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ABSTRACT

This thesis introduces innovative methodologies for vehicle-assisted bridge health mon-
itoring, aiming to improve maintenance procedures of ageing infrastructure, a critical
concern for transport network owners. By taking advantage of advancements in sens-
ing technology and the increasing interconnectivity between vehicles and infrastructure,
these methodologies focus on developing an automated bridge assessment method that
efficiently evaluates the current condition of bridge structures. This approach enables
more accurate and timely maintenance decisions.

The primary objective of this thesis is to create an automated bridge assessment
framework for existing bridges by harnessing the synergy between sensors installed on
structures and signals transmitted by passing vehicles. By gathering comprehensive in-
formation from various sources, including vehicles and the bridge itself, and fusing this
data using deep learning techniques, the framework efficiently evaluates the current con-
dition of bridge structures, facilitating more precise and prompt maintenance decisions.

The thesis comprises several studies investigating deep learning techniques, such as
deep autoencoders (DAE) and probabilistic temporal autoencoders (PTAE), for extract-
ing features and capturing temporal relationships in the data. This enables accurate
identification and quantification of potential damage in bridge structures.

The first study (Paper IA IB) examines an indirect bridge monitoring system using
vertical acceleration responses from a fleet of vehicles passing over a healthy bridge.
This study’s findings reveal that the error in signal reconstruction from the trained DAE
is sensitive to damage, considering the distribution of results from multiple separate
vehicle-crossing events. The proposed method proves effective in detecting damage under
operational conditions and demonstrates potential as a new tool for cost-effective bridge
health monitoring.

The second study introduces a methodology for assessing bridge conditions using
a PTAE and multi-sensor data from a fixed sensing framework, collected during train
crossings. The study’s results indicate that the proposed method can detect damage
with a limited number of sensors, making it a valuable approach to enhance bridge
safety. An Exponentially Weighted Moving Average (EWMA) filter and a control chart-
based threshold mechanism are applied to further refine the damage assessment process,
distinguishing between healthy and progressively deteriorating damage cases.

The third study proposes a Probabilistic Deep Neural Network framework for damage
assessment, combining vehicle and bridge responses to extract damage-sensitive features
for classifying different damage states. The findings of this study demonstrate that
incorporating multiple sensor information reduces uncertainties in damage detection and
localisation. The results also suggest that the proposed method is robust in handling
measurement noise and varying environmental conditions.

In conclusion, this thesis advances knowledge in the field of structural assessment
through structural health monitoring by providing insights and improvements in tech-
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niques and methodologies. By taking advantage of the combined strengths of sen-
sors mounted on structures and signals transmitted by moving vehicles, the developed
methodologies provide reliable and precise damage evaluation capabilities. These valu-
able insights enhance bridge safety, improve resource allocation, and contribute to the
overall performance of transport networks. Ultimately, this approach leads to more sus-
tainable and resilient infrastructure, better equipped to handle modern society’s growing
demands.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

The maintenance of ageing infrastructure has become a pressing concern for transport
network owners, as a significant portion of their budgets is allocated to this task. In
particular, the growing stock of ageing bridges poses a serious challenge due to the de-
terioration of construction material over time, which has been exacerbated by corrosion,
degradation, fatigue, and other factors [1, 2]. This is further compounded by the need for
increased capacity to accommodate traffic growth, making infrastructure maintenance a
critical aspect of overall management.

To address this challenge, responsible authorities have established guidelines and
procedures, but these methods are not always optimal. Structural maintenance is a dif-
ficult task due to the sheer number of bridges to maintain and the heterogeneity of the
constructions. The initial step in the maintenance process is a structural assessment,
which requires skilled personnel, and multiple resources, and is time-consuming. Fur-
thermore, there is often limited information about existing damage. Improvements to the
assessment procedure would allow infrastructure owners to better utilise their available
resources.

In recent years, there have been substantial advancements in fields related to struc-
tural assessment. Sensing technology, for example, has introduced energy harvesting and
wireless systems that make it more convenient and cost-effective to instrument infras-
tructure. Simultaneously, vehicles are being equipped with a greater number and variety
of complex sensors, enabling increased interconnectivity between vehicles and infrastruc-
ture. This interconnectedness has demonstrated potential benefits for improving traffic
and resource management through Intelligent Transport Systems (ITS). However, the
full potential of this interconnectivity between vehicle sensors and infrastructure sen-
sors has not been completely realised and could be harnessed to benefit infrastructure
maintenance.

