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Abstract

Handling disturbances is arguably one of the most important, yet challenging, aspects
of control theory. Despite the existence of numerous methods and extensive theories
on how to deal with disturbances, they are always present in any real-world process.
Disturbances generally represent uncertainties in models, and it can be difficult to deter-
mine their origin. This demands looser constraints when optimizing the process control,
affecting both profitability and efficiency. Many modern industries can be characterized
by their insatiable demand for economic profitability and efficiency. This is one of many
reasons why disturbance remains an important area of research within control theory.

In this dissertation, a method to enhance the performance of a nonlinear model predic-
tive controller (NMPC) was investigated. The NMPC was utilized to control an electric
submersible pump (ESP) subject to disturbances that were not accounted for in the
model. To address this, an echo state network (ESN) was used to identify the inverse
model of the disturbance-inflicted dynamical system. Ultimately, the obtained inverse
model was used to synthesize a feedforward controller. This controller generated cor-
rections to the current NMPC control input based on this input along with the control
reference and the current system state.

The results obtained from the experiments demonstrate that introducing ESN-based
feedforward control can indeed improve the performance of the NMPC. It was also
observed that the ESN’s ability to learn the inverse model depends on the particular
noise used to excite the ESN output during the training phase. This became particularly
evident after comparing two models trained with uniformly and normally distributed
noise, with the uniform noise model yielding better overall performance.

Furthermore, it was demonstrated that the ESN can successfully identify a satisfactory
inverse model for feedforward control even without prior knowledge of the actual system
disturbances. In an experiment where the controller manipulated both ESP control
inputs, the mean absolute error (MAE) was improved by 63.03% on average. This
improvement was achieved regardless of the disturbance characteristics and steps in
the control reference.
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Sammendrag

H̊andtering av forstyrrelser er antakelig en av de viktigste, men ogs̊a mest utfordrende,
omr̊adene innen reguleringsteknikk. Til tross for at det finnes uttalelige metoder, samt
store mengder teori p̊a hvordan forstyrrelser kan h̊andteres, vil alle fysiske prosesser
p̊avirkes av dette i praksis. Generelt representerer forstyrrelser usikkerheten i en mod-
ell, og det kan være vanskelig å avgjøre hvor disse stammer fra. Dette p̊avirker b̊ade
lønnsomheten og effektiviteten til prosessen, da det er avgjørende for hvilke begren-
sninger som kan benyttes for å optimalisere kontrollbruken. Moderne industri kjen-
netegnes i stor grad av økonomisk lønnsomhet og effektivitet. Dette er en av mange
grunner til at forstyrrelser fremdeles er, og vil forbli, et viktig forskningsomr̊ade innen
reguleringsteknikk.

I denne masteroppgaven ble en metode for å forbedre ytelsen til en ulineær-modell-
prediktiv-kontroller (NMPC) undersøkt. Kontrolleren ble brukt til å regulere en elek-
trisk nedsenkbar pumpe (ESP) som var utsatt for forstyrrelser som ikke inngikk i mod-
ellen. Videre ble den inverse modellen for dette forstyrrelsesutsatte systemet iden-
tifisert ved hjelp av et ekko-tilstands-nettverk (ESN). Ut fra denne ble det laget en
foroverkopling som genererte korrigeringer til kontrollsignalene fra NMPCen basert p̊a
det n̊aværende NMPC-kontrollsignalet, kontrollreferansen, samt den n̊aværende sys-
temtilstanden.

Resultatene fra eksperimentene viser at ESN-basert foroverkopling kan forbedre ytelsen
til NMPCen. Det ble ogs̊a observert at ESNens evne til å lære den inverse modellen
avhenger av den spesifikke støyen som ble brukt for å eksitere ESN-utgangen under
treningsfasen. Dette kom svært tydelig frem ved sammenligning av to modeller som
var trent med henholdsvis uniformfordelt og normalfordelt støy. I dette eksperimentet
ga modellen trent med uniformfordelt støy langt bedre ytelse totalt sett.

Videre ble det vist at en ESN kan identifisere en invers modell for foroverkopling ogs̊a
uten forkunnskap om de faktiske systemforstyrrelsene. I et av eksperimentene der kon-
trolleren manipulerte begge kontrollinngangene til ESPen, ble den gjennomsnittlige ab-
solutte feilen (MAE) forbedret med 63.03% i snitt. Dette resultatet var verken p̊avirket
av karakteristikken til forstyrrelsene eller enhetsstegene i reguleringsreferansen.
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1 Introduction

1.1 Background and Motivation

Over the last two years, artificial intelligence (AI) has received massive public atten-
tion. Especially after OpenAI released ChatGPT in late 2022, the public has generally
become more aware of all the possibilities this technology possesses (De Angelis et
al., 2023). This also applies to various companies and entire industries, and it may
be argued in the future that the release of ChatGPT marks the beginning of a new
paradigm. In any case, the enhanced public availability and awareness of AI might fur-
ther accelerate its development the same way as with the internet after it was publicly
released in the early 1990s (Leiner et al., 2009). Yet, the sudden hype and upswing
for AI has also created skepticism among experts in the field. In the aftermath of the
Cambridge Analytica scandal, it is evident that the current developments within AI
technology go too fast for the authorities to keep up. This has made experts from both
the tech industry and academia to publicly ask for a halt in the development pending
the establishment of ethical guidelines for further development of AI (Vallance, 2023).

However, the massive potential that the development of AI carries for various indus-
tries should not be underexaggerated. Especially now at the beginning of the fourth
industrial revolution which is, among other things, characterized by the ability to learn
from process data (Zambrano et al., 2022). Operators and analysts can indeed learn
a lot about a given process from recorded timeseries data. Nevertheless, it has been
demonstrated several times in the literature that AI models are capable of identifying
connections in operational data far beyond human interpretations.

System modeling is a tool of high importance in many disciplines that benefits greatly
from the use of AI. Modern processes have become too complex in general for tradi-
tional system identification based on first principles (i.e., Newton’s laws, mass balances,
etc.). Instead, it has been developed specialized AIs capable of identifying system mod-
els purely from recorded process data. This modeling technique is frequently referred
to as black-box modeling and was demonstrated in the preliminary work preceding this
dissertation, (Grønningsæter, 2022). In that project, an Echo State Network (ESN)
was utilized to identify the dynamical model of an electric submersible pump (ESP)
based solely on simulated operational data.

The ESN is an artificial neural network (ANN) specialized to recognize complex dy-
namical systems from timeseries data. It was for instance used to learn the dynamical
nonlinear behaviors for a downhole pressure estimation in (Antonelo, Camponogara, &
Foss, 2017), and also used to model increasingly complex behavior from examples in
(Antonelo & Schrauwen, 2015). Compared to other more conventional recursive neural
networks (RNN), the ESN requires significantly shorter training times due to the uti-
lization of linear regression. Considering this fact and the vast importance of process
models in modern real-world applications, it remains a crucial subject for research.

Within the field of control theory, dynamical system models are of particular interest
for model-based control (MBC). In (Jordanou et al., 2022), an ESN was used to identify

1



the system model for an ESP. The identified model was thereafter utilized in a nonlin-
ear model predictive controller (NMPC) to control the same ESP. Despite the results
indicating a good generalization of the system model, the NMPC proved too com-
putationally expensive to achieve long-term predictions within the required deadlines.
This suggests that more complex systems probably require even longer computational
times as simulations of the ESP model itself are not among the most computationally
demanding. Consequently, these models become unsatisfactory for optimal control ap-
plications as most controllers operate on strict deadlines.

This dissertation will investigate another approach involving system identification using
ESN. The system of interest is still the ESP, but it will also be subject to disturbance.
Inspired by the work conducted in (Jordanou, 2019), an ESN will be used to recognize
the inverse system model. Subsequently, this model will be utilized in a feedforward
controller intended to support an NMPC running with the nominal ESP system model.
It is believed that this setup will overcome the computational time challenges while
also effectively suppressing the disturbances that are not accounted for in the nominal
model used in the NMPC.

If this approach proves successful, it will demonstrate the possibility of using AI to
identify dynamical models capable of capturing the dynamics of unmeasurable distur-
bances. Obtaining insight like this into unobservable parameters is arguably the most
valuable aspect of inverse modeling. In the context of control theory, unmeasurable
disturbance has traditionally been handled through controller robustness. Increased
robustness often leads to looser controller constraints which are usually less beneficial
both economically and environmentally.
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1.2 Research Objectives and Research Questions

This Master’s dissertation documents the research conducted during myMaster’s project
and serves as the concluding part of my Master’s degree in Cybernetics and Robotics
at the Norwegian University of Science and Technology (NTNU). The work was carried
out in cooperation with the Federal University of Santa Catarina (UFSC) from March 1,
2023, until July 13, 2023. The primary objective of the project was to investigate if the
performance of an NMPC controlling an ESP subject to disturbance could be improved
by introducing feedforward control with ESN-based inverse models. This involves the
implementation of

• a simulator for the ESP lifted well.

• an NMPC for the ESP simulator.

• an ESN to learn models for the inverse ESP subject to disturbance.

• feedforward control based on the inverse models.

Leading up to this Master’s project, a preliminary project was carried out during the
fall of 2022. This project resulted in a report available in (Grønningsæter, 2022) which
documents, among other things, the implementation of a simulator for the ESP lifted
well and the implementation of an ESN framework. A few pages of this dissertation
are therefore extracted from the preliminary project. However, this will be highlighted
in the relevant chapters.

After the implementations, different types of stochastic noise will be used to excite the
ESN to learn different inverse models of the ESP subject to disturbance. Then, multiple
controllers featuring the NMPC (using the nominal ESP model) and the ESN-based
feedforward controllers will be synthesized and experimented upon. These experiments
will attempt to answer the following research questions:

I. Is it possible to improve the performance of the NMPC using feedforward control
based on inverse models provided by an ESN?

II. Will different distributions of the stochastic noise exciting the ESN affect the
ability to learn the inverse model of the ESP subject to disturbance?

III. Can the NMPC also benefit from ESN-based feedforward control when the ESN
has no prior knowledge of the actual disturbance affecting the ESP during the
training phase?

IV. How will the ESN’s ability to learn a sufficient inverse model for feedforward
control be affected by the ESP using multiple control inputs?
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1.3 Contributions

The work with this dissertation has led to the following contributions:

• A simulator for the ESP lifted well both with and without disturbance.

• An NMPC capable of controlling an ESP using either one or two control inputs.

• A control scheme utilizing ESN-based feedforward control that is capable of as-
sisting an NMPC in controlling an ESP subject to disturbances.

1.4 Structure of the Dissertation

The dissertation consists of seven chapters and six appendices, documenting all aspects
of the work conducted during the Master’s project. This first introductory chapter is
followed by:

Chapter 2 covers the essential theoretical concepts necessary for understanding the
rest of the dissertation. The relevant literature is cited using APA-in-text citations,
and a complete list of references is provided at the very end of the dissertation.

Chapter 3 documents the baseline implementation. These serve as the foundation
for the ultimate system implementation.

Chapter 4 documents the enhanced implementation, where the components from
Chapter 3 are combined. This chapter also details the experimental designs and ex-
plains how the hyperparameters for the ESN models were determined.

Chapter 5 provides a summary of the results obtained from the experiments detailed
in Chapter 4.

Chapter 6 discusses the results and the experiments in detail.

Chapter 7 concludes the dissertation by addressing the main objective and the re-
search questions from Section 1.2. The conclusions are based on the discussion in
Chapter 6. In addition, some subjects of interest for future work are proposed.

Appendix A provides a overview of fundamental theory on dynamical systems. This
appendix serves as a supplement for the unfamiliar reader.

Appendix B covers selected essential topics within classical control theory. This
appendix serves as a supplement for the unfamiliar reader.

Appendix C contains the plots from the reverse step NMPC experiments discussed
in Section 3.2.

Appendix D details how the hyperparameters for the normal model in Section 5.1
were determined.

Appendix E details how the hyperparameters for the model in Section 5.2 were
determined.

Appendix F details how the hyperparameters for the model in Section 5.3 were
determined.
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2 Essential Theoretical Concepts

This chapter gives an introduction to existing theory on essential concepts that are
important for the understanding of this dissertation. The following sections will cover:

Section 2.1: Model Predictive Control (MPC) which is an optimal control strategy
utilizing a system model to find optimal control inputs based on the
current state and feedback.

Section 2.2: Fundamentals on the ESP which is the system subject to control in this
dissertation.

Section 2.3: Stochastic processes, more specifically white uniformly and normally
distributed noise.

Section 2.4: Fundamentals on the ESN which is the neural network (NN) that will
be used to approximate the inverse model of the ESN.

Section 2.5: Error metrics used to evaluate system performances in this disserta-
tion, more specifically mean squared error (MSE), mean absolute error
(MAE), and integral absolute error (IAE).

It is assumed that the reader is familiar with dynamical systems modeling and classical
control theory. Complementary theory on these topics is available in Appendix A and
B, respectively, for the unfamiliar reader.

2.1 Model Predictive Control

The large interest in MPC became evident in the late 1970s (Camacho & Bordons,
2007). Particularly after the publication of the first papers on dynamic matrix con-
trol (DMC) and generalized predictive control (GPC) (Morari & Lee, 1999). Although
the applications for these two methods were very different, they are both regarded as
first-generation MPC strategies, sharing many of the same underlying ideas (Seborg,
Edgar, & Mellichamp, 2004). DMC was developed in the early 80s to handle multivari-
able constrained control problems within the oil and chemical industries. Within these
industries it was typical to use deterministic time-domain models without considering
disturbance at all (Morari & Lee, 1999). GPC, on the other hand, was developed in
the late 80s for adaptive control where transfer functions and stochastic models were
more common (Morari & Lee, 1999). However, in the literature, the attempts on un-
derstanding the DMC are usually considered as the initial MPC research (Morari &
Lee, 1999).

MPC has ever since the early 80s been an important subject for research due to the
large potential it carries within process control, economics (Camacho & Bordons, 2007),
climate change (Kim et al., 2022), and many others. Over the same period, there has
also been a massive increase in available computational power. Especially the develop-
ments over the last 20 years have together with MPC enabled control of systems that
were previously unimaginable (Schwenzer, Ay, Bergs, & Abel, 2021). Another major
advantage of the MPC is its intuitiveness, and it is relatively easy to tune compared
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to other controllers. This makes it desirable even in the case where the operators have
limited knowledge to control (Camacho & Bordons, 2007).

2.1.1 The MPC Principle

Recalling that both DMC and GPC are considered MPCs, it is clear that MPC does
not refer to a single controller or strategy, but to multiple advanced control strategies.
According to (Camacho & Bordons, 2007), there are three main ideas that all MPC
strategies to some extent share:

1) Predict the future process output over a finite time horizon explicitly by utilizing
a process model.

2) Finding an optimal control sequence from minimizing an objective function.

3) Using the receding horizon strategy which involves using only the first control
element calculated in 2) for each timestep.

The different MPC strategies vary in the type of process model they use to predict
future outputs and the objective function they aim to minimize (Camacho & Bordons,
2007). However, the main challenge with any MPC strategy is to derive the process
model mathematically (Camacho & Bordons, 2007). This is because many industrial
processes have become severely complex over the last decades. Thus, many process
models are impossible to derive based on first principles and require that parts of or
eventually that the entire model is estimated from process data (Hou & Wang, 2013).
In the case where a sufficiently accurate model is available, model imperfections (in-
cluding unmeasurable disturbances) will cause drift in the states. This is because each
individual MPC optimization is a feedforward that depends on being initialized close to
the actual process state (Hovd, 2022). Nevertheless, it is possible to achieve feedback
if the MPC is run for every time sample using the current state as starting point (this
will require feedback from the output). This controller is often referred to as the MPC
principle and is illustrated in Figure 1.

6



k

Predicted control inputs

Predicted states

Current state

Plant 
model

Plant 
k+N

t

Previous states

Current state

Previous control inputs
Current control inputs (from optimization)

Figure 1: MPC principle, recreated from (Foss & Heirung, 2016).

