and
good accuracy overall were considered. The resulting positions from both cases
were able to achieve adequate uncertainty when the UAV was close to the net.
The size of the net can be designed given its use case, hence the necessary accur-
acy close to the net will depend on the size. The choice of the best positions is
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therefore also dependent on the wanted outcome. When the focus was only on
assuring good accuracy close to the net, the uncertainty increased a lot through-
out the trajectory before the beacons got available. In this case, the navigation
further away will still be weak but the beacons strengthen the navigation toward
the landing-net. In the case where the overall accuracy was a priority, the beacons
were placed a bit further from the landing-net, ensuring coverage of the trajectory
for a longer period, but with a reduced accuracy close to the net.

When the positions from the optimizations were used for estimation with the
EKF, the actual estimation variance had much higher peaks than the CRLB value
anticipated. The results also showed that the estimation got extremely unstable
the moment range measurements were included in the model. However, as soon as
more range measurements were available, the estimated states were able to move
closer to the true value and stay close to it. There are different possible reasons
for the sudden errors when the range measurements start. One reason may be
that the system was already slightly inaccurate due to the linearization, hence
the inclusion of extra input created an unbalance which resulted in erroneous
estimation. Another reason could be that since the range measurements contained
more noise than the direction and acceleration measurements, the inclusion of
only one sensor provided more errors than assistance to the estimation. It can
therefore be seen from the results that the big errors only occur when there were
only one or two range sensors, while when all three range sensors were available
the sudden changes in the estimation stopped and the result remained close to
the actual state.

The CRLB variances are based on an ideal case, but as the results demon-
strated, the actual variances obtained when performing the estimation were sig-
nificantly larger. The changes in the variances throughout the estimation remained
the same as the CRLB anticipated, but the values were almost doubled. The CRLB
is a value given a perfect system, which means that since the results were far from
optimal, it is possible to obtain better accuracies given more thorough tuning of
the system. The initial covariance matrix P0 was obtained by tuning. When vary-
ing the values in this matrix it showed that the estimation was heavenly affected
by the initialization. Prioritizing better tuning of this matrix may result in better
results. The estimation may also benefit from tuning the noise covariance matrices
Rk and Qk, regarding what factors it is advantageous that the system prioritizes.

The results from adding beacons to the model with the antenna array show
no apparent improvement as the results appeared noisier; nonetheless, the addi-
tional measurements helped the estimation from deteriorating and may provide
crucial compensation if the bearing measurements become heavily disturbed by
multipath. Adding sensors elsewhere than by the antenna array may also help the
system in case of blockage between the UAV and the antenna as there still may
be sensors in the line of sight of the UAV. It shows from the results that the ad-
ditional beacons also help the estimation of the position in the north direction.
Relying only on the antenna array resulted in poor estimation in the north dir-
ection, demonstrating the need for additional measurements to avoid a drift that
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can have critical consequences.
An interesting result that can be seen in all the different cases is the behavior of

the estimated biases. Due to its implementation in the model, it has a decreasing
value. However, the results show that the more the estimated positions and velo-
cities deviated from the true values, the more the biases changed as well. In the
case with only the antenna array measuring, the biases changed quite gradually.
In the two cases where range measurements were used as well, the changes in the
biases were much larger and happened more suddenly. The bias states were im-
plemented to account for the biases in the system’s INS, however, it also provides
an additional metric in the estimation which tries to reduce the estimation errors.
It can be seen that the changes happening when only using the antenna array
were synchronized with the increasing error that could be seen in the estimation.
The sudden changes of the biases when measuring ranges as well as directions
started simultaneously as the range measurements started and the estimation er-
ror increased. As the estimator became more uncertain and the states attempted
to stabilize the system, the bias estimations showed significant changes.

The results of this scenario highlight that relying solely on BLE Direction Find-
ing may not offer sufficient support in a navigation case. However, incorporating
multiple sensors in a well-determined geometry can significantly enhance the ac-
curacy of a navigation system throughout a simulation. It is possible to move the
beacons around in order to obtain the wanted coverage of a trajectory. Adding
more than three range measurements will further improve the navigation accur-
acy, but also increase the cost and complexity. As proven by the results, there is a
trade-off between wanted accuracy throughout the trajectory and wanted accur-
acy close, which is a choice that will change depending on the use case.

