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ABSTRACT

The distance measurements obtained with Multi-Carrier Phase Difference algo-
rithms exhibit a bias in the estimated values. This work aims to explore ways
to reduce the effects of the bias in the measurements. Initially, an overview of
different positioning techniques and previous findings with MCPD algorithms is
presented. Next, a comprehensive bias model is developed to enhance the under-
standing of the underlying problem. Subsequently, the establishment of a network
setup allows the collection of the necessary data to estimate the value of the bias.
A special configuration of the devices is necessary to perform network measure-
ments. A regression analysis to approximate the bias value is done using the Least
Squares approach with the data collected by the measuring network. By incorpo-
rating the estimated bias into distance measurements, improvements in accuracy
are tested by the values of the Mean Average Error and Mean Bias Error on the
dataset.
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CHAPTER
ONE

INTRODUCTION

Positioning services and applications are widely used and have improved mobility,
safety, efficiency, and productivity in various sectors. One of the most common
examples is Global Positioning Systems (GPS) which nowadays is widely used in
outdoor navigation. However, there exists the need for an alternative GPS in
environments where its signal is attenuated or in applications where the accuracy
requirements are higher, and the degradation of satellite signals is an issue. GPS-
enabled smartphones are typically accurate to within a 4.9 m radius under open
sky [1], but some applications require positioning accuracies far beyond those that
GPS can provide. For example in an indoor navigation application, five meters
can be the difference between two different rooms, another example could be in
asset tracking of objects standing in close proximity to each other. An Indoor
Positioning System applicable to most indoor environments and applications would
have mean accuracies below one or two meters [2].

Indoor Positioning systems can use radio frequency signals such as Wi-Fi or
Bluetooth Low Energy (BLE) to perform ranging. BLE is widely used in ubiqui-
tous computing and in many applications of the Internet of Things (IoT) due to the
advantages it presents. BLE emitters or beacons are portable, battery-powered,
small, lightweight, easily deployable, and they have low energy consumption [3].
Therefore the importance of improving the accuracy of the current technologies
appears. BLE can be used with different localization techniques using various
parameters such as Received Signal Strength Indicator (RSSI), Angle of Arrival
(AoA), Time of Flight (ToF), Phase Difference of Arrival (PDoA), or a combina-
tion of them for the distance estimation [4] [5]. The phase measurements provide
the possibility of achieving high accuracy, as reported by [5] [6] [7]. Multicarrier
Phase Difference (MCPD) is a technique that processes the PDoA measurements
and relates them to the distance that separates two devices.

During the Specialization project work previous to the thesis, an evaluation
was conducted on various algorithms utilizing phase measurement techniques of
two Bluetooth radios. The outcomes revealed the presence of a measurement
bias, prompting further investigation into effective methods of minimizing this
error. This document presents an analysis of the results obtained and proposes
the utilization of network measurements as a potential solution to mitigate the
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introduced bias. Some methods can improve accuracy in similar systems like
Fingerprinting and lateration. This work presents a technique using Fuclidean
geometry and a Least Squares optimization approach to improve the distance
estimates.

1.0.1 Problem Definition

The distance estimations using MCPD algorithms present a bias in the values.
Finding the source of the bias in the estimation process and ways of reducing
its value will improve the accuracy of the MCPD ranging. This thesis will seek
the possibility of developing a comprehensive model of the bias to see if its value
can be estimated. Subsequently, A Least Squares analysis could allow finding
an optimal value and requires a way of obtaining redundant information on the
measurements, for this, a network setup is proposed. If the bias value can be
estimated the next step is to evaluate how much the accuracy is improved on the
distance measurements using the selected method. By addressing these questions,
this work aims to provide valuable insights and practical solutions for mitigating
bias in MCPD-based distance measurements.



CHAPTER
TWO

RADIO DISTANCE ESTIMATION

The distance estimation or ranging in Indoor Positioning systems can be done
by many technologies. These classifications include optical technologies that uti-
lize visible light, sound-based technologies that make use of ultrasound, RF-based
technologies like Bluetooth Low Energy and Wi-Fi, as well as methods that rely on
naturally occurring signals, such as the Earth’s natural magnetic field. By leverag-
ing these diverse technological approaches, Indoor Positioning systems are able to
provide accurate and reliable positioning information within indoor environments

13].

2.1 Principles of Radio Distance estimation

Radio Distance estimation or Ranging is the process of determining the distance
from one location or position to another location or position using Radio sig-
nals. The distance estimation is based on different parameters. In Figure 2.1.1 a
classification of the different parameters for indoor localization is presented. In-
door localization can be based on two primary parameters: distance-based and
direction-based. Our focus lies predominantly on the first set of parameters, and
thus a comprehensive exploration and analysis of distance-based parameters will
be presented in the subsequent sections. Distance-based technologies can use sig-
nal parameters such as Channel State Information (CSI), Received Signal Strength
(RSS), Phase Difference of Arrival (PDOA), or Phase of Arrival (POA). They can
also be based on time parameters like Round Trip Time (RTT), Time of Arrival
(TOA), and Time Difference of Arrival (TDOA). A disadvantage of the latter is
that they require precise time synchronization. Direction-based methods can use
angle of arrival (AOA), angle difference of arrival (ADOA), or Direction of Arrival
(DOA) and they do not require time synchronization between nodes [8].

2.1.1 Time of Arrival (TOA) and Time Difference of Arrival
(TDOA)

TOA (Time of Arrival) calculates the time it takes for a wireless signal to reach
the receiver. It requires at least two or three reference nodes in line of sight (LoS)
with the target to achieve high position accuracy. This method is susceptible to

3
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Figure 2.1.1: Localization system parameters, taken from |[§]

multipath and additive noise and highly depends on synchronization. To overcome
these issues, the TDOA (Time Difference of Arrival) method, along with the RTOA
(Round Trip Time of Arrival) method, is employed. TDOA relies on determining
the difference in arrival times between anchor nodes to calculate the distance. It
requires a minimum of three anchor nodes with known coordinates for accurate
object positioning. TDOA accuracy is also subject to the synchronization between
the anchor nodes and the taken timestamp. [8], [9].

2.1.2 Round Trip Timing (RTT)

Similar to the previous technique RTT-based method is used in wireless networks
with the use of fine time measurements (FTM) of the round-trip time (RTT)
between a smartphone and an access point. This approach offers advantages such
as clock synchronization independence, high reliability, and large range estimation.
However, it is subject to limitations such as reflection, fading, shadowing, unstable
clock speed, and multiple simultaneous inquiries of FTM |[8].

