@ NTNU

Kunnskap for en bedre verden

TTK4550: SPECIALIZATION REPORT

Black-Box Modeling of an Electric
Submersible Pump Lifted Well
Using an Echo State Network

Author:
Ola Solli Grgnningsacter

Fall 2022

Abstract

This report documents the conducted work with my specialization project, which was
completed as a part of the Master’s program in cybernetics and robotics at NTNU. The
project serves as preliminary work to my Master’s dissertation which will be submitted
in July, 2023. Today, optimization plays an important role to maximize profit and pro-
duction in modern industries. Moreover, it is probably more important now than ever
to at the same time minimize climate footprints as the world is working towards a goal
of net zero emissions. However, most optimization methods require accurate models
to provide satisfactory results. Unfortunately, many modern processes have become
too complex for sufficiently accurate models to be derived using first principles like
mass balance. New modeling methods like black-box modeling have therefore become
a subject of interest. Another characteristic of modern industry is the large amount of
data that is being monitored and collected. This data has proven valuable when mod-
eling using artificial intelligence (AI) which has been proven as a powerful black-box
modeling approach in recent research. In this specialization project, a third-order non-
linear dynamical system was modeled by utilizing a modern recurrent neural network
(RNN) architecture called an echo state network (ESN). The system of interest was
an electric submersible pump (ESP) lifted well which is of great interest in modern oil
industry. More specifically, a simulator for this system and a framework for the ESN
were implemented. Then, another RNN architecture, a long short-term memory net-
work (LSTM) was implemented to compare with the ESN. Both networks were able to
successfully recognize the nonlinear behavior of the ESP lifted well with a total average
mean absolute percentage error (MAPE) below 1% when compared to the simulator.
Although the project did not show any significant difference in average performance, it
did show that the ESN required far less training time with 3 seconds while the LSTM
required 17.5 minutes. Furthermore, it also showed that the hyperparameters in the
ESN were easier to obtain. The project thus concludes that the ESN is better suited
than the LSTM when it comes to black-box modeling of nonlinear dynamical systems
if a sufficient amount of data is available.

Sammendrag

Denne rapporten dokumenterer arbeidet med spesialiseringsprosjektet mitt som ble
fullfgrt som en del av masterprogrammet i kybernetikk og robotikk ved NTNU. Pros-
jektet er pa mange mater et forarbeid til masteroppgaven jeg skal levere juli 2023.
Optimering spiller i dag en viktig rolle for a maksimere profitt og produksjon i mod-
erne industrier. Dessuten er det antakelig viktigere enn noen gang a samtidig minimere
klimaavtrykket, da verden jobber mot et mal om netto nullutslipp. Mange optimer-
ingsmetoder krever imidlertid ngyaktige modeller for a gi tilfredsstillende resultater.
Dessverre har mange moderne prosesser blitt for komplekse for at tilstrekkelig ngyaktige
modeller kan utvikles ved hjelp av forste prinsipper som massebalanse. Derfor har nye
modelleringsmetoder som black-box modellering blitt et interessant tema. Et annet
kjennetegn ved moderne industri er den store mengden data som samles. Denne dataen
har vist seg nyttig for modellering ved hjelp av kunstig intelligens som i nyere forskning
ogsa har vist seg a vaere et kraftig redskap for black-boxr modellering. I dette spesialis-
eringsprosjektet ble et tredjeordens ulinesert dynamisk system modellert ved hjelp av
en moderne rekurrent nevralt nettverk (RNN) arkitektur med navn echo state network
(ESN). Systemet som ble benyttet var en modell av en electric submersible pump (ESP)
hevet oljebrgnn. Denne installasjonen er av stor interesse i moderne oljeindustri. I lgpet
av arbeidet ble det implementert en simulator for dette systemet, samt et rammeverk
for implementasjon av ESN. Videre ble ogsa en annen RNN-arkitektur kalt longs short-
term model (LSTM) implementert for sammenlikning med ESN. Begge nettverkene
klarte a modellere den ulinesere oppfgrselen til den ESP-hevede brgnnen med en total
gjennomsnittlig absolutt prosentvis feil (MAPE) pa under 1% nar sammenliknet med
simulatoren. Til tross for at prosjektet ikke viste noen signifikant forskjell i gjennom-
snittlig ytelse, viste det at ESN krevde langt mindre treningstid med 3 sekunder, mens
LSTM trengte 17.5 minutter. Prosjektet viste ogsa at det var enklere a finne hyperpa-
rametere til ESN. Prosjektet konkluderer derfor med at ESN er et bedre verktgy enn
LSTM for black-bor modellering av ulinesere dynamiske systemer sa lenge nok data er
tilgjengelig.

ii

Contents

Abstract

Sammendrag

List of Figures

List of Tables

Nomenclature

1

3

Introduction

1.1 Background and Motivation
1.2 Research Objectives and Research Questions
1.3 Structure of the Report oL

Theory

2.1 Electric Submersible Pump
2.1.1 Introduction
2.1.2 Artificial Lifting
2.1.3 History and Challenges
2.1.4 Components and Their Functionality

2.2 Modeling of Dynamical Systems Using Neural Networks
2.2.1 Introduction
2.2.2 Differential Equations and Black-Box Modeling
2.2.3 Perceptrons and Artificial Neural Networks
2.2.4 Training of Artificial Neural Networks
2.2.5 Gradient Decent and Back-Propagation
2.2.6 Recursive Neural Networks

2.3 Echo State Networks
2.3.1 Introduction
2.3.2 Structure
2.3.3 Reservoir Size
2.3.4 Sparsity
2.3.5 Spectral Radius
23.6 Leak Rate
2.3.7 Input Scaling
2.3.8 Training of ESNs

2.4 Long Short-Term Memory Networks
2.4.1 Introduction
242 The LSTM Cell
24.3 Training of LSTMs

Method

3.1 Mathematical Model of an ESP Lifted Well
3.2 Implementation of the ESP Lifted Well Simulator
3.3 Confirmation of the Simulator Implementation

il

ii

iv

vi

vil

N DN

13 S SO

10
10
11
14
14
14
16
16
16
17
17
18
18
18
18
20
20
20
21

3.3.1 Fully Open and Fully Closed Choke Valves 26

3.3.2 Step Response of the Choke Valve 27

3.3.3 Gradually Increased Motor Frequency 29

3.4 System Excitation Using APRBS 30
3.5 Generating the Training, Validation and Test Set 31
3.6 Error Metrics 33
3.7 Implementation of the Echo State Network 34
3.7.1 Searching for Hyperparameters 34

3.8 Implementation of the Long Short-Term Memory Network 39
3.8.1 Selecting Hyperparameters 39
Results 42
4.1 Tracking of the Test Set 42
4.2 Step Response of the Choke Valve 43
4.3 Gradually Increased Motor Frequency 44
Discussion 45
Conclusion and Further Work 47
6.1 Conclusion 47

6.2 Further Work 47
Appendices 48
Appendix A Resulting Plots From the Reversed ESP Experiments 48
A.1 Reverse Step Response of the Choke Valve 48
A.2 Gradually Decreased Motor Frequency 49
Appendix B Results From the Reversed ESN and LSTM Experiments 50
B.1 Revers Step Response of the Choke Valve 50
B.2 Gradually Decreased Motor Frequency 51

v

List of Figures

1

11

12

13
14
15
16
17
18
19
20
21
22
23

24

25

26

27

Conventional ESP installation borrowed from (Diaz and Nicolas, 2012).
Schematic model of a perceptron inspired by a figure from a lecture by
(Langseth, 2022).
Plot of popular activation functions. These are the hyperbolic tangent,
the sigmoid function and the ReLU function.
Schematic model of a general deep feedforward network.
Schematic illustration of unfolding in RNN inspired by a figure in (Good-
fellow et al., 2016).
Schematic illustration of the general RNN inspired by a figure in (Good-
fellow et al.; 2016).
Schematic illustration of the general ESN inspired by a figure in (Jaeger,
2007). . o
Schematic illustration of the traditional LSTM cell inspired by a figure
from (Smagulova and James, 2020).

Mathematical ESP model inspired by a figure from (Binder et al., 2015).

Results from running simulator with fully open and closed choke valve
and constant motor frequency.o
Results from running simulator with a step in the choke valve opening
and constant motor frequency.
Results from running the simulator with constant choke valve opening
and gradually increasing motor frequency.
Example of a PRBS excitation signal.
Example of an APRBS excitation signal.
Training set used for training the ESN and the LSTM.
The generated validationset..
Grid search for the regularization coefficient.
Grid search for the reservoir size. 0L
Broad (a) and narrow (b) grid search for the input scaling.
Broad (a) and narrow (b) grid search for the leak rate.
Grid search for spectral radius.
Schematic illustration of the implemented LSTM network.
Performance of the LSTM on the validation set after each epoch in the
preliminary LSTM run. o
Results from the ESN (a) and LSTM (b) models tracking the test set.
The network outputs are plotted in orange, and the simulator output in
blue. e
Responses from the ESN (a) and LSTM (b) after a step in the choke
valve. The network outputs are plotted in orange, and the simulator
output in blue.
Responses from the ESN (a) and LSTM (b) networks when gradually
increasing motor frequency. The network outputs are plotted in orange,
and the simulator output in blue.,
Results from running the simulator with a reversed step in the choke
valve opening and constant motor frequency.

7

12

13
13

15

15

16

21
22

26

28

29
30
31
31
32
35
36
36
37
38
39

40

42

43

44

28

29

30

Results from running the simulator with constant choke valve opening
and gradually decreasing the motor frequency.
Responses from the ESN (a) and LSTM (b) after a reverse step in the
choke valve. The network outputs are plotted in orange, and the simu-
lator output in blue.
Responses from the ESN (a) and LSTM (b) networks when gradually
decreasing motor frequency. The network outputs are plotted in orange,
and the simulator output in blue.,

vi

49

20

List of Tables

Model parameters used in the simulator. These values are obtained from
(Binder et al., 2015).
Coefficients used for VCFs and ESP characteristics. These values are
obtained from (Binder et al., 2015).
Amplitude bounds for the APRBS.
Resulting hyperparameters used in the ESN implementation.
ESN: calculated errors from tracking the test set.
LSTM: calculated errors from tracking the test set.
ESN: calculated errors from the choke valve step test.
LSTM: calculated errors from the choke valve step test.
ESN: calculated errors from gradually increasing motor frequency. . . .
LSTM: calculated errors from gradually increasing motor frequency. . .
ESN: calculated errors from the reverse choke valve step test.
LSTM: calculated errors from the reverse choke valve step test.
ESN: calculated errors from gradually decreasing motor frequency. . . .
LSTM: calculated errors from gradually decreasing motor frequency. . .

vil

24

25
32
38
42
42
43
43
44
44
20
20
51
51

Nomenclature

Abbreviations

Al

ML
NN
ANN
RNN
ESN
LSM
LSTM
BPTT
SGD
Adam
MSE
(N)RMSE
MAPE
PRBS
APRBS
ReLLU
MBC
MPC
ESP
VSD
DAE
ODE
BHP
VCF

Artificial Intelligence

Machine Learning

Neural Network

Artificial Neural Network
Recursive Neural Network

Echo State Network

Liquid State Machine

Long Short-Term Memory
Back-Propagation Through Time
Stochastic Gradient Descent
Adaptive Moments

Mean Square Error

(Normalized) Root Mean Square Error
Mean Absolute Percentage Error
Pseudo-Random Bit Stream
Amplitude-modulated Pseudo-Random Bit Stream
Rectified Linear Unit
Model-Based Control

Model Predictive Control
Electric Submersible Pump
Variable Speed Drivers
Differential Algebraic Equation
Ordinary Differential Equation
Blowout Horsepower

Viscosity Correcting Factor

viil

1 Introduction

1.1 Background and Motivation

In many real-world industries, it is both desired and necessary to not only control, but
also optimize either parts of or the entire industrial process. Oil and gas production
is one such industry that over the years has evolved to be one of the most important
and economically profitable industries in the world (Stu, 2018). Because of huge eco-
nomical interest and the global energy demand, oil production has become a subject
of high interest. A lot of research in the field has provided advanced equipment and
technology to maximize production and minimize costs. Another important aspect of
optimization in the context of oil production is the carbon footprint that the industry
leaves. It delivers one of the main sources of energy to the world, but the emission from
burning fossil fuels is also one of the largest contributors to climate change (Perera and
Nadeau, 2022). Even though the world is working towards phasing out fossil fuels, they
will most likely remain important energy sources during this transition period and even
after. Thus, it is desirable to optimize oil and gas production in a way that minimizes
the environmental damage.