Any stabilizable and detectable system can be stabilized and controlled with MPC by
applying this principle if provided with a perfect model and an infinite horizon (Cama-
cho & Bordons, 2007). However, this applies only in theory because there will always
be some imperfections in any process model, and the computational demand for very
long horizons would make the calculation infeasible. Yet, if a process model is available,
imperfections can be handled to some extent by utilizing model update methods (Hovd,
2022). These are powerful, but advanced methods to suppress modeling imperfections
including unmeasurable disturbances. The general idea is to design an observer such
as the Kalman filter which is used to estimate the current state. This estimation is
based on a weighting between the predicted and measured system output. Note that
the observer will also require tuning and estimates of the stochastic properties of the
disturbance.

Despite the challenge of deriving a process model, MPCs have proven to be reasonable
strategies for industrial control (Foss & Heirung, 2016). The MPC has in many cases
improved the performance of industrial processes massively through better tracking
and increased disturbance rejection. This is because it enables tighter performance
specifications compared to classical controllers such as the PID (Foss & Heirung, 2016).
It is, however, typical to implement MPC on top of classical controllers forming a
control hierarchy in modern industry. This setup ensures a stable system as systems
with basic control in most cases are stable (Hovd, 2022). This is beneficial to many
industries because they can implement the MPC on top of systems they already have
invested in. Furthermore, the classical controllers will typically compute new control
inputs every second while the MPC computes setpoints (in some cases even control
parameters) for the classical controllers with a sampling time of minutes or more (Foss
& Heirung, 2016). By being able to run the MPC on larger sampling times, it has
become available for more industries. This is because it can be implemented without
requiring upgrading process control computers. These computers are often old and
expensive to upgrade. Consequently, they have poor computing power and are often
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being used for communications, alarms etc. too (Camacho & Bordons, 2007).

2.1.2 Optimization Problems

Optimization refers in general mathematics to the minimization (or maximization) of
some function with constrained variables (Nocedal & Wright, 2006). This function
is usually referred to as the objective or cost function and is a scalar measuring the
performance of the system being optimized. The objective is dependent on the problem
and can for instance be time, profit, energy, or some combination of different entities.
When optimizing an objective subject to some constrained variables, the goal is to
find the variables that minimize (or maximize) the objective. A general optimization
problem can be expressed as

min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(1)

where x is a vector with variables, f is a scalar objective function to be optimized and
ci are scalar constraint functions of x defining equalities (E) and inequalities (I) that
x must satisfy (Nocedal & Wright, 2006).

Depending on the object function and the constraints, optimization problems can be
divided into classes. These classes also imply which solving algorithm that should be
used in order to solve the optimization problem. The three most general classes are:

• Linear Programming (LP) where both the objective function and the constraints
are linear. These problems are always convex and can be solved efficiently using
the SIMPLEX method or an interior point algorithm.

• Quadratic Programming (QP) where the objective function is quadratic and the
constraints are linear. These problems are convex as long as the Hessian matrix
is positive semidefinite and can be solved efficiently using an active set method.
In the case where the Hessian is indefinite, the problem becomes a nonconvex
QP which is generally harder to solve due to several stationary points and local
minima.

• Nonlinear Programming (NLP) where either the objective function, one of the
constraint functions, or all are nonlinear. These problems are in general non-
convex and can be very challenging to solve. Popular solvers for NLP problems
are sequential quadratic programming (SQP) algorithms and the interior point
optimizer (Ipopt).

When solving an optimization problem, the algorithm will search for an optimal so-
lution within the feasible region. This region is defined by the constraints and all
candidates within this region are contained inside the feasible set. In a case where no
candidate fulfills all the constraints, this set will be empty which means the problem
is infeasible (has no solution). Furthermore, LP and NLP problems can also be un-
bounded. This happens when the objective function f is able to become arbitrarily
small (minimization) or large (maximization) without violating a constraint.
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2.1.3 Objective Functions in Optimal Control

In the context of optimal control, the overall objective is to penalize deviations from
a desired reference trajectory (xref ) and a desired input trajectory (uref ). Both tra-
jectories are in the general case assumed to be given to the MPC from some external
source. This leads to the following very general objective function formulation

J(x,u) =
∞∑
k=1

(xk − xref,k)
TQ(xk − xref,k)

+(uk − uref,k)
TR(uk − uref,k)

(2)

where Q and R are symmetric and positive definite weighting matrices that can be used
for tuning of the controller. However, since this formulation uses an infinite horizon,
this objective function takes all future steps into account. This is a typical approach
for unconstrained optimal controllers such as the linear quadratic controller (LQR). In
comparison, the MPC also considers constraints and solves the optimization problem
repeatedly. An infinite horizon is thus computationally infeasible as described initially.
For this reason, the MPC uses a finite horizon which results in the following objective
function:

J(x̃, ũ) =
N−1∑
k=1

x̃T
kQx̃k + ũT

kRũk (3)

where x̃k = (xk − xref,k) and x̃k = (uk − uref,k), Q and R are the weighting matrices
as previously described and N is the prediction horizon. In some applications, there
might be necessary to append J with a final term given by (xN −xref,N)S(xN −xref,N)
in order to ensure a feasible state at the end of the prediction. This is, however, outside
the scope of this dissertation.

The MPC is tuned by selecting Q, R, and N . Typically, Q and R contain a weight
for each state on the diagonal. Large elements in Q leads to more aggressive control
since a small value in x will in the calculation of the cost get amplified. Thus, a large
value will punish a deviation harder. In the opposite case, the deviation is ignored as
a low value will drive the respective term closer to zero. R punishes the use of control,
meaning that a large weight will lead to less aggressive control. This is because the
optimizer will try to find control inputs close to the previous in order to minimize the
difference. Both Q and R are typically chosen based on what behavior is desirable and
by simulating different values. The prediction horizon N affects the performance and
computational complexity of the controller. A low value of N corresponds to a short
prediction giving poorer performance, but less complexity. A large value of N will give
the opposite behavior. Generally, N is chosen as large as computationally possible and
preferably larger than any time constants in the system. This way the finite prediction
horizon acts as if it was infinite.

2.1.4 The Role of Constraints in MPC

One of the major advantages of applying MPC is the ability to achieve optimal control
subject to some constraints. After all, any process is restricted by some physical limi-
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tations. This can be the frequency range of a motor, a valve opening, etc. Today, also
economic and environmental concerns are considered when designing an industrial pro-
cess and the associated control system. Constraints for the general formulation given
in (3) are typically given on the following form:

u ≤ uk+i ≤ u, i ∈ [0, N − 1] (4)

x ≤ xk+i ≤ x, i ∈ [0, N ] (5)

∆u ≤ ∆uk+i ≤ ∆u, i ∈ [0, N − 1] (6)

where ∆uk = (uk − uk−1) which is the same as constraining the change in control
inputs, and · and · denote min and max, respectively.

Generally, there exist two types of constraints. These are soft and hard constraints.
As the names suggest, soft constraints can to some degree be violated, while hard
constraints can not. More specifically, soft constraints are modified constraints from
introducing penalty functions in the optimization problem. This is achieved when in-
troducing additional variables ensuring that the constraints are always feasible for suf-
ficiently large values of the additional variables. The objective function is also modified
by introducing a penalty term on the magnitude of the constraint violations making
the introduced additional variables free variables in the optimization. This is often
referred to as relaxing a constraint (Hovd, 2022). Note that a soft constraint must be
possible to violate without saturating (or even destabilizing) the process. This can for
instance be a constraint with the intention of minimizing climate gas emissions from
the process. Hard constraints, on the other hand, will result in infeasibility if violated
and is thus not relaxable. Hard constraints are most eminent in input constraints such
as the limitations of an actuator.
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2.2 Electric Submersible Pump

This chapter is mainly based on (Takács, 2009) and summarizes the theory on ESPs
from (Grønningsæter, 2022). The reader is referred to these two sources for further
details on this topic.

2.2.1 Artificial Lifting

Oil wells (reservoirs) are generally categorized as alive or dead based on how oil can be
produced from them. An alive oil well has a sufficiently high natural pressure which
ensures a proper flow of oil, water, and gas (production fluid) to the surface. These
wells are often referred to as having ”natural lift”, and they are naturally suited for
economical production. A dead oil well has lost its natural lift due to the fluid being
extracted from the well over time. This will eventually cause a significant decrease
in the natural pressure making the natural lift insufficient for economical production.
However, it is possible to revive dead wells. Artificial lifting describes various methods
and technologies that can be used for this purpose. One such technology is the ESP
(Pavlov, Krishnamoorthy, Fjalestad, Aske, & Fredriksen, 2014) which is an installation
based on pump lifting which, together with gas lifting, is considered one of the main
methods to achieve artificial lift.

Pumping methods use pumps in the well bottom to increase the pressure in the reservoir
to overcome the flowing pressure loss. In general, pumping methods are classified based
on how the pump is driven and whether it uses rod or rodless pumping. The ESP is
a rodless pumping method that utilizes a submerged electrical motor that drives a
multistage centrifugal pump. The ESP is ideally suited to produce high liquid volumes
and is one of the most efficient pumps when considering all depths. Regardless, it
should be mentioned that gas lifting is still more efficient.

2.2.2 History and Challenges

The ESP was invented by Armiais Arutunoff in the late 1910s, and the first ESP was
successfully operated in the El Dorado field, Kansas in 1926. Since then, there have
been multiple improvements to the technology, and it is approximated that around
10% (Takács, 2009) of the world’s oil supply is produced with ESPs today. The ESP
is therefore considered by many as one of the most successful techniques for artificial
lifting both on- and off-shore with high liquid volumes from medium depths. This is a
result of the ESPs being both energy efficient and easy to install with low demand for
maintenance as long as it is properly installed and operated.

There are, however, some disadvantages with the ESP. One of these is the difficulty of
repairing faulty equipment in the field. In most cases, faulty equipment must be sent
back to the manufacturer for repair which means downtime in the production since
the installation can not be replaced during this period. To make matters worse, the
repair in itself is expensive and comes in addition to the multi-million loss due to the
downtime. Hence, it is desirable to make the lifetime of the ESP as long as possible
and the need for maintenance as small as possible.
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Statistics from Centrilift presented in (Pavlov et al., 2014), report that 23% of all ESP
failures are caused by operator mistakes. Although this is a large improvement from the
early days when around 80% of all failures were due to human errors, this is still causing
enormous economical losses. The reason for these failures is the ESPs being run close
to the operating limits because this is where optimal production points are located.
There is in general little automation supporting the operation of the pumps. Many
ESPs are driven by variable speed drivers (VSD) enabling operators to run the ESP
motor at different speeds. They are also able to adjust the opening of the production
choke at the top of the well affecting both the well and the operation of the ESP. Hence,
it is hard to find an optimal operation point where the production is optimized and the
lifetime is not significantly reduced. There are usually large teams with competence
in the ESP monitoring multiple variables and doing analyses to support the operators.
However, this is prone to human errors due to differences in experience, and the fact
that most fields operate multiple ESPs making the task even more complex (Pavlov et
al., 2014).

2.2.3 Components and Assumptions in the Conventional ESP

As mentioned in Subsection 2.2.1, ESPs are installations utilizing a submerged electri-
cal motor (powered by electricity from the surface) that drives a multistage centrifugal
pump. Generally, the ESP unit is submerged in well fluid and consists of a motor, a
protector, a gas separator, and a pump. On the surface, one can usually find a junction
box where surface and submerged electric cables are joined as well as a control unit.
Although there have been multiple improvements to the ESP over the years, the con-
ventional installation is still frequently used based on the following three assumptions:

1. Ideal pump conditions with only fluid entering the pump.

2. Produced fluid has a low viscosity (ideally close to the viscosity of water).

3. The motor is operating at a constant speed as it is powered with AC having a
constant frequency. Also ensuring constant speed of the pump.

Even though these assumptions do not always hold, the conventional ESP installation
has still proven both reliable and effective in various conditions. In special cases, where
for example the gas production is too large and breaks the first assumption, the ESP
installation can be augmented with special equipment. Installations different from the
conventional are, however, outside the scope of this dissertation.
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2.3 White Noise as a Stochastic Process

Noise as defined in Appendix B.2 can only be described in terms of probability (Brown
& Hwang, 2012). This is because noise takes the form of a random process that can
not be described using explicit mathematical functions such as sine waves, logarithms,
etc. The foundations of this field were not laid before in the 1940s with the work of
Wiener (Wiener, 1949) and Rice (Rice, 1944). Today they are regarded as pioneers
within the field, and their work has proven crucial in many disciplines such as signal
processing, which has played a major part in many modern technological breakthroughs.

One particularly important random process is white noise. This is a random process
which by definition is stationary and has a constant spectral density function (Brown
& Hwang, 2012). The noise is referred to as white with inspiration from optics meaning
that it contains all frequencies. White noise will consequently have infinite variance
making it physically unrealistic. Yet, it is physically valid to drive a system with
white noise because all physical systems are bandlimited, yielding a process with finite
variance (Brown & Hwang, 2012). A simpler interpretation of white noise is that it de-
scribes any sequence of uncorrelated samples with zero mean and finite variance. There
are thus various types of white noise differing in the distribution from which the sam-
ples are drawn. This is commonly referred to as the noise having different probability
density functions. The normal (also known as Gaussian) and uniform distributions are
two particularly important distributions that will be introduced in the following two
sections.

2.3.1 Normal White Noise

White noise is called normal when the samples are drawn from a normal (also known
as a Gaussian) distribution. A random variable X is considered normal if it has the
following probability density function (Brown & Hwang, 2012):

fX (x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

(7)

where µ denotes the mean and σ denotes the standard deviation of the random variables.
The normal distribution describes many naturally occurring random phenomena and
is often encountered in applied probability (Walpole, Myers, Myers, & Ye, 2010). Due
to being probably the most important distribution within statistics, normal random
variables are often defined using the random variable X with the following notation:

X ∼ N (µ, σ2) (8)

Note that in the context of normal white noise, µ = 0 by definition. The resulting
probability density function from the density function fX (x) is known as the bell curve.
Figure 2 shows three bell curves with increasing standard deviation σ.
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Figure 2: Bell curve plotted for different σ values, with zero mean (µ).

The area under the bell curve is always one and represents the probability of drawing
a particular x from the entire interval. By integrating the bell curve over a subset, one
can obtain the probability of drawing an x value from that particular subset. From
further inspection of Figure 2, it is clear that the most probable values lie in the middle
of the interval. Moreover, the probability of drawing a value away from the middle
declines rapidly.

2.3.2 Uniform White Noise

An uniform distributions refer to a random variable X where all values between a
maximum and minimum have the same probability of being drawn. The probability
density function of this distribution is given by (Walpole et al., 2010):

fX (x) =

{
1

B−A
, A ≤ x ≤ B

0, else
(9)

where A and B denote the minimum and maximum of the interval. This distribution
is one of the simplest probability distributions, and it does not occur as frequently as
the normal distribution (Walpole et al., 2010). Figure 3 shows a uniform distribution
plotted for the closed interval [−1, 1].
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Figure 3: Uniform distribution for a random variable on the interval [−1, 1].

As for the normal distribution, the area under the graph equals one. Hence, the prob-
ability of drawing an x value from a given subset is also here given by integrating over
the particular subset. However, due to all values having the same probability, any
uniform distribution takes the form of a rectangle. The probability of drawing a value
within a given subset can thus be interpreted geometrically. Furthermore, the uniform
distribution is usually defined by an interval and not the mean and standard deviation,
which is the case for normal distributions. The mean µ and standard deviation σ2 for
an uniform distribution is given by (Walpole et al., 2010):

µ =
A+B

2
(10)

σ2 =
(B − A)2

12
(11)
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2.4 Echo State Networks

The introduction as well as Section 2.4.1 to 2.4.3 in this chapter has been extracted
with some modifications from (Grønningsæter, 2022). The modifications are mostly to
phrasings.