2.1.3 Received Signal Strength (RSSI)

RSSI is a metric commonly used to estimate the distance between nodes based on
signal power loss. It can be employed in trilateration-based methods to achieve
distance estimation using a few nodes. RSSI techniques can be categorized as
range-based relying on path loss models and range-free utilizing fingerprinting
databases. The fingerprinting technique is higher in accuracy and can be used
for various indoor environments [8]. However, RSSI measurement can cause an
error due to environmental effects, in cluttered environments for example, the
attenuation of the signal could be poorly correlated with distance, particularly
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in non-line-of-sight (NLOS) channel conditions, resulting in inaccurate distance
estimates [10].

2.1.4 Channel State Information (CSI)

New wireless communication systems, such as 4G LTE and Wi-Fi, employ or-
thogonal frequency division multiplexing (OFDM) to transmit data on multiple
subcarriers. Channel State Information (CSI) in the physical layer plays a crucial
role in these systems, providing detailed frequency response information for each
subcarrier. Compared to traditional Received Signal Strength Indicator (RSSI),
CSI captures more data and offers finer granularity, reflecting characteristics like
amplitude and phase. CSI-based methods for localization, utilizing techniques
like fingerprint matching, triangulation, and trilateration, demonstrate higher ac-
curacy and stability than RSSI-based methods 8], [11].

2.1.5 Phase of Arrival (POA) and Phase Difference of Ar-
rival (PDOA)

POA-based approaches require Line of Sight (LoS) for optimal accuracy. On the
other hand, PDOA (Phase Difference of Arrival) ranging measurement utilizes
the phase difference between anchor nodes or readers and the tag to calculate
distance [8]. PDOA techniques were originally introduced for distance estimation
in radar systems and have been recently rediscovered to improve the localization
accuracy of RFID and WSN systems [10]. [5] shows the possibility of using PDOA
parameters for distance estimation using BLE radios. Phase measurements have
the potential for being a cheap and easy-to-deploy distance estimation method
and it has the capability of reaching high accuracy [7].

2.2 Bluetooth Distance Estimation

Bluetooth Low Energy was introduced in 2009 as an extension to Bluetooth Clas-
sic. It operates within the 2.4 GHz band and utilizes 40 channels, which are divided
into primary advertising channels and secondary advertising and data channels.
BLE 5.1 introduces features like absolute positioning in three-dimensional space
through angle of arrival and angle of departure, as well as phase difference of
arrival. Providing precise direction in addition to distance-only information tra-
ditionally provided by received signal strength [3], [12], [13]. The advantage of
PDOA for ranging is that the phase shift allows precise distance measurement
as long as the phase shift is accurate, another advantage is that precise clock
synchronization is not needed [10]. The objective of this study is to explore the
potential of utilizing phase measurements for achieving precise distance readings
among multiple devices.

2.2.1 Active Reflector Procedure

The Active Reflector Procedure allows the distance estimation between two radio
transceivers by sampling the phase angle ¢ of an incoming Continuous Wave signal.
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The reference signal is the Local Oscillator. By sampling ¢ on both transceivers,
for multiple frequencies, synchronization is not needed [14]. In the Active Reflec-
tor, two roles can be defined, these are Initiator and Reflector. The initiator is
the device that wants to perform the ranging.

The procedure goes as follows: First, the initiator starts the process by sending
a tone in the first frequency. Next, the reflector comes into play, performing the
phase measurement. Once the measurement is obtained, the reflector transmits
both the measurements and a tone of the same frequency back to the initiator.
The initiator then changes the frequency and this process repeats many times at
different frequencies e.g. channels of Bluetooth. In the final stage, the initiator re-
ceives the transmission, measures the phase, and proceeds to estimate the distance
using the measurements obtained at both sides and at all frequencies. A diagram
explaining the procedure can be seen in Figure 2.2.1. This step-by-step procedure
involves the exchange of messages between two BLE radios through usual data
channels using the BLE Protocol Stack.

Initiator Reflector

Starts Ranging
Sets initial Frequency Sends Tone

Y

Measures Phase
Sends Tone + Measurements

Measures Phase

Changes Frequency Sends Tone

Y

Measures Phase

Repeats for all
Frequencies

Measures Phase
Sends Tone
Sets last Frequency »

Measures Phase
Sends Tone + Measurements

A

Measures Phase
Estimates Distance

T End T

Figure 2.2.1: Active reflector measurement procedure

This procedure can be described in the IQ-domain. Let the signal transmitted
by the initiator at a certain tone with frequency f be ej(‘”f tter >, where w is the
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frequency of the tone in rad/sec and ¢ is the starting phase at the initiator. The
signal goes through the channel H(f). This signal on the Reflector is mixed to

base-band with signal ej<“f ther) where ¢ is the phase at the reflector. The phases
w7 and pg can have a value between m and —m. The measurement at the Reflector
side corresponds to

Yr(f) = ej(wft+<p1) - Hg(f) ,e—j(wft+@R)
= Hg(f) - ej(SOI*‘PR)’

where Yz(f) is the signal at the Reflector, after that, the Reflector sends a signal
at the same tone f, and the Initiator measures Y7(f):

(2.1)

Yi(f) = Hy(f) - erten (2.2)

The Two-way Channel Reconstruction (TWCR) is obtained by multiplying both
values

H} =Yi(f) - Yr(f) = Hi(f) - Hr(f) (2.3)

where the measurements taken correspond to Y;(f) and Yx(f) and H7 is defined
as the squared transfer function of the channel. The multiplication gets rid of the
phases pr and ; leaving only the phase rotation introduced by the channel

H(f) = he™ 17, (2.4)

where h is the amplitude, wy the angular frequency of the tone and 7 is the delay
of the channel [6].

Phase Measurement

Phase angle

T T T T T T T T
10 20 30 40 50 60 70 80
Tones

Figure 2.2.2: Measured wrapped phase for a distance of 3.6m

In the case of the measurement with a BLE radio, Bluetooth operates in the
Industrial Scientific and Medical (ISM) band from 2.40GHz to 2.41GHz. For the
ranging process, BLE uses 74 tones at different frequencies f with a spacing of
1MHz. The frequency changes are driven by an adaptive frequency hopping al-
gorithm. In practice, approximately 3 complete-ranging processes can be done
per second. By taking different measurements over different frequencies of the
Bluetooth spectrum the graph Figure 2.2.2 is obtained. In this figure, it is no-
ticeable that the values wrap around 27, this will be resolved later by the ranging
algorithms [14]. The graph corresponds to a ranging performed at a distance of
3.6m.
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2.2.2 Distance Estimation Algorithms

In order to infer the distance from the phase difference measurements an algorithm
has to be applied. Some algorithms are Multi-Carrier Phase Difference (MCPD),
Inverse Fast Fourier Transform (IFFT), MUltiple SIgnal Classification (MUSIC),
and others. MCPD is an algorithm described by [7], [5], and it estimates the
distance in function of the slope of the unwrapped phase. The use of MCPD with
a linear regression algorithm can produce more accurate results|15].