Model-Based Control (MBC) such as Model Predictive Control (MPC) is in general a
powerful method for controlling a system optimally, but requires an accurate system
model. Without this, MBC strategies may result in bad performance and perhaps insta-
bility in the closed-loop system (Hou and Wang, 2013). In the early days of MBC, these
models were often derived using first principles such as mass balance and Newton’s laws
of motion. However, today, most processes have become too complex for being derived
using such methods (Hou and Wang, 2013). The inability to derive models based on
first principles also applies to processes in the oil industry. This is a consequence of
many factors such as that plants tend to change over time due to wells being drained or
that many production sites are located off-shore in harsh weather conditions. Models
used for optimizing such processes are therefore often based on parameter estimation
from system identification, or a combination of that and first principle methods (Ege-
land and Gravdahl, 2003). Over the last decade, there have been major developments
in monitoring and storing of data produced in industrial processes (Zambrano et al.,
2022). According to the same article, this is one of the characteristics of the fourth in-
dustrial revolution that many believe has begun. The large amount of available process
data and several recent breakthroughs in deep learning (Grimstad, 2022) offer powerful
approaches to obtain accurate models. This is often referred to as black-box modeling
due to the ability of artificial intelligence (AI) to recognize high dimensional mappings
between in- and outputs without any prior knowledge. These mappings would be im-
possible to derive using first principles like Newton’s laws.

Recurrent neural networks (RNNs) are perhaps one of the most suited approaches for
black-box modeling of dynamical systems using Al. This is because these networks are
specialized in processing sequential data by being able to consider long-term depen-
dencies (Goodfellow et al., 2016). Yet, they have proven particularly difficult to train
because this produces a non-convex optimization problem which is NP-hard (Grimstad,
2022). These networks tend therefore to be computationally too expensive to train. An

alternative approach is the echo state network (ESN) which was the subject of interest
in two previous master dissertations; (Osnes, 2020) and (Hernes, 2020). This network is
an RNN architecture that only adapts the output weights by using linear regression. By
doing so, it becomes significantly faster to train than other RNN architectures, making
it more promising for deriving data-driven black-box models (Goodfellow et al., 2016).

1.2 Research Objectives and Research Questions

This specialization report documents the preliminary work of my master’s dissertation
which will be submitted in July, 2023. It will both serve as a preparation and an
introduction to the concepts that will be encountered in the master’s dissertation. The
primary objective is thus to get a thorough understanding of the Electric Submersible
Pump (ESP) and the ESN, and to successfully implement

e a simulator for an ESP lifted well.

e an ESN and a framework to support future implementations of the ESN.

Furthermore, the simulator will be used to generate data points which will be used to
train an ESN model of the ESP lifted well. Then, a more traditional RNN architecture,
the Long Short-Term Memory (LSTM) network, will be implemented and also used to
model the ESP. Finally, the performance of the ESN and the LSTM models of the ESP

lifted well will be compared. This leaves the two following secondary objectives:

e Implement an LSTM and use it to model the ESP lifted well.

e Compare the performance of the resulting ESP models.

It is also expected that these objectives will give important hands-on experience with
popular frameworks for implementation of neural networks and simulation of dynamical
systems such as PyTorch, NumPy and CasADI. The specialization project will also
attempt to answer the following research questions:

e Can the nonlinear behavior of the ESP lifted well be successfully modeled using
an ESN?

e [s there any significant difference in performance between a model obtained from

the ESN and the LSTM?

e Which network is better suited for black-box modeling of nonlinear dynamical
systems?

1.3 Structure of the Report

The report consists of six sections with the intention of documenting all aspects of the
work conducted during the specialization project in TTK4555. This first introductory
section is followed by:

Section 2 contains existing theory on the encountered fields in the project. The
literature from which parts of the theory are found is cited using APA-in-text
citations and all references are listed at the very end of the report.

Section 3 documents the methods and implementations used to obtain the final
results. This section should enable the reader to reproduce the results that were
obtained. Additional theoretical depth is given at some places to supplement the
details of the presented methods.

Section 4 presents the conducted experiments and the obtained results of the project.
Section 5 discusses the experiments and the results from section 4.

Section 6 concludes upon the project using the discussion from section 5 as a basis.
This section will at last propose some subjects of interest for future work.

2 Theory

2.1 Electric Submersible Pump
2.1.1 Introduction

Oil wells (reservoirs) are generally categorized as alive or dead based on how oil can be
produced from them. An alive oil well has a sufficiently high pressure which ensures a
natural and proper flow of oil, water and gas (production fluid) to the surface. These
wells are often referred to as having "natural lift”, and these wells are naturally suited
for economical production. A dead oil well, on the other hand, is an oil well where
the natural pressure is insufficient to sustain a proper flow of production fluid to the
surface. These wells are most often unsuited for production economical at all. However,
it is possible to turn these wells into alive wells by artificially increasing the pressure in
the well. This is referred to as "artificial lifting” and can ensure economical production
of oil and gas from dead wells. ESP installations are a technology used for artificial
lifting (Pavlov et al., 2014), and this will be the production process studied in this
specialization report. In this section, artificial lifting will first be presented in more
detail, before a thorough introduction to the ESP components and their applications
will be given. The following three subchapters are mainly based on (Takacs, 2009).

2.1.2 Artificial Lifting

Most wells will in their early stages have natural lift and thus be ”flowing wells” as fluid
flows naturally to the surface. In these wells, the natural pressure at the well bottom is
greater than the pressure loss over the flow path to the separator. However, when pro-
ducing oil and gas, fluid is extracted from the well over time. This leads to the pressure
decreasing resulting in the natural pressure eventually being lower than the pressure
loss. At this point, the well dies as the natural lift becomes insufficient to sustain a
proper flow of fluid to the surface. Alternatively, the well might die due to the pressure
loss becoming greater than the bottom pressure even though the bottom pressure is
theoretically sufficient. Increased pressure loss involves increased flow resistance in the
well which is usually caused by increased density of the fluid because of decreased gas
production or mechanical problems such as too small tubing size. Artificial lifting can
be achieved using various methods with the main objective of producing fluids from
already dead wells. It can also be used to increase the production rate from flowing
wells. The two main methods are gas lifting and pump lifting.

Gas lifting can be divided into continuous and intermittent gas lift even though both
techniques involve injecting high-pressure natural gas into the well stream. When ap-
plying a continuous gas lift, the main objective is to reduce the pressure loss occurring
along the flow path by aerating the fluid. This will reduce the flowing mixture density
and thus make the well pressure sufficient to revive the well flow. Continuous flow gas
lifting is therefore often considered as a continuation of flow production. In the other
method, intermittent gas lift, gas is periodically injected when a sufficient length of fluid
has accumulated at the well bottom. The fluid is then pushed to the surface as a slug,
making the production a batch production. This method can also be augmented to
include a free plunger traveling in the well tubing to separate the upward-moving fluid

slug from the gas. Unlike continuous flow gas lifting, this method physically displaces
the accumulated fluids from the well.

Pumping methods use pumps in the well bottom to increase the pressure in the reservoir
to overcome the flowing pressure loss. In general, pumping methods are classified based
on how the pump is driven and whether it uses rod or rodless pumping. There are many
types of pumping methods involving rod pumps, but they all have in common that they
make an oscillating or rotating movement to increase the pressure in the reservoir and
drive fluid to the surface. Rodless pumping, on the other hand, uses electric, hydraulic
and similar means to drive the downhole pump or employs high-pressure power fluid
that is pumped down the hole. The ESP is a rodless pumping method that utilizes
a submerged electrical motor that drives a multistage centrifugal pump. The ESP is
ideally suited to produce high liquid volumes and is one of the most efficient pumps
when considering all depths. Note that gas lifting is still more efficient.

2.1.3 History and Challenges

The ESP was invented by Armiais Arutunoff in the late 1910s, and the first ESP was
successfully operated in the El Dorado field, Kansas in 1926. Since then, there have
been multiple improvements to the technology, and it is approximated that around 10%
of the world’s oil supply is produced with ESP today. The ESP is therefore considered
by many as one of the most successful techniques for artificial lifting both on- and off-
shore with high liquid volumes from medium depths. This is a result of the ESPs being
both energy efficient and easy to install with low demand for maintenance as long as it
is properly installed and operated.

There are, however, some disadvantages with the ESP. One of these is the difficulty
of repairing faulty equipment in the field. In most cases, faulty equipment must be
sent back to the manufacturer for repair which means downtime in the production
since the equipment cannot be replaced during this period. To make matters worse,
the repair in itself is expensive and comes in addition to the multi-million loss due
to the downtime. Hence, it is desirable to make the lifetime of the ESP as long as
possible and the need for maintenance as small as possible. Available statistics show
that 23% of all ESP failures are caused by operator mistakes (Sta, 2008). Although
this is a large improvement from the early days when around 80% of all failures were
due to human error, this is still causing enormous economical losses. The reason for
these failures is the ESPs being run close to the operating limits because this is where
optimal production points are located. There is in general little automation supporting
the operation of the pump. Many ESPs are driven by variable speed drivers (VSD)
enabling operators to run the ESP motor at different speeds. They are also able to
adjust the opening of the production choke at the top of the well affecting both the
well and the operation of the ESP. Hence, it is hard to find an optimal operation point
where the production is optimized and the lifetime is not significantly reduced. There
are usually large teams with competence on the ESP monitoring multiple variables and
doing analyses to support the operators. However, this is prone to human error due to
differences in experience, and the fact that most fields operate multiple ESPs making
the task even more complex (Pavlov et al., 2014).

2.1.4 Components and Their Functionality

As mentioned in chapter 2.1.2, ESPs are installations utilizing a submerged electrical
motor (powered by electricity from the surface) that drives a multistage centrifugal
pump. The conventional ESP installation can be seen in figure 1. Generally, the ESP
unit is submerged in well fluid and consists of a motor, a protector, a gas separator
and a pump. On the surface, one can usually find a junction box where surface and
submerged electric cables are joined, and a control unit labeled switchboard in the
figure. This installation is still frequently used today as it has proven both effective
and reliable under three assumptions:

1. Ideal pump conditions with only fluid entering the pump.
2. Produced fluid has a low viscosity (ideally close to the viscosity of water).

3. The motor is operating at a constant speed as it is powered with AC having a
constant frequency. Also ensuring constant speed of the pump.

Even though these assumptions do not always hold, the conventional ESP installation
has proven reliable in various conditions. In special cases, where for example the gas
production is too large and breaks the first assumption, the ESP installation can be
augmented with special equipment. Installations different from the conventional are,
however, outside the scope of the specialization report. The next paragraphs will give
a more thorough presentation of the submerged components of the conventional ESP
installation.

Switchboard

L8]
"

Junction
Wellhead Box

Flowline o
———=—R}

| | o

| Pump

Intake or
Gas Separator

Protector

-1 | Motor
—>, L] -«
[|

Figure 1: Conventional ESP installation borrowed from (Diaz and Nicolas, 2012).

The most important component of the ESP installation is the submersible pumps which
for ESPs are multistage centrifugal pumps operated vertically. The basic principle of
centrifugal pumps is that the produced fluids are transferred rotational energy from
rotors (called impellers) increasing the fluid’s velocity and pressure. This is the main
operational mechanism of radial and mixed-flow pumps. It is the density of the fluid
that decides the amount of rotational energy transferred. Since fluids have a much
greater density than gas, they will also receive more rotational energy and thus obtain
higher velocity and pressure. Reliable operation of the pump (and thereby the ESP) is
therefore dependent on the gas separator in order to feed the pump with gas-free fluid.
The main concerns of free gas in the fluid are decreased performance, mechanical dam-
age due to cavitation at high flow rates and gas locking caused by the pump being filled
with gas. Note that there exists equipment for operating ESPs with a large amount of

7

free gas, but this is outside the scope of this report and can be read in detail in (Takécs,
2009). The conventional installation utilizes a reverse-flow gas separator assuming that
gas rates are low. Note that this is one of the least efficient and simplest gas separators,
but it is considered sufficient to illustrate the principles of the ESP installation. This
gas separator works by directing the gas into the well’s casing annulus given that the
casing annulus is not sealed off by a packer. More specifically, it uses gravitational
separation by changing the direction of the fluid flow to allow the gas to escape.