The ESN is an RNN based on reservoir computation instead of multiple hidden layers
like more traditional neural networks. In reservoir computing, input and reservoir
weights are randomly initialized entailing faster training and less computational cost
compared to the RNNs where all weights are trained. This approach was proven eligible
in (Schiller & Steil, 2005) where the authors showed that nearly all significant weight
adaption happens in the output layer during the standard training of RNNs. The
general ESN consists of a random input layer, the reservoir which acts as a single
hidden layer, and an output layer that is trained. This is illustrated in Figure 4. ESNs
can also be augmented with feedback to the reservoir. This is omitted in the figure
because it is outside the scope of this dissertation.

...

Input layer

uk

Reservoir

...

Output layer

ŷk

Figure 4: Schematic illustration of the general ESN, recreated from (Jaeger, 2007).

2.4.1 The Structure of the General ESN

ESNs can be considered specialized networks for fast learning of complex dynamical
systems with low computational costs. This is not only due to the exploitation of reser-
voir computation but also the use of the supervised learning principle. The formal task
of an ESN was formulated in (Jaeger, 2001) as:

Given a teacher I/O time series (uteach,k, yteach,k) for k=0,...,T, where the inputs come
from a compact set U in and the desired outputs yteach,k from a compact set U out. A
RNN whose output ŷk approximates yteach,k is wanted.

The ESN can in the same way as RNNs be described in terms of a dynamical system.
This system (without feedback) is given by the following equations:
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xk+1 = (1− α)xk + αf(W rxk +W iuk+1 +W b)

yk+1 = W oxk+1

(12)

where xk, uk, yk are the state of the reservoir neurons, the values of the input neurons
and the values of the output neurons, respectively. W represents the weight matrix
with the subscripts i, r, o and b being input, reservoir, output and bias. The remaining
two properties, α and f(·) correspond to the leak rate and the nonlinear activation
function (Lukoševičius, 2012). Furthermore, according to (Lukoševičius, 2012), the
general method of reservoir computing introduced with ESNs is:

1. Define W i, W r and α, and generate a random reservoir RNN.

2. Run the reservoir using the training input uk and collect the corresponding reser-
voir activation states xk;

3. Compute W o by minimizing the MSE between ŷk+1 and ytarget
k .

4. Use the trained network on new input data uk by computing ŷk+1 using the
computed W o.

2.4.2 Global ESN Reservoir Hyperparameters

When building an ESN, there are five hyperparameters that must be considered in
order to optimize the reservoir of the ESN (Lukoševičius, 2012). These are reservoir
size (Nx), sparsity, leak rate (α), spectral radius (ρ(W r)) and input scaling. Where the
latter three are the most important for optimizing performance. The hyperparameter
values are usually found through trial and error as there exist no analytic methods for
this (Lukoševičius, 2012). Alternatively, it is also possible to conduct a grid search
(Grimstad, 2022). The following sections are mainly based on (Lukoševičius, 2012) and
will describe the hyperparameters in more detail.

Reservoir Size (Nx)

The reservoir size refers to the number of nodes in the reservoir. In general, one
should use as many nodes as computationally affordable which makes it more likely
to find a linear combination of reservoir signals xk approximating ytarget

k . Yet, it can
be cumbersome to determine the remaining hyperparameters if starting with a large
reservoir. It is therefore recommended to start with a relatively small reservoir and
determine the other hyperparameters before scaling up. Note that large reservoirs
require appropriate regularization measures to avoid overfitting, and it is not always
necessary to scale up the reservoir if a smaller reservoir yields satisfactory results.

Sparsity

Sparsity is relevant for both the input layer and the reservoir. In the input layer, it is
recommended to make most of the values in W i equal or as close to zero as possible.
The performance of the ESN is generally not affected by sparsity in the reservoir.
Hence, this hyperparameter is mostly used to speed up computations since it reduces
the number of connections in the reservoir making the state matrix more sparse.
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Spectral Radius (ρ(W r))

The spectral radius is perhaps the most important hyperparameter because it scales
the maximum absolute eigenvalue of the reservoir weight matrix. This is equivalent to
scaling the width of the distribution of its nonzero elements. After W r is generated
randomly, it should be divided by max(||eig(W r)||1) ensuring unit spectral radius
before it is scaled with the spectral radius. This is to ensure that the ESN satisfies the
echo state property being that the reservoir is uniquely defined by the fading history
of the input. Usually, the echo state property is ensured by choosing ρ(W r) < 1. For
practical purposes, the spectral radius is selected to maximize the performance, and
it determines how fast the influence of an input dies and the stability of the reservoir
activation. Generally, the spectral radius should be greater in tasks requiring longer
memory of the input.

Leak Rate (α)

The leak rate can be considered as the speed of the reservoir update dynamics. Reser-
voirs possess no time constant and use instead leaky nodes to slow down the dynamics
in the system at hand. In (Osnes, 2020), the author describes the leak rate as how
much of the current state that will be ”leaked” to the next. This seems like a good
interpretation considering its role in (12) and that its value ranges from zero to one.

Input Scaling

Input scaling determines the scaling of the input weight W i affecting how nonlinear
the reservoir responses are. Recalling that this is also affected by the spectral radius,
these two parameters must be considered together. These two parameters regulate the
amount of nonlinearity in xk and the relative effect of the current input uk on xk

opposed to history. In order to have few hyperparameters in the ESN, W i should be
scaled uniformly.

Bias Scaling

In (Grønningsæter, 2022), the bias weight W b was fixed to one and included in the first
column inW i. In this work, however, it is scaled separately to increase the performance
of the reservoir as described in (Lukoševičius, 2012). In addition, it is also possible to
further scale each column of W i separately if the input sequence contributes differently
to the task. This is not done in this dissertation because each scaling introduces a new
hyperparameter that must be tuned.

2.4.3 Training of ESNs

In this paragraph, the training method of ESNs will be presented. Given a training set
uk and a target set ytarget,k with k = 1, ..., T , and by including the bias weight in W i,
(12) can, by using matrix notation, be rewritten as:

Y = W oX, (13)
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where Y ∈ RNy×T and X = [1 uk xk]
T ∈ R(1+Nu×Nx)×T are all outputs and states

produced by the reservoir when presented all inputs U ∈ RNu×T (Lukoševičius, 2012).
Finding the optimal W o is equivalent to minimizing the MSE between the ESN output
ŷk and the given target ytarget,k. Since T ≫ 1 + Nu + Nx in most cases, this is
an overdetermined linear regression problem (Lukoševičius, 2012). One of the most
common remedies when dealing with an overdetermined system is to use the ridge
regression (also known as Tikhonov regularization):

W o = Y targetX
T (XXT + βI)−1 (14)

where Y target ∈ RNy×T is a matrix with every given ytarget,k from k = 1, ..., T , β is
the regularization coefficient and I is the identity matrix. This will avoid both overfit-
ting and feedback instability (Lukoševičius, 2012) and solves the following optimization
problem:

W o = argmin
W o

=
1

Ny

Ny∑
i=1

(
T∑

k=1

(ŷi,k − ytarget,i,k)
2 + β||wo

i ||22

)
(15)

compared to the ordinary MSE, this object function also includes β||wo
i ||22 which is

a regularization term that penalizes large W o making a compromise between small
training error and small output weights. β determines the relative importance and is a
hyperparameter that must be tuned (Lukoševičius, 2012). There are multiple ways of
determining β, with grid search being one of them (Grimstad, 2022). Note that (14)
was transposed in the implementation in order to get it on the form Ax = B to exploit
the pytorch linalg solver:

W T
o = (XXT + βI)−1XY T

target (16)

NNs are traditionally trained by running through training data multiple times mini-
mizing a cost function. The ESN differs from this because all data points are presented
to the network once. This is often referred to as one-shot training (Lukoševičius, 2012).
In most cases, this yields faster training of NNs. Moreover, when using ridge regres-
sion there are no limits to the amount of training data, and the time of the training
procedure will be independent of the number of training points (Lukoševičius, 2012).

2.4.4 ESNs in Control Applications

Feedback controllers are often driven by estimates instead of the pure measurements
of the system output (Chen, 1999). These estimators are often based on the inverse
of the system model in order to predict the actual system state. However, in many
applications, the system model is either unavailable or might be too complex to in-
vert. To overcome these problems, the author of (Jaeger, 2008) proposes a black-box
modeling framework utilizing the ESN to learn the inverse model of a system purely
from observations of in- and output data. More specifically, this approach synthesizes
a controller based on observations from random excitations of the ESN output(s). This
idea was then used to make a feedback controller based on online learning of the inverse
model in (Waegeman, Schrauwen, et al., 2012) and (Jordanou, 2019).
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The original idea from (Jaeger, 2008) was to first train an ESN offline using the current
and previous feedbacks yk and yk−δ as inputs and a random value uk−δ as output. In
this setup, δ denotes the delay in number of timesteps. This is shown schematically in
Figure 5.

yk

yk−δ

ESN
Learner

uk−δ

Figure 5: Schematic illustration of the learning phase of the ESN controller.

After the training phase, both the in- and output signals are shifted δ timesteps ahead.
This results in the ESN taking yk+δ and yk as inputs producing uk as output. The
future input yk+δ denotes the desired future input, which in the context of control, is
the reference yref . A schematic illustration of the proposed ESN controller is shown in
Figure 6.

yk+δ

yk

ESN
Controller

uk

Figure 6: Schematic illustration of the ESN controller.

The delayed feedback is required to enable the controller to use both the current and
future (desired) feedback values as inputs. Furthermore, notice that the ESN-learner
and ESN-controller illustrated in Figure 5 and 6 use the same model. After the training
phase, the only difference between them is the origin of time of their inputs and output.
In both (Waegeman et al., 2012) and (Jordanou, 2019), the general idea was to learn the
network to produce the control output driving the system to the reference. They both
managed to do so successfully, but both authors outline the importance of choosing
δ carefully. The δ is proportional to the time constants of the system (Jordanou,
2019), and is therefore regarded as a crucial hyperparameter. Hence, finding a good
δ is essential in order to find a good generalization of the inverse model. Generally,
according to (Waegeman et al., 2012), systems with fast dynamics require a smaller δ,
while slower dynamics require a larger value.
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2.5 Error Metrics

Error metrics are necessary in order to evaluate the performance of any NN or controller.
The MSE is a widely used error metric to evaluate the performance of an NN model on
a test or validation set (Goodfellow, Bengio, & Courville, 2016). It is given by:

MSE =
1

N

N∑
i=1

(ŷ − y)2i (17)

where N is the number of data points, ŷ is the predicted value and y is the value target.
From the equation it is evident that the MSE is really measuring the Euclidean distance
between the prediction and the target:

MSE =
1

N
||ŷ − y||22 (18)

Lower MSE, therefore, implies better generalization as the MSE approaches zero when
the predicted value ŷ approaches the target value y. Generally, the MSE is a popular
error metric for tuning hyperparameters. It should still be mentioned that the MSE
is scale dependent, and also that it is vulnerable to outliers. This makes the MSE an
undesirable metric for comparing NN models with different scaling.

In order to evaluate the performance of the controller, one can utilize the MAE (eT )
which is defined in (Hafner & Riedmiller, 2011). This metric is given by:

eT =
1

N

N∑
i=1

||xref
i − xi||1 (19)

where N is the number of data points and xref
i and xi are the state reference and state

value at time step i. Although this metric is based on the L1 norm, it is based on the
same intuition as the MSE since both error metrics average the distance between some
reference and a calculated value over all data points. Hence, one could definitely apply
the L2 norm instead. In fact, using MAE to evaluate the performance of controllers
originates from using the same metric with the L2 norm as a term in cost functions
for linear predictive control strategies (Camacho & Bordons, 2007). However, for the
purpose of this dissertation, it will be used as defined in (19). Looking at the equation,
it is evident that the MAE will grow with the time the system uses to converge to the
reference. Thus, this error metric can also be used to indirectly evaluate the convergence
rate. Another closely related error metric, that is often reported in similar studies, is the
IAE. As the name suggests, this error metric measures the total area of the absolute
error. The IAE is related to the average trajectory error eT through the following
relation:

IAE = N · eT (20)

where N is the number of data points and eT is the mean trajectory error. A drawback
with the MAE and IAE is that neither of these metrics is able to evaluate the transient
behavior (i.e. oscillations) of the controller (Jordanou, 2019). Therefore, a final error
metric measuring the absolute variation of the control action is also defined:
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∆u =
N∑
i=1

||ui − ui−1||1 (21)

where N is the number of data points and ui and ui−1 are the current and previous
control input. The intuition behind this error metric is that large variations between
control inputs are physically infeasible and can be damaging to the actuators. Hence,
it is desired to follow the trajectory with as conservative use of control as possible.
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3 Baseline Implementations

This chapter documents the baseline implementations in the project. These will serve
as crucial and individual parts in the adequate system implementation. The following
sections will cover:

Section 3.1: The mathematical model and implementation of the conventional ESP
lifted well.

Section 3.2: Mathematical formulation and implementation of the NMPC.

3.1 Conventional ESP Lifted Well

This subchapter covers the mathematical model of the conventional ESP as well as the
implementation of this. Section 3.1.1 and 3.1.2 are both extracted from (Grønningsæter,
2022). Nevertheless, the presentation of the equations in the former is rewritten to re-
solve some unclarities and misunderstandings from (Grønningsæter, 2022). The reader
is referred to this source for experiments confirming the integrity of the model imple-
mentation.

3.1.1 Mathematical Model of the Conventional ESP Lifted Well

The ESP is, as described in Subsection 2.2.3, a complex system with multiple mechan-
ical components. In addition, the well must also be considered in order to derive a
mathematical model for optimizing operation and ultimately oil production. One such
model is presented in (Pavlov et al., 2014) where it was used in an MPC and tested
extensively at Equinor’s R&D center in Porsgrunn, Norway. This model was originally
developed in 2010 by the same authors in cooperation with Equinor (previously Statoil).
In the same year, (Binder et al., 2015) enhanced this model to also include estimates
of flow rates and viscosity in a similar well. This model, including the reported param-
eters and assumptions, is the model that will be used to implement the simulator in
this project. An illustration of the model is presented in Figure 7. From inspection, it
is evident that there are many variables and parameters that must be considered. All
the reported numerical values are summarized in Table 1.
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Figure 7: Mathematical ESP model, recreated from (Binder et al., 2015).

The resulting model from (Binder et al., 2015) is a third-order nonlinear model given
by the following differential equations:

ṗbh =
β1

V1

(qr − q̂), [Pa/s] (22)

ṗwh =
β2

V2

(q̂ − qc), [Pa/s] (23)

˙̂q =
1

M
(pbh − pwh − ρghw −∆pf +∆pp), [m3/s2] (24)

where qr, qc, ∆pf , and ∆pp represent the inflow, outflow, friction, and pressure difference
across the ESP, respectively. The remaining parameters are constants given in Table
1. Further details on these models are given in the following four subsections.

Inflow from the Reservoir into the Well (qr)

The inflow rate from the reservoir into the well is given by the following equation:

qr = PI(pr − pbh), [m3/s] (25)

where PI is the well productivity index, pr the reservoir pressure, and pbh the bottom-
hole pressure. The two former parameters are constants given in Table 1, whereas the
latter is the current ESP bottomhole pressure. This depends on the current inflow qr
and is found by solving (22).
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Flow Rate through the Production Choke (qc)

The flow rate through the production choke is given by the following equation:

qc = Cc

√
pwh − pm · z, [m3/s] (26)

where Cc and pm denote the choke valve constant and the production manifold pressure,
respectively. These are constants given in Table 1. z denotes the valve opening which is
a system control input. Lastly, pwh is the current ESP wellhead pressure. This depends
on the current outflow qc and is found by solving (23).

Frictional Pressure Drop in the Well (∆pf)

The frictional pressure drop in the well is given by the following equation:

∆pf = F1 + F2, [Pa] (27)

where F1 and F2 denote the frictional pressure drop below and above the ESP, respec-
tively. These values are given by:

Fi = 0.158 · ρLiq̂
2

DiA2
i

(
µ

ρDiq̂

) 1
4

, [Pa] (28)

where q̂ represents the current flow through the ESP. This is found by solving (24).
Furthermore, ρ and µ are the density and the viscosity of the produced fluid. An
experimental value for the fluid density ρ is found in (Binder et al., 2015). This value is
reported in Table 1. The fluid viscosity µ is reported as varying in the same source, and
it was therefore chosen as 0.025 Pa ·s for the purpose of the dissertation. This ensures a
viscous fluid within the valid interval for the viscosity correction factors (VCF) included
in (Binder et al., 2015). The VCFs are covered in the next subsection.