By leveraging the advancements in sensing technology and the growing intercon-
nectedness of vehicles and infrastructure, maintenance procedures could be enhanced,
making it easier to identify and address issues in ageing structures. This would not only
improve the efficiency of resource allocation but also contribute to the overall safety and
performance of transport networks. Developing more effective maintenance strategies
would ultimately lead to a more sustainable and resilient infrastructure, better equipped
to handle the growing demands of modern society.
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CHAPTER 1. INTRODUCTION 3

1.2 Structural health monitoring

1.2.1 Overview

The process of implementing an autonomous assessment strategy of engineering infras-
tructure is referred to as structural health monitoring (SHM). The SHM process involves
observing a system over time using periodically sampled response measurements from an
array of sensors, the extraction of damage-sensitive features from these measurements,
and the statistical analysis of these features to determine the current state of the system’s
health [3]. For long-term SHM, the output of this process is periodically updated, pro-
viding information regarding the ability of the structure to perform its intended function
in light of the inevitable ageing and degradation resulting from operational and envi-
ronmental effects. SHM has emerged as a promising solution to empower bridge owners
and inspectors with new capabilities for bridge management systems. Modern SHM
systems generally consist of transducers, data acquisition system and communication
network. The collected information from a SHM system is analysed through physics-
and/or data-driven techniques to extract useful features that can further be used for the
decision-making process.

1.2.2 Bridge damage assessment

Early damage detection is one of the core issues in SHM. In civil engineering, traditional
SHM has been particularly focused on damage detection, localisation, and quantification.
SHM typically involves the direct installation of multiple sensors on a bridge. The
measured responses are analysed using signal processing methods to provide information
about the structure and possible damage state. Existing methods for damage detection
can be classified into global and local techniques.

In a global level damage assessment, system-level characteristics of the structure, such
as natural frequency, mode shape, and flexibility matrix, are considered to determine
the location and severity of the damage. The main challenges associated with global
damage detection techniques are their insensitivity to local damage and high sensitivity
to operational conditions [4, 5]. Conversely, local damage detection methods can be
used for accurate damage localisation and quantification, but the information is not
indicative of the overall structural behaviour. The main challenge with local damage
detection techniques is the need for prior information related to the damage state [6].
For instance, a single strain sensor cannot detect an existing crack, but it can be used to
further study the development of that crack once it has been identified through visual
inspection or non-destructive techniques.

Over recent years, substantial progress has been made in the field of vibration-based
damage identification, leading to significant advancements in bridge damage assessment.
An et al [4] provided a comprehensive review of the various damage identification al-
gorithms developed and implemented for different bridge types within the last decade.
Vibration-based damage identification can be generally classified into two primary ap-
proaches: ’model-based’ and ’data-based’.

Model-based methods utilise detailed numerical or Finite Element (FE) models of the
structure for the purpose of damage identification. During the development phase, these
models undergo a process of incremental refinement to ensure accurate representation
of the measured structural responses. The models evolve from basic conceptual system
representations to advanced, physics-based models that accurately represent the actual
asset or reference model. Damage detection algorithms predominantly focus on the
discrepancies between the modified model before and after the occurrence of damage [7].

For damage assessment, a reference model is calibrated to reflect the damaged con-
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ditions of the structure. Damage assessment is then performed by analysing the changes
in the updated parameters of this calibrated reference model. The application of this
approach has been reported for damage assessment [8, 9, 10]. However, in the context
of damage assessment for bridges, the model-based approach is considered impractical
due to several disadvantages. One of the main challenges in using these methods is the
time-consuming and computationally demanding nature of developing high-fidelity mod-
els. This often requires significant time and computational resources, which may not be
feasible. Another drawback is the need for extensive experimental data for calibration
and validation of the models [11]. Obtaining such data can be challenging, particularly
for large, complex bridges with limited accessibility. This requirement for a substantial
amount of experimental data can hinder the practicality of model-based methods for
bridge damage assessment. Furthermore, model-based methods may be affected by un-
certainties in the material properties, boundary conditions, or other model parameters.
These uncertainties can impact the accuracy of damage detection and assessment results,
making it difficult to rely on these techniques in certain situations [12]. Consequently,
while model-based methods can be valuable under specific conditions where accurate and
detailed models are available, alternative approaches such as data-based methods may
be more practical and cost-effective for many bridge damage assessment applications.

Data-based methods offer an alternative solution that doesn’t require precise geom-
etry or material information. This approach helps to bypass the need for creating an
intricate FE model of the structure under observation [13]. The data-based approach
primarily focuses on using data mining and advanced signal processing techniques to
extract damage-sensitive features. Damage assessment is performed by analysing these
damage-sensitive features with statistical pattern recognition methods or machine learn-
ing algorithms [14, 15, 16].