In the conventional installation, three-phase, two-pole, squirrel cage induction motors
are the most used motors. These motors are one of the simpler electric motors and are
often durable as the electric supply is not directly connected to the rotor. They are also
highly efficient and generally popular in oilfield installations. The construction of this
motor can be read in detail in (Takacs, 2009). Although the rotor of this motor can
be made in one piece, it is made up of short segments with radial bearings in between
when constructed for ESPs. This is to eliminate the radial instability due to the high
rotational speed and the slenderness of rotors made of one piece. Moreover, because
of the length of the motor shaft, radial vibrations must be sufficiently suppressed.
This is done by using multiple radial bearings along the shaft length. Furthermore,
the motor is filled with highly refined oil which circulates and provides the required
dielectric strength to prevent short circuits between motor parts, proper lubrication
for the bearings and sufficient thermal conductivity to carry heat out of the housing.
This heat is transferred to the well stream and removed from the installation. The
motor shaft also has a filter to remove solid particles from the oil. There are some
significant differences between electrical motors used in ESPs and on land, and the
most important ones were listed in the standard API RP 1154, 3rd Ed given by the
American Petroleum Institute in 2002 regarding recommended practice for sizing and
selection of electric submersible pump installations as follows:

e Greater length-to-diameter ratio since they must be run inside the well’s casing
string.

e Motor power can only be increased by increasing the length of the unit.

e ESP motors are cooled by the convective heat transfer with the fluid flowing past
the motor while surface motors are usually cooled by the surrounding air.

e More than ten times higher electric current densities can be used in ESP mo-
tors without overheating due to the significantly higher cooling effect of fluids
(compared to air).

e ESP motors have exceptionally low inertia and accelerate to full speed in less than
0.2 seconds when starting.

e ESP motors are connected to their power source by long well cables and are prone
to substantial voltage drop.

Note that this standard was revoked in 2013 and has also been substituted since then.

Between the motor and the gas separator in figure 1, it is also illustrated a protector.
This component is used to protect the motor that would have been sealed if operated
on the surface. ESP motors must be open to the surrounding in order to not blow up
due to the expansion of dielectric oil at elevated temperatures. The main tasks of the
protector are to

e Ensure that no axial thrust load develops in the ESP pump’s stages.

Isolate the clean dielectric oil from the well fluid.

Allow expansion and contraction of the oil inside the motor.

Equalize the pressure between the well fluids and the dielectric oil in the motor.

Provide a mechanical connection between the pump and motor and transmit the
torque produced by the motor to the pump shaft.

2.2 Modeling of Dynamical Systems Using Neural Networks
2.2.1 Introduction

Within deep learning, there are many different types of neural networks (NN), and
RNNs are perhaps the most popular architecture for sequential data processing. The
ESN is a subclass of this architecture and provides a supervised learning principle for
the RNN. During the early 1990s, the general idea of the ESN was proposed within
neuroscience and Al. Yet, the ESN was not adapted into machine learning (ML) be-
fore somewhere around 2000 by Herbert Jaeger (Jaeger, 2007). He is considered one of
the pioneers within reservoir computing which mostly involves ESNs and liquid state
machines (LSMs). The latter was developed at the same time by Wolfgang Maass and
can be read more about in (Maass et al., 2002). Although it is based on the same prin-
ciples as the ESN, it is outside the scope of the specialization report and will not be
considered any further. Together with Harald Haas in 2004, Jaeger demonstrated that
the ESN could learn chaotic time series prediction tasks with much greater precision
than any previous method. In their paper (Jaeger and Haas, 2004), they outperformed
previous methods with 2 orders of magnitude better signal-to-noise ratio performance
on a nonlinear satellite communication benchmark task (Jaeger, 2007). Their demon-
stration yielded a black-box modeling tool for nonlinear dynamical systems. This is
of great interest within engineering because most technical systems become nonlinear
when operated close to saturation, and a system model is needed to simulate and con-
trol such systems (Jaeger and Haas, 2004). In the following subchapters, black-box
modeling, RNNs, ESN and LSTM will be presented in more detail.

2.2.2 Differential Equations and Black-Box Modeling

Differential equations can be used to describe how states or variables vary over time
(Gravdahl, 2019). These equations enable a dense description of system state-spaces,
which also can be transformed into the complex domain resulting in transfer functions.
Hence, differential equations are powerful mathematical tools when it comes to modeling
physical systems. A state-space can be expressed using ordinary differential equations
(ODE) which generally relate the output y of a system to the input u (Gros, 2021).
These equations are typically given as:

T = f(x,u)

y = h(z,u) (1)

where f and h can be either linear or nonlinear. Another benefit of using ODEs is that
these systems are generally straightforward to express in discrete time enabling them
to be solved numerically. There is, however, not guaranteed that there exist ODEs
defining the entire state directly (Gros, 2021). Another type of differential equations
omitting this problem is differential algebraic equations (DAEs). These are, simply put,
systems of differential equations and algebraic equations and are typically given by:

0 :g(:L‘,y)

(2)

10

DAESs will be used to implement the ESP simulator in this work.

Ultimately, when modeling a dynamical system, the main objective becomes to find
the differential equation(s) describing the system at hand. This can, however, be very
challenging and will in most cases require system data to estimate parameters. This
data can be obtained through system identification which refers to repeatedly exciting
a system with an input u, measuring the output y and finding some function relating
the in- and outputs (Nelles, 2013). Furthermore, the process of finding this function
is divided into three categories in (Nelles, 2013). These are white, gray and black
box modeling. The first category refers to models derived from using first principles
which are utilizing theoretical laws such as Newton’s laws of motion, mass balances,
etc. The latter refers to modeling using only measured data. This is the reason why it
is called a "black” box because very little prior knowledge can be exploited, and it is
almost impossible to tell how the in- and outputs are related. An example of black-box
modeling is using machine learning to learn the system model. Gray box modeling is
modeling techniques using a combination of white- and black-box modeling.

2.2.3 Perceptrons and Artificial Neural Networks

The desire to build an intelligent machine (or ”create artificial life”) goes back to at
least ancient Greece. There is, however, little doubt that it dates back even further.
Although this was impossible to achieve due to that time’s technological development,
the idea still may have been an instigator for today’s technological achievements. In the
beginning of artificial intelligence (Al), as we know it today, Al proved very efficient
to solve problems considered intellectually difficult for humans. These problems are
typically easily formulated mathematically. The real challenge turned out to be using
Als to solve problems that are hard to formulate mathematically, but easy to solve for
humans. That is for example face and speech recognition. Recent research on deep
learning has shown that Als can contribute a lot to these tasks, even though it is still
unclear if a self-thinking machine as described in ancient times would ever be achievable
(Goodfellow et al., 2016).

Artificial neural networks (ANNs) are inspired by the human brain. In the same way,
as the brain consists of networks with neuron cells, all ANNs are composed of layers
with perceptrons which are an oversimplified model of the neuron cells. Hence, why
it is called an artificial neural network (Langseth, 2022). Figure 2 shows a schematic
representation of the perceptron.

11

©)
S

. Activation Output
Weights

Summation

Inputs

Figure 2: Schematic model of a perceptron inspired by a figure from a lecture by
(Langseth, 2022).

Following the figure from left to right, every input is multiplied with a corresponding
weight before they are summed. Then, the resulting sum is added a bias (denoted
b in the figure) before being evaluated in an activation function. There exist many
activation functions that can be utilized, but they all define a threshold on whether the
output is 0 or 1. One can think of a perceptron as a function mapping an input to an
output described by (Langseth, 2022):

g=f (Z wi; + b) (3)

The activation function introduces parameter-free nonlinearity to the network, enabling
it to learn complex mappings between the in- and outputs. Hence, without this function,
the perceptron would only yield linear outputs. Three popular activation functions are
the hyperbolic tangent, the sigmoid function and the rectified linear unit (ReL.U) which
are given in (4a)-(4c), respectively (Grimstad, 2022). These functions are also plotted
in figure 3. Note that a step function could also have been used, but is less desirable
because it does not work well with back-propagation which is an important part of the
training of many NN architectures (Langseth, 2022).

2

tanh(z) = Toeo (4a)
) 1
sigla) = T (4v)
x, x>0
ReLU(z) = {0 <0 (4c)

12

Commonly used activation functions

4 4+ —— tanh(:)
sig(-)

—— RelLU(+)
3_
2_
1_ ——]
) —J
1

-4 -3 -2 -1 0 1 2 3 4

Figure 3: Plot of popular activation functions. These are the hyperbolic tangent, the
sigmoid function and the ReLLU function.

A single perceptron can be considered a single-layer ANN, only yielding a linear clas-
sifier. This means that it can only represent simple logical operators such as AND and
OR. It is, however, insufficient to represent more sophisticated operators such as XOR
(Goodfellow et al., 2016). However, by making networks of multiple layers with percep-
trons, more advanced patterns can be represented. An ANN with a single hidden layer
is often referred to as a NN because it does not have very much representative power.
By increasing the number of hidden layers, deeper networks are obtained. Figure 4
shows a deep neural network with two hidden layers, often called a deep feedforward
network.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

: %g&
. @

Figure 4: Schematic model of a general deep feedforward network.

The name comes from the nature of an input @ flowing from the input layer, through
the hidden layers which are defined by a function f before it reaches the output layer

13

9. The overall objective of the network is to approximate the function f* such that
¥ = f*(x). This is why the NN is said to represent a mapping y = f(x, 0).

2.2.4 Training of Artificial Neural Networks

The training of an NN representing a mapping y = f(«,) is equivalent to finding the
values of @ that results in the best approximation of f. Since most machine learning
problems can be rewritten as a finite sum optimization, training can be conducted by
minimizing this finite sum:

mein J(0) (5)

where J(6) is a cost function (Grimstad, 2022). Unlike other ML problems, cost func-
tions associated with deep NNs are non-convex and high-dimensional making this prob-
lem NP-hard. There is therefore no general method for finding the global minima for
this problem. However, according to the authors of (Goodfellow et al., 2016), for suf-
ficiently sufficiently deep NNs, most local minima will have a low-cost function value.
This means that it will suffice to search for local minima in most cases which is achiev-
able with methods such as gradient descent and Newton methods, with gradient descent
methods being the most popular (Grimstad, 2022).

2.2.5 Gradient Decent and Back-Propagation

During the training of a deep NN, the gradient descent uses the cost function gradient
to update 6. Calculating this gradient can be extremely expensive computationally,
and it is usually calculated by using back-propagation algorithms instead. Given some
training data and using figure 4 as an example, a cost J(@) is first found through
forward-propagation. This equivalent with information flowing from « to §. Then, the
information flow is reversed using a back-propagation algorithm which allows efficient
calculation of the cost gradient (Grimstad, 2022). Note that there is a lot more to this
method that can be read in (Goodfellow et al., 2016).

2.2.6 Recursive Neural Networks

If feedback is included in the feedforward network described in chapter 2.2.3, it is called
a recursive neural network. These networks have at least one cyclic path between their
neurons giving them memory. This feature enables the network to model dynamical
systems making it very suitable to process sequential data:

Liy1 = f(wt, Uy, 9)

Y1 = 9($t+1)

(6)

where f(-) is a function mapping the state at time ¢ to t + 1 and g(-) is a function
producing the output from the next state (Grimstad, 2022). The state equation in the
RNN can be further written as

Ly = h(th+1, Ly, L1y ...y L2, 331) = f(fl?t, Uy, 9) (7)

14

where the h(-) takes all previous states as input and produces the next state. This rep-
resents the unfolded recurrent structure that enables h(-) to be factorized into repeated
applications of f(-). The advantage of this structure is that the learned model always
has the same input size, and it makes it possible to use the same transition function
f(-) at every timestep. Furthermore, unfolding allows sharing parameters across the
whole structure of a deep RNN (Goodfellow et al., 2016). Figure 5 shows how the RNN
unfolding works schematically. Note that the black box illustrates one timestep with

delay.
(Th O
f e f f f

_—
Unfold

Figure 5: Schematic illustration of unfolding in RNN inspired by a figure in (Good-
fellow et al., 2016).

The general RNN, however, is given by the following equations:

i = f(Wha, + Wiu,)

X (8)
Y1 = Woxi

where f(-) is an activation function and W, W} and W, are the weights of the
input layer, hidden layers and the output layer, respectively. A schematic illustration
of the general RNN can be obtained by introducing equation (8) to figure 5. This is
shown in figure 6. Note that unfolding is not shown in this figure and that L is a loss
function measuring the difference between the RNN output ¢ and the actual output y.
This measurement is used when training the network which corresponds to finding the
weights that minimize the difference between these values. Traditionally, this is done
by using back-propagation, but is in practice harder compared to static ANNs due to
the time dependency between the states.

W —0—

Figure 6: Schematic illustration of the general RNN inspired by a figure in (Goodfellow
et al., 2016).

15

2.3 Echo State Networks
2.3.1 Introduction

The ESN is, as previously mentioned, an RNN using reservoir computation instead of
multiple hidden layers. In reservoir computing, input and reservoir weights are ran-
domly initialized entailing faster training and less computational cost compared to the
RNNs where all weights are trained. This approach was proven eligible in (Schiller and
Steil, 2005) where the authors showed that nearly all significant weight adaption hap-
pens in the output layer during the standard training of RNNs. In terms of structure,
an ESN consists of a random input layer, the reservoir which acts as a hidden layer and
an output layer that is trained. This is illustrated in figure 7. Note that ESNs can also
be augmented to have feedback to the reservoir. This is not shown in the figure and is
outside the scope of this specialization report.

e o
— —
Input layer Reservoir Output layer

Figure 7: Schematic illustration of the general ESN inspired by a figure in (Jaeger,
2007).