[FFT algorithm considers that (2.3) is the phase of a frequency response mea-
surement of the communication channel. By transforming the frequency response
back to the time domain, the impulse response is obtained. The maximum peak
in the impulse response indicates the channel’s propagation delay and by multi-
plying the delay with the propagation speed of the signal ¢, the distance between
the devices is determined [14].

MUSIC algorithm performs an eigen-based subspace decomposition method
utilized for frequency estimation of complex sinusoids in the presence of additive
white noise, in this case, it is used to identify the LOS component where resolution
bins in the 2.4 GHz ISM band are small and likely to contain multiple Non-LOS
components alongside the LOS [6]. MUSIC presents a better performance in real
scenarios with multipath.

The linear regression algorithm performs better than the classic MCPD, it
presents a smaller standard deviation meaning more accuracy in the estimations,
and it is also preferred over MUSIC due to computation time, this is why all im-
provements on the estimated distances will be made on distance values calculated
using MCPD with Linear Regression.

2.2.2.1 MCPD

MCPD distance estimation is done based on the principle that the phase shift
introduced by a pure Line-of-Sight radio channel on a radio signal is a linear
function of both frequency (f) and range (r) [7]. And is given by

2w fr
c

olk,r) = mod 27 (2.5)

To get rid of the 2 ambiguity, the two-way ranging is used as explained in Section
2.2.1. For the two-way ranging method, the distance can be found using

c

A
ankAf TP

T = (2.6)
where ¢ is the speed of light in a vacuum, k is the index of the tone sent, Af is the
spacing between the tones (for BLE 1MHz), and Ay is the difference of the phase
measurement between adjacent tones. The phases on (2.3) are wrapped and must
be unwrapped in order to find Ay.

A Script in Python for the MCPD estimation is presented in Apendix Al
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2.2.2.2 MCPD with Linear Regression

The linear regression is an improvement on the MCPD procedure by using the
slope of a fitted line to estimate the distance. This linear regression is done to
fit the unwrapped phase to a linear curve, this increases the accuracy relating all
measurements to only a single value, an example of this method is presented in
Figure 2.2.3. The slope of the curve can be used to calculate the distance using a
simplification of the equation (2.6),

c-m

~TAF (2.7)

r =

where m is the slope of the fitted line. A Python Script for the MCPD-LR algo-
rithm is shown in Appendix A2.

Linear regression

0.0 -, * Unwrapped phase
—— Fitted line

—2.5 1

=5.0 4

—7.5 4

—10.0 A

Unwrapped Phase

-12.5 A

—15.0 A

T T T T T T T T
10 20 30 40 50 60 70 80
Tone

Figure 2.2.3: Fitted line over a set of unwrapped phase measurements

2.3 Reviewing Past MCPD Measurements

During the specialization project done by the author during the Fall semester of
2022, different ranging algorithms were tested to observe the effects of fading and
multipath on distance estimation. Three algorithms, namely MCPD, MCPD-LR,
and MUSIC were implemented and their estimated distances were compared.

2.3.1 Measurement Setup

The hardware used was the development kit nRF52833 from Nordic Semicon-
ductor. The nRF52833 is a general-purpose multiprotocol SoC with a Bluetooth
Direction Finding capable radio, is built around a 64 MHz Arm Cortex-M4, has
512 KB flash and 128 KB RAM memory [16]. The initiator was connected to
a laptop where the phase measurements stored as a JSON file were stored using
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a Python script and UART communication. The development kit was config-
ured using the Distance Measurement Library by Nordic Semiconductors. The
measurements were carried inside an electromagnetic anechoic chamber, which
is a shielded room that has radio-wave absorbing material applied to the walls,
ceiling, and floor and isolates the devices from any interference, shadowing, or
multipath effects.

The Distance Measurement library provides an easy-to-use interface for mea-
suring distances. To compute the distance it can use the measured differential
RF physical channel frequency response (MCPD mode) or the real-time flight of
packets (RTT mode) [17]. The library also can be used to obtain the raw 1/Q
measurements, this is in-phase (I) and quadrature (Q) measurements.

2.3.2 Insights into Bias

From the results obtained, one particular behavior drew attention. On a set of
measurements done in the anechoic chamber, a bias in the values of the distance
estimates was present. The bias persisted regardless of the algorithm used to esti-
mate the distance as can be seen in Figure 2.3.1. The red dashed line depicts the
real distance between the two devices. There exists a mean absolute error of 0.55m
with MCPD, 0.52m with the Linear Regression and, 0.46m with MUSIC. The fact
that the measures were made in an anechoic chamber assures ideal propagation
conditions. Hence, it is plausible to attribute the bias to potential inaccuracies in
the phase measurements.

Histogram of Estimated Distance in Anechoic Chamber

60 4 s MCPD
Linear Regression ranging
MUSIC ranging
50 4 == True distance
]
1
1
40 1
& 1
= 1
Q
Z 30 - :
[«)
i |
1
1
20 I
1
1
10 - :
1
|
D T I T T T T T
4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5

Estimated distance [m]

Figure 2.3.1: Distance estimations with various algorithms in an anechoic cham-
ber
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THREE

BIAS MODELING AND ESTIMATION

This section focuses on the domain of bias modeling, aiming to gain a compre-
hensive understanding of the hardware model and identify the sources from which
biases originate. An explanation of the active reflector principle and a model of
the ranging process in the IQ domain will be used to develop a working hypothesis
for the bias.

3.1 Mathematical Model

3.1.1 BLE System Model

We start with the simplification of the hardware in Figure 3.1.1. Each device is
assumed to have a transmitter and receiver filter with an amplitude and phase,
we assume that the filters are equal in both devices. From the Initiator a signal

goes from ay(f )ej(“"‘” ) then travel across the wireless channel with transfer H (f)
and is received by the Reflector through b;(f )ej (¢01) . the other direction, the
signal travels through the alternative filters aR(f)ej(“’“R) and bl(f)ej(‘p’”).

TZI (ﬂ h(ﬂ TXaR(ﬂ
Initiator . - Reflector
X X
b[m me

Figure 3.1.1: Communication system diagram

The process for one of the tones with frequency f can be expressed by a modifi-
cation of equations (2.1) and (2.2), at the reflector side:

Yr(f) = o(wrther) | Hg(f) . o—i(witter) car(f) e (#ar) br(f) - o~ (#g)

3.1
= a](f) . bR(f) . HR(f) . ej(wal—wbRﬂoz—soR) ( )

11
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And at the initiator, we have:

Yi(f) = ar(f) - bi(f) - Hi(f) - & (eon—ev+onsr) (3.2)

The Two-way Channel Reconstruction (TWCR), as explained before, can be ob-
tained by multiplying both signals:

. 3.3
= al(f) : aR(f) : bR(f) b[(f) HI(f) . HR(f) . eJ<%0a1—S0bR+<PaR—<PbI) ( )

As can be seen, the phase of the local oscillator ¢r(f) and ¢;(f) are eliminated
with the multiplication, leaving only the magnitudes and phases of the Rx and Tx
filters and the channel response H(f). Leaving the most probable cause for the
bias to an effect on the Rx and Tx filters. To further look at this cause a more
detailed description of the hardware is presented in the next section.