In the context of bridge damage assessment, the acquired damage-sensitive features
are used to train machine learning models. These trained models are then utilised to
identify future variations in features. For training these machine learning models, two
training modes are commonly used: supervised and unsupervised. Supervised training
requires data from both undamaged situations and abnormal data from various damage
scenarios of the monitored bridge structure for damage detection. However, it is often
challenging to obtain sufficient data for different damage scenarios from the bridge, and
it is practically impossible to induce damage on a perfectly normal bridge. In such
situations, it is recommended to use unsupervised training methods, which only require
normal data from the intact structure during the training phase. This approach allows
for more practical implementation of data-based methods in bridge damage assessment,
even when data for damaged scenarios is limited or unavailable.

1.2.3 Vehicles-assisted bridge damage assessment

Vibration-based Structural Health Monitoring (SHM) systems in terms of sensing frame-
work can be divided into two categories: fixed and mobile sensing frameworks [17]. With
fixed sensing frameworks, sensors are permanently installed at specific points on the tar-
get bridge. This approach faces three primary challenges. First, the high costs and
labour associated with deployment make it unsuitable for inspecting short to medium
span bridges. Second, fixed sensing systems provide limited spatial information, which
negatively impacts the bridge assessment results. Third, vibration data collected during
ambient and forced vibrations may not adequately excite the stiff bridge, leading to noisy
measurements [18].

Forced vibration responses can be obtained using impact load testing, human-induced
loads, or hydraulic actuators, but these methods can negatively affect bridge serviceabil-
ity and increase maintenance costs. Recently, vehicle-assisted monitoring has emerged
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as a promising research area. In this approach, traversing vehicles serve as the excitation
source and bridge responses are measured using sensors on the bridge or inside the vehi-
cles. This method is more cost-effective, as bridge vibration data is only collected when
vehicles are on the structure [19]. Additionally, when vehicles act as mobile sensors, the
measured responses provide comprehensive spatial information, significantly enhancing
bridge condition assessments [20, 21].

In recent years, there has been a growing interest in vehicle-assisted monitoring sys-
tems for bridge damage assessment. Shokravi et al [22] conducted a thorough review of
conventional vehicle-assisted techniques, which can be classified into fixed and mobile
sensing frameworks. Using fixed sensing, researchers in studies [19] and [23] applied the
Moving Force Identification (MFI) method for bridge damage assessment, while others,
such as [24] and [25], focused on measuring rotational responses of bridges under moving
loads for the same purpose.

Mobile sensing or drive-by techniques have also been examined for bridge damage
assessment, with Wang et al [26] offering a detailed overview of their applications. These
methods primarily depend on advanced signal processing techniques and machine learn-
ing methods for damage detection. For instance, researchers in [27] and [28] utilised
data-driven techniques and statistical analysis for damage detection and quantification,
while [29] and [30] estimated the contact point response between the vehicle and the
bridge for damage detection and localisation.

Vehicle-assisted monitoring systems hold great potential for damage assessment, but
they also face limitations and challenges. These include the influence of vehicle speed,
road profiles, and additional random traffic, as well as the need for specialised vehicles
[31, 32]. The variability of vehicle speeds can affect the accuracy of measurements and the
performance of data-driven methods, while uneven or rough road surfaces can introduce
noise and unwanted variations in the measurements, making it difficult for data-driven
methods to accurately detect damage [33, 34].

Additional random traffic on the bridge during the assessment can introduce inter-
ference and complicate the analysis [20]. Equipping vehicles with the necessary sensors
and technology for accurate data collection can be expensive, and data-driven methods
typically rely on machine learning algorithms that require sufficient training data to per-
form accurately. Obtaining adequate training data for various damage scenarios can be
challenging.

Environmental factors, such as changes in temperature and humidity, can also influ-
ence the structural response of the bridge and complicate the damage assessment process
[35]. Ensuring appropriate sensor placement and data quality is crucial for accurate dam-
age assessment, as poor sensor placement or low-quality data can lead to false-positive or
false-negative results. Data-driven methods often involve complex signal processing and
machine learning techniques, which can be computationally demanding and may require
significant computational resources [7].

By combining the advantages of both direct and indirect methods, a more comprehen-
sive and effective approach to bridge damage assessment could be developed, thus over-
coming some of these challenges. The recent advancements in wireless sensing systems
for infrastructure and the increasing trend of equipping vehicles with multiple sensors
pave the way for Vehicle to Infrastructure (V2I) connectivity [36, 37]. This integration
not only has shown potential benefits in improving traffic and resource management but
could also revolutionise bridge health monitoring and maintenance by providing real-time
data and continuous assessment of bridge conditions.

Furthermore, the integration of V2I technology could enable the development of smart
infrastructure systems that can autonomously identify and prioritise maintenance needs,
thereby optimising resource allocation and reducing costs. Additionally, the fusion of
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data from both vehicle and bridge sensors can enhance the accuracy and reliability of
damage detection methods, allowing for the early identification of structural issues and
more effective maintenance planning.