2.3.2 Structure

ESNs can to some extent be considered specialized networks for fast learning of complex
dynamical systems with low computational cost. This is not only due to the exploita-
tion of reservoir computation, but also the use of the supervised learning principle. The
formal task of an ESN was formulated in (Jaeger, 2001):

Given a teacher 1/0 time series (Wicach ks Yicach i) for k=0,..., T, where the inputs come
Jrom a compact set U, and the desired outpuls Yueoep from a compact set Ugys. A

RNN whose output g, approximates Yeoen s 15 wanted.

The ESN can in the same way as RNNs be described by a dynamical system. This
system without feedback is given by the following equations:

16

L1 = (1 — Oé)in + af(Wra:k + WiukH + Wb)

Ypr1 = Woitr

(9)

where xy, u, y, are the state of the reservoir neurons, the values of the input neurons
and the values of the output neurons, respectively. W represents the weight matrix
with the subscripts ¢, r, 0 and b being input, reservoir, output and bias. The remaining
two properties, a and f(-) correspond to the leak rate (which will be covered later)
and the nonlinear activation function (Lukosevicius, 2012). Furthermore, according to
(Lukosevicius, 2012), the general method of reservoir computing introduced with ESNs

1S:

1. Define W, W, and «, and generate a random reservoir RNN.

2. Run the reservoir using the training input w; and collect the corresponding reser-
voir activation states axy;

3. Compute W, by minimizing the mean square error (MSE) between g,., and
target
b
4. Use the trained network on new input data w, by computing g, ., using the

computed W .

When building an ESN| there are five hyperparameters that must be considered. These
are reservoir size, sparsity, leak rate, spectral radius and input scaling. Unfortunately,
there is no analytic way of finding these parameters, and it is therefore often done
by trial and error (Lukosevicius, 2012). Note that automated methods such as grid
search can also be applied (Grimstad, 2022). The following five subsections are based
on (Lukosevicius, 2012) and will describe all hyperparameters in more detail.

2.3.3 Reservoir Size

The reservoir size refers to the number of nodes (often denoted N,) in the reservoir. In
general, one should use as many nodes as computationally affordable which makes it
more likely to find a linear combination of reservoir signals @) approximating y;" .
Yet, it can be cumbersome to determine the remaining hyperparameters if starting with
a large reservoir. It is therefore recommended to start with a relatively small reservoir
and determine the other hyperparameters before scaling up. Note that large reservoirs
require appropriate regularization measures to avoid overfitting, and it is not always

necessary to scale up the reservoir if a smaller reservoir yields satisfactory results.

2.3.4 Sparsity

Sparsity is relevant for both the input layer and the reservoir. In the input layer, it is
recommended to make most of the values in W; equal or as close to zero as possible.
The performance of the ESN is generally not affected by sparsity in the reservoir.
Hence, this hyperparameter is mostly used to speed up computations since it reduces
the number of connections in the reservoir making the state matrix more sparse.

17

2.3.5 Spectral Radius

The spectral radius p(W,) is perhaps the most important hyperparameter because
it scales the maximum absolute eigenvalue of the reservoir weight matrix. This is
equivalent to scaling the width of the distribution of its nonzero elements. After W,
is generated randomly, it should be divided by maz(|eig(W,)|) ensuring unit spectral
radius before it is scaled with the spectral radius. This is to ensure that the ESN
satisfies the echo state property being that the reservoir is uniquely defined by the
fading history of the input. Usually, the echo state property is ensured by choosing
p(W,) < 1. For practical purposes, the spectral radius is selected to maximize the
performance, and it determines how fast the influence of an input dies and the stability
of the reservoir activation. Generally, the spectral radius should be greater in tasks
requiring longer memory of the input.

2.3.6 Leak Rate

The leak rate can be considered as the speed of the reservoir update dynamics. Note
that the reservoir has no time constant and instead uses leaky nodes to slow down the
dynamics in the system at hand. In (Osnes, 2020), the author describes the leak rate
as how much of the current state that will be ”leaked” to the next. This seems like a
good interpretation considering its role in (9) and that its value ranges from zero to
one. By further inspecting (9) it is clear that a low leak rate slows down the dynamics
and increases the memory as more of the current state is leaked to the next. Tuning
this parameter is mostly done by trial and error.

2.3.7 Input Scaling

Input scaling determines the scaling of the input weight W affecting how nonlinear
the reservoir responses are. Recalling that this is also affected by the spectral radius,
these two parameters must be considered together. These two parameters regulate the
amount of nonlinearity in x; and the relative effect of the current input w; on x; op-
posed to history. In order to have few hyperparameters in the ESN, W, should be
scaled uniformly. However, it is common to include the bias weight W as the first
column in W, and if the goal is to increase the performance these should be scaled
separately. It is also possible to scale the columns of W; separately if the input se-
quence contributes differently to the task. Note that each scaling introduces another
hyperparameter that must be tuned.

2.3.8 Training of ESNs

In this final paragraph, the training method of ESNs will be presented. Given a training
set uy and a target set Y, 4er With & = 1,...,T, and by including the bias weight in
W, (9) can, by using matrix notation, be rewritten as:

Y =W,X, (10)

where Y € RY*T and X = [1 w;, @x]7 € RUFNXNXT ape all outputs and states
produced by the reservoir when presented all inputs U € RY=*T (Lukogevicius, 2012).

18

Finding the optimal W, is equivalent to minimizing the MSE between the ESN output
gy, and the given target Y, e Since T >> 1 + N, + N, in most cases, this is
an overdetermined linear regression problem (LukoSevicius, 2012). One of the most
common remedies when dealing with an overdetermined system is to use the ridge
regression (also known as Tikhonov regularization):

W, =Y g X (XXT +5I)7! (11)

where Yigrgee € RY*T is a matrix with every given Yiargerpy rom k = 1,...T, B is
the regularization coefficient and I is the identity matrix. This will avoid both overfit-
ting and feedback instability (LukoSevicius, 2012) and solves the following optimization
problem:

N,
1 Yy
W, = in=—3Y
ar%vriun N

Y =1

T
(Z(@Z,k - ytarget,i,k)2 + B| |wg||§> (12)

k=1
compared to the ordinary MSE, this object function also includes §||w?¢||3 which is
a regularization term that penalizes large W, making a compromise between small
training error and small output weights. § determines the relative importance and is
a hyperparameter that must be tuned (Lukosevicius, 2012). There are multiple ways
of determining § with grid search being one of them (Grimstad, 2022). Note that (11)
was transposed in the implementation in order to get it on the form Az = B to exploit
the pytorch linalg solver. This yielded:

W= (XX"+8I)' XY},

target (13)
From this, it is clear that training the ESN is different from training traditional ANNs as
described in chapter 2.2.4. Instead of running through the training data multiple times
minimizing a cost function, all data points are presented to the network once. This is
often referred to as one-shot training (Lukosevicius, 2012), and is, in most cases, faster
than traditional training of NNs. When using ridge regression there are no limits to the
amount of training data, and the time of the training procedure will be independent of

the number of training points (LukoSevicius, 2012).

19

2.4 Long Short-Term Memory Networks
2.4.1 Introduction

The long short-term memory (LSTM) network is another RNN architecture more sim-
ilar to the feedforward network than the ESN. It was introduced in the late '90s in
(Hochreiter and Schmidhuber, 1997) as a remedy to the vanishing and exploding gradi-
ent problem associated with back-propagation through time (BPTT) in RNNs (Smag-
ulova and James, 2020). These problems were a result of RNNs using the same weight
matrix W at each timestep which most often would lead to the gradient vanishing
because of finite-precision numbers in computers (Sussillo and Abbott, 2015). Tradi-
tional RNNs are consequently only capable of utilizing short-term dependencies. The
LSTM architecture was more or less designed to learn long-term dependencies (Hoyer
et al., 2022). Hence the name, since it allows the RNN to process sequences of arbitrary
length. Today, it is still one of the most popular architectures for modeling sequential
data such as speech recognition and machine translations (Goodfellow et al., 2016).

2.4.2 The LSTM Cell

In order to cope with the vanishing (and exploding) gradient problem, the LSTM creates
paths where the gradients can flow unchanged through time when back-propagating
(Goodfellow et al., 2016). This is made possible by extending the original RNN units
with both memory and gates (Smagulova and James, 2020). These extended RNN
units are usually referred to as LSTM cells, and they have the same in- and outputs as
general RNNs. The gates within the cell enable control of the weight on the self-loops
in the RNN making these weights context dependent rather than fixed. Furthermore,
this provides the network with internal recurrence in addition to the general recurrence
of the RNN described in chapter 2.2.6. Using gates is also why LSTMs are considered
as a type of gated RNNs which are mentioned as the most effective sequence models
used in practical applications in (Goodfellow et al., 2016). Note that there has been
proposed many different cell types, but only the traditional cell will be covered here. A
schematic illustration of this cell is shown in figure 8.

From inspection of this figure, it is evident that the cell has three gates; the forget,
input and output gate. The forget gate f, is an extension to the originally proposed
architecture which prevents the state value from growing to infinity (Smagulova and
James, 2020). This gate’s output is given by:

ft = O'(Wfil)t + Ufht_lbf) (14)

where o denotes the sigmoid function which ensures the value of f; between 0 and 1.
This corresponds to the amount of the previous state(s) that should be "remembered”.
Furthermore, & and h are the current input and the previous cell output, and by, Uy
and Wy denote the bias vector, hidden unit weights and the gate weights, respectively
(Smagulova and James, 2020).

20

hy

Figure 8: Schematic illustration of the traditional LSTM cell inspired by a figure from
(Smagulova and James, 2020).

The remaining gates are given by:

’l:t = O'(Wiwt + Uiht—lbi)
g, = tanh(W ¢, + U h;,_1by) (15)
Oy = O'(Womt + Uoht—lbo)

Finally, the new memory state and cell output; C; and h; are given by:

Ci=f,-Cioi1+9, %
ht = Oy - tanh(Ct)

2.4.3 Training of LSTMs

LSTMs are, fundamentally, regular RNNs and can be implemented using multiple lay-
ers. Training of LSTMs are therefore usually done the same way as for RNNs with
gradient descent using BPTT to compute the cost gradient (Smagulova and James,
2020). The MSE is a much used cost function in training of LSTMs since this network
is based on regression analysis (Goodfellow et al., 2016). The MSE is given by:

S @) - S, 0))? am)

21

3 Method

This section covers the details of the methods used in this project. The first two subsec-
tions will cover the mathematical model and the implementation of the ESP simulator.
This is followed by two subsections covering the details of the system identification
and data generation, respectively. At last, will the implementation of the ESN and the
LSTM be detailed in the final two subsections.

3.1 Mathematical Model of an ESP Lifted Well

The ESP is, as described in chapter 2.1.4, a complex system with multiple mechanical
components. In addition, the well must also be considered in order to derive a mathe-
matical model for optimizing operation and ultimately oil production. One such model
is presented in (Pavlov et al., 2014) where it was used in an MPC and tested extensively
at Equinor’s R&D center in Porsgrunn, Norway. This model was originally developed
in 2010 by the same authors in cooperation with Equinor (previously Statoil). In the
same year, (Binder et al., 2015) enhanced this model to also include estimates of flow
rates and viscosity in a similar well. This model, including the reported parameters and
assumptions, is the model that will be used to implement the simulator in this project.
An illustration of the model is presented in figure 9. From inspection, it is evident that
there are many variables and parameters that must be considered. All the reported
numerical values are given in table 1.

Production
manifold

Production
choke qc,Z

e

] P—Average flow
vV, hy

ESPe1—q,

_pp, in
t ;—— Average flow
Vi hy

pr

Reservoir
Pon

Figure 9: Mathematical ESP model inspired by a figure from (Binder et al., 2015).

22

The resulting model in (Binder et al., 2015) is a third-order nonlinear model given by
the following differential equations:

. \% R
Poh = —1(% - CJ) (18)
Io
) Vy
DPwh = —2((] - QC> (19)
B
L1
q= M(pbh — Puwh — pghw — Apy + Ap,) (20)

where g., ¢,, Apy and Ap, represent the choke model, the well inflow model, the ESP
model and friction, respectively. More specifically, the choke model represents the flow
q. through the production choke valve and is given by

QC:Ccvah_pm'Z (21)

where C., pun, pm and z are the choke valve constant, the wellhead pressure, the
production manifold pressure and the production choke opening, respectively. Similarly,
the inflow model is given by

qr = P](pr - pbh) (22)

with p, being the reservoir pressure (natural pressure in the well) and PI being the
well productivity index. The ESP model is given by

Apy, = pgH (23a)
H = Cy() Holgo) (fi) (231)
__a () .
w= it () 2

This model is modified from the original model in (Pavlov et al., 2014) to also include
viscosity correcting factors (VCFs) for the flow rate (C,(u)), the head (Cy(p)) and
break horsepower (BHP) (Cp(p)). The latter is an imperial measurement for the electric
power consumed by the ESP motor. These values, in addition to the ESP head and BHP
characteristics (Ho(q) and (Py(q)), are assumed to be known for the particular ESP in
the model. Note that VCF's are usually obtained from published sources or empirically
obtained, whereas the characteristics for the ESP are provided by the pump vendor
(Binder et al., 2015). The VFCs and ESP characteristics are in (Binder et al., 2015)
given by polynomials on the following form

P(z) = Z cix’ (24)

where the coefficients (¢;,7 = 1, ...,4) are given in table 2. These are the same as in the
publication.