Pressure difference across the ESP (∆pp)

The pressure difference across the ESP is given by the following equation:

∆pp = ρgH, [Pa] (29)

where ρ and g denote the density of the produced fluid and the gravitational accelera-
tion, respectively. These parameters are constants given in Table 1. H is further given
by the following equations:

H = CH(µ)H0(q0)

(
f

f0

)2

, [m] (30a)

q0 =
q̂

Cq(µ)

(
f0
f

)
, [m3/s] (30b)

where f is the ESP motor frequency which is a system input, f0 is the ESP character-
istics reference frequency given in Table 1, and q̂ is the current flow found from solving
(24). Cq(µ), CH(µ), and CP (µ) denote the viscosity corrected flow rate, head, and
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brake horsepower (BHP). The latter is an imperial measurement for the electric power
consummation of the ESP motor. Moreover, H0(q) denotes the ESP head characteris-
tics and is together with the VCFs assumed to be known for the particular ESP model.
VCFs are usually obtained from published sources or empirically obtained, whereas the
characteristics for the ESP are provided by the pump vendor (Binder et al., 2015). The
VFCs and ESP characteristics are in (Binder et al., 2015) given by polynomials on the
following form

P (x) =
4∑

i=0

cix
i (31)

where the coefficients (ci, i = 1, ..., 4) are given in Table 2. These are the same as in
the publication.
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Variable Description Value unit
Known constants

g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 ∗
A1 Cross-section area of pipe below ESP 8.107 · 10−3 m2

A2 Cross-section area of pipe above ESP 8.107 · 10−3 m2

D1 Pipe diameter below ESP 1.016 · 10−1 m
D2 Pipe diameter above ESP 1.016 · 10−1 m
h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m
V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

ESP data
f0 ESP characteristics reference frequency 60 Hz
Inp ESP motor nameplate current 65 A
Pnp ESP motor nameplate power 1.625 · 105 W

Parameters from fluid analysis and well tests
β1 Bulk modulus below ESP 1.5 · 109 Pa
β2 Bulk modulus above ESP 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 9.5 · 102 kg/m3

pr Reservoir pressure 1.26 · 107 Pa
Unknown parameters

PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 2.5 · 10−2 Pa · s
H0 ESP head characteristics Varying m
P0 ESP BHP characteristics Varying W
q0 Theoretical flow rate at reference frequency Varying m3/s
CH VCF for head Varying −
CP VCF for brake horsepower of the ESP Varying −
Cq VCF for ESP flow rate Varying −

Table 1: Model parameters used in the simulator. These values are obtained from
(Binder et al., 2015).

c4 c3 c2 c1 c0
H0 0 0 −1.2454 · 106 7.4959 · 103 9.5970 · 102
P0 0 −2.3599 · 109 −1.8082 · 107 4.3346 · 106 9.4355 · 104
Cq 2.7944 -6.8104 6.0032 -2.6266 1
CH 0 0 0 -0.03 1
CP -4.4376 11.091 -9.9306 3.9042 1

Table 2: Coefficients used for VCFs and ESP characteristics. These values are obtained
from (Binder et al., 2015).
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3.1.2 Implementation of the ESP Lifted Well Simulator

The simulator implementation is inspired by (Osnes, 2020) and implemented using
Python 3.10, NumPy, and CasADI. NumPy is an open-source framework for numerical
computation in Python. This was mainly used for handling tensors inside the simulator.
CasADI is also an open-source tool, but for nonlinear optimization and algorithmic dif-
ferentiation (Andersson, Gillis, Horn, Rawlings, & Diehl, 2019). In the implementation,
CasADI was utilized for solving the differential equations.

To simulate the ESP lifted well, the simulator takes the current state x and an input u
and solves the initial value problem one time step ahead. The simulator thus requires
an initial state x0 which in this work was given by

x0 =

pbh,0pwh,0

q̂0

 =

75 · 10530 · 105
0.01

 (32)

where the numerical values were inspired by (Osnes, 2020), but slightly changed after
conducting some experiments. Note that both the initial pressures and the initial flow
are given in Pa and m3/s, respectively, whereas the later reported results are given in
bar and m3/h. The input u is a vector with the choke opening z in % and the ESP
motor frequency f given in Hz:

u =

[
z
f

]
(33)

During the initial testing of the simulator, there were some issues with the CasADI
integrator not converging due to encountering negative flow values. This is equivalent
to the flow suddenly changing direction and is not consistent with the expected behavior
of the ESP because it would require the motor or the head pressure to also change
direction. Further investigation revealed that when solving (24), the flow value q̂ became
infinitesimally small leading to numerical instability. Hence, a minimum q̂ value of 10−9

was enforced in the simulator, removing the instability and thus the convergence issues.
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3.2 Nonlinear Model Predictive Control

The only difference between an NMPC and an MPC is that the system model of the
former is nonlinear. This results in the optimization problem becoming an NLP. In
the final implementation, the NMPC will control the ESP assisted by the ESN. It will
also be used to generate training and validation data for the offline training of the ESN.

The controller was implemented in Python 3.10 using NumPy and the Opti() module
from CasADI (Andersson et al., 2019). This module is an open-source framework for
the formulation of optimization problems. The resulting problem was ultimately solved
using multiple shooting and Ipopt. Multiple shooting means that the whole state and
control trajectory are used as decision variables. For further details on this and other
shooting methods, the reader is referred to (Imsland, 2007). Ipopt is a widely used
open-source software for solving NLPs. For details on the solver, the reader is referred
to (Wächter & Biegler, 2006)

3.2.1 Mathematical Formulation of the NMPC

The NLP solved each timestep in the NMPCminimizes the following quadratic objective
function:

J(x̃, ũ) =
N−1∑
k=1

x̃T
kQx̃k + ũT

kRũk (34)

where Q and R are weighting matrices, and x̃ = xk − xref and ũ = uk − uk−1. The
vectors x and u are further given by:

x =

pbhpwh

q

 , u =

[
z
f

]
(35)

The ESP model from Subsection 3.1.2 was implemented as a hard constraint, intro-
ducing the nonlinearity to the controller. Furthermore, the physical limitations of the
model were inspired by those reported in (Binder, Kufoalor, Pavlov, & Johansen, 2014).
These were implemented through the following inequality constraint:

x =

 0 bar
1 bar
0 m3/h

 ≤ x ≤

 ∞ bar
60 bar
∞ m3/h

 = x (36)

u =

[
10 %
35 Hz

]
≤ u ≤

[
100 %
65 Hz

]
= u (37)

It is reported in (Osnes, 2020) that z values < 10% result in the model being impre-
cise. Hence, the lower bound for the valve opening was set to 10%. In order to ensure
feasibility when solving the NLP, the flow q̂ from (Osnes, 2020) was also slacked.
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The final NMPC formulation was given by:

min
x,u

J(x̃, ũ) s.t.


x0 = given

xk+1 = f(x̃, ũ)

uk ≤ uk ≤ uk

xk ≤ xk ≤ xk

(38)

where f is the ESP model and J is the quadratic objective function (34). Assuming
that x0 is given is a common assumption in the context of (N)MPC.

The behavior of the controller depends on the design of Q and R. Only the bottomhole
pressure pbh will be controlled in this dissertation. A weight q1 was therefore introduced
in the first diagonal element of Q. The two remaining diagonal elements were set to
zero in order to prevent them from contributing to the objective function. The general
Q matrix is thus given by:

Q =

q1 0 0
0 0 0
0 0 0

 , (39)

Generally, there are always time constants associated with actuators in real-world ap-
plications. It is reasonable to assume that it will take some time for the valve z to
open and close. Therefore, the first diagonal element in R should be large to enforce a
gradual change in the opening. The motor frequency f , on the other hand, is assumed
to have a relatively lower weight. This is because ESP motors have exceptionally low
inertia and an ability to utilize about ten times higher current densities because of
fluid cooling (Takács, 2009). However, rapid changes that might increase the need for
maintenance should also be avoided. The general R matrix is given by:

R =

[
r1 0
0 r2

]
(40)

Experiments to find suitable Q and R will be conducted in the following subsections.

3.2.2 Confirmation and Tuning of the NMPC

In this subsection, the implementation of the NMPC will be confirmed by conducting
experiments on the controller using the nominal system model. Different values for the
Q and R matrices will also be tested with an emphasis on finding values that ensure
satisfactory behavior as well as feasible solutions to the NLP problem. Finally, an
experiment where the valve opening z is fixed to 80% will be conducted. The purpose
of this experiment is to determine the operational region for the setup where the ESP
is controlled by only manipulating the motor frequency f . Finding this region will be
crucial to avoid saturation when generating data for the ESN controller. Determining
the operational region when using both control inputs is not necessary as this is already
known from the experiments conducted in (Grønningsæter, 2022). All experiments will
use a horizon of 10 samples (which corresponds to 1 second). The following initial guess
will be used in the solver:
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xinit =

75 · 10530 · 105
0.01

 , uinit =

[
0.5
45

]
(41)

These were decided arbitrarily within the feasible region to ensure that the Jacobi was
well-defined. Figure 8 shows a schematic illustration of the system used in each of the
conducted experiments.

MPC

prefbh

System
u

pbhpwh

q


pbh

Figure 8: Schematic illustration of the system used in the experiments.

Experiment 1: Step Response Using Both Control Inputs

In this experiment, the response of the closed-loop system after a step in the state
reference xref was investigated. The step yielded a change from 70 to 80 bar in the
bottomhole pressure pbh. These values were inspired by the resulting responses from
control inputs within the normal operation rates reported in (Pavlov et al., 2014). A
reference change of 10 bar is in itself unrealistic and not how the ESP should be oper-
ated.

However, the main objective of this dissertation is to design an optimal control system
able to handle the output disturbance of the system. Hence, the controller should be
able to bring the system to a distant reference without violating the physical limita-
tions. At the same time, it should be able to achieve this without reducing the lifetime
of the equipment significantly. Therefore, it was expected that a reference change of this
magnitude would provide valuable insight into finding suitable weights for the R matrix.

During the testing of different values, it became evident that the q1 weight had to
be fairly small to maintain a well-defined Jacobi. Subsequently, this is to some extent
obvious since the pressure is given in pascals, yielding values in a magnitude of millions.
The value yielding the best response was 5 · 10−8. Furthermore, the weights r1 and r2
were set to 105 and 3 · 102, respectively, due to the valve being incapable of the same
rapid changes as the motor. These weights yielded the following Q and R matrices:

Q =

5 · 10−8 0 0
0 0 0
0 0 0

 , R =

[
105 0
0 3 · 102

]
(42)

The step response from using these weight matrices is shown in Figure 9.
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Figure 9: Step response from using both ESP control inputs and the weight matrices
from (42).

It is evident from inspection of Figure 9 that the controller needs around a second to
drive the system to the reference after the initial starting point. This is because the
initial control input did not match the initial state. Furthermore, one can see a minor
overshoot after the step in the reference. This is due to a trade-off between optimal
control behavior and realistic changes in the control inputs. Further experimentation
yielded that the overshoot could be removed completely if drastic changes were allowed
in both inputs. Additionally, a reverse experiment with a step from 80 to 70 bar was also
conducted. This yielded similar results, and the resulting plot is shown in Appendix
C.1.

Experiment 2: Operational Region With f as Only Control Input

It is noteworthy that the r1 in the resulting R matrix from the previous experiment is
99.7% larger than r2. This suggests that the valve opening has a significant impact on
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the control. Further inspection of Figure 9 supports this observation. Based on these
observations, it was expected that fixing the valve opening z to 80% would limit the
operational region of the controller. An experiment to investigate this and possibly
decide the region was conducted by using reference chasing as described in (Osnes,
2020). The maximum and minimum of the region were found by running simulations
using a reference xref of 100 and 60 bar, respectively. These values were found through
a trial and error approach. Results from both experiments are shown in Figure 10.
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(a) Chasing maximum reference.
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(b) Chasing minimum reference.

Figure 10: Results from experiments using reference chasing to determine the opera-
tional region for a fixed valve opening z of 80%.

Inspection of Figure 10(a) yields a maximum bottomhole pressure pbh of a little more
than 95 bar. This happened when the controller saturated at 35 Hz. Similar behavior
is also evident from inspecting Figure 10(b). This experiment yielded a minimum
bottomhole pressure pbh of a little less than 65 bar. This happened when the controller
saturated at 65 Hz. The operational region for a fixed z of 80% was thus identified as
pbh ∈ [65, 95].

Experiment 3: Step Response Using Only f as Control Input

In this final experiment, it was investigated if the Q and R matrices from (42) would
result in satisfactory behavior also when the valve opening z was fixed. This experiment
used the same step (from 70 to 80 bar) as in the first experiment.

When using R = 3 · 102 (r2 from the first experiment), the step yielded an oscillatory
response. This is shown in Figure 11(a). Another experiment with R = 1 was also
conducted to compare the impact of different R values. This yielded the step response
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shown in 11(b). The Q matrix remained unchanged from (42) in all of the experiments
to ensure consistency, but also feasibility in the NLP problem.
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(a) NMPC step response with R = 3 · 102.
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(b) NMPC step response with R = 1.

Figure 11: Step responses from using only the motor frequency f as the control input.
The plots show the responses from using a large (a) and a low (b) R weight on the motor
frequency f .

Inspection of Figure 11(b) shows that R = 1 yielded a response with no oscillations.
However, from further inspection, it is also clear that this requires the motor frequency
to change from 60 Hz to 35 Hz in 0.1 seconds which is somewhat unrealistic. By com-
paring this response to the previous, it is evident that an R value yielding satisfactory
behavior lies somewhere in between the tested R values.

After some trial and error, it was found that an R = 60 provided an acceptable re-
sponse. This response contained fewer oscillations than R = 3 · 102, and the controller
used less aggressive changes in the motor frequency. The resulting step response is
shown in Figure 12. A reverse step response yielded similar results. This is shown in
Appendix C.2.
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Figure 12: Step response from using only the motor frequency f as control input with
R = 60.
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4 Enhanced Implementation and Methodology

This chapter consists of three sections and documents the final controller implementa-
tion, the experimental designs, and the tuning of the ESN hyperparameters. In order
to simplify descriptions and comparisons, the obtained ESN models will for the remain-
der of the dissertation be referred to in terms of the noise used to train them. More
specifically, the three sections cover:

Section 4.1: The implementation of the ESN assisted optimal controller.

Section 4.2: The experimental designs.

Section 4.3: The strategy used for tuning the ESN hyperparameters.

4.1 Implementation of the Feedforward Assisted NMPC

The final controller will be used to control only one state, the bottomhole pressure pbh,
yet all states will be reported for completeness. In the proposed setup, the NMPC uses
the nominal ESP model derived in (Binder et al., 2015). This model is also used in the
ESP simulator, which, in addition, will experience a persistent disturbance affecting the
reservoir pressure. Without any prior knowledge of the disturbance, the NMPC will
be unable to counteract it efficiently. Furthermore, the system will be augmented with
an ESN-based feedforward controller trained to produce a correctional control input
u2 based on the current reference prefbh , the current state pbh, and the current NMPC
control input u1. This control input will be added to the current NMPC control input
u1 to produce a corrected control input u = u1 + u2 that suppresses the disturbance
in the reservoir pressure. Figure 13 provides a schematic illustration of the described
implementation. The figure also includes a saturation function. This is to ensure the
control input to the system is within the feasible range from (37).

NMPC

prefbh

+
u1 û

ESP
u

d

pbhpwh

q


pbh

ESN
Controller

pbh,k

u2

Figure 13: Schematic illustration of the final implementation of the controller.