Although the interconnectivity between vehicle and bridge sensors has not yet been
thoroughly explored in the context of damage assessment and bridge maintenance, this
thesis aims to address this gap. The research will focus on investigating this intercon-
nectivity, tackling the challenges and limitations of current vehicle-assisted monitoring
systems, and devising techniques that take advantage of the strengths of both fixed
sensing and mobile sensing methods. The ultimate goal is to improve the efficiency and
accuracy of bridge damage assessment, which could significantly enhance the mainte-
nance and management of bridge infrastructure.

1.2.4 Machine learning in bridge damage assessment

The data-based approach to damage assessment leverages machine learning (ML) tech-
niques in either supervised or unsupervised training modes. Supervised training uses
data from both normal and various damage scenarios [2]. ML algorithms in this mode
perform classification and regression tasks, such as Support Vector Machine (SVM) [38,
39], Decision Tree (DT) [40, 41], and Naive Bayes Classifier (NB) [42]. Some algorithms,
like Artificial Neural Networks (ANN) [43], Genetic Algorithm (GA) [44], and Hidden
Markov Model (HMM) [45], can be applied in both supervised and unsupervised settings
due to their flexibility.

On the other hand, unsupervised training focuses on grouping and interpreting data
based solely on input data. An algorithm first defines a reference condition for the bridge
by extracting relevant features from the data. Then, using statistical pattern recogni-
tion, the features from newly obtained data over time are compared to those from the
reference condition. If a significant deviation is observed, the algorithm detects a nov-
elty, suggesting a potential change in the bridge’s condition due to damage. Examples of
algorithms used in unsupervised training include K-means clustering, Gaussian Mixture
Model (GMM), Principal Component Analysis (PCA), and Autoencoders [46, 47, 48, 49,
20]. Furthermore, the versatile algorithms mentioned earlier can be employed in both
supervised and unsupervised learning scenarios.

In recent years, Deep Learning (DL) has emerged as a significant area of interest
within the field of Structural Health Monitoring (SHM). Traditional machine learning
methods necessitate extensive data analysis and rely heavily on expert knowledge to
extract damage-sensitive features. In contrast, DL models can automatically learn these
features when training data is input into deep neural networks [2]. The features dis-
covered in the hidden layers of these networks can then be utilised for tasks such as
classification and novelty detection.

However, the successful application of DL in SHM hinges on the availability of ex-
tensive training datasets, as these models are theoretically better equipped to reveal
intricate relationships within the data [50]. The practical implementation of DL models
in SHM is constrained by the fact that collected training data may not encompass all
operational and loading conditions, making it challenging to quantify the uncertainty in
the model’s decision output. To ensure reliable decision-making, an SHM system must
be capable of managing uncertainty in its predictions [51].

Despite these challenges, various algorithms, including Long Short-Term Memory
(LSTM) neural networks [52], Autoencoder (AE) neural networks [53, 54], Sparse Au-
toencoder (SAE) neural networks [55], and Convolutional Neural Networks (CNN) [56,
57], have been used for bridge damage assessments, though on a limited scale. The pri-
mary focus of this thesis is to apply DL techniques to bridge damage assessments while
addressing and quantifying uncertainties resulting from limited training datasets.
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1.3 Challenges in SHM

Within the context of the above discussion, Structural Health Monitoring (SHM) faces
numerous challenges that must be addressed to make it an acceptable tool for bridge
owners and the industry to use for bridge maintenance. Some of these challenges include:

• Sensor placement and coverage: Ensuring appropriate sensor placement and
coverage across the entire bridge structure is crucial for accurate damage assess-
ment. Inaccurate or inadequate sensor positioning may result in overlooked or
misinterpreted damage indicators, as structural damage is generally localised and
may not substantially impact the overall response of the structure.

• Limited training data: Developing accurate machine learning models requires
a significant amount of high-quality training data that covers various damage sce-
narios and operational conditions. Obtaining such data is often difficult and time-
consuming.

• Environmental influences: Factors such as temperature, humidity, and wind
can affect the structural response of a bridge and complicate the damage assessment
process. Developing algorithms that can account for these environmental influences
is a challenge.

• Uncertainty quantification: Addressing uncertainties in the ML model’s pre-
dictions is essential for reliable decision-making in SHM systems. This includes
uncertainties due to limited training data, sensor noise, and environmental factors.

• Computational complexity: Some SHM methods involve complex signal pro-
cessing and machine learning techniques, which can be computationally demanding
and may require significant computational resources.

• Scalability and real-time monitoring: Developing SHM systems that can scale
to large, complex bridge networks and provide real-time damage assessment is an
ongoing challenge, especially given the increasing volume of data generated by
modern sensors.

• Integration and interoperability: Combining various sensing technologies,
data sources, and algorithms into a cohesive SHM system can be challenging, par-
ticularly when dealing with different types of sensing mechanisms.