23

Finally, Ap, models, as mentioned, friction. This entity depends on the fluid density
and the physical properties of the mechanical components. It also depends on the fluid
viscosity and the average flow which both are varying properties. The full expression
is given by

2

W=

(25)

Liq®
Aps=0.158- Y (pg}q)
i=1 ¢

Variable \ Description \ Value \ unit
Known constants
g Gravitational acceleration constant 9.81 m/ s
C. Choke valve constant 2¢° *
Ay Cross-section area of pipe below ESP 0.008107 m?
Ao Cross-section area of pipe above ESP 0.008107 m?
Dy Pipe diameter below ESP 0.1016 m
Dy Pipe diameter above ESP 0.1016 m
hq Height from reservoir to ESP 200 m
R Total vertical distance in well 1000 m
Ly Length from reservoir to ESP 500 m
Lo Length from ESP to choke 1200 m
Vi Pipe volume below ESP 4.054 m3
Va Pipe volume above ESP 9.729 m3
ESP data
fo ESP characteristics reference frequency 60 Hz
Inp ESP motor nameplate current 65 A
P, ESP motor nameplate power 1.625¢€5 %4
Parameters from fluid analysis and well tests
51 Bulk modulus below ESP 1.5¢° Pa
B Bulk modulus above ESP 1.5¢° Pa
M Fluid inertia parameter 1.992¢® | kg/m!
p Density of produced fluid 950 kg/m?
Pr Reservoir pressure 1.26¢€" Pa
Unknown parameters

PI Well productivity index 2.32¢7Y | m3/s/Pa
L Viscosity of produced fluid Varying Pa-s
Hy ESP head characteristics Varying m
Py ESP BHP characteristics Varying w
Qo Theoretical flow rate at reference frequency | Varying m3/s
Cy VCF for head Varying —
Cp VCF for brake horsepower of the ESP Varying —
Cy VCF for ESP flow rate Varying —

Table 1: Model parameters used in the simulator. These values are obtained from

(Binder et al., 2015).

24

| [e | s [e [a | «

Hy 0 0 —1.2454¢€% | 7.4959¢% | 9.5970¢%
Py 0 —2.3599¢% | —1.8082¢” | 4.3346¢5 | 9.4355¢*
Cy | 2.7944 | -6.8104 6.0032 -2.6266 1
Chy 0 0 0 -0.03 1
Cp | -4.4376 11.091 -9.9306 3.9042 1

Table 2: Coefficients used for VCFs and ESP characteristics. These values are obtained
from (Binder et al., 2015).

3.2 Implementation of the ESP Lifted Well Simulator

The simulator implementation is inspired by (Osnes, 2020) and implemented using
Python 3.10, NumPy and CasADI. NumPy is an open-source framework for numerical
computation in Python. This was mainly used for handling tensors inside the simula-
tor. CasADI is also an open-source tool, but for nonlinear optimization and algorithmic
differentiation (Andersson et al., 2019). In the implementation, CasADI was utilized
for solving the differential equations.

To simulate the ESP lifted well, the simulator takes the current state x and an input u
and solves the initial value problem one time step ahead. The simulator thus requires
an initial state xy which in this work was given by

DPbh,0 75e®
To = |Puwno| = |30€° (26)

where the numerical values were inspired by (Osnes, 2020), but slightly changed after
conducting some experiments. Note that both the initial pressures and the initial low
are given in pascal and m?/s, respectively, whereas the later reported results are given
in bar and m?®/h. The input u is a vector with the choke opening z in percent and the
ESP motor frequency f given in Hz:

" - M (27)

During the initial testing of the simulator, there were some issues with the CasADI in-
tegrator not converging due to encountering negative flow values. This is equivalent to
the flow suddenly changing direction and is not consistent with the expected behavior
of the ESP because it would require the motor or the head pressure to change direc-
tion. Further investigation revealed that when solving (20), the flow value ¢ became
infinitesimally small leading to numerical instability. Hence, a minimum ¢ value of le~
was enforced in the simulator removing the instability and thus the convergence issues.

3.3 Confirmation of the Simulator Implementation

In the following subchapters, three experiments will be conducted to confirm if the
simulator behaves as expected. The initial value xy is the same as in chapter 3.2.

25

Explanations of the conduction, input values u and results from each experiment will
be presented in the respective subchapter.

3.3.1 Fully Open and Fully Closed Choke Valves

In these experiments, the simulator was first run with a fully open choke valve (z =
100%). Then, the same experiment was conducted again with the choke valve being
fully closed (z = 0%). The motor had a constant frequency f of 50Hz in both cases
(this is within normal operation rates according to (Pavlov et al., 2014)). In the first
experiment, it was expected that the simulation would reach a steady state since it
more or less simulates normal production. Similar results were expected in the second
experiment as well, but since the choke is closed, the steady state should correspond
to the maximum pressure that the motor is capable of building. Despite that the ESP
should never be run this way, it is still interesting to see how the model behaves in such
an extreme case. Results from the simulations are shown in figure 10(a) and 10(b).

Fully open choke valve opening Fully closed choke valve opening
801 120 4
E 78 g’ 100
76 4 — Poh 80 — Poh
T T T T T T T T T
0 2 4 6 8 10 0 5 10 15 20 25 30 35
28 A Pwh
80 4
- 26 4 o
H 2 60
24 A
40 A — Pwh
0 2 4 6 8 10 0 5 10 15 20 25 30 35
38 1 30 4 —q
S < 20
£ 36 S
= = 10 A
—q
34 1 T T 0 T T T T T T T
0 2 4 6 8 10 0 5 10 15 20 25 30 35
105 0.05
—_—Z —_—Z
X 1001 0.00
95 T T _005 T T T T T
0 2 4 6 8 10 0 5 10 15 20 25 30 35
52 — f 52 — f
¥ 50 1 ¥s0
48 48
T T T T T T T T T T T T T T
0 2 4 6 8 10 0 5 10 15 20 25 30 35
Time [min] Time [min]
(a) Fully open choke valve. (b) Fully closed choke valve.

Figure 10: Results from running simulator with fully open and closed choke valve and
constant motor frequency.

From inspection of figure 10(a) it is evident that the bottomhole pressure p,, and the
average flow ¢ increases until both reach a steady state after about three minutes. Fur-
thermore, it can be seen that the wellhead pressure p,;, decreases until it also reaches

26

a steady state around the same time. This is consistent with the expectations since
the inputs are different from those producing the initial state, meaning that the system
should reach a new operating point where the states and the inputs are in equilibrium.
Looking at each state individually, it is expected that the wellhead pressure p,, is
relieved when the choke valve is suddenly fully opened. Hence, why it decreases in
the simulation. The new steady state is reached when the valve reaches its maximum
throughput. The change will further propagate in the system leading to an increase
in the average flow ¢ which directly increases the wellhead pressure p,,. This explains
why both states reach a steady state at the same time. How the bottomhole pressure
pen s affected by the choke valve can not be interpreted from this experiment alone.
Yet, one can expect that it should decrease when the valve is open and the motor runs
on a constant frequency since this allows a greater flow through the well. Anyway, the
result from this experiment is satisfactory because it demonstrate that the simulator
accounts for both mechanical and physical capacities when given a new operating point.

Figure 10(b) shows as expected similar results as the first experiment but in the reverse
case. It is evident that both the bottomhole pressure py, and the wellhead pressure
Pwr increase until they reach a steady state after about 20 minutes. During the same
period, the average flow ¢ decreases until reaching a steady state at Om?/h meaning
that it stops. At this point, the ESP is filled up with fluid since no produced fluid is
released through the production choke valve. This is further motivated by observing
that the buildup of pressure slows down taking almost 20 minutes before reaching
an equilibrium. The main actuator for building the pressure is the motor which has
finite power. Looking at the exponential decrease in the average flow ¢, it is apparent
that the buildup of pressure is inversely proportional to the total pressure. This is an
interesting result because it means that the simulator also accounts for the limitations
of the motor. However, operating the ESP this way will eventually lead to motor failure
due to overheating. It can also lead to other mechanical failures or in worst case an
explosion if the pressure becomes too large for the components to withstand. Neither
of these consequences are accounted for in the simulator nor are they expected since it
is assumed that the ESP is not operated this way.

3.3.2 Step Response of the Choke Valve

Even though this experiment is similar to the first experiment in chapter 3.3.1, it is
expected to shed light upon how the bottomhole pressure py, is affected by changes in
the choke valve. In this experiment, the choke valve z will be held at 60% for half of the
simulation before it is opened to 100% with the motor frequency f still held constant
at 50H z. The resulting simulation is shown in figure 11.

27

Step in choke valve opening

82
__ 80 K
©
o]
— 78
76 - = Pbh
0 5 10 15 20 25
30
Pwh
28 A
S 26
24 A
0 5 10 15 20 25
. /\
<
_§, 36
34 1 — q
0 5 10 15 20 25
100 A
X 80-
—_z
60 L T T T T T T
0 5 10 15 20 25
52 A —_—f
T 504
48 -
0 5 10 15 20 25
Time [min]

Figure 11: Results from running simulator with a step in the choke valve opening and
constant motor frequency.

Inspection of figure 11 shows that all states reach and maintain a steady state before
the choke valve is further opened. After the choke valve is opened, both the bottomhole
pressure py, and the wellhead pressure p,; decrease and maintain new steady states.
The first observation confirms the hypothesis from chapter 3.3.1 of a decrease in the
bottomhole pressure py, when the choke valve is opened, and the latter is consistent
with previous observations. Furthermore, it can be seen that the average flow increases
and decreases slightly before reaching a new steady state. This indicates that the
model also accounts for a sudden increase in the flow which will be a little higher at
the beginning to replace the fluid that was suddenly released. Results from a similar
experiment with a sudden decrease in the valve opening are shown in appendix A.l.
This experiment showed the same results but reversed.

28

3.3.3 Gradually Increased Motor Frequency

The effect of changes in the motor frequency f is investigated in this final experiment.
It was conducted holding the choke valve z constant at 50% (this is within normal
operation rates according to (Pavlov et al., 2014)). The motor frequency f was then
increased with 5Hz every 10th minute for 60 minutes starting at 45H z. The resulting
simulation is shown in figure 12.

Gradually increased motor frequency

— Pobn
_ 80+
©
2
70 A
60 T T T T T T T
0 10 20 30 40 50 60
40
5 35 -
2
301 Pwh
0 10 20 30 40 50 60
50
<
ME 40
30 A _q
0 10 20 30 40 50 60
52
X 50 -
48 —_— Z
0 10 20 30 40 50 60
70
~ 60 1
=
50 £
0 10 20 30 40 50 60
Time [min]

Figure 12: Results from running the simulator with constant choke valve opening and
gradually increasing motor frequency.

Inspection of figure 12 shows that the bottomhole pressure py;, decreases and maintains
a new steady state for every increase in the motor frequency. This is expected since
a greater amount of the fluid in the well is pumped through the ESP. Consequently,

29

this should also increase the average flow ¢ at each step which the simulation confirms.
Furthermore, it can also be seen that the wellhead pressure p,,;, increases at each step.
This is a result of the increasing average flow and the constant choke valve opening which
leads to pressure building up at the valve inlet. From the experiment, it is therefore
clear that the simulator gives satisfactory and expected results. An experiment where
the motor frequency was gradually decreased was also conducted, and it can be seen in
appendix A.2. This experiment gave the same results but reversed.

3.4 System Excitation Using APRBS

When gathering information about a system, it is important to excite it within its
working conditions. This is a crucial part of identifying a system model (Nelles, 2013).
Linear systems (including nonlinear systems linearized around some working point) are
often identified by exciting the system symmetrically around some working area using
white noise. This way, the identification experiment provides a linear model that is not
polluted by nonlinear effects close to saturation points or in unreachable areas of the
model. The pseudo random bit stream (PRBS), shown in figure 13, is a popular choice
of excitation signal because it behaves as discrete white noise (Nelles, 2013).

Pseudo Random Bit Stream

104 —ir— — —

o
o

Amplitude
o o
IS o

0.2 1

004 4 — U L 11l U L

0 10 20 30 40 50 60 70 80 90 100
Time [s]

Figure 13: Example of a PRBS excitation signal.