The following subsection will cover the implementation and training of the ESN con-
troller.
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4.1.1 Implementation and Training of the ESN Controller

The baseline ESN framework implemented in (Grønningsæter, 2022) was utilized also
in this work. This framework was implemented in Python 3.10 using mainly PyTorch,
along with NumPy and SciPy. PyTorch is an open-source machine learning framework,
but it neither offers any ESN models nor any general support for reservoir computations.
However, with the support of NumPy and SciPy, it was used to handle the tensors in the
calculations. Furthermore, all training data was normalized to the interval [−1, 1] us-
ing the MinMaxScaler() from the preprocessing module offered in scikit-learn (sklearn).
scikit-learn is an open-source machine learning library for Python.

Generation of Training and Test Data

It was demonstrated in (Jaeger, 2008) that the reservoir can be trained offline through
model exploration by using random values as output and the corresponding system
responses as input. This strategy was adopted in this work for the ESN to learn the
inverse model of the ESP affected by disturbance. More specifically, output values from
a white stochastic process were used to excite the system, and training data was col-
lected by recording this random value and the corresponding system responses. Both
uniformly (U) and normal (N ) distributed white noise were tested in this dissertation.

Due to the ESP model being nonlinear, steps with random magnitudes and different
holding times were made in the system reference during training. This enables the ESN
to explore dynamics from the entire operational area, as detailed in (Grønningsæter,
2022). In terms of the holding time, the reference was maintained for 50 samples in the
first half of the training period and for 120 samples in the second half. This corresponds
to 5 and 12 seconds, respectively, enabling the model to capture both faster and slower
dynamics. Figure 14 shows a schematic illustration of the training loop used to generate
training data. The test data for hyperparameter tuning was generated in the same way.

NMPC

prefbh

+ ESP
u1 u

U/N
u2 pbhpwh

q


pbh

Figure 14: Schematic illustration of the training loop used to generate training and
test data for the ESN.

The interval from which the u2 values were drawn was found using a trial and error ap-
proach, starting with u2 ∈ [−7, 7]. Initially, only the motor frequency f was considered
while the valve opening z was kept fixed. To ensure that the system still respected (37),
the interval for the NMPC was narrowed. Thus, for the aforementioned u2 ∈ [−7, 7], a
u1 ∈ [42, 58] was selected as this yields u1 + u2 = u ∈ [35, 65]. These intervals turned
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out to depend on the particular case and will be reported as a part of the results. The
training and test sets used in this work contained 50 000 and 1 000 samples, respec-
tively. Figure 15 shows training and test data generated from normally distributed
white noise for the training and tuning phase of the ESN controller. Uniform training
data appears similar and is therefore not shown.
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(a) Training data (50 000 samples).
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(b) Test data (1 000 samples).

Figure 15: Normally distributed training and test data generated for z fixed at 80%
and f2 ∈ [−7, 7].

Even though the ESN is trained with a large number of training samples, it may still
encounter outliers from partly explored regions. The probability of this declines with
an increasing amount of training data, but there is yet no general method to ensure
that the model indeed explores all regions sufficiently. Encountering such an area in
the control phase can potentially produce saturated control inputs, which may cause
instability in the overall control scheme. To avoid this, the hyperbolic tangent of the
control output, tanh(u2), was used instead of u2. This ensured that all values were
within the training region since all data was initially scaled between −1 and 1.

Lastly, to generate data using the normal distribution, a mean µ of zero and a standard
deviation σ covering the desired region were found. It can be challenging to find an exact
σ with maximum and minimum values precisely within the closed interval. Instead,
various bell curves were examined for the given interval, and a suitable σ was found
through a qualitative interpretation of these plots. Then, a saturation function was
applied to ensure that all values remained within the closed interval during the training.
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4.2 Experimental Designs

Three experiments were conducted in an attempt to answer the research questions
stated in Section 1.2. This section will detail how these experiments were designed and
conducted.

Experiment 1: Comparison of a Uniform and Normal Model

Two models were trained in this experiment: one using uniform noise and the other
using normal noise. In both cases, the ESP was exposed to the actual disturbance
affecting the real system. This is equivalent to training the ESN with operational data
recorded from an NMPC controlling an ESP subject to disturbance. Therefore, it is
expected that the ESN will learn an inverse model specific to the particular system
where the dynamics of the actual disturbance are incorporated.

During the training and simulations, the ESP was subject to a sinusoidal disturbance in
the reservoir pressure. The disturbance is shown in Figure 16. It is known from Table 1
that the ESP model maintains a constant reservoir pressure of 126 bar. However, after
applying the disturbance, this parameter will oscillate between 116 and 136 bar.
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Figure 16: The disturbance affecting the ESP reservoir pressure in all experiments.

After the training phase, both models were used to synthesize two ESN controllers.
Each controller was tested through two simulations. In both simulations, the con-
trollers were supposed to track the bottomhole pressure reference prefbh subject to the
same disturbance as in the training phase. The first simulation involved a constant
reference, while the second included a reference step of 3 bar halfway through the sim-
ulation time. The controllers’ ability to suppress the disturbance was evaluated by
comparing their performance to the performance of an NMPC controller without ESN
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feedforward control. Finally, the performance of the controller using the uniform model
was compared to the controller using the normal model.

Experiment 2: Training with Random System Disturbance

In contrast to the experiment comparing the uniform and the normal model, only a
single uniform model was trained in this experiment. The choice of using the uniform
model was based on the findings from the previous experiment, which will be further
discussed in Chapter 6. Another important difference in this experiment is that the
ESP will be exposed to random disturbance during the training phase. This is equiv-
alent to training the ESN without any operational data providing prior knowledge of
the actual disturbance. Consequently, the ESN is expected to learn how the system is
generally affected by disturbances. The random disturbance was generated from draw-
ing values from the uniform distribution U(−10, 10) every 0.5 seconds. This sampling
time ensured that the disturbance could propagate through the system.

After completing the training phase, the model was utilized to synthesize an ESN con-
troller. The resulting controller was evaluated through the same simulations as the
previous experiment comparing the two models. To investigate the ESN’s capability in
suppressing disturbances with different characteristics, the simulations were conducted
twice with two different disturbances affecting the reservoir pressure. The first distur-
bance was the same as when the two models were compared, while the second was a
slightly more complex disturbance. It is shown in Figure 17.
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Figure 17: The disturbance affecting the ESP reservoir pressure in the second part of
Experiment 2 and 3.
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Experiment 3: Manipulation of Both Control Inputs

The uniform model was also selected for this final experiment. However, in this case,
the controller was granted an additional degree of freedom by manipulating both the
valve opening z and the motor frequency f . This resulted in the control input being
expanded from scalars to vectors:

u1 + u2 =

[
z1
f1

]
+

[
z2
f2

]
=

[
z
f

]
= u (43)

Similarly to the previous experiment, the uniform model was exposed to random system
disturbance during the training phase. Furthermore, the same set of experiments was
also conducted in this experiment.
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4.3 Hyperparameter Tuning

It is evident from Subsection 2.4.2 that there are many hyperparameters to consider in
the context of the ESN. In addition to the hyperparameters considered in (Grønningsæter,
2022), two more hyperparameters must be considered in this work. These are the input
delay δ and the bias scaling. This further complicates the search for the globally opti-
mal set of hyperparameters. As described in Section 2.4, there is no general method for
finding either a suboptimal or the globally optimal set of hyperparameters. Many of
the strategies found in the literature are therefore ad-hoc strategies based on experience
and grid searches.

The hyperparameters used for learning the ESP model in (Grønningsæter, 2022) were
found using such an ad-hoc strategy. Each hyperparameter was determined by search-
ing for the value yielding the lowest normalized root mean squared error (NRMSE) on
a validation set while holding the other parameters constant. It is possible (and even
expected) that there are better sets of hyperparameters than those reported. However,
for the particular project objective, the reported values proved sufficient.

Since the test set in this work consists of system responses to random control values,
it is not expected that there exists a direct correlation between minimizing the MSE
and suppressing the system disturbance. This suggests that a good generalization of
the system should be capable of recognizing the trend in the noise rather than making
accurate predictions of it. The following three subsections will detail the strategies used
to determine hyperparameters in this work.

Determining the Reservoir Size (Nx) and Spectral Radius (ρ(W r))

Running a grid search for all the hyperparameters considered in this work would be
computationally impractical. The reservoir size (Nx) and spectral radius (ρ(W r)) were
therefore determined based on insight from (Lukoševičius, 2012) and the experience
gained from (Grønningsæter, 2022). According to (Lukoševičius, 2012), the reservoir
size should be selected as large as computationally feasible. Thus, a reservoir size of
500 nodes was utilized in all experiments. Furthermore, it is recommended to select
the spectral radius as close to 1 as possible to ensure both the echo state property and
long-lasting memory for the reservoir. Consequently, a spectral radius of 0.999 was
chosen.

Determining the Input and Bias Scaling

Within the reservoir, (Lukoševičius, 2012) states that the input scaling and the spectral
radius together regulate the

i amount of nonlinearity in the reservoir representation.

ii the relative effect of the current input opposed to history.

This also applies to some extent to the bias scaling. Hence, these two hyperparameters
will primarily affect the aggressiveness of the controller as the spectral radius is fixed.

42



The model’s ability to generalize to the white noise can be used as a metric for this.
A lower MSE indicates that the model is capable of predicting values across a broader
spectrum. Consequently, the scalings were determined by conducting similar searches
to those conducted in (Grønningsæter, 2022). Figure 18 shows the search for the input
scaling, and Figure 19 shows the search for the bias scaling, both for the uniform model
in the experiment comparing the uniform and normal models. From inspection, it is
evident that an input scaling of 0.91 and a bias scaling of 0.65 result in the lowest
MSEs.
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Figure 18: Broad (a) and narrow (b) search for the input scaling for the uniform
model in Experiment 1.
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Figure 19: Broad (a) and narrow (b) search for the bias scaling for the uniform model
in Experiment 1.

Prior to each search, satisfactory values for the remaining hyperparameters were de-
termined through experimentation. These values were then held constant during the
search process.

Determining the Delay (δ), Leak Rate (α), and Regularization Coefficient
(β)

While experimenting to determine temporary values for the delay (δ), leak rate (α),
and regularization coefficient (β) in the previous section, it became clear that these
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hyperparameters play a crucial role in suppressing the system disturbance. Therefore,
grid searches were conducted to find suitable values for these hyperparameters. For
each combination of α and δ, a similar search to those conducted for the scalings was
performed to determine the corresponding optimal β value. This was the value yielding
the lowest MSE on the test set from the range [10−8, 108] with a step size of 10.

After finding the optimal β value, the performance of the corresponding (δ, α) pair
was evaluated using MAE and ∆f . The results from the grid search conducted for the
uniform model from Experiment 1 are shown in Figure 20. It can be seen from the
figures that the best candidates are (0.9, 1) and (1.0, 1). From further experimentation
with these values, it was found that (0.9, 1) with a β of 10−2 yielded the most satisfactory
response.
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Figure 20: Grid search for (α, δ) for the uniform model in Experiment 1. Each set is
measured in MAE (a) and ∆f (b) per grid element.

The hyperparameter values found in this section are summarized in Table 3. Although
sparsity was set to one and not further considered during the searches, it will still be
reported. The strategy presented in this section was used to find the hyperparameters
for all the other models too. However, these will be reported together with the results.
Plots of the searches similar to those in this section will be attached as appendices.

Hyperparameter Value
Reservoir size (Nx) 500

Spectral radius (ρ(W)) 0.999
Input scaling 0.91
Bias scaling 0.65

Leakage rate (α) 0.9
Delta (δ) 1

Regularization coefficient (β) 10−2

(Sparsity) 1

Table 3: Resulting hyperparameters used in the uniform model from Experiment 1.
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Figure 21 shows a snapshot of the uniform model tracking the test set using the hyper-
parameters from Table 3. This yielded an MSE of 0.2378 and demonstrates as expected
that the model would not track the test set accurately, but still be able to recognize
the tendency in the noise.
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Figure 21: Uniform model in Experiment 1 tracking the test set using the hyperpa-
rameters from Table 3.
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5 Results

This chapter reports the results obtained from the experiments described in Section
4.2. Each section will provide a brief description of how the results are presented. A
thorough discussion of the results will not be given before Chapter 6. The three sections
in this chapter cover:

Section 5.1: The results from the comparison of two models trained with uniform
and normal noise.

Section 5.2: The results from the model trained with uniform noise and random
system disturbance.

Section 5.3: The results from the model manipulating both ESP control inputs. This
model was trained with uniform noise and random system disturbance.

5.1 Comparison of a Uniform and a Normal Model

Table 4 summarizes the hyperparameters, training settings, and control settings used
in this experiment. The hyperparameters for the uniform model were determined as
described in Section 4.3, while for the normal model, they were determined as described
in Appendix D. In the following two subsections, the results from the simulations with
and without a reference step are presented. To facilitate visual comparison for the
reader, the results from each model will be presented side-by-side. As the valve opening
z is fixed at 80 %, this control input will be omitted from all figures in this section.

Hyperparameter Uniform model Normal model
Reservoir size (Nx) 500 500

Spectral radius (ρ(W)) 0.999 0.999
Input scaling 0.91 0.56
Bias scaling 0.65 0.65
Leak rate (α) 0.9 0.9
Delta (δ) 1 1

Regularization coefficient (β) 10−2 10−7

(Sparsity) 1 1
Training settings

Motor frequency noise [Hz] U(−12, 12) sat(N (0, 4))1

System disturbance [bar] 10sin(2t) 10sin(2t)
Control setting

Sampling rate [s/sample] 0.1 0.1
NMPC horizon [s] 0.5 0.5

NMPC control range [Hz] f1 ∈ [47, 53] f1 ∈ [47, 53]
ESN control range [Hz] f2 ∈ [−12, 12] f2 ∈ [−12, 12]

Table 4: Hyperparameters, training settings, and control settings for each model in
the experiment comparing the uniform and normal model.

1sat(·) denotes the saturation function ensuring that the random values are inside the predetermined
interval.
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Tracking of a Constant Reference

The simulations of constant reference tracking are shown for both models in Figure 22.
Table 5 provides the corresponding calculated errors.
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(a) Uniform model.
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(b) Normal model.

Figure 22: Simulations of constant reference tracking for the comparison of a uniform
(a) and a normal (b) model.

Metric NMPC NMPC+ESNU NMPC+ESNN
IAE [bar] 125.40 34.48 31.94
MAE [bar] 1.57 0.43 0.40
∆f [Hz] - 1.16 1.01

Improvement - 72.50% 74.53%

Table 5: Calculated errors from simulations of constant reference tracking for the
comparison of a uniform and a normal model.
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Tracking of a Reference with a Step

The simulations of reference tracking with steps are shown for both models in Figure
23. Table 6 provides the corresponding calculated errors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

74

76

78

80

[b
ar
]

Ex1 - Uniform Noise and Actual Disturbance

pf1+ f2
bh pf1bh pbh, ref

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

24

26

28

30

[b
ar
]

pf1+ f2
wh pf1wh

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

30
35
40
45
50
55

[m
3 /h

]

qf1+ f2 qf1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

30

40

50

60

70

[H
z]

f

(a) Uniform model.
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(b) Normal model.

Figure 23: Simulations of reference tracking with a step for the comparison of a
uniform (a) and a normal (b) model.

Metric NMPC NMPC+ESNU NMPC+ESNN
IAE [bar] 281.37 90.78 121.79
MAE [bar] 1.56. 0.50 0.68
∆f [Hz] - 2.86 2.96

Improvement - 67.74% 56.71%

Table 6: Calculated errors from simulations of reference tracking with a step for the
comparison of a uniform and a normal model.
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5.2 UniformModel Trained with Random System Disturbance

Table 7 summarizes the hyperparameters, training settings, and control settings used in
this experiment. The hyperparameters for the uniform model utilized in this experiment
were determined as described in Appendix E. In the following two subsections, the
results from the simulations with the two different disturbances are presented. For
each disturbance, the simulation with constant reference and the simulation with a
step in the reference are presented side-by-side to make the sections more concise. As
the valve opening z was fixed at 80 % also in this experiment, this control input will
once again be omitted from all figures.