• Cost-effectiveness and maintenance: Implementing SHM systems can be ex-
pensive, particularly for sensor installation and maintenance. Developing cost-
effective solutions that provide accurate and reliable damage assessment is crucial
for widespread adoption.
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CHAPTER

TWO

PHD THESIS

2.1 Objectives

The objective of this thesis is to develop an automated bridge assessment system for
existing bridges by leveraging the synergy between sensors installed on the structures and
signals transmitted by passing vehicles. As illustrated in Figure 2.1.1, the primary goal
is to gather comprehensive information about the bridge from various sources, including
both vehicles and the bridge itself. By fusing this data and employing deep learning
techniques, the system aims to efficiently evaluate the current condition of the bridge
structure, enabling more accurate and timely maintenance decisions.

Figure 2.1.1: Main overview of the thesis

The main objectives of this thesis can be organised into the following tasks:

• Carry out a comprehensive review of relevant literature covering key topics, in-
cluding structural deterioration, long-term behaviour, assessment methodologies,
sensor technologies, damage indicators, numerical modelling, as well as machine
learning and deep learning techniques.

• Develop a comprehensive bridge damage assessment strategy that focuses on util-
ising only vehicle response data, while carefully considering the impact of realistic
operational and environmental conditions on the assessment process. This ap-
proach should account for factors such as varying vehicle speeds, road profiles,

9



10 CHAPTER 2. PHD THESIS

traffic conditions, and weather-related influences to ensure a reliable and accurate
evaluation of the bridge’s structural health.

• Implement a damage assessment strategy based on a fixed sensing framework,
focusing on strategically placed sensors on the bridge structure. Evaluate the ef-
fectiveness and reliability of this approach by comparing the results with numerical
simulations and real-world experimental data sets, ensuring that the strategy pro-
vides accurate and valuable insights into the bridge’s structural health.

• Design and evaluate a comprehensive bridge damage assessment mechanism that
combines both mobile and fixed sensing frameworks. Investigate and quantify the
impact of different sensor information combinations on the accuracy and effective-
ness of the assessment process. This integrated approach aims to provide a more
holistic and precise understanding of the bridge’s structural health, considering a
broader range of data sources and sensor inputs.

• Contribute to the progression of knowledge in the field of structural assessment
through structural health monitoring by providing insights and advancements in
techniques and methodologies. Offer guidance and best practices for devising ef-
ficient and robust strategies for conducting monitoring campaigns, ultimately en-
hancing the reliability and effectiveness of infrastructure maintenance and man-
agement.

2.2 Scope of the thesis

The scope of this PhD thesis is defined by certain limitations and focuses. The research
aims to develop and assess bridge damage assessment methods using both fixed and
mobile sensing frameworks, considering real operational conditions such as measurement
noise, vehicle speeds, and environmental factors. However, there are challenges in obtain-
ing measurement data for analysis, as it is not feasible to instrument multiple vehicles
and bridges simultaneously during this work. Therefore, the study will primarily rely
on numerically simulated responses, utilising a 1D vehicle-bridge interaction model for
different damage scenarios.

The investigation will concentrate on damage assessment strategies for bridges, in-
corporating machine deep learning techniques, as well as the evaluation of uncertainties
arising from limited training datasets. The experimental validation of the proposed
methods will be limited to the fixed sensing framework due to the availability of bridge
acceleration responses. Despite these limitations, the research intends to contribute to
the advancement of knowledge in structural assessment using structural health monitor-
ing and provide guidelines for efficient and robust strategies for monitoring campaigns.

Lastly, all methods developed, including machine learning algorithms and numerical
simulation data, will be released as open-source resources, fostering transparency and
facilitating further research in this area after the final publication of the thesis.

2.3 Workflow of the thesis

The workflow of this thesis is designed to achieve the research objectives in a structured
manner. As illustrated in Figure 2.3.1, the study begins with the consideration of a mo-
bile sensing framework for bridge damage assessment. It takes into account signals from
multiple passing vehicles with varying properties. The damage detection sensitivity is
validated under the influence of random traffic and fluctuating environmental conditions.
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Figure 2.3.1: Workflow of the thesis

In the second phase, a probabilistic autoencoder is proposed for bridge damage as-
sessment using signals from a fixed sensing framework. The method is validated using
both numerical and experimental datasets.