3.1.2 Hardware Block Diagram

Antenna

Low Noise
Amplifier ’\ ADC |— Processor —— / \

Low Pass Channel Select
Filter

Local
Oscillator

Figure 3.1.2: Hardware block diagram

A block diagram of the hardware is presented in figure 3.1.2. This is a rep-
resentation of the nRF52833 development kits. Each device is equipped with an
antenna that picks up or emits the radio signals, a low noise amplifier that increases
the gain of the received signal, a mixer, then a Low Pass Filter, an Analog-Digital
Converter (ADC), a Processor that captures the I/ measurements and a Channel
select block. In the bottom part, it has the local oscillator and an operational am-
plifier for transmitting. The upper section of the diagram is the equivalent of the
Rx filter defined in the previous section, and the lower part is the Tx. The portion
of the hardware where a delay in the phase measurements could be introduced
is the path between the Antenna and the mixer. When the device is receiving a
signal, i.e. acting as the reflector, the signal is picked up by the antenna, then
it goes through a Low Noise Amplifier where it’s mixed with the local oscillator
frequency and the phase [/Q measurements are taken in the Processor. A delay
of around 2-3ns could be introduced at this step and this represents around 60 to
90 cm at 2.4GHz.
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3.1.3 Channel Response

To observe the effect of the magnitude response of the channel on the distance
estimations a measure of the channel frequency response was made. The measure-
ment involves two devices in the anechoic chamber at a distance of 4.90m, the raw
measurements can be found in Appendix C1.

Magnitude of H2[k]

Magnitude [dB]

T T T T T T T T
0 10 20 30 40 50 60 70
Tone

Figure 3.1.3: Magnitude response of the channel in an anechoic chamber

The magnitude of the channel transfer function squared 3.3 is plotted in Fig-
ure 3.1.3 in the function of the tone index. This includes the channel response
magnitude and the filter’s magnitudes a;(f), ar(f), br(f) and b;(f), the filter mag-
nitudes are assumed to not be very significant. The magnitude information could
also be useful for the distance estimation in scenarios with multipath where the
delay spread of the channel allows the correct selection of the LOS path [6], how-
ever, in the present model it will not be taken into account and it will be assumed
that the magnitude response of the channel is flat. To prove this assumption the
impulse response of the channel was obtained and it has been compared to an
ideal impulse response of the channel at 4.9m.

le6 Comparison of the Impulse Response

— Ideal Impulse Response
1.2 1 Measured Impulse Response

Amplitude
o o
b o

o
[N)

/\\' /\\} ™, Y o e
r\ N
0 \[\/\j’\\/’\/ A AV AV VeVt v e e e i N N .

T T T T
[} 50 100 150 200 250
Time [ns]

Figure 3.1.4: Comparison of the channel impulse response with flat magnitude
response and the measured magnitude response
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In Figure 3.1.4 It can be seen that the peak represents the delay of the LOS
component on the measured signal at 17.82ns. The delay of the ideal response is
16.35ns this is a difference of 1.46ns that corresponds to a distance of 44cm which
corresponds to our assumptions of the bias. The width of the pulses was also
measured, with the ideal response being 12.5ns, and for the measured 13.28ns, the
difference of 0.78ns is neglected and therefore, the bias can be modeled just as a
delay with a flat channel response.

3.1.4 Bias Model

With the previous assumptions and also that only exist a single propagation path
in the anechoic chamber, equation (3.3) can be represented as:

H*(f) = Hi(f) - Hr(f) - €™ (3.4)

Where 7, is the delay introduced, this delay is assumed to have the same value for
all frequencies f and it is particular for all devices of the nRF52833 model.

To = Pa; — Por T Par — Pb; (35)

To summarize the working model of the bias is a delay that when it is intro-

duced in the phase measurement makes the estimated distance larger than the true

distance. By working with the measured distances this value can be estimated as
the next sections will show.

3.2 Geometric Considerations of the Measuring Net-
work

To estimate the bias value, a network configuration is proposed, as it provides ad-
ditional information required to solve for the unknown bias. The concept involves
conducting multiple measurements that are interconnected through a system of
equations. The network enables the possibility of taking redundant distance mea-
surements. The nRF52833 Development Kits have the capability to establish such
a network. With the use of geometric considerations, the network makes use of
the redundant measurements to establish an equation system that allows the esti-
mation of unknown distances or in the case of this work for the estimation of the
bias.

3.2.1 Distance Addition Postulate

The proposed method to estimate the value of the bias is based on using a congru-
ent Euclidean geometry. In this geometry, the distances between the nodes will be
constrained by a set of equations. As a proof of concept, a one-dimension approach
will be adopted and can be extended for more complex network geometries. We
start our approach with the Distance Addition Postulate, it states that if three
points A, B, and C are collinear and B is between A and C, then the distance
between A and C (AC) is equal to the sum of the distances between A and B
(AB) and between B and C (BC) [18|. This Postulate is the basis on which the
set of equations is defined.
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AC = AB + BC (3.6)
Let us say there are three devices located in a line like figure 3.2.1 shows, then

using equation (3.6) the distances between the devices are related through

13 = r12 + 723, (3.7)

where 713,712, and ro3 are the true distances of the setup, see Figure 3.2.1. In our

O OO

[P -
<

Figure 3.2.1: Distances between three devices

measurement scenario, the true values in (3.7) are unknown. Let the distances
obtained with the BLE kits be denoted as mis, mo3, mi3, and the bias b. Then
the following equations are found:

Mg = T2 + b (38)
mig = T3 +b (3.9)
Moz = Ta3 + b (3.10)

Replacing (3.8), (3.9) and (3.10) in (3.7) and solving for b the following expresion
is found:

b= M19 + Mo — M3 (311)

The equation system can also be expressed in matrix form as:

mio 1 01 12
Mos = 011 T923 (312)
mis 111 b

3.2.2 Implications for Two and Three Dimensions

As outlined in the preceding section, the estimation of the bias in a one-dimensional
scenario is relatively straightforward. While it is improbable to encounter such
ideal conditions in practical real-world scenarios, this approach serves as a proof
of concept. However, in scenarios involving two or three-dimensional geometries,
the increased number of unknowns necessitates a correspondingly greater number
of minimum nodes within the network. Consequently, the theorems and postu-
lates employed for solving these complex systems differ, and the necessity of angle
values between nodes becomes crucial for resolving all the unknowns.