Hyperparameter Uniform model
Reservoir size (Nx) 500

Spectral radius (ρ(W)) 0.999
Input scaling 0.59
Bias scaling 1.00
Leak rate (α) 0.6
Delta (δ) 1

Regularization coefficient (β) 1
(Sparsity) 1

Control setting
Sampling rate [s/sample] 0.1

NMPC horizon [s] 0.5
NMPC control range [Hz] f1 ∈ [46, 54]
ESN control range [Hz] f2 ∈ [−11, 11]

Training setting
Frequency noise [Hz] U(−11, 11)

System disturbance [bar] U(−10, 10)
Disturbance sampling time [s] 0.5

Table 7: Hyperparameters, training settings, and control settings for the uniform
model trained with random system disturbance.
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Simple Sinusoidal Disturbance

Two simulations of the system affected by a simple sinusoidal disturbance are shown
in Figure 24. More specifically, Figure 24(a) and 24(b) show the simulation with a
constant reference and the simulation with a step in the reference, respectively. Table
8 and 9 provide the corresponding calculated errors.

0 2 4 6 8 10
72
73
74
75
76
77
78

[b
ar
]

Ex2 - Uniform Noise and Random Disturbance
pf1+ f2
bh pf1bh pbh, ref

0 2 4 6 8 10
24

26

28

30

[b
ar
]

pf1+ f2
wh pf1wh

0 2 4 6 8 10

35

40

45

50

55

[m
3 /h

]

qf1+ f2 qf1

0 2 4 6 8 10
Time [s]

30

40

50

60

70

[H
z]

f

(a) Constant reference.
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(b) Step of 3 bars in reference.

Figure 24: Simulations of the uniform model trained with random system disturbance
subject to a simple sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 125.40 41.81
MAE [bar] 1.57 0.52
∆f [Hz] - 0.90

Improvement - 66.66%

Table 8: Calculated errors from constant
reference tracking for the uniform model
(trained with random disturbance) subject
to a simple sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 281.37 185.08
MAE [bar] 1.56 1.03
∆f [Hz] - 2.13

Improvement - 34.22%

Table 9: Calculated errors from reference
tracking with a step for the uniform model
(trained with random disturbance) subject
to a simple sinusoidal disturbance.
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Complex Sinusoidal Disturbance

Two simulations of the system affected by a complex sinusoidal disturbance are shown
in Figure 25. More specifically, Figure 25(a) and 25(b) show the simulation with a
constant reference and the simulation with a step in the reference, respectively. Table
10 and 11 provide the corresponding calculated errors.
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(a) Constant reference.
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(b) Step of 3 bars in reference.

Figure 25: Simulations of the uniform model trained with random system disturbance
subject to a complex sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 173.06 63.01
MAE [bar] 2.16 0.79
∆f [Hz] - 0.81

Improvement - 63.59%

Table 10: Calculated errors from constant
reference tracking for the uniform model
(trained with random disturbance) subject
to a complex sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 369.25 176.65
MAE [bar] 2.05 0.98
∆f [Hz] - 1.60

Improvement - 52.16%

Table 11: Calculated errors from reference
tracking with a step for the uniform model
(trained with random disturbance) subject
to a complex sinusoidal disturbance.

51



5.3 Uniform Model Manipulating Both ESP Control Inputs

Table 12 summarizes the hyperparameters, training settings, and control settings used
in this experiment. The hyperparameters for the uniform model utilized in this exper-
iment were determined as described in Appendix F. In the following two subsections,
the results from simulations with the two different disturbances are presented. For each
disturbance, the simulation with constant reference and the simulation with a step in
the reference are presented side-by-side to make the sections more concise.

Hyperparameter Uniform model
Reservoir size (Nx) 500

Spectral radius (ρ(W)) 0.999
Input scaling 0.30
Bias scaling 1.00
Leak rate (α) 0.6
Delta (δ) 1

Regularization coefficient (β) 1
(Sparsity) 1

Training setting
Motor frequency noise [Hz] U(−13, 13)
Valve opening noise [%] U(−35, 35)
System disturbance [bar] U(−10, 10)

Disturbance sampling time [s] 0.5
Control setting

Sampling rate [s/sample] 0.1
NMPC horizon [s] 0.5

NMPC frequency control range [Hz] f1 ∈ [48, 52]
NMPC valve control range [%] z1 ∈ [45, 65]

ESN frequency control range [Hz] f2 ∈ [−13, 13]
ESN valve control range [%] z2 ∈ [−35, 35]

Table 12: Hyperparameters, training settings, and control settings for the uniform
model manipulating both ESP control inputs.
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Simple Sinusoidal Disturbance

Two simulations of the system affected by a simple sinusoidal disturbance are shown
in Figure 26. More specifically, Figure 26(a) and 26(b) show the simulation with a
constant reference and the simulation with a step in the reference, respectively. Table
13 and 14 provide the corresponding calculated errors.
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(a) Constant reference.
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(b) Step of 3 bars in reference.

Figure 26: Simulations of the uniform model manipulating both ESP control inputs
subject to a simple sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 125.41 42.24
MAE [bar] 1.57 0.53
∆z [%] - 0.60
∆f [Hz] - 1.05

Improvement - 66.32%

Table 13: Calculated errors from constant
reference tracking for the uniform model
(manipulating both ESP control inputs)
subject to a simple sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 281.35 112.37
MAE [bar] 1.56 0.62
∆z [%] - 0.82
∆f [Hz] - 1.49

Improvement - 60.06%

Table 14: Calculated errors from refer-
ence tracking with a step for the uniform
model (manipulating both ESP control in-
puts) subject to a simple sinusoidal distur-
bance.
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Complex Sinusoidal Disturbance

Two simulations of the system affected by a complex sinusoidal disturbance are shown
in Figure 27. More specifically, Figure 27(a) and 27(b) show the simulation with a
constant reference and the simulation with a step in the reference, respectively. Table
15 and 16 provide the corresponding calculated errors.
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(a) Constant reference.
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Figure 27: Simulations of the uniform model manipulating both ESP control inputs
subject to a complex sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 173.03 63.56
MAE [bar] 2.16 0.79
∆z [%] - 0.35
∆f [Hz] - 0.81

Improvement - 63.26%

Table 15: Calculated errors from constant
reference tracking for uniform model (ma-
nipulating both ESP control inputs) subject
to a complex sinusoidal disturbance.

Metric NMPC NMPC+ESNU
IAE [bar] 396.16 138.50
MAE [bar] 2.05 0.77
∆z [%] - 0.69
∆f [Hz] - 1.37

Improvement - 62.48%

Table 16: Calculated errors from reference
tracking with a step for uniform model (ma-
nipulating both ESP control inputs) subject
to a complex sinusoidal disturbance.
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6 Discussion

This chapter aims to provide a thorough discussion of the experimental results pre-
sented in Chapter 5. The results from each of the three experiments will be examined
with a focus on their respective findings and the implications of these findings in rela-
tion to each other. All comparisons will be made using the MAE and the variation of
control. The chapter is concluded with a more general discussion of the experiments
and their findings within a broader context of the general objectives of this dissertation.

Section 6.1: Discussion of the results obtained from the comparison of a uniform and
normal model.

Section 6.2: Discussion of the results obtained from simulating a uniform model
trained with random system disturbance.

Section 6.3: Discussion of the results obtained from simulating a uniform model ma-
nipulating both ESP control inputs.

Section 6.4: General discussion of the experiments and the implications of the ob-
tained results within a broader context.

6.1 Comparison of a Uniform and a Normal Model

Examination of the results in Chapter 5.1, summarized in Table 5 and 6, shows that
the normal model performed slightly better than the uniform model when tracking a
constant state reference. Compared to the NMPC without ESN assistance, the normal
model yielded a 74.53% improvement of MAE, while the uniform model yielded an
improvement of 72.50%. This was achieved using slightly less variation of control, with
a ∆f = 1.01 Hz compared to the ∆f = 1.16 Hz used by the uniform model.

However, in the simulation with a 3 bar step in the state reference, the uniform model
outperformed the normal model by nearly 10%. In this case, the uniform model im-
proved the MAE by 67.74%, while the normal model yielded only an improvement
of 56.71%. Moreover, the uniform model also used less variation of control, with a
∆f = 2.86 Hz compared to the ∆f = 2.96 Hz used by the normal model.

These results suggest that a controller using a uniform model is better suited for this
control task. It is expected that the ESP will operate with different references, and
the controller should therefore be able to track these also after a change in the ref-
erence. The reason why the uniform model is better suited can be further explained
by considering the dynamics of the closed-loop system. Since the valve is fixed, the
bottomhole pressure can only be reduced by increasing the motor frequency to extract
more fluid. Conversely, the opposite applies when the pressure needs to be increased.
Furthermore, in the presence of a harmonic disturbance like in this case, the controller
should generate a harmonic variation in control inputs to counteract it. This behavior
is evident in both simulations and can be seen from inspecting the control inputs in
Figure 22.
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To generate the harmonic variation of control inputs seen in this figure, the ESN must
gradually increase and decrease the correctional inputs. It is also evident that all the
correcting inputs lie strictly within the training interval, as the resulting control input
never saturates. These values are generally more likely when training the model using
normally distributed noise. With this distribution, the probability of drawing an ex-
treme value is much smaller compared to drawing a value around the mean (which in
this case is zero). Consequently, the controller is more likely to generate values that
are close to each other. This is not the case with the uniform distribution, where the
probability of drawing any value within the interval is the same. Eventually, this will re-
sult in a more aggressive controller, hence the larger ∆f observed in the first simulation.

Inspection of Figure 23 shows that both controllers struggle with oscillations after the
step. These oscillations are believed to be caused by the NMPC, as it was demonstrated
in Figure 12 that manipulation of only the motor frequency f is insufficient to bring the
system to a new state without oscillatory behavior. However, it is apparent that the
normal model struggles more compared to the uniform model. A closer examination of
the control inputs in Figure 23 reveals that the uniform model generates inputs that
are larger relative to each other. Since both models utilize the same NMPC, it is clear
that the uniform model handles the oscillations better due to being more aggressive.
However, the observed difference in control inputs is not reflected in the ∆f values.
A reasonable explanation for this disparity is that the control inputs generated by the
normal model are unable to dampen the oscillations, resulting in larger variations in
control over time. This explanation is also supported by further inspection of Figure 23.
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6.2 UniformModel Trained with Random System Disturbance

Analysis of the results in Chapter 5.2, summarized in Table 8-11, reveals that the
uniform model trained with random disturbance improved the MAE by 66.66% when
tracking a constant reference while being affected by a standard sinusoidal disturbance.
This improvement was achieved with a control input variation of ∆f = 0.90 Hz. In
comparison to the previous experiment, where the uniform and normal model were com-
pared, this model yielded approximately 6% less improvement of MAE. Yet, it achieved
this utilizing 0.26 Hz less variation of control. These results exceeded expectations since
the model in this experiment has no prior knowledge of the actual disturbance affecting
the system.

Although the model performed surprisingly well when tracking a constant reference, it
only improved the MAE by 34.22% when a step was made in the reference. This im-
provement is only about 50% of what was achieved in the first experiment. In this case,
however, the model utilized approximately 0.70 Hz less variation in control, resulting
in a ∆f = 2.13 Hz. A visual inspection of Figure 24(b) shows that this model suffers
significantly from the oscillations after the step, even worse than the normal model from
Figure 23. One possible explanation for this could be that the model utilizes an ESN
control range that is one Hz smaller than the model in the comparison experiment.
However, additional experiments conducted with a wider control range yielded even
worse results. Another plausible explanation for the significantly worse performance is
the absence of the actual disturbance during the training phase. Without this prior
knowledge, the model might not be able to counteract the oscillations caused by the
NMPC as discussed in Section 6.1.

On the other hand, it is likely that the training data contains similar events due to
both the steps and the disturbance being random. Furthermore, during this experi-
ment, it was discovered that the disturbance had to be within the bounds of the actual
disturbance. This assumption is reasonable in order for the controller to be suitable for
the actual range of the disturbance affecting the system. If the controller were trained
with disturbances with lower amplitudes, it would overestimate the system disturbance
and become too aggressive. Conversely, the controller would underestimate the system
disturbance and become insufficiently aggressive. This is a common assumption within
robust control theory, and it would be nearly impossible to achieve performance im-
provement without it. With this assumption, it is also even more likely that the model
will encounter events similar to the step during the training phase.

The simulation with the more complex disturbance yielded similar results to the stan-
dard sinusoidal disturbance when it came to tracking a constant reference. In this case,
the model improved the MAE by 63.59%, which is only 3% less than in the previous
case. It achieved this with slightly less variation of control resulting in a ∆f = 0.81.
This suggests that the model is capable of improving the control performance regardless
of the disturbance. Thus, random disturbance in the training phase indeed enables the
model to learn a general inverse model.

It is perhaps even more surprising that the model in the simulation with a step was able
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to improve the MAE by 52.16% with a ∆f = 1.60 Hz. Since the inflicting disturbance
is different in this simulation, it can not be directly compared to any of the previous
experiments. Nevertheless, it is remarkable how the model handles the oscillations
after the step when compared qualitatively to the previous experiments. Inspection of
Figure 25(b) reveals that fewer oscillations are present after the step. These oscillations
appear to be gone after about five seconds. At this point, it seems like the controller has
returned to the same behavior as prior to the step. This suggests that the training data
indeed contains similar events to the reference step, contrary to what the experiment
with the standard sinusoidal disturbance implied. Moreover, it also indicates that the
model struggles more with a sinusoidal disturbance than disturbances composed of
different harmonic components.
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6.3 Uniform Model Manipulating Both ESP Control Inputs

Investigation of the results in Chapter 5.3, summarized in Table 13-16, yields that the
model benefits massively from manipulating the valve opening z in addition to the mo-
tor frequency f . The controller improved the MAE by 66.32% when tracking a constant
reference while being subject to a standard sinusoidal disturbance. This was achieved
using a variation of control of ∆z = 0.60% and ∆f = 1.05 Hz. These results are very
similar to those obtained from the corresponding simulation with a fixed valve opening.

However, in the simulation with a step in the reference, this model proves superior with
a 60.06% improvement of MAE. This improvement is nearly 26% higher than in the
corresponding experiment with a fixed valve opening. Inspection of the variation of
control reveals a ∆z = 0.82% and ∆f = 1.49 Hz, which is approximately 0.6 Hz less
than in the fixed valve case. These results demonstrate the significant impact that the
valve opening has on the ESP system. Especially if taking its entire control range of
90% into consideration, it is remarkable how an accumulative variation of barely 1%
can result in such a major improvement.

The same conclusions can be drawn from inspecting the results obtained after conduct-
ing the same simulations with the complex sinusoidal disturbance. When tracking a
constant reference, the controller achieved a 63.26% improvement with a ∆z = 0.35%
and a ∆f = 0.81 Hz. This result is similar to the result from the corresponding simula-
tion with the fixed valve opening. In the other simulation, with a step in the reference,
the controller yielded an improvement of 62.48% with a ∆z = 0.69% and a ∆f = 1.37
Hz. This is about a 10% improvement compared to the corresponding fixed valve ex-
periment. It can also be observed in these simulations that the variation of the valve
opening reduces the variation of the motor frequency.

In contrast to the fixed valve experiments, this model efficiently counteracts the oscil-
lations that occur after the reference step. This is evident from a visual comparison of
Figure 26(b) and 27(b). In both figures, some additional oscillations are visible imme-
diately after the step, but these disappear after about five seconds. Subsequently, the
system returns to the same behavior prior to the step. These observations, combined
with the improvement discussed in the previous paragraphs, demonstrate that the dual
input controller is capable of both suppressing disturbance and track references with
and without steps.

Furthermore, it is evident that manipulation of the valve opening is necessary to per-
form reference changes. One of the reasons for this becomes clear when comparing
the wellhead pressures pwh in Figure 24(a) and 26(a). In the former figure, the pres-
sure in the wellhead changes harmonically. However, in the latter figure, the pressure
changes take on a more triangular shape with linear slopes. The peaks of these trian-
gular variations align with the reduction and increase of the valve opening, preventing
decelerations of the pressure build-ups and reliefs. These observations highlight how
even small adjustments in the valve opening allow effective regulation of the overall
pressure in the ESP system. Considering the ESP model given in (22)-(24), it can be
seen how these pressure changes propagate throughout the system. Generally, an in-

59



crease/decrease in the wellhead pressure leads to a corresponding decrease/increase in
flow, ultimately increasing/decreasing the bottomhole pressure. This relationship was
also demonstrated in (Grønningsæter, 2022).