6.2 Discussion of the Warehouse Results

Even though there already have been performed multiple experiments with Direc-
tion Finding for indoor localization, the experiments performed here provide use-
ful information about the usage of Direction Finding combined with BLE beacons
in an industrial case where the accuracy is critical. The chosen scenario for this
case was the localization of autonomous robots in a warehouse. The goal of de-
termining how many of the different Bluetooth sensors were needed to achieve
sufficient accuracy for all possible positions was solved by a randomized optimiz-
ation algorithm calculating the CRLB for each point.

The randomization in the algorithm, Algorithm 3, may lead to a limitation
in the credibility of the results. As the sensors were placed randomly and the
only constraint was that enough sensors were needed to cover each point, there
was no guarantee for the geometry of the sensors. As previously discussed, good
geometry is crucial for achieving the best possible result, and since the imple-
mented algorithm had no additional checks to ensure this, the randomized pos-
itions may suffer from poor geometry. This effect could be seen in many of the
tests performed. There were in many cases multiple sensors clustered together
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in the room, for example in Figure 5.8 and Figure 5.10, reducing the effective-
ness of each sensor. An effect of this was that the algorithm may have concluded
with needing more sensors to provide sufficient coverage of the entire grid, even
though it would be enough if the sensors already implemented were placed with
better geometry.

Executing each optimization multiple times was an attempt to avoid the worst
cases of randomization. This appeared to work as expected. By inspecting the res-
ults of optimization using both direction and range measurements in Table 5.3, it
can be seen that run 5 obtained the lowest peak with the fewest number of sensors
among all the runs. This case is shown in Figure 5.11, which illustrates that the
sensors were quite well spread. On the other hand, the results showed that an-
other case, run 3, had a higher peak and average standard deviation, but required
one more sensor to achieve this. This illustrates the importance of good geometry
between the sensors. By having multiple runs with the same assumptions, the res-
ults would probably differ in both the number of sensors and achievable accuracy,
and it will be possible to choose either the fewest number of sensors or the best
accuracy depending on the use case. As the number of runs increased, it was ex-
pected that the uncertainty caused by randomization would decrease, leading to
a higher level of confidence in identifying the chosen result as the best option.

Another option that could be implemented to minimize the effect of random-
ization was to increase the number of iterations performed before incrementing
one of the sensors. By doing this, the runs would take much longer time to fin-
ish, but the algorithm would provide a more thorough search before concluding
with the need for extra sensors. As this was solely an issue based on how time-
demanding the optimization would be, the choice of the number of iterations
and runs performed can be decided depending on how important it is to obtain a
good accuracy with the fewest possible sensors and how much time one is willing
to spend on optimizing. The most accurate optimization technique would be to
test every possible combination of sensor placements and calculate CRLB for all
cases and only return the case with the fewest sensors and lowest variance. This
technique will take an extremely long time to optimize, but with enough time to
spare, it is doable.

Unforeseen reflections and blockage of the Bluetooth signals have not been
considered in these experiments, but are issues that are expected to be present
in a real warehouse scenario. The inclusion of the poles in the warehouse was an
illustration of how the sensors were affected by items blocking the signal, but it
does not include any unexpected blockage. However, in such a warehouse case,
there are few things that are expected to suddenly enter the room and block the
signals. Reflections, on the other hand, are assumed to be a bigger problem. The
assumed variances used to calculate the CRLB were based on previous indoor
experiments where reflection was present, but cases where reflections cause larger
and sudden errors were not taken into account. As the sensors and the grid are
static, the issue with reflection may not cause a big issue in reality. The reason for
this is that the reflection happening will always be the same as everything remains
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in the same place, making it possible to calibrate the assumed errors. Errors such
as reflection and blockage, which only affect the accuracy for a short period, are
not critical issues in this scenario. The reason for this is that it only reduces the
localization ability for a short period, which may slow down the efficiency, but not
create any fatal mistakes. If the use case requires stable accuracy for all points at all
times, a solution is to use additional sensors. As blockage is caused by something
being in between a point and a sensor, additional sensors somewhere else in the
room are unaffected by the blockage and are still able to provide measurements.
This is also a valid solution to limit the reflection errors, as the errors get reduced
by over-determining the localization system.