16 CHAPTER 3. BIAS MODELING AND ESTIMATION

3.3 Least Squares Estimation

Least Squares belongs to a class of estimators where no probabilistic assumptions
are made about the data, only a signal model is assumed. It is widely used due
to its ease of implementation and it has a broad range of applications [19]. In this
thesis, the purpose of least squares computation is to find a set of numbers by
minimizing the squared difference between the measured data and the assumed
noiseless true distances [20]|. LSE is regarded as a favorable technique because
it selects the best value among multiple measured values. It effectively combines
these measurements to provide the best estimates and for some problems, it can
deliver an optimal result.

3.3.1 Linear Least Squares

To apply the Linear Least Squares approach for a scalar parameter we assume

m = H6 (3.13)

where m is a vector containing the observations of multiple measurements, and H
is a known N X p matrix of full rank p. The matrix H is the observation matrix,
and 6 is a vector containing the unknown values [19]. The Least Squares Estimate
is found solving the following problem:

Minimize:

3.14
1(0) = |jm — HO| S

The function J(@) can also be expressed as
J(0) = (m — HO)" (m — HO). (3.15)

Setting the gradient of J(0) equal to zero yields the LSE estimator

0.J(0) T T
9V _ _onTx + 2HTHS
06 X+ (3.16)

0= (H"H) 'H'x.

3.3.2 Proposed Objective Function

It can be noticed that (3.12) looks in the form of (3.13). So we can say that:

m = HO
mio 1 01 12 (317)
M3 = 011 T23
mis 1 1 1 b

With these values, it is true that H is full rank and Least Squares can be applied
to estimate 719, 93, and b.
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3.3.3 Constraint Least Squares

Another important aspect to consider is that, since our values represent distances
that are inherently non-negative, it is necessary to impose a constraint during
the estimation process. This constraint, known as Non-Negative Linear Squares
(NNLS), ensures that the estimated values remain non-negative, aligning with the
physical nature of distances. The goal of NNLS is to find the solution subject to
the constraint that all of the variables in the solution are non-negative. By this
the problem in 3.14 is extended as follows:

Minimize:

J(8) = |lm — HO||
Subject to:

0 >0.

(3.18)

This can be solved using the Python function scipy.optimize.nnls(). The al-
gorithm is an active set method, and it solves the KKT (Karush-Kuhn-Tucker)
conditions for the non-negative least squares problem and uses a FORTRAN im-
plementation given by [20]. The complexity of the implementation is beyond the
scope of this work, and therefore, the existing libraries and functions will be used
to estimate the values.

3.3.4 Extension of Objective Function for Repeated Mea-
surements

For a better result, n measurements of the same distance were taken. As our sam-
ple size increases, the confidence in the estimate will increase and greater precision
is achieved. In order to perform an estimation including all n observations of the
values and keep the estimation vector the same size (1 x 3) an adjustment in the
H should be made. First, the observations can be expressed as:

mjpa = [m12,1, mi22,M123, - - -m127n]
Mog = [Ma31, Maz2, M233, - - - Mg ] (3.19)

m;3 = [m13,17 mi3,2,1M13,3, - - -m13,n]-

Then, the rows of the matrix H are extended accordingly by n times, and the
objective function looks like

mia21
ma31
misi
mig 2
ma3 2
mi32

12
723 (3.20)

— O~ = O
_— = O = = O
— = = e

—_
—_

mian
ma3 n 0
misn 1 11

—_
—_

and all the previous requirements and constraints are unchanged.
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3.3.5 Bias Correction

After the LSE estimation, the 6 vector will contain as the third element the value
of estimated bias b. Then, the bias-corrected distances are denoted by

fo =m —b. (3.21)
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MEASUREMENT SETUP

In order to test the proposed method some sets of data were collected. This
was done in an anechoic chamber with the nRF52833 Development Kits. The
devices were programmed to perform a ranging and to send the values via UART
communication to a laptop computer.

4.1 Hardware Configuration

In order to conform to the Euclidean geometry postulates from the previous sec-
tions, a measuring network has to be conformed. Such a network should be able
to collect the distances from multiple devices at once. There exists the Nordic
Distance Measurement Library and the GitHub repository from [21] that allows
obtaining the distances between two devices. To perform network measurements
the nRF52833 devices were configured to connect to neighboring devices and per-
form the MCPD measurements. Using the nRF Connect SDK on version 2.1.0
and the example Script from the Zephyr Project "nrf-dm" as a starting point,
the network configuration was achieved. The software works in the following way:
There are two parts that run concurrently, one is the main.c code that handles all
the Bluetooth advertisement and scanning, device connections and disconnections,
and manages the synchronization process for accurate distance measurement. The
second is the file peer.c which manages the selection of different devices or peers
and is responsible for printing the distance measurements for each device.

The peer.c file was modified in order in order to receive distance measurements
in an orderly manner, adding some lines in the peer find_closest function. And
to change the output format in the print_result function. The full C code can be
found in Appendix B1.

A flow diagram explaining the logic of the code is presented in figure 4.1.1.
First, a thread is initialized with a starting point in the peer thread function.
This is the main function and its job is to continuously wait for measurement re-
sults in a message queue. When a result is received, it updates the corresponding
peer’s information, triggers LED and Bluetooth Low Energy notifications, and
prints the result as a CSV file format. The thread also manages a timeout mech-
anism for peer devices, removing them from the list if they haven’t been updated

19
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Start
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Include header files

v

Define variables and
structures

v

[ Initialize 'peer_tread' ]

v

'peer_init' start timer]
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—D[ Wait for peer ](—

No

ew Message

Update peer entry

v

Print Result

v

[ Update closest peer ]

Figure 4.1.1: Configuration program flow diagram
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within a certain time period. This thread ensures real-time processing of distance
measurements and updates for multiple peers. The peer init function starts a
timer for the timeout mechanism and initializes the PWM LED module. The
PWM LED module controls an LED that indicates the distance between devices
and when the peers are connected. Other functions in the code handle tasks such
as finding the closest peer, managing the list of tracked peers, adding new peers,
setting the ranging mode (in this case MCPD), and preparing and retrieving the
address of the device (used to identify the nodes). These functions provide all the
necessary functionality required for peer management and distance measurement
in the code.

All devices are flashed with this code and can act as either initiators or reflec-
tors. The role is defined in the scan_ start function. Since we obtain a distance
report in both devices the role that they take is not an issue. This allows for
multiple geometrical configurations, a limitation of the program is that it does
not relay messages and only allows for a star network topology.

Another program was also used to capture the unprocessed 1/Q measurements.
In this case, the devices were configured using the repository from GitHub available
in [21]. Both programs use a UART connection to a computer to save the data.