It can be observed in Figure 26(b) and 27(b) that the valve opening varies more after
the reference step. This once again highlights the importance of the valve opening in
suppressing the additional oscillations caused by the NMPC. Moreover, it also demon-
strates that relying solely on the motor is insufficient for achieving the required pressure
regulations to effectively suppress these oscillations, without resorting to unrealistic con-
trol inputs that could lead to equipment saturation and damage. These findings align
with the observations made in the previous experiments. However, in an application
where the valve opening is fixed, it is possible that a larger change in the reference
could be achieved by conducting multiple smaller changes. However, this approach was
not tested in this dissertation due to the satisfactory results obtained in this experiment.
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6.4 The Experiments and their Implications in a Broader Con-
text

The results from the three conducted experiments demonstrate that the ESN can pro-
vide a sufficient inverse model for feedforward control. However, during the simulations,
it was observed that the NMPC always saturated and that the ESN provided corrections
to these saturated values. To what extent this would matter in a practical application
is difficult to evaluate. Since there is no overlap between the NMPC and ESN control
ranges, the hyperbolic tangent of the ESN value u2 ensures that the final control input
u never saturates. Moreover, the NMPC values are used as inputs to the ESN, meaning
that the ESN should be able to account for the saturation observed in the NMPC. The
main purpose of this study was, nevertheless, to investigate how the NMPC can be
corrected in the absence of a sufficient model. Hence, it should not matter what values
the NMPC produces as long as they end up inside the assigned control subinterval.

It should be emphasized that this work serves as a proof of concept, meaning that
there most likely exist better configurations of the ESN that could provide even better
models. Similarly, while the ESN is an ANN specialized for identifying higher-order
relations in dynamical systems, there may exist other models better suited for this
specific task. As demonstrated in (Grønningsæter, 2022), the long short-term memory
(LSTM) produces equally good models as the ESN, though requiring longer training
time. Therefore, it is expected that the LSTM would perform equally well as the ESN,
as identifying an inverse model is just a matter of the direction in which the inputs are
fed to the ANN.

The general idea investigated in this dissertation can potentially benefit the modern
industry greatly. Every real-world process is non-static, meaning it will change over
time. Yet, there are many models assuming staticity, which ultimately gives the model
and thus the quality of the process optimization an expiration date. Unfortunately, it
is often less beneficial to identify a new model as the expired model may still provide
suboptimal results. It can also be difficult to predict the benefit of deriving a new
model. In any case, it would probably be more economical to augment the system with
an ESN-based feedforward controller similar to the one proposed in this work. This
would not require a long downtime, and it is far less challenging than conducting an
entire new identification of the overall system model.

While many conclusions about the potential benefits of this idea can be drawn from the
experiments conducted in this work, there are still many aspects that require further
research. It was, among other things, discovered that the time-shift δ and the leak
rate α had the most significant impact on the overall control performance. These val-
ues were chosen based on their MAE performance during a five-second simulation. In
comparison to the MAE, the ∆u was practically disregarded. This was primarily due
to the main objective of following the reference in this work, and also because the ∆u
proved to be far less volatile regardless of α and δ. Finding a more effective method of
selecting these hyperparameters is therefore believed to be one of the more noteworthy
ways of improving the overall control performance.
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In retrospect, it might have been better to remove the ũ from the cost function (34)
and instead introduce it as inequality constraints in the optimization problem. These
constraints can be derived from the limits reported by the manufacturer of the actuators
in the particular system. Moreover, this approach could potentially facilitate the process
of finding good hyperparameters since realistic behavior of the actuators is enforced
within the optimization problem. In this case, it would not be necessary to consider
the usage of control ∆u during tuning.
Another crucial extension of the experiments would have been to test more sophisticated
types of disturbances. Additionally, valuable insight could also have been acquired from
simulations with disturbance affecting other system parameters than the reservoir pres-
sure. However, the experiments showed that the model produced satisfactory results for
periodical disturbances, even though it was trained with random system disturbances.
This suggests that the specific type and characteristics of the disturbance may be ir-
relevant, as long as the model is sufficiently trained within the bounds of the actual
system disturbance.
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7 Conclusion and Further Work

Conclusion

The primary objective of this project was to investigate if the performance of an NMPC
controlling an ESP subject to disturbance could be improved by introducing feedfor-
ward control with ESN-based inverse models. In Section 1.2, four research questions
were formulated to shed light on various aspects of the primary objective. The process
of finding answers to these questions resulted in a preliminary project, (Grønningsæter,
2022), as well as this Master’s dissertation.

Through the work conducted in the preliminary project, a deeper and necessary un-
derstanding of the subject matter was acquired. Furthermore, important baseline
components, including the ESP simulator and an ESN framework, were successfully
implemented. These components were carried over to the more comprehensive work
documented in this dissertation. In this work, an NMPC capable of handling both
single and multiple inputs and outputs for the ESP was successfully implemented. Ad-
ditionally, the ESN framework was enhanced to enable the learning of inverse models
using time-shifted inputs. These components were ultimately combined into a control
scheme that allowed for conducting experiments to address the aforementioned research
questions:

I. The results obtained from each experiment (summarized in Chapter 5) indicate
that the feedforward-assisted NMPC yields better MAE than the NMPC alone.
This suggests that it is indeed possible to improve the performance of the NMPC
by introducing feedforward control based on ESN-based inverse models.

II. A comparison of two controllers trained with uniformly and normally distributed
noise performed equally well on suppressing a sinusoidal disturbance while track-
ing a constant reference. However, when a step was made in the reference, the
uniform controller outperformed the normal controller by improving the MAE by
10% more. This implies that the choice of training noise clearly affects the ESN’s
ability to learn the inverse model.

III. The ESN was subject to random disturbance during the training phase in two
out of the three conducted experiments. In both cases, uniform noise was used
to excite the output. Simulations with the resulting models showed that the
MAE was improved by more than 60% when tracking a constant reference while
affected by two different sinusoidal disturbances. Although this is approximately
10% lower than the model trained with the actual disturbance, it demonstrates
that the ESN can provide satisfactory results without prior knowledge of the
actual disturbance. However, it should be noted that the bounds of the actual
disturbance were assumed to be known.

IV. An even better performance was obtained by augmenting the controller to also
manipulate the valve opening. This became particularly clear in the simulations
involving a step in the reference. Unlike the previous controllers that manipulated
only the motor frequency, this controller demonstrated satisfactory tracking both
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before and after the reference step. These observations suggest that the use of
both ESP control inputs does not impair ESN’s ability to learn a sufficient inverse
model.

With the insight acquired from the process of answering the research questions, it is
possible to conclude on the primary objective. The performance of an NMPC controlling
an ESP subject to disturbance can indeed be improved by introducing feedforward
control with ESN-based inverse models.

Further Work

While there exist similar studies in the literature, this work primarily serves as a proof of
concept. Therefore, numerous subjects of interest for future studies emerged through-
out this project. Those found most interesting are listed below, along with a brief
explanation of their relevance.

• Control the wellhead pressure pwh and the flow q̂ in addition to the bottomhole
pressure pbh. It can be seen in all the conducted experiments that both the well-
head pressure pwh and the flow q̂ suffer from oscillations. Exploring how additional
control objectives may counteract these oscillations could be an interesting area
for further research.

• Allow some overlap between the control ranges of the NMPC and the ESN. This
would require better means to avoid saturation, but it might facilitate better
cooperation between the controllers and thus further improvement of the MAE.

• Test other types of noise in the training phase. This can potentially give valuable
insight into the role of the excitement noise for different tasks. It might also
enable synthesis of controllers specialized for a particular application.

• Train the ESN with a disturbance having different bounds. This could perhaps
make it more robust to disturbance with different amplitudes. It could eventually
give further insight into the necessity of knowing the bounds of the disturbance.
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Appendix A Dynamical Systems Theory

Dynamical systems are defined as systems with states evolving over time (Arrowsmith,
Place, Place, et al., 1990). There are two types of dynamical systems based on whether
the time is continuous or discrete (Arrowsmith et al., 1990). Many real-world processes
are timeseries processes which in general can be represented as a dynamical system.
Multiple disciplines and theories utilize dynamical systems theory to describe the sys-
tems being studied, with the main difference being the type of dynamics. For instance,
control theory studies how to influence the behavior of a dynamical system, while chaos
theory studies dynamical systems that are sensitive to initial conditions.

However, it is difficult to derive an exact model representing a real-world process because
many real-world processes contain very complex dynamics (Jordanou, 2019). Most
models, therefore, approximate these processes instead by omitting these complex dy-
namics. This will of course decrease the precision of the model, but not necessarily
invalidate it. In some cases, it can even facilitate a deeper understanding of the overall
system because simpler models allow simpler computations. As the authors of (Jor-
danou, 2019) argue, models should ideally be as simple as the application allows. The
rest of this chapter is based on (Chen, 1999) and will give an introduction to existing
and widely accepted fundamental theory of dynamical systems as well as how they can
be represented.

A.1 Dynamical Systems Fundamentals

A system can be defined as the relationship between input and output, where the
system must produce unique output for a given input (Chen, 1999). This is a widely
accepted definition in the literature. Dynamical systems are typically categorized into
four classes based on their number of inputs and outputs:

• SISO: Single-input, single-output

• SIMO: Single-input, multiple-output

• MISO: Multiple-input, single-output

• MIMO: Multiple-input, multiple-output

These systems are illustrated schematically in Figure 28
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Figure 28: Schematic illustration of a SISO, SIMO, MISO, and MIMO system.

Furthermore, systems are commonly categorized based on the characteristics of their
inputs and outputs and the dependency between these. The following sections will
describe the most fundamental categorizations with a basis in the definitions given in
(Chen, 1999).

Continuous-time and Discrete-time Systems

Continuous-time dynamical systems take continuous signals as inputs and produce
continuous-time signals as outputs. These signals are continuous functions of time
which in terms of mathematics means that the function f(t) approaches the function
value f(a) for a given point a in the interval from all directions. Thus, given any point
τ from the interval t ∈ [−∞,∞], f(t) is continuous if and only if

min
t→τ+

f(t) = min
t→τ−

f(t) = min
t→τ

f(t) = f(τ) (44)

This is a rigorous mathematical definition of continuity. A simpler but still sufficient
interpretation of continuity is that a continuous function in a closed interval will con-
tain infinitely many points regardless of the size of the interval. In the opposite case,
where the closed interval has a finite number of points, the dynamical system is called
discrete. The number of points in this interval remains finite even though the length of
the interval approaches infinity.

Since time, in general, is continuous, it follows that all real-world processes are naturally
continuous. Measurements, on the other hand, are discrete due to being an observation
of a system at a given point in time (usually referred to as a sample). Depending on
the application, a continuous or discrete model will be derived from collected samples.
Using discrete time often proves sufficient as illustrated in Figure 29. Moreover, in
order to simulate a dynamical system on a computer, a discrete-time model is required
due to machine precision being finite.
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Figure 29: Illustration of a discrete-time sine wave approximating the corresponding
continuous-time sine wave given a finite number of samples.

Causality and States

Causality describes the system’s dependency on previous, current, and future inputs.
If a system output only depends on the current input, it is considered memoryless.
However, most systems of interest have memory, meaning they depend on the current
as well as the past and/or future values. If the system’s output depends on its cur-
rent and previous inputs, but not its future inputs it is called a causal system. In the
opposite case, it is called a noncausal system. This implies that a system is able to pre-
dict its future inputs. There exist no physical systems with this capability (Chen, 1999).

In theory, causal system outputs depend on all past inputs back to −∞. This is clearly
computationally infeasible and has led to the concept of system states. The author of
(Chen, 1999) defines a state as the information at time τ that together with the input
u(t) for t ≥ τ uniquely determines the output y(t) for all t ≥ τ . In other words, one can
consider states as functions summarizing the effect of all previous inputs. Utilization of
states in dynamical systems will generally simplify and make calculations and modeling
more efficient. If a dynamical system contains a finite number of state variables, it is
called a lumped system. In the other case, it is called a distributed system.

Linear and Nonlinear Systems

Linearity and nonlinearity describe the relationship between a particular state xk and
the next state xk+1 in a system. Linear systems are a special case of nonlinear systems,
and they are generally preferred due to their well-behaved nature and the large body
of existing theory. A system is linear if and only if it possesses both the additivity and
the homogeneity property. In mathematical terms, a function f is linear if and only if

αf(x) + βf(y) = f(αx+ βy) (45)
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for any α, β, x and y. Real-world systems are, nevertheless, almost always nonlinear.
Yet, nonlinearity can be more eminent in specific operational regions allowing linear
approximations of other operational regions. Saturation is a well-known example of
regional nonlinearity within control theory. The closed-loop system can be well-behaved
until it saturates which introduces strong nonlinearity into the system.

Time-variant and Time-invariant Systems

Dynamical systems that produce different outputs if given the same input at different
points of time, are called time-variant. These systems have time-dependent model
variables in addition to their states. Time-invariant systems, on the other hand, will
produce the same output for a given input regardless of time. Real-world processes are
generally time-variant but at very different rates. A given process might be very slowly
varying enabling it to be modeled as time-invariant which can potentially expedite
calculations.
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A.2 Modeling of Dynamical Systems

Dynamical systems usually refer to causal systems that may possess one or many of
the properties discussed in Section A.1. These system representations can be used to
model a real-world process where the inputs are variables to be manipulated, and the
output can be measured. However, deriving a perfect model of a real-world process is
for all practical matters impossible. This is because models should be thought of as
approximations of real-world events and not replications. The quality of a model can
be evaluated by comparing predicted values with measured values from the real pro-
cess. Thus, a measure of the model quality is its precision. Fortunately, there are many
applications not demanding exact precision meaning a less complex model is sufficient.
As suggested by the author in (Jordanou, 2019), one should try to make as simple
models as possible because this generally enhances the understanding of the problem
and reduces the computational demand through simplifying calculations.

The rest of this section discusses model representations and is extracted from (Grønningsæter,
2022). System models are usually given as differential equations. Differential equa-
tions can be used to describe how states or variables vary over time (Gravdahl, 2019).
These equations enable a dense description of system state-spaces, which also can be
transformed into the complex domain resulting in transfer functions. Hence, differential
equations are powerful mathematical tools when it comes to modeling physical systems.
A state-space can be expressed using ordinary differential equations (ODE) which gen-
erally relate the output y of a system to the input u (Gros, 2021). These equations are
typically given on the form:

ẋ = f(x, u)

y = h(x, u)
(46)

where f and h can be either linear or nonlinear. Another benefit of using ODEs is that
these systems are generally straightforward to express in discrete-time enabling them
to be solved numerically. Yet, there is no guarantee that there will exist ODEs defining
the entire state directly (Gros, 2021). Another type of differential equations, omitting
this problem is differential algebraic equations (DAE). These are, simply put, systems
of differential equations and algebraic equations and are typically given on the form:

ẋ = f(x, y)

0 = g(x, y)
(47)

The equations used in the ESP simulation in this dissertation are represented by DAEs.
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A.3 State-space Representations and Transfer Functions

Linear time-invariant (LTI) dynamical systems can be represented using a state-space
representation or through a transfer function. The former is a matrix representation of
the dynamical system in the following form:

ẋ(t) = Ax(t) +Bu(t) (48)

y(t) = Cx(t) +Du(t) (49)

where A, B, C and D are system matrices and x and u are the state and input vector,
respectively. In addition, (48) and (49) may also be appended with another term de-
scribing how measurable system disturbances and measurement noises affect the system.

