
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Stian André Elvenes

Development of C/S Jonny with
optimal constrained thrust allocation

Master’s thesis in MTMART
Supervisor: Roger Skjetne
Co-supervisor: Emir Cem Gezer
June 2023

Stian André Elvenes

Development of C/S Jonny with optimal
constrained thrust allocation

Master’s thesis in MTMART
Supervisor: Roger Skjetne
Co-supervisor: Emir Cem Gezer
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Stian Andre Elvenes

Development of C/S Jonny with optimal constrained
thrust allocation

Master’s thesis in marine technology
Supervisor: Roger Skjetne
Co-supervisor: Emir Cem Gezer
June 2023

Norwegian University of Science and Technology
Department of Marine Technology

ABSTRACT

This thesis presents the development and building process of the new marine cybernetics
laboratory vessel C/S Jonny.

C/S Jonny is built as a 1:32 scale model of a tug boat. It has two azimuth thrusters
and a bow thruster powered by two 4-cell LiPo batteries. A Raspberry Pi running ROS
is used to control the system. The model is made to be modular with plug-and-play
capabilities by creating a control box for housing most of the electronic components and
LEMO plugs for the connections of parts. A watertight deck has been installed with two
access hatches. For tracking, the model is equipped with four IR spheres to be used with
the Qualisys tracking system. A basin trial has been performed to verify that the model
is functional. It showed the model is working well, however the control signal for the
azimuth thrusters is relatively coarse, which needs to be addressed for optimal operation.

The control signals of the thrusters have been mapped to produced forces. The re-
sults have been used to create an algorithm to map force to control signals. This has
been showed to work adequately.

Four constrained thrust allocation algorithms have been reviewed, implemented, and
tested. They have been shown to work as desired and are ready for use on the new
model. Furthermore, two have been selected for implementation for the rest of the C/S
fleet.

i

SAMMENDRAG

Denne oppgaven presenterer utviklingen og byggeprosessen gjort for det nye laboratorie-
fartøyet til MC-lab kalt C/S Jonny.

C/S Jonny er bygget som en 1:32 skala modell av en slepebåt. Den har to azimut
thrustere og en baugpropell som får strøm av to 4-cellers LiPo-batterier. En Raspberry
Pi som kjører ROS brukes til å kontrollere systemet. Modellen er laget for å være mod-
ulær med plug-and-play funksjoner. Dette er oppnådd ved å lage en kontroll boks for å
huse de fleste elektroniske komponentene og ved bruk av LEMO tilkoblinger. Det er også
montert ett vanntett dekk med to tilgangsluker. For å måle posisjonen av modellen har
den blitt utstyrt med fire IR-kuler som skal brukes sammen med Qualisys sporingssys-
temet. Det er utført ett bassengforsøk for å verifisere at modellen er funksjonell. Denne
testen viste at modellen fungerer bra, men det kom også frem av resultatene at styres-
ignalet for asimut-thrusterne er relativt grov, noe som må løses for at modellen skal
fungere optimalt.

Styresignalene til thrusterne er kartlagt til produserte krefter. Resultatene har deretter
blitt brukt til å lage en algoritme for å omgjøre kraft til kontroll signaler. Dette har vist
seg å fungere bra.

Fire optimale beskrankete propellkraftsallokerings algoritmer har blitt presentert, im-
plementert og testet. De har vist seg å fungere som ønsket og er nå klare til bruk på den
nye modellen. Videre er to av disse valgt for å bli brukt videre på resten av «Cybeship»
flåten.

ii

PREFACE

This thesis was written during the spring of 2023 as part of a master of science degree
in marine cybernetics at NTNU. The work has been done over two semesters and has
proven to be a challenging and rewarding project. Through the project, I have acquired
new skills, such as 3D modeling, 3D printing, soldering, and knowledge about thrusters
and thrust allocation. Through the completion and building of C/S Jonny, there have
been a few hiccups, such as parts stuck in customs and a short-circuited Raspberry Pi.
The biggest hiccup, however, was when, at the start of May, right at the start of the
physical testing of the vessel, one of the thrusters was destroyed by a bug in the program.
The replacement parts arrived on the 26 of May, leaving only two short weeks for the
rebuild of the thruster and all of the physical testing. However, through several late
nights at the MC lab and copious amounts of coffee, the thrusters were rebuilt and tests
performed.

I want to thank:

• Professor Roger Skjetne for his guidance and for creating and showing me a new
method for thrust allocation.

• Ph.D. candidate Emir Cem Gezer for his help with answering questions on quadratic
programming

• Senior Engineer Robert Oppland for all the help in the development and building
process of C/S Jonny.

iii

CONTENTS

Abstract i

Sammendrag ii

Preface iii

Contents vi

List of Figures vi

List of Tables viii

Abbreviations x

1 Introduction 1
1.1 Motivation and objective . 1
1.2 Contributions . 2

I Building C/S Jonny 3

2 Background 4
2.1 Marine Cybernetics Laboratory . 4

2.1.1 Equipment . 4
2.1.2 Qualisys motion-capture . 5
2.1.3 Cybership fleet . 5

2.2 Cyber-physical testing . 7
2.3 Robot Operating System . 8
2.4 Pulse width modulation . 8
2.5 Kinematics . 9

3 Requirement specification 11
3.1 Requirements Specifications . 11

3.1.1 Intended use . 11
3.1.2 Main requirements . 11
3.1.3 Equipment and instruments . 12

4 Development of C/S Jonny 13
4.1 Parts . 13
4.2 Assembly of bowthruster . 13

4.2.1 Installation of the thruster . 13

iv

CONTENTS v

4.2.2 Installation of motor . 14
4.3 Assembly of azimuth thrusters . 14

4.3.1 Creation of mounting plate . 14
4.3.2 Installation of mounting plate . 15
4.3.3 Converting thruster to 360◦ rotation 15

4.4 IMU . 17
4.5 Electronic box . 17
4.6 Battery holder . 18
4.7 Painting . 19
4.8 Deck . 19
4.9 IR spheres . 20
4.10 Ballasting . 20

5 System architecture 22
5.1 Vessel systems . 22

5.1.1 thruster configuration . 22
5.1.2 IMU . 22
5.1.3 IR spheres . 23

5.2 Power system single-line diagram . 23
5.3 Communication signal . 23
5.4 Software topology . 24

6 Basin trial 27
6.1 Expermiental setup . 27
6.2 Results . 27

6.2.1 Body-fixed frame . 28
6.2.2 Basin-fixed frame . 28

7 Discussion & further work 31
7.1 Discussion . 31

II Thrust allocation for C/S jonny 33

8 Background 34
8.1 Thrusters and thruster dynamics . 34
8.2 Mathematical notation and thruster configuration matrix 35

8.2.1 Polar configuration matrix . 35
8.2.2 Rectangular configuration matrix 36

8.3 Thrust allocation problem . 37
8.4 Maneuvering problem . 37

9 Thrustmapping 39
9.1 experimental setup . 39
9.2 mapping . 40

9.2.1 Azimuth thruster . 40
9.2.2 Bow thruster . 42

9.3 Force to PWM . 43

vi CONTENTS

10 Thrust allocation 45
10.1 Pseudoinverse with filtering . 45

10.1.1 controller . 45
10.2 Quadratic programming . 46

10.2.1 Quadratic programming . 47
10.2.2 Sequential quadratic programming 47

10.3 Maneuvering . 48
10.3.1 controller . 48

10.4 Results and discussion . 50
10.4.1 Constraints . 50
10.4.2 Computation times . 57

10.5 Realtime implementation . 58

11 Conclusions & further work 61
11.1 Conclusion . 61

11.1.1 Development of C/S Jonny . 61
11.1.2 Thrust mapping . 61
11.1.3 Thrust allocation . 61

11.2 Further work . 62

References 63

Appendices: 67

A - Pseudoinverse with filtering 68

A - QP Johansen 71

A - QP Scibilla 74

A - Manuvering 78

B - Parts 83

C - Attachments 90

LIST OF FIGURES

2.1.1 Towing carriage. Courtesy: NTNU (2023). 5
2.1.2 CSEI. 6
2.1.3 CSAD. 7
2.1.4 CSS. 7
2.3.1 ROS architecture concept. 8
2.4.1 PWM signal courtesy: EEPOWER (2023) 9
2.5.1 6DOF courtesy: Fossen (2011) . 10

4.2.1 Installation process for bow thruster . 14
4.2.2 Mounting bracket for bow thruster . 14
4.3.1 Mounting plate, top view, and underside 15
4.3.2 Installation of mounting plate . 15
4.3.3 Conversion to 360◦ rotation . 16
4.3.4 Printed azimuth mount with all components 17
4.4.1 IMU box . 17
4.5.1 Electronic box inlay . 18
4.5.2 Electronic box . 18
4.6.1 Battery holder . 18
4.7.1 Painting. 19
4.8.1 Deck . 19
4.8.2 Deck installation . 19
4.9.1 IR installation . 20
4.10.1Water line guide courtesy Aeronaut (2022) 20
4.10.2Waterline . 20
4.10.3Ballasting . 21

5.1.1 Thruster configuration of CSJ. 22
5.2.1 Single line diagram of CSJ’s power system. 23
5.3.1 Communication signals of the CSJ. 24
5.4.1 Software topology models MC-lab courtesy: Roger Skjetne 25
5.4.2 The implemented software topology . 25

6.1.1 Basin trial . 27
6.2.1 x and y position for basin trial with body-fixed joystick controller 28
6.2.2 Heading and Comanded tau for basin trial with body-fixed joystick controller 28
6.2.3 x and y position for basin trial with basin-fixed joystick controller 29
6.2.4 Heading and Comanded tau for basin trial with basin-fixed joystick con-

troller . 29

7.1.1 Measurement from port force sensor . 31

vii

viii LIST OF FIGURES

9.1.1 Bollard pull setup for C/S Jonny . 39
9.2.1 0◦ starboard measurements . 40
9.2.2 Mapping of starboard thruster . 41
9.2.3 Comparison between starboard and port azimuth thruster 42
9.2.4 Bow thruster map . 42

10.1.1Slow varying angles . 45
10.4.1Saturation constraint comparison tau . 51
10.4.2Saturation constraint comparison force of thrusters 51
10.4.3Saturation constraint comparison angles 52
10.4.4Rate constraints comparison tau . 53
10.4.5Rate constraints comparison force of thruster 54
10.4.6Rate constraints comparison angles . 54
10.4.7Angle constraint comparison tau . 55
10.4.8Angle constraint comparison force of thrusters 56
10.4.9Angle constraint comparison angle of thrusters 56
10.4.10Computational time for each iteration . 57
10.5.1Realtime implementation pseudoinverse 58
10.5.2Realtime implementation QP Johansen . 59
10.5.3Realtime implementation QP Scibilla . 59
10.5.4Realtime implementation maneuvering . 60

LIST OF TABLES

2.1.1 Dimensions CSEI. Courtesy: Bjørnø (2015). 5
2.1.2 Dimensions CSAD. Courtesy: Bjørnø (2016). 6
2.5.1 SNAME-notation for 6DOF courtesy Fossen (2011) 10

3.1.1 Hull specifics of CSJ. 11

5.1.1 Thruster configuration. 22
5.1.2 Position of IMU . 23
5.1.3 Position of IR spheres . 23

10.4.1Constraints for the different algorithms. 50

ix

NOMENCLATURE

Abbreviation

• DOF: Degerees of freedom

• QTM: Qualisys track manager

• ROS: Robotic operating system

• C/S: Cybership

• CSEI: Cybership enterprise

• CSAD: Cybership Arctic drill-ship

• PWM: Pulse width modulation

• CSJ: Cybership Jonny

• LOA: Length over all

• ESC: Electronic speed controler

• IR: Infrared

• Mc-lab Marine cybernetic laboratory

Symbols

n Rotational speed

ρ Density of water

Kt,Kq Thrust loss coefficients

H wave height

Ta produced thrust

Qa produced torque

Pa power consumption

τ thrust load vector

f the twodimensional vector of the force

m moment

x

LIST OF TABLES xi

α thruster angle

B(α) polar thruster configuration matrix

B rectangular thruster configuration matrix

ξ Thruster force rectangular (or extended)

τcmd commanded thrust load vector

B† pseudoinverse of B

B†
w weighted pseudoinverse

θ parametrization variable

σ singular values of matrix

Wi(Fi) power consumption function

Wi weighting matrix for power consumption

Q weighting matrix for the slack variable

s slack variable

Ω weighting matrix for angular constraint

ϵ small value to avoid division by 0

ϱ tuning parameter for singularity term

α0 previous thruster angle

F+ predicted force

τ predicted thrust load vector

τ predicted angular rate

s+ predicted slack variable

P+ weighting matrix for future power prediction

Ω+ weighting matrix for future angular rate

Q+ weighting matrix for future slack variable

Fmax maximum thruster force

Fmin minimum thruster force

αmax maximum thruster angle

αmin minimum thruster angle

∆αmax maximum thruster angle rate

∆αmin minimum thruster angle rate

ξp particular solution to ξ

xii LIST OF TABLES

W Weight matrix

γ steepest decent gain

µ gradient update law gain

ρ saftey gain to avoid saturation limits

Ū rate limit

CHAPTER

ONE

INTRODUCTION

1.1 Motivation and objective

As with any research field, the use of models and lab-scale experimentation serve a pur-
pose. Be it risk mitigation, cost reduction, practicality, or all three. In this particular
case, C/S Jonny’s predecessor, C/S Enterprise, has experienced enough wear to no longer
serve this purpose. Thus, CSJ was built to fulfill the same specifications, providing the
ability to perform maneuvering-based tests in the narrow basin at the Marine cybernetic
laboratory and to keep up with the demands of state-of-the-art research. The Cybership
fleet also needs an improved thrust allocation algorithm that can handle physical con-
straints. The thesis aims to develop and finalize the CSJ model and implement thrust
allocation algorithms for the CSJ and the cyber ship fleet.

1

2 CHAPTER 1. INTRODUCTION

1.2 Contributions

The main contribution of this thesis is to develop and build a new model for the Marine
Cybernetics laboratory. The new vessel is made small to perform maneuvering tests in
the basin at MC-lab. It is meant to replace C/S enterprise as it is experiencing wear
and tear and some problems with the control to thrust mapping. The new model will be
used for future research and student projects. In addition to the new model, this thesis
aims to implement robust constrained thrust allocation algorithms to be used by all the
models of the MC-lab. contributions are also given through

• A complete building guide of the new vessel

• A working vessel

• System drawings of the vessel

• Core functionality is implemented for the vessel

• Provide mapping from control signal to force for the vessel

• A function for mapping force to control signal is implemented

• Theory of different thrust allocation algorithms is presented

• Different thrust allocation algorithms are implemented and tested.

Part I

Building C/S Jonny

3

CHAPTER

TWO

BACKGROUND

The building of CSJ was performed in collaboration with Magnus Løvold Kvæbek .In
this section, section 2.1-2.3 is from Elvenes et al. (2023), performed in the fall of 2022
as part of the pre-project.