In the case of nonlinear systems, white noise will only visit a small region of the sys-
tem’s working range (Osnes, 2020). This can be seen in figure 13 as the signal only
steps between 0 and 1 with random interval lengths. However, by giving the PRBS a
random amplitude (which results in an amplitude-modulated PRBS (APRRS)) more
system regions can be visited. This signal is thus well suited for nonlinear system iden-
tification (Nelles, 2013). APRBS will, therefore, be used as an excitation signal in this
specialization project. An example of an APRBS excitation signal is shown in figure
14. Note that the holding time for the signal is constant in this figure. This enables
control over the speed of the system dynamics during identification and testing.

30

Amplitude-modulated Pseudo Random Bit Stream
1.0 —

0.0 -

Amplitude
o o
EN o

0 10 20 30 40 50 60 70 80 90 100
Time [s]

Figure 14: Example of an APRBS excitation signal.

3.5 Generating the Training, Validation and Test Set

The training set was generated by using a 2 000 minutes long APRBS as input to the
ESP simulator. Using a sampling time of 12 samples per minute produced a total of 24
000 data points. This sampling time was reported sufficient to capture all of the ESP
dynamics in (Osnes, 2020). Furthermore, to capture both faster and slower dynamics,
the first 1 000 minutes use a holding time of 0.8 seconds (10 samples), whereas the final
1 000 minutes use a holding time of approximately 4.2 seconds (50 samples). Training
with different dynamics is necessary for the network to learn as much of the system
behavior as possible (Osnes, 2020). The amplitude bounds for this APRBS used in this
project are given in table 3. These were chosen based on the normal operation rates
reported in (Pavlov et al., 2014). The resulting training set is shown in figure 15.

Training set

80 1 | f u

0 250 500 750 1000 1250 1500 1750 2000

100 {
— Pun
751
5
3
2 50
25 1

0 250 500 750 1000 1250 1500 1750 2000

—q

2000

60
¥so

40

1000 1250 1500 1750 2000
Time [min]

Figure 15: Training set used for training the ESN and the LSTM.

31

Input | Max | Min
f 65 35
z 100 0

Table 3: Amplitude bounds for the APRBS.

An unique validation set was generated to tune the hyperparameters in both networks.
Using a validation set different from the test set for tuning is necessary to prevent data
leakage (Grimstad, 2022). Since the ESP simulator can provide an unlimited amount
of data points, the validation set was generated the same way as the training set. Being
able to generate the validation set avoids the use methods like k-folding (Grimstad,
2022). The validation set contained 1 200 samples which proved adequate to validate
the network performance. Using the same time constant as for the training set, this
corresponded to 100 minutes of simulation. The resulting validation set is shown in
figure 16, and it can be seen that the input stays constant for 200 samples (approx.
16.5 minutes) in the beginning. This is called a warm-up stage and ensures that the
network and the simulator have the same initial value. Note that these 200 first samples
are discarded when evaluating the performance, and thus only 1 000 samples (approx.
83.5 minutes) are used for validation. From these 1 000 samples, the first 500 contain
faster dynamics with a hold time of 5 samples (approx. 0.4 seconds) and the last 500
contain slower dynamics with a hold time of 20 samples (approx. 1.7 seconds). Although
this is somewhat faster than in the training set, it ensures that the smaller validation
set contains enough changes in the input to evaluate the network performance.

Validation set

[bar]
-
v v ©°
g & 8
?

[m3/h]
~ IS
15} S
a

Figure 16: The generated validation set.

The test data set was generated the same way as the validation set. Note that ev-
ery generated APRBS is random. This ensured that the validation and test sets are
different.

32

3.6 Error Metrics

The overall objective of the implemented networks is to learn the dynamical model of
the ESP lifted well, meaning that the performance can be calculated in terms of how
close the network output is to the corresponding simulated data point in a validation or
test set. This type of error is typically calculated using an MSE function (Lukosevicius,
2012) such as the root mean square error (RMSE) given by:

Ny T
1 1 .
RMSE(y7 ytarget) = F Z ? Z(yl,k - ytarget,i,k)2 (28)
Y i=1 k=1

where the state errors are averaged over the output dimensions to give an overall mea-

sure of the model error. Furthermore, the RMSE can also be normalized by dividing it

by the variance of the target data set. This error function is called normalized RMSE

(NRMSE) and is independent of any particular scaling (Lukosevicius, 2012). However,

error functions based on MSE can to some extent be hard to interpret for humans. An-

other error function is therefore the mean absolute percentage error (MAPE) (Grimstad,
2022) given by:

1|k —

k — Ytarget,k

MAPE(ya ytarget) = ? Z s

k=1

- 100% (29)

Ytarget,k

This error function indicates on average how much each model state deviates from the
target in percent. It is also independent of data-scaling (Chen et al., 2017). Moreover,
if averaged over the dimension of the output such as (28), it indicates on average how
much the entire model deviates from the target. This is particularly easy to interpret
for humans. For the purpose of gaining experience with different error metrics, the
NRMSE will be used to find hyperparameters for the networks, whereas the MSE and
MAPE will be used to compare the resulting models. Note that either of these could
have been used for both tasks.

33

3.7 Implementation of the Echo State Network

The ESN was implemented in Python 3.10 using mainly PyTorch which is an open-
source machine learning framework. Since neither this framework nor any other well-
known commercial frameworks offer any modules for reservoir computing, a framework
for ESN had to be implemented from scratch. PyTorch did, however, play a crucial role
in handling tensors inside the network. Furthermore, NumPy and SciPy were also used
to support PyTorch to simplify the implementation as it does not offer all the required
functions. The final model was trained using the training set normalized between 0 and
1.

3.7.1 Searching for Hyperparameters

The hyperparameters were found by first finding some suboptimal hyperparameters
from a trial and error approach using the reported values in (Osnes, 2020) as a starting
point. Then, a grid search was conducted for each hyperparameter. Grid search involves
searching for the optimal hyperparameter one at a time (Goodfellow et al., 2016). In
this context, optimal refers to the value that results in the lowest NRMSE on the
validation set. Multiple ESN networks were thus initialized and trained with different
values for one of the hyperparameters at a time while the others were kept constant.
Grid search is generally effective when having a low number of hyperparameters to
tune (Goodfellow et al., 2016). Since the initialization of the reservoir is random, the
same seed was used in all searches enabling comparison of the resulting NRMSEs. Note
that this method does not guarantee the optimal combination of parameters since some
particular combinations may yield better performance than those obtained. However, it
allows one to find satisfactory values relatively fast based on the suboptimal parameters
used as a starting point.

Regularization coefficient

The regularization coefficient S was, in contrast to the other hyperparameters, found
by initializing only a single reservoir. This is because it only affects the output weight
W ,. Figure 17 shows the resulting NRMSEs for different coefficients. Note that the
grid search was conducted on a logarithmic scale and thus yielded 107! as the optimal
value with an NRMSE of 1.471.

34

Grid search for regularization coefficient (g5)

20

15 A

1.471

0 T T T T T T T T T T T T T

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
log10(B)

Figure 17: Grid search for the regularization coefficient.

Reservoir size

The reservoir size IN, should, as described in chapter 2.3.3, be chosen as large as
computationally possible. This is also confirmed by the grid search shown in figure 18
where the lowest NRMSE is obtained for IN, = 500. However, it is hard to tell how
much the reservoir size affects the learning ability of the network (Lukosevicius, 2012).
Still, it is proven that the size of the reservoir directly affects the computational time
of the network. For this reason, a smaller reservoir size of 250 was chosen. This should
not affect the learning ability of the network significantly because the NRMSE barely
decreases from 250 to 500.

35

Grid search for reservoir size (Ny)

1.6

1.4

1.2 1

1.0 4

NRMSE

0.8 1

0.6 1

0.4 1 0.443

0.2 T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Reservoir size (Ny)

Figure 18: Grid search for the reservoir size.

Input scaling

Since the input weights are initialized randomly, it is desirable that these weights do not
affect the input data too much (Lukosevicius, 2012). All data is normalized meaning
that a large input scaling will produce values within the saturation area of the tanh(-)
activation function. Therefore, a broad grid search was conducted from 0 to 1 with a
step length of 0.1 first. Then, a narrow grid search was conducted from the optimal
value from the broad search £0.5 with a step length of 0.01. This yielded an optimal
input scaling of 0.38 with an NRMSE of 1.196. Both searches are shown in figure 19.

Broad grid search for input scaling Narrow grid search for input scaling

18 1

16

14 4

NRMSE
NRMSE

1224

47 1.20
1.196

24 1.198

T T
00 01 02 03 04 05 06 07 08 09 1.0 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45
Scaling factor Scaling factor

(a) Broad search. (b) Narrow search.

Figure 19: Broad (a) and narrow (b) grid search for the input scaling.

36

Leakage rate

The leakage rate a affects how much of the previous state that will influence the next
state. Hence, it is given in percent and a broad and narrow grid search was conducted
the same way as for the input scaling. This yielded an optimal leak rate of 0.14 with

an NRMSE of 1.156. Both searches are shown in figure 20.

Broad grid search for leak rate (a)

18 A

16

14

NRMSE

1.264

T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0

Figure 20: Broad (a) and narrow (b) grid search for the leak rate.

Leak rate (a)

(a) Broad search.

Spectral radius

The spectral radius must, as mentioned in chapter 2.3.5, be a value between 0 and 1 in
order to ensure the echo state property. Hence, a broad grid search with a step length
of 0.1 was conducted between these values. This is shown in figure 21. From inspection
it is clear that the performance increases with increasing spectral radius. A spectral

NRMSE

1.8+

1.7 1

1.6 1

1.4+

1.34

1.24

1.1

Narrow grid search for leak rate (a)

1.156

T T T T T T T T T T T
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Leak rate (a)

(b) Narrow search.

radius of 0.99 with an NRMSE of 0.707 was therefore chosen.

37

Grid search for spectral radius (p(W))

4.5 1

4.0 1

3.5 1

3.0 1

2.5 1

NRMSE

2.0 A

1.5

1.0
0.707

0.5 T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0

Spectral radius (o(W))

Figure 21: Grid search for spectral radius.

The resulting hyperparameters are given in table 4. Note that sparsity is not considered
in this project and therefore set to 1. This is equivalent to having full connection
between the nodes in the reservoir.

Parameter Value
Regularization coefficient (3) | 107!
Reservoir size (N,) 250
Input scaling 0.38
Leakage rate («) 0.14
Spectral radius (p(W)) 0.99
(Sparsity) 1

Table 4: Resulting hyperparameters used in the ESN implementation.

38

3.8 Implementation of the Long Short-Term Memory Network

The LSTM network was implemented in Python 3.10 using the LSTM class offered
in the neural network module in PyTorch. The resulting network was implemented
with a single (hidden) LSTM layer and had a linear output layer. This is illustrated
in figure 22. Furthermore, the network was trained using stochastic gradient descent
(SGD) with the MSE cost function described in chapter 2.4.3. After calculating the
gradient, the parameters were updated using the adaptive moments (Adam) optimizer
offered in the PyTorch optimize package. Adam was chosen based on its popularity
and robustness when doing stochastic optimization (Kingma and Ba, 2014). The final
model was trained using the training set normalized between —1 and 1.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input layer Hidden layer Output layer

Figure 22: Schematic illustration of the implemented LSTM network.

3.8.1 Selecting Hyperparameters

Even though there exist many LSTM architectures, the most basic implementation was
chosen in this project. This implementation uses the LSTM cell described in chapter
2.4.2 and requires only four hyperparameters; learning rate, hidden layer size, batch
size and number of epochs. These were found mostly through trial and error due to the
significantly longer training time required for the LSTM compared to the ESN.

Learning Rate and Size of the Hidden Layer

The learning rate and hidden layer size were chosen to be 1073 and 200, respectively.
This learning rate is the default value of the Adam implementation in PyTorch. The
hidden layer size was chosen arbitrarily but proved to work well. It was, generally,
spent little time tuning these parameters.

39

Batching of Training Data

When training an LSTM network, the weights are typically updated after a batch of
training data. It becomes thus relevant how the training data is batched as it directly
affects the efficiency of the optimization. According to (Goodfellow et al., 2016), some
hardware achieve better runtime if the batch size is a power of 2. Hence, the batch size
was set to 64 because this is both a power of 2 and gives exactly 375 batches (24000
is divisible by 64). Furthermore, these were shuffled randomly before each epoch using
the DataLoader offered in PyTorch. This was to make the model more robust and to
increase the effectiveness of the optimization algorithm (Goodfellow et al., 2016).

Number of Epochs

Training of NN involves typically looping over the training data multiple times. Each
full loop is called an epoch and the number of epochs is a hyperparameter that decides
the duration of the training. Yet, this hyperparameter was not decided directly. In a
preliminary run, the network was trained using 100 epochs while its performance on
the validation set after each epoch was monitored. This run took about 17 minutes and
is shown in figure 23.