In the final stage, both the mobile and fixed sensing frameworks are integrated using
a probabilistic neural network to investigate and quantify the influence of different sensor
information combinations. This comprehensive approach aims to enhance the accuracy
and efficiency of bridge damage assessment, ultimately contributing to more effective
monitoring and maintenance strategies for bridge infrastructure.
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THREE

PAPER SUMMARY

3.1 General

This thesis consists of three journal papers, with Paper IA and Paper III published
in peer-reviewed international journals, while Paper II has been submitted for review.
Additionally, a conference paper, Paper IB, has been published in a peer-reviewed inter-
national conference. The summaries of these papers are provided below:

3.2 Paper IA & IB

Deep autoencoder architecture for bridge damage assessment using responses
from several vehicles & Data-driven bridge damage detection using multiple
passing vehicles responses

These papers present a novel damage assessment technique for bridge health mon-
itoring that leverages deep learning and a statistical distribution-based damage index.
The proposed method uses acceleration responses from multiple vehicles traversing the
target bridge, addressing the challenge of generalising the relationship between vehicle
responses and bridge dynamics by employing a deep autoencoder (DAE) architecture
with multiple convolutional and LSTM layers. The DAE is trained on healthy bridge
conditions, constructing a feature space sensitive to bridge dynamics and robust against
measurement noise and operational conditions. Furthermore, the errors between mea-
sured and reconstructed signals are characterised by distributions sensitive to bridge
damage, allowing the use of a damage index based on the Kullback-Leibler divergence
for damage detection and severity quantification.

The proposed method’s effectiveness is evaluated numerically using a 5-axle truck
vehicle model traversing both a simply supported bridge and a multi-span continuous
bridge. The study takes into account various scenarios, including variability in vehicle
properties, operational conditions, random traffic effects, and the influence of tempera-
ture changes (as explored in Paper 1B). The results demonstrate the method’s ability
to detect damage successfully and provide robust outcomes under different operational
conditions. However, selecting an appropriate threshold is crucial for reliable damage
detection and minimising false alarms. Moreover, crossing events should be considered
when a minimum level of daily traffic is present. In summary, the proposed method
presents a practical and cost-effective solution for bridge health monitoring that elimi-
nates the need for specialised vehicles and seamlessly integrates with intelligent transport
networks. This approach has the potential to significantly enhance the efficiency and af-
fordability of long-term bridge monitoring systems.

13
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3.3 Paper II

Probabilistic autoencoder-based bridge damage assessment using train-induced
responses

This paper presents an innovative methodology for assessing bridge conditions us-
ing a probabilistic temporal autoencoder (PTAE) in the context of structural health
monitoring (SHM) systems with fixed sensing frameworks, which have become increas-
ingly important in maintaining bridge safety. The PTAE methodology addresses the
challenges posed by vast amounts of sensor data and constantly changing environmental
and operational conditions. By gathering multi-sensor data during train crossings and
employing a PTAE with multiple convolutional blocks and an LSTM recurrent neural
network, the approach effectively extracts features and captures temporal relationships
in the data.

The methodology enables the detection of potential bridge damage by calculating
the reconstruction loss and KL divergence-based damage features. Further refining the
damage assessment process, an Exponentially Weighted Moving Average (EWMA) filter
and a control chart-based threshold mechanism allow for differentiation between healthy
and progressively deteriorating damage cases. The proposed method accommodates
various monitoring scenarios and sensor configurations, enhancing its robustness against
varying operational and environmental conditions.

The results of this study suggest that the proposed method can detect and quantify
different types of damage, even without employing any pre-processing method to remove
the effects of operational and environmental conditions. The method can be easily inte-
grated with existing monitoring systems and data collection platforms, enabling seamless
adoption and implementation in various contexts.

In conclusion, the PTAE methodology holds significant potential for the future of
bridge health monitoring and maintenance, offering a data-driven solution that can en-
hance the safety of infrastructure by effectively detecting damage with a limited number
of sensors.

3.4 Paper III

Vehicle assisted bridge damage assessment using probabilistic deep learning
This paper demonstrates the potential of vehicle-assisted bridge monitoring by em-

phasising the benefits of combining various types of sensory information, including fixed
sensors on bridges and moving sensors on vehicles. The proposed PDNN model pos-
sesses several strengths, such as scalability, which enables easy integration of different
measurements for damage assessment tasks; robustness, attributed to the model’s prob-
abilistic nature that ensures accuracy is maintained despite noise and fluctuating loading
conditions; simplicity of implementation, as the model works directly with raw signals
without the need for heavy pre-processing; and improved damage detection and locali-
sation performance compared to similar methods in the literature.

The innovative aspect of the PDNN model lies in its ability to merge multiple sen-
sors and extract damage-sensitive features without pre-processing input signals, even
under realistic operational conditions. This leads to accurate damage assessment across
a range of sensor combinations. In contrast to other commonly used data-driven meth-
ods, the proposed PDNN model provides added value by quantifying the reliability of
its decisions. This is achieved by replacing fixed weights with probabilistic weight dis-
tributions, which enhances the model’s generalisation ability and offers a measure of
decision-making reliability. The study reveals that vehicle-assisted monitoring can effec-
tively identify small and realistic damage cases under various operational and environ-
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mental conditions. Combining sensor information from both vehicles and bridges results
in more reliable decision-making. However, random traffic on the bridge hinders damage
detection when only vehicle sensors are employed.