2.1 Marine Cybernetics Laboratory

MC-Lab is a small wave basin. It was created from the old storage basin for the towing
tank when models were made of paraffin wax and needed to be stored wet. Today the
models are no longer made of paraffin wax, so the old storage basin was repurposed into
the MC-lab in the 1990s. The basin has a length of 40m, a breadth of 6.45m, and a
depth of 1.5 m (NTNU (2023)). Today the lab is mainly used by master’s students and
Ph.D. candidates to perform model tests.

2.1.1 Equipment

The laboratory has a suite of sensors and equipment to perform several types of tests.
This includes tools to generate environmental forces, towing carriage, and a motion-
capture system.

Wave maker

The MC-Lab is equipped with a 6m width single paddle wave maker located at the
basin’s short end. It can produce both regular and irregular waves with height and
period (NTNU (2023)):

• Regular waves H < 0.25, T = 0.3 – 3 s.

• Irregular waves Hs < 0.15 m, T = 0.6 – 1.5 s.

It can create different wave spectra, such as JONSWAP and Pierson-Moskowitz.

Towing carriage

The lab is equipped with a precision towing carriage. This carriage enables hydrodynamic
testing of small-scale models in 6 Degrees of Freedom (DOF). It has a maximum speed
of 2[ms] in the x direction, 1[ms] in the y direction and 0.5[ms] in the z direction. Figure
2.1.1 illustrates the orientation of the axes.

4

CHAPTER 2. BACKGROUND 5

Figure 2.1.1: Towing carriage. Courtesy: NTNU (2023).

2.1.2 Qualisys motion-capture

To capture movement in 6DOF, the lab is equipped with the Qualisys motion capture
system. This system consists of two parts. Firstly, the Oqus infrared cameras. They
track infrared reflective spheres positioned on the models. Today the lab has three
cameras, but it is currently being fitted with additional cameras for a larger tracking
area. Secondly, the Qualisys Track Manager (QTM) is on a dedicated computer. It
performs triangulation and broadcasts the position on the local network.

2.1.3 Cybership fleet

The MC-Lab today consists of several models to perform tests with. Initially, the models
were created using NI CompactRIO modules, but later the fleet converted to Raspberry
Pi’s using ROS. The fleet has a tradition of being named with the prefix C/S, meaning
Cybership.

C/S Enterprise In 2009 a model boat named Azis was purchased and built for
the MC-Lab. The model was refitted with two Voith-Schneider propellers, new bow
thrusters, and actuators (Skåtun (2011)). The upgraded model was renamed CS Enter-
prise 1 after the Star Trek series. The model has the dimensions shown in 2.1.1:

Table 2.1.1: Dimensions CSEI. Courtesy: Bjørnø (2015).

Description Data
Displacement 0.01479[m3]

Mass 14.79[kg]

Length 1.10[m]

Breadth 0.24[m]

Depth 0.07[m]

Today the model is primarily used for DP-testing, maneuvering operations, and for
the course "TMR4243-Marine Control Systems II".

6 CHAPTER 2. BACKGROUND

Figure 2.1.2: CSEI.

CS Arctic Drillship In 2015 Jon Bjørnø created the C/S Arctic Drillship (CSAD)
Bjørnø (2016). CSAD is a 1:90 scale model of the Arctic drillship created by Inocean for
Statoil. It was developed to perform tests on thruster-assisted position mooring systems.
The dimensions are displayed in table 2.1.2.

Table 2.1.2: Dimensions CSAD. Courtesy: Bjørnø (2016).

Description Data
Length 2.578[m]

Breadth 0.440[m]

Depth (moulded) 0.211[m]

Draft (design) 0.133[m]

The model is equipped with six azimuth thrusters and a rotatable circular turret.
This turret enables it to connect four mooring lines and a riser. The model is primar-
ily used for station-keeping purposes, as its size makes it impractical for maneuvering
operations in the MC-Lab.

CHAPTER 2. BACKGROUND 7

Figure 2.1.3: CSAD.

C/S Saucer In 2015 the C/S Saucer (CSS) was created by Tor Kvestad Idland (Idland
(2015)). The CSS’s hull is spherical, providing an unorthodox testing platform and rapid
response in surge and sway. CSS is fully actuated with three azimuth thrusters. Fur-
thermore, the lid works as a carrying platform where different sensors can be equipped.

Figure 2.1.4: CSS.

2.2 Cyber-physical testing

Cyber-physical testing provides the ability to develop and test integrated systems. One
way of performing cyber-physical testing is through hardware-in-the-loop (HIL) testing.
Johansen et al. (2007) defines HIL testing as verifying the required functions of a hard-
ware/software system or component by interfacing it with a HIL simulator and executing

8 CHAPTER 2. BACKGROUND

the functions for the integrated system. The ability for HIL testing is important for the
MC-Lab, as lab time is limited. It provides a way to develop an test before arriving in
the lab. HIL testing also provides ways to test software or control algorithms in ways
that would be impractical or infeasible with the real model in the lab. Therefore, a good
HIL simulator is important. In Bjørnø (2015), they describe the MC-Lab as having a
HIL-Lab. Today all of the models have HIL-simulator models.

2.3 Robot Operating System

The system’s architecture is based on ROS. ROS is an open-source framework with tools
and libraries that help developers and researchers build and reuse code to create robotic
applications. This includes drivers, advanced algorithms, and developing applications to
simplify the process of making a robotic system. In addition, it has a global community of
engineers, computer scientists, and hobbyists who make robotics accessible and available
for everyone.

ROS is a middleware. It handles services such as hardware abstraction, package man-
agement, and message-passing between processes. Furthermore, it provides a publish-
subscribe messaging infrastructure supporting construction of distributed computing sys-
tem. It also provides supporting functionality to build and maintain the application.

ROS-based processes are represented as nodes in graph architecture. The nodes
connect through topics, which they use to interact through publish-subscribe messages-
passing. The nodes communicate through service calls and parameter services connected
to the ROS master. The ROS master is a parameter server that keeps track of all
active nodes and the topic to which each node is connected. It establishes a peer-
to-peer communication network between the nodes. Figure 2.3.1 illustrates a system
containing two nodes communicating through a topic. In this case, NODE1 publishes
messages to the TOPIC, and NODE2 subscribes to the same topic. The publish-subscribe
communication follows the structure of event-driven programming, where the subscribing
node will act when a message is published on the topic.

Figure 2.3.1: ROS architecture concept.

2.4 Pulse width modulation

Pulse width modulation(PWM) is a way to digitally create an analog signal. PWM
is often used to control motors, servos, and LEDs. A PWM signal is created using a

CHAPTER 2. BACKGROUND 9

continuous signal that is set to either on or off.

Figure 2.4.1: PWM signal courtesy: EEPOWER (2023)

The amount the signal is set to high over the period is called the Duty cycle from
EEPOWER (2023).

DutyCycle =
Ton

Tof + Ton
(2.1)

This is represented as a percentage, so at 50% duty cycle, a motor would spin at 50%
capacity, and at 100% duty cycle, a 100% capacity.

2.5 Kinematics

This section shortly presents the kinematic notation and reference frames used in the
MC-lab and this report. The two main reference frames used in the MC-lab are

• Basin frame: Normally, for ships, an earth-fixed reference frame is used. When
tests are performed at the MC-lab the basin-fixed reference frame is used instead.
It has a coordinate system as illustrated in figure 2.1.1

• Body frame: For the body frame, the coordinate system is fixed at the center of
the vessel. With x direction positive in the forward direction, y direction positive
in the starboard direction, and z positive in the downward direction.

For the models, the 6 degrees of motion(6DOF) in the body-fixed frame is as illustrated
in figure 2.5.1.

10 CHAPTER 2. BACKGROUND

Figure 2.5.1: 6DOF courtesy: Fossen (2011)

Following SNAME-notation for 6DOF of a vessel. The notation is as follows

Forces and moments position and Euler angles linear and angular velocities
Surge motion X x u
Sway motion Y y v
Heave motion Z z w
Roll motion K ϕ p
Pitch motion M θ q
Yaw motion N ψ r

Table 2.5.1: SNAME-notation for 6DOF courtesy Fossen (2011)

Often only 3 degrees of motion(3DOF) is used, meaning only surge, sway, and yaw
motions. To translate the body-fixed frame motion to the basin-fixed frame, we need
the principal rotation described in Fossen (2011).

Rx,ϕ =

1 0 0
0 cϕ −sϕ
0 s cϕ

 , Ry,θ =

 cθ 0 sθ
0 1 0

−sθ s0 cθ

 , Rz,ψ =

cψ −sψ 0
sψ cψ 0
0 0 1

 (2.2)

CHAPTER

THREE

REQUIREMENT SPECIFICATION

3.1 Requirements Specifications

This section is a reformulation of Elvenes et al. (2023) and outlines the intended use and
requirement specification for the new vessel.

3.1.1 Intended use

C/S Jonny is intended to be used for research and testing at the MC-Lab at the De-
partment of Marine Technology at NTNU. The MC-Lab fleet needs a smaller, more
maneuverable ASV that can test higher-speed maneuvering-based guidance and control
algorithms. The purpose of CSJ is to satisfy this need. CSJ will mainly operate in calm
water, i.e., no waves or currents.

3.1.2 Main requirements

CSJ should use the Jonny Harbor Tugboat hull manufactured by Aeronaut (Aeronaut
(2022)). It is on a scale of 1:32. Tabel 3.1.1 illustrates the specifications of the Jonny
Harbor Tugboat hull.

Table 3.1.1: Hull specifics of CSJ.
Description Data

Length overall (LOA) 0.99 [m]
Breadth 0.308 [m]
Draft 0.110 [m]

Furthermore, CSJ should be fitted with two azimuth thrusters astern and a tunnel
thruster in the bow. After the construction, CSJ should have the following functional
requirements:

• Inertial measurement unit to measure angular rates and acceleration.
• Wireless communication and control.
• IR spheres for Qualisys motion capture system measurements.
• Joystick control with two modes:

1. Body-fixed motion control
2. Basin-fixed motion control

• Modular components with plug-and-play capabilities
• Watertight deck

11

12 CHAPTER 3. REQUIREMENT SPECIFICATION

3.1.3 Equipment and instruments

Equipment and instruments that CSJ needs to perform the functions listed in table 3.1.2
are listed below. The specific items are described in detail in the appendix.

• Two azimuth thrusters and a bow thruster.
• Motor and Electronic Speed Controller (ESC) for each thruster.
• Servo motor for angle control of azimuth thrusters.
• LiPo batteries as a power source.
• Inertial measurement units (IMU).
• Dualshock 4 controller for joystick-control.
• Raspberry Pi as an embedded computer.
• Control box.
• Watertight deck

CHAPTER

FOUR

DEVELOPMENT OF C/S JONNY

This section outlines the development process of C/S Jonny. The development was
performed over two semesters, and this section contains some reformulations and figures
from Elvenes et al. (2023) as well as further developments. This is done to provide a
complete and cohesive outline of the development process.

4.1 Parts

The parts needed for the model were chosen with the help of Robert Oppland. A desire
for standardization in the MC-lab led to many of the components being chosen based on
CSAD. The entire part list with specifications is in the appendix.

4.2 Assembly of bowthruster

After the parts were selected, the bow thruster was installed. Firstly by installing the
thruster and tunnel, Then installing the motor. This section is a reformulation from
Elvenes et al. (2023)

4.2.1 Installation of the thruster

The first step in installing the bow thruster was to mark the hull for drilling. , The
instruction manual and guide markings on the hull from Aeronaut (2022) were used to
ensure proper placement. Once the holes were drilled, a mounting rig was created to
ensure proper alignment. The mounting rig was created by modeling and 3D printing
mounting plugs for the ends of the tunnels. The plugs were then threaded over two long
threaded rods, with a nut on either side. The rods were then attached to a long bar that
could be placed over the model. The setup can be seen in figure 4.2.1. The mounting
bracket enabled us to ensure that the thruster was leveled around the model’s z, x, and
y-axis while also providing a way to hold the thruster in place while casting. When the
thruster was correctly positioned, it was then cast in place using two-part epoxy. Then
when the epoxy had cured, the excess tubing was cut off and sanded flush with the hull

13

14 CHAPTER 4. DEVELOPMENT OF C/S JONNY

Figure 4.2.1: Installation process for bow thruster

4.2.2 Installation of motor

The chosen bow thruster had no mounting for a motor, so one had to be created. The
mount needed to hold the motor securely and align the two driveshafts. To achieve this,
the bow thruster and motor were modeled using the 3D modeling software FreeCad.
After an iterative design process around these models, a two-part design was created,
as seen in 4.3.3. Using four bolts and nuts, the mounting bracket is designed to clamp
around the bow thruster and the driveshaft casing. The clamping around the driveshaft
casing ensures the alignment of the two driveshafts. Space for the driveshaft coupling
between the two driveshafts is also provided. After the model was done, it was 3D printed
using 100% infill with a PLA+ filament for extra durability. The final installation can
be seen in figure 4.3.3

Figure 4.2.2: Mounting bracket for bow thruster

4.3 Assembly of azimuth thrusters

The assembly of the rear azimuth thruster was a multi-step process. Firstly a mounting
plate for level installation was needed. Secondly, the provided thrusters only had 180◦

turning rate and were rebuilt to be able to provide 360◦ rotation.

4.3.1 Creation of mounting plate

The Jonny tug boat model Aeronaut (2022) is intended to be used with driveshaft
propellers and rudders. Though it also comes with a conversion kit for azimuth thruster,
this kit is not compatible with our selection of thrusters. Even though we could not
use the included conversion kit, it provided an excellent reference to build our mounting

CHAPTER 4. DEVELOPMENT OF C/S JONNY 15

plate. A lower flat surface could be made using the same width, length, and angles of
the included kit. The part was first modeled in Sketchup and then produced in steel by
Sintef. This mounting plate provides both a flat level surface and the position for the
azimuths. The model and finished mounting plate can be seen in figure 4.3.1

Figure 4.3.1: Mounting plate, top view, and underside

4.3.2 Installation of mounting plate

After the mounting plate was manufactured, the plate could be installed. Firstly the
correct position was marked, ensuring that the thrusters would be placed symmetrically
on the hull. Then the hull fittings that came with the thrusters were mounted to the plate
using screws and epoxy. Then the holes for the hull fittings were drilled in the marked
positions. Lastly, the plate and hull fittings are installed using epoxy by applying epoxy
along the marked lines and then clamping the plate to the hull. Custom caps were
modeled, printed, and used during the installation to prevent the epoxy from clogging
up the hull fittings.

Figure 4.3.2: Installation of mounting plate

4.3.3 Converting thruster to 360◦ rotation

The thrusters provided only had 180◦ of rotation; to achieve full 360◦ capabilities, the
thrusters were modified. The modification started by modeling all the necessary parts,
such as the motor, ESC, Servo, driveshaft coupling, and the driveshaft of the thruster.
We wanted a single unit to house all the necessary components of the thruster. To
decrease the number of loose components in the final model and for better protection
of the components. It was also a desire to have as direct drive as possible, meaning the
motor should be directly connected to the driveshaft.