NRMSE in the preliminary LSTM run

26
24 -
22 1
20 A
18
16
14

NRMSE

12 1

10 A
8
6
4
2

0 T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Epochs

Figure 23: Performance of the LSTM on the validation set after each epoch in the
preliminary LSTM run.

From inspection of this figure, it is evident that the NRMSE oscillates between 1 and 4
after about 50 epochs. This suggests that the model should be trained for at least that
many epochs. Note that these oscillations are caused by the gradient being calculated
from random samples from each batch (Goodfellow et al., 2016).

40

The final model was found by training the model for 100 epochs several times collecting
the model yielding the lowest NRMSE on the validation set. The resulting best model
had an NRMSE of 0.62. Note that this is somewhat luck-based due to the gradient
being calculated using random data points. It should be expected to conduct multiple
runs if an equivalent model is desirable. However, there exist methods to achieve even
better models faster, but these were not used here as they are outside the scope of the
project.

41

4 Results

In the following subchapters, three experiments will be conducted on the final ESN

LSTM implementations.

Each experiment and the results will be presented in the

respective subchapter. Note that the 200 first samples are excluded from every error
calculation due to being a warm-up stage ensuring same starting point for the networks
and the simulator. The tested ESN and LSTM models was trained for 3 seconds and
17.5 minutes, respectively.

4.1

Tracking of the Test Set

In this experiment, both networks were tested on how well they could track the test
set. This set consisted of 50% slower and 50% faster randomly generated dynamics
in order test how the models behaved when given random input. The resulting net-
work responses are shown in figure 24(a) and 24(b) together with the actual simulator
outputs, and the respective calculated errors are presented in table 5 and 6.

[m3/h]

60

[%]

401

501

[Hz]

401

30+

Results from tracking the test set with ESN

Results from tracking the test set with LSTM

1 = Ponesp

Poh,esn

1004 — Ponese
Poh,Lstm

[bar]
©
3

—

801

Y

N A
'/\."\J\‘/"’\\/ v‘q\wm/‘" \f"\/.‘/\, A A

{ \l
vV

WOAR

0 20

40 60

80 100

— Puwh,esp
354 Puwh,LsTM

[Tty f

Il
I

N A /\

|

| Al
WANY A/
WY

0 20

40

\ W
v i
ey
T Gese
Qustm

MMM A
VI W
WY

0 20

40 60

80 100

0 20 40 60 80 100
Time [min]

(a) ESN

40 60
Time [min]

(b) LSTM

80 100

Figure 24: Results from the ESN (a) and LSTM (b) models tracking the test set. The
network outputs are plotted in orange, and the simulator output in blue.

State MSE | MAPE [%]
Doh 0.0000189 0.23611
Pwh 0.0000093 0.64431
q 0.0000604 1.20837
Averaged total | 0.0000295 0.69626

Table 5: ESN: calculated errors from
tracking the test set.

State MSE | MAPE [%)]
Don 0.0000894 0.25028
Puwh 0.0000717 1.03272
q 0.0001231 0.83335
Averaged total | 0.0000947 0.70545

Table 6: LSTM: calculated errors from
tracking the test set.

42

4.2 Step Response of the Choke Valve

This experiment is the same as the one conducted in chapter 3.3.2. It was conducted
to see how the models behave when there is a step in the choke valve. The resulting
network responses are shown in figure 25(a) and 25(b) together with the actual simu-
lator outputs, and the respective calculated errors are presented in table 7 and 8. An
experiment with a reverse step was also conducted, and the results are available in

appendix B.1.

Results from step in choke valve with ESN

Results from step in choke valve with LSTM

o5 N\ \ —— Ponese 951 _— . —— Ponesp
Pon,esn \ Pon, s
90 \ 5 90 4
3 \ 3 |
= 854 \ = \
A\ 85 1
801
0 20 40 60 80 100 0 20 40 60 80 100
50 | — Punese so4 — Punes
| Puwh, Esn Puwh, LsTM
= | =
g0 { 540
\
30 \— 304
0 20 40 60 80 100 0 20 40 60 80 100
/- . —
T304 | T304 |
1S - J E N—]
= — Qes = [— Ges
|
20 esn 50l | Qustw
0 20 40 60 80 100 0 20 40 60 80 100
60 60
—z —z
X a0 40
204 T T T T T 201 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
524 — f 524 — f
£ 50 ¥ 50
481 48
0 20 40 60 80 100 0 20 40 60 80 100
Time [min] Time [min]
(a) ESN (b) LSTM

Figure 25: Responses from the ESN (a) and LSTM (b) after a step in the choke valve.

The network outputs are plotted in orange, and the simulator output in blue.

State MSE | MAPE [%]
Do 0.0000054 0.15532
Duwh 0.0000361 0.69701
q 0.0000024 0.28065
Averaged total | 0.0000147 0.37766

Table 7: ESN: calculated errors from the
choke valve step test.

43

State MSE | MAPE [%]
Don 0.0001656 0.41465
Dwh 0.0000591 0.91752
q 0.0000161 0.27391
Averaged total | 0.0000803 0.53536

Table 8: LSTM: calculated errors from the
choke valve step test.

4.3 Gradually Increased Motor Frequency

This experiment is the same as the one conducted in chapter 3.3.3. It was conducted
to see how the models behave when the motor frequency gradually increases. The
resulting network responses are shown in figure 26(a) and 26(b) together with the
actual simulator outputs, and the respective calculated errors are presented in table 9
and 10. An experiment with decreasing motor frequency was also conducted, and the
results are available in appendix B.2.

[Hz]

Results from increasing motor frequency with ESN

Results from increasing motor frequency LSTM

04 \ —— Ponese 90 R — —— Pon,esp
Pon, Esn \ Poh, LsTH
W I - G .
0 T 80 \
\— | VU
0 \ 70
- | ————
0 20 40 60 80 100 0 20 40 60 80 100
5 —/—/ 35 /—[—
r g [
N S 2 3
0 — Punesr 30 G E— — Punese
_ / Pun, sy ’_/"—/ Pun,LsM
51 . . . : , 25— : : : . :
0 20 40 60 80 100 0 20 40 60 80 100
0 T 50 Pl
[T N J
404 o = A |
D "g 40 et
. ——— \,
o I S —) — Qesp - | — Qesp
Gesw 304 e
01 : —_ ‘ ‘ ‘ ‘ :
0 20 40 60 80 100 0 20 40 60 80 100
24— z 524 — z
X s0
8 48
0 20 40 60 80 100 0 20 40 60 80 100
—f —f
0 60
£
0 =50
01 T T T T T T 401 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time [min] Time [min]
(a) ESN (b) LSTM

Figure 26: Responses from the ESN (a) and LSTM (b) networks when gradually in-
creasing motor frequency. The network outputs are plotted in orange, and the simulator
output in blue.

State MSE MAPE [%]
Don 0.0000159 0.29415
Duwh 0.0000104 0.61208
q 0.0000139 0.42845
Averaged total | 0.0000134 0.44489

Table 9: ESN: calculated errors from grad-
ually increasing motor frequency.

44

State MSE MAPE [%]
Dbh 0.0001553 0.42378
Duwh 0.0000350 0.71018
q 0.0000190 0.30518
Averaged total | 0.0000698 0.47971

Table 10: LSTM: calculated errors from
gradually increasing motor frequency.

5 Discussion

In this section, the reported results in chapter 4 will be discussed. Although both the
MSE and the MAPE are reported, only MAPE can be used to compare the resulting
models. This is because MSE is scale dependent (Chen et al., 2017), and the models
use different normalizations.

Investigation of the results from the first experiment in chapter 4.1 shows that the
ESN and LSTM on average perform equally well when tracking the test set with an
averaged total MAPE of = 0.70% and = 0.71%, respectively. This is also evident from
qualitatively inspecting figure 24(a) and 24(b). However, some smaller differences in
performance can be seen from reviewing the individual states. Meanwhile, the two
networks perform equally well when tracking py,, the ESN is & 0.4% better on pyp,
whereas the LSTM is ~ 0.4% better on ¢. Though, these differences in performance are
too small to be seen from only inspecting the figures. Furthermore, MSE is in general
known for being particularly sensitive to outlying values (Chen et al., 2017). This sug-
gests that both models have few outliers since all reported MSE values are close to zero.
Note that MSE still can give an indication of individual performance even though it
can not be used to compare the networks directly. It is also expected that the reported
MSEs for the LSTM are somewhat larger than those from ESN due to the LSTM data
being normalized on a wider interval.

In the second experiment, in chapter 4.2, ESN performs slightly better than the LSTM
with a total averaged MAPE of =~ 0.38% and ~ 0.54%, respectively. From visual in-
spection of figure 25(b) it is evident that the LSTM struggles to reach the starting point
of py, leaving a 0.5 — 1.0 bar offset. This is further supported by the MAPEs of the
state which indicate that the ESN performs almost 0.25% better on average than the
LSTM. Similarly, it can be seen that the ESN struggles to reach the starting point of
Pwr leaving a somewhat smaller offset. Though, the error metrics reveal that the ESN
still performs about 0.20% better on average than the LSTM. For the last state, ¢, it is
clear from both the figure and the error metrics that both models perform equally well
with a MAPE of ~ 0.28% and =~ 0.27%, respectively. Another interesting observation
is that the ESN performs on average ~ 0.12% worse in the reverse step test reported in
appendix B.1. The main contributors to this result seem to be p,;, and ¢. In both ex-
periments, it seems like the ESN model struggles to reach the larger steady state. The
LSTM, on the other hand, performs overall equally well in this experiment, but with
an increase in the MAPE of py, and ¢ and a decrease in p,;. Hence, it seems like the
models perform better if the simulation starts with the parts where the models struggle
the most. One reasonable explanation is therefore that the results are affected by the
exclusion of the 200 first data points suggesting that the step should have appeared
later. However, this had only a small effect on the results and should not be enough
to invalidate them. In both experiments, the MSE is close to zero suggesting also here
that there are few outliers in the network responses.

The results from the third experiment, described in chapter 4.3, indicate that both

networks performed equally well overall. The ESN performed = 0.1% better on py;, and
Puwh, Whereas the LSTM performed ~ 0.1% better on ¢. Inspection of the reversed ex-

45

periment with decreasing motor frequency, reported in appendix B.2, shows much of the
same tendencies as in the experiment with the increasing motor frequency. However,
the LSTM performs =~ 0.07% better on average. This is due to the LSTM performing
~ 0.2% better on ¢q. Further comparison of these two experiments suggests that they
are also slightly affected by excluding 200 data points in the beginning. Note that this
was far less evident than discussed in the second experiment.

From these results, it is clear that the ESN and LSTM perform equally well with
an average MAPE of all experiments below 1%. This is to some extent expected as
ESN (Jaeger, 2007) and LSTM (Goodfellow et al., 2016) are two architectures of the
RNN specialized in modeling (dynamical) systems where long-term dependencies play
a crucial role. However, finding hyperparameters for the LSTM was relatively time-
consuming due to a training time of about 17.5 minutes, compared to the 3 seconds
consumed when training the ESN. This suggests that the ESN might be easier to imple-
ment because many more configurations can be tested within a given timeframe. On the
other hand, far less time was spent on the implementation of the LSTM in this project.
It may therefore exist better implementations requiring considerably less training, and
also other methods for tuning the LSTM which could yield an even better model. Yet,
it is unlikely that any LSTM implementation could be guaranteed a training time below
3 seconds due to the non-convex optimization problem that appears during training.
Moreover, the main idea with the ESN was to make it computationally more efficient
by only adapting the output layers (Jaeger and Haas, 2004), outperforming the LSTM
(and other RNN architectures) in terms of the training time as it utilizes linear regres-
sion which in comparison is guaranteed to be fast.

Since the recurrent weights in the reservoir are initialized randomly (Jaeger and Haas,
2004), not all the dynamics are necessarily useful for the particular task at hand. In the
LSTM, on the other hand, these weights are instead adapted through training. This
should, given the right parameters, facilitate better learning of a model and thus better
performance. Although the simulator in this work provided unlimited amounts of data,
other applications might only offer a fraction in comparison. The ESN must at least
have as much data as the sum of the bias, input and reservoir sizes in order to provide
a determined regression problem (Lukosevicius, 2012). Sufficient model generalization
might thus be hard to obtain if the amount of data demands a reservoir that is too small
to cover all the dynamics in the system. In this case, an LSTM might do better as the
low amount of data still can provide a usable model if trained properly. Another impor-
tant difference is that the LSTM is an architecture specialized in processing almost any
kind of sequential data because it overcomes the vanishing gradient problem associated
with the general RNN (Smagulova and James, 2020). In comparison, the ESN does not
use BPTT and is therefore not affected by the vanishing gradient problem. It also over-
come the large training time and the difficulty with finding hyperparameters making
it particularly suited for recognizing complex dynamical systems (Osnes, 2020). These
traits are a result of the randomly initialized recurrent weights, and thus the reason
why ESNs can not be used for applications like machine language translation like the
LSTM.