This study serves as a valuable guideline for future bridge health monitoring systems
and planning, benefiting bridge owners when considering monitoring campaigns for spe-
cific bridges. Integrating this approach with the fixed and mobile sensing frameworks
discussed in papers I and II would lead to a comprehensive and robust solution for bridge
health monitoring and maintenance.

3.5 Declaration of Authorship

In papers IA, IB and III, both authors collaborated on the planning of the papers.
Muhammad Zohaib Sarwar developed the methodology, wrote all the machine learning
and damage assessment codes, performed calculations and analyses of the results, and
authored the manuscript. Daniel Cantero contributed by providing the code for the
vehicle-bridge interaction model and offering feedback, which led to improvements in the
manuscripts.

In Paper II, the planning process was a collaborative effort between both authors.
Muhammad Zohaib Sarwar took the lead in developing the methodology, implementing
all required codes, including machine learning algorithms, and writing the manuscript.
Daniel Cantero supported the project by supplying the train-track model code and pro-
viding valuable feedback, resulting in an improved manuscript.
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CONCLUSIONS

4.1 Conclusions

This thesis has presented innovative methodologies for damage assessment in bridge
health monitoring, emphasising the importance of vehicle-assisted monitoring. Vehicle-
assisted monitoring plays a crucial role in these approaches, as it eliminates the need for
specialised vehicles for long-term bridge monitoring, making the process more efficient,
cost-effective, and accessible for a broader range of infrastructure. Furthermore, the in-
tegration of bridge health monitoring with intelligent transport networks is facilitated by
leveraging the data generated from regular vehicular traffic. This synergy can enhance
the overall efficiency and effectiveness of infrastructure management. For damage assess-
ment, these methodologies employ deep learning techniques and probabilistic approaches
that address the challenges posed by the vast amounts of sensor data generated by struc-
tural health monitoring (SHM) systems, and the constantly changing environmental and
operational conditions. Key aspects of these methodologies include:

• Multi-sensor data: By gathering data from traversing vehicles, such as accelera-
tions, displacements, and rotations, these methods can adapt to various monitoring
scenarios and sensor configurations. This eliminates the need for manual feature
extraction or single-sensor level model training, streamlining the monitoring pro-
cess.

• Deep autoencoders (DAE) and probabilistic temporal autoencoders (PTAE): These
powerful machine learning techniques effectively extract features and capture tem-
poral relationships in the data. They provide a robust and generalised relationship
between vehicle responses and bridge dynamics, making the methodologies appli-
cable across different bridge structures and conditions.

• Damage detection and quantification: The proposed methods employ a statistical
distribution-based damage index, the computation of reconstruction loss, and KL
divergence-based damage features to accurately identify and quantify various types
of damage in bridge structures.

• Enhanced damage assessment process: The Exponentially Weighted Moving Av-
erage (EWMA) control chart-based threshold mechanism and wavelet transform-
based filter bank further refine the damage assessment process. This allows for
early damage detection and differentiation between healthy and progressively de-
teriorating damage cases, enabling timely maintenance interventions.
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• Robustness under varying conditions: The methodologies account for varying op-
erational and environmental conditions, ensuring reliable and accurate damage
assessments regardless of factors like measurement noise, temperature variations,
and random traffic.

• Better decision-making support: By incorporating model uncertainty and provid-
ing accurate damage assessments, these methodologies support improved decision-
making in maintenance planning and resource allocation for bridge owners and
road authorities.

In conclusion, these data-driven solutions hold significant potential for the future of
bridge health monitoring and maintenance. The combination of directly installed sensors
and mobile sensing platforms provides a powerful and flexible approach for SHM. By
leveraging the strengths of both systems, a comprehensive, robust, and cost-effective
framework for assessing and maintaining critical infrastructure assets can be developed,
advancing the field of SHM and its practical applications. This approach represents a
valuable contribution to the body of knowledge in the field and can serve as a basis for
further research and development in the area of structural health monitoring.



CHAPTER

FIVE

FURTHER RESEARCH

5.1 Further research

Further research in the area of structural health monitoring and vehicle-assisted moni-
toring can explore the following aspects:

• Advanced sensor technology: Examine the integration of cutting-edge sensor tech-
nologies, such as LiDAR, cameras, and ultrasonic sensors, alongside traditional
sensors to improve data quality and encourage the widespread adoption of vehicle-
assisted monitoring.

• Large-scale implementation challenges: Examine the obstacles and requirements
for the large-scale deployment of vehicle-assisted monitoring, including regulatory,
logistical, and technical aspects, to ensure its success in various contexts.