4.2 Data Collection

The data collection was made in two scenarios involving different number of devices
inside the anechoic chamber. A total of 2000 samples of each distance were taken,
this will bring a high level of confidence in the estimated bias. The first scenario
involved three devices and the second scenario involved a network of five devices.

4.2.1 Three-device Network

This scenario follows the configuration of Figure 4.2.1. The setup in the anechoic
chamber can be seen in figure 4.2.2. Devices 2 and 3 were positioned in a straight
line and the distances and nomenclature are presented in table 4.2.1. The captured
data is presented in Appendix C2.

I 12

Figure 4.2.1: Setup for data collection
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Segment True Distance [m]
T12 2.07
T'93 1.52
r13 3.59

Table 4.2.1: Table of the distances for the network measurements with three
devices

Figure 4.2.2: Measurement setup in the anechoic chamber

4.2.2 Five-device Network

To examine the impact of increased measurements and device count on the val-
ues of the least squares estimation, a network consisting of five devices was con-
structed. By expanding the scope of the network, we aim to gain deeper insights
into the behavior and performance of the least squares estimation method in var-
ious scenarios. For five devices a total of 10 different distance measurements can
be taken. The distances and nomenclature for this setup can be seen in Figure
4.2.3 and Table 4.2.2. The captured data is available in Appendix C3.
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< >
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Figure 4.2.3: Second setup for data collection

The real setup can be seen in figure 4.2.4, this set of measurements was also
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Table 4.2.2: Table of the distances for the network measurements

Segment True Distance [m]
T19 1.23
T3 2.13
T4 2.76
15 3.61
23 0.9
T94 1.53
T95 2.38
T34 0.63
Tas 1.48
T45 0.85

23

taken in the anechoic chamber. To include all ten measurements on the distance
estimation the objective function (3.17) has to be modified accordingly with an-
other set of equations.

The objective function for the second scenario is

mi2
mis
mig
mis
ma3
m3y4
mag
Mmas
M3y
m3s
Mys

m = HO

(lielelollolloll S =Rel

OO OO OO OO+ O

O OO OO OO OO

DO DO DODO = EFEFOOO

DO OO H OO oo

DO O OO OO oo

OO R OO o OO OOo

O R O OO o oo oo

_— o oo oo O oo

— o = = = = e e e

12
13
T14
23
T24
725
T34
T35
T45

(4.1)

and the rank of H is 10 with determinant —3 so it is full rank and LSE can be

applied.

4.3 Data Processing

The data processing was done utilizing Python, leveraging the capabilities of es-
sential libraries such as SciPy, NumPy, and Pandas. The structure and logic of
the scripts are described in the present section and the algorithm can be seen in
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Figure 4.2.4: Measure with five devices

Appendix A3. First, a data frame is created from the CSV file. Each file is a
set of measurements taken at each distance, then a filtering of the data is made
based on the quality value of the measurement, and an id is assigned to each node
based on its address to easily further processing. Then each distance observation
is filtered based on a parameter called 'quality’ that assures the measurement was
performed correctly. Finally, all measurements are stored in individual arrays of
2000 elements each. Then H and m are created, these are the elements of the
objective function we are going to use to apply the Least Squares estimation.
With all the parameters the different calculations and estimations are done and
the results will be presented in the next chapter.

4.4 Performance Metrics

In order to evaluate the effect of the bias correction in the distance measurements
the Mean Absolute Error (MAE) can be applied. MAE is defined as the average
variance between paired observations of a dataset [22], in the present case it will be
a comparison between the measured distance and the bias-corrected distance. Let
the position estimation error for each measurement n is given by the Euclidean
distance between the estimated position m,, and the true position r,, then the
MAE is calculated by:

MAE _ Zi:l |T'i _ m’L| — Zi:l |6’L| (42)
n n

An advantage of using this metric is that the mean absolute error uses the same
scale as the data being measured, which in this case is meters. Another metric
is the Mean Bias Error (MBE) which captures the average bias in the estimation
[22] and is calculated as:

n

MBE — % S (mi— ) (4.3)
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These performance metrics were calculated using the Python Script in Ap-
pendix A3 and the results will be presented in the next chapter.
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FIVE

NUMERICAL RESULTS

The results of the measurements and bias estimation are shown in the present
section. First, the results of the three-device network and later the estimations for
the Five-device network. The estimations were evaluated using the Mean Absolute
Error before and after the bias correction.

5.1 Three-device Network

The collected data is presented in Figure 5.1.1, and the unprocessed measurements
can be found in Appendix C2. The values of mis, ma3, my3 are the measured
distances, r12, 723, 713 are the real distances, and b is the calculated bias using
(3.11) for every set of three samples.

Raw Data
4.5
ml2
ap{ e * . -2
m23
=7 [ 23
ml3
3.0 --- 3
—_ b
E
— 2.54
w
[=)
=
o 2.0
a
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1.0 A
057 snapwiee =2 s = = A
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0 250 500 750 1000 1250 1500 1750 2000

Sample Number

Figure 5.1.1: Captured data and bias in three-device network

A histogram of the bias can be seen in Figure 5.1.2. This graph provides an
initial glimpse into the anticipated outcomes of the LSE. Its purpose is to offer an
understanding of what can be expected from the estimation process.

27
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Histogram of 'b": u=0.419, o= 0.01586
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Figure 5.1.2: Histogram of the values of b

The MBE for each measure is presented in table 5.1.1. The values of the MBE

represent the bias in the initial measurement.

Measurement True Distance [m] MBE |[m]

mia 2.07 0.403

Table 5.1.1: Table of the Mean Bias Error on the measured data

Least Squares Estimation

r
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o
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Figure 5.1.3: LSE estimated values in function of the number of samples
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Subsequently, a least squares estimation was performed, and the impact of
sample size on the estimation of b is presented in Figure 5.1.3. It is evident that
as the sample size increases, the estimated value gradually converges to a specific
value, illustrating the tendency toward consistency in the estimation process. A

0.07 4 f’f\‘

0.06 A

MBE in function of number of samples

0.05 ~

0.04 A

0.03 ~

Estimated value [m]

0.02 A

0.01

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of samples taken as observation vector

Figure 5.1.4: MBE in function of the number of samples

correction value of 0.391 m is derived from the analysis of 2000 samples. This value
is used to correct the values of the original measured data. The MBE error for the
measures in function of the number of samples can be seen in Figure 5.1.4. The
MAE is calculated for both the distance values before and after the bias correction
and the results are presented in Table 5.1.2. A reduction of the absolute error is
present in all the cases.