Any lumped LTI system can be represented with a state-space model since these prop-
erties make the systems a linear combination of their states and inputs. This repre-
sentation also offers valuable insight into the system dynamics from calculating the
Eigenvectors of A. Furthermore, given A, B, C, and D it is possible to investigate
if the system is controllable and/or observable. The former indicates whether or not
a state is steerable from the input. The latter indicates if a state can be estimated
from the output. These concepts are also dual meaning that the matrix pair (A, B) is
controllable if and only if (AT , BT ) is observable and vice versa.

Transfer functions represent the system in the Laplace domain in terms of frequency
instead of time. The transfer function can be found by taking the Laplace transform
of the state-space representation. A given system can be represented with infinitely
many state-spaces, but it can only have one transfer function. Hence, the state-space
representation is considered a more general representation than the transfer function.
The process of transforming a transfer function to a state-space representation is called
a realization which is not a uniquely defined process unless it is minimal. This refers
to realizing the state-space with the minimal number of states.

When the state-space representation is unavailable, one can also find the transfer func-
tion of a system by taking the Laplace transform of the system’s impulse response. This
response is obtained when exciting the system with the Dirac delta function δ(t). Note
that this function is a mathematical abstraction of a function with infinite amplitude,
no duration, and a total area of one. The input-output relation of linear SISO systems
can be described through the zero-state response which is generally given by

y(t) =

∫ ∞

−∞
g(t, τ)u(τ)dτ (50)

where g(t, τ) represents the impulse response, and u(τ) = δ(t − τ) is the impulse at
time τ . Assuming that the system is LTI, (50) can be reduced to

y(t) =

∫ t

0

g(t− τ)u(τ)dτ =

∫ t

0

g(τ)u(t− τ)dτ (51)

by further assuming that (51) is causal and taking the Laplace transformation one can
obtain the following input-output relation in the Laplace domain
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ŷ(s)

û(s)
= ĝ(s) =

∫ ∞

0

g(t)e−stdt (52)

where g(t) is the impulse response and ĝ(s) is the corresponding Laplace transform.
Since ODEs describe the evolution of a system over time, the system’s transfer function
can be found by taking the Laplace transform of the ODE. This usually results in a
rational ˆg(s) on the following form

ĝ(s) =
b(s)

a(s)
= K

(s− z1)(s− z2)...(s− zm)

(s− p1)(s− p2)...(s− pn)
(53)

where b and a are polynomials of s. The roots of these polynomials are referred to as
poles and zeros, respectively. Their location provides qualitative information on the
characteristics of the system response. Poles and zeros can together with the gain con-
stant K, which is found by solving for s = 0, give the complete characteristics of a
differential equation. Due to being relatively simple to derive and the large dynamical
insight transfer functions offer, they are probably the most popular representation in
control theory.

A.4 Dynamical Systems Inversion

Up until now, only forward modeling has been discussed. Forward in this context relates
to the direction of time because observations of the causes are used to calculate the
effects in the future. Hence, a forward model is in fact a mapping H from some state
x to some measurement y (Nakamura & Potthast, 2015):

H : x → y (54)

Models in classical control theory are therefore forward models since some state is
mapped to some output that can be measured. However, this requires that all model
parameters are directly observable which is not always the case in many control ap-
plications (Chen, 1999). These parameters can instead be estimated using an inverse
model which is the opposite of a forward model. Inverse models use the observations
of the effects to calculate the cause. Continuing with the same notation, the general
inverse problem is, according to (Nakamura & Potthast, 2015), equivalent to finding
solutions to the following equation:

H(x) = y ⇐⇒ F (x) := H(x)− y = 0 (55)

where y is known. This can be generally very difficult due to system complexity and
nonlinearity. Yet, these models are highly desirable in many applications because of
their ability to provide information both directly and indirectly about unobservable
parameters. Furthermore, the forward model is not necessarily available suggesting
that one can just as well find the inverse model directly. Due to the importance of
these models, there exist many methods to achieve this. Perhaps one of the most
fundamental methods for approximating a model based on observations is the least
squares method. This method is equivalent to the general inverse problem defined in
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(55) (Nakamura & Potthast, 2015). The objective of the least squares method is to
minimize the following cost function:

J(x) = ||H(x)− y||22 (56)

This allows for the inverse problem to be solved as a minimization problem where any
optimization method may be applied. However, this formulation must be approached
carefully since it does not offer any insight into the structure, instability, and non-
uniqueness of the problem at hand (Nakamura & Potthast, 2015).

Inverse Black-Box Modeling Using Artificial Intelligence

The process of finding a dynamical model from observations is commonly referred to
as system identification. There exist many methods for system identification, and a
way to distinguish between different methods is to categorize them after the use of
observed data. The author of (Nelles, 2013) categorizes system identification methods
from white-box to black-box modeling. White-box modeling refers to having full in-
sight into how the model parameters are derived, and these methods are based on first
principles such as Newton’s second law, mass balances, etc. Black-box modeling, on
the other hand, refers to models derived purely from estimations. Black-box models
offer little to no insight into how the model relates the inputs and outputs. Nor do
these methods yield explicit differential equations for the dynamical system. Gray-box
modeling refers to modeling techniques falling in between white- and black-box model-
ing techniques.

As demonstrated in (Jordanou, 2019), (Jordanou et al., 2022), and (Grønningsæter,
2022), supervised AI is a powerful tool for black-box modeling. In all three reports,
they were able to successfully use an ESN to learn a nonlinear dynamical system. De-
tails of the ESN are covered in Section 2.4. The latter was also able to use an LSTM to
learn the same system with a high level of generalization. For further details on these
results and the LSTM, the reader is referred to (Grønningsæter, 2022). As demon-
strated in (Waegeman et al., 2012), (Jordanou, 2019), and (Banderchuk, Coutinho, &
Camponogara, 2023), it is possible to use black-box modeling to also learn the inverse
model of a dynamical system. This is further supported by investigating the general
inverse problem (55). When parameters are approximated using black-box models there
is no way for these methods to tell whether it is the cause or the effect that is given as
input and output. This is illustrated in Figure 30.

u H(x, u) y y H−1(x, y) u

Figure 30: Black-box modeling of forward and inverse model.
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Appendix B Classical Control Theory

Control theory is a field within applied mathematics regarding the control of dynamical
systems. It lays the foundation for control engineering which is a branch in engineering
cybernetics concerning control, communication, and database processing in technical
systems (Balchen, Andresen, & Foss, 2016). The purpose of control engineering is the
synthesis of control strategies and methods to regulate the behavior of a dynamical
system to some predetermined objective (Balchen et al., 2016). This chapter will give
a brief introduction to some selected topics within classical control theory considered
relevant to the understanding of this dissertation. More specifically, feedback control,
disturbance, noise, and feedforward control. For the sake of simplicity, all systems are
assumed LTI. This is generally a common assumption in the literature.

B.1 Feedback Control

Feedback control is probably the most fundamental concept in control theory. The feed-
back loop is used to inform the controller about the deviation from the predetermined
objective (commonly referred to as the system reference yref ). Feedback control can
also stabilize unstable systems if the controller is synthesized properly (Hovd, 2009). A
system with feedback control is illustrated in Figure 31.

yref − Controller System ye u

y

Figure 31: Schematic illustration of a general system with feedback control.

Every control system requires a feedback loop in order to correct deviations between
the reference yref and the output y. Assuming that the controller and the system in
Figure 31 are represented with the transfer functions gctrl(s) and gsys(s), the output y
can be expressed as

y =
gctrl(s)gsys(s)

1 + gctrl(s)gsys(s)
yref (57)

which shows that the output also depends on the feedback. In a perfect world, feedback
would be redundant. However, any control application is subject to uncertainty in the
form of disturbances and noise. These concepts will be discussed in detail in Section
B.2. In advanced control theory, also model errors can introduce uncertainty. These
are the main reasons why feedback is necessary for almost any control application.
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B.2 Disturbance and Noise in Control Applications

Disturbances and noise are always present in any control application. Both terms refer
to unwanted signals affecting either the controlled variable or a measurement (Glad &
Ljung, 2000), and it is common to see the terms being used interchangeably in the lit-
erature. One way of distinguishing disturbance and noise is to define them on the basis
of their origins and effects. This way, disturbance can be defined as an unwanted signal,
originating from external factors, which affects the system output directly. Disturbances
are typically caused by parameter variations, model uncertainties, etc. (Glad & Ljung,
2000). It is also common to distinguish between measurable and unmeasurable distur-
bances. Noise, on the other hand, can be defined as an unwanted signal, originating
from any other factor, affecting the output, but not the control signal directly. When
introducing feedback to a control system, noise becomes capable of affecting the control
output indirectly. Noises are typically caused by measurement errors in the sensors,
random fluctuations, etc. (Glad & Ljung, 2000).

Consequently, there is a fundamental difference in where disturbance and noise enter
a general system when using these definitions. Disturbance d will enter the system
directly, while noise does not enter before the original system output z is measured,
giving the system output y = z + n. This is illustrated in Figure 32 where u denotes
the system input.

System
u

+
z y

nd

Figure 32: Illustration of disturbance and noise entrance in a general system.
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B.3 Feedforward Control

Feedforward control is generally used to counteract measurable disturbances before
they affect a system (Balchen et al., 2016). These controllers can effectively suppress
measurable disturbances if a sufficiently accurate model of how the disturbance affects
the system and a model of the system itself are available. A schematic illustration of
a system with both a feedforward and feedback controller is shown in Figure 33. The
feedback controller is included because feedforward control is insufficient to stabilize an
unstable system by itself (Hovd, 2009). It is, therefore, normally utilized in combination
with a feedback controller. Moreover, feedforward controllers can not make a closed-loop
system unstable, and they are often useful to avoid saturation when large disturbances
are present (Hovd, 2009).

−
yref Feedback

Controller

e
+

u1
System

u
+

z y

n

d

Feedforward
Controller

dm

u2

y

Figure 33: Schematic illustration of a general system with stabilizing feedback control
and disturbance suppressing feedforward control.

Using the same notation as in Section B.1, the output y from u in the system from
Figure 33 can be expressed as

y = gsys(s)(u1 + u2 + gd(s)dm) (58)

where gd(s) is the transfer function of the disturbance. By also omitting u1 and solving
for y = 0, the optimal feedforward controller can be found and is given by

u2 = −g−1
sys(s)u1gd(s)dm (59)

This equation shows that the optimal feedforward controller depends on the inverse sys-
tem transfer function g−1

sys(s). In many industrial applications, identifying the system
transfer function can be challenging or even impossible. Obtaining its inverse is often
even more challenging. To make matters worse, even if the transfer function is known, it
can be non-invertible due to uncancellable zeros (Liu, Tian, Xue, Zhang, & Chen, 2019).

Further inspection of Figure 33 reveals that feedforward control can not suppress the
measurement noise. This is because the measurement noise n does not affect the system
output z, but rather the measured output y.
Controllers aiming to correct the system output with respect to the measurement noise
should ideally be implemented in the feedback loop. However, it is generally impossible
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to measure the measurement error for a particular sensor online. Measurement noise
can yet be dealt with using state estimators (Chen, 1999). This method is outside the
scope of this dissertation, but the general idea is to use a system model along with the
statistical properties of the sensors to estimate the actual system output. Thus, the
feedback value becomes an estimate instead of the actual measurement.
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Appendix C Reversed NMPC Experiments

C.1 Reverse Step Response using Both Control Inputs
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Figure 34: Reverse step response from using both ESP control inputs and the weight
matrices from (42).
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C.2 Reverse Step Response using Only f as Control Input
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Figure 35: Reverse step response from using only the motor frequency f as control
input with R = 60.

82



Appendix D Hyperparameters for the Normal Model

in Experiment 1

The reservoir size (Nx) and spectral radius (ρ(W r)) were set to 500 and 0.999, respec-
tively, for the same reasons explained in Section 4.3. All remaining parameters were
determined using the same strategy as in the aforementioned section.

Search for Input and Bias Scaling

Figure 36 and 37 show the conducted searches to determine the input and bias scaling
used in the normal model in Experiment 1. From inspection, it is evident that an input
scaling of 0.56 and a bias scaling of 0.65 yield the lowest MSEs.
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Figure 36: Broad (a) and narrow (b) search for the input scaling for the normal model
in Experiment 1.
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Figure 37: Broad (a) and narrow (b) search for the bias scaling for the normal model
in Experiment 1.

Grid Search for δ, α, and β

Figure 38 shows the results from the grid search conducted to find δ, α, and β. Through
inspection and further experimentation, it was found that using (0.9, 1) with a β of 10−7

yielded the most satisfactory control performance.
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Figure 38: Grid search for (α, δ) for the normal model in Experiment 1. Each set is
measured in MAE (a) and ∆f (b) per grid element.

Tracking of Normal Distributed White Noise

The hyperparameter values obtained in this section are summarized in Table 4. Figure
39 shows a snapshot of the model tracking the test set using these values, resulting in
an MSE of 0.0890. Visual inspection confirms that the model is capable of recognizing
the tendency in the noise.
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Figure 39: Uniform model in Experiment 1 tracking the test set using the hyperpa-
rameters from Table 4.
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Appendix E Hyperparameters for the Model in Ex-

periment 2

The reservoir size (Nx) and spectral radius (ρ(W r)) were set to 500 and 0.999, respec-
tively, for the same reasons explained in Section 4.3. All remaining parameters were
determined using the same strategy as in the aforementioned section.

Search for Input and Bias Scaling

Figure 40 and 41 show the conducted searches to determine the input and bias scaling
used in the model in Experiment 2. From inspection, it is evident that an input scaling
of 0.59 and a bias scaling of 1.00 yield the lowest MSEs.
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Figure 40: Broad (a) and narrow (b) search for the input scaling for the model in
Experiment 2.
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Figure 41: Broad (a) and narrow (b) search for the bias scaling for the model in
Experiment 2.

Grid Search for δ, α, and β

Figure 42 shows the results from the grid search conducted to find δ, α, and β. Through
inspection and further experimentation, it was found that using (0.6, 1) with a β of 1
yielded the most satisfactory control performance.
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Figure 42: Grid search for (α, δ) for the model in Experiment 2. Each set is measured
in MAE (a) and ∆f (b) per grid element.

Tracking of Uniform Distributed White Noise

The hyperparameter values obtained in this section are summarized in Table 7. Figure
43 shows a snapshot of the model tracking the test set using these values, resulting in
an MSE of 0.0890. Visual inspection confirms that the model is capable of recognizing
the tendency in the noise.
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Figure 43: Uniform model in Experiment 2 tracking the test set using the hyperpa-
rameters from Table 7.
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Appendix F Hyperparameters for the Model in Ex-

periment 3

The reservoir size (Nx) and spectral radius (ρ(W r)) were set to 500 and 0.999, respec-
tively, for the same reasons explained in Section 4.3. All remaining parameters were
determined using the same strategy as in the aforementioned section.

Search for Input and Bias Scaling

Figure 44 and 45 show the conducted searches to determine the input and bias scaling
used in the model in Experiment 3. From inspection, it is evident that an input scaling
of 0.30 and a bias scaling of 1.00 yield the lowest MSEs.
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Figure 44: Broad (a) and narrow (b) search for the input scaling for the model in
Experiment 3.
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Figure 45: Broad (a) and narrow (b) search for the bias scaling for the model in
Experiment 3.
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Grid Search for δ, α, and β

Figure 46 and 47 show the results from the grid search conducted to find δ, α, and β.
Through inspection and further experimentation, it was found that using (0.6, 1) with
a β of 1 yielded the most satisfactory control performance.
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Figure 46: Grid search for (α, δ) for the model in Experiment 3. Each set is measured
in MAE (eT ) per grid element.
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Figure 47: Grid search for (α, δ) for the model in Experiment 3. Each set is measured
in ∆z (a) and ∆f (b) per grid element.
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Tracking of Uniform Distributed White Noise

The hyperparameter values obtained in this section are summarized in Table 12. Figure
48 shows snapshots of the model tracking the test set using these values. The trackings
yielded an MSE of 0.08257 and 0.2625 for the valve opening and frequency, respectively,
resulting in an average MSE of 0.1725. Visual inspection confirms that the model is
capable of recognizing the tendency in each of the noises.
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Figure 48: Uniform model in Experiment 3 tracking the test set using the hyperpa-
rameters from Table 12.
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