• Long-term performance evaluation: Conduct in-depth assessments of the long-
term performance of vehicle-assisted monitoring systems to gauge their durability,
effectiveness, and potential for improvement over time.

• Secure communication and data sharing: Explore secure and efficient communica-
tion systems and data sharing protocols to enable seamless integration of vehicle-
assisted monitoring with intelligent transport networks and other infrastructure
systems.

• Physics-enhanced machine learning and expert knowledge: Develop accurate, reli-
able, and interpretable models for structural health monitoring by leveraging the
combined strengths of physics-based models, data-driven machine learning tech-
niques, and expert knowledge. Incorporating expert insights into the development
and interpretation of physics-enhanced machine learning models can lead to more
meaningful results.

• Domain adaptation and transfer learning: Investigate innovative algorithms and
strategies for transferring knowledge between different bridge structures, allowing
for the creation of more effective and efficient damage assessment methodologies
applicable across a wide range of bridge structures.

19



20 CHAPTER 5. FURTHER RESEARCH



REFERENCES

[1] Bart Peeters, Johan Maeck, and Guido De Roeck. “Vibration-based damage de-
tection in civil engineering: excitation sources and temperature effects”. In: Smart
materials and Structures 10.3 (2001), p. 518.

[2] Onur Avci et al. “A review of vibration-based damage detection in civil structures:
From traditional methods to Machine Learning and Deep Learning applications”.
In: Mechanical systems and signal processing 147 (2021), p. 107077.

[3] Charles R Farrar and Keith Worden. Structural health monitoring: a machine learn-
ing perspective. John Wiley & Sons, 2012.

[4] Yonghui An et al. “Recent progress and future trends on damage identification
methods for bridge structures”. In: Structural Control and Health Monitoring 26.10
(2019), e2416.

[5] Joan R Casas and John James Moughty. “Bridge damage detection based on vi-
bration data: past and new developments”. In: Frontiers in Built Environment 3
(2017), p. 4.

[6] Edwin Reynders et al. “Damage identification on the Tilff Bridge by vibration
monitoring using optical fiber strain sensors”. In: Journal of engineering mechanics
133.2 (2007), pp. 185–193.

[7] Yang Zhang and Ka-Veng Yuen. “Review of artificial intelligence-based bridge dam-
age detection”. In: Advances in Mechanical Engineering 14.9 (2022), p. 16878132221122770.

[8] Anne Teughels and Guido De Roeck. “Damage detection and parameter identifica-
tion by finite element model updating”. In: Revue européenne de génie civil 9.1-2
(2005), pp. 109–158.

[9] Xin Zhou et al. “Vibration-based Bayesian model updating of an actual steel truss
bridge subjected to incremental damage”. In: Engineering Structures 260 (2022),
p. 114226.

[10] Georgios I Dadoulis and George D Manolis. “Model bridge span traversed by a
heavy mass: Analysis and experimental verification”. In: Infrastructures 6.9 (2021),
p. 130.

[11] Bjørn T Svendsen et al. “A hybrid structural health monitoring approach for
damage detection in steel bridges under simulated environmental conditions us-
ing numerical and experimental data”. In: Structural Health Monitoring (2022),
p. 14759217221098998.

[12] Hassan Sarmadi, Alireza Entezami, and Mansour Ghalehnovi. “On model-based
damage detection by an enhanced sensitivity function of modal flexibility and
LSMR-Tikhonov method under incomplete noisy modal data”. In: Engineering with
Computers 38.1 (2022), pp. 111–127.

21



22 REFERENCES

[13] Bjørn T. (Bjørn Thomas) Svendsen. “Numerical and experimental studies for dam-
age detection and structural health monitoring of steel bridges”. PhD thesis. 2021.
isbn: 9788232663279.

[14] Ana C Neves et al. “Structural health monitoring of bridges: a model-free ANN-
based approach to damage detection”. In: Journal of Civil Structural Health Mon-
itoring 7 (2017), pp. 689–702.

[15] Yuequan Bao and Hui Li. “Machine learning paradigm for structural health mon-
itoring”. In: Structural Health Monitoring 20.4 (2021), pp. 1353–1372.

[16] Kun Feng, Arturo González, and Miguel Casero. “A kNN algorithm for locating
and quantifying stiffness loss in a bridge from the forced vibration due to a truck
crossing at low speed”. In: Mechanical Systems and Signal Processing 154 (2021),
p. 107599.

[17] Muhammad Zohaib Sarwar and Daniel Cantero. “Vehicle assisted bridge dam-
age assessment using probabilistic deep learning”. In: Measurement 206 (2023),
p. 112216.

[18] Premjeet Singh and Ayan Sadhu. “Limited sensor-based bridge condition assess-
ment using vehicle