True Distance MAE of raw data MAE with bias
Measurement

[m] [m] correction [ml]
mio 2.07 0.403 0.012
Mo 1.52 0.482 0.091
mis 3.59 0.494 0.103

Table 5.1.2: Table of the Mean Average Error for each distance before and after
the bias correction

The effect on the measured values can be seen in Figure 5.1.5. This Figure
presents histograms of all the captured data. The bias correction has the effect of
moving all measurements to the left. The dashed lines represent the true distances
so the closer the histograms are to them the more accurate the measure.
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Histograms of uncorrected and corrected values
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Figure 5.1.5: Measured values before and after the bias correction on three-
device network

Finally, a single MBE concerning all the measures was calculated. Before
the correction, the overall MBE value was 0.460m, indicating the average bias
of the measurements. After the correction, the overall MBE value decreased to
0.069m, reflecting a reduction of the bias in 39cm. A lower MBE value signifies
an improvement in accuracy, and a positive value suggests that the estimated
distances tend to be larger than the true values on average.
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5.2 Five-device Network

Raw Data
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Figure 5.2.1: Captured data of five device network

The results from the second experiment are shown in this section. All the
measured distances are presented in Figure 5.2.1. In the same way as the previous
example, a total of 2000 samples of each distance were taken.

Measurement True Distance [m] MBE [m]

mi2 1.23 0.439
mis 2.13 0.321
miyg 2.76 0.612
Mo3 0.9 0.398
Moy 1.53 0.364
Mas 2.38 0.600
mM34 0.63 0.315
mss 1.48 0.373

Table 5.2.1: Table of the Mean Bias Error of the network measurements

The true distance and the bias error of each measurement are shown in Table
5.2.1.
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The least squares estimation of b can be seen in Figure 5.2.2. A correction

value of 0.326m is estimated.
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Figure 5.2.2: LSE estimated value in function of the number of samples

In a similar manner, the MAE is calculated for each measurement. The results
before and after the bias correction are presented in Table 5.2.2. An error reduction
is evident in all the measurements and the correction value is congruent with the
previous findings.

True Distance MAE of raw data MAE with bias

Measurement [m] [m] correction [ml]
mia 1.23 0.439 0.114
mis 2.13 0.321 0.006
miy 2.76 0.612 0.286
mis 3.61 0.653 0.328
Mas3 0.90 0.398 0.073
Moy 1.53 0.364 0.038
Mas 2.38 0.600 0.275
M3y 0.63 0.315 0.011
m3s 1.48 0.373 0.048

Table 5.2.2: Table of the Mean Average Error on the data before and after the

bias correction

The histograms of the corrected values are shown in Figure 5.2.3. There are
two cases where the median of the histogram is at the left side of the true distance,
this means that for these cases the estimated values tend to be smaller than the
true distance after the correction.
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Histograms of corrected values
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Figure 5.2.3: Histogram of corrected values and relation to their true distances
for the five-device network

Measurement True Distance [m] MBE [m]

mia 1.23 0.114
ms 2.13 -0.005
miy 2.76 0.286
mis 3.61 0.328
Mas 2.38 0.275
M3y 0.63 -0.01

mas 1.48 0.047

Table 5.2.3: Table of the Mean Bias Error of the corrected measurements for
the second scenario

The exact values of the mean bias error for the corrected distances are visible
in Table 5.2.3. The overall bias error is also calculated with these results given a
value of 0.455m before and a value of 0.130m after the correction, given a reduction
of the bias of 32cm on average.
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5.3 Mean Bias Error

The MBE of the uncorrected measures is presented in this section, this includes
both scenarios. The bias error in respect of the true distance is presented in
Figure 5.3.1. In this graph, some interesting behavior of the bias can be observed.
It appears that the bias value tends to be larger with the distance. This contradicts
some of the assumptions made in Chapter 3 and its implications will be discussed
in the next Chapter.

Mean Bias Error for different distances
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Figure 5.3.1: Scatter graph of the MBE values
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DISCUSSION

The data presented in the previous section indicates that the estimation process
was able to return a value that reduces the mean error in all measurements, pro-
viding a more accurate distance on the ranging process. This method is performed
after obtaining the distance estimates, in this thesis these values were estimated
by using the MCPD-LR algorithm. Since the estimation is calculated after the
estimation it can be applied with any other of the aforementioned algorithms.

In the case of the first scenario with three devices, the accuracy is improved
largely due to the fact that the bias values were very similar in all three distances.
In the case of the second scenario where more devices (and measurements) were
involved there was an improvement in the accuracy but it was not as high as in
the previous case, this is the result of the mean bias error being less correlated. In
some cases, it can be seen that the bias value could be double in magnitude than
the rest, this behavior can attract some problems if the estimation is performed
with only three devices. However, the method estimates a value that in the end
returned an improvement in accuracy. In general terms, any sensitive positive
value for the bias will improve the distance measurements but as was observed an
overestimation will cause the appearance of negative MBE values. This effect can
be problematic at close distances because it can make the corrected estimations
appear as negative.

The effects of the number of samples in the LSE estimation for each scenario
can be seen in Figures 5.1.4 and 5.2.2. From this behavior can be determined that
selecting a value on a few samples is not recommended and can cause higher error
metrics and the presence of outliers has more impact. But the opposite is also
true, it is not necessary a very high number of observations to obtain an acceptable
value. In the case of the three-device network there is a difference of 3mm between
the value estimated with 500 samples and the value with 2000 samples. In the
case of the five-device network, the values converge even faster due to the higher
information available and a value obtained with 200 samples differs by 2mm of the
final estimated value. It is important to note that these graphs tend to be noisy
with few observations, but a value obtained with reasonable samples will achieve
results with acceptable levels of accuracy.
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The multiple measurements at different distances gave room for additional
findings. There appears to exist certain variability on the mean bias error that
depends on the distance, this new information is contrary to the suppositions made
for the bias model that it does not change. Some rapid conclusion can be made,
and it seems that the bias tends to have an increase proportional to the distance,
however, a deeper analysis is necessary perhaps at multiple distances. Because of
this behavior, the proposed geometric considerations will not work in some cases.
For example, if we think on the three-device scenario, if the bias value on m;3 is
double the value of m;s and mys then our LSE estimator will return a value of
zero or very close to zero since for this case the euclidean postulate holds but we
are still observing erroneous distances.
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CONCLUSION

This thesis has achieved important objectives in addressing the bias observed in the
distance measurements obtained with MCPD algorithms. Firstly, a comprehensive
bias model was developed, allowing for a better understanding of the underlying
problem. The model was constructed by incorporating a set of assumptions. These
assumptions were carefully chosen to strike a balance between simplifying the
model and ensuring its realism.

Secondly, a network setup was successfully implemented to collect the necessary
data for estimating the bias value. The application of the Least Squares approach
through regression analysis yielded valuable insights and approximations of the
bias value.