An issue that may affect the CRLB in the grid is that the sensors measure
direction and range in 3D, while the location they measured is known to be in 2D.
This may lead to an unnecessary error effect. As the grid is placed in z = 0 there is
no need to include the resulting uncertainty of the height as the height is correctly
known beforehand. Including a method for disregarding the height uncertainties
may improve the accuracy of the sensors, hence reducing the number of sensors
needed.

The optimizations with range and direction sensors were performed separ-
ately to strengthen the theory that Direction Finding is a more accurate local-
ization technique than BLE beacons. The direction sensors have lower variance
and higher range, resulting in fewer sensors needed to sufficiently cover the area.
Even though Direction Finding sensors have such high accuracy, the results from
optimizing with both sensors available resulted in fewer sensors needed in total
than Direction Finding needed by itself. Choosing an excess of direction sensors
over range sensors means that the direction sensors are most trusted to localize
accurately, but the ranging sensors can aid the direction sensors.

The results from optimizing with both range and direction sensors displayed
that even though many of the peaks were quite close to the CRLB limit, the average
standard deviations over the whole grid were considerably lower. This indicates
that the peaks only reflect a small area in the covered grid, while the rest of the
grid is generally better covered. The extensive coverage in most areas suggests that
there is an excess of sensors compared to what is actually required. A possibility
can be to test if some sensors can be removed from the areas where the precision
is greater than required and see if the coverage still remains good enough.

The final tests changed the accuracy constraint to only count for a certain
percentage, which demonstrated that relaxing the accuracy constraint by a few
percentages reduced the number of sensors quite a lot. When 90% of the points
had high enough accuracy, the number of sensors was greatly reduced. The issue
with allowing so many points to have bad accuracy is if all the points gather in the
same area. The uncertainty in that area will then be terrible, and the system has no
control there, resulting in high CRLB peaks. This was illustrated in Figure 5.12b,
which has one corner with almost no sensors, hence worse coverage. The best case
with the 90% turned out to be quite acceptable, however, there were still some
larger areas with bad coverage as seen in Figure 5.12a. When instead choosing the
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limit to be 95%, the number of sensors needed was still reduced quite a lot, while
the peaks maintained a satisfactory level. Figure 5.13b showed the case with the
highest peak. It only appeared to be a few points that were over the limit, while
the rest were good. That may be enough to retain good knowledge over the point
in the grid. The best case with a 95% limit, Figure 5.13a, illustrated some high
values toward the edges and corners, but no large areas.

The average CRLB values of the different percentage tests, shown in Table 5.4
and Table 5.5, displayed an interesting behavior. Even though the peaks in some
of the runs were far higher than the 3m limit, the average deviation still remained
below the limit. The worst peak of the 90% tests was much higher than the others
but resulted in the lowest average standard deviation. The reason for this is when
all the badly covered areas are gathered in one corner, there are most likely no
sensors in that area. As a consequence, the sensors need to be placed somewhere
else, resulting in better coverage in the rest of the grid. Since all the 90% runs
resulted in the same number of sensors, the difference in peak and average val-
ues were only dependent on the geometry of the sensors. The average values in
the 95% limit were all close to 2m, which is a lot lower than the 3m limit. These
results illustrate the possibilities for relaxing the accuracy constraint while still
maintaining a good average accuracy. Both cases reduced the number of sensors
needed compared to the case with strict accuracy. The choice of which percentage
is preferable is dependent on the use case. The results show that it may be more
uncertainty with a lower percentage, but the number of sensors needed was re-
duced a lot. On the other hand, the higher percentage did not reduce the number
of sensors that much, but the peaks were not unrealistically big and the average
standard deviation remained really low. Nevertheless, both cases illustrated the
importance of good geometry of the sensor positions as the peak sizes changed a
lot even though the number of sensors was mostly the same.

The lower bound of the variances was set to 9m2 for all the points in the ware-
house. This number was randomly set, only illustrating a high accuracy overall.
As the wanted accuracy is solely dependent on the use case and how critical good
coverage is, these experiments only display that it is possible to place sensors in
order to obtain the wanted accuracy. If a case depends on even higher accuracy,
the same optimization algorithm can be executed, only changing the limit of ac-
ceptable CRLB values. This way it is possible to adjust the scenario either way
necessary.