46

6 Conclusion and Further Work

6.1 Conclusion

The work with this specialization project has successfully fulfilled the primary and
secondary objectives stated in chapter 1.2. Through the process of writing the theory
chapter, a thorough understanding of the ESP and the ESN was obtained. This work
has also resulted in a successful implementation of a simulator for the ESP lifted well in
addition to a framework for future implementations of ESNs. Furthermore, the LSTM
was also implemented and the performance of the ESN and the LSTM modeling the
ESP lifted well was compared. This has made it possible to conclude upon the research
questions stated at the end of the aforementioned chapter:

e With an average MAPE below 1%, the ESN was able to successfully model the
nonlinear behavior of the ESP lifted well.

e The results and discussion presented in chapter 4 and 5, respectively, suggests
there are no significant difference in performance between a model obtained from
using an ESN and an LSTM.

e In the discussion in chapter 5, it is argued that the ESN requires significantly
lower training time and that the hyperparameters are easier to obtain compared
to the LSTM. The results in this work therefore suggests that the ESN is better
suited for black-box modeling of nonlinear dynamical systems as long as enough
data is available.

6.2 Further Work

During the work with this report some subjects of interest for future work became
apparent. These are listed below together with a brief explanation of their relevance.

e Compare the ESN and LSTM in presence of disturbance. This is relevant because
it would indicate the robustness of the networks.

e Compare the ESN with a more advanced implementation of the LSTM. This
would indicate if the LSTM is able to perform even better and if an LSTM model
could be obtained faster than reported here.

e Compare the LSTM with an ESN with implemented feedback. This is somewhat
related to the previous bullet point, but could also be conducted on its own. In
either case it would indicate if having feedback to the reservoir would have a large
impact on the training time and performance of the ESN.

47

Appendix A Resulting Plots From the Reversed ESP
Experiments

A.1 Reverse Step Response of the Choke Valve

Reversed step in the choke valve opening

82 -
80 /
3
fa— 78 -
76 - — Pon
0 5 10 15 20 25
28 -
S 26 -
2
24 -
— Pwnh
0 5 10 15 20 25
<
E 361
—q
34 - T T T T T T
0 5 10 15 20 25
100 -
—_— 7
X 801
60 L T T T T T T
0 5 10 15 20 25
52 —f
N 50
48
0 5 10 15 20 25
Time [min]

Figure 27: Results from running the simulator with a reversed step in the choke valve
opening and constant motor frequency.

48

A.2 Gradually Decreased Motor Frequency

Gradually decreased motor frequency

_ 801
©
Keo)
— 70 A
— Pboh
60 - T T T T T T T
0 10 20 30 40 50 60
40 - — Pwn
E 35 A
30 A
0 10 20 30 40 50 60
60 q
g 50 1
£ 40-
30 A
0 10 20 30 40 50 60
52 A
X 50 -
48 - 4
0 10 20 30 40 50 60
70 A
— f
w 60 1
=
50 A
0 10 20 30 40 50 60
Time [min]

Figure 28: Results from running the simulator with constant choke valve opening and
gradually decreasing the motor frequency.

Appendix B Results From the Reversed ESN and
LSTM Experiments

B.1 Revers Step Response of the Choke Valve

Results from reversed step in choke valve with ESN

Results from reversed step in choke valve with LSTM

951 — 95 |
= 90 / _ |
g / Eo7 |
= 854 f — Ponese Tesd — Ponese
80J Pon, esw \ / Pon st
0 20 40 60 80 100 0 20 40 60 80 100
504 / 50 4 B E—
|
= / - |
5 40 f T 40
- | — Punese - \ [— Punese
30 f Pun, s 304\ [Pun,LsTH
0 20 40 60 80 100 0 20 40 60 80 100
f \ — Gesp {‘ ------------------------ \ — Gesp
_ \ Gesn — | \ Qs
£ 304 \ S301 | \
& g S E— E | —
|
20 1 201 |
0 20 40 60 80 100 0 20 40 60 80 100
60 1 60 1
X 40 g 40
f— —z
204 T T T T T 201 T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
524 — f 524 — f
£s0 £ 50
484 484
0 20 40 60 80 100 0 20 40 60 80 100
Time [min] Time [min]
(a) ESN (b) LSTM

Figure 29: Responses from the ESN (a) and LSTM (b) after a reverse step in the
choke valve. The network outputs are plotted in orange, and the simulator output in

blue.

State MSE MAPE [%]
Dbh 0.0000110 0.20475
Dwh 0.0000209 0.85707
q 0.0000067 0.43569
Averaged total | 0.0000129 0.49917

Table 11: ESN: calculated errors from the
reverse choke valve step test.

20

State MSE MAPE [%]
Doh 0.0002768 0.51600
Dwh 0.0000706 0.81728
q 0.0000240 0.37406
Averaged total | 0.0001238 0.56911

Table 12: LSTM: calculated errors from
the reverse choke valve step test.

B.2 Gradually Decreased Motor Frequency

Results from decreasing motor frequency with ESN Results from decreasing motor frequency LSTM
———
90 S s 904 | e /
- '-—"’ = }‘ [/
Eeo . Eeo I f
_ / — Pon,esp \ / —— Ponese
701 p— Pon,esn 704 ‘\”_/ PonLsth
0 20 40 60 80 100 0 20 40 60 80 100
\ —— Punese \ —— Punese
354 Puwh,Esn 354 ‘_\ Puwh,Lsm
E E; T
=30 S =30 u—\—\—
25— : : : s 25— : : : : :
0 20 40 60 80 100 0 20 40 60 80 100
60 60
’\ — Qesp {\ — Qs
_ 50 — Gesn — 50— —— Qustn
=1 L — g —
£ 401 | V—— E 40] —
= V— = —
30+ v -~ — 30 | \ ————
0 20 40 60 80 100 0 20 40 60 80 100
521 — z 524 — z
X 501 x50
481 48
0 20 40 60 80 100 0 20 40 60 80 100
—f —f
60 60
£ £
=50 =50
401 T T T T T T 40 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time [min] Time [min]
(a) ESN (b) LSTM

Figure 30: Responses from the ESN (a) and LSTM (b) networks when gradually de-
creasing motor frequency. The network outputs are plotted in orange, and the simulator
output in blue.

State MSE | MAPE [%] State MSE | MAPE [%]
Poh 0.0000113 0.22796 Doh 0.0000592 0.25838
Pwh 0.0000132 0.73788 Duwh 0.0000285 0.70295
q 0.0000132 0.48964 q 0.0000146 0.27489
Averaged total | 0.0000126 0.48516 Averaged total | 0.0000341 0.41207
Table 13: ESN: calculated errors from Table 14: LSTM: calculated errors from
gradually decreasing motor frequency. gradually decreasing motor frequency.

o1

References

(2008). Centrilift europe and africa esp failures 1999-2008.

(2018). Extractive industries : the management of resources as a driver of sustainable
development.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019). CasADi
— A software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1):1-36.

Binder, B. J. T., Pavlov, A., and Johansen, T. A. (2015). Estimation of flow rate and
viscosity in a well with an electric submersible pump using moving horizon estimation.
In IFAC-PapersOnLine, volume 28, pages 140-146.

Chen, C., Twycross, J., and Garibaldi, J. M. (2017). A new accuracy measure based on
bounded relative error for time series forecasting. PloS one, 12(3):e0174202-e0174202.

Diaz, C. and Nicolas (2012). Effects of sand on the components and performance of
electric submersible pumps.

Egeland, O. and Gravdahl, J. T. (2003). Modeling and simulation for automatic control.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gravdahl, J. T. (2019). Kybernetikk introduksjon: Innfering i dynamikk og reguler-
ingsteknikk.

Grimstad, B. (2022). Ttk28 modeling with neural networks - deep learning: Deep
feed-forward networks.

Gros, S. (2021). Modelling and simulation - lecture notes for the ntnu/itk course
ttk4130.

Hernes, S. B. (2020). Practical nmpc of electrical submersible pumps based on echo
state networks.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8):1735-1780.

Hou, Z.-S. and Wang, Z. (2013). From model-based control to data-driven control:
Survey, classification and perspective. Information sciences, 235:3-35.

Hoyer, M., Eivazi, S., and Otte, S. (2022). Efficient lstm training with eligibility traces.
In Artificial Neural Networks and Machine Learning — ICANN 2022, Lecture Notes
in Computer Science, pages 334-346. Springer Nature Switzerland, Cham.

Jaeger, H. (2001). The ”echo state” approach to analysing and training recurrent
neural networks. GMD Report 148, GMD - German National Research Institute for
Computer Science.

52

http://www.deeplearningbook.org

Jaeger, H. (2007). Echo state network. Scholarpedia, 2(9):2330. revision #196567.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. science, 304(5667):78-80.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
Langseth, H. (2022). Tdt4171 artificial intelligence methods lecture 8 — basic anns.

Lukosevicius, M. (2012). A Practical Guide to Applying Echo State Networks, pages
659-686. Springer Berlin Heidelberg, Berlin, Heidelberg.

Maass, W., Natschlager, T., and Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Comput., 14(11):2531-2560.

Nelles, O. (2013). Nonlinear system identification: from classical approaches to neural
networks and fuzzy models. Springer.

Osnes, 1. (2020). Recurrent neural networks and nonlinear model-based predictive
control of an oil well with esp.

Pavlov, A. K., Krishnamoorthy, D., Fjalestad, K., Aske, E. M. B., and Fredriksen, M.
(2014). Modelling and model predictive control of oil wells with electric submersible
pumps. 2014 IEEE Conference on Control Applications (CCA), pages 586-592.

Perera, F. and Nadeau, K. (2022). Climate change, fossil-fuel pollution, and children’s
health. The New England journal of medicine, 386(24):2303-2314.

Schiller, U. D. and Steil, J. J. (2005). Analyzing the weight dynamics of recurrent
learning algorithms. 63:5-23.

Smagulova, K. and James, A. P. (2020). Overview of Long Short-Term Memory Neural
Networks, pages 139-153. Springer International Publishing, Cham.

Sussillo, D. and Abbott, L. F. (2015). Random walk initialization for training very deep
feedforward networks. arXiv.org.

Takacs, G. (2009). Electrical submersible pumps manual : design, operations, and
maintenance.

Zambrano, V., Mueller-Roemer, J., Sandberg, M., Talasila, P., Zanin, D., Larsen, P. G.,
Loeschner, E., Thronicke, W., Pietraroia, D., Landolfi, G., Fontana, A., Laspalas, M.,
Antony, J., Poser, V., Kiss, T., Bergweiler, S., Pena Serna, S., Izquierdo, S., Viejo, 1.,
Juan, A., Serrano, F., and Stork, A. (2022). Industrial digitalization in the industry

4.0 era: Classification, reuse and authoring of digital models on digital twin platforms.
14:100176.

23

	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background and Motivation
	Research Objectives and Research Questions
	Structure of the Report

	Theory
	Electric Submersible Pump
	Introduction
	Artificial Lifting
	History and Challenges
	Components and Their Functionality

	Modeling of Dynamical Systems Using Neural Networks
	Introduction
	Differential Equations and Black-Box Modeling
	Perceptrons and Artificial Neural Networks
	Training of Artificial Neural Networks
	Gradient Decent and Back-Propagation
	Recursive Neural Networks

	Echo State Networks
	Introduction
	Structure
	Reservoir Size
	Sparsity
	Spectral Radius
	Leak Rate
	Input Scaling
	Training of ESNs

	Long Short-Term Memory Networks
	Introduction
	The LSTM Cell
	Training of LSTMs

	Method
	Mathematical Model of an ESP Lifted Well
	Implementation of the ESP Lifted Well Simulator
	Confirmation of the Simulator Implementation
	Fully Open and Fully Closed Choke Valves
	Step Response of the Choke Valve
	Gradually Increased Motor Frequency

	System Excitation Using APRBS
	Generating the Training, Validation and Test Set
	Error Metrics
	Implementation of the Echo State Network
	Searching for Hyperparameters

	Implementation of the Long Short-Term Memory Network
	Selecting Hyperparameters

	Results
	Tracking of the Test Set
	Step Response of the Choke Valve
	Gradually Increased Motor Frequency

	Discussion
	Conclusion and Further Work
	Conclusion
	Further Work

	Appendices
	Appendix Resulting Plots From the Reversed ESP Experiments
	Reverse Step Response of the Choke Valve
	Gradually Decreased Motor Frequency

	Appendix Results From the Reversed ESN and LSTM Experiments
	Revers Step Response of the Choke Valve
	Gradually Decreased Motor Frequency