Furthermore, the incorporation of the estimated bias into the measurements
showed good results in terms of improving accuracy. The Mean Average Error and
Mean Bias Error values obtained from the dataset demonstrated the effectiveness
of this approach in reducing bias-induced error. These findings highlight the im-
portance of addressing bias in MCPD algorithms and emphasize the potential for
enhancing the reliability and precision of distance measurements.

Overall, this study provides a better insight into the bias cause and its impact
on distance estimation. It opens avenues for further research and development
in improving the performance of MCPD algorithms, ultimately leading to more
accurate and reliable distance measurements in various applications.

7.1 Future work

A possible solution for the bias value changing for different distances could be to
modify the model presented and adapt the equation system accordingly. More
data is necessary to find out the true behavior of the bias. A testing scenario on
greater distances could be interesting. In the present work, a limiting factor was
the size of the anechoic chamber and more measurements could have been taken
in a bigger room, however, it is important to note that the distance estimation is
prone to more errors and inaccuracies in scenarios with multipath and fading.
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Some improvements could be done in the estimation algorithms to be less
affected by these effects. One solution could be to introduce other parameters in
the calculation of the distances, for example, the use of AoA information that the
BLE radios are already capable of retrieving. This will allow for more robust and
accurate estimation algorithms.

There are some ideas that could be tried during the Geometric considerations
of Chapter 3. This thesis has been mainly focused on a set of equations that
are congruent in one dimension but it is very rare to have such a scenario in real
applications. The following ideas could be tested:

e A network configuration for two and three dimensions. It is possible that
with a bias estimation in three dimensions, any network could use the es-
timation method to make a correction process once deployed. This could
be used as an initial calibration process and will allow for more accurate
applications for measuring and also tracking and navigation.

e With an increasing number of devices the data collection will be more chal-
lenging. In the present thesis, measurements were taken on each device one
by one, this is not feasible in a greater network nor it is scalable. A configu-
ration of the devices in order to achieve the routing of messages will allow for
the creation of a mesh network solving the scalability problem and allowing
for the possibility to receive all the distances in a central device that perhaps
has more computational power to perform the estimations.
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A - PYTHON SCRIPTS

Al - MCPD function

1 C

N

=299792458
fh=1000000

def calcMCPD(transfer2,):

ang = np.unwrap(np.angle(transfer2))
x=np.arange (4,78,1)
A = np.vstack([x, np.omnes(len(x))]).T
rvec3 = np.empty (0)
for i in range(5, len(ang)-1):
rvec= cx-(angl[i]l-angl[i-1])/(4*np.pi*£fh)
rvec3 = np.append(rvec3, rvec)
MCPDvalue=np.mean (rvec3)
return MCPDvalue
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A2 - MCPD-LR function

1 def calcREG(transfer2):

2 ang = np.unwrap (np.angle(transfer2))

3 x=np.arange (4,78,1)

| A = np.vstack([x, np.ones(len(x))]).T

5 m,off = np.linalg.lstsq(A,ang[4:78],rcond=None)
(ol

6 REGvalue=(c*-m)/(4*np.pi*fh)

7 return REGvalue
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A2 - Data processing script

Only the function definitions are presented in this appendix. The complete code
that also generates the graphs is too extensive for this section and can be found
in the attached documents.

import numpy as np

import matplotlib.pyplot as plt
import json

4 import os

5 import glob

¢ import pandas as pd

7 from scipy import stats

¢ import pylab as py

N

10 ¢ =299792458
11 £h=1000000
12 k=79

14 def readFromFile(filename):

15 filename = filename

16 with open(filename) as fi:
17 obj = json.load(fi)

19 quality = objl["quality"]

20

21 1 = obj[’i_local’] + np.multiply(1lj,obj[’
q_local’])

22 r = obj[’i_remote’] + np.multiply(1lj,objl[’
g_remote’])

23 transfer2 = np.multiply(l,r)

24

25 return transfer2, quality, 1, r

27 def readfiles(directory):

28 files = glob.glob(directory + os.path.sep +"x*.
json")

29 mes = list ()

30 # locals = list ()

31 # remotes = list ()

32 for £ in files:

33 transfer2, quality, 1, r= readFromFile (f)

34 if quality > O:

35 continue

36 mes . append (transfer2)

38 estimations=np.empty (0)

39 for i in mes:

40 estimations = np.append(estimations, calcREG
(i))

11 return estimations

43 def calc_nnls3(n,m13,m35, mi15):

a4 m_l=np.array(m13[0:n])

15 m_2=np.array (m35[0:n])

16 m_3=np.array(m15[0:n])

17 y_n = np.array([m_1, m_2, m_3])
48 y_n = y_n.ravel (’F?’)
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50 pd_H = np.matrix(’1 0 1; 0 1 1; 1 1 1)

51 pd_H2 = np.matrix(’1 0 1; 0 1 1; 1 1 1°)
52 for i in range(O,n-1):

53 pd_H2= np.vstack([pd_H2, pd_HI)

54 estimate = nnls(pd_H2, y_n)

55 return estimate

57 def calc_nnls_5(n,m12, m13,ml14 ,m15, m23,m24 ,m25,m34,

m35,m45) :
58 m_12=np.array(mi12[0:n])
59 m_13=np.array(m13[0:n])

60 m_1l4=np.array(mi14[0:n])
61 m_15=np.array(m15[0:n])
62 m_23=np.array (m23[0:n])
63 m_24=np.array(m24[0:n])
64 m_25=np.array (m25[0:n])
65 m_34=np.array(m34[0:n])
66 m_35=np.array (m35[0:n])
67 m_45=np.array (m45[0:n])

69 y_n = np.array([m_12, m_13,m_14,m_15, m_23 ,m_24,
m_25,m_34,m_35, m_45])
0 y_n = y_n.ravel(’F?)

2 pd_H = np.matrix(’1 0 0 0 0 0 0 0 0 1; 01 0 0 O
0 ; 001 0000 ; 1001001
;O

O =
O
o.
o

100 0 1;
000101; 0000O0O0OO0O0T1 1)

74 for i in range(O,n-1):

75 pd_H2= np.vstack([pd_H2, pd_HI)

76 estimate = nnls(pd_H2, y_n)

77 return estimate

78

70 def mae(y_true, y_pred):

80 return np.mean(np.abs(y_true - y_pred))

s2 def mbe(y_true, y_pred):
83 return np.mean(y_pred- y_true)
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B - CONFIGURATION FILES

B1 - nRF52833 C files

This code is extensive and it can be found in the attached files.
main.c
peer.c
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C - RAW MEASUREMENTS

C1 - Magnitude response Measurements

The measurements can be found in the attached files.
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C2 - Three Device Network Measurements

The measurements can be found in the corresponding folder. Attached Electroni-
cally.
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C3 - Five Device Network Measurements

The measurements can be found in the corresponding folder. Attached Electroni-
cally.
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