
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Samuel Boyle

Design Space Exploration of FPGA
Accelerators for Hyperspectral
Anomaly Detection

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandić
July 2023

Samuel Boyle

Design Space Exploration of FPGA
Accelerators for Hyperspectral
Anomaly Detection

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandić
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Small satellites, such as those in the HYPerspectral small Satellite for ocean Observation (HYPSO)
mission, represent a form of embedded system characterised by heavily constrained communica-
tion capabilities. To overcome these constraints, this thesis focuses on leveraging reconfigurable
hardware accelerators to enable efficient and low-power processing of HyperSpectral Images (HSIs)
onboard these satellites. The specific objective of this thesis is to address and explore hardware
accelerators for state-of-the-art anomaly detection. The anomaly detection algorithm is refined
into lower levels of abstraction, eventually resulting in a target implementation suitable for Field
Programmable Gate Array (FPGA) acceleration using High Level Synthesis (HLS). This refine-
ment process ensures coherency with existing literature, builds upon the high-level implementation,
and provides an analysis that identifies opportunities for further improvements. Subsequently, the
thesis delves into the design space of accelerator architectures, with a specific focus on the AutoEn-
coder (AE) component. Through a comprehensive exploration of the design space, architectures
that lie on the Pareto frontier are proposed. These proposed architectures provide dominant
performance in resource utilisation estimates during synthesis. A subset of the architectures are
implemented and physically tested on the FPGA. The results demonstrate significant speedup,
ranging from 85% to 94%, compared to non-accelerated implementations. Furthermore, the tested
architectures reveal the potential for even faster designs, emphasising the need for further fine-
tuning and exploration. In conclusion, by achieving substantial speedup and providing numerous
potential accelerators for different throughputs this work enables efficient onboard processing of
HSIs, effectively contributing to the mission objectives of the HYPSO program. These findings
establish a solid foundation for the development of potential designs to accelerate the inference of
anomaly detection algorithms on specific platforms, such as the ZCU-104 MultiProcessor System
on Chip (MPSoC) and HYPSO-1 Zynq-7030 System on Chip (SoC). These proposed designs hold
the potential to achieve a throughput of at least 140 MB/s, with resource utilisation ranging from
70% to 90% on the Zynq-7030 FPGA. Additionally providing a range of higher throughput po-
tential for the MPSoC while simultaneously highlighting opportunities for further refinement and
optimisation.

1

Preface

This thesis has been the final submission for the completion of my European Master in Embedded
Computing Systems (EMECs). This work has been completed as part of the SmallSat lab in the
Norwegian University of Science and Technology (NTNU). I am grateful for the opportunity which
has been an at times challenging, but overall enjoyable experience.

I would like to thank my supervisor Milica for her support over this thesis and for our interesting
discussions throughout the year. Her insightful points have encouraged me to delve deeper into
the technical aspects of the Masters and develop my professional and personal skills.

I would like to thank the friends made along the way in Technische Universität Kaiserslautern
and my final EMECs destination NTNU. I would also like to thank my family for their support
and give a special thanks to my girlfriend for her support every day.

2

Acronyms and Abbreviations

ABU - Airport Beach Urban
AE - AutoEncoder
AI - Artificial Intelligence
AMBA - Advanced Microcontroller Bus Architecture
AED - Attribute and Edge preserving filters Detector
AWDBN - Adaptive Weights Deep Belief Network
BIL - Band Interleaved by Line
BIP - Band Interleaved by Pixel
BRAM - Block Random Access Memory
BSQ - Band SeQuential
CLB - Configurable Logic Block
CPU - Central Processing Unit
CRD - Collaborative Representation Detector
CRX - Causal Reed-Xiaoli
CubeSat - Cube Satellite
CU - Computation Unit
DBN - Deep Belief Network
DL - Deep Learning
DMA - Direct Memory Access
DNN - Deep Neural Network
DSP - Dedicated Signal Processor
DSW - Double Sliding Window
DWRX - Dual Window Reed-Xiaoli
FPGA - Field Programmable Gate Array
FPR - False Positive Rate
FP - False Positive
FrFE-RX - Fractional Fourier Entropy Reed-Xiaoli
GD - Gradient Descent
GRX - Global Reed-Xiaoli
GPU - Graphics Processing Unit
HDL - Hardware Description Language
HW/SW - Hardware/Software
HPC - High Performance Coherency
HSI - HyperSpectral Image
HSI-AD - HyperSpectral Anomaly Detection
HYPSO - HyperSpectral small Satellite for ocean Observation
IP - Intellectual Property
LEO - Low Earth Orbit
LUT - LookUp Table
LRX - Local Reed-Xiaoli
MAC - Multiply ACcumulate
MPAF - Morphological Profiles and Attribute Filter
MPSoC - MultiProcessor System on Chip
NN - Neural Network
NTNU - Norges Teknisk-Naturvitenskapelige Universitet
OPU - Onboard Processing Unit
PCA - Principle Component Analysis

3

PE - Processing Element
PL - Programmable Logic
PS - Processing System
PUT - Pixel Under Test
RE - Reconstruction Error
RBM - Restricted Boltzmann Machine
ROC - Receiver Operator Characteristics
RTL - Register Transfer Level
SDBP - Spatial Density Background Purification
SDR - Software Defined Radio
SmallSat - Small Satellite
SoC - System on Chip
SMMU - System Memory Management Unit
SRAM - Static Random Access Memory
TTM - Time To Market
TP - True Positive
TPR - True Positive Rate
UAV - Unmanned Aerial Vehicle

i

Table of Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 HYPSO . 1
1.2 Motivation . 1
1.3 Problem Definition . 2
1.4 Contributions . 2

2 Background 4
2.1 Hyperspectral Imaging . 4

2.1.1 Remote Sensing . 4
2.1.2 Case Study; HYPSO-1 . 5

2.2 Using Hyperspectral Images . 5
2.2.1 Physical Representation . 5
2.2.2 Band Sequential . 6
2.2.3 Reducing Complexity . 6
2.2.4 Hyperspectral Anomaly Detection . 6
2.2.5 Reed-Xiaoli Baseline Detectors . 6
2.2.6 Aiport-Beach-Urban Dataset . 7
2.2.7 Detector Evaluation . 8
2.2.8 Detector Speed and Accuracy . 9
2.2.9 Choice of Algorithm . 10

2.3 Artificial Intelligence and Deep Learning . 10
2.3.1 Deep Belief Networks . 10
2.3.2 Layers and Organisation . 11
2.3.3 Autoencoders . 12
2.3.4 Training . 13

2.4 State of the Art in Anomaly Detection . 13
2.4.1 Autoencoder Anomaly Detection . 13
2.4.2 Spatial Autoencoder Anomaly Detection . 13
2.4.3 Novel Weight Strategy . 15
2.4.4 Computational Cost . 15

2.5 Embedded Heterogeneous Computing . 15
2.5.1 Dedicated Accelerators . 16
2.5.2 Hardware-Software Codesign . 16
2.5.3 Design Space Exploration . 17

2.6 Field-Programmable Gate Arrays . 17
2.6.1 Key Concepts . 17

2.7 FPGA Development Flow . 18
2.7.1 Traditional Development . 19
2.7.2 Development with High Level Synthesis . 19

2.8 Xilinx Tools for FPGA Development . 19
2.9 Xilinx SoC System Organisation . 20

2.9.1 Processing System . 20

ii

2.9.2 Programmable Logic . 21
2.9.3 Shared Memory and Interconnect . 21
2.9.4 AXI Bus . 21
2.9.5 AXI-4 Bus Features . 21
2.9.6 AXI Interfaces . 22

3 Literature Review 24
3.1 FPGAs Accelerators . 24

3.1.1 FPGA Image Processing . 24
3.1.2 Architectures for AEs . 25
3.1.3 Floating Point . 26
3.1.4 Fixed Point and Quantisation . 27

4 Implementation 28
4.1 Model Methodology . 28

4.1.1 Suitability of Prior Work . 28
4.1.2 Evaluation Strategy . 33
4.1.3 Evaluation Model . 33

4.2 Autoencoder Exploration Base Architectures . 34
4.2.1 Baseline Architecture . 34
4.2.2 Baseline Architecture with On-Chip Weights and Biases 41
4.2.3 Dataflow Architecture . 42
4.2.4 Fine-Grain Pipelined Design . 45
4.2.5 Reordered Design . 46
4.2.6 Band Tiled Partial Reordered Design . 46
4.2.7 Overview and Parameters of Exploration 47

4.3 Double Sliding Window Implementation . 48
4.3.1 From C to HLS . 48
4.3.2 Architecture . 53
4.3.3 Testing . 54
4.3.4 Double-Sliding Window Exploration Parameters 55

5 Results 57
5.1 Exploration of Hyperspectral Anomaly Detection 57

5.1.1 Exploration of Fixed Band and Code Size AEs 57
5.1.2 Exploration of Hyperspectral Anomaly Detection with Novel-AWDBN . . . 63

5.2 Integration and Testing . 66
5.2.1 Integration of Evaluation Design . 66
5.2.2 Design Parameters . 67
5.2.3 Evaluation . 67

5.3 Evaluation . 69

6 Discussion 72
6.1 Implications of Results for HYPSO . 72

6.1.1 AWDBN . 72
6.1.2 Accelerator Architectures . 72
6.1.3 Implemented Accelerator . 73

6.2 Accelerators for Present and Future HYPSO SmallSats 73
6.2.1 Accelerator for HYPSO-1 . 74

6.3 Exploration and Synthesis of Flexible Architectures 74
6.3.1 Floating to Fixed Point . 75

6.4 Future Work . 75
6.5 Conclusion . 75

Bibliography 76

A Exploration Tables 80

iii

List of Figures

2.1 Reflectance of a point in a hyperspectral image cube 4
2.2 Band-interleaved by pixel format for height, width, 100x100 188 band 32 bit floating

point image. 5
2.3 Example of fake-colour image and the anomaly ground truth from ABU dataset [12]. 6
2.4 Local Reed-Xiaoli sliding window . 7
2.5 Local Reed-Xiaoli double sliding window . 7
2.6 ABU dataset image air 3 with ground truth . 8
2.7 ROC curve from algorithms implemented in prior work by Gunderson [3] 9
2.8 AI heirarchy . 10
2.9 Deep belief network as composition of restricted Boltzmann machines 11
2.10 Fully connected layer with Sigmoid activation function [26]. 12
2.11 Autoencoder reconstructing image excluding poorly represented red dot. 12
2.12 Double sliding window with PUT. 14
2.13 Accelerator solution tradeoffs adapted from [26]. 16
2.14 Adaptation of Pareto graph from [31]. 17
2.15 DSP48E2 slice [34]. 18
2.16 Block diagram of relevant SoC components [40]. 20
2.17 Multichannel AXI [42]. 22

3.1 Memory access pattern and caching of image data from Angelopoulou and Bouganis
[44]. 25

3.2 Memory access pattern and caching of image data from Ulusel et al. [45]. 25
3.3 Adaptation of weight-stationary input-reuse accelerator architecture for multiple

band FC on encoder [26]. 26
3.4 Floating point multiplication from [46]. 26
3.5 Fixed point data representation, as seen in [48]. 27

4.1 Problem in original algorithm; image boundary skipped and evaluated without
skipped area . 30

4.2 Overview of window algorithm candidates . 30
4.3 Comparison of window algorithm candidates on urban 3 31
4.4 Average AUC for all window variations of 1x1 up to inner window size 15x15 and

an outer difference up to 6 pixels for the Novel-AWDBN. 33
4.5 DFG of HSI autoencoder with band size 32, mid layer size 6 of width 40 and height

40 . 35
4.6 Graph of single pixel processed through initial design without concurrency or un-

rolled loops. 36
4.7 Read task of HSI autoencoder. 36
4.8 Encode task of HSI autoencoder. 37
4.9 Decode task of HSI autoencoder. 38
4.10 Write task initial implementation. 39
4.11 Full architecture. 40
4.12 Dataflow graph with BRAM loading. 41
4.13 Coarse grain pipeline processing pixels in parallel. 43
4.14 Coarse-grain pipeline with internal fine-grain pipelines of each task. 44
4.15 Fine grain pipeline processing pixels in parallel. 45

iv

4.16 Reorder transformation on AE. 46
4.17 Reorder transformation on AE. 47
4.18 Tiling transformation on RBM1 with 64-bit word sizes. 47
4.19 Out of bound strategy using padding in HLS. 49
4.20 High level architecture of AWDBN double sliding window implementation for Win(3,4). 53
4.21 Parameters of DSW. 55

5.1 Utilisation vs latency of 19 band 6 code autoencoders. 59
5.2 Utilisation vs latency of 32 band 8 code autoencoders. 60
5.3 Utilisation vs latency of 120 band 13 code autoencoders. 61
5.4 Utilisation vs latency of 188 band 13 code autoencoders. 62
5.5 Band 19, code size 6, comparison of resources vs throughput for Novel-AWDBN

HSI-AD. 64
5.6 Band 32, code size 8, comparison of resources vs throughput for Novel-AWDBN

HSI-AD. 65
5.7 Band 120, code size 13, comparison of resources vs throughput for Novel-AWDBN

HSI-AD. 65
5.8 Band 188, code size 13, comparison of resources vs throughput for Novel-AWDBN

HSI-AD. 66
5.9 Block diagram of integrated implementations. 67
5.10 Pareto frontiers of explored architectures. 70
5.11 Pareto frontier of 188 without BRAM. 70

v

List of Tables

2.1 ABU Airport, Beach, Urban characteristics . 7
2.2 Comparison of detector accuracy and computation times. 9

4.1 Network, training and algorithm parameters . 28
4.2 AUC of selected edge candidate versus original with best window sizes. 31
4.3 Table of model reference parameters. 32
4.4 Table of accuracy, window size and number of neighbours that contribute to the

PUT anomaly score. 33
4.5 Terms used in accessing performance of hardware architectures. 34
4.6 Table of characteristics of un-optimised basic implementation. 35
4.7 Table of characteristics of un-optimised basic implementation of read task. 36
4.8 Table of characteristics of a co-simulation of the unoptimised basic implementation. 37
4.9 Schedule viewer table. 38
4.10 Decode task characteristics. 38
4.11 Decode task schedule . 39
4.12 Initial write characteristics. 39
4.13 Initial write schedule. 39
4.14 Latency impact from loading parameters. 41
4.15 Latency breakdown of the sub-tasks. 42
4.16 Comparison of latency of submodules of original and version with BRAM. 42
4.17 Dataflow design comparison with and without directives. 43
4.18 Comparison of latency of pipelined, dataflow with directives and original BRAM

accelerators. 45
4.19 Pre-processing variables used in HLS C code for window (1,5). 49
4.20 Lower speed window properties. 56
4.21 Higher speed window properties. 56

5.1 Table of distinct CU units that apply for each architecture. 57
5.2 Table of parameters used in the synthesis of the evaluation designs. 67
5.3 Table of post-implementation resource utilisation. 68
5.4 Runtimes of inference of C AWDBN . 68
5.5 Software and accelerator runtime comparison. 68
5.6 Matlab-AWDBN and full C-AWDBN . 69
5.7 Flexible designs and closest fixed exploration design. 71

6.1 Scalability of processing parameters in accelerators. 73
6.2 Expected synthesisability of AWDBN accelerators for ZCU-104. 74
6.3 Expected synthesisability of AWDBN accelerators for HYPSO-1. 74

A.1 Table of exploration of 19 band 6 code AE. 80
A.2 Table of exploration of 32 band 8 code AE . 81
A.3 Table of exploration of 120 band 13 code AE . 81
A.4 Table of exploration of 188 band 13 code AE . 81

vi

Chapter 1

Introduction

1.1 HYPSO

HYPSO, which stands for HYPerspectral small Satellite for ocean Observation, is a series of space
missions conducted by the Small Satellite (SmallSat) lab at Norges Teknisk-Naturvitenskapelige
Universitet (NTNU) in Trondheim. The main objective of these missions is to continuously monitor
the Norwegian coast and fjords and promptly respond to the detection of ocean pollution, chemical
substances, or algal blooms. By detecting these issues, the missions aim to prevent or mitigate the
damage they can cause to marine life. The initial mission, HYPSO-1 was launched in January 2022
and is a SmallSat with a volume of 6 litres. It is equipped with a hyperspectral imaging payload,
allowing it to capture images across thousands of channels spanning the electromagnetic spectrum.
The upcoming mission, HYPSO-2, is the next focus for the SmallSat lab, aiming to launch another
SmallSat with enhanced communication capabilities, particularly a software-defined radio (SDR)
[1].

1.2 Motivation

Satellites offer the advantage of long-term Earth observation without the need for constant mech-
anical maintenance associated with unmanned aerial vehicles. Cube Satellites (CubeSats), in
particular, have gained popularity due to their small size, low cost, and accessibility. Their relative
simplicity and minimalist design imposes significant constraints on power consumption, weight,
and volume, which in turn affect their processing power and communication capabilities. One
major challenge arises when transferring HyperSpectral Images (HSIs), which are high resolution
images with thousands of spectral components composing a pixel. Their large size leads to a com-
munication bottleneck as the small satellite does not have the necessary range or bandwidth to
transmit every capture for analysis. To address this issue, onboard processing of images becomes
a necessity, whether to determine whether it is worthwhile to transmit to a ground station or
to extract and only send essential details. To achieve this goal, the onboard processing require-
ments begin to involve compute-intensive algorithms and artificial intelligence (AI), which require
processing power beyond a central processing unit (CPU). This would be a major limitation for
achievable operations of small satellites in the HYPSO mission without dedicated processing power.
Reconfigurable hardware accelerators like Field Programmable Gate Arrays (FPGAs) provide an
efficient and flexible solution with lower power consumption compared to graphics processing units
(GPUs).

A priority of the NTNU SmallSat lab is the creation of FPGA hardware implementations to
facilitate these algorithms [2]. The particular problem of focus in this thesis is a subset of target
detection, anomaly detection. Algae and pollutants may have different measurements across the
electromagnetic spectrum and any single image capture provides a hyperspectral signature. Finding
signatures that could indicate the presence of these is a goal of target detection. Finding signatures
that vary from an expected measurement is the goal of anomaly detection. This includes different
algae, pollutants or points of interest that have not yet been discovered.

1

1.3 Problem Definition

State of the art approaches to anomaly detection focus on combining the field of Deep Neural
Networks (DNNs) with classical anomaly detection algorithms. Promising prior work by Gunderson
[3] based on work by Ning et al. [4] delved into the creation of a state of the art anomaly detection
algorithm which follows this AI complexity trend. Gunderson then created a partial low-level C
and hardware implementation to accelerate the inference of this detector, but this was incomplete
in both the breadth of possible hardware architectures for the AI component of the problem, the
AutoEncoder (AE) and lacked the implementation of a spatial component, the Double Sliding
Window (DSW) which has its roots from classical algorithms [5]. The existing limitations of a
complete accelerated implementation pose a hindrance to achieving state-of-the-art accuracy for
HSIs. It is necessary to create an implementation that can be deployed onto HYPSO satellites
as part of their onboard processing requirement to maximise operational efficiency. There is a
need for an implementation capable of efficiently processing HSIs. This thesis aims to develop and
evaluate hardware accelerators for the goal of a complete acceleration with a variety of parameters
that can be constrained or optimised depending on operational requirements.

1.4 Contributions

This thesis aims to make contributions to the high-level implementation of HSI Anomaly Detection
(HSI-AD) and presents an exploration, investigation and full hardware implementation of HSI-AD
using the Adaptive Weights Deep Belief Network algorithm from [3] and [4].

The key objectives are as follows

• Refine and adapt a pre-existing high-level implementation of anomaly detection algorithm;
AWDBN, for coherency in literature [3], [4]. Improving the implementation’s coverage to
provide scoring over the entire HSI, including previously uncovered areas.

• Develop a low-level C code implementation for the anomaly detection algorithm with estab-
lished model parameters used in testing functional correctness of the accelerator.

• Create new hardware architectures for a pre-existing AE implementation in High Level Syn-
thesis (HLS).

• Create an architecture in HLS for the DSW, test it is capable of high-throughput to match
the AEs.

• Perform a design space exploration of autoencoder architectures including the exploration
of different achievable throughputs when integrated with a choice between two synthesised
throughputs for the DSW.

• Generate a Pareto frontier in synthesis estimations for comparison of objective parameters
from the design exploration.

• Implement and test accelerators on the FPGA. Evaluate results of the test against the soft-
ware implementation.

• Propose possible designs for accelerating the inference of AWDBN on the ZCU-104 MultiPro-
cessor System on Chip (MPSoC) and HYPSO-1 Zynq-7030 System on Chip (SoC) platforms.

These contributions are mainly towards facilitating the operational capacity of satellites and
other edge devices with dedicated FPGA accelerators. This includes those planned and present in
the HYPSO mission. Additional improvements to AWDBN, in the form of a flexible window as
opposed to a single window parameter have also been suggested, which could increase the algorithm
accuracy further. Based on the work carried out to achieve these objectives it is estimated that
future designs would be capable of achieving a throughput of at least 140 MB/s with 70% to 90%
resource utilization on the Zynq-7030 FPGA with a variety higher throughput options for the
larger ZCU-104.

2

The findings from this thesis aim to be submitted and accepted to the 2023 IEEE Nordic Circuits
and Systems Conference under the title ”High Level FPGA Design of Deep Learning Hyperspectral
Anomaly Detection”. The results have implications for hyperspectral imaging, FPGA accelerators
and anomaly detection. This submission is to facilitate knowledge transfer with other researchers
in these fields.

3

Chapter 2

Background

2.1 Hyperspectral Imaging

Hyperspectral images taken from hyperspectral cameras collect readings at hundreds of wavelengths
across the electromagnetic spectrum. These readings allow for more than just colour to be observed
within the image plane, including the physical properties and materials of objects present. These
images are organised familiarly as a collection pixels in a spatial 2D format where each pixel
then has reflectances with a spectral signature as is illustrated in Fig. 2.1. This reflectance
corresponds to the measurements of intensity along discrete points in the electromagnetic spectrum.
As hundreds of readings across the spectrum for each pixel are collected, this is substantial enough
to introduce a 3D component to the originally 2D image forming a ”HSI-Cube”. This cube is
a spatial representation of the challenge it is to process these hyperspectral images which can
substantiate hundreds of megabytes per capture [6]. The increased amount of data generated by
these images necessitates the algorithms operating on them to be supported by dedicated processing
power and the inclusion of pre-processing to eliminate complexity [1].

Figure 2.1: Reflectance of a point in a hyperspectral image cube

2.1.1 Remote Sensing

Remote sensing in the HYPSO project involves the continuous capture and analysis of HSIs for
monitoring the Norwegian coast, observation of wildfires, deforestation or other points of interest.
HYPSO also makes general captures for dataset contributions to enable researchers around the
globe to study spectral properties and test algorithms [1]. To be able to meet operational re-
quirements additional algorithms must be applied to captures to avoid unnecessary transmissions
which deplete vital bandwidth. These algorithms include target detection [7], anomaly detection

4

[3], segmentation [8] and compression [2]. Running these algorithms on HSI cubes when accuracy
and robustness is critical requires a large processing commitment. The application of these stages
and algorithms make up an onboard image processing pipeline on HYPSO. The optimisation and
implementation of the pipeline is currently an ongoing area of research in the HYPSO project.

2.1.2 Case Study; HYPSO-1

HYPSO-1, launched 13th of January 2023, is a small satellite. It is a 6 litre (6U) CubeSat,
meaning it is made up of two columns of 3 10x10x10cm blocks stacked together. These cubes were
conceptualised in the 1990s with the intention of being a standardisation and simplification to
make space technology more accessible [9]. HYPSO-1 resides in sun-synchronous Low Earth Orbit
(LEO). HYPSO-1 can take HSIs with resolutions above 1000x1000 at 120 bands per pixel, this is
480 MB of data for a single image. Due to its small package HYPSO only has a matter of minutes
to transfer data, including HSIs after performing its telemetry and operational upkeep tasks to its
base at NTNU [1]. This is an unrealistic amount of time for HYPSO to transfer all of the images
it could possibly take in a day. This creates a demand for algorithms that are able to to determine
which images are of interest or to extract essential information to be implemented on the satellite.
These algorithms are complex and so this motivates an in-depth understanding of HSIs together
with a solution involving dedicated hardware. The dedicated hardware for HYPSO-1 comes in
the form of an FPGA available on its Xilinx Zynq-7030 SoC. Future HYPSO missions will feature
platforms like the Ultrascale+ ZCU104 with a larger FPGA.

2.2 Using Hyperspectral Images

2.2.1 Physical Representation

Band-Interleaved by Pixel

Hyperspectral images can be stored before processing in a Band-Interleaved by Pixel (BIP) format,
see Fig. 2.2. This format means that pixels and their bands are stored completely and contiguously
from their lowest to highest band, a pixel at a time, from first to last sequentially. This format is
advantageous for algorithms that work over a single pixel at a time, as it simplifies the memory
access pattern for this case [10].

Figure 2.2: Band-interleaved by pixel format for height, width, 100x100 188 band 32 bit floating
point image.

Band-Interleaved by Line

Another common representation of hyperspectral images is Band-Interleaved by Line (BIL). In this
format, the bands of the pixels in the image are stored for each row contiguously as a collection of
bands-following-bands. This means that the first band is stored in whole at the beginning of every
row, with every row finishing with the highest band. This format provides a generalist approach
of being able to access bands independently and pixels spatially by row [10].

5

2.2.2 Band Sequential

In Band SeQuential (BSQ) format the bands are stored contiguously for every pixel in the image
as opposed to row-wise as in BIL. The image starts with the first band for every pixel and ends
with the last band for every pixel. This format is optimal for accessing an entire band at once [10].

2.2.3 Reducing Complexity

Dimensionality Reduction

Due to the large size of hyperspectral images, a key pre-processing step for the management of
HSIs is the reduction of the size of the reflectance dimension while preserving the information it
contains. The aim is to reduce the memory footprint of the cube and its processing complexity.
With Principal Component Analysis (PCA), 98% of the reflectance of a hyperspectral pixel can
be distributed among 12 principal component bands [11]. This can eliminate more than 90% of
the memory footprint and a majority of the processing complexity of a HSI. The target dimension
can be adjusted to suit environments with varying distributions of reflectance.

2.2.4 Hyperspectral Anomaly Detection

HSI-AD, is a form of unsupervised target detection. Anomalies in HSIs are pixels that stand out
by being different to what surrounds them, their background. Algorithms for HSI-AD do not know
before executing what form or size an anomaly will take, only that it is an unexpected observation
relative to the rest of the image. An example is displayed in Fig. 2.3, the anomalies are sparsely
located at the center of the image and presumably surrounded by a grass field.

Figure 2.3: Example of fake-colour image and the anomaly ground truth from ABU dataset [12].

2.2.5 Reed-Xiaoli Baseline Detectors

Today the most well known algorithm for HSI-AD is the 1990 Reed-Xiaoli detector also known as
the Global Reed-Xiaoli detector (GRX) [13]. Many HSI-AD algorithms and approaches originate
from the GRX detector and it continues to be popular in research and for use as a baseline tool
for HSI-AD performance bench marking and comparison [5]. This detector is an example of a
statistical approach to anomaly detection. GRX applies a multivariate Gaussian distribution over
the entire image by generating means and covariance estimates over image subsections to create a
background distribution. Anomalies are detected by Mahalanobis distance from this background
distribution [14]. With probability distribution Q, with mean µ, and a inverse covariance matrix
C−1,

DGRX(x,Q) =
√
(x− µ)TC−1(x− µ) (2.1)

When score D passes a determined threshold, the pixel x can be classified as an anomaly.

A proposed improvement to GRX; Local Reed-Xiaoli (LRX), considers that for local estimates
of anomaly scores for pixels it is best to center the Guassian distribution region around each pixel
individually rather than fewer pre-defined subregions [5].

DLRX(x,Qwin) =

√
(x− µwin)TC

−1
win(x− µwin) (2.2)

This is where the mean, covariance, distribution are taken from a window region around a center
Pixel Under Test (PUT). This detector has unclear origins but is mentioned in an array of literature

6

[5], [15]. This is implemented by a sliding window operation which is shown in Fig. 2.4. This
means for every pixel the window will slide down through the columns, at the end of each row it
will begin from the first column but shifting the the rows upwards until all the pixels are scored.

Figure 2.4: Local Reed-Xiaoli sliding window

To prevent local anomalies in the image contaminating the pixel distance calculation the DSW
was introduced, meaning that there is an interior sub-window inside the sliding window, see Fig.
2.5. Any pixels caught in this interior window will not contribute to the Guassian distribution or
Mahanalobis distance calculations.

Figure 2.5: Local Reed-Xiaoli double sliding window

Following the DSW strategy a Dual Window RX (DWRX) uses a DSW where the inner window
is used as a mean for the pixel under test [16]. These LRX and DWRX variations are particularly
prohibitive in their ability to have real-time implementations as there is an image subsection
processed for every pixel rx, [15].

2.2.6 Aiport-Beach-Urban Dataset

The Airport-Beach-Urban (ABU) is a dataset from Xudong Kang [12] and it is a popular dataset for
performing benchmarking and comparison of HSI-AD algorithms. It features hyperspectral images
in airport, beach and urban environments which feature different shapes and sizes of anomalies in
a realistic imaging scenario. Table. 2.1 shows the image dimensions, alongside their number of
bands. Fig. 2.6 shows an example of ABU image air 3 with its ground-truth for anomalous pixels.

Image Height/Width Bands
Air 1 100x100 205
Air 2 100x100 205
Air 3 100x100 205
Air 4 100x100 191

Image Height/Width Bands
Beach 1 150x150 188
Beach 2 100x100 193
Beach 3 100x100 188
Beach 4 150x150 102

Image Height/Width Bands
Urban 1 100x100 204
Urban 2 100x100 207
Urban 3 100x100 191
Urban 4 100x100 205
Urban 5 100x100 205

Table 2.1: ABU Airport, Beach, Urban characteristics

7

Figure 2.6: ABU dataset image air 3 with ground truth

2.2.7 Detector Evaluation

The standard performance metric for anomaly detection is Area Under the Receiver Operator
Characteristics (ROC) curve, abbreviated to AUC. AUC provides an estimation of the probability
of a random positive being classified before a random negative. The AUC reflects the accuracy of
the anomaly detection method used by comparing what is classified as an anomaly when using a
ground-truth map compared to a given anomaly-score map. In AUC this is done without com-
mitting to a decision threshold as it averages over all thresholds. Different thresholds for anomaly
classification can lead to different false positives, so this means averaging the true positive rate
over all possible false positive rates [17]. A True Positive Rate (TPR) is the ratio of True Positives
(TP) to all positives by using detected False Negatives (FN), for a given threshold.

F0(threshold) =
TP

TP + FN
(2.3)

The converse is the False Positive Rate (FPR) where this is the rate of False Positives (FP) classified
for all negatives by using detected True Negatives (TN) for the threshold

F1(threshold) =
FP

FP + TN
(2.4)

These TPR and FPR are calculated for a large number of classification thresholds, generating an
ROC curve. The shape of this curve has implications on performance, with its vertical axis as the
TPR rate and horizontal the FPR; the area under the curve becomes the evaluation metric.

AUC =

∫ 1

0

F0(s)dF1(s) (2.5)

This would be applied to a graph as pictured in Fig. 2.7.

Overview of state of the art anomaly detectors

Before introducing the chosen algorithm for anomaly detection, it is useful to know different de-
tectors from literature to help interpret Table 2.2. These detectors are summarised below.

• Causal RX (CRX): CRX aims to achieve real-time processing by using a sample correlation
matrix to compute the anomaly score for each pixel [18].

• Kernel RX (KRX): KRX is a non-linear implementation of the RX algorithm that maps pixel
vectors to a higher-dimensional feature space using a kernel function, such as the radial basis
function kernel [19].

• Fractional Fourier Entropy RX (FrFE-RX): FrFE-RX applies the fractional Fourier transform
to extract features before applying the RX algorithm. This approach aims to reduce noise
and create a greater distinction between anomalous and background pixels [20].

8

• Collaborative Representation Detector (CRD): CRD assumes that background pixels can be
represented by surrounding pixels spatially, while anomalous pixels cannot. It computes a
weight matrix that minimises the difference between a pixel and its surrounding pixels, and
the anomaly score is calculated based on this representation [21].

• Spatial Density Background Purification (SDBP) Detector: SDBP combines a density peak
clustering algorithm with the CRD algorithm to reduce anomaly contamination [22].

• Attribute and Edge-preserving filters Detector (AED): AED applies attribute filters to sep-
arate anomalies from the background and uses an edge-preserving filter for post-processing
to improve detection accuracy [23].

• Morphological Profile and Attribute Filters detector (MPAF): MPAF reduces dimensionality
in the spectral domain using morphological profiles and applies attribute filters to identify
and filter anomalies [24].

• Deep Belief Network (DBN) algorithms utilise AEs, which are neural networks trained to
compress and decompress input data. By reconstructing hyperspectral pixels, they can detect
anomalies based on higher reconstruction errors for anomalous pixels compared to background
pixels. This includes DBN, AWDBN and Novel-AWDBN which will be discussed more in a
later section [4], [3].

2.2.8 Detector Speed and Accuracy

The two most important metrics for detectors is the accuracy and speed at which they can process
HSIs. Since most detection takes place in the domain of remote sensing, this means it will be
performed on satellites or Unmanned Aerial Vehicles (UAVs). As an embedded system constrained
in terms of processing power and hardware availability, these algorithms need to be fast, lightweight
or have dedicated hardware [1]. Table 2.2 provides an overview of HSI-AD processing time including
some classical and some state of the art algorithms.

Algorithm MPAF AED FrFE-RX LRX GRX CRD SDBP DBN AWDBN Novel-AWDBN
ABU AUC (Avg) 0.9916 0.9757 0.9657 0.9604 0.9420 0.9673 0.9872 0.9637 0.9721 0.9870
Runtime (s) 0.17 0.41 22.89 57.59 0.14 39.25 7637.45 3.64 3.86 3.89
Source of measurement [24] [23] [20] [23] [23] [23] [22] [3] [3] [3]

Table 2.2: Comparison of detector accuracy and computation times.

Figure 2.7: ROC curve from algorithms implemented in prior work by Gunderson [3]

9

2.2.9 Choice of Algorithm

This thesis focuses on a design space exploration for dedicated hardware acceleration for AWDBN
based anomaly detection. This algorithm features a spatial dual window as mentioned in LRX
combined with an AI approach rather than a Guassian based RX. AWDBN and the Novel AWDBN
have shown promising performance and are state of the art in the beach 1, beach 3 and urban 1
scenes in particular, with a measure AUC of 0.9999, 0.9995 and 0.9989 respectively as highlighted
in prior work by Gunderson [3]. The spatial nature of the DSW and the Deep Learning (DL)
nature of this algorithm means hardware acceleration is required for handling large images. AI
and sliding windows map well to hardware acceleration in particular as will be presented in the
continuation of this background material and more in-depth in the literature review for FPGA
accelerators.

2.3 Artificial Intelligence and Deep Learning

With the rise of DL, it has become an important component in recent solutions to HSI-AD,
including the prior work which this thesis develops upon [3]. Neural Networks (NN) are inspired
by the human brain and attempt to model it with interconnected artificial neurons organised into
layers or varying architectures. Each neuron applies a mathematical transformation onto its input
synapses. It is in the training of these networks that they become favourable for pattern recognition
and prediction [25]. DL is a sub-field of NNs that aim to use multiple stacked layers combined to
perform more complex tasks, see Fig. 2.8 for the DL subset of AI.

Figure 2.8: AI heirarchy

2.3.1 Deep Belief Networks

DBNs are a deep learning architecture in which the network is composed of Restricted Boltzmann
Machines (RBMs). RBMs take the form of an undirected bipartite graph with one layer of nodes
connected to another layer with no connections between nodes within the same layer. Fig. 2.9
provides a visualisation of a RBM, and of a DBN as a collection of stacked RBMs. In this type
of architecture each of the inputs are individually mapped to each of the neurons. This means
that there is no differentiation spatially in terms of the relation of input nodes, all input edges are
treated as equally distanced. What makes the DBN is the stacking of these RBMs, such that the
output of one layer is the input of another. This is especially useful for serving as an AE if there
is a variation in input and output sizes between layers [25].

10

Figure 2.9: Deep belief network as composition of restricted Boltzmann machines

2.3.2 Layers and Organisation

Fully Connected

A fully-connected (FC) layer, see Fig. 2.10, is a type of RBM in which every node in the input
layer has a weighted edge to every neuron in the output layer. This neuron will take for every
input node a weighted edge product and accumulation. This is known as a multiply-accumulate
(MAC) operation which is performed before applying a final bias offset. A non-linear activation
can then be applied to the output [26]. These weights and biases are then programmable such
that the network can be adjusted over a period of inferences to provide a desired functionality for
a chosen input. The equation of the FC layer has Co as the set of output nodes and Ci as the set
of input nodes. W represents the weights for each input to an output neuron at index [Cout, Cin]
and b is the output node bias.

O [co] =

Ci−1∑
ci=0

W [co, ci] I [ci] + b [co]

0 ≤ co < Co, 0 ≤ ci < Ci

(2.6)

This equation is from [26]. As FC layers require every input is connected with every output neuron,
this is disadvantageous for large inputs such as high-resolution images. Additionally as there is no
inherent spatial consideration when every input is connected to every output.

Normalisation

Before an input is placed into a NN it is typically pre-processed for normalisation. This means it
is transformed to have a mean of zero and unit variance. This is useful for the model as all its
inputs are within the same range. In NNs incorporating a Sigmoid or Softmax function which are
saturating it is beneficial to reduce early saturation this way [26]. Normalisation is not a necessity
and NNs can operate well without it.

11

Figure 2.10: Fully connected layer with Sigmoid activation function [26].

Non-Linear Activation

The activation function used in prior work is Sigmoid [3]. The Sigmoid function takes an input
value x and produces an output value y between 0 and 1, representing the probability associated
with that input.

y =
1

1 + e−x
(2.7)

This is especially useful in NNs where probability is a concern, and thus is the function best suited
for anomaly detection.

2.3.3 Autoencoders

AEs are a restricted form of DBN that can be trained to introduce a reconstructive property. It
features FC layers that are arranged such that the number of input nodes are greater than the
middle hidden layer. This input is exactly equal in size to the output. The key to achieving a
reconstruction is to train the network to minimise the difference between its output and the input.
This results in a compression of the input into a hidden code layer, known as the code. This code
is then used in an FC layer followed by a Sigmoid activation function to regenerate the output.
This acts as a form of lossy-compression which prioritises the accurate reconstruction of data that
it is more regularly exposed to, see example in figure 2.11 . In the case of anomaly detection this
means it becomes better at reconstructing pixels less likely to be anomalies. This can allow trained
AEs to become a substitute for statistical methods [25].

Figure 2.11: Autoencoder reconstructing image excluding poorly represented red dot.

12

2.3.4 Training

Training refers to the generation of necessary parameters for a NN to achieve its desired function-
ality. In the context of an AE these parameters constitute the weights used for MAC operations
and the post-sum bias. Training generally makes alterations to the weights and biases over many
iterations of the network to converge towards an accuracy limit. This accuracy is measured by a
loss function for each iteration.

Gradient Descent and Back Propogation

Backpropagation is a popular choice to compute the loss function in a feed-forward NN. Back-
propagation moves backwards through the NN computing derivatives which form the loss function.
Training is then achieved through Gradient Descent (GD) which uses a gradient of the loss function
to move parameters in a direction that descends upon this limit [27].

Contrastive Divergence

More advanced training for AEs features pre-training using Contrastive Divergence (CD). With
CD each RBM is individually trained to learn some patterns of its input before being trained with
GD. This can improve the performance of AEs but requires more time to be trained. The focus in
this thesis is creating a strong basis for acceleration of the inference as opposed to the training. The
implementations of CD and GD are prior work by Gunderson for the purpose of DBN, AWDBN
and Novel-AWDBN based anomaly detectors. More information on the training algorithms are
available in Gunderson’s thesis [3].

2.4 State of the Art in Anomaly Detection

This thesis is a continuation of the work carried out by Aksel Gunderson [3] which was founded
by work from Ma et al. [4], [28], [29] . This work introduced methods for anomaly detection using
aforementioned AEs. Ma et al. introduced a method of using AEs for generating a reconstruction
error [4]. Continued work from Ma et al. then proposed the combination of this with a DSW
and the utilisation of the code-layer as a spectral distance with a combined reconstruction error
(RE) weighting strategy [28]. Building upon this Gunderson’s thesis introduced a novel weighting
strategy for the anomaly score calculation of each pixel with the implementation of an improved
training strategy featuring CD [3]. Work up to this point has shown state of the art performance
for anomaly classification in some scenes of the ABU dataset and an average performance above
many well performing anomaly detection algorithms.

2.4.1 Autoencoder Anomaly Detection

The motivation of using AEs for anomaly detection comes from the AE becoming statistically
better at reconstructing pixels it has been exposed to during training. By the logic that anomalies
are a rare case unlike their surrounding background, they will be poorly represented and thus not
reconstruct well [4]. Encoding and decoding is performed on a pixel-by-pixel basis. Once the image
pixels have been encoded and reconstructed, the reconstructed image is compared to the original
image. Common pixels should be similar to the input but less represented reflectances will be
reconstructed poorly and have a large deviation from the input. The RE of a pixel is the bandwise
euclidean distance between the original pixel and its reconstructed pixel. RE forms the anomaly
score directly in DBN-AD. For pixel x, the Eq. 2.8 encompasses scoring the pixel with input i, r
reconstruction for B bands.

D(x) = RE(x) =

√√√√b<B∑
b=0

(ib − rb)2 (2.8)

2.4.2 Spatial Autoencoder Anomaly Detection

Ma et al. [28] introduced the idea of pairing an AE with the classic DSW. This pairing enables the
AE to become a substitute for statistical methods including the Gaussian distribution of LRX [4].

13

After the AE is trained, this reconstruction based approach is able to be applied to every pixel of
the image. The DSW, see Fig. 2.12 is composed of an inner-window of ignored pixels and an outer
window. The pixels inbetween the inner and outer windows are known as neighbourhood pixels.
Neighbourhood pixels contribute to anomaly score calculations through their reconstruction error
and code layer representations, which are used with the RE and code representation of the PUT
to allocate an anomaly score.

Figure 2.12: Double sliding window with PUT.

The first step is the training the AE which can include CD and GD. Once trained the inference
of the AE is as described in Fig. 2.11, with FC layers, Sigmoid activation functions and the
generated reconstruction errors as mentioned prior in Eq. 2.8. With a corresponding map of REs
for each pixel, the code layer representation for every pixel when it was decoded also forms a code
map, for which the dimensions and indexes correspond to the original image. It at this point the
sliding window is ready to be applied over every pixel in the image. The sliding window involves
five stages of processing.

1. RE mean calculation
Firstly, from the set of Neighbourhood REs, they are averaged, their average is the summation
and division by the number of neighbours. This is the average neighbourhood reconstruction
error.

REµ =

n<|N |∑
n=0

REn

|N |
(2.9)

2. RE standard deviation
Once the mean is calculated, the standard deviation is calculated by root of the average
squared difference from the mean for every neighbourhood pixel.

REσ =

√∑n<|N |
n=0 (REn −REµ)2

|N |
(2.10)

3. Weight matrix
If a neighbourhood RE varies from the mean by more than a standard deviation it has
its weight contribution penalised by a predetermined factor P. This factor is intended to
prevent or mitigate anomalies in the neighbourhood from contributing to the anomaly score
calculation. The weight matrix for all neighbours contains the inverse of their RE multiplied
by this penalty factor.

∀n;n ∈ Neighbours, Wn =

{
P

REn
, if REσ > |REn −REµ|

1
REn

, otherwise
(2.11)

14

4. Code distance calculation
The code distance from the PUT is calculated for every neighbourhood pixel. This is the
root of squared differences of every code band, the euclidean distance. These code distances
are used for generating the anomaly score. C is the number of code bands, c is the band
index, PUT corresponds to the central pixel of the window and this is calculated for each
neighbourhood pixel, n.

∀n;n ∈ Neighbours, Dn =

√√√√c<C∑
c=0

(PUTc − nc)2 (2.12)

5. Anomaly score
The final step is the anomaly scoring for the pixel. The code distance is multiplied by the
corresponding weight for each neighbour and these are summed. After summation the score
is divided by the number of neighbour pixels to create the final score.

D(x) =

n<|N |∑
n=0

DnWn

|N |
(2.13)

2.4.3 Novel Weight Strategy

In Gunderson’s thesis [3] a new strategy for anomaly scoring was introduced where neighbour
weights are not their reciprocal RE with the opportunity for penalties alone. It was modified to be
the reconstruction error of the PUT multiplied by the inverse neighbour RE with the opportunity
for penalties as can be seen in Eq. 2.14. This was shown to perform favourably compared to the
original implementation in 2.2, with the average AUC improved from 0.9721 to 0.9870.

∀n;n ∈ Neighbours, Wn =

{
REPUTP

REn
, if REσ > |REn −REµ|

REPUT

REn
, otherwise

(2.14)

2.4.4 Computational Cost

Novel-AWDBN can take 3.9 seconds to execute for an ABU dataset image as established in 2.2.
HYPSO images are larger than this 100x100 pixel dataset, from 100x100 to 1000x1000. Being
thousands of pixels per capture, this immediately requires a 100x throughput just to match the 4
second detection time. The use of this algorithm for HSI-AD in a constrained embedded satellite is
difficult in terms of the CPU time commitment and power usage. This algorithm involves complex
summations and multiplications which, when paired with having to fetch instructions from memory,
impacts negatively on overall system power consumption. The possibility of a solution that does
not require a fixed-point data representation will be important for maximising throughput while
minimising power consumption. Thus from this point onwards the focus of the thesis will be on
the resources available within the satellite’s onboard heterogeneous SoC, the Onboard Processing
Unit (OPU) to alleviate these issues [1].

2.5 Embedded Heterogeneous Computing

The HYPSO project is focused on leveraging small satellites equipped with integrated sensors, sub-
systems and SoCs. Once launched it is not possible to add new physical hardware, emphasizing the
importance of carefully planning the equipment and system specifications required to accomplish
the goals of the HYPSO project. This falls within the realm of embedded computing systems. With
the successful launch of HYPSO, it is crucial to comprehend the rationale behind the decisions made
regarding its onboard processing capabilities for handling HSIs and explore how this knowledge
can be applied to HSI-AD [1].

15

2.5.1 Dedicated Accelerators

Hardware accelerators are necessary when there is a processing throughput requirement paired
with a time constraint that cannot be satisfied by a CPU. This includes applications within image
processing, graphics, encryption and compression. Hardware accelerators can come in different
forms, typically highly adaptive, fast but power-prohibitive GPUs, high performance, low power
but non-configurable ASICs and reconfigurable FPGAs. Which of these choices is preferable de-
pends on multiple factors including the dynamics or changing nature of problems encountered,
the availability of power and the required throughput. Fig. 2.13 displays properties of different
hardware accelerators and their suitability for various general problem solving. There is also an
Time-To-Market (TTM) and pricing element associated with these devices.

Figure 2.13: Accelerator solution tradeoffs adapted from [26].

Acceleration Solution

The solution for HYPSO and its constellation are reconfigurable FPGAs. The reasons for this
choice are outlined below, which address the pros and cons of the various main acceleration solu-
tions.

• GPUs provide flexibility but are prohibitive in terms of their power consumption. HYPSO
has to generate solar power while in orbit and has no fixed supply.

• ASICs are not adaptable enough to suit an environment where they cannot be exchanged
when there are a plethora of different algorithms to be run for different tasks associated with
maximising SmallSat operations.

• FPGAs provide the necessary reconfigurability to handle the range of algorithms that HYPSO
needs to process onboard. These algorithms can be chained in a processing pipeline, either
by having multiple designs insantiated in the FPGA or through full or partial reconfiguration
of the system. This provides an opportunity for exploration of the different configurations
that the HYPSO OPU can occupy.

Accommodating an FPGA into an SoC is not simple. It requires knowledge in many disciplines
across digital design, software and system engineering. Important concepts will now be covered
regarding the design and making the most of a dedicated hardware accelerator.

2.5.2 Hardware-Software Codesign

Hardware-Software (HW/SW) Codesign is an approach to computing system organisation that
intends to exploit and leverage dedicated hardware performance with software intelligence and
flexibility to meet system-level objectives through their collaborative and concurrent design. This
provides many advantages, firstly this allows for a faster execution of intense processing tasks by
offloading these to an accelerator. Secondly this accelerator being a dedicated circuit or device
will have an advantage in power required over a CPU. This allows the fulfilment of soft deadlines
that maximise its functionality. When it comes to evaluating the candidate tasks and mediums to
accelerate these, it is important to consider power, speed, system or area resources and scalabil-
ity. Design exploration is where all of these factors are considered and explored in the hopes of
generating a satisfactory design [30].

16

2.5.3 Design Space Exploration

Design space exploration is the process of exploring and assessing different design options and con-
figurations to generate the most suitable implementation for a specific task or set of tasks. This
involves evaluating a wide range of design parameters including hardware/software architecture,
resources, memory organisation, power consumption, performance and cost. In the pursuit of an
optimal system-level architecture there is also a refinement of the software and hardware imple-
mentations, which can be done with algorithms or with expert knowledge [31]. When trying to
find an optimal solution between two conflicting objectives, such as power and performance or area
and execution time, the Pareto principle is a useful concept. The Pareto principle states that it is
possible to improve one objective without compromising the other, but it is not possible to simul-
taneously optimise both objectives. In the context of a Pareto graph, solutions are represented as
points, and the graph shows the trade-off between the two objectives. The Pareto frontier, illus-
trated in Fig. 2.14, represents the set of solutions where it is not possible to improve one objective
without sacrificing the other. Any solution located on the Pareto frontier is considered optimal, as
it cannot be dominated by another known solution in terms of both objectives simultaneously.

Figure 2.14: Adaptation of Pareto graph from [31].

2.6 Field-Programmable Gate Arrays

FPGAs emerged in the 1980s. The term ”Field Programmable” is because of the Static Random
Access Memory (SRAM) they contain which enables their functionality to be reprogrammed [32].
They are made up of a collection of different logic blocks that have to be routed through the
FPGA. The arrangement and properties of these blocks are vendor specific, the focus of this
thesis is on Xilinx devices. Making efficient use of these blocks while avoiding routing issues or
unnecessary resource utilisation is important for creating FPGA hardware accelerators. These
resources are typically organised in an ”Island Style” architecture, forming a sea of configurable
resources. These resources exhibit a degree of heterogeneity, providing a combination of general-
purpose and specialised functionalities to cater to diverse application needs.

2.6.1 Key Concepts

Logic Blocks

Xilinx FPGAs are equipped with Configurable Logic Blocks (CLBs), which consist of Lookup
Tables (LUTs), Flip Flops (FFs), and multiplexers collected into a slice. Each slice typically con-
tains multiple CLBs. These CLBs offer programmable memory functionality capable of performing
computations involving up to N inputs. An N-input LUT serves as a programmable memory ele-
ment capable of computing various functions of up to N inputs. Additionaly, the D-FFs within
the CLBs can store the output of these LUTs or buffer data during positive clock edges [33].

17

On-Chip Memory

On-chip memory is distributed through various mediums of the FPGA which have varying densities
and throughputs. Block-RAMs (BRAMs) are a dense form of memory within the FPGA that are
designed for large amounts of data accessed at lower bandwidths. Registers within the FPGA are
implemented through fast but less dense FFs. Both can be partitioned at the cost of memory
resources to increase the read/write ports for higher bandwidth applications [33].

Specialist Processing slices

Of the specialised slices in Xilinx FPGAs, the most important for processing applications is the Di-
gital Signal Processing 48 (DSP48) slice. This offers dedicated multiply-add functionality. DSP48
slices are designed to provide efficient multiply and addition units, combined with registers for
buffering and storage, making them particularly well-suited for digital signal processing tasks [34].
From Fig. 2.15 A and B are the operands used in the dedicated hardware multiplication, and C is
used for a post-multiply accumulation. The input D varies depending on the specific configuration
of the DSP48E2 slice but can be used for addition or shifting. This provides flexibility which allows
it to be tailored to a wide range of applications.

Figure 2.15: DSP48E2 slice [34].

Routing

Routing is accomplished through a network of programmable interconnects that allow signals
to flow between different components within the FPGA. The routing architecture in FPGAs is
typically based on a mesh or grid-like structure, known as a programmable interconnect matrix.
This matrix consists of horizontal and vertical interconnect lines that form a grid pattern across
the FPGA fabric. Logic blocks and specialised resources are positioned at the intersection points
of these interconnect lines similar to islands. Ensuring a design is routable through the FPGA
depends on many constraints over the development and tool implementation, including utilisation,
timing constraints and resource placement [33].

Synthesis and Implementation

Once a high-level hardware description is written, it must be converted into a gate-level repres-
entation to be implemented in the FPGA, which is known as synthesis. Operations are performed
to improve the performance, resource utilisation and power consumption during this phase. These
optimizations include logic minimization, technology mapping, constant propagation, and resource
sharing. Implementation is the stage where the synthesised design is mapped onto the target FPGA
device. The most important part of this process is the place and route; placement of resources
around the FPGA which then must be routed. Even if a design is synthesisable it may not be
routable [33].

2.7 FPGA Development Flow

Both HLS and HDLs serve the purpose of translating a high-level algorithm or behaviour into
a refined and optimised representation for hardware implementation. Regardless of the specific

18

technique chosen, the objective remains the same: to convert an abstract, high-level description
of the desired functionality into a hardware model that accurately reflects the intended behavior
and produces consistent results. The first step, regardless of the technique, is the refinement of the
chosen algorithm into a reference model. This model serves as a validated representation of the
intended results of the hardware implementation for subsequent verification and implementation
stages [35].

2.7.1 Traditional Development

The traditional method of FPGA development uses Hardware Description Languages (HDLs) to
create processing architectures. This method has the flexibility to allow for highly-optimised
designs to be created through the experience and expertise of its designers. However, there are
also drawbacks to using this approach:

1. Register Transfer Level (RTL) HDL designs often take a long time to make and are difficult
to adapt to changing requirements.

2. There is little opportunity for exploration and changes once the initial architecture is pro-
posed, any solution may be not yet be at its local or global optimum when a change could
further optimise it.

3. Functional testing and verification composes a majority of the project time when RTL test
benches are used.

The ideal design has to be understood and implemented from the beginning and any debugging
is done through low-level simulations. If the implemented design has errors or does not perform
as expected there is a risk the design will have to be re-implemented and any Computation Units
(CUs) will need to be recreated. This presents a rigid approach to hardware development.

2.7.2 Development with High Level Synthesis

HLS allows for designs to be created and tested in languages like C by transforming high-level
code into an RTL representation like VHDL or Verilog. This also allows for the opportunity for
optimisations to be automatically performed between the transformation or user-specified direct-
ives which can influence the transformation to further improve or explore the resulting hardware
implementation. This has significant TTM benefits alongside the ability to rapidly prototype and
evaluate architectural decisions before commiting to a final design. HLS has a disadvantage in that
it is only as good as the designer utilising it and it can be unclear what the tool is performing, the
generated VHDL and Verilog are difficult for a human to read [35].

The tool used in this project; Vitis-HLS, Vivado and Vitis, alongside the hardware platform
are from Xilinx. This thesis will now focus on Xilinx specifically, what the platform is and how
Vitis-HLS can utilise its resources effectively through varying levels of abstraction.

2.8 Xilinx Tools for FPGA Development

Xilinx provides development tools for software and hardware development targeting their FPGAs
and SoC platforms. These encompass different stages of FPGA development, including software
development, toolchains, and customization of embedded Linux for their SoCs. The main focus of
this report are the tools used for FPGA and software development.

Vitis-HLS

Vitis HLS is a tool provided by Xilinx for designing FPGA hardware implementations in high-level
languages like C and C++. This operates as an Integrated Development Environment (IDE) which
facilitates the conversion of algorithms into a high-level format that allows for the automatic gener-
ation of RTL for implementation on FPGAs. This tool supports the development flow by allowing
for the creation and utilisation of high-level testbenches with breakpoint debugging, compilation
tools, co-simulation, deadlock awareness and wave-form analysis. This allows designers to focus
on development and performance optimisation [36].

19

Vivado

Vivado is an tool and FPGA design suite for creating, implementing and verifying FPGA designs.
Vivado includes synthesis, placement, routing, debugging, and waveform analysis. Vivado also
functions as an IDE for RTL development in VHDL/Verilog. Upon creation of an RTL IP or HDL
design Vivado is necessary for the integration into an SoC platform which can be exported into
Vitis for progamming or converted into a programmable bitstream [37].

Vitis

Vitis is an IDE for software and hardware development, with the aim of developing software to
utilise accelerated applications. Vitis provides debugging in C-simulation, co-simulation and at the
hardware level over JTAG for unified hardware-software applications. Vitis supports programming
languages and frameworks, such as C, C++, OpenCL, and TensorFlow, making it accessible to a
wide range of developers. Vitis also provides optimization and profiling tools to help achieve the
high performance from accelerated applications [38].

2.9 Xilinx SoC System Organisation

This thesis focuses on the Xilinx MPSoC with FPGA platform, the ZCU-104 [39], HYPSO-1 uses
the Zynq-7030 SoC. These systems are divided into a hard Processing-System (PS) and reconfigur-
able Progammable Logic (PL), see Fig 2.16, which are able to interact through a hard standardised
Advanced-eXstensible-Interface (AXI) bus. AXI is part of the Advanced Micro-controller Bus Ar-
chitecture (AMBA) open-standard by ARM.

Figure 2.16: Block diagram of relevant SoC components [40].

2.9.1 Processing System

Application Processor

The primary application processor of the ZCU104 is the Arm Cortex-A53 MPCore. It consists
of a cluster of four cores, each equipped with a floating-point unit (FPU), NEON, and Crypto
computational units. Additionally, each core has a 32KB Level 1 shared instruction/data cache.
The ZCU104 also features a shared Level 2 cache of 1MB, along with a snoop control unit, a master
bus interface, and an accelerator coherency port. The purpose of the accelerator coherency port is
to provide synchronization of cached data with any PL accelerator present in the system [40].

20

2.9.2 Programmable Logic

FPGA

The MPSoC incorporates the xczu7ev-ffvc1156-2-e FPGA. This FPGA offers a significant capacity
with 504K+ Logic Cells, allowing for complex digital designs and computations. It operates at a
clock frequency of up to 600MHz, providing fast processing capabilities. The FPGA also includes
on-chip memory resources, such as 36Mb of on-chip UltraRAM and 36Mb of on-chip BRAM. These
memory elements provide efficient dense on-chip storage for data, contributing to the flexibility in
tailoring the FPGA to application-specific implementations. Additionally, the FPGA incorporates
DSP48E2 slices, which are specialised digital signal processing units offering dedicated hardware
resources for performing mathematical operations commonly found in signal processing applications
[40].

2.9.3 Shared Memory and Interconnect

The PS of the ZCU104 is equipped with a level 3 memory system, which includes 8x256MB (2GB)
DDR4 RAM modules. These RAM modules provide a total capacity of 2GB for storing data and
instructions. The FPGA in the ZCU104 is also capable of accessing this DDR4 RAM. To facilitate
this, AXI interfaces of the PL are connected to specific high-performance ports of the MPSoC. This
connectivity allows the FPGA to communicate with and utilise the DDR4 RAM resources available
in the system. Optionally, to ensure proper coordination and coherency between the FPGA and
the CPU, both components share a connection to the System Memory Management Unit (SMMU).
The SMMU plays a crucial role in managing memory accesses and ensuring cache consistency. In
cases where the PL is utilizing the high-performance coherent (HPC) port, the FPGA accesses the
DDR4 RAM through the SMMU. However, if the PL is not utilizing the HPC port, the FPGA
can directly access the DDR4 RAM without involving the SMMU. General-purpose ports are also
available for AXI-Lite register access from the PS to FPGA, enabling the processor to write and
read the FPGA’s internal registers using memory-mapped operations [40], [41].

2.9.4 AXI Bus

The AXI bus operates is a synchronous bus and is divided into masters and slaves. Masters are
responsible for initiating data transfers, while slaves respond to these requests, see Fig. 2.17.
Within the SoC, masters and slaves are organised through a centralised AXI interconnect matrix,
which efficiently routes data to various bridges on the bus. This interconnect matrix forms a
hierarchical structure, allowing for the connection of different peripherals or co-processors that
may have varying speeds, see Fig 2.16 once again. As a multimaster bus, the AXI bus necessitates
arbitration to handle situations where multiple masters attempt to control the same bus signals
simultaneously. In such cases, an arbiter is employed to determine which master gains control
of the bus through arbitration. Transfers involve a handshake mechanism between the master
and slave. The typical handshake process includes the exchange of a valid signal and a ready
signal. The valid signal, transmitted from the data source, indicates that valid data is ready to be
transferred. The ready signal, sent by the data destination, indicates that it is prepared to read
the data. When both the valid and ready signals are high simultaneously, it signifies that the data
has been successfully read, enabling subsequent transactions to occur [42].

2.9.5 AXI-4 Bus Features

AXI-4 Bus Features

• Bus Locking
The AXI bus incorporates bus locking functionality to facilitate atomic uninterruptible trans-
fers. This feature is helpful for implementing semaphores and synchronization mechanisms.

• Concurrent transactions
Masters on the AXI bus have the capability to initiate multiple transactions concurrently,
and these transactions can be completed in an out-of-order fashion. This eliminates the
requirement for a split bus command since the bus is not locked by a single transaction
request.

21

Figure 2.17: Multichannel AXI [42].

• Pipelined transactions
When a slave acknowledges a transfer, even before it is ready to respond, another request
can be initiated. This overlapping of the slave’s response and the new request allows for a
higher throughput on the bus. However, this approach requires dedicated acknowledgments
for each slave device involved in the transactions.

• Burst Transfers
Burst transfers offer the ability to initiate a transaction with a slave device in a single address
phase. During this process, the base address is transmitted in the first phase, along with an
additional address increment size. By holding the read or write signal high, the address is
automatically incremented. This convenient auto-increment feature effectively doubles the
bandwidth for large transactions, as there is no need to send separate address phases for each
data transfer within the transaction.

• Coherency
The AXI-4 bus standard provides options for coherency with the MMU of the SoC it is
integrated into. This enables the bus to directly read an address from the cache, ensuring
access to the most up-to-date value for the APU and chosen peripherals including FPGA.

2.9.6 AXI Interfaces

AXI4-Memory Mapped

The AXI4 protocol is designed for high-performance memory-mapped communication to and from
the FPGA. It facilitates efficient data transfer between masters and slaves by supporting bursting,
with a maximum limit of 256 data cycles. This capability enables higher throughputs for data
transmission. AXI4 incorporates five channels: read address, write address, read data, write data,
and write response. These channels allow for simultaneous reading and writing of data between the
master and slave components. In AXI4, data sizes can vary and are defined during the instantiation
of the Intellectual Property (IP) module. Vivado, a tool by Xilinx, supports data sizes ranging from
16 bits to 1024 bits. These interfaces also support data buffering when used off-chip or between
different clock domains, enhancing their flexibility. In scenarios where an IP module has an AXI4
interface with a width of 512 bits and is implemented at a clock frequency of 100 MHz, but the
bus data width only supports 128 bits, the IP module can still receive all 512 bits of data within
one cycle if the bus has a high enough clock frequency of [43].

AXI4-Lite

AXI4-Lite is a simplified version of the AXI4 protocol, specifically designed for low-throughput
memory-mapped communication. It is well-suited for handling control and status registers. Similar
to AXI4, AXI4-Lite is a memory-mapped interface, but it lacks support for burst transfers [43].

22

AXI-4Stream

AXI4-Stream is a unidirectional, point to point channel that is derived from the data write channel
of AXI4. It is specifically designed for data-flow-based designs. Unlike other AXI interfaces, AXI4-
Stream does not require the forwarding of an address during transfer as it is not memory mapped. It
supports an unlimited burst size, making it suitable for scenarios where continuous data streaming
is required from component to component within the FPGA [43].

23

Chapter 3

Literature Review

This literature review section will provide an overview of the general techniques used to create
optimised hardware accelerators targeting the domains of image processing and AI. This is done
through analysing examples in literature that cover FPGA accelerators for image processing and
for AI applications and includes system architectures and the concerns regarding floating point
implementations in FPGAs.

3.1 FPGAs Accelerators

3.1.1 FPGA Image Processing

FPGA-based image processing involves the transfer of image data onto an FPGA for processing,
often within an image processing pipeline. The selected architecture and design choices signi-
ficantly impact resource utilisation and throughput. This directly influences the ability to meet
operational requirements efficiently without compromising performance or necessitating excessive
resource allocation and increasing power consumption. There are common principles followed in
most designs, one significant similarity in many FPGA designs is the utilisation of on-chip BRAM
memory as a cache or buffer to store a portion of the images during processing. This approach
commonly involves a line buffer strategy with a sliding feature map, enabling a representation of
the 2D space that matches the size of the applied mask without the need to buffer the image outside
of the lines being processed [44][45]. In Angelopoulou and Bouganis [44] which implements vision-
based egomotion estimation, the FPGA is predominantly utilised for critical path processing by
applying feature maps and feature selection. Resource hungry operations that are less critical are
offloaded to the CPU using a hardware/software partitioning approach. To support more advanced
buffering strategies, external memory is utilised alongside the FPGA as a form of multi-level cache.
To make full use of the RAM bandwidth a zig-zag access pattern is used from off-chip memory
in Fig. 3.1. The distribution of image data among 4 RAMs allows for quadruple the bandwidth
but requiring a more complex memory address generation. This alleviates some on-chip memory
requirement as RAM is the densest memory available on an embedded SoC.

In Ulusel et al which creates an architecture for applying a Bresenham circle mask [45], image
frames are retrieved from RAM and read into on-chip line buffers. The reading from RAM is
similarly in a zig-zag pattern to maximise re-use in the line buffers. Each line buffer stores a row
of image data and are accessed by pointers. The first line buffer is fed pixels from memory and
feeds into the feature mask and subsequent line buffers, such that data is shifting from buffer to
buffer and the oldest data is overwritten by the newest, this is visualised in Fig. 3.2. Data is
written from these line buffers into a fast shift register array cache that is used in applying the
feature mask. The computational speed of processing is determined by the time required to place
pixels corresponding to a single column of the mask into the register array cache rather than filling
the entire array as a result of this shifting. The array has dimensions of 7x7 and so this approach
processes and shifts the array horizontally, reusing the subsequent columns.

24

Figure 3.1: Memory access pattern and caching of image data from Angelopoulou and Bouganis
[44].

Figure 3.2: Memory access pattern and caching of image data from Ulusel et al. [45].

By minimising the necessary transactions with off-chip memory and an inventive organisation of
on-chip memory, these accelerators demonstrate high performance through efficient on-chip caching
strategies. This literature highlights that utilising on-chip memory is going to be a key part of
the implementation of this project for both the AE accelerator and especially important for the
DSW accelerator. There are layers of memory available on the MPSoC, including main SoC RAM,
and within the FPGA, on-chip BRAMs, URAMs and fast FFs and LUTs, and a synergy of these
components will need to be found for an optimal implementation.

3.1.2 Architectures for AEs

DNNs typically involve a large amount of MAC operations performed continuously over a large
set of data, AEs are no exception. The most challenging part is the management of on-chip and
off-chip weights and biases together with reading input data for scheduling these MAC operations.
Accessing all of this image, weight and bias data repeatedly from memory becomes the largest
source of latency and power draw [26]. Strategies to mitigate this issue try to maximise on-chip
re-use of parameters, input and intermediate outputs of calculations. For an AE as a combination
of FC layers this means a strategy for high re-use of weights, biases and input bands.

DNN accelerators typically consist of off-chip memory, on-chip buffers and a network of pro-
cessing elements (PEs). This review focuses on FC layers in particular, these are used in the AE
for performing DBN based anomaly detection as RBM1 and RBM2. Which compose a majority
of the processing. These act as a matrix-vector multiplication and have the opportunity for input
re-use. This is because a single band input is used across the MACs for every mid layer code, so
once it is used in a MAC operation for a singe code it can be moved to the next mid layer code cal-
culation. This re-use creates an incentive for and so is commonly combined with weight-stationary
architectures. Stationary meaning they have a fixed weight and PE organisation such that input
data is re-used as it moves through an array of PEs with a fixed weight input for multiplication
and is subsequently accumulated [26]. The AE architecture presented in the background and to be

25

accelerated would only have a small array of weights and parameters as it is encoded and decoded
pixel-by-pixel based on FC layers encoding and decoding the number of bands, which means the
organisation of PEs for a weight stationary architecture would be similar to as in Fig. 3.3.

Figure 3.3: Adaptation of weight-stationary input-reuse accelerator architecture for multiple band
FC on encoder [26].

Figure 3.3 provides an example of a weight stationary network which broadcasts every input
among all of the hidden code node MACs as a form of re-use. After this broadcast the MAC is
performed and the result is re-used in the next inputs MAC operation. If intermediary registers
where added between input stages this could also be a pipelined architecture.

3.1.3 Floating Point

Much literature around FPGA implementations focus on the change from floating point to fixed
point data representations. The reason for this is that floating point numbers are stored in signed-
magnitude format, in combination an exponent field to control the position of the decimal point.
IEEE format also specifies adding an exponent to the floating point bias, alongside an implied
1 at the point. There is a significant difference in all operations when implemented in floating
point compared to integers. A single floating point operation can consist of 30 or more integer
operations [33]. As an example see the floating point multiplication implementation targeting
DSP48E slices in Figure 3.4. A single multiplication requires three simultaneous computations
and three processing stages.

Figure 3.4: Floating point multiplication from [46].

26

3.1.4 Fixed Point and Quantisation

While floating point numbers are highly flexible with a large dynamic range the price in terms of
hardware resources becomes highly prohibitive. Alternatively, implementations with conversion to
fixed point have been shown to reduce DSP, FF, LUT utilisation, increase power efficiency and
improve latency [47].

Figure 3.5: Fixed point data representation, as seen in [48].

Fixed point has an exponent field that cannot vary with time. This fixing eliminates the
need for alignment and removes the shift requirement associated with floating point, see Fig. 3.5.
This is desirable in reconfigurable architectures. In [48] research was performed into fixed point
quantisation for CNNs specifically, and layer-wise quantisation where each layer of the NN has a
different parameter for its quantisation was found to have improve area saving and performance
improvements without significantly impacting accuracy compared to a single quantisation over the
entire network. However, accommodating a fixed point representation in a design comes with three
challenges [33].

1. Determining a peak-value estimation to eliminate the possibility of the fixed-word overflowing
or using a saturation strategy.

2. Testing or analysis for an acceptable precision in fixed point to prevent excessive accuracy
degradation through rounding.

3. Finding a suitable variation of 1 and 2 for all computational tasks throughout the architecture.

Peak value estimation

The intention of peak value estimation is to prevent overflows, to ensure the circuit or architecture
does not change functionality through the change to a fixed point representation. There are several
approaches, simulation based and analytical based approaches to finding a peak size. A Simple
simulation based approaches are to measure the peak achievable values of signals in the system
[33].

Wordlength Optimisation

The purpose of wordlength optimisation is to find a optimal fractional length for preserving the
required precision. This means trading area for accuracy. This can be performed by finding
an average error over potential fractional lengths and choosing the most optimal length with an
acceptable accuracy loss [33].

Quantisation

Quantisation of NNs involves modifying or training an NN to operate in a fixed point representation.
This has benefits for both the software and significant benefits for the FPGA implementation. If
the training has also been fine-tuned or performed for fix-point representations this will allow for
the accuracy to remain near-ideal relative to the floating point implementation [48].

27

Chapter 4

Implementation

4.1 Model Methodology

Before commencing the implementation stage of the project a review was undertaken of prior work
carried out by Gunderson [3] on AWDBN and its adaptation into the novel weighting strategy.
This section will first present an analysis of the current high-level Matlab solution for anomaly
detection discussed in the literature review. Secondly it presents changes to the high level code
with justification for these changes and finally introduce the reference model that will be used to
validate the hardware implementation.

The suitability of high-level Matlab code for the task of anomaly-detection will be assessed
along with its potential adaptability into a hardware accelerator. Any necessary changes made
will be justified and documented. The focus of the analysis is identifying potential limitations
and proposing adaptations in order to achieve a high-speed implementation while maintaining
near-ideal accuracy. As part of the investigation the best parameters for implementation will be
identified and used for the reference design.

This section also aims to inform the reader of the validation strategy. This is through justifying
which training algorithm and parameters are picked for the reference model of Matlab. Using these
trained weights and parameters, a high-level C implementation will be written that will be used to
check replicability of the Matlab results and used continuously for validation over the development
of the hardware accelerator in HLS.

Parameter Network Architecture
Bands Input and output layer nodes

Code Size Hidden layer nodes
AWDBN

Win Size Inner window length
Win Dif Outer window difference
Penalty

Threshold
Deviation from mean

required to be penalised
Penalty
Factor

Penalty multiplication

Network training

Batch Size
Samples executed in NN
before updating neurons

Iterations Batch forward passes

Step ratio
Rate at which weights are

updated

Table 4.1: Network, training and algorithm parameters

4.1.1 Suitability of Prior Work

The code from Gunderson’s thesis [3] was studied in detail, this code implements a DBN AE with
one input layer one hidden code layer and one visible output layer, before calculating reconstruc-
tion errors and applying the adaptive weights strategy. This architecture is based on the input
band size matching the output size and the middle code layer size being customisable. The most
significant parameters are indicated in Table 4.1. These are the parameters that were optimised

28

in Gunderson’s thesis.
Some slight variations from the original AWDBN algorithm proposed by Ning et al were identi-

fied. These variations were seen in Gunderson’s implementation of AWDBN and were subsequently
carried into the Novel method used. Gunderson also implemented a HLS hardware version in C of
the HSI-AE inference which has a slight variation from the Matlab code for the same inference.

Coherency of literature and models

To create a consistency between the literature, the high-level model and what was implemented in
HLS by Gunderson, the following changes were made.

• At the end of the reconstruction error calculation included in Gunderson’s Matlab code,
which is the euclidean distance between the input and output pixels, there is a division by
the number of bands which is not present in the original algorithm by Ning et al. After
removing this there was no observed difference in detection accuracy and this change means
the hardware implementation will use less resources, so it is a beneficial change which will
be carried forward to the implementation stage.

• A change was made to the code distance calculation. In Gunderson’s Matlab code the code
distance calculation varies from Ning et al. [28] as instead of performing a euclidean distance
between the PUT and code pixel, the absolute difference between each code band is summed
and square rooted, rather than root sum of squared differences. This was changed back to
what was provided in Ning et al. This change came in as slightly detrimental to the AUC
score when considering the best window for multiple window parameters for each image.
However, when considering only single fixed window parameters for all images this change
had a slight AUC improvement. As this project aims to implement only single fixed window
parameters the change to Gunderson’s code is chosen.

• There was an error in the applying of penalties in the Matlab code for the AWDBN and
novel AWDBN. The penalty is applied if the reconstruction error varies from the mean
by a standard deviation. In Gunderson’s code the calculation was; if the distance of the
reconstruction error of a pixel was above the neighbourhood mean by a standard deviation a
penalty factor is applied. This was improved by applying an abs() to the calculation, taking
absolute distance from the mean which improved the AUC slightly.

• When evaluating both of the algorithms with AUC, the Novel-AWDBN algorithm searched
through every possible window variation and picked the best by brute force. This search
was only done for the Novel-AWDBN and not the regular AWDBN and the window size
was applied to both without distinction. This previously assumed the best window for the
Novel would be the best for the AWDBN, which may not always be the case. Now the code
searches for the best possible window for both individually and as a result this improved the
best-case AUC for the AWDBN.

Now, with the formation of a high-level model consistent with background literature, the in-
vestigation of necessary adaptations for transforming this into a hardware implementable solution
will be presented.

Improvement candidates

There is an issue in the current Matlab implementation regarding the sliding window, see in Fig.
4.1. The edges around the image are dark and not evaluated in either AUC or given a reconstruction
error. This is because the sliding window is not applied to all the pixels of the image, rather it is
applied from the first pixel the window can surround without crossing out of the image boundary
see in Fig. 4.2. This means that the number of pixels evaluated changes based on the size of the
window. Additionally, this means that the best window picked may be chosen not because it is
the most accurate window but because it skips troublesome pixels or even anomalies.

29

Figure 4.1: Problem in original algorithm; image boundary skipped and evaluated without skipped
area

To solve this problem two possible solutions were considered and compared to the Novel-
AWDBN.

1. Original; If none of the above solutions are acceptable, the original code will be implemented.

2. Fill; As this original implementation in this form does not worry about padding or only
partially full windows, it is very fast. While it is not acceptable to miss parts of the image,
a minor change to the algorithm is to return the original reconstruction error from the
autoencoder for the pixels that the window cannot fit around as the anomaly score for that
pixel.

3. Edge; The other solution is to have the window traverse the boundary of the image, by
either using padding to extend the image or skipping out of bound values by preventing the
index out of bound pixels. This effectively means the window is limited to a smaller size at
the corners and borders of the image, at the top left corner the window would go down to
as much as a quarter of its original size. This means that the window will be less robust
than what was originally proposed in Ning et al. as it performs its average and standard
deviation over a smaller sample of pixels. However, it may be better than the Fill proposal
in terms of detection performance because it still has a spatial component. A concern would
be anomalies on the edge of the image that may be large enough to encompass the entire
window.

Figure 4.2: Overview of window algorithm candidates

Candidate evaluation and performance

The Edge candidate has a better AUC than the Fill. The Edge candidate is only slightly lower in
AUC than the Original.

30

Figure 4.3: Comparison of window algorithm candidates on urban 3

Accelerator suitability

• The Fill and Original candidates would be almost identical in terms of a hardware imple-
mentation. Both would use the same on-chip memory organisation, the only difference would
be that the reconstruction error would be sent as the anomaly score directly when the window
is not fully in the image boundary.

• The Edge candidate requires more complex logic. A padding strategy would need to be
implemented for the padded version. For the non-padded version every cell of the window
would require a comparison to see if they are still within the image. The implications this
has on reducing speed could be mitigated through unrolling and pipelining on the FPGA at
the cost of hardware resources.

Candidate selection

As the Edge candidate provides the most coverage over an image with near-ideal AUC scores,
this will be the chosen algorithm for the hardware implementation. This is because regardless of
interpretation by HLS and choice of how this accelerator would be integrated into the SoC, such as
a direct connection from the AE unit to the DSW unit or individual peripheral units both accessing
DDR4 RAM, all three implementations should have satisfactory performance in terms of speed.
The specifics of the hardware implementation for HLS will be addressed in the implementation
section for the double-sliding window. Any implementation of the Edge candidate should perform
the same in detection if given the same input and operating parameters. These parameters include
the size of the DSW, training algorithm and training parameters used to generate the weights,
biases and output used in testing. For this reason these parameters will be decided on and a model
will be created for use in HLS.

Images
Scores (No
Boundary Edges)

Best Window
Paremeters

Score (With
Ignored Edges)

Scores (Chosen
Edge Candidate)

Best Window
Parameters

Dataset AWDBN
Novel
AWDBN

AWDBN
Novel
AWDBN

AWDBN
Novel
AWDBN

AWDBN
Novel
AWDBN

AWDBN
Novel
AWDBN

Air1 0.907079 0.966729 3, 4 1, 6 0.777027 0.790198 0.922589 0.965833 1,6 1,6
Air2 0.949404 0.975091 3,6 3,6 0.9648 0.983402 0.925598 0.97174 1,5 1,5
Air3 0.915997 0.973371 5,6 5,6 0.928609 0.951232 0.910084 0.969645 7,6 7,6
Air4 0.943938 0.964453 3,2 3,2 0.955345 0.967786 0.95809 0.966349 1,4 1,4
Air
average

0.929105 0.969911 0.90644525 0.9231545 0.92909 0.968392

Beach1 0.999688 0.99031 3,1 3,1 0.999673 0.997696 0.99962 0.997785 3,1 3,1
Beach2 0.996032 0.99031 1,6 1,4 0.99659 0.992357 0.99424 0.987088 1,2 1,2
Beach3 1 0.999987 3,1 7,4 1 0.999991 1 0,999968 3,1 7,1
Beach4 0.979329 0.993318 15,3 15,3 0.865379 0.87998 0.95704 0.984573 1,6 1,6
Beach
average

0.993762 0.993481 0.9654105 0.967506 0.987725 0.992354

Urban1 0.989251 0.997082 5,1 1,6 0.917569 0.932318 0.987549 0.996947 1,3 1,3
Urban2 0.971662 0.99483 15,6 13,6 0.986326 0.997291 0.942126 0.995776 15,6 15,6
Urban3 0.987049 0.990985 13,1 1,6 0.787409 0.830931 0.987239 0.992394 9,3 1,3
Urban4 0.985811 0.992008 9,4 9,6 0.714046 0.669268 0.977611 0.99241 5,6 5,5
Urban5 0.937522 0.96708 7,2 7,1 0.904466 0.954337 0.941206 0.971164 5,3 5,2
Urban
Average

0.974259 0.988397 0.8619632 0.876829 0.967146 0.989738

Overall
Average

0.966366 0.984845 0.90748 0.918984 0.961769 0.983975

Table 4.2: AUC of selected edge candidate versus original with best window sizes.

31

Parameters for implementation and evaluation

Hardware accelerators lack the flexibility of software, so some parameters and test datasets need
to be fixed to a constant and compared to a matching reference model. This is for hardware
implementations to have their output verified by comparison to the model to verify that the
implementation is performing its algorithm correctly.

Gunderson’s thesis contained two methods for training the AE. The method in C was shown to
have reduced accuracy compared to the high-level Matlab training when using the AE for anomaly
detection directly. It is suggested this difference is due to a lack of pre-training of the AE. As the
more accurate model the Matlab trained AE will be used for the evaluation model. It will be used to
create weights, parameters and, together with the Novel-AWDBN with edges, the expected output
for every HSI. The training parameters used in the Matlab code will be used from Gunderson’s
thesis directly. This thesis contained considerable effort for finding the best training parameters
for the HSI AE in Matlab. These parameters are as shown in table 4.3.

Parameter Network Architecture
Bands 19 to 207

Code Size 6 to 13
AWDBN

Win Size Set of windows
Win Dif Set of windows
Penalty

Threshold
Greater than one standard

deviation from mean
Penalty
Factor

0

Network pre-training
Batch Size 7
Iterations 15
Step ratio 0.02

Network training
Iterations 40
Step ratio 0.01

Table 4.3: Table of model reference parameters.

The last parameters to choose are those for the size of the DSW and penalty factor. Gunderson
stated the best observed penalty factor is 0, meaning that any reconstruction error that varied from
the mean was effectively removed from the anomaly score calculation. No value has been found
so far to contradict this statement. A hard-coded penalty factor of 0 in the hardware accelerator
could be particularly beneficial for creating a fast implementation, as a result this parameter is
chosen to be 0, again in 4.3.

The DSW, which was tested in multiple configurations, has no heuristic for finding a best
window size, the best size was selected by testing every size within a range and picking the one
with the highest AUC score. Creating a hardware implementation of the DSW that can perform
for many sizes would require a large amount of resources on the FPGA for a minor gain in AUC.
Futhermore having to find the best size by brute-force would defeat the point of acceleration. As
a compromise, a single window size is picked for synthesis but the design can be re-synthesised
for any size of window. The reference model will be based on the best size parameters from an
average over every image explored for 10 iterations. The graph of AUC and parameters can be
seen in Fig. 4.4. The best size average has an AUC of 9.795, an inner-window of size 1, with an
outer difference of size 5, corresponding to the green line. This creates a total window of 11 by
11 pixels. This window has a large processing requirement due to having 120 neighbours and so a
selection of the best windows for different processing requirements will be additionally explored.
These windows are displayed in Table 4.4.

32

Figure 4.4: Average AUC for all window variations of 1x1 up to inner window size 15x15 and an
outer difference up to 6 pixels for the Novel-AWDBN.

AUC (Avg) Inner Size Outer Difference Window Size Neighbours
∼.98 1 5 11x11 120
∼.979 1 4 9x9 80
∼.978 3 3 9x9 72
∼.976 2 5 9x9 56
∼.975 7 1 9x9 32

Table 4.4: Table of accuracy, window size and number of neighbours that contribute to the PUT
anomaly score.

4.1.2 Evaluation Strategy

The reference model is essentially the exported weights, biases and results from running the Matlab
code with the established parameters. The average AUC of this configuration on ABU is 0.980.
As part of the HLS flow for hardware accelerator development a refined C model that performs
the HSI-AD anomaly detector tasks of inference of AE and Novel-AWDBN has been created which
covers the edges in the described way. From now on this will be what is referred to as the Novel-
AWDBN

4.1.3 Evaluation Model

A refined C model has been created to run in HLS, to verify the hardware implementation. This
evaluation model has been verified by comparison with the Matlab results for exported weights,
biases, and desired output with the parameters set as described. These will be used in testing
in various stages throughout the accelerator development, including software-simulation, RTL co-
simulation and the final implementation running on the FPGA. After testing the C implementation
for every image, the AUC matched at 0.980 with a deviation in results by 2%. This deviation may
be due to rounding errors as the C implementation uses single precision floating point types.

33

4.2 Autoencoder Exploration Base Architectures

This section aims to provide the reader with an understanding of the starting point of the hardware
accelerator of the autoencoder portion of the HSI-AD. In addition it will introduce potential
optimisations and candidate architectures which can be further improved by the use of directives
in the design exploration. Initially analysis will focus on PCA 32-Band 40x40 pixel HSIs and then
modifications will be included for larger band sizes.

The initial architecture comes directly from Gunderson’s C code for AE, which was also im-
plemented using Vitis-HLS by Gunderson in a more limited scope [3]. Using the C code directly
ported to HLS as a basis for further implementations the following architectures will be presented
in this section;

1. Baseline

2. Baseline with On-chip Weigths and Biases

3. Dataflow

4. Pipelined

5. Reordered

6. Retiled

Additionally terms used to asses performance of the hardware architectures are defined in Table
4.5.

Term Definition

Initiation Interval (II)
Delay between processing

subsequent pixels

Latency
Clock cycles required to

complete execution

Throughput
Inputs accepted per second

(Frequency / II)

Directive

HLS pragma which
performs automatic
transformations of C

code.

Table 4.5: Terms used in accessing performance of hardware architectures.

4.2.1 Baseline Architecture

The starting point of this HLS implementation is porting the C code into Vitis-HLS. This porting
is done by replacing the encoding function in SW with a function that is now linked to the HW
for simulation and analytical purposes. HLS typically performs automatic optimisations, including
partitioning memory for higher internal bandwidths and unrolling loops automatically for faster
processing. In order to make it clear where opportunities for optimisations are and how this af-
fects the resource utilisation, automatic optimisations are to be switched off through the following
commands:

config array partition -complete threshold 0
config array partition -throughput driven off
config compile -pipeline loops 0

34

Figure 4.5: DFG of HSI autoencoder with band size 32, mid layer size 6 of width 40 and height 40

Analysis

The C code can be broken down into a simple data-flow diagram with loops and no feedback, see
Fig 4.5. This entails the scope of the computations that are performed in the hardware accelerator.
As a DFG of the problem overall, the C implementation does vary slightly from this DFG. The
reconstruction error is coupled in the same outer loop as the decoding as a merged loop. This was
a software optimisation. The initial design has CUs RBM1, and RBM2 with RE which contain
sub-loops RBM1-Interior and RBM2-Interior respectively.

After synthesis of the design in Vitis-HLS a breakdown of the latency of each sub-module
together with initiation interval is provided by the tool. Each task is running sequentially in
hardware without any optimisations at this stage, see the results in table 4.6. In the table it
should be noted that the initiation interval is equal to the sum of the latency of every function
performed. This is because in this unoptimised design the initiation interval is equivalent to these
functions running sequentially. Furthermore, the initiation interval multiplied by 40x40 is the total
latency of the accelerator for a 32-band 40x40 pixel AE. How to arrive at the latency for a single
pixel is demonstrated in Fig. 4.9.

Task Latency (Avg) Initiation interval (Avg)
Encode-Decode RMSE 20860804 -
Read Band 98 13038
RBM1-Exterior 5485 13038
RBM1-Interior 865 2172
RBM2-Exterior & RE 7425 13038
RBM2-Interior 163 407
Sqrt and Write 30 13038

Table 4.6: Table of characteristics of un-optimised basic implementation.

35

Figure 4.6: Graph of single pixel processed through initial design without concurrency or unrolled
loops.

From the extracted DFG paired with insights of co-simulation on Vitis-HLS it is possible to
understand the performance metrics of the design and their derivation. The design will be broken
down and these metrics gathered from this point on-wards. Justifications for design changes will
be provided, first in a task-by-task basis through the analysis of the initial design, and then all-
encapsulating in the form of dataflow and pipelined architectures.

Reading Data

Figure 4.7 presents a micro-architecture breakdown of the first task of the HSI-AD, this will be
used in tandem with Vitis-HLS co-simulation results to make observations about the architecture
and propose improvements.

Figure 4.7: Read task of HSI autoencoder.

Read Submodule Loop Initiation Interval Latency Trip Count Total Latency (98)
Read Loop 3 2 32 96

Table 4.7: Table of characteristics of un-optimised basic implementation of read task.

36

The read loop performs the read requests over the MM-AXI interface to DDRAM. In co-
simulation a read can be completed in one clock cycle and then written to the BRAM in a sub-
sequent cycle, however there is a loop overhead and address calculation. This can be seen by the
component having an iteration latency of 2 clock cycles. However the initiation interval is 3 clock
cycles so every loop takes on average 3 clock cycles, combining with additional overheads to average
II of 98 for this component.

To improve this pipelining the loop could be introduced. This would mean that while a read
is occuring the next address is being calculated which would reduce the read latency and be used
to lower the initiation interval if the rest of the design were to be pipelined. Another suggestion is
instead of having a single pixel-BRAM a ping-pong buffer strategy could be used. This means that
the pixel buffer can be written to and once it is in use and being read from a second buffer can be
written to. This would be designed such that which one is being read by the AE at a specific time
is alternated between each buffer as they are filled and emptied, eliminating the read overhead.

Encoding

The encoder module in Fig. 4.8 uses the same BRAM written to in the earlier reading task
for its pixel data. This writes its intermediate and final results in BRAM memory for its MAC
operations which is the hidden code layer H1. These weights and biases are read from an AXI-MM
from DDRAM as they are used without re-use. In Table 4.8 it can be seen that RBM1-Interior,
the multiply-accumulate is dominant in the latency. It has a latency of 865 and is performed 6
times.

The clear improvements seen in Table 4.9 come in the form of eliminating off-chip memory
accessed in MAC by adding weight and bias re-use through on-chip memory. This should reduce
RBM1-Interior from taking up 94% of the latency and reduce overall latency by 30%. This memory
could be loaded in all at once before beginning the accelerator as the network is small enough to
facilitate this. If these tasks were executed in parallel an optimisation would be similar to the
reading of data, a ping-pong buffer to separate the current workspace H1 memory with what is
being used in the following task of Decoding and RE. There are also opportunities to unroll or
pipeline the RBM1 inner and outer loops at the cost of hardware memory and processing resources.

Figure 4.8: Encode task of HSI autoencoder.

Encode Submodule Loop II Latency Trip Count Total Latency (5485)
RBM1 Exterior (Including Interior) 914 914 6 5485
RBM1 Exterior (Excluding Interior) 914 49 6 295
> 6 RBM1 Interior 27 27 32 865

Table 4.8: Table of characteristics of a co-simulation of the unoptimised basic implementation.

37

Encode Submodule Off-chip Memory On-Chip Memory Processing Control / Other Total Latency Percentage of Task
RBM1 Exterior (Incl Interior) 225 33 393 72 754 100%
RBM1 Exterior (Excl Interior) 1 1 41 8 50 6%
> 32 RBM1 Interior 7 1 11 2 22 94%

Table 4.9: Schedule viewer table.

Decoding and RE

The decoder as seen in Table 4.9 uses the hidden code layer, H1 from the previous task. This
similarly has the fully-connected layer implemented through MAC operations but with the outer-
loop of RBM2 having more iterations than its inner-loop. Using the results of the co-simulation
in Table 4.10 it can be seen there is a higher latency overall than the previous RBM1, this is to
be expected due to there being more performed, notably the RE calculation. This coupling is also
expected to increase on-chip memory access times as the decoded and working data is stored in
the H2 BRAM and again accessed in the RE calculation. This process would ideally use a separate
BRAM through memory partitioning to increase on-chip bandwidth.

As H2 is forwarded to an output and square root module, this could also benefit from ping-pong
buffering. Being another fully-connected layer it similarly has a large latency cost from loading
weights and biases, see Table 4.11. These should also be stored on-chip for future designs. The
outer loops and inner loops can be unrolled or pipelined to reduce latency with a similar cost. As
this task is currently the longest it could be preferable to separate these modules in a pipelined or
dataflow architecture to ensure each module has a similar latency and initiation interval to reduce
potential stalls.

Decoding and RE Submodule Loop II Latency Trip Count Total Latency (7425)
RBM2 Exterior and RE (Incl Interior) 232 232 32 7425
RBM2 Exterior and RE (Excl Interior) 232 70 32 2209
>32 RBM2 Interior 27 27 6 163

Table 4.10: Decode task characteristics.

Figure 4.9: Decode task of HSI autoencoder.

Using the schedule viewer it is possible to generate an example of a best-case scenario which
identifies where the clock cycles in the design are coming from. This information provides direction
for considering what optimisations can be applied. From the table it can be seen that the internal
iteration which has external memory accesses still provides a large latency. RME calculations also
create a larger latency. These are therefore areas where improvements could be made.

38

Decoding and RE Off-chip Memory On-chip memory Calculations Control Total Latency Percentage of task
RBM2 Exterior and RE (Incl Interior) 43 6 134 14 202 100%
RBM2 Exterior and RE (Excl Interior) 1 0 68 2 70 35%
>32 RBM2 Interior 7 1 11 2 22 65%

Table 4.11: Decode task schedule

Writing data

The module can be seen in Fig. 4.10, there are no loops as a single reconstruction error is transferred
from this module after a square root is applied. From the co-simulation results in Table 4.12 it
can be seen that the overall latency is 30ms, much of this is likely to be made up of the SQRT
function. To verify this the schedule viewer, Table 4.13, offers a breakdown of latency sources. As
with reading, pipelining the writes back to memory could be beneficial if a pipelined architecture
were applied to the overall architecture.

Figure 4.10: Write task initial implementation.

Write and SQRT Submodule Loop II Latency Trip count Total Latency
Write and SQRT - 30 1 30

Table 4.12: Initial write characteristics.

Write and SQRT Submodule Off-chip Memory On-Chip Memory Calculations Control / Other Total Latency
Write and SQRT 2 1 25 2 30

Table 4.13: Initial write schedule.

Full architecture of AE with Reconstruction Error

The overall architecture, as presented in Fig. 4.11 can be seen to be straightforward without
feedback from a later execution stage. This provides a range of possibilities for improvements in
terms of pipelining and as shown in the task concurrency graph there is nothing being applied yet
at this stage. Possible optimisations can also be identified. Firstly memory accesses must be kept
as much on-chip as possible. This means weights are to be loaded into BRAMs or other forms
of memory before the design starts its calculations. Secondly, for the purposes of parallelism the
design can have the different pipeline pragmas applied such that all of the design units are running
at the same time. For example the dataflow pragma would create an architecture for a coarse
grain pipeline without an increase of resources outside of duplicate memory shared across stages.
Thirdly, unrolling of the internal loops of the RBMs is necessary for optimisations of pipelining
otherwise there would be a large amount of stalls in the pipeline. Lastly, a concern would be the

39

F
ig
u
re

4
.1
1
:
F
u
ll
a
rc
h
it
ec
tu
re
.

40

multiplications and additions are implemented using DSP slices in the FPGA which could be a
resource bottleneck when unrolling and pipelining take place.

4.2.2 Baseline Architecture with On-Chip Weights and Biases

Firstly the addition of BRAMs into the design without any of the other changes, see Fig. 4.11,
will be measured in synthesis and co-simulation. This would come as an extra task before starting
the accelerator main loop. With a memory declaration these BRAMs are written to by a loading
stage. This stage reads the parameters of RBM1 from DDR4 RAM through a loop into a BRAM
and once again into a separate BRAM for the parameters of RBM2, this can be seen in Fig. 4.12.

Figure 4.12: Dataflow graph with BRAM loading.

Results

Addition of loading parameters into on-chip memory

Loading the parameters adds 626 clock cycles to the design according to the co-simulation, see
Table 4.14.

Parameter Latency Size(B)
Weights 588 768
Biases 138 152

Table 4.14: Latency impact from loading parameters.

41

Task Latency (Avg) Initiation Interval (Avg)
Encode-Decode RMSE 13466225 -
Load Parameters 626 -
Read Bands 98 8416
RBM1 Exterior 3181 8416
BRM1 Interior 481 1402
RBM2 Exterior & MSE 5121 8416
RBM2 Interior 91 262
Write and Sqrt 17 8416

Table 4.15: Latency breakdown of the sub-tasks.

As expected, the addition of BRAMs reduced the latency of the design, Table 4.15. A break-
down of where this reduction occurred can be seen in Table 4.16, the latency reduction has been
highest where weights and biases were used for calculations. There have been no changes to the
architecture outside of loading these weights.

Task Original Latency Latency BRAM Speedup %
Encode-Decode RE 20860804 13466225 35%
Load Parameters - 588 -
Read Bands 98 98 0%
RBM1 Exterior (w/o Int) 295 295 0%
RBM1 Exterior (w Int) 5485 3181 42%
BRM1 Interior 865 481 45%
RBM2 Exterior & RE (w/o Int) 2209 2209 0%
RBM2 Exterior & RE (w Int) 7425 5121 31%
RBM2 Interior 163 91 45%
Write and Sqrt 17 17 0%

Table 4.16: Comparison of latency of submodules of original and version with BRAM.

Discussion

The BRAM addition has had a performance impact of 35% over most of the operations that require
parameters. So far the resource utilisation has not significantly increased. The next step for the
architecture is to introduce different types of pipelining paired with unrolling. The exact factors
and intervals are what will be experimented with and presented in the exploration chapter and so
the ”base” of these designs will be presented now. In terms of the system architecture pipelining
is clearly applicable and advantageous in terms of performance. For pipelining to be optimal loops
in both the encoding and decoding must be unrolled to prevent significant stalls. This pipeline can
be applied in a fine-grain pipeline or coarse-grain manner as a dataflow pipeline. The advantage
of a coarse-grain pipeline is that it does not implicitly require the full unrollings of RBM1 and
RBM2, allowing it to have a lower resource consumption at the cost of some ability to optimise
between dataflow sections. The advantage of the fine-grain pipeline is that it does have this ability
to be optimised between the entirety of the design, which may make it more advantageous on the
condition of all of the operations, weights and biases fitting on the FPGA at once.

4.2.3 Dataflow Architecture

Dataflow between segments of the design allow for a coarse-grain pipeline increasing the through-
put without increasing the hardware utilisation significantly. In creating a dataflow design it is
important that the initiation interval of every stage of the pipeline is as equal as possible to pre-
vent long pipeline stalls, for this reason as in Fig 4.13 the RE has been separated from RBM2.
To enable the design to be dataflow capable it is essential that any stage in the presented design
only consumes resources from a prior stage and not a future stage. It is also necessary that data

42

written in any current stage is not overwriting data before it is needed in a future stage, as a WAW
hazard. As the design processes concurrently it requires multiple instances of any read, encoded,
or decoded band data as they are used once to be written to in their earliest stages and then to
be read from in a later stage, this solved in Vitis HLS through ping-pong buffering.

Presented individually in Fig. 4.17, it is important to note that the RE module is its own distinct
CU. This is an optimisation to decrease the coarseness of the pipeline and improve the latency
by allowing for more parallelism. The corresponding table 4.17 shows the dataflow characteristics
with and without submodule pipelining. This serves as an introduction to directives that will be
applied over the design exploration. When a loop is pipelined any loops below it in its hierarchy
are implicitly unrolled. This also generates a need for a higher memory bandwidth. For this reason
memory partitioning is performed to instantiate more memory objects to take advantage of the
increase in read/write ports to achieve the required bandwidth. This partitioning can be done
manually or automatically in Vitis-HLS.

Figure 4.13: Coarse grain pipeline processing pixels in parallel.

Task (Avg) BRAM (Baseline) Dataflow Speedup % Dataflow & Pragmas Speedup %
Encode-Decode RMSE 13466225 7175885 47% 507540 96.2%
Load Parameters 588 577 2% 577 -
Read Bands 98 104 -1% 128 -131%
RBM1 Exterior (w/o Interior) 295 295 0% - -
RBM1 Exterior (w Interior) 3181 3181 0% 316 90%
BRM1 Interior 481 481 0% Unrolled -
RBM2 Exterior (w/o Interior) 2209 1632 27% - -
RBM2 Exterior (w Interior) 5121 4481 19% 134 97%
RBM2 Interior 91 91 0% Unrolled -
Write and RE 17 768 -451% 293 -172%

Table 4.17: Dataflow design comparison with and without directives.

Discussion

The initiation interval of a coarse-grain pipeline is the highest latency of the different pipelined
tasks. This results in an initiation interval of 316 between pixels, as seen in Table 4.17. This is
caused by the RBM1 task because it is the highest latency CU in the coarse grain pipleine. The
organisation and internal pipelining of these CUs can be visualised in Fig. 4.14, where the depth
of the pipeline is the number of code sizes in RBM1 and the number of bands in RBM2. The
stages involved in each loop are based on accommodating the parallel processing of each of these
output nodes of the respective RBMs. Looking further at the graph there is a time between the
decoding task being completed and the encoding task still executing where there is no utilisation
for decoding. The same is true for RE. This is not the most efficient implementation possible in
actual utilisation of FPGA allocated resources. To achieve a lower initiation interval and higher
utilisation of allocated resources a more fine-grained approach would be beneficial.

43

F
ig
u
re

4.
14
:
C
oa
rs
e-
g
ra
in

p
ip
el
in
e
w
it
h
in
te
rn
a
l
fi
n
e-
g
ra
in

p
ip
el
in
es

o
f
ea
ch

ta
sk
.

44

4.2.4 Fine-Grain Pipelined Design

To achieve a fine-grain pipeline a pipeline directive is applied for both the encode and decode tasks.
This means RBM1 and RBM2 have to be fully unrolled, potentially requiring significant resources
in the form of DSPs, memory and LUTs. Although large amounts of resources are required there
are benefits to this approach, as having this pipeline covering both RBMs means they are both
in each others scopes in terms of automatic HLS optimisations. This automatic inlining means
HLS will optimise between the unrolled loop boundaries. This results in flexibility in terms of
setting an appropriate initiation interval that will ensure the entirety of the design is optimised for
that specific interval. If the highest throughput, initiation interval 1, has too high a utilisation,
increasing this interval will reduce resources drastically. Another issue with a low II pipeline is the
fact that to accommodate for this, all on-chip memory is mapped to LUTs in the design rather
than BRAMs or URAMs. This is because the bandwidth requirement becomes very aggressive
and URAMs or BRAMs are a form of higher bandwidth low density memory.

Task (Avg) BRAM (Baseline) Dataflow & Pragmas Speedup % Pipeline II = 32 Speedup %
Encode-Decode RE 13466225 507540 96.2% 52295 99.6%
Load Parameters 588 577 - 484 18%
Read Bands 98 128 -131% Pipelined, 34 65%
RBM1 Exterior (w/o Interior) 295 - - Unrolled -
RBM1 Exterior (w Interior) 3181 316 90% Unrolled -
BRM1 Interior 481 Unrolled - Unrolled -
RBM2 Exterior (w/o Interior) 2209 Unrolled - Unrolled -
RBM2 Exterior (w Interior) 5121 134 97% Unrolled -
RBM2 Interior 91 Unrolled - Unrolled + (RE) -
Write and RE 17 293 -172% Pipelined (No RE) 82%

Table 4.18: Comparison of latency of pipelined, dataflow with directives and original BRAM
accelerators.

Figure 4.15: Fine grain pipeline processing pixels in parallel.

Discussion

As can be seen in Table 4.18 this initial fine-grain pipeline has an advantage in terms of throughput.
A part of this advantage comes from the unrolling that is performed over the entirety of RBM1 and
RBM2 which creates an iteration latency of 875 as seen in Fig. 4.15. This lower latency alongside
the division of these into 27 pipeline stages means up to 27 pixels are processing in the pipeline at
once. Outside of this pipeline the reading and writing of pixels is also in a coarse-grain dataflow
pipeline and performed in parallel. With the II of 32 the design is actually not consuming too
many resources. The most used resources are LUTs and FFs indicating that partitioning is applied
due to the higher bandwidth needed. There are still opportunities for a faster implementation for
a fixed parameter PCA in the exploration, as the II can still be lowered.

45

4.2.5 Reordered Design

The current pipeline and dataflow implementations are organised such as in Fig. 4.16. The position
of the first executed synapses are indicated by the bold lines. This means that in this loop ordering
all of the input bands are multiplied by their weights and accumulated for each code sequentially
without contributing to codes in an interleaved manner. This is problematic as it requires that
every band is loaded on-chip before it is processed, creating a dependency in the input data and
the processing for each code in RBM1. An alternative ordering which allows for the opportunity
for input band tiling is to swap the loops, such that a single input band contributes to every code
at once. This removes the input dependency and allows for a pipeline upon band entry into the
NN.

Figure 4.16: Reorder transformation on AE.

When fully pipelined as previously discussed this design becomes equivalent to the pipelined
due to the implicit unrolling of the loops. As a result this will be another dataflow design to
compare in the design space exploration. There are options for full unrolling and pipelining over
dataflow sections and this will be explored for the following band tiled design.

4.2.6 Band Tiled Partial Reordered Design

This design aims to exploit the reordering of the input of RBM1 to allow for a tiling in the
pipelining of its MAC operations. Tiling would mean that instead of reading the entire image
before processing, these inputs can be read a single or multiple bands at a time and processed. This
can also be applied to the RE calculation. This can be combined with the original sequential band
access pattern for RBM2, see Fig. 4.17. With the benefits established of reordering RBM1, RBM2
benefits from a synchronisation in the resource access pattern if used in an pipelined dataflow
configuration. This results in the pipeline depths being similar bringing their latencies closer.
Accessing all codes in parallel for MACs involves less concurrent resources than accessing every
band at once for the MAC of a single code. Additionally, if this were fully unrolled either loop
orderings would be equivalent in the generated RTL. RBM1 is tiled by having a loop based on
the AXI-MM input size covering the MAC loop visualised in Fig. 4.18, as such pipelining in this
module can now be performed on an unrolled sub-partition of the reordered loop.

46

Figure 4.17: Reorder transformation on AE.

This is expected to be more beneficial at smaller input word sizes because it means less visible
layer nodes would be encompassed by the tiles at a time. This also means it is even more beneficial
for the case of designs with large bands.

Figure 4.18: Tiling transformation on RBM1 with 64-bit word sizes.

4.2.7 Overview and Parameters of Exploration

A design space exploration will take place by varying the design parameters and also by varying
the kind of images the design can accommodate.

Interface Widening

The maximum supported width of AXI-MM interfaces in Vitis HLS is 1024 bits, this is up to
32-bands. For HSIs larger than 32-bands some accommodations will have to be made. It is unclear
what AXI interface width will be the best for the design on the FPGA as simulation can be
misleading, in particular regarding the AXI latency. This is because this DDR4RAM is accessed
by a hard bus on the SoC and the speed can depend on the bus and RAM frequency, the burst
size and width of interfaces. Having a design that is too fast for the AXI bandwidth would lead
to wastage in resource use.

47

Pipelining and Dataflow

The pipelining initiation interval can be changed, this will be experimented with both in the
pipelined architectures and within the submodules of the dataflow architectures. Dataflow and
coarse-grain pipelines will also be applied inside and outside of the designs, if applied surrounding
a pipelined design it could mean that there is concurrency in reading and writing to memory. If
placed directly outside of the pipeline it may cause the pipeline to assume data can be ready at
any time which is worse for optimisation than considering the predicted AXI latency.

Unrolling

Full unrolling is implicit to any loop within a pipelined hierarchy. When designs are pipelined
manually the pipeline interval to be customised and allows for an unrolled design to be executed
over more cycles.

Using BRAMs, URAMs

BRAMs and URAMs are useful for lowering the utilisation of resources like FFs and LUTs. These
provide a denser memory and utility. In very high throughput designs it may not be possible to
apply these resources as they are a low bandwidth memory object.

Memory partitioning

Often memory resources need to be divided and the storage of data spread across them to take
advantage of the increased number of memory ports, which translates to a higher peak bandwidth.
Caution must be taken with memory partitioning as it is easy to manually partition for a higher
bandwidth than is actually needed in the accelerator. Pipelines allow for automatic partitioning to
maximise throughput without partitioning more than necessary. Dataflow requires a more manual
approach which could be cause for error.

Flexibility in height, width, code side and band size

How these directives interact with the design so far have been discussed for fixed height, width,
code size and bands. The ideal goal would be an accelerator that has some flexibility without
degrading performance through this flexibility. The band size must be flexible to accommodate
PCA and non-PCA designs in the same accelerator. This includes flexibility in the number of
bands of the input image and the number of bands in the hidden code layer. Images may also vary
in height and width which is an additional change to accommodate.

4.3 Double Sliding Window Implementation

The DSW for the purpose of anomaly detection was implemented into RTL using Vitis-HLS. The
implementation was run with both sets of results from the autoencoder Matlab and C code being
used as the input. The implementation was also tested with the C trained model. The requirements
for the fixed parameters of the DSW were discussed in the golden model methodology section,
however the design can be synthesised for any combination of window parameters and thus this will
be the main exploration parameter for a hardware implementation. It was not possible to simply
copy and paste the HLS C architecture directly into the implementation. The adaptations required,
and the reasons behind them will be discussed in the C to HLS section. The architecture section
will go over what the intended implementation architecture is and the different HLS exploration
directives that can be applied to the design. This will then be experimented with in the exploration
section.

4.3.1 From C to HLS

Step 0 : Padding

The high-level C code was developed with the intention of not processing out of bound pixels
by utilising ’if’ conditions to check if the window positions are out of the image boundary. This

48

methodology is acceptable for a processor as it is able to perform branching with prediction and
by eliminating out of bound data it is possible to save time processing. Dedicated hardware
differs from this, as resources would have to be allocated on the chance the condition ’the pixel is
within bounds’ is true. This generates extra logic for checking the condition is met, after already
processing the result. This creates complex control logic layered around the hardware resources
that would be allocated based on the condition. This control logic for checking every pixel index
for every window position for every feature matrix would quickly become burdensome for the HLS
to schedule and allocate. Instead for HLS, impossible data is placed into a buffer region. The
choice of this data is based on reconstruction errors only being a value between 0 and 1 and always
positive. -1 is placed into the on-chip buffer before reading image data as can be seen in Fig. 4.19.

Figure 4.19: Out of bound strategy using padding in HLS.

Before observing the HLS code that performs the key calculations of the DSW, it is necessary
to understand the utilised pre-processing variables in Table 4.19. These are calculated at compile
time for the DSW, and as such there is an avoided utilisation overhead that would come from
having to calculate these variables during the running of the DSW as an Intellectual Property (IP)
core.

Pre-processing Variable Calculation Value Comment
WIN SIZE 1 1 Inner Window Size
WIN DIF 5 5 Spatial distance from edge of inner to outer window
WIN LEN 2*WIN DIF + WIN SIZE 11 Length of single side of entire window
HALFWAY WIN DIF + (WIN SIZE-1)/2 5 Index of Pixed Under Test (PUT)
BOUNDARY TL WIN DIF 5 Indicates left and top boundaries of inner window
BOUNDARY BR WIN LEN - WIN DIF 6 Indicates bottom and right boundaries of inner window
NEIGHBOURS WIN LENˆ2 - WIN SIZEˆ2 120 Surrounding pixels used in RE and code calculations
MAX CODE 16 16 Maximum supported code size per pixel

Table 4.19: Pre-processing variables used in HLS C code for window (1,5).

Step 1 : Mean

The idea is that the center pixel of the window can be compared to -1 and if they are equal
it is not a legitimate data pixel and thus the result of the sliding window for this pixel can be
discarded. This is important because padding data needs to be inserted before the image and
between image lines, to act as the right side padding for the current row and the left side padding
for the next row of image data. It can then become difficult to distinguish padding from real
data. The choice of -1 means that when the summation happens to calculate the neighbourhood
mean of reconstruction errors, the values that are not -1 can be counted. For any fixed window
size the number of pixels in a neighbourhood can be calculated at compile time. The number of
neighbourhood pixels subtracted by the number of legitimate pixels can be added to the total sum
to offset the number of non-legitimate -1 pixels. This removes the need for any boundary checking
in the mean and code to perform this is illustrated in Listing 4.1.

Listing 4.1: HLS code for RE mean

t o t a l l o o p :
f o r (i n t y = 0 ; y<WIN LEN; y++) {

f o r (i n t x = 0 ; x<WIN LEN; x++){

49

i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

r t o t a l = r t o t a l + re mat [y] [x] ;
i f (re mat [y] [x] != −1) {

count++;
}

} e l s e {
cont inue ;

}
}

}
r t o t a l = r t o t a l + (NEIGHBOURS − count) ;
r mean = r t o t a l / count ;

Step 2 : Standard Deviation

Once the mean is counted the standard deviation of neighbour reconstruction errors in the window
can be calculated. Before this calculation the -1 pixels are replaced by the mean, so that they do
not impact the calculation. As the standard deviation uses root average squared difference from
the mean these padded values are cancelled out. This average is the average of legitimate pixels,
by using the count of non-padding values from step 1. How this is achieved is shown in Listing 4.2.

Listing 4.2: HLS code for standard deviation

pad mean :
f o r (i n t y = 0 ; y<WIN LEN; y++) {

f o r (i n t x = 0 ; x<WIN LEN; x++){
i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

i f (re mat [y] [x] == −1) {
work mat [y] [x] = r mean ;

} e l s e {
work mat [y] [x] = re mat [y] [x] ;

}
} e l s e {

cont inue ;
}

}
}
s q u a r e d i f s :
f o r (i n t y = 0 ; y<WIN LEN; y++) {

f o r (i n t x = 0 ; x<WIN LEN; x++){
i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

dat t comp ;
comp = work mat [y] [x] − r mean ;
s td dev = std dev + (comp ∗ comp) ;

} e l s e {
cont inue ;

}
}

}
s td dev = sq r t (s td dev / count) ;

Step 3 : Weightings

With the standard deviation calculated, every RE neighbour pixel is checked to see if it deviates
from the mean. If it deviates by beyond a standard deviation its corresponding code weighting is
penalised to 0, as specified in the penalty factor. If it does not deviate beyond the standard devi-
ation then it is replaced by its RE inverse multiplied by the PUT as specified in Novel-AWDBN.
All non legitimate (padding) pixels will always deviate from the mean by above a standard devi-
ation, and as a result they will have a penalty factor applied. This removes the need to consider
a padding value for their code distance, which will just be padded with 0s synchronously with RE
padding.

Listing 4.3: HLS code for weighting and penalty

weight pens :

50

f o r (i n t y = 0 ; y<WIN LEN; y++) {
f o r (i n t x = 0 ; x<WIN LEN; x++){

i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

i f (abs (re mat [y] [x] − r mean) > s td dev) {
weight [y] [x] = 0 ;

} e l s e {
weight [y] [x] = re mat [HALFWAY] [HALFWAY]/ re mat [y] [x] ;

}
} e l s e {
cont inue ;
}

}
}

Step 4 : Code Distance

With the weights calculated, the code distance from the code of the PUT is calculated for every
neighbourhood pixel. This is done as specified in the algorithm, with the root of squared distances
and can be seen in Listing 4.4. This is the most problematic part of the algorithm for mapping
to the FPGA as performing this step for floating point is very resource intensive and difficult to
route for large window sizes.

Listing 4.4: HLS code for neighbour code distance

z e r o d i s t :
f o r (i n t y = 0 ; y<WIN LEN; y++) {

f o r (i n t x = 0 ; x<WIN LEN; x++){
i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

c od e d i s t [y] [x] = 0 ;
} e l s e {

cont inue ;
}

}
}
code d i s t anc e :
f o r (i n t y = 0 ; y<WIN LEN; y++) {

f o r (i n t x = 0 ; x<WIN LEN; x++){
i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

f o r (i n t c=0; c < MAXCODE; c++) {
i f (c < codes) {

dat t temp ;
temp = code mat [y] [x] [c] − code mat [HALFWAY] [HALFWAY] [c] ;
c od e d i s t [y] [x] += temp ∗ temp ;

} e l s e {
break ;

}
}
c od e d i s t [y] [x] = sq r t (c od e d i s t [y] [x]) ;

} e l s e {
cont inue ;

}
}

}

Step 5 : Anomaly score

The anomaly score of the PUT is then calculated as the sum of these euclidean distances times their
respective weighting. Based on whether or not the pixel is legitimate or not this score will then be
written or discarded. Buffer filled is not a test of the entire buffer, as the buffer is pre-filled in a
separate low latency loop, rather it is a test of whether or not the buffer values have propagated
the window matrix as this is where the -1 test occurs and may have old values from the previous
run of the accelerator. If the buffer has been prefilled with -1s and a -1 is not currently the PUT,
this is demonstrated in Listing 4.5.

51

Listing 4.5: HLS code for anomaly score calculation and verificaton

anomaly score :
f o r (i n t y = 0 ; y<WIN LEN; y++) {

f o r (i n t x = 0 ; x<WIN LEN; x++){
i f (! (((x >= BOUNDARYTL) && (x < BOUNDARYBR))
&& ((y >= BOUNDARYTL) && (y < BOUNDARYBR)))) {

anomaly score += cod e d i s t [y] [x] ∗ weight [y] [x] ;
} e l s e {
cont inue ;
}

}
}
// Send s co r e
i f ((va lue != −1) and b u f p r e f i l l == 1) {

s co r e s t r eam . wr i t e (anomaly score / count) ;
}

Concerns and mitigation strategies

There are a few concerns regarding the optimisation of this buffering strategy, firstly it is key
that the buffer is filled and the first pixel is centered in the window before processing begins to
save latency in the design and improve synchronisation with the autoencoder component. If the
buffer were to be filled by the processing loop, which would have a large initiation interval, this
would mean that buffer data is only placed every initiation that includes the critical path of the
design. Rather than this, data can be placed in before the main loop is initiated. The intention
for highest throughput for a resource threshold is that the AE and the DSW have a matching loop
initiation interval, as the output for a single AE processing loop is the input for a single DSW
processing loop, their synchronisation is key for a dataflow architecture. Another issue is that
there is a dependency in the shifting matrix only being shifted after it is already finished being
used in processing. These operations can be interleaved by copying or buffering the matrix rather
than using it for processing directly. This should be automatically optimised for any coarse-grain
or fine-grain pipelined system in Vitis-HLS.

52

4.3.2 Architecture

Figure 4.20: High level architecture of AWDBN double sliding window implementation for
Win(3,4).

Interfaces

There is a flexibility in the choice of architecture. The DSW and AE can be integrated as a single
component or kept as separate standalone components. In the case of an integrated component
there would need to be an AXI-Stream connection of code and reconstruction errors of every pixel
fed from the AE into the DSW, with the AE having an AXI-MM for reading data and the DSW an
AXI-MM for writing data. If standalone both components need to contain AXI-MM for reading
and writing data.

Shifting Line Buffer

To implement the sliding window for the RE and codes of each pixel, a shifting line buffer is used
and can be seen in 4.20. This line buffer holds all the rows of image data for the image rows the
sliding window is operating on. As data is sliding through the buffer it is replaced with the data of
the next line. This is performed by each row of the line buffer writing into the row above, with the
bottom being fed data from the AXI-MM or stream. This is effectively shifting left and upwards.
As only one shift is required every time a pixel is processed this only requires a low bandwidth,
so BRAMs become the natural medium for implementation. There is one BRAMs for each line to
take advantage of the read and write ports so that only the exact amount of required bandwidth
is needed. The shifting in these BRAMs is not physical shifting in hardware but rather controlled

53

by a incrementive pointer through this memory. When the pointer reaches the end of a data line
it returns to the beginning, overwriting old data with new incoming data. Each pixel calculation
initiation the data input into the BRAMs becomes the input to a shift matrix which performs the
sliding window operation. This matrix physically shifts every clock cycle without a pointer.

Window Matrix

With the shifting line buffer acting as a low bandwidth line cache, the shift-matrix is a high-
bandwidth line buffer fed processing cache that is intended for unrolling and pipelining on the
FPGA to be used in calculations. This is implemented in LUTs and FFs for high bandwidth par-
titioning. There is a shift matrix for both the codes of each pixel contained and the reconstruction
errors. The processing of these is exactly as described in C to HLS, with intermediary matrices,
including; Mean padded working matrix, Weight Matrix, and Code distance matrix. These are
the size of the entire window and data is shifted from the right-to-left one column at a time as the
window slides along an image. There are two matrices, one for reconstruction errors, one for codes,
this can also be seen in 4.20. The code buffer is significantly larger than the reconstruction error
buffer as it contains all of the code bands as a 3rd dimension. The intention of these matrices is to
implement the double sliding window and that, with fixed internal and external window paramet-
ers, the center of this window will not contribute to scheduling, calculations or need partitioning.
It is not used in any calculations, only for shifting.

Cache for calculations

The calculations will require a large latency over many calculations. To avoid complex routing from
a single memory array, the different phases of the calculations are split among separate matrices
as is notable in 4.20. The only sliding matrices are the code window and RE window. There are
more for temporary storage. Firstly the mean is calculated from the sliding window, through the
C to HLS highlighted method. With the padding replaced by the mean, the entirety is placed into
a fast register-based ”working matrix” which is also a collection of FFs and LUTs. Once this is
written to, it is used in the standard deviation calculation which is then stored into a register. Now
the RE matrix is once again used to calculate, if a neighbour RE at index i,j varies from the mean
by a standard deviation, a weight matrix has 0 stored at i,j, otherwise its inverse multiplied by
the PUT is stored. The RE matrix is not needed in calculations after this point but it is intended
to remain synchronous with the code matrix which still needs to be used for a calculation. It
cannot be shifted and the next loop iteration cannot yet begin. At this point the code distance is
calculated from the code window matrix by storing into temporary registers the bandwise square
difference between the PUT and all the neighbourhood pixels. This is summed and square rooted
into a code difference matrix, which is used for calculating the anomaly scores.

Output stream

Finally the anomaly score is calculated as the summation of each element of this difference matrix
cache consisting of the neighbour code difference with their corresponding RE weighting and this
is written into a single register. Finally this is written into a stream FIFO, to be output by the
AXI-MM to memory.

4.3.3 Testing

Continuous testing was performed during the development of the accelerator through comparison
with the golden reference C code. This was performed for C simulations of the hardware acceler-
ator and co-simulations of the hardware accelerator. The C simulation was used for the purposes
of validating the result from the accelerator, while the co-simulation is used in benchmarking and
optimisation alongside RTL validation. Running a co-simulation can allow the optimal FIFO sizes
to be found, however these sizings vary based on exploration parameters. Finding the most locally
optimal should be left until the selection of a final design as it is too high effort to be done through
trial and error.

54

4.3.4 Double-Sliding Window Exploration Parameters

The adjustment of window parameters will be key for finding a balance between speed and accur-
acy. Changing the internal and surrounding window sizing can significantly reduce the amount
of floating point operations and thus, the schedulability and resource utilisation of the hardware
accelerator on the FPGA. An example is given for Window(5,3), Fig. 4.21 with an inner window
size of 5 and outer window difference of 3. This creates a 11x11 window and the number of calcu-
lation neighbours varies for these parameters. The design is synthesisable for any combination of
parameters, which are determined by pre-processing variables in the HLS.

Figure 4.21: Parameters of DSW.

Dataflow and Pipelining

As performed in the autoencoder implementation segment, there are some helpful HLS directives
that can be applied to the design in the pursuit of finding a suitable speed and resource tradeoff.
For a large window pipelining will most likely not be possible unless the initation interval is very
large, and in this case having a coarse-grain pipeline would be preferable.

Code size

The supported code sizes is another important factor, in Gunderson’s thesis the code size of 13 was
seen as optimal in terms of processing and performance for the Matlab trained NN, but for the C
trained, after some experimentation this has been found to differ slightly, so the accelerator will
have to accommodate a range of code sizes. The maximum code size has the largest implication
on performance.

Max Image Width

The max supported image width has implications on the BRAM size that can be supported for
the image. For images with a large width storing a whole line in memory may become prohibitive.
As this parameter is most likely to be independent of the other directives and factors that can
be applied this will not need to be explored significantly beyond establishing the whether the
maximum supported image size of 1024 by 1024 can be accommodated in this design.

Integration

Options for integrating the DSW and the autoencoder include having a stream between the designs
as separate accelerators, fully integrated into a single accelerator or both individually communic-
ating with memory directly. This will be looked at as part of the exploration.

55

Exploration windows

For combination with AEs in the design space exploration, a few candidate windows have been
synthesised for different window configurations. A key note is that only Window(1,5) has a reduc-
tion in size when synthesised for a higher II and lower speed. The other windows seem to increase
in resource utilisation. This may be because they require some kind of synchronisation padding
using registers and LUTs. For this reason, for all windows except Win(1,5) Table. 4.21 windows
will be used with all AEs and for AEs with an II of 240 or above 4.20 will be used.

Width Height Code WIN DIF Initation Interval BRAM % DSP % FF % LUT % URAM %
150 150 16 1 5 224 27 4 72 61 0
150 150 16 1 4 224 21 3 42 50 0
150 150 16 3 3 224 21 3 39 47 0
150 150 16 5 2 224 21 2 33 39 0
150 150 16 7 1 224 21 1 24 28 0

Table 4.20: Lower speed window properties.

Width Height Code WIN DIF Initiation Interval BRAM % DSP % FF % LUT % URAM %
150 150 16 1 5 120 27 8 72 80 0
150 150 16 1 4 120 21 5 49 56 0
150 150 16 3 3 120 21 5 47 52 0
150 150 16 5 2 120 21 4 39 44 0
150 150 16 7 1 120 21 2 29 32 0

Table 4.21: Higher speed window properties.

56

Chapter 5

Results

This chapter presents the results of the project. The first section describes results from the explor-
ation of the AE hardware architectures suitable for combination with DSWs. The second section
provides results of the synthesised estimates of the full algorithm when combining various AEs with
the DSWs. Finally the results will be summarised in relation to the original aims of the project
through the identification of physically possible combinations for a flexible adaptation.

5.1 Exploration of Hyperspectral Anomaly Detection

This section describes a design space exploration which was carried out to investigate the possible
hardware architectures that could be used for the implementation of the AE designs. Also described
are two modular DSW implementations that could possibly be connected to these AEs through a
streaming interface. When assessing which of the options to choose consideration will be given to
the potential for tradeoffs in accuracy and resource utilisation alongside throughput.

5.1.1 Exploration of Fixed Band and Code Size AEs

This section presents an exploration of applying AEs to the ABU dataset images, specifically
analysed for height, width 100x100. The AE designs are able to accommodate any height and
width of image as the processing is performed a pixel at a time. The designs that will be explored
have fixed band and code sizes. They have been unrolled, pipelined or converted into a dataflow
design by the usage of directives in Vitis-HLS. The degree of memory partitioning and memory
object implementation has been left to the tool to decide where possible as it has not been surpassed
through manual input. A breakdown of the Computation Unit organisation for each architecture
is presented in Table 5.1. Full details of the results are included in Appendix A, which provides
the parameters, unrolling, pipelining and intervals used in the generation of the designs beyond
the base architectures. Cases where the partitioning factor has been set manually are available in
the Appendix A.

Computation Unit
Architecture RMB1 RMB1-I RBM1-O RBM2 RBM2-I RBM2-O RE

External
Loop
Of Encoder

Internal
Loop
Of Encoder

Sigmoid
Of Encoder

External
Loop of
Decoder

Internal
Loop of
Decoder

Sigmoid
Of Decoder

Reconstruction
Error

Dataflow Y In RBM1 In RBM1 Y In RBM2 In RBM2 Y
Pipelined Y In RBM1 In RBM1 Y In RBM2 In RBM2 In RBM2
Reordered Y In RBM1 Y Y In RBM2 Y Y
Retiled Y In RBM1 Y Y In RBM2 In RBM2 Y

Y indicates that there is a distinct CU,
otherwise integrated into the CU indicated.

Table 5.1: Table of distinct CU units that apply for each architecture.

57

Graphs of utilisation vs execution time

The following graphs show the results of the exploration. They display different AE candidate
architectures with different directives applied. This is organised as -

• Utilisation Vs Resources for 19 Band, 6 Code layer size AEs is presented in Fig. 5.1 with
corresponding Appendix Table A.1.

• Utilisation Vs Resources for 32 Band, 8 Code layer size AEs is shown in Fig. 5.2 with
corresponding Appendix Table A.2.

• Utilisation Vs Resources for 120 Band, 13 Code layer size AEs can be viewed in Fig. 5.3
with corresponding Appendix Table A.3.

• Utilisation Vs Resources for 188 Band, 13 Code layer size AEs is displayed in Fig. 5.4 with
corresponding Appendix Table A.4.

All designs are from modifications to the base architecture with on-chip memory in Fig.4.11.
There is also an additional code output stream that outputs the codes for every pixel processed.
Dataflow corresponds to a coarse-grain pipelined derivative such as Fig. 4.13. Pipelined to Fig.4.15,
Reorded is a coarse-grain permutation as in Fig.4.16, and Retiled encompasses pipeline and data-
flow permutations of the partial-reorded tiled architecture in Fig.4.17.

58

F
ig
u
re

5.
1
:
U
ti
li
sa
ti
o
n
v
s
la
te
n
cy

o
f
1
9
b
a
n
d
6
co
d
e
a
u
to
en
co
d
er
s.

59

F
ig
u
re

5.
2
:
U
ti
li
sa
ti
o
n
v
s
la
te
n
cy

o
f
3
2
b
a
n
d
8
co
d
e
a
u
to
en
co
d
er
s.

60

F
ig
u
re

5.
3:

U
ti
li
sa
ti
o
n
v
s
la
te
n
cy

o
f
1
2
0
b
a
n
d
1
3
co
d
e
a
u
to
en
co
d
er
s.

61

F
ig
u
re

5.
4:

U
ti
li
sa
ti
o
n
v
s
la
te
n
cy

o
f
1
8
8
b
a
n
d
1
3
co
d
e
a
u
to
en
co
d
er
s.

62

The results provide the performance estimates for each resource of each architecture for the
synthesised directives.

• For BRAMs the graphs show that generally the pipelined and dataflow architectures require
less BRAM resources for all band code configurations while the retiled in a coarse-grain
configuration requires the most. This is harder to interpret as it does not have a clear
distinction between pipelined and coarse-grain utilisations.

• For DSPs the retiled and pipelined architectures are almost equal in terms of resource use vs
latency, whilst the dataflow and reordered use under 10% utilisation for a range of latencies
in each band code size. In the DSP graphs it can be noted that as the band size and increases
the utilisation reduces, this is potentially due to the latency increasing.

• FF utilisation is highest for fine-grain pipelined architectures and lower for coarse-grain archi-
tectures. The retiled architecture has a lower FF utilisation than the pipelined architectures
for the same latency, with reductions up to 30%, indicating they are dominant to these archi-
tectures for this resource. In comparison between the dataflow and reordered, the reordered
uses more FFs, likely due to it having more computation units as seen in Table 5.1.

• LUT utilisation follows a similar to the FFs, where there is a decrease in utilisation for the
retiled at the same latency, with the pipelined architectures consuming more resources.

• The maximum resource utilisation graphs show that the fine-grained pipelined architectures
are have higher resource utilisations than the coarse-grain pipelines and this increases sig-
nificantly with band and code sizes. In contrast the coarse-grain architectures see a slight
increase in resources as the band and code sizes increase.

5.1.2 Exploration of Hyperspectral Anomaly Detection with Novel-AWDBN

Following the exploration of AEs described above, the next step is assessing how these implement-
ations fit together with the generated DSWs in Tables 4.20 and 4.21. This is presented to assess
the feasibility and achievable throughputs of potential HSI-AD accelerators. The differences in
accuracy for full-band ABU images has been presented in Table 4.4. To summarise, for windows
that have less neighbours and therefore less operations per pixel, there is generally a decrease in
accuracy with less resource utilisation seen for full band ABU images. Therefore there is an ele-
ment of how window parameters influence achievable throughputs and utilisations combined with
AUC score accuracy.

Graphs of AEs coupled with DSWs for different window parameters

The following graphs intend to visualise achievable throughput and resource utilisations of the
already synthesised designs when combined modularly. There is some potential for this utilisation
to be lower, as the DSW are not throughput optimised for a specific AE and intended to be modular
IPs that can work with any AE up to 16 code bands. This exploration stage is performed over
each of the four prior established AE band and code combinations. These graphs were generated
by entering a desired throughput in cycles per pixel for one of the band code combinations. A
sublist of AEs that can meet that throughput requirement is generated from the exploration table
in Appendix A. Depending on the throughput requirement, DSW utilisations from Tables 4.20
and 4.21 are added to each AE of the list. The AE-DSW with the lowest maximum resource
utilisation that meets the interval requirement is represented as the best-case design that achieves
the corresponding throughput.

• HSI-AD Novel-AWDBN is presented for 19 bands, 6 code bands in Fig. 5.5. For cycles per
pixel, 120, 224, 480, 600. The corresponding throughput is indicated in the graph. This was
generated from Table A.1 combined with Tables 4.20 and 4.21.

• HSI-AD Novel-AWDBN is introduced for 32 bands, 8 code bands in Fig. 5.6. For cycles per
pixel, 120, 224, 480, 600. The corresponding throughput is marked in the graph. This was
generated from Appendix Table A.2 combined with Tables 4.20 and 4.21.

63

• HSI-AD Novel-AWDBN is shown for 120 bands, 13 code bands in Fig. 5.7. For cycles per
pixel, 120, 240, 480, 685. The corresponding throughput is specified in the graph. This was
generated from Appendix Table A.3 combined with Tables 4.20 and 4.21.

• HSI-AD Novel-AWDBN can be seen for 188 bands, 13 code bands in Fig. 5.8. For cycles per
pixel, 188, 256, 600, 1024. The corresponding throughput is mentioned in the graph. This
was generated from Appendix Table A.4 combined with Tables 4.20 and 4.21.

These designs were not synthesised for these throughputs directly, so they are not the local maxima
of optimisation for that given throughput or initation interval, but serve as an indication of the
local design space. With further refinements, resources utilised for each throughput category can
be reduced.

Figure 5.5: Band 19, code size 6, comparison of resources vs throughput for Novel-AWDBN HSI-
AD.

64

Figure 5.6: Band 32, code size 8, comparison of resources vs throughput for Novel-AWDBN HSI-
AD.

Figure 5.7: Band 120, code size 13, comparison of resources vs throughput for Novel-AWDBN
HSI-AD.

65

Figure 5.8: Band 188, code size 13, comparison of resources vs throughput for Novel-AWDBN
HSI-AD.

In the graphs of the full AWDBN throughputs and window parameters, the following results
were found. In most designs, the LUT and FFs were the highest utilised resource while DSPs were
the lowest. BRAMs remained relatively constant across all combinations. As band and code size
increased the utilisation for each throughput increased but also the throughputs increased as the
images are now larger.

5.2 Integration and Testing

In this section results from the integration and physical implementation of two AWDBN acceler-
ators with flexible code and band size. This is to test and evaluate whether previous results are
consistent for more generalist accelerators.

5.2.1 Integration of Evaluation Design

To test designs physically on the FPGA the DSW and AE have been integrated through an AXI-
Stream interface. Code and reconstruction errors are streamed synchronously from the AE to the
DSW. The AE reads pixel and weight data and the DSW now writes data to memory through
an AXI-MM interface, which acts as a dedicated DMA. Prior to this integration all of the designs
have been modified to allow for flexible band and code sizes, and so a design will be created to
accommodate only PCA images and one will be created for up to 120 bands and a code size of
13, which can be used to accelerate larger images or PCA images equally. The block diagram can
be seen in Fig. 5.9. This design is in the PL fabric of the ZCU-104 and is connected to the PS
by HP ports, one for reading weights and biases and an additional port which allows for parallel
receiving and sending of pixel data. These designs are connected by an AXI-Stream internally
in Vitis-HLS. There is flexibility for this as they could either both read and write to memory
individually, this would be less efficient than streaming due to cycles used in reading and writing.
This AXI-Stream implies a dataflow coarse-grain pipelined approach, while the AE is performing
the encoding, decoding and RE calculations, the DSW is performing the adaptive weights. Both

66

units are operating in parallel in this configuration. Both designs share their AXI-Lite registers,
which allow the height, width, band size and mid layer code size to be programmable, providing
more adaptability in the design as long as it is synthesised to accommodate the maximum of each
parameter.

Figure 5.9: Block diagram of integrated implementations.

Changes to image height has no impact on the design utilisation while width only impacts the
BRAM utilisation in the image-line buffers of the DSW. Changing code size has implications in
both the operations and memory in the DSW and the AE while changing the number of bands
can change the size and operations required of the AE only.

5.2.2 Design Parameters

Two designs have been created for testing, shown in Table 5.2.

• A Pipelined, supporting up to 32 bands and 8 mid code layer sizes. Width, Height 150x150.

• B Dataflow, supporting up to 120 bands and code size up to 13. Width, Height 150x150.

Sample
Name

Architecture
Max Height,
Width

Max
Bands

Max
Codes

Inner
Window

Outer
Difference

Frequency
Estimated
latency

A PCA Pipelined 150x150 32 8 7 1 200Mhz 12.8ms
B Full Dataflow 150x150 120 13 7 1 200Mhz 62ms

Table 5.2: Table of parameters used in the synthesis of the evaluation designs.

These designs have been created for testing that the implementations are able to be synthesised,
placed and routed on the FPGA and successfully function when executed physically. They have
not been selected to test what is the most suitable or optimised for deployment. They also serve to
draw some parallels from the design space exploration in terms of addressing the differences when
implemented to accommodate flexibility. Due to the flexible input parameters causing variations
in reading and writing internal data streams, the reordered and retiled architectures require more
complex FIFO sizing which should be extrapolated through cosimulations to optimise performance
and avoid deadlocks which is time prohibitive.

5.2.3 Evaluation

Resource utilisation

Table 5.3 shows the resource utilisations from FPGA implementation in Vivado. Design 1; A PCA
which is the pipelined architecture has resources are as expected when compared to the design

67

space exploration of 32 bands. The 120 band dataflow B design has fared worse in the transition
to a flexible architecture.

Sample
Name

CLB
LUTs

CLB
Registers

CLB
LUT
Logic

LUT
Mem

Block
RAM

DSPs

A PCA 35% 20% 60% 30% 10% 1% 6%
B Full 53% 30% 87% 44% 22% 6% 3%

Table 5.3: Table of post-implementation resource utilisation.

C Runtime

The C-AWDBN inference code was cross-compiled in Vitis for execution on the Ultrascale+ ZCU-
104 MPSoC. This execution was performed in Linux, executed on a single core of the APU which
was operating at 1.2 Ghz. No optimisation flags were specified for this compilation.

Image Height
and Width

Window
Parameters

Bands Code size Runtime (ms)

100 x 100
Inner size; 7,
outer difference; 1
(Best case runtime)

19 6 161

32 8 234
120 13 848
188 13 1258

Inner Size; 1, outer
difference; 5
(Worst case runtime)

19 6 284

32 8 377
120 13 1035
188 13 1446

Table 5.4: Runtimes of inference of C AWDBN

Accelerator Execution time

The modules were tested in a bare-metal configuration for three image categories; 19 band, 32
band and 120 bands. Each module has as its input the given weights, biases and image data. The
evaluation is performed using Vitis-HLS generated bare-metal drivers and the AXI-Lite status
register of the system is polled to test completion of execution. Image data was stored in arrays
and in each case written to a buffer before initiating the internal DMA transfer in the accelerator.
The runtime results can be seen in Table 5.5 The results show that the A design is able to reduce
the execution time up to 94%, with slightly lower execution times as the number of bands and
codes are reduced. Design B has a constant execution time for each tested band, code size which
is around 10 times higher than Design A but still achieves up to an 84% reduction in execution
time for large band sizes.

Configuration PCA A (Bands 32, Code 8) Full B (Bands 120, Code 13)

Image Bands
Image Code
Size

SW
Runtime (ms)

HW Runtime
(ms)

Speedup %
HW Runtime
(ms)

Speedup %

19 6 161 13.8 92% 134 17%
32 8 234 15 94% 134 43%
120 13 848 - - 134 85%

Table 5.5: Software and accelerator runtime comparison.

68

5.3 Evaluation

Full AWDBN in C and Matlab

As part of the methodology changes were made to the Novel-AWDBN proposed in work by Gun-
derson [3]. This included the implementation of AWDBN and Novel-AWDBN into C. Prior work
had not yet applied the Novel-AWDBN to the entire image dataset for the trained C AE. This C
implemented training had some problems with AWDBN for a code size of 13, to the point it had a
lower AUC than just the AE RE scores. The anomaly score was found to improve drastically with
a code size of 20, and so the average score is presented in Table 5.6. Weights can be generated
in either training implementation and used in the Matlab and C AWDBN inference for equivalent
results.

Implementation Training method
Code
size

AUC
Average

Matlab DBN CD & GD 13 0.953797
C DBN GD 20 0.880633
Matlab or C
Novel-AWDBN

From Matlab
DBN

13 0.983975

Matlab or C
Novel-AWDBN

From C DBN 20 0.964938

Table 5.6: Matlab-AWDBN and full C-AWDBN

Exploration

For further analysis of the exploration results a Pareto frontier has been generated for every band
and code size in Fig. 5.10. All designs have a similar shape except for the 188-band. This is
influenced by the BRAM utilisation for the design at 30 ms in the 188,13 graph. So the 188 band
design has been re-plotted without BRAMs, see Fig. 5.11. Without BRAMs the shape is still
different, but slightly closer. Architectures on the Pareto frontier, the red line, are designs that
have not had an observed better option for both the objectives throughput and execution time
simultaneously. The designs on and closest to the Pareto frontier are the retiled and reordered
architectures developed during the AE base architectures section. Although not conclusive this
does suggest that they are the most optimal of the designs, this will considered further in the
discussion.

69

Figure 5.10: Pareto frontiers of explored architectures.

Figure 5.11: Pareto frontier of 188 without BRAM.

70

Implemented Accelerators

Adaptation to flexibility

Since the exploration was performed for fixed band and code designs, the implemented flexible
accelerators can be compared with the design exploration results to see the impact this flexibility
has, in Table 5.7. For the A PCA design, flexibility does not seem to have an impact as the
resources are lower in the flexible design for a throughput that is not much lower than the fixed
exploration. For the 120, 13 Full band design, this design is not close enough in throughput to be
truly comparable, but the resource utilisation is similar for a much lower throughput.

Property Designs
Closest Exploration

Design

Exploration
vs

flexible integrated

A PCA B Full 32,8 120, 13
PCA

Accelerator
Full Band
Accelerator

Throughput 85 MB/s 36 MB/s 114 MB/s 140 MB/s 74% 26%
LUT 30% 44% 42% 40% 69% 110%
FF 20% 30% 32% 29% 67% 103%
DSP 6% 3% 3% 4% 200% 75%
BRAM /
LUT MEM

11% 28% 40% 50% 28% 56%

Table 5.7: Flexible designs and closest fixed exploration design.

71

Chapter 6

Discussion

In this chapter the results will be considered in more detail and possible explanations for the
findings will be explored. How the results can be used to advance knowledge and benefit the
HYPSO project will be discussed. Challenges experienced in the design and implementation will
be considered and areas for future work will be identified.

6.1 Implications of Results for HYPSO

6.1.1 AWDBN

The project has seen the successful implemnentation of C AWDBN that performs the encoding,
decoding and adaptive weights. This was accelerated using an FPGA with the same level of accur-
acy and a shorter execution time. In theory, with different parameters this hardware accelerator
could enable anomoly detection to be performed on the current and future HYPSO satelites.

In terms of the next direction for future work on the AWDBN algorithm itself the focus would
now shift to the training and how to utilise these algorithms on HYPSO. For example, the AUC
scores for the C trained AWDBN are lower and require a much larger computation complexity at 20
codes compared to 13 codes in Matlab. If the training in C were improved to include CD this could
allow for a return to 13 codes, which is at present the least scalable parameter of the accelerator.
This leaves the problem that the network is trained for every image and that the training takes
up a majority of the computation time. This an overhead of 3.36 seconds for a 188 band image
and 1.26 seconds if reduced to 12 bands through PCA. These training times are from prior work
by Gunderson [3]. Solving this can be addressed in two different ways. One option is that for
AWDBN, either have a larger network trained over a range of images from a ground station, such
that the inference can be applied to any image. Or alternatively if training for every image, this
would have to be done on HYPSO and as a result the C training will need to be improved and
accelerated, or a different less compute intense strategy chosen.

There is also room for improvement in the AWDBN algorithm. Currently only a single window
is applied over an entire image. It should be possible to create a heuristic based on surrounding
anomalies or penalty distributions to choose a more optimal window size. This means that both
small anomalies in images and large anomalies in images will have individual windows tailored to
them, therefore increasing the detection accuracy. Looking back at Table 4.2 only a few images
shared the same best window size, and there can be varying best window sizes for different regions
of any image.

6.1.2 Accelerator Architectures

From the design space exploration, the retiled and reordered typically lie on the pareto frontier
while the dataflow and pipeline versions rarely do. This shows that the architecture candidates
introduced as potential improvements dominate the pipeline and dataflow counterparts. In some
cases the estimated resources of the retiled are lower than the pipelined designs for the same
throughput, being as much as 30% lower than the 188-band pipelined for the same throughput.
This also applies for the 120-band variants, having an up to 20% reduction in maximum resource
utilisation. Additionally different accelerator architectures introduced and explored which have

72

different amounts of scalability. For any high throughput application the retiled architecture
has shown favourable utilisation with the same throughput. On the lower end of utilisation the
reordered design has the highest throughput for a similar resource utilisation to the non reordered
dataflow at the cost of larger FIFO sizes in BRAM or LUT-RAM. These architectures still require
an appropriate FIFO sizing for any given maximum band and code size. This will increase their
utilisation but it is still expected they will perform better than the aforementioned counterparts.
The general scalability of processing parameters is introduced in Table 6.1. As indicated by the
table any foray into a more constrained FPGA such as HYPSO-1 or increasing the network size
will require the implementation of the retiled and reordered designs with a FIFO size to suit all
band and code parameters.

Paremeter Scalability Reasons Future Work
Image Height Very high Only affects execution time.
Image width High Impacts on-chip buffer sizes Image tiling

Bands
Low in Pipelined
and Dataflow

Increase of size and operations in
RBM1, RBM2 and
Reconstruction Error

Integrate
Retiled and
Reordered by
finding ideal
FIFO sizes.

Medium in Tiled
and Reordered

Tiled Bands in RBM1
and Reconstruction Error

Code Size
Medium∼Low,
Depends on
window parameters

Increases operations in RBM1, RBM2,
memory and size in DSW.

Dataflow DSW

Table 6.1: Scalability of processing parameters in accelerators.

6.1.3 Implemented Accelerator

The accelerator implemented has been shown to be functionally correct through physical testing
for custom sizes of bands and codes. For the PCA version of the accelerator there was not a
significant variation from the fixed band exploration, however for the 120 band the deviation of
throughput at 26% was more significant, see Table 5.7. This throughput level was below estimates
for implementation B and is too slow to justify its resource consumption. With further optim-
isations this variation could be eliminated. Preferably the implementation of architectures on the
Pareto frontier of the exploration would see greater improvements. It is also likely there will be a
reduction in utilisation from the fixed 120 band with DSW. The DSW module can also be synthes-
ised for a lower amount of code bands at 13 rather than 16. The main preventative factor for the
creation of a more impressive and high throughput design has been time limitations. The current
implementations are not optimal in terms of architecture choice or fine-tuned in HLS, leaving an
opportunity for a large throughput increase with just a small extra effort. Additionally the design
should be tested in Linux with appropriate drivers, as this is an important step for creating a
design that can be deployed on HYPSO.

6.2 Accelerators for Present and Future HYPSO SmallSats

HYPSO has images of dimension 1000x1000 and 120 bands stored in single precision floating point
32-bit format. This amounts to about 480 MB per image. There are a range of different proposed
accelerators at each given throughput, whether or not they would synthesise and implement in
Vivado remains to be tested. From the results of this project and the designs that have been
tested the following are expected to be possible accelerators for deployment to present and future
HYPSOs. Table 6.2 displays potential accelerators that target future HYPSOs that would have a
larger FPGA with more resources. Table 6.3 considers HYPSO-1 with the smaller Zynq-7030.

The pre-requisite to these implementations is a working flexible band and code size retiled AE
by finding the correct FIFO-Sizing in Vitis-HLS. As an example, the Fig. 5.7 window sizes 7, 1 at
400MB/s should be possible for implementation and handle 0.83 full-band HSIs per second.

73

Throughput Window size
120 Band HSIs
Per second

Architecture
Max
Resource
Utilisation

Predicted
Synthesisability

Comment

120, 13 at
800 MB/s

7, 1 1.7 Retiled 88%
Congestion and
Overutilisation

LUT & FF
Pipeline II
Low

120, 13 at
400 MB/s

1, 4 0.83 Retiled 94%
Congestion and
Overutilisation

LUT & FF

120, 13 at
400 MB/s

3,3 0.83 Retiled 92%
Congestion and
Overutilisation

LUT & FF

120, 13 at
400 MB/s

5,2 0.83 Retiled 82% Overutilisation LUT & FF

120, 13 at
400 MB/s

7,1 0.83 Retiled 72% Feasible
Synthesise
DSW
for 13 bands

120, 13 at
140MB/s

1, 5 0.29 Reordered 76% Feasible
Synthesise
DSW
for 13 bands

Table 6.2: Expected synthesisability of AWDBN accelerators for ZCU-104.

However, the FPGA on HYPSO-1 is equivalent in resources to the PicoZed, a ZYNQ-7000 SoC,
this has about 30% to 40% of the resources of the ZCU-104.

6.2.1 Accelerator for HYPSO-1

Table 6.3 provides predictions for the feasible accelerators that can be uploaded to HYPSO-1.
A pre-requisite of these is the implementation of a reordered architecture. Additionally, if the
DSW were synthesised in a dataflow configuration this could reduce the resources and increase the
code size scalability further reducing resource use. Of the observed designs from the exploration,
comments are made on the likelihood of successful physical implementation on the FPGA in Table
6.3.

Throughput
Window
Size

HSIs Per
Second

Architecture
Max resource
utilisation

Synthesisability Comment

120, 13 at
140 MB/s

7,1 0.29 Reordered 70∼90% Uncertain
Synthesise
DSW for 13
codes

120, 13 at
140 MB/s

7,1 0.29
Dataflow
Retiled

70∼90% Uncertain
Synthesise
DSW for 13
codes

Table 6.3: Expected synthesisability of AWDBN accelerators for HYPSO-1.

6.3 Exploration and Synthesis of Flexible Architectures

A full exploration for the flexible variations of each design was intended, but this became prohibitive
due to the time taken to synthesise these designs. The first flexible design prototype had a synthesis
time of over 24 hours. This was found to be caused by break statements in the code paired with if
statements. The design only consisted of fixed boundary loops as recommended by [36], but had
variable controlled break statements. This took a long time to synthesise in HLS, but provided
desirable resource estimates once finished. However once implemented on the FPGA this had a
large amount of routing issues. This was improved during the integration and implementation
chapter by;

• All variable break statements were removed and replaced with conditional assignments of out
of bound data, which would be why B-Full implemented design has the same execution time
for every band size, it performs the same operations but conditionally manipulates results of
calculating codes and bands out of bound to 0.

• All internal streams and communication channels were reduced to 32-bit.

• Pipelining initiation intervals were increased to distribute routing over more clock cycles.

74

6.3.1 Floating to Fixed Point

Another important step to reduce the utilisation and improve the scalability of accelerators for
NNs is a fixed point conversion. This was tested briefly for the proposed architectures, but it was
drastically increasing overall resource utilisation. This requires more time and investigation to find
out why this is the case and overcome it.

6.4 Future Work

The main points of future work summarised from the discussion are as follows:

• Enhancing the AWDBN algorithm by applying a heuristic to choose an optimal window
size based on surrounding anomalies or penalty distributions, thereby improving detection
accuracy.

• Exploring strategies to utilise AWDBN on HYPSO by training a larger network over a range
of images or a new approach to training which can be performed onboard.

• Investigating appropriate FIFO-sizings for retiled and reordered architectures to allow flexible
operation without deadlocks, subsequently implementing and evaluating this.

• Conducting a full exploration and synthesis of flexible variations of accelerator designs.

• Conversion from floating point to fixed point

• Implementation of dataflow-based architecture for DSW.

• Exploring the possibility of using multiple PEs instead of one large pipelined accelerator.

• Testing on Linux with Vitis-HLS generated user-level drivers.

• Tuning and synthesising designs targetting HYPSO-1 specifically.

6.5 Conclusion

In conclusion this thesis refined the adaptive weights of the high level anomaly detection algorithm
AWDBN into a low-level C code and the full algorithm further into a hardware implementation.
New architectures were successfully explored for the pre-existing implementation of the DBN used
in AWDBN. The AW and DBN were successfully integrated to perform a full accelerated inference
with up to 85% to 94% reduction in computation time with designs that are not yet fine-tuned
or on the Pareto frontier of the undertaken exploration. This leaves a lot of opportunity for
improvements at a lower effort margin. Upon analysis of prior work some slight adjustments to
the algorithm were made which improved its coverage to provide scoring over an entire HSI rather
than missing edges or corners. This change improved the overall image score when considering
this uncovered area and, if considering the covered area only, would be equivalent in score. This
adjustment is a net positive for all factors except processing time. To make utilising AWDBN more
feasible in embedded systems an FPGA implementation in HLS was created for the DSW, which
successfully passed physical testing. This has room for further exploration. Many architectures
were proposed for the AE and RE portion of the problem and this showed a favourable exploration
with new architectures featuring on the Pareto frontier of computation time against resources for
this problem. These have yet to be tested and require more co-simulation to find ideal FIFO sizing.
These coupled with the DSW had a range of different utilisations at different performance points
with the opportunity for fine-tuning to reduce this utilisation further. This has culminated in a
summary of possible designs that could be used to accelerate the inference of AWDBN on the
ZCU-104 and HYPSO-1. It is estimated that this should be achievable at a throughput of at least
140 MB/s and 70% to 90% resource utilisation on its ZYNQ-7030 FPGA after the FIFO sizing is
found. This thesis has provided results that have direct implications for the HYPSO project as
well as clearly identifying the areas that future work should focus on.

75

Bibliography

[1] Mariusz E. Grotte, Roger Birkeland, Evelyn Honore-Livermore et al. ‘Ocean Color Hyper-
spectral Remote Sensing With High Resolution and Low Latency—The HYPSO-1 CubeSat
Mission’. In: IEEE Transactions on Geoscience and Remote Sensing 60 (2022), pp. 1–19.
doi: 10.1109/tgrs.2021.3080175. url: https://doi.org/10.1109/tgrs.2021.3080175.

[2] Sivert Bakken, Marie B. Henriksen, Roger Birkeland et al. ‘HYPSO-1 CubeSat: First Images
and In-Orbit Characterization’. In: Remote Sensing 15.3 (2023). issn: 2072-4292. doi: 10.
3390/rs15030755. url: https://www.mdpi.com/2072-4292/15/3/755.

[3] Aksel Gunderson. ‘Hardware-Software partitioned implementation of an autoencoder- based
hyperspectral anomaly detector’. 2021.

[4] Ma Ning, Peng Yu, Wang Shaojun et al. ‘A weight SAE based hyperspectral image anomaly
targets detection’. In: 2017 13th IEEE International Conference on Electronic Measurement
& Instruments (ICEMI). IEEE, Oct. 2017. doi: 10 . 1109 / icemi . 2017 . 8265874. url:
https://doi.org/10.1109/icemi.2017.8265874.

[5] Sefa Küçük and Seniha Esen Yüksel. ‘Comparison of RX-based anomaly detectors on syn-
thetic and real hyperspectral data’. In: 2015 7th Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS). 2015, pp. 1–4. doi: 10.1109/
WHISPERS.2015.8075504.

[6] Peg Shippert. ‘Why Use Hyperspectral Imagery?’ In: Photogrammetric Engineering and Re-
mote Sensing 70 (Apr. 2004).

[7] Dordije Bošković, Milica Orlandić and Tor Arne Johansen. ‘A reconfigurable multi-mode
implementation of hyperspectral target detection algorithms’. In: Microprocessors and Mi-
crosystems 78 (2020), p. 103258. issn: 0141-9331. doi: https://doi.org/10.1016/j.micpro.
2020.103258. url: https://www.sciencedirect.com/science/article/pii/S014193312030418X.

[8] Aksel S. Danielsen, Tor Arne Johansen and Joseph L. Garrett. ‘Self-Organizing Maps for
Clustering Hyperspectral Images On-Board a CubeSat’. In: Remote Sensing 13.20 (2021).
issn: 2072-4292. doi: 10.3390/rs13204174. url: https://www.mdpi.com/2072-4292/13/20/
4174.

[9] Andrew Myers. CubeSat: The little satellite that could. June 2022. url: https://engineering.
stanford.edu/magazine/cubesat-little-satellite-could.

[10] Qin Ding, Qiang Ding and William Perrizo. ‘PARM-An Efficient Algorithm to Mine Asso-
ciation Rules From Spatial Data’. In: IEEE transactions on systems, man, and cybernetics.
Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society 38
(Jan. 2009), pp. 1513–24. doi: 10.1109/TSMCB.2008.927730.

[11] I T Jolliffe. Principal component analysis. en. 1986th ed. Springer series in statistics. New
York, NY: Springer, Mar. 2013.

[12] Xudong Kang. ABU Dataset. url: http://xudongkang.weebly.com/data-sets.html.

[13] I.S. Reed and X. Yu. ‘Adaptive multiple-band CFAR detection of an optical pattern with
unknown spectral distribution’. In: IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing 38.10 (1990), pp. 1760–1770. doi: 10.1109/29.60107.

[14] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. 1936.

76

[15] Qiong Ran, Zedong Liu, Xiaotong Sun et al. ‘Anomaly Detection for Hyperspectral Images
Based on Improved Low-Rank and Sparse Representation and Joint Gaussian Mixture Dis-
tribution’. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 14 (2021), pp. 6339–6352. doi: 10.1109/JSTARS.2021.3087588.

[16] Weimin Liu and Chein-I Chang. ‘A nested spatial window-based approach to target detec-
tion for hyperspectral imagery’. In: IGARSS 2004. 2004 IEEE International Geoscience and
Remote Sensing Symposium. Vol. 1. 2004, p. 268. doi: 10.1109/IGARSS.2004.1369012.

[17] Peter Flach, Jose Hernandez-Orallo and Cèsar Ferri. ‘A Coherent Interpretation of AUC as
a Measure of Aggregated Classification Performance.’ In: Jan. 2011, pp. 657–664.

[18] Chein-I Chang. Hyperspectral imaging. New York, NY: Springer, July 2003.

[19] Heesung Kwon and N.M. Nasrabadi. ‘Kernel RX-algorithm: a nonlinear anomaly detector
for hyperspectral imagery’. In: IEEE Transactions on Geoscience and Remote Sensing 43.2
(2005), pp. 388–397. doi: 10.1109/TGRS.2004.841487.

[20] Ran Tao, Xudong Zhao, Wei Li et al. ‘Hyperspectral Anomaly Detection by Fractional Fourier
Entropy’. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 12.12 (2019), pp. 4920–4929. doi: 10.1109/JSTARS.2019.2940278.

[21] Wei Li and Qian Du. ‘Collaborative Representation for Hyperspectral Anomaly Detection’.
In: IEEE Transactions on Geoscience and Remote Sensing 53.3 (2015), pp. 1463–1474. doi:
10.1109/TGRS.2014.2343955.

[22] Bing Tu, Nanying Li, Zhuolang Liao et al. ‘Hyperspectral Anomaly Detection via Spatial
Density Background Purification’. In: Remote Sensing 11.22 (2019). issn: 2072-4292. doi:
10.3390/rs11222618. url: https://www.mdpi.com/2072-4292/11/22/2618.

[23] Xudong Kang, Xiangping Zhang, Shutao Li et al. ‘Hyperspectral Anomaly Detection With
Attribute and Edge-Preserving Filters’. In: IEEE Transactions on Geoscience and Remote
Sensing 55.10 (2017), pp. 5600–5611. doi: 10.1109/TGRS.2017.2710145.

[24] Ferdi Andika, Mia Rizkinia and Masahiro Okuda. ‘A Hyperspectral Anomaly Detection Al-
gorithm Based on Morphological Profile and Attribute Filter with Band Selection and Auto-
matic Determination of Maximum Area’. In: Remote Sensing 12.20 (2020). issn: 2072-4292.
doi: 10.3390/rs12203387. url: https://www.mdpi.com/2072-4292/12/20/3387.

[25] Ian Goodfellow, Yoshua Bengio and Aaron Courville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[26] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio et al. ‘Hardware and Software Op-
timizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges,
and the Road Ahead’. In: IEEE Access 8 (2020), pp. 225134–225180. doi: 10.1109/access.
2020.3039858. url: https://doi.org/10.1109/access.2020.3039858.

[27] Sebastian Ruder. ‘An overview of gradient descent optimization algorithms’. In: CoRR abs/1609.04747
(2016). arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747.

[28] Ning Ma, Yu Peng, Shaojun Wang et al. ‘An Unsupervised Deep Hyperspectral Anomaly
Detector’. In: Sensors 18.3 (2018). issn: 1424-8220. doi: 10.3390/s18030693. url: https :
//www.mdpi.com/1424-8220/18/3/693.

[29] Ning Ma, Shaojun Wang, Yu Peng et al. ‘A DBN based anomaly targets detector for HSI’. In:
AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing. Ed. by Wolfgang
Osten, Anand K. Asundi and Huijie Zhao. SPIE, Oct. 2017. doi: 10.1117/12.2285766. url:
https://doi.org/10.1117/12.2285766.

[30] G. De Michell and R.K. Gupta. ‘Hardware/software co-design’. In: Proceedings of the IEEE
85.3 (Mar. 1997), pp. 349–365. doi: 10.1109/5.558708. url: https://doi.org/10.1109/5.
558708.

[31] João M.P. Cardoso, José Gabriel F. Coutinho and Pedro C. Diniz. ‘Chapter 8 - Additional
topics’. In: Embedded Computing for High Performance. Ed. by João M.P. Cardoso, José
Gabriel F. Coutinho and Pedro C. Diniz. Boston: Morgan Kaufmann, 2017, pp. 255–280.
isbn: 978-0-12-804189-5. doi: https://doi.org/10.1016/B978-0-12-804189-5.00008-9. url:
https://www.sciencedirect.com/science/article/pii/B9780128041895000089.

77

[32] Stephen M. Trimberger. ‘Three Ages of FPGAs: A Retrospective on the First Thirty Years
of FPGA Technology’. In: Proceedings of the IEEE 103.3 (2015), pp. 318–331. doi: 10.1109/
JPROC.2015.2392104.

[33] Scott Hauck and Andre Dehon. Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. Jan. 2008. Chap. 31.

[34] Louise H Crockett, David Northcote and Craig Ramsay. Exploring zynq MPSoC. Strathclyde
Academic Media, Apr. 2019.

[35] Michael Fingeroff. High-Level synthesis blue book. Alamo, TX: Xlibris, May 2010.

[36] Xilinx. Vitis High-Level Synthesis User Guide. Dec. 2021. url: https://www.xilinx.com/
content/dam/xilinx/support/documents/sw manuals/xilinx2021 2/ug1399-vitis-hls.pdf.

[37] Xilinx. Vivado Design Suite User Guide: Getting Started (UG910). Oct. 2021. url: https:
//www.xilinx.com/content/dam/xilinx/support/documents/sw manuals/xilinx2021 2/ug910-
vivado-getting-started.pdf.

[38] Xilinx. Vitis Unified Software Platform. 2019. url: https://www.xilinx.com/products/design-
tools/vitis/vitis-platform.html.

[39] Xilinx. Zynq® UltraScale+™ MPSoC. 2015. url: https://www.xilinx.com/products/silicon-
devices/soc/zynq-ultrascale-mpsoc.html.

[40] Xilinx. ZCU104 Evaluation Board User Guide (UG1267). Oct. 2018. url: https://www.xilinx.
com/support/documents/boards and kits/zcu104/ug1267-zcu104-eval-bd.pdf.

[41] Xilinx. AMBA AXI4 Interface Protocol. url: https://www.xilinx.com/products/intellectual-
property/axi.html.

[42] ARM. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and
ACE-Lite. Feb. 2013. url: https://developer.arm.com/documentation/ihi0022/e/.

[43] Xilinx. Vivado Design Suite: AXI Reference Guide (UG1037). July 2017. url: https://docs.
xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide.

[44] Maria Angelopoulou and Christos Bouganis. ‘Vision-Based Egomotion Estimation on FPGA
for Unmanned Aerial Vehicle Navigation’. In: IEEE Transactions on Circuits and Systems
for Video Technology 24 (June 2014), pp. 1–1. doi: 10.1109/TCSVT.2013.2291356.

[45] Onur Ulusel, Christopher Picardo, Christopher B. Harris et al. ‘Hardware acceleration of
feature detection and description algorithms on low-power embedded platforms’. In: 2016
26th International Conference on Field Programmable Logic and Applications (FPL). 2016,
pp. 1–9. doi: 10.1109/FPL.2016.7577310.

[46] Manish Kumar Jaiswal and Hayden K.-H. So. ‘DSP48E efficient floating point multiplier
architectures on FPGA’. In: 2017 30th International Conference on VLSI Design and 2017
16th International Conference on Embedded Systems (VLSID). 2017, pp. 1–6. doi: 10.1109/
ICVD.2017.7913322.

[47] Ambrose Finnerty and Hervé Ratigner. ‘Reduce power and cost by converting from floating
point to fixed point’. In: WP491 (v1. 0) (2017).

[48] Rishabh Goyal, Joaquin Vanschoren, Victor van Acht et al. Fixed-point Quantization of
Convolutional Neural Networks for Quantized Inference on Embedded Platforms. 2021. arXiv:
2102.02147 [cs.CV].

78

Appendices

79

Appendix A

Exploration Tables

• X indicates unrolled and inlined.

• II=[%d] indicates pipelined at initiation interval d.

• II=[%d]X indicates unrolled and pipelined at initiation interval d.

• - indicates not applicable

• I indicates integrated into RBM2

• MEM = MIX/AUTO means automatic memory object implementation by Vitis-HLS

• Partition = AUTO means automatic memory partitioning by Vitis-HLS

• Partition = %d means that Weights for RBM1 and Weights for RBM2 were block partitioned
at factor d, and the rest of the implementation uses automatic partitioning.

Bands Codes Arch Interval RBM1 RBM1-I RBM1-0 RBM2 RBM2-I RBM2-O RE Port Width Latency BRAM DSP FF LUT URAM MEM PARTITION
19 6 Dataflow 612 II=64 X - II=28 X - II=36 32 6121488 3 1 7 13 0 MIX AUTO
19 6 Dataflow 375 II=32 X - II=14 X - II=18 32 3,751,208 3 1 7 13 0 MIX AUTO
19 6 Dataflow 295 II=16 X - II=8 X - II=12 32 2951001 3 2 7 13 0 MIX AUTO
19 6 Dataflow 255 II=8 X - II=4 X - II=6 32 2560909 4 2 7 14 0 MIX AUTO
19 6 Dataflow 232 II=4 X - II=2 X - II=3 32 2330869 4 3 8 16 0 MIX AUTO
19 6 Dataflow 215 II=1 X - II=14 X - II=1 32 2150964 7 9 10 19 0 MIX AUTO
19 6 Pipelined 19 X X - X X - I 32 190897 3 5 10 15 0 MIX AUTO
19 6 Pipelined 10 X X - X X - I 64 100541 3 9 14 19 0 MIX AUTO
19 6 Pipelined 5 X X - X X - I 128 50542 3 18 17 25 0 MIX AUTO
19 6 Pipelined 3 X X - X X - I 256 31705 1 30 21 33 0 MIX AUTO
19 6 Pipelined 2 X X - X X - I 512 21699 5 45 27 43 0 MIX AUTO
19 6 Pipelined 1 X X - X X - I 1024 11699 1 89 40 67 0 MIX AUTO
19 6 Reordered 627 II=200 X II=200 II=200 X II=32 II=200 32 6270172 9 1 3 9 0 MIX AUTO
19 6 Reordered 483 II=200 X II=200 II=200 X II=24 II=200 32 4830182 9 1 3 9 0 MIX AUTO
19 6 Reordered 404 II=100 X II=100 II=100 X II=16 II=20 32 4040173 9 1 3 9 0 MIX AUTO
19 6 Reordered 195 II=3 X II=14 II=8 X II=8 II=8 32 1950172 11 2 3 10 0 MIX AUTO
19 6 Reordered 131 II=1 X II=1 II=1 X II=1 II=1 32 1310173 10 2 4 11 0 MIX AUTO
19 6 Retiled 165 II=7 X II=2 II=2 X - II=160X 32 1651537 9 2 5 12 0 MIX AUTO
19 6 Retiled 137 II=3 X II=3 II=1 X - II=137X 64 1371568 9 3 6 13 0 MIX AUTO
19 6 Retiled 132 II=3 X II=3 II=1 X - II=130X 128 1320100 9 3 6 15 0 MIX AUTO
19 6 Retiled 110 II=1 X II=3 II=100X X - II=100X 32 1100257 9 2 6 12 0 MIX AUTO
19 6 Retiled 100 II=100X X II=3 II=100X X - II=100X 32 1001895 9 2 7 12 0 MIX AUTO
19 6 Retiled 78 II=77X X II=3 II=77X X - II=77X 32 780968 9 2 5 10 0 MIX AUTO
19 6 Retiled 64 II=64X X II=1 II=64X X - II=64X 32 640931 9 2 5 9 0 MIX AUTO
19 6 Retiled 58 II=57X X II=1 II=57X X - II=57X 32 580957 9 2 5 9 0 MIX AUTO
19 6 Retiled 19 II=19X X II=19X II=19X X - II=19X 32 190994 11 5 10 12 0 MIX AUTO
19 6 Retiled 10 II=10X X II=10X II=10X X - II=10X 64 100981 9 9 13 17 0 MIX AUTO
19 6 Retiled 5 II=5X X II=5X II=5X X - II=5X 128 51191 9 18 18 25 0 MIX AUTO
19 6 Retiled 4 II=3X X II=3X II=3X X - II=3X 256 41199 9 26 21 30 0 MIX AUTO
19 6 Retiled 2 II=2X X II=2X II=2X X - II=2X 512 20935 23 45 34 51 0 MIX AUTO
19 6 Retiled 1 II=1X X II=1X II=1X X - II=1X 1024 10927 27 89 50 77 0 MIX AUTO

Table A.1: Table of exploration of 19 band 6 code AE.

80

Bands Codes Arch Interval RBM1 RBM1-I RBM1-0 RBM2 RBM2-I RBM2-O RE Port Width Latency BRAM DSP FF LUT URAM MEM PARTITION
32 8 Dataflow II=790 II=64 X - II=20 X - II=36 32 7902471 4 1 13 15 0 MIX AUTO
32 8 Dataflow II=602 II=32 X - II=10 X - II=18 32 6031943 4 1 13 15 0 MIX AUTO
32 8 Dataflow II=431 II=16 X - II=5 X - II=9 32 4311564 4 2 13 16 0 MIX AUTO
32 8 Dataflow II=376 II=8 X - II=5 X - II=6 32 3761725 8 2 14 18 0 MIX AUTO
32 8 Dataflow II=321 II=1 X - II=4 X - II=4 32 3211923 3 11 18 24 0 MIX AUTO
32 8 Dataflow II=321 II=1 X - II=1 X - II=1 32 3212080 3 13 20 26 0 MIX AUTO
32 8 Pipelined II=64 X X - X X - I 32 643400 4 3 14 15 0 MIX AUTO
32 8 Pipelined II=32 X X - X X - I 32 323416 4 6 17 19 0 MIX AUTO
32 8 Pipelined II=16 X X - X X - I 64 163424 4 11 23 25 0 MIX AUTO
32 8 Pipelined II=8 X X - X X - I 128 80850 5 23 30 36 0 MIX AUTO
32 8 Pipelined II=4 X X - X X - I 256 43416 6 46 38 52 0 MIX AUTO
32 8 Pipelined II=2 X X - X X - I 512 23415 6 93 54 83 0 MIX AUTO
32 8 Pipelined II=1 X X - X X - I 1024 13414 1 186 80 128 0 MIX AUTO
32 8 Reordered II=523 II=16 X II=32 II=13 X II=13 II=13 32 5230310 12 2 4 12 0 MIX AUTO
32 8 Reordered II=399 II=12 X II=16 II=10 X II=10 II=10 32 3990311 11 2 4 11 0 MIX AUTO
32 8 Reordered II=306 II=9 X II=12 II=8 X II=8 II=8 32 3060341 11 2 4 11 0 MIX AUTO
32 8 Reordered II=239 II=7 X II=12 II=6 X II=6 II=6 32 2390346 15 2 5 13 0 MIX AUTO
32 8 Reordered II=196 II=1 X II=1 II=1 X II=1 II=1 32 1960325 11 3 5 13 0 MIX AUTO
32 8 Retiled II=291 II=8 X II=16 II=4 X - II=8 32 2910320 10 2 3 8 0 MIX AUTO
32 8 Retiled II=222 II=6 X II=12 II=2 X - II=4 32 2200316 15 2 3 9 0 MIX AUTO
32 8 Retiled II=64 II=64X X II=64X II=64X X - II=64X 32 641351 11 3 11 13 0 MIX AUTO
32 8 Retiled II=32 II=32X X II=32X II=32X X - II=64X 32 321081 12 6 15 17 0 MIX AUTO
32 8 Retiled II=16 II=16X X II=16X II=16X X - II=16X 64 161066 15 11 22 24 0 MIX AUTO
32 8 Retiled II=8 II=8X X II=8X II=8X X - II=8X 128 81054 10 23 30 34 0 MIX AUTO
32 8 Retiled II=4 II=4X X II=4X II=4X X - II=4X 256 41024 11 46 39 52 0 MIX AUTO
32 8 Retiled II=2 II=2X X II=2X II=2X X - II=2X 512 21010 23 93 56 84 0 MIX AUTO
32 8 Retiled II=1 II=1X X II=1X II=1X X - II=1X 1024 11003 27 186 102 152 0 MIX AUTO

Table A.2: Table of exploration of 32 band 8 code AE

Bands Codes Arch Interval RBM1 RBM1-I RBM1-0 RBM2 RBM2-I RBM2-O RE Port Width Latency BRAM DSP FF LUT URAM MEM PARTITION
120 13 Dataflow 2081 II=75 X - II=16 X - II=16 32 20819165 7 1 7 12 0 MIX AUTO
120 13 Dataflow 1715 II=40 X - II=13 X - II=13 32 17159955 8 6 8 14 0 MIX AUTO
120 13 Dataflow 1472 II=30 X - II=10 X - II=12 32 14729595 8 2 8 14 0 MIX AUTO
120 13 Dataflow 1249 II=13 X - II=9 X - II=9 32 12409146 21 9 9 17 0 MIX AUTO
120 13 Dataflow 1128 II=1 X - II=8 X - II=8 32 11300443 7 42 22 41 0 MIX AUTO
120 13 Dataflow 1090 II=1 X - II=1 X - II=1 32 10910842 56 46 23 44 0 MIX AUTO
120 13 Pipelined 256 X X - X X - I 32 2578837 8 4 60 49 0 MIX AUTO
120 13 Pipelined 240 X X - X X - I 32 2413054 8 4 61 50 0 MIX AUTO
120 13 Pipelined 120 X X - X X - I 32 1212854 8 9 70 60 0 MIX AUTO
120 13 Pipelined 90 X X - X X - I 64 912912 8 11 76 64 0 MIX AUTO
120 13 Pipelined 75 X X - X X - I 64 768646 8 14 80 66 0 MIX AUTO
120 13 Pipelined 60 X X - X X - I 64 618572 8 17 85 68 0 MIX AUTO
120 13 Pipelined 45 X X - X X - I 128 468748 9 23 93 77 0 MIX AUTO
120 13 Pipelined 30 X X - X X - I 128 314580 9 34 107 94 0 MIX AUTO
120 13 Reordered 1003 II=8 X II=60 II=50 X II=8 II=8 32 10031827 16 2 8 18 0 MIX AUTO
120 13 Reordered 884 II=7 X II=45 II=45 X II=7 II=7 32 8841827 16 2 8 18 0 MIX AUTO
120 13 Reordered 764 II=6 X II=40 II=40 X II=6 II=6 32 7651700 17 3 8 19 0 MIX AUTO
120 13 Reordered 646 II=5 X II=30 II=30 X II=5 II=5 32 6461827 17 3 8 19 0 MIX AUTO
120 13 Reordered 636 II=5 X II=1 II=5 X II=1 II=5 32 6361716 16 6 12 26 0 MIX AUTO
120 13 Retiled 643 II=1 X II=45 II=3 X - II=1 32 6438358 22 3 3 11 0 MIX AUTO
120 13 Retiled 299 II=256X X II=20 II=1 X - II = 256X 32 2993825 66 7 32 34 0 MIX 4
120 13 Retiled 256 II=256X X II=256X II=256X X - II = 256X 32 2581846 16 5 42 44 0 MIX 4
120 13 Retiled 240 II=240X X II=240X II=240X X - II=240X 32 2404805 16 4 42 44 0 MIX 4
120 13 Retiled 120 II=120X X II=120X II=120X X - II=120X 32 1209097 19 9 59 56 0 MIX 8
120 13 Retiled 60 II=60X X II=60X II=60X X - II=60X 64 608927 22 17 72 59 0 MIX 13
120 13 Retiled 45 II=45X X II=45X II=45X X - II=45X 128 454160 28 23 83 73 0 MIX 20
120 13 Retiled 30 II=30X X II=30X II=30X X - II=30X 128 302445 32 34 97 91 0 MIX 27
120 13 Retiled 15 II=15X X II=15X II=15X X - II=15X 256 153821 15 69 133 124 0 MIX 54

Table A.3: Table of exploration of 120 band 13 code AE

Bands Codes Arch Interval RBM1 RBM1-I RBM1-0 RBM2 RBM2-I RBM2-O RE Port Width Latency BRAM DSP FF LUT URAM MEM PARTITION
188 13 Dataflow 3170 II=120 X - II=16 X - II=16 32 31704304 8 2 9 14 0 AUTO AUTO
188 13 Dataflow 2861 II=100 X - II=14 X - II=14 32 28613614 8 2 9 15 0 AUTO AUTO
188 13 Dataflow 2624 II=80 X - II=13 X - II=13 32 26245684 9 9 9 16 0 AUTO AUTO
188 13 Dataflow 2361 II=60 X - II=11 X - II=11 32 23814936 11 2 9 16 0 AUTO AUTO
188 13 Dataflow 1900 II=20 X - II=9 X - II=9 32 19014189 22 12 11 20 0 AUTO AUTO
188 13 Dataflow 1674 II=1 X - II=8 X - II=8 32 16746260 7 66 32 59 0 AUTO AUTO
188 13 Pipelined 256 X X - X X - X 32 2564432 11 6 98 78 0 AUTO AUTO
188 13 Pipelined 224 X X - X X - X 32 2268823 11 7 100 80 0 AUTO AUTO
188 13 Pipelined 188 X X - X X - X 32 1884324 11 9 102 84 0 AUTO AUTO
188 13 Reordered 1726 II=9 X II=2 II=96 X II=5 II=9 32 17272672 17 2 10 23 0 MIX AUTO
188 13 Reordered 1539 II=8 X II=2 II=80 X II=4 II=8 32 15392672 17 10 10 24 0 MIX AUTO
188 13 Reordered 1163 II=6 X II=2 II=80 X II=3 II=6 32 11632659 18 10 10 24 0 MIX AUTO
188 13 Reordered 976 II=1 X II=1 II=64 X II=4 II=1 32 9762726 18 10 10 24 0 MIX AUTO
188 13 Retiled 1106 II=3 X II=9 II=4 X - II=3 32 11064591 21 3 3 11 0 AUTO AUTO
188 13 Retiled 976 II=1 X II=8 II=3 X - II=1 32 9762667 22 3 3 11 0 AUTO AUTO
188 13 Retiled 540 II=256X X II=1 II=1 X - II=256X 32 5405195 65 9 59 58 0 AUTO 5
188 13 Retiled 256 II=256X X II=256X II=256X X - II=256X 32 2565932 17 7 69 71 0 AUTO 5
188 13 Retiled 188 II=188X X II=188X II=188X X - II=188X 32 1886111 18 9 80 80 0 AUTO 7
188 13 Retiled 120 II=120X X II=120X II=120X X - II=120X 64 1205874 21 14 91 86 0 AUTO 11
188 13 Retiled 94 II=94X X II=94X II=94X X - II=94X 64 945851 22 17 99 87 0 AUTO 13

Table A.4: Table of exploration of 188 band 13 code AE

81