Based on the results from the various experiments it can be seen that using a
combination of BLE Direction Finding and range beacons may provide sufficient
coverage of a warehouse. Due to noises and limitations such as blocking and re-
flection, it may not be the best solution to apply Bluetooth devices on their own
to handle the entire navigation. Nevertheless, as Bluetooth devices are cheap and
easy to deploy, a navigation system utilizing Bluetooth may be a great solution as
a spare system in addition to other existing systems. The Bluetooth system can be
employed as a separate system and handle the navigation in case the others fail.
Given the use of Bluetooth devices only as an emergency system, it may be suffi-
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cient to limit the accuracy within a percentage, obtaining good enough accuracy
in important sections while other sections can remain uncovered. This reduces the
number of sensors needed, creating a particularly low-cost system. The cost of the
current system is unknown, but it uses both cameras and other sensors which are
expected to be quite more expensive than BLE devices. Investing in a cheap, but
reasonably robust security system with BLE sensors may therefore be preferable.



Chapter 7

Closing remarks

7.1 Conclusion

The two different analyses conducted to examine the usage of Bluetooth sensors
for navigational purposes provided useful insight. It is important to note that even
though the tests aimed to include known errors for a realistic outcome, the simu-
lated scenarios may deviate from fully operative industrial scenarios.

The UAV net-landing scenario was implemented to demonstrate how Bluetooth
Direction Finding combined with additional range-measuring beacons can provide
robust navigation outdoors. As it is desirable to keep the navigation system low-
cost, it may appear suitable to only employ the antenna array for direction meas-
urements. However, even though the range beacons appear to include more noise
in the estimation, they provide valuable robustness to the system. The antenna
array is prone to many errors which are not considered here, which makes it ne-
cessary to have more sensors to rely on during navigation to ensure robustness
throughout. The different results from the optimization display the importance of
thorough placements of the sensors.

The warehouse scenario illustrated how Bluetooth technology can be utilized
for navigation indoors. The industrial case is an example of how Bluetooth sensors
can be used even when there are high demands on the system’s accuracy. The res-
ults showed the importance of sensor geometry, and how poor geometry may res-
ult in the need for additional sensors. Multiple runs of the optimization algorithm
helped minimize the impact of the random sensor placements, allowing for the
choice of fewer sensors or better accuracy depending on the use case. Factors such
as unforeseen reflections were not considered in these analyses but are expected
challenges in real warehouse scenarios. The results show that it is possible to
utilize Bluetooth sensors indoors and that the number of sensors needed is only
depending on how accurate the coverage is expected to be.

To conclude, Direction Finding is a more accurate navigation technique than
Bluetooth beacons but it has been shown that using a combination of these sensors
provides sufficient accuracy in both scenarios. The analyses provided insight into
the limitations in both systems and how tuning and sensor placement optimization
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is necessary to achieve accurate and robust results if tested in the real world.

7.2 Further Work

One main step to further develop the understanding of using Bluetooth techno-
logies in navigation is to perform some experiments in the real world in order to
collect data on how the sensors actually measure. With real measurements as a
base, there is a possibility to create and experiment with more realistic scenarios,
hence creating more reliable results. With the systems created here, it may not be
enough information to directly deploy them in the real world. After experimenting
with true data, testing the systems in real life can be possible.

As briefly mentioned in the discussion, an option to improve the net landing
scenario is to implement the UKF. The EKF may not be the best-suited estimator
in this case as it suffers from some limitations. It may therefore be beneficial to
explore other estimators. Another option is to look into the benefits of adaptive
filtering to consider the time-varying errors.

An improvement on the warehouse scenario can be to implement a more thor-
ough optimization algorithm that can provide good sensor geometry and test dif-
ferent combinations of the number of direction versus range sensors. It may be
beneficial to thoroughly optimize the placements by iterating over all possible
combinations.

It will be interesting to see the possibilities that follow from Bluetooth if the
SIG releases a high-accuracy ranging solution in addition to the existing Direction
Finding feature. How the combination of high-accuracy Bluetooth range and Dir-
ection Finding features can be used to obtain accurate navigation systems is an
evolution that will be fascinating to follow.



Appendix A

Additional formulas

The matrix Mη maps the measurement noise from spherical coordinates to Cartesian
coordinates as shown in (A.1).
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