Designing the conversion was an iterative process, and many prototypes were made.
To model the part FreCad was used. The process started with creating two sets of gears
in a gear ratio of 1:1. The 1:1 was chosen to simplify the operation of the model by

16 CHAPTER 4. DEVELOPMENT OF C/S JONNY

removing the need for conversion of the angles between the thruster and servo. The
Mx-28 servo has a torque capacity of 3.1[Nm]Robotis (2022a), which should be plenty
to handle the 1:1 ratio. The gear’s height was modeled after the included thruster gear.
Since the gears will be 3D printed, a gear module of 2 was selected with 20 teeth, which
means relatively large teeth.

module =
diameter

NO.teeth
(4.1)

from stock gears (2023). This leads to a gear with a diameter of 4[cm]. The gears were
also created as double helix gears with an angle of 20◦. The double helix gear removes a
lot of the axial forces along the drive shaft that a regular gear usually creates. After this,
the holes for mounting to the thruster and for attaching to the servo horn were added.

Once the gears were modeled, the positioning of the servo relative to the driveshaft
could be determined. The motor’s position was made to be directly above the driveshaft,
providing the possibility of connecting the two driveshafts directly with a driveshaft
coupling. The height was determined using the height of the gear and the length of the
driveshaft coupling. Lastly, the placement of the ESC was made to be above the servo
and behind the motor.

With the placement of each component, the mount could be created. It is created as
two parts that are mirrored around the center. It is joined together by four bolts going
horizontally and screws attaching it to the mounting plate. An open back behind the
motor and an opening below provide airflow for cooling the motor. Lastly, channels were
created to thread the wires through. The mount and gears were 3D printed using 100%
infill and PLA+ filament.

Figure 4.3.3: Conversion to 360◦ rotation

CHAPTER 4. DEVELOPMENT OF C/S JONNY 17

Figure 4.3.4: Printed azimuth mount with all components

4.4 IMU

The IMU arrives as a stand-alone chip. To mount and protect the sensor, an IMU box
was created. The objective of the box is to provide protection, mounting, and the ability
to daisy chain the sensors together with plug-and-play. Since the IMU uses the I2C
protocol for communication, we can, through the use of an I2C breakout board, daisy
chain the sensors. This means that for each IMU, there is a breakout board. For this
purpose, a 3-piece box was modeled as seen in figure 4.4.1. The IMU sensor is mounted
in the center at the bottom, with the I2C breakout board over it. The holes are for
LEMO connections, which provide the IMU with plug-and-play capabilities.

Figure 4.4.1: IMU box

4.5 Electronic box

The purpose of the electronic box is to house most of the electronic components, such
as the PWM-Breakout board, DC-DC converter, U2D2 module, and the Raspberry PI.
While holding all the components, the box should provide protection, plug-and-play
capabilities, and cable management. To create the box, a relatively small box was
selected. An inlay was created to fit all the components and securely attach them. The
inlay provides mounting points for all components, as shown in red in figure 4.5.1. The
Raspberry Pi can easily be removed by simply lifting it out of the box.

18 CHAPTER 4. DEVELOPMENT OF C/S JONNY

Figure 4.5.1: Electronic box inlay

After the inlay was printed and all components were attached. Holes for the lemo
connections of the three motors, servo, and IMU, were drilled, and also for the XT-60
power plug. These connections provided the ability to easily disconnect the different units
without opening the control box. After drilling holes, the electronic box was soldered,
and cable managed. The final box can be seen in figure 4.5.2.

Figure 4.5.2: Electronic box

A holder for the electronic box was also created using 3D modeling and 3D printing.
It was attached by screwing it into the frame of the model.

4.6 Battery holder

For securing the batteries, a battery holder was created. The objective of this holder is
to keep the batteries from moving while also providing ease of access and connection.
To achieve this, a plate was modeled by modeling the batteries and connection plug,
as seen in figure 4.6.1. The two-part at the front are for the connection points of the
battery; here, the plugs can be inserted and fastened. The batteries are easy to insert
and remove while also staying secure during operations.

Figure 4.6.1: Battery holder

CHAPTER 4. DEVELOPMENT OF C/S JONNY 19

4.7 Painting

The paint provides some resistance to wear but, more critically, better tracking capabil-
ities with the camera. This is why yellow is selected to create an excellent contrast to
the water, making it easier to track with a camera. Before painting, the entire outside
was sanded to increase the adhesion of the paint. Then the bow thruster and holes for
the azimuth thrusters were masked with masking tape. Finally, the model was painted
yellow using spray paint as illustrated in figure 4.7.1.

Figure 4.7.1: Painting.

4.8 Deck

A deck is needed to prevent water from entering the hull during operation and provide a
mounting surface for the IR spheres. The deck should be reasonably watertight to prevent
short-circuiting of the components inside while providing easy access when needed. First,
a stencil was made using a piece of cardboard to create the deck. When the cardboard had
been cut to fit over the hull, the next step was to decide where the access hatches should
be. Two access hatches were chosen, one for the rear providing access to the electronic box
and azimuth thrusters and one for the bow for access to the bow thruster and batteries.
When the hatches were placed, the deck’s outline was drawn on a honeycomb panel. A
raised edge of about 2[cm] was planned around the hatches to provide waterproofing.
When the dimensions were selected, the honeycomb panel was given to Sintef, which
made the deck.

Figure 4.8.1: Deck

The next step was then to attach the deck to the hull. Firstly the deck was clamped
in place. Then the masking tape was used along the edges of the hull to hold the epoxy.
The epoxy was then applied and left to cure before removing the clamps and tape.

Figure 4.8.2: Deck installation

20 CHAPTER 4. DEVELOPMENT OF C/S JONNY

4.9 IR spheres

The Qualisys motion capture system uses infrared to track the motion of the vessel.
Therefore, IR reflective spheres are needed. For the best tracking capabilities, there
should be different spheres, and they should not be on the same plane. For C/S Jonny, 4
IR spheres arranged in an L shape with different heights were chosen. To achieve this, a
mounting bracket was first modeled and 3d printed, as seen in the figure. After printing,
the brackets had two nuts inserted by melting them into the plastic. Then threaded rods
were cut to different lengths, and the IR spheres were threaded on the top. Lastly, the
mounting brackets were epoxyed to the deck in an L shape.

Figure 4.9.1: IR installation

4.10 Ballasting

After all components were assembled, the final step was to ballast the model. To perform
this, the guide from the Jonny tugboat model was used Aeronaut (2022). This provided
instruction on where the waterline should be drawn, as seen in figure 4.10.1

Figure 4.10.1: Water line guide courtesy Aeronaut (2022)

The model was set up as instructed on a flatbed to mark the waterline. Then using
a pen holder that holds the pen at a fixed height, the waterline was drawn by dragging
the penholder across the surface. The waterline can be seen in figure 4.10.2

Figure 4.10.2: Waterline

When the waterline had been marked, it could be ballasted. By adding weights until
the model floated at the waterline as seen in 4.10.3

CHAPTER 4. DEVELOPMENT OF C/S JONNY 21

Figure 4.10.3: Ballasting

CHAPTER

FIVE

SYSTEM ARCHITECTURE

5.1 Vessel systems

This section presents the physical placement of all relevant components, such as thrusters,
IMUs, and IR spheres, and is a reformulation from Elvenes et al. (2023).

5.1.1 thruster configuration

The final dimensions and position of the thrusters are shown in table 5.1.1, with the
position indicated as in figure 5.1.1.

Table 5.1.1: Thruster configuration.

Parameter Value[cm]
lx1 41.5
lx2 41.5
lx3 37.0
ly1 7.0
ly2 7.0

Figure 5.1.1: Thruster configuration of CSJ.

5.1.2 IMU

the position of the IMUs is presented in table 5.1.2

22

CHAPTER 5. SYSTEM ARCHITECTURE 23

IMU no. x[cm] y[cm] z[cm]
1 -24 -5 3
2 -16 -8 6.4
3 7.5 11.5 9.9
4 43 0 11.5

Table 5.1.2: Position of IMU

5.1.3 IR spheres

The position of the IR spheres is presented in table 5.1.3

IR sphere no. x[cm] y[cm] z[cm]
1 -37.5 13 33.2
2 -38.2 12.5 30.2
3 2.9 12.5 26.5
4 34.2 11.5 23.6

Table 5.1.3: Position of IR spheres

5.2 Power system single-line diagram

A representation of the power system is illustrated in figure 5.2.1. The batteries have a
14.8V voltage which is connected directly to the motors. There is a potential transformer
to adjust the voltage to 5V for the Raspberry Pi. The port azimuth thruster motor is
denoted MAP and its corresponding servo SAP . The same goes for starboard azimuth
with the subscript AS. The bow thruster motor is denoted as MB.

Figure 5.2.1: Single line diagram of CSJ’s power system.

5.3 Communication signal

figure 5.3.1 shows the different communication protocols used. I2C is used for the IMUs
and to connect the PWM breakout board. The breakout board provides the ESC with
the PWM signal. The ESC then amplifies this signal with the 14.8V power connection
to drive the motor. The servos are driven using the UART Rx protocol provided by the
U2D2. Which, in return, is connected to the Raspberry Pi through USB and powered
by the 14.8v connection.

24 CHAPTER 5. SYSTEM ARCHITECTURE

Figure 5.3.1: Communication signals of the CSJ.

5.4 Software topology

This section is about the implemented software topology and ROS nodes. In an attempt
for standardization in the MC-lab, Roger Skjetne proposed a software topology for all
the models. The proposed solution is illustrated in 5.4.1.

CHAPTER 5. SYSTEM ARCHITECTURE 25

Figure 5.4.1: Software topology models MC-lab courtesy: Roger Skjetne

Since a lot of these nodes are out of the scope of this project, only some have been
implemented, and the rest is further work. The implemented nodes are illustrated in
figure 5.4.2 and provides the basic functionality for the model.

Figure 5.4.2: The implemented software topology

Qualisys

The Qualisys system uses physical cameras placed at the MC-Lab and uses triangulation
to measure the position of the vessel. The cameras measure the pose and attitude of
the vessel by tracking markers attached to it. It outputs the position of the vessel. The
Qualisys node is run on the computer on land and not on the vessel

Controller

The controller node is currently only implemented as a joystick controller. Here the
input signals from the Playstation controller are mapped to a tau command. Two types
of joystick control are implemented one in the body frame and one in the basin frame.
To translate the forces from the basin frame to the body frame, the heading of the ship
is needed from the Qualisys node.

26 CHAPTER 5. SYSTEM ARCHITECTURE

Thrust allocation

The thrust allocation node takes the commanded forces and uses one of the algorithms
described in section 10. Then the calculated forces are mapped to PWM using the
algorithm outlined in 9. This provides the angles and PWM signal needed by the driver.

Driver

The driver node is adapted from CSAD Bjørnø (2015) to work with three thrusters and
two servos. It takes the signal u_cmd and sends it to the physical components.

CHAPTER

SIX

BASIN TRIAL

When the development of C/S Jonny was completed, a basin trial was performed to
validate and check the model was working correctly.

6.1 Expermiental setup

The basin trial will verify the building process and show that the components work
correctly. A basin trial was created with inspiration from the four-corner test. The test
is shown in figure 6.1.1. It consists of motion in all 3DOF, meaning surge, sway, and
yaw. The thrust mapping algorithm from section 9 and a simple pseudo inverse thrust
allocation were implemented to perform the test. Then the test was performed with a
joystick controller, using a body-fixed frame and then a basin-fixed frame.

Figure 6.1.1: Basin trial

6.2 Results

In this section, the results from the basin trial are presented.

27

28 CHAPTER 6. BASIN TRIAL

6.2.1 Body-fixed frame

In figure 6.2.1, we can see the position of CSJ during the test using the body-fixed
controller. The heading and commanded tau can be seen in 6.2.2. A video of the test is
found in the appendix.

Figure 6.2.1: x and y position for basin trial with body-fixed joystick controller

Figure 6.2.2: Heading and Comanded tau for basin trial with body-fixed joystick
controller

6.2.2 Basin-fixed frame

In figure 6.2.3, we can see the position of CSJ during the test using a basin-fixed con-
troller. The heading and commanded tau can be seen in 6.2.4. A video of the test is
found in the appendix.

CHAPTER 6. BASIN TRIAL 29

Figure 6.2.3: x and y position for basin trial with basin-fixed joystick controller

Figure 6.2.4: Heading and Comanded tau for basin trial with basin-fixed joystick
controller

30 CHAPTER 6. BASIN TRIAL

CHAPTER

SEVEN

DISCUSSION & FURTHER WORK

7.1 Discussion

After CSJ was completely built, thrust mapping was planned. When the thrust mapping
commenced, a bug in the driver code was discovered. This bug would sometimes set one
or more PWM signals to the max at the closing of either the driver node or thrust
allocation node. This also occurs on CSAD, but CSAD has much smaller motors and
thrusters, so the problem is manageable. However, when this happened on CSJ, the
peak measured force was around 113[N]—causing the port side thruster to be destroyed.

Figure 7.1.1: Measurement from port force sensor

The bug was fixed, and new thrusters were ordered. New motors were selected that
were much smaller than the original. The rebuild of the azimuth mount could then
commence, including design, printing, and implementation. The same thrusters were
ordered as the original due to the mounting holes in the hull being epoxyed in place.

31

32 CHAPTER 7. DISCUSSION & FURTHER WORK

The rebuilt azimuth mounts work well, but the thrusters are over-dimensioned. This
causes the maximum PWM signal to be set relatively low. To limit the model to a
reasonable speed, the maximum PWM signal is set to 0.22. The motors do not start
spinning before a PWM signal of 0.11. As Frederich (2016) noted when implementing
thrust allocation algorithms for CSAD, the minimum PWM interval for the ESC is 0.01.
This causes CSJ to only have 12 points of regulation for the speed of the motors.

Even though the command signal for the thrusters is relatively coarse, the basin
trial went quite well. As seen in figure 6.2.3 and 6.2.1, CSJ drives well in the surge
direction, with minimal change in heading. When given a commanded yaw moment,
CSJ turns well around its axis without too much movement. For sway movements,
some yaw moments arise. This is probably due to the coarse control of the azimuth
thrusters and hydrodynamics since the hull is not symmetric in this direction. The rest
of the components work pretty well. The bow thruster operates smoothly with minimal
vibration. The control box manages the wires and components, so CSJ has fewer loose
components and wires than the other models. The Batteries also provide a very long
run-time. For the thrust mapping, CSJ was run almost continually for about 4 hours.

Part II

Thrust allocation for C/S jonny

33

CHAPTER

EIGHT

BACKGROUND

8.1 Thrusters and thruster dynamics

According to Fossen (2011), the most common actuators for marine vessels are:

• Main propellers : often mounted with rudders at the aft to produce thrust force
in the surge direction in the body-fixed frame of the ship.

• Tunnel thrusters: For ships usually fixed in the transverse direction. Installed
using a tunnel through the hull.

• Azimuth thrusters: Thrusters that can produce forces in the X and Y directions
by rotating the thruster around the z-axis. Often the preferred type of thruster for
station keeping, as it can produce thrust in several directions.

• water jets: often used for high-speed vessels as an alternative to main propellers.

In this project, the relevant thrusters are the azimuth and tunnel thrusters since CSJ
is equipped with two azimuth thrusters and one bow thruster. To relate the rotational
speed of the propeller to produced thrust(Ta) or torque(Qa) Sørensen (2012) defines the
relation as.

Ta = sign(n)KTρD
4n2 (8.1)

Qa = sign(n)KQρD
5n2 (8.2)

Where n is the rotational speed of the propeller in [Revelutions/s], D is the diameter
of the propeller, ρ the density of water, and KT and KQ is thrust loss coefficients.
According to Sørensen (2012), the most common types of thrust loss come from:

• Inline velocity fluctuation: The produced thrust is correlated to the water
inflow over the propeller

• Cross-coupling drag: arises when perpendicular inflow to the thruster direction
occurs. This can occur by the ship moving through the water, currents, or jets
from other propellers.

• Ventilation: When the propeller creates a low pressure that sucks in air. It often
arises when the submergence of the propeller is slight, often due to wave motions.

• In and out of water effects: For significant motion of the vessel, the thrusters
can be lifted out of the water.

34

CHAPTER 8. BACKGROUND 35

• Coanda effect: is losses due to the interactions between the thrusters and the
hull.

• Thruster-thruster interactions: occurs when the outflow of one thruster inter-
feres with neighboring thrusters’ ability to produce thrust.

and lastly, he defines the relationship between power consumption and torque as

Pa = 2πnQa (8.3)

8.2 Mathematical notation and thruster configuration ma-
trix

Using the mathematical notation presented in Skjetne (2023). All equations in this
section are from Skjetne (2023). Starting with the thrust load vector τ for 3DOF.

τ =

[
f
m

]
f =

[
X
Y

]
[N] m =

[
n
]
[Nm] (8.4)

The forces and moments are the combined result in the body frame of the m individual
thrusters. The forces in the body frame for each thruster is given as follows:

fi =

[
Xi

Yi

]
[N], mi =

[
Ni

]
[Nm], li =

[
xi
yi

]
[m] (8.5)

The moments mi is a function of the forces fi, if S :=

[
0 −1
1 0

]
, then the thrust load

vector can be written as

τi =

[
fi
mi

]
=

Xi

Yi
Ni

 =

[
fi

lTi S
T fi

]
=

 Xi

Yi
xiYi − yiXi

 (8.6)

τ =
m∑
i=1

τi =
m∑
i=1

[
fi

lTi S
tfi

]
(8.7)

8.2.1 Polar configuration matrix

In polar form, each thruster force is represented by an angle α relative to the body-fixed
frame and a force magnitude F . If we define

ai :=

[
cosαi
sinαi

]
(8.8)

then we can write fi as fi = Fiai. Here ai := (a1...., am) and F := col(F1, F2..., Fm) is
the force magnitude. Equation 8.7 can now be re-formulated as

τ =
m∑
i=1

τi =

m∑
i=1

[
ai

lTi S
Tai

]
F =

[
a1 a2 ... am

lT1 S
Ta1 lT2 S

Ta2 ... lTmS
Tam

]
F =: B(α)F (8.9)

where B(α) is the configuration matrix, giving.

τ = B(α)F (8.10)

where

B(α) =

 cos(α1) cos(α2) ... cos(αm)
sin(α1) sin(α2) ... sin(αm)

x1 sin(α1)− y1 cos(α1) x2 sin(α2)− y2 cos(α2) ... xm sin(αm)− ym cos(αm)

(8.11)

36 CHAPTER 8. BACKGROUND

8.2.2 Rectangular configuration matrix

Another way to represent the configuration matrix is in rectangular form, often called
the extended form. Starting with a reformulation of the thrust load vector.

τi =

[
fi

lTi S
T fi

]
=

 Xi

Yi
xiYi − yiXi

 =

 1 0
0 1

−yi xi

[Xi

Yi

]
(8.12)

This gives Fi := |fi| =
√
X2
i + Y 2

i for the force, and αi := ∠fi = atan2(Yi, Xi) for the
angles. If we use m1 for the number of thrusters with varying angles and m2 for the
number of thrusters with a fixed angle, such as bow thrusters. Then we can define

f :=

f1
f2
...

fm1

 =

X1

Y1
X2

Y2
...

Xm1

Ym1

∈ R2m1 (8.13)

for the varying thrusters, and F := col(Fm1+1, . . . , Fm) for the fixed. The thrust load
vector then becomes

τ =

m1∑
i=1

τi+
m∑

i=m1+1

τi =

m1∑
i=1

 Xi

Yi
xiYi − yiXi

+ m∑
i=m1+1

 cos(αi)
sin(αi

xi sin(αi)− yi cos(αi)

Fi = B1f+B2F

(8.14)
where B1 ∈ R3x2m1 . Here B1 and B2.

B1 :=

[
I I . . . I

lT1 S
T lT2 S

T . . . lTmS
T

]
=

 1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

−y1 x1 −y2 x2 . . . −ym xm

 (8.15)

B2 :=

 cos(αm1+1) . . . cos(αm)
sin(αm1+1) . . . sin(αm)

xm1+1 sin(αm1+1)− ym1+1 cos(αm1+1) . . . xm sin(αm)− ym cos(αm)

 (8.16)

If we now combine the two vectors f and F , and the two configuration matrices B1

and B2 as

ξ :=

[
f
F

]
, B :=

[
B1 B2

]
∈ R3xp (8.17)

where

p = 2m1 +m2 (8.18)

. Then thrust load vector can be written as

τ = Bξ (8.19)

CHAPTER 8. BACKGROUND 37

8.3 Thrust allocation problem

The primary goal for the thrust allocation problem is to control the different actuators
through some control signal u so they combined to produce a desired thrust load vector
τcmd. from Johansen and Fossen (2013)

τcmd = h(u, x, t) (8.20)

An important aspect of thrust allocation is the actuation of the system. If we want to
control a n DOF system, then the actuation of the system is given as Fossen (2011)

• Underactuated if p < n: the system cannot produce desired forces for all n
degrees of freedom.

• Fullyactuated if p = n: The system can produce reasonable desired forces for all
n degrees of freedom.

• Overactuated if p > n: Capable of producing forces in all n degrees of freedom
while also having fault tolerance.

For CSJ, we have two azimuth thrusters and one bow thruster. Using equation 8.18, we
get p = 5. Using the 3DOF system, we get that 5>3, meaning we have an overactuated
system.

When we have an overactutaed system, many, if not infinite, solutions exist to the
thrust allocation problem, and the problem becomes an optimization problem. The
secondary goal is to minimize power consumption. A solution to the unconstrained
problem in 8.20 is to use the simple pseudoinverse with the configuration matrix.

F = B(α)†τcmd, or , ξ = B†τcmd (8.21)

Here α needs to be fixed angles. This solution, however, does not consider the thrusters’
physical constraints. Some of the most common constraints are

• Saturation: The thrusters have a minimum and maximum thrust they can pro-
duce.

• Angular constraints: Azimuth thrusters can have angles they are not allowed
to operate in. This can be due to the physical limitations in maximum and mini-
mum angles or forbidden zones. Forbidden zones are often implemented to avoid
thruster-thruster interaction or Thruster-sensor interactions.

• Rate constraints: The physical system does not work instantaneously and takes
time both to turn and to ramp up propellers. This causes angular and force rate
constraints. It is also important to limit the wear of the components.

When angular rate constraints are applied, the thrust configuration matrix can be-
come singular, meaning its determinant becomes 0. When this happens, the inverse of
the matrix becomes infinitely large. This means that if the system approaches a singular
configuration, the thrust force for each thruster grows very large. Steps to limit this
growth or avoid singular configurations are often added.

8.4 Maneuvering problem

Skjetne et al. (2011) defines a generic maneuvering problem as follows: If we have a
system output y = h(x) with h : Rn → Rm, then the desired manifold is all points
represented by the set

Q := {x ∈ Rn : ∃θ ∈ Rq s.t h(x) = hd(θ)} (8.22)

38 CHAPTER 8. BACKGROUND

where q ≤ m and the map θ 7→ hd(θ) is sufficiently smooth. Given the parametrization
hd(θ) and a dynamics assignment of the manifold, the maneuvering problem is compro-
mised of the two tasks.

1. Geometric task: For some absolutely continuous function θ(t) force the output
of y to converge to the manifold hd(θ)

lim
t→inf

|y(t)− hd(θ(t)| = 0 (8.23)

Dynamic task: Force θ̇ to converge to a desired dynamic assignment fd(θ, y, t)

lim
t→inf

∣∣∣θ̇(t)− fd(θ(t), y(t), t)
∣∣∣ = 0 (8.24)

CHAPTER

NINE

THRUSTMAPPING

This section is about the thrust mapping of C/S Jonny and how to relate force to a
PWM signal.

9.1 experimental setup

The motors for the thrusters are controlled through a PWM signal, as described in
section 2.4. This signal does not directly correlate to the produced force, so a way to
correlate the control signal and forces is needed. To achieve this, a bollard pull test was
performed. A bollard pull test is required for ships to be used for towing operations
Authority (2023), which is usually performed by fastening the ship using cables that
connect the aft to a bollard on land. The test performed on C/S Jonny is a modified
version, with more fastening, as seen in figure 9.1.1.

Figure 9.1.1: Bollard pull setup for C/S Jonny

Each cable is connected to a spring and a force sensor that provides the force mea-

39

40 CHAPTER 9. THRUSTMAPPING

surements. The angled fastening at the aft can be decomposed to forces in X and Y
directions in the body frame. Since the model will move during the testing, Qualisys
was also used to provide the heading of the model.

9.2 mapping

The three measurements were decomposed and translated to the body frame to get the
force for the thrusters. Using[

X
Y

]
=

[
cos(α1 + ψ) cos(α2 − ψ) cos(−ψ)
sin(αi + ψ) sin(α2 − ψ) sin(−ψ)

]F1

F2

F3

 (9.1)

where α = [−3π
4 ,

3π
4 , 0], F = [F1, F2, F3] from the force sensors and ψ is the heading of

the ship. Then the force the thruster produced was calculated as

Fthruster =
√
X2 + Y 2 (9.2)

Before mapping, the maximum and minimum PWM signals were determined. The az-
imuth thrusters’ maximum was set to 0.22 by driving the boat and setting the maximum
at a reasonable speed. The minimum was set to -.16 since a lower PWM resulted in
aeration, meaning the thruster sucking in air. The maximum and minimum for the bow
thrusters were also selected based on aeration and determined to be [-0.44,0.44].

9.2.1 Azimuth thruster

Since the force produced by the azimuth thrusters can vary greatly depending on the
angle, they were mapped in 30◦ increments from [−180◦, 180◦]. The motors for the
azimuth thrusters start rotating at a PWM signal of between 0.11 and 0.12, depending on
battery voltage. With the range of PWM signals set to [-0.16,0.22] and the smallest PWM
increment at 0.01, the thruster was mapped in two intervals for each angle. For positive
[0.1,0.22] with a PWM increment of 0.01, and [-0.1,-0.16] with a PWM increment of
-0.01. For the most accurate results, the thruster was run for 50[s] for each measurement
point. The signals were then used to calculate X, Y, and F as described in section 9.1.
The calculated values for 0◦ can be seen in figure 9.2.1.

Figure 9.2.1: 0◦ starboard measurements

CHAPTER 9. THRUSTMAPPING 41

The measurements for all the plots is found in the appendix. When the forces had
been measured for each angle, they were used to create a thrust map as seen in figure
9.2.2. In this polar plot, the angle is the angle of the thruster, the radius is the produced
force, and the different lines are the different PWM signals.

Figure 9.2.2: Mapping of starboard thruster

Here we can see the resulting loss of power when the thruster is pointed directly at
the opposing thruster. The maximum then goes from around 3.2[N] to about 1.9[N],
meaning around 40% decrease in performance. Since the thrusters are identical, the
measurements from the starboard can be used on the port side thruster. By flipping the
measurements around the X-axis in the body frame. The comparison between the two
thrusters at 0◦ can be seen in figure 9.2.3

42 CHAPTER 9. THRUSTMAPPING

Figure 9.2.3: Comparison between starboard and port azimuth thruster

Here we can see that there are some deviations between the thrusters. Mainly for
smaller forces, as here, the difference in resistance in each thruster has a more significant
effect. However, the thrusters are similar enough that the thrust map for the starboard
thruster can be used for both.

9.2.2 Bow thruster

For the mapping of the bow thruster, a larger PWM interval was selected as 0.02. The
bow thruster motor starts spinning at a PWM signal of 0.11 or -0.11. So two intervals
were mapped [-0.1,-0.44] and [0.1,0.44]

Figure 9.2.4: Bow thruster map

The bow thruster is more efficient and can produce a higher thrust in the positive Y
direction than in the negative.

CHAPTER 9. THRUSTMAPPING 43

9.3 Force to PWM

When the forces had been measured and a map created, a function for transforming force
to PWM signal was created. The force of a thruster with respect to the speed of the
motor is quadratic, as can be observed in figure 9.2.4. Because the smallest increment
for the PWM signal is 0.01, and the measurements were performed at this interval or
0.02, linear interpolation was chosen. For the bow thruster, standard linear interpolation
was implemented.

pwm(F) = pwm(F1) +
pwm(F2)− pwm(F1)

F2 − F1
(F − F1) (9.3)

for the azimuth thrusters, bilinear interpolation was implemented between angle and
force as .

pwm(α, F1) =
α− α1

α2 − α1
pwm(α1, F1) +

α− α1

α2 − α1
pwm(α2, F1)

pwm(α, F2) =
α− α1

α2 − α1
pwm(α1, F2) +

α− α1

α2 − α1
pwm(α2, F2)

pwm(α, F) =
F2 − F

F2 − F1
pwm(α, F1) +

F − F1

F2 − F1
pwm(α, F2)

(9.4)

44 CHAPTER 9. THRUSTMAPPING

CHAPTER

TEN

THRUST ALLOCATION

10.1 Pseudoinverse with filtering

Sørdalen (1997) proposed a solution for the thrust allocation problem by using a fil-
tered pseudo inverse to derive slowly varying angles and singular value decomposition to
allocate forces. The equations in this section are taken from Sørdalen (1997)

10.1.1 controller

Starting with the solution of the pseudoinverse gives a solution for ξ

τ = Bξ (10.1)

ξ = B†τ (10.2)

whereB+ is the pseudoinverse of B. From this, the two force components for each thruster
in ξ are filtered as shown in figure 10.1.1 to produce slow varying angles. The structure
of the figure is from Sørdalen (1997), but reformulated to fit mathematical notations.

Figure 10.1.1: Slow varying angles

In this structure, firstly, the force vector is rotated 180 according to the sign of the
projection of fi on fs. The resulting vector fis is then run through a lowpass filter to

45

46 CHAPTER 10. THRUST ALLOCATION

produce the slow varying force vector. The second sign and lowpass filter rotate the
thruster 180 degrees depending on how often the vector fi is changed. Meaning if the
force vector is changed more than not meaning, the thruster produces negative force,
operating in reverse. The thruster is rotated 180 degrees.

The next step is to use the slow varying angles to calculate the forces. This is done
using singular value decomposition. singular value decomposition states that any matrix
A ∈ Rmxn can be factored into

A = USV T (10.3)

Where U ∈ Rmxm and V ∈ Rnxn is orthogonal matrices, and S is

S =

σ1 . . .
σr

 (10.4)

. σ is the singular values of A, they are positive and strictly decreasing, r is the rank of
A. These values can be used for the pseudo inverse

A+ = V S+UT (10.5)

where
S+
ii =

1

σi
(10.6)

Sørdalen (1997) proposes to use this pseudo inverse, with A = B(αf)

F = V S+
δ U

T τ (10.7)

S+
δ,ii = si (10.8)

The singular values are used as a tuning parameter to limit the forces when singu-
larities occur.

si =

1
σi

if σi
σ1
> δhi

1
δhiσ1

if δhi ≥ σi
σ1

≥ δlo > 0

0 if σi
σ1
< δlo

(10.9)

with the tuning parameters δhi ≥ δlo > 0

10.2 Quadratic programming

Quadratic programming is a way to solve quadratic optimization problems with linear
constraints. The standard notation for these problems are

min
x

1

2
xTHx+ hTx (10.10)

s.t.C(x) = c (10.11)
Ax ≤ b (10.12)

. Here x is the vector of optimization variables, H, and h represents the quadratic
function. The function is optimized with equality constraints C, and c, also inequality
constraints A and b. This section outlines the proposed QP algorithms outlined in
Johansen et al. (2004) and Scibilia and Skjetne (2012); all equations are from these.

CHAPTER 10. THRUST ALLOCATION 47

10.2.1 Quadratic programming

In Johansen et al. (2004), a formulation of the thrust allocation problem was proposed.

min
F,α,s

{J =

m∑
i=1

Wi(Fi) + sTQs+ (α− α0)
TΩ(α− α0) +

ϱ

ϵ+ det(B(α)B(α)T)
} (10.13)

s.t. (10.14)
s = τ −B(α)F (10.15)

Fmin ≤ F ≤ Fmax (10.16)
αmin ≤ α ≤ αmax (10.17)

∆αmin ≤ α− α0 ≤ ∆αmax (10.18)

. Where Wi(Fi) represents the total power consumption for each thruster. s is the slack
variable representing the error between wanted τ and calculated, with the weighting
matrix Q. Ω is the cost matrix for the turning rate. The term ϱ

ϵ+det(B(α)B(α)T)
is the

singularity avoidance term, with ϱ and ϵ as tuning parameters. For the constraints, the
equality constraint s = τ−B(α)F represents the thrust allocation problem. We can also
implement saturation constraints, limit angles, and angular rates.

In Scibilia and Skjetne (2012), a new method for dealing with the singularity avoid-
ance was introduced. Building upon Johansen et al. (2004) using future prediction to
avoid singularities by using an estimated τ+. This estimation can be obtained in several
ways, i.e., mean environmental load or worst-case scenarios. These forces can then be
used in the optimization with the parameters F+,α+, and s+, as

min
∆F,∆α,s,∆F+,∆α+,s+

{J = F TPF+∆αTΩ∆α+sTQs+∆F+TP+F++∆α+TΩ+∆α++s+TQ+s+}

(10.19)

s.t.
B(α)F = τ + s

B(α+)F+ = τ+s+

F = ∆F + F0,F+ = ∆F+ + F

α = ∆α+ α0,α+ = ∆α+ + α

Fmin ≤ F ≤ Fmax

Fmin ≤ F+ ≤ Fmax

αmin ≤ α ≤ αmax

αmin ≤ α+ ≤ αmax

∆αmin ≤ ∆α ≤ ∆αmax

∆αmin ≤ ∆α+ ≤ ∆αmax

(10.20)

10.2.2 Sequential quadratic programming

The two proposed solutions are nonconvex and due to the nonlinear term B(α)F = τ−s
and the term ϱ

ϵ+det(B(α)B(α)T)
. These terms can be locally estimated around a point

48 CHAPTER 10. THRUST ALLOCATION

using Taylor series expansion for small angle changes. This can be achieved by solving
the optimization for each timestep, with α = α0+∆α and F = F0+∆F and then using.

g(f, α) ≈ a0 + a1f + a2α =

g(f0, α0) +
∂g

∂f

∣∣∣∣
f0,g0

(f − f0) +
∂g

∂α

∣∣∣∣
g0,g0

(α− α0)
(10.21)

to estimate the nonlinear constraints. The solution proposed by Johansen et al. (2004)then
becomes

min
∆α,∆F,∆s

{J =
m∑
i=1

(
dWi

dFi
(F0,i)∆Fi +

d2Wi

dF 2
i

(F0,i)∆F
2
i) + sTQs+∆αTΩ∆α

+
d

dα

(
ϱ

ϵ+ det(B(α)B(α)T)

)
α=α0

∆α}
(10.22)

s+B(α0)∆F +
∂

∂α
(B(α)F)α=α0

F=F0

∆α = τ −B(α0)F0

Fmin − F0 ≤ ∆F ≤ Fmax − F0

αmin − α0 ≤ ∆α ≤ αmax − α0

∆αmin ≤ ∆α ≤ ∆αmax

(10.23)

The same can be done for the equality constraints in the solution proposed by Scibilia
and Skjetne (2012). Since most QP-solvers require the problem to be formulated as stated
in 10.12 when implemented, the equation is reformulated to standard notation.

10.3 Maneuvering

In Skjetne (2023), it is proposed that the thrust allocation problem can be solved as a
maneuvering problem. All equations in this part are taken from Skjetne (2023)

10.3.1 controller

Starting with creating the manifold using the weighted pseudoinverse

F (t) := {ξ ∈ Rp : θ s.t ξ = ξd(t, θ)} (10.24)

with
ξd(t, θ) = B†

W τd +Qθ (10.25)

Here θ is the parametrization variable, Q is the nullspace of B, and ξp is the particular
solution to ξ. The geometric task then becomes

lim
t→inf

|ξ − ξd(t, θ(t))| = 0 (10.26)

For the desired dynamic assignment, a convex cost function J(t, θ) is used, and the
dynamic task is then set to the dynamics of a continuous steepest descent.

θ̇ → ν(t, θ) := −γ ▽θ J(t, θ)
T (10.27)

The saturation constraints are then implemented as control barrier functions. Lim-
iting the maximum force each thruster can produce.

By setting

J(t, θ(t)) =
1

2
ξd(t, θ)

TWξd(t, θ) (10.28)

CHAPTER 10. THRUST ALLOCATION 49

the solution becomes a reference-filter, with inputs τd and τ̇d. The outputs are Fd,i = |ξi|
and αd,i = atan2(ξi,y, ξi,x), and dynamics

ξp := B†
W τ ξ̇p := B†

W τ̇ (10.29)

ξd,i := ξp,i +Qθ ξ̃ := ξi − ξd,i

J :=

m1∑
i=1

wi
2
ξTd,i + ξd,i +

m2∑
m1+1

wi
2
ξ2d,i Jθ = θT

m∑
i=1

wiQ
T
i Qi

V :=

m1∑
i=1

wi
2
ξ̃Ti ξ̃i +

m∑
m1+1

wi
2
ξ̃2i V θ := −

m∑
i=1

wiξ̃
T
i Qi

υ := −γ(Jθ)T

ai := ρ(ξTi ξi − F 2
i,max) bi := 2ξi

ki := −Ūi
ξ̃i

|ξ̃i|+ ϵ
+ ξ̇p,i +Qiυ

θ̇ = υ − µ(V θ)T

ξ̇i := ki,safe :=

ki ai + bTi ki ≤ 0

ki −
ai+b

T
i ki

bTi bi
bi ai + bTi ki > 0

where

B,B†
W Configuration matrix and weighted pseudo inverse (10.30)

Fi,max > 0 Saturation limit
W > 0 Weight matrix
γ > 0 steepest decent gain for J(t, θ)
µ > 0 Gradient update law gain µ > γ

ρ > 0 Safety gain to avoid saturation limits
Ūi > 0 rate limit
ϵ > 0 small parameter to avoid dividing by 0

Using another cost function, the angular rates of the azimuth thrusters can also
be constrained. A cost function can be created based on the dot product rule for a
two-dimensional vector.

Ji(ξi) = wi|ξi| − aTo ξi, wi ≥ 1 (10.31)

Here a0 = [cos(α0), sin(α0)] where α0 is the previous thruster angle. Note that the
gradient for this cost function does not exist for |ξ| = 0. The resulting reference filter is
the same, but with

J :=

m1∑
i=1

[
wi|ξd,i| − aT0,iξd,i

]
+

m∑
m1+1

wi|ξd,i| (10.32)

Jθ :=

m1∑
i=1

(
wi

ξTd,i
|ξd,i|+ ϵ

− aT0,i

)
Qi +

m∑
m1+1

(
wi

ξTd,i
|ξd,i|+ ϵ

)
Qi (10.33)

and requiring [w0, ..., wm1] ≥ 1

50 CHAPTER 10. THRUST ALLOCATION

10.4 Results and discussion

10.4.1 Constraints

The implemented thrust allocation algorithms have constraints, as seen in table 10.4.1.

Pseudoinverse w filtering QP maneuvering
Saturation constraint X X
Force rate constraint X
Angle constraint X
Angle rate constraint X X X

Table 10.4.1: Constraints for the different algorithms.

Different tests have been simulated to compare how each algorithm handles the var-
ious constraints.

Saturation

Starting with testing the saturation constraints. To test this, a τd with increasing force
in the yaw direction was chosen. The signal sent is τd = [0, t/5, 0]. This causes the
saturation of the bow thruster at around 12 seconds. In figure 10.4.2, we see that all
but the pseudoinverse algorithm limits its signals. The QP algorithms and the maneu-
vering algorithm handles this constraint differently. The Qp algorithms minimize the
error by applying more force to azimuth thrusters to account for the loss from the bow
thruster. The maneuvering algorithm follows the solution given by the pseudoinverse
and constrains the bow thruster. In figure 10.4.3, we can see that the QP algorithms
choose to run one thruster in reverse. Since the azimuth thruster can produce less force
in the reverse direction, the QP algorithm ends with all thrusters saturated. Also note
the change in angle at t = 0, as this is discussed later.

CHAPTER 10. THRUST ALLOCATION 51

Figure 10.4.1: Saturation constraint comparison tau

Figure 10.4.2: Saturation constraint comparison force of thrusters

52 CHAPTER 10. THRUST ALLOCATION

Figure 10.4.3: Saturation constraint comparison angles

CHAPTER 10. THRUST ALLOCATION 53

Rate constraints

To test the rate constraint capabilities of the algorithms, the signal

τd =

{
(2, 0, 0) if t < 5

(0, 2, 0) if t >= 5
(10.34)

was used. The commanded thrust vector causes the thrusters to rotate 90 degrees to
meet the desired force. The signal starts with 2[N] in surge due to the pseudoinverse and
maneuvering algorithms. In figure 10.4.2, we can see that if ξ = 0, the rate constraint
for the angle does not work. Due to the algorithms limiting the change in the x and y
directions of the decomposed force vectors. For ξ > 0, however, the angle rate constraint
works. In figure 10.4.5, we see that only the maneuvering algorithm limits the change
in force. The other algorithms make jumps that can cause wear on the components. We
can also see that the maneuvering algorithm performs better with the sudden change,
as the other algorithms get spikes in the commanded forces. In figure 10.4.6, we can see
that all algorithms limit the angle rate. Here we can also see that the rate constraint is
linear for the QP algorithms.

Figure 10.4.4: Rate constraints comparison tau

54 CHAPTER 10. THRUST ALLOCATION

Figure 10.4.5: Rate constraints comparison force of thruster

Figure 10.4.6: Rate constraints comparison angles

CHAPTER 10. THRUST ALLOCATION 55

Angle constraint

To test the angle constraints of the algorithms a τd = [2 cos(2π t
180), 2 sin(2π

t
180), 0] was

used. Creating a force with a length of 2[N] that slowly sweeps around the 360◦. The
thrusters have a maximum and minimum angle of ±180◦. If the commanded angle is
higher or lower than this, the thruster does a sweep to arrive at the opposite value. The
pseudoinverse and maneuvering do this, as seen in figure 10.4.9. It is worth noting that
the algorithms work continuously over this area, and the atan2 function at the end causes
this jump. It also explains why the rate constraints seem to not be working since it is a
small change in angle for the algorithms. The QP algorithms, however, do have angular
constraints. Causing the thrusters to be stuck at 180◦ which causes the errors seen in
figure 10.4.7. The algorithms use some time before changing the thrusters to reverse, as
seen in figure 10.4.8. This test will be in the two upcoming sections.

Figure 10.4.7: Angle constraint comparison tau

56 CHAPTER 10. THRUST ALLOCATION

Figure 10.4.8: Angle constraint comparison force of thrusters

Figure 10.4.9: Angle constraint comparison angle of thrusters

CHAPTER 10. THRUST ALLOCATION 57

10.4.2 Computation times

To compare the computational performance of the algorithm, the time for each iteration
of the algorithm was recorded for the angle constraint test. Figure 10.4.10 shows the time
for each iteration. The time for each iteration is acceptable for all of the algorithms. The
maneuvering algorithm is the fastest or least computationally heavy, closely followed by
the QP algorithm of Scibilla. They are almost twice as fast as the other QP algorithm
and the pseudoinverse.

Figure 10.4.10: Computational time for each iteration

58 CHAPTER 10. THRUST ALLOCATION

10.5 Realtime implementation

The setup from section 9.1 and the commanded force vector from the angle constraint
was used to test the functionality of the whole system. Using the force to PWM function
and the algorithms running on the raspberry pi. This is to show that the algorithms work
in real-time and verify that the force mapping is working. Figure 10.5.1 and figure 10.5.4
show the force created when the thruster does the 360◦ sweep at 90[s]. In figure 10.5.2
and 10.5.3, we can see the same plateau that arises from the constraint on the angles as
seen in figure 10.4.7. The thrust mapping performs quite well when looking at the forces
produced in the X and Y directions. There is, however, a significant moment. This
can be due to the thrust mapping and the force to PWM function. However, since this
large yaw moment was not observed during the basin trial, it could also be measurement
errors, which could be due to the lack of constraint in the front of the vessel.

Figure 10.5.1: Realtime implementation pseudoinverse

CHAPTER 10. THRUST ALLOCATION 59

Figure 10.5.2: Realtime implementation QP Johansen

Figure 10.5.3: Realtime implementation QP Scibilla

60 CHAPTER 10. THRUST ALLOCATION

Figure 10.5.4: Realtime implementation maneuvering

CHAPTER

ELEVEN

CONCLUSIONS & FURTHER WORK

11.1 Conclusion

11.1.1 Development of C/S Jonny

The new model is operational and works very well for the most part. The modular design
and control box means the model has few loose wires and components. The bow thruster
operates smoothly and with minimal vibrations. The rotation of the azimuth thrusters
also works very well, with precise movements. The azimuth thrusters have coarse control
of the produced force, with only 12 points of control in the positive direction and 6 points
in the reverse direction. This problem needs to be addressed to achieve optimal operation
of the new vessel.

11.1.2 Thrust mapping

The thrust mapping provides a good representation of the produced forces of the thrusters.
It takes into account losses due to thruster hull interactions. The algorithm to map forces
to control signals works well. Though, it can vary based on the voltage of the battery.
However, it can be beneficial to implement a low-level thrust controller, such as a shaft
speed or torque controller.

11.1.3 Thrust allocation

All of the thrust allocations were implemented and tested. They all work well and can
be implemented and run in real-time on the raspberry pi. The recommendation for the
rest of the fleet is to implement the maneuvering algorithm if no angle constraints are
needed. If angle constraints are needed, the recommendation is the QP algorithm of
Scibilla. Even though the two QP algorithms are very similar, this algorithm requires
less computational power, and is better at singularities avoidance.

61

62 CHAPTER 11. CONCLUSIONS & FURTHER WORK

11.2 Further work

There remains some work for CSJ to be finished.

• Improve the azimuth thrusters: the azimuth thrusters should be improved by
either

– Change thruster to one with a smaller diameter

– Install gears between the driveshaft coupling and motor. Such that the motor
could spin at higher speeds.

• Hydrodynamic analysis: Hydrodynamic analysis of CSJ was outside this project’s
scope. It should be performed to provide the necessary dynamics for a simulator
and an observer.

• Implement the rest of the nodes described in fig 5.4.1 such as:

– Observer

– Controller

– SimVessel

– Guidance

• Implement the thrust allocation algorithms for the rest of the Cyber
ship fleet

BIBLIOGRAPHY

Aeronaut (2022), ‘Jonny harbor tugboat’.
URL: https://aero-naut.de/produkt/jonny-hafenschlepper

Authority, N. M. (2023), ‘Bollard pull test procedure’.
URL: https://www.sdir.no/en/shipping/legislation/directives/bollard-pull-test-
procedure/

Bauer-Modelle (2022), ‘Bow thruster 28/32 x 180mm’.
URL: https://www.bauer-modelle.com/epages/BauerUwe46269592.sf/enGB/?ObjectPath =
/Shops/BauerUwe46269592/Products/702093

Bjørnø, J. (2016), Thruster-assisted position mooring of C/S Inocean Cat I Drillship,
MSc thesis, Norwegian Univ. Sci. & Tech., Trondheim, Norway.

Bjørnø, J. (2015), ‘Development of the c/s inocean cat i drillship model’.

Boats, C. M. (2022), ‘Cem schottel drive unit 70mm’.
URL: https://www.cornwallmodelboats.co.uk/acatalog/CEM070.htmlSID=1808

DFROBOT (2022), ‘Gravity i2c_hub’.
URL: https://www.dfrobot.com/product2179.html?gclid=CjwKCAiA%5C-
dCcBhBQEiwAeWidtdms1%5C_Lp9t8ijH1Pem6Px0xFyrLauoZtc2RfRzp0kJW3uK8nraDKPxoC1yAQAvD%5C_BwE

Digi-Key (2022), ‘Sen0250’.
URL: https://www.digikey.no/no/products/detail/dfrobot/SEN0250/9356335?s=N4IgTCBcDaIM4FMB2AGMBWFIC6BfIA

Distrelec, E. (2022), ‘815 - pca9685 16-kanalers 12-biters pwm-/servodriver, adafruit’.
URL: https://www.elfadistrelec.no/no/pca9685-16-kanalers-12-
biters-pwm-servodriver-adafruit-815/p/30091222?track=trueno-
cache=truemarketingPopup=false

EEPOWER (2023), ‘An intro to pulse-width modulation for control in power electronics’.
URL: https://eepower.com/technical-articles/an-intro-to-pulse-width-modulation-for-
control-in-power-electronics/

Elefun (2022a), ‘4s 8000mah -100c - gens ace ec5 bashing serie’.
URL: https://www.elefun.no/p/prod.aspx?v=54518

Elefun (2022b), ‘Dualsky eco 3520c v2 820kv 210gram’.
URL: https://www.elefun.no/p/prod.aspx?v=39078

Elefun (2022c), ‘Os oca-150 50a esc w/bec 2-6s’.
URL: https://www.elefun.no/p/prod.aspx?v=21059

63

64 BIBLIOGRAPHY

Elefun (2022d), ‘Os oma-5010-810kv bl .52 4t-size’.
URL: https://www.elefun.no/p/prod.aspx?v=23741

Elvenes, S. A., Midtun, E. and Kvebæk, M. L. (2023), ‘Development of the ”c/s voyager”
model’.

Fossen, T. I. (2011), Handbook of Marine Craft Hydrodynamics and Motion Control,
John Wiley & Sons Ltd.

Frederich, P. (2016), Constrained optimal thrust allocation for c/s inocean cat i drillship,
MSc thesis, Norwegian Univ. Sci. & Tech., Trondheim, Norway.

Idland, T. K. (2015), ‘Marine cybernetics vessel cs saucer’.

Johansen, T. A. and Fossen, T. I. (2013), ‘Control Allocation - A Survey’, Automatica
49, 1087–1103.

Johansen, T. A., Fossen, T. I. and Berge, S. P. (2004), ‘Constrained nonlinear control
allocation with singularity avoidance using sequential quadratic programming’, IEEE
Trans. Ctrl. Sys. Tech. 12(1), 211–216.

Johansen, T. A., Sørensen, A. J., Nordahl, O. J., Mo, O. and Fossen, T. I. (2007),
‘Experiences from hardware-in-the-loop (hil) testing of dynamic positioning and power
management systems’.

NTNU (2023), ‘Marine cybernetics teaching laboratory’.
URL: https://www.ntnu.edu/imt/lab/cybernetics

Pi, R. (2022), ‘Buy raspberry pi 4 model b’.
URL: https://www.raspberrypi.com/products/raspberrypi4modelb/

Robotis (2022a), ‘Dynamixel mx-28ar 6pcs bulk’.
URL: https://www.robotis.us/dynamixel-mx-28ar-6pcs-bulk/

Robotis (2022b), ‘U2d2’.
URL: https://www.robotis.us/u2d2/

RS-Components (2022a), ‘Huco bellows coupling, 20mm outside diameter, 5mm bore,
31mm length coupler’.
URL: https://no.rs-online.com/web/p/couplings/6932473

RS-Components (2022b), ‘Mean well dc-dc converter, 5v dc/ 3a output, 9.2 18 v dc
input, 15w, chassis moun’.
URL: https://no.rs-online.com/web/p/dc-dc-converters/0183821

Scibilia, F. and Skjetne, R. (2012), Constrained control allocation for vessels with az-
imuth thrusters, in ‘Proc. IFAC Conf. Manoeuvering and Contr. Marine Crafts’, Vol. 9,
IFAC, Arenzano, Italy.

Skjetne, R. (2023), Dp thruster configuration and thrust allocation, Technical note,
Norwegian Univ. Sci. & Tech., Trondheim, Norway.

Skjetne, R., Jørgensen, U. and Teel, A. R. (2011), Line-of-sight path-following along
regularly parametrized curves solved as a generic maneuvering problem, in ‘Proc.
IEEE Conf. Decision & Control’, Vol. 50th, Inst. Electrical and Electronics Engineers,
Orlando, USA.

BIBLIOGRAPHY 65

Skåtun, H. N. (2011), ‘Development of a dp system for cs enterprise i with voith schneider
thrusters’.

Sørensen, J. A. (2012), Marine Control Systems: Propulsion and Motion Control of
Ships and Ocean Structures, 2 edn, Norwegian Univ. Sci. & Tech., Trondheim, Norway.
Report UK-12-76.

stock gears, K. (2023), ‘Gear module’.
URL: https://khkgears.net/new/gear-module.html

Sørdalen, O. (1997), ‘Optimal thrust allocation for marine vessels’.

66 BIBLIOGRAPHY

APPENDICES

67

PSEUDO INVERSE WITH FILTERING

import time
import numpy as np
import math
from scipy.signal import butter, lfilter
import matplotlib.pyplot as plt

class pseudo:
def __init__(self):

self.pos_x = np.array([-0.425, -0.425, 0.37])
self.pos_y = np.array([0.07, -0.07, 0])
self.f_max = np.array([4.4, 4.4, 1.2])
self.type = np.array(["azi", "azi", "tunnel"])
self.num_thruster = 3
self.num_azi = 2
self.h = 0.1
self.delta_high = .2
self.delta_low = .01
self.lp1 = np.zeros((self.num_azi*2, 1))
self.lp2 = np.zeros((self.num_azi, 1))
self.Tfs = np.zeros((self.num_azi, 2))

def B(self, angles):
B = np.zeros((self.num_thruster, 3))
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
B[0][i] = np.cos(angles[i])
B[1][i] = np.sin(angles[i])
B[2][i] = self.pos_x[i] * np.sin(angles[i]) - self.pos_y[i] *

np.cos(angles[i])↪→

else:
B[0][i] = 0
B[1][i] = 1
B[2][i] = self.pos_x[i]

return B
def B_ext(self):

B = np.empty((3, 1))
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
array = np.empty((3,2))
array[0][0] = 1
array[1][0] = 0
array[2][0] = -self.pos_y[i]
array[0][1] = 0
array[1][1] = 1
array[2][1] = self.pos_x[i]
B = np.append(B,array,axis=1)

else:
array = np.empty((3, 1))

68

array[0][0] = 0
array[1][0] = 1
array[2][0] = self.pos_x[i]
B = np.append(B, array, axis=1)

B = np.delete(B,0,1)
return B

def pseudoinverse_ext(self, tau_cmd):
B = self.B_ext()
F = np.zeros((self.num_thruster, 1))
alpha = np.zeros((self.num_thruster, 1))
F_ext = np.matmul(np.linalg.pinv(B), tau_cmd)
counter = 0
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
F[i] = np.sqrt((F_ext[i + counter]) ** 2 + (F_ext[i + counter + 1]) **

2)↪→

alpha[i] = math.atan2(F_ext[i + counter + 1], F_ext[i + counter])
counter += 1

else:
F[i] = F_ext[i + counter]
alpha[i] = np.pi / 2

return F, F_ext, alpha

def projection(self, a, b):
if np.linalg.norm(b) == 0:

projection = 1
else:

projection = (np.dot(a, b) / (np.linalg.norm(b)))
return projection

def lowpass(self, data, cutoff, fs):
nyq = 0.5 * fs
temp = cutoff / nyq
b, a = butter(1, temp, btype="low", analog=False)
filterd_signal = lfilter(b, a, data)
return filterd_signal[-1]

def pseudoinverse_filtering(self,tau_cmd):
Tr = np.zeros((2,2))
Tds = np.zeros((2,2))
F, F_ext, alpha = self.pseudoinverse_ext(tau_cmd)
projection = np.zeros((2,1))
for i in range(0,self.num_azi):

a = np.zeros(2)
b = np.zeros(2)
a[0] = F_ext[2*i]
a[1] = F_ext[i*2+1]
b[0] = self.Tfs[i][0]
b[1] = self.Tfs[i][1]
projection[i]=self.projection(a,b)
Tds[i][0] = F_ext[2*i]
Tds[i][1] = F_ext[2*i+1]

self.lp1 = np.append(self.lp1, np.transpose([Tds.flatten()]), axis=1)
self.lp2 = np.append(self.lp2,projection,axis=1)
if len(self.lp2[0])>=50/self.h:

self.lp2 = np.delete(self.lp2,0,1)
self.lp1 = np.delete(self.lp1, 0, 1)

for i in range(0,self.num_azi):
if len(self.lp1[0])>1:

Tr[i][0] = self.lowpass(self.lp1[i*2].flatten(),1,100)
Tr[i][1] = self.lowpass(self.lp1[i*2+1].flatten(), 1, 100)

for i in range(0, self.num_azi):
if len(self.lp2[0]) > 1:

sign = np.sign(self.lowpass(self.lp2[i].flatten(),1,100))

69

self.Tfs[i][0] = Tr[i][0]*sign
self.Tfs[i][1] = Tr[i][1]*sign

alpha_temp = np.zeros((3,1))
for i in range(0,self.num_azi):

if self.type[i] == 'azi':
alpha_temp[i] =math.atan2(self.Tfs[i][1],self.Tfs[i][0])

alpha_temp[2] = np.pi/2
return alpha_temp

def thrustallocation(self,tau_cmd):
alpha_f = self.pseudoinverse_filtering(tau_cmd)
U,S,V = np.linalg.svd(self.B(alpha_f))
S_delta = np.zeros((3,3))
for i in range(0,len(S_delta)):

if S[i]/S[0]>self.delta_high:
S_delta[i][i] = 1/S[i]

elif self.delta_low<=S[i]/S[0]<=self.delta_high:

S_delta[i][i]=1/(S[1]*self.delta_high)
elif S[i]/S[0]<self.delta_low:

S_delta[i][i] = 0
F = V.transpose()@S_delta@U.transpose()@tau_cmd
F_temp = np.zeros((len(F),1))
for i in range(0,len(F)):

F_temp[i] = F[i]

return F_temp, alpha_f

70

QP JOHANSEN

import matplotlib.pyplot as plt
import qpsolvers as solve_qp

class thrustallocation():
def __init__(self):

self.pos_x = np.array([-0.425, -0.425, 0.37])
self.pos_y = np.array([0.07, -0.07, 0])
self.f_max = np.array([3.2, 3.2, 1.17])
self.f_min = np.array([-1.65, -1.65, -0.73])
self.alpha_max =np.array([np.pi,np.pi])
self.alpha_min = np.array([-np.pi,-np.pi])
self.alpha_rate_max = np.array([np.pi / 2, np.pi / 2])
self.alpha_rate_min = np.array([-np.pi / 2, -np.pi / 2])
self.type = np.array(["azi", "azi", "tunnel"])
self.num_thruster = 3
self.num_azi = 2

#tuning parameters
self.h = .01
self.P = .2
self.omega = .9
self.Q = 2
self.alpha_0 = np.zeros(self.num_thruster)
self.u_o = np.zeros(self.num_thruster)

def B(self, angles):
B = np.zeros((self.num_thruster, 3))

for i in range(0, self.num_thruster):
if self.type[i] == "azi":

B[0][i] = np.cos(angles[i])
B[1][i] = np.sin(angles[i])
B[2][i] = self.pos_x[i] * np.sin(angles[i]) - self.pos_y[i] *

np.cos(angles[i])↪→

else:
B[0][i] = 0
B[1][i] = 1
B[2][i] = self.pos_x[i]

return B

def B_derived(self, angles, u_0):
B = np.zeros((3, self.num_azi))

for i in range(0, self.num_azi):
if self.type[i] == "azi":

B[0][i] = -u_0[i] * np.sin(angles[i])
B[1][i] = u_0[i] * np.cos(angles[i])
B[2][i] = u_0[i] * (self.pos_x[i] * np.cos(angles[i]) + self.pos_y[i] *

np.sin(angles[i]))↪→

71

return B
def singularity_term_Johansen(self,alpha_0):

B = self.B(alpha_0)
term = 0.1/(1+np.linalg.det(B*B.transpose()))

return term
def thrustallocation(self, tau):

self.alpha_0[2] = np.pi / 2
W = self.P
Q = self.Q * np.identity(self.num_thruster)
omega = self.omega * np.identity(self.num_azi)
step =self.h
H = np.zeros((2 * self.num_thruster + self.num_azi, 2 * self.num_thruster +

self.num_azi))↪→

h = np.zeros(2 * self.num_thruster + self.num_azi)

for i in range(0, self.num_thruster):
H[i, i] = W * (3 * self.u_o[i] ** 2 / (4 * np.abs(self.u_o[i]) ** (5 / 2) +

0.00001))↪→

h[i] = W * (3 * self.u_o[i]) / (2 * np.sqrt(np.abs(self.u_o[i])) + 0.00001)
H[i + self.num_thruster, i + self.num_thruster] = Q[i, i]

for i in range(0, self.num_azi):
H[i + 2 * self.num_thruster, i + 2 * self.num_thruster] = omega[i, i]

term = self.singularity_term_Johansen(self.alpha_0)
term1 = self.singularity_term_Johansen(self.alpha_0 + step)

h[i + 2 * self.num_thruster] = (term1 - term) / step
A = np.zeros((3, 2 * self.num_thruster + self.num_azi))
B = self.B(self.alpha_0)
b = tau - B @ self.u_o
B_der = self.B_derived(self.alpha_0, self.u_o)

for i in range(0, self.num_thruster):
A[0][i] = B[0][i]
A[1][i] = B[1][i]
A[2][i] = B[2][i]

for i in range(self.num_thruster, self.num_thruster * 2):
A[i - self.num_thruster][i] = 1

for i in range(0, self.num_azi):
A[0][i + 2 * self.num_thruster] = B_der[0][i]
A[1][i + 2 * self.num_thruster] = B_der[1][i]
A[2][i + 2 * self.num_thruster] = B_der[2][i]

G = np.zeros(2 * self.num_thruster + self.num_azi)
g = np.zeros(1)
for i in range(0, self.num_thruster):

saturation limits
g = np.vstack([g, self.f_max[i] - self.u_o[i]])
g = np.vstack([g, -self.f_min[i] + self.u_o[i]])
if self.type[i] == "azi":

holder = np.zeros((6, 2 * self.num_thruster + self.num_azi))

holder[2][self.num_thruster * 2 + i] = 1
holder[3][self.num_thruster * 2 + i] = -1
holder[4][self.num_thruster * 2 + i] = 1
holder[5][self.num_thruster * 2 + i] = -1

g = np.vstack([g, self.alpha_max[i] - self.alpha_0[i]])

72

g = np.vstack([g, -self.alpha_min[i] + self.alpha_0[i]])
g = np.vstack([g, self.alpha_rate_max[i] * step])
g = np.vstack([g, -self.alpha_rate_min[i] * step])

else:
holder = np.zeros((2, 2 * self.num_thruster + self.num_azi))

holder[0][i] = 1
holder[1][i] = -1
G = np.vstack([G, holder])

x = solve_qp.solve_qp(2*H, h, G, g, A, b, solver="osqp")

if x is None:
print("Feil")

else:
for i in range(0, self.num_thruster):

self.u_o[i] += x[i]
for i in range(0, self.num_azi):

self.alpha_0[i] += x[self.num_thruster * 2 + i]

F_temp = np.zeros((3, 1))
alpha_temp = np.zeros((3, 1))
for i in range(0, self.num_thruster):

if self.type[i] == 'azi':
F_temp[i] = self.u_o[i]
alpha_temp[i] = self.alpha_0[i]

else:
F_temp[i] = self.u_o[i]
alpha_temp[i] = np.pi / 2

return F_temp, alpha_temp

def singularity_term_Johansen(self, alpha_0):
B = self.B(alpha_0)
term = 0 / (1 + np.linalg.det(B * B.transpose()))
return term

73

QP SCIBILLA

import time
import numpy as np
import matplotlib.pyplot as plt
import qpsolvers as solve_qp

class thrust_allocation():
def __init__(self):

self.pos_x = np.array([-0.425, -0.425, 0.37])
self.pos_y = np.array([0.07, -0.07, 0])
self.f_max = np.array([3.2, 3.2, 1.17])
self.f_min = np.array([-1.65,-1.65,-0.73])
self.alpha_max =np.array([np.pi,np.pi])
self.alpha_min = np.array([-np.pi,-np.pi])
self.alpha_rate_max = np.array([np.pi/2,np.pi/2])
self.alpha_rate_min = np.array([-np.pi/2,-np.pi/2])
self.type = np.array(["azi", "azi", "tunnel"])
self.num_thruster = 3
self.num_azi = 2

#tuning parameters
self.h = 0.01
self.P =0.1
self.omega = .9
self.Q = 2
self.P_pluss = 0.1
self.omega_pluss =.4
self.Q_pluss =.5

self.alpha_0 = np.zeros(self.num_thruster)
self.u_o = np.zeros(self.num_thruster)
self.alpha_0_plus = np.zeros(self.num_thruster)
self.u_o_plus = np.zeros(self.num_thruster)
self.F_avg = np.zeros((1, 3))
self.tau_0 = np.zeros(3)

def B(self,angles):
B = np.zeros((self.num_thruster,3))

for i in range(0,self.num_thruster):
if self.type[i] == "azi":

B[0][i] = np.cos(angles[i])
B[1][i] =np.sin(angles[i])
B[2][i] =self.pos_x[i]*np.sin(angles[i])-self.pos_y[i]*np.cos(angles[i])

else:
B[0][i] = 0
B[1][i] = 1
B[2][i] = self.pos_x[i]

return B

74

def B_derived(self,angles,u_0):
B = np.zeros((3,self.num_azi))

for i in range(0, self.num_azi):
if self.type[i] == "azi":

B[0][i] = -u_0[i]*np.sin(angles[i])
B[1][i] = u_0[i]*np.cos(angles[i])
B[2][i] = u_0[i]*(self.pos_x[i] * np.cos(angles[i]) + self.pos_y[i] *

np.sin(angles[i]))↪→

return B

def Qp_scibilla(self, tau):
m = (self.num_thruster + self.num_azi + 3)
H = np.zeros((2 * m, 2 * m))
h = np.zeros((2 * m))
A = np.zeros((6, 2 * m))
b = np.zeros((1, 1))
step = self.h
G = np.zeros((1, 2 * m))
g = np.zeros((1, 1))

P = self.P * np.identity(self.num_thruster)
Q = self.omega* np.identity(self.num_azi)
omega = self.omega * np.identity(3)
P_forward = self.P_pluss * np.identity(self.num_thruster)
Q_forward = self.Q_pluss * np.identity(self.num_azi)
omega_forward = self.omega_pluss * np.identity(3)

horizon = 5/self.h
tau_plus = np.zeros(3)

setting up the cost matrix
H[0:len(P), 0:len(P)] += P
H[len(P):len(P) + len(Q), len(P):len(P) + len(Q)] += Q
H[len(P) + len(Q):m, len(P) + len(Q):m] += omega
H[m:len(P_forward) + m, m:len(P_forward) + m] += P_forward
H[len(P_forward) + m:len(P_forward) + len(Q_forward) + m,
len(P_forward) + m:len(P_forward) + len(Q_forward) + m] += Q_forward
H[len(P_forward) + m + len(Q_forward):2 * m, len(P_forward) + len(Q_forward) +

m:2 * m] += omega_forward↪→

setting up the linear cost matrix
h[0:self.num_thruster] += 2 * self.P * self.u_o

setting up tau+
self.F_avg = np.r_[self.F_avg, [tau]]

if len(self.F_avg) > horizon:
self.F_avg = np.delete(self.F_avg, 0, axis=0)

X, Y, psi = 0., 0., 0.
for i in range(0, len(self.F_avg)):

X += self.F_avg[i][0]
Y += self.F_avg[i][1]
psi += self.F_avg[i][2]
if i == len(self.F_avg) - 1:

tau_plus[0] = 1.3 * X / (i + 1)
tau_plus[1] = 1.3 * Y / (i + 1)
tau_plus[2] = 1.3 * psi / (i + 1)

constraints
Gx<=g
for i in range(0, self.num_thruster):

75

if self.type[i] == "azi":
G_holder = np.zeros((12, 2 * m))
g_holder = np.zeros((12, 1))

else:
G_holder = np.zeros((4, 2 * m))
g_holder = np.zeros((4, 1))

for x in range(0, int(len(G_holder) / 2)):

fmax
if x == 0:

G_holder[2 * x][i] = 1
G_holder[2 * x + 1][i] = -1
g_holder[2 * x] = self.f_max[i] - self.u_o[i]
g_holder[2 * x + 1] = -self.f_min[i] + self.u_o[i]

fmax +
elif x == 1:

G_holder[2 * x][m + i] = 1
G_holder[2 * x + 1][m + i] = -1
g_holder[2 * x] = self.f_max[i] - self.u_o_plus[i]
g_holder[2 * x + 1] = -self.f_min[i] + self.u_o_plus[i]

alpha min max
elif x == 2:

G_holder[2 * x][self.num_thruster + i] = 1
G_holder[2 * x + 1][self.num_thruster + i] = -1
g_holder[2 * x] = self.alpha_max[i] - self.alpha_0[i]
g_holder[2 * x + 1] = -self.alpha_min[i] + self.alpha_0[i]

alpha rate min max
elif x == 3:

G_holder[2 * x][self.num_thruster + i] = 1
G_holder[2 * x + 1][self.num_thruster + i] = -1
g_holder[2 * x] = self.alpha_rate_max[i] * step
g_holder[2 * x + 1] = -self.alpha_rate_min[i] * step

alpha+ min max
elif x == 4:

G_holder[2 * x][self.num_thruster + m + i] = 1
G_holder[2 * x + 1][self.num_thruster + m + i] = -1
g_holder[2 * x] = self.alpha_max[i] - self.alpha_0_plus[i]
g_holder[2 * x + 1] = -self.alpha_min[i] + self.alpha_0_plus[i]

alpha+ rate min max
elif x == 5:

G_holder[2 * x][self.num_thruster + m + i] = 1
G_holder[2 * x + 1][self.num_thruster + m + i] = -1
g_holder[2 * x] = self.alpha_rate_max[i] * step
g_holder[2 * x + 1] = -self.alpha_rate_min[i] * step

G = np.append(G, G_holder, axis=0)
g = np.append(g, g_holder, axis=0)

B = self.B(self.alpha_0)
b = np.append(b, tau - B @ self.u_o)
B_der = self.B_derived(self.alpha_0, self.u_o)

for i in range(0, self.num_thruster):
A[0][i] = B[0][i]
A[1][i] = B[1][i]
A[2][i] = B[2][i]

for i in range(m - self.num_thruster, m):
A[i - self.num_thruster - self.num_azi][i] = 1

for i in range(0, self.num_azi):
A[0][i + self.num_thruster] = B_der[0][i]
A[1][i + self.num_thruster] = B_der[1][i]
A[2][i + self.num_thruster] = B_der[2][i]

76

B = self.B(self.alpha_0_plus)
b = np.append(b, tau_plus - B @ self.u_o_plus)
b = np.delete(b, 0)
B_der = self.B_derived(self.alpha_0_plus, self.u_o_plus)

for i in range(0, self.num_thruster):
A[3][i + m] = B[0][i]
A[4][i + m] = B[1][i]
A[5][i + m] = B[2][i]

for i in range(m - self.num_thruster, m):
A[3 + i - self.num_thruster - self.num_azi][i + m] = 1

for i in range(0, self.num_azi):
A[3][i + self.num_thruster + m] = B_der[0][i]
A[4][i + self.num_thruster + m] = B_der[1][i]
A[5][i + self.num_thruster + m] = B_der[2][i]

x = solve_qp.solve_qp(2*H, h, G, g, A, b, solver="quadprog")

if x is None:
print("feil")
return 0, 0

else:
for i in range(0, self.num_thruster):

self.u_o[i] += x[i]
self.u_o_plus[i] += x[i + m]

for i in range(0, self.num_azi):
self.alpha_0[i] += x[self.num_thruster + i]
self.alpha_0_plus[i] += x[m + self.num_thruster + i]

F_temp = np.zeros((3, 1))
alpha_temp = np.zeros((3, 1))
for i in range(0, self.num_thruster):

if self.type[i] == 'azi':
F_temp[i] = self.u_o[i]
alpha_temp[i] = self.alpha_0[i]

else:
F_temp[i] = self.u_o[i]
alpha_temp[i] = np.pi / 2

return F_temp, alpha_temp

77

MANUVERING

import time
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.linalg import null_space
class maneuvering:

def __init__(self):
import time
#------- physical properties--------
self.pos_x = np.array([-0.425, -0.425, 0.37])
self.pos_y = np.array([0.07, -0.07, 0])
self.f_max = np.array([3.2, 3.2, 1.17])
self.type = np.array(["azi", "azi", "tunnel"])
self.num_thruster =3
self.num_azi =2
self.h = 0.01
#Tuning parameters
self.weighting = np.array([1.2, 1.2, 1])
self.gamma = 0.5
self.rho = 1
self.U = .6
self.epsilon = 0.001
self.mu = 1

#arrays for holding values
self.tau_0 = np.zeros(3)
self.tau_derr = np.zeros(3)
self.alpha_0 = np.zeros(self.num_thruster)
self.theta = np.zeros(self.num_azi)
self.xi = np.zeros(self.num_thruster + self.num_azi)

def B(self,angles):
B = np.zeros((self.num_thruster,3))

for i in range(0,self.num_thruster):
if self.type[i] == "azi":

B[0][i] = np.cos(angles[i])
B[1][i] =np.sin(angles[i])
B[2][i] =self.pos_x[i]*np.sin(angles[i])-self.pos_y[i]*np.cos(angles[i])

else:
B[0][i] = 0
B[1][i] = 1
B[2][i] = self.pos_x[i]

return B
def B_ext(self):

B = np.empty((3, 1))
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
array = np.empty((3,2))
array[0][0] = 1

78

array[1][0] = 0
array[2][0] = -self.pos_y[i]

array[0][1] = 0
array[1][1] = 1
array[2][1] = self.pos_x[i]
B = np.append(B,array,axis=1)

else:
array = np.empty((3, 1))
array[0][0] = 0
array[1][0] = 1
array[2][0] = self.pos_x[i]
B = np.append(B, array, axis=1)

B = np.delete(B,0,1)
return B

def weighted_pseudoinverse(self, weighting):
B = self.B_ext()
p = self.num_thruster + self.num_azi
W = np.zeros(1)
for i in range(0, len(weighting)):

if self.type[i] == "azi":
W = np.append(W, weighting[i])
W = np.append(W, weighting[i])

else:
W = np.append(W, weighting[i])

W = np.delete(W, 0)
W = np.linalg.inv(np.diag(W))

return W @ B.transpose() @ np.linalg.inv(B @ W @ B.transpose())
def J_theta(self, theta, w, Q):

J_holder = 0
counter = 0
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
Q_temp = np.array([Q[counter], Q[counter + 1]])
J_holder += w[i] * Q_temp.transpose() @ Q_temp
counter += 2

else:
J_holder += w[i] * Q[counter].transpose() @ Q[counter]
counter += 1

return theta.transpose() @ J_holder
def J_theta_azi_rate(self, w, xi_d, Q, alpha_0, epsilon):

J_holder = 0
counter = 0
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
a_0 = np.array([np.cos(alpha_0[i]), np.sin(alpha_0[i])])
Q_temp = np.array([Q[counter], Q[counter + 1]])
length = np.sqrt(xi_d[counter] ** 2 + xi_d[counter + 1] ** 2)
xi_d_temp = np.array([xi_d[counter], xi_d[counter + 1]])
J_holder += (w[i] * (xi_d_temp.transpose()) / (length + epsilon) -

a_0.transpose()) @ Q_temp↪→

counter += 2
else:

J_holder += w[i] * (xi_d[counter]) / (np.abs(xi_d[counter]) + epsilon) *
Q[counter]↪→

counter += 1

return J_holder
def V_theta(self, w, xi_diff, Q):

V_theta = 0
counter = 0

79

for i in range(0, self.num_thruster):

if self.type[i] == "azi":
Q_temp = np.array([Q[counter], Q[counter + 1]])
xi_temp = np.array([xi_diff[counter], xi_diff[counter + 1]])
V_theta += -w[i] * xi_temp.transpose() @ Q_temp
counter += 2

else:
V_theta += -w[i] * xi_diff[i] * Q[i]
counter += 1

return V_theta
def xi_d(self, xi_p, Q, theta):

xi_d = np.zeros(self.num_thruster + self.num_azi)
counter = 0
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
xi_temp = np.array([xi_p[counter], xi_p[counter + 1]])
Q_temp = np.array([Q[counter], Q[counter + 1]])
temp = xi_temp + Q_temp @ theta
xi_d[counter] = temp[0]
xi_d[counter + 1] = temp[1]
counter += 2

else:
xi_d[counter] = xi_p[counter] + Q[counter] @ theta
counter += 1

return xi_d
def tau_derived(self, tau, r):

self.tau_derr[0] = (1 - r) * self.tau_derr[0] + r * (tau[0] - self.tau_0[0])
self.tau_derr[1] = (1 - r) * self.tau_derr[1] + r * (tau[1] - self.tau_0[1])
self.tau_derr[2] = (1 - r) * self.tau_derr[2] + r * (tau[2] - self.tau_0[2])
self.tau_0 = tau
return self.tau_derr

def thrustallocation(self, tau):
r = 0.7
tau_dot = self.tau_derived(tau, r)
B = self.weighted_pseudoinverse(self.weighting)
Q = null_space(self.B_ext())
xi_p = B@tau

xi_p_dot = B@tau_dot
theta = self.theta
xi_d = self.xi_d(xi_p, Q, theta)

xi_diff = self.xi - xi_d
#J_theta = self.J_theta(theta, self.weighting, Q)
J_theta = self.J_theta_azi_rate(self.weighting, xi_d, Q, self.alpha_0,

self.epsilon)↪→

V_theta = self.V_theta(self.weighting, xi_diff, Q)
nu = -self.gamma * J_theta.transpose()

a = np.zeros(self.num_thruster)
b = np.zeros(self.num_thruster + self.num_azi)

counter = 0
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
xi_temp = np.array([self.xi[counter], self.xi[counter + 1]])
a[i] = self.rho * (xi_temp.transpose() @ xi_temp - self.f_max[i] ** 2)
b[counter] = 2 * xi_temp[0]
b[counter + 1] = 2 * xi_temp[1]
counter += 2

80

else:
a[i] = self.rho * (self.xi[counter] * self.xi[counter] - self.f_max[i]

** 2)↪→

b[counter] = 2 * self.xi[counter]
counter += 1

counter = 0
k = np.zeros(self.num_thruster + self.num_azi)
k[0] = 1

for i in range(0, self.num_thruster):
if self.type[i] == "azi":

xi_temp = np.array([xi_diff[counter], xi_diff[counter + 1]])
xi_temp_dot = np.array([xi_p_dot[counter], xi_p_dot[counter + 1]])
xi_temp_len = np.sqrt(xi_temp[0] ** 2 + xi_temp[1] ** 2) + self.epsilon
Q_temp = np.array([Q[counter], Q[counter + 1]])

holder = -self.U * (xi_temp / xi_temp_len) + xi_temp_dot + Q_temp @ nu
k[counter] = holder[0]
k[counter + 1] = holder[1]
counter += 2

else:
xi_temp_len = np.sqrt(xi_diff[counter] ** 2)
k[counter] = -self.U * (xi_diff[counter] / (xi_temp_len + self.epsilon))

+ xi_p_dot[counter] + Q[counter] @ nu↪→

counter += 1

counter = 0
for i in range(0, self.num_thruster):

if self.type[i] == "azi":
b_temp = np.array([b[counter], b[counter + 1]])
k_temp = np.array([k[counter], k[counter + 1]])
if a[i] + b_temp.transpose() @ k_temp <= 0:

self.xi[counter] += k[counter] * self.h
self.xi[counter + 1] += k[counter + 1] * self.h

else:
temp = (a[i] + b_temp.transpose() @ k_temp) / (b_temp.transpose() @

b_temp) * b_temp↪→

self.xi[counter] += (k[counter] - temp[0]) * self.h
self.xi[counter + 1] += (k[counter + 1] - temp[1]) * self.h

counter += 2
else:

if float(a[i] + b[counter] * k[counter]) <= 0:
self.xi[counter] += k[counter] * self.h

else:
temp = (a[i] + b[counter] * k[counter]) / (b[counter] * b[counter])

* b[counter]↪→

self.xi[counter] += (k[counter] - temp) * self.h
counter += 1

self.theta += (nu - self.mu * V_theta.transpose()) * self.h

counter = 0
F = np.zeros((self.num_thruster, 1))

for i in range(0, self.num_thruster):
if self.type[i] == "azi":

F[i] = np.sqrt(self.xi[counter] ** 2 + self.xi[counter + 1] ** 2)
self.alpha_0[i] = math.atan2(self.xi[counter + 1], self.xi[counter])
counter += 2

else:
F[i] = self.xi[counter]
counter += 1

temp = np.zeros((self.num_thruster, 1))

81

temp[0] = self.alpha_0[0]
temp[1] = self.alpha_0[1]
return F, temp

82

B - PARTS

this is section is directly taken from Elvenes et al. (2023)

Acquisition and assembling

Equipment

The parts were chosen with Robert Opland’s help and were selected based on quality
and a desire to standardize drivers in the MC-Lab. Hence, the CSAD components were
chosen as a reference, especially the controller boards, such as the ESC, servo controller,
and IMU. The following is a description of all the parts chosen.

Hull

As required, Jonny Harbor Tugboat model from Aeronaut was provided (Aeronaut
(2022)). The kit includes numerous functional and moving elements, including a towing
winch, a headlight, and a fire monitor. These functionalities have been ignored in the
building of CSV as they are not relevant for the intended use. The hull is a 1:32 scale
model of a tug boat with hull parameters described below.

Hull parameters.

Height 675 [mm]
Width 308 [mm]
length 990 [mm]
draft 110 [mm]

The model is intended to be used with shaft propellers and rudders but includes a
mounting plate for conversion to schottle drive. This conversion kit, however, is not
compatible with our selection of motors and azimuth thrusters but is used as a guide to
making a mounting plate for the thrusters later.

Aziumth thrusters

The azimuth thrusters chosen are the "CEM Schottle Drive Unit 70mm" from "Cornwall
model boat" (Boats (2022)) illustrated below.

83

Schottle Drive. Courtesy: Boats (2022).

This thruster has an angle range of 180◦. The azimuth thruster will be converted to
continuous 360◦ capabilities, and also a more direct drive coupling with the motor before
installation as discussed.

Bow thruster

For the bow thruster, the "Bow thruster 28/32 x 180mm" from Bauer-Modelle was
selected (Bauer-Modelle (2022)). This was selected for its size and quality since it is in
all brass. It also provides the option to change and choose the desired motor. The figure
below illustrates the bow thruster.

Bow thruster. Courtesy: Bauer-Modelle (2022).

DC motors

For the DC motors, two types of brushless motors were selected, one type for the azimuth
thrusters and one for the bow thruster. For the azimuth thrusters, the " OS OMA-5010-
810kv" was selected for its "lower speed" and higher torque configuration illustrated
below (Elefun (2022d)).

84

Aziumth motor. Courtesy: Elefun (2022d).

For the bow thruster, the " Dualsky ECO 3520C V2 820KV 210gram" (Elefun
(2022b)) was selected. Compared to the OS motor it has a higher speed and lower torque
since this is more suitable for the smaller higher speed propeller of the bow thruster. The
motor for the bow thruster is illustrated below.

Dualsky ECO 3520C V2 820KV, Courtesy: Elefun (2022b).

ESC

Since the power required to drive the motors is higher than what the Raspberry Pi
can provide, ESCs are needed. This amplifies the Raspberry Pi’s PWM (Pulse Width
Modulation) signal. The "OS OCA-150" is the chosen ESC since it is used in CSAD and
compatible with the motors. The figure below illustrates the chosen ESCs.

Electronic Speed Controller. Courtesy: Elefun (2022c).

PWM breakout board

Since the Raspberry Pi only has two PWM pins, a PWM breakout board is needed.
The board chosen is the "815 - PCA9685 16-kanalers 12-biters PWM-/servodriver" from
Adafruit (Distrelec (2022)) the PWM boards take an Inter-Integrated Circuit (I2C) con-
nection from the Raspberry Pi and enables an output of up to 16 PWM signals. This
is the same board as in CSAD. the figure below illustrates the chosen PWM breakout
board.

85

PWM breakout board. Courtesy: Distrelec (2022).

Driveshaft coupling

Driveshaft couplings were needed to connect the motors with the azimuths and bow
thrusters. A driveshaft coupling connects the two shafts while having the ability to flex
to reduce vibrations and account for small misalignments of the two shafts. The figure
below illustrates the chosen driveshafts.

Driveshaft coupling. Courtesy: RS-Components (2022a).

Servos

For the servos, the Mx series from Robotis was selected. These are high-quality and
precision servos. The MX-28R (Robotis (2022a)) was selected. These servos have a
precision of 0.088◦ with a torque capacity of 3.1[Nm], and the ability to be daisy chained.
The MX-28 is smaller than the MX-106 found in CSAD, but these servos are sufficient
for the intended application. However, the drivers are the same for both models. The
figure below shows the selected servo.

86

MX-28. Courtesy:Robotis (2022a).

U2D2

The U2D2 (Robotis (2022b)) board is required to control the servos. This board connects
to the Raspberry Pi through USB and allows daisy chaining of the servos. However, it
cannot provide the necessary power, so the servos need to be connected to an external
12V power source. This board is also the same as the one in CSAD so the drivers will
be similar. The figure below shows the U2D2.

U2D2. Courtesy:Robotis (2022b).

IMU

The IMU "Gravity: BMI160"Digi-Key (2022) is selected. This is a 3.6V 6-axis inertial
motion sensor that is small and requires little energy (< 1[mA]). It has programmable
ranges and frequencies and runs on an I2C bus enabling daisy chaining. The figure below
shows the chosen IMU.

87

IMU. Courtesy:Digi-Key (2022).

I2C breakout board

Connecting all the necessary IMUs directly to the Raspberry Pi is possible. However,
to decrease the number of cables and increase plug-and-play capabilities, daisy chaining
of the IMUs is desired. One I2C board for each IMU was ordered to enable this, pro-
viding the ability for daisy chaining. The breakout board chosen was the "Gravity: I2C
HUB"(DFROBOT (2022)) as illustrated below.

I2C breakout board. Courtesy DFROBOT (2022).

DC-to-DC converter

Since the Raspberry Pi requires 5[V] 3[A] a DC-to-DC converter is required. Previously
in the other model, a car adapter was used. However, this does not work as optimal.
Therefore, the "Mean Well DC-DC Converter"(RS-Components (2022b)) was selected.
This converter has an input range of 9.2-18[V], and a variable output of 4.75-5.5V[V],
with a current of 3[A]. The selected converter is illustrated below

DC-DC converter. Courtesy RS-Components (2022b).

Battery

The battery selected is the " 4s 8000mAh -100C - Gens Ace EC5 Bashing Series" (Elefun
(2022a)). This battery has a voltage of 14.8, 8000[mAh] and a weight of 737[g]. 2 of these
is planned to be connected in parallel, providing a total of 16000 [mAh]. This should
be sufficient to power the model for a long time. In total 4 batteries were ordered of
the model illustrated in the figure below. Enabling quick exchange for charged batteries,
and reducing the downtime for the model.

88

Battery. Courtesy Elefun (2022a).

Raspberry Pi

The model is controlled through a Raspberry Pi 4 model B (Pi (2022)). with specifica-
tions:

• Processor: Quad-core Cortex-A72 @ 1.5 GHz.

• RAM: 8 GB LPDDR4-3200 SDRAM

• Power: 5V via USB-C

The Raspberry Pi enables connections through, GPIO, Bluetooth, USB and WiFi. This
enables each component to be controlled from the Raspberry Pi. The Bluetooth con-
nection is used for connecting a DualShock controller, and WiFi for remote SSH and
transfer of data. the figure below isslustrates the Rapsberry PI.

Raspberry Pi courtesy. Pi (2022).

89

C - ATTACHMENTS

Included in the rapport is an attachment with the structure:

• 3D files

– STL files (for all 3D modeled components)

– Freecad files (for all 3D modeled components)

• Code

– Force to PWM

∗ The F2PWM code

– Forcemapping

∗ The code to calculate the force measurements from .mat files

– Thrustallocations

∗ Pseudo filtering
∗ QP Scibilla
∗ Qp Johansen
∗ manuvering
∗ code for the calculation and plot for the real time check

• – Thrust mapping starboard: all the .bin files for the measurements of the
starboard thrust mapping

– thrust map bow: all the .bin files for the measurements of the bow thruster

– circle test: all the .bin files for the test of real time implementation

• video

– video of basin trial in body frame

– video of basin trial in basin frame

– video of max speed of the vessel

• Pi: containing a copy of the code on the pi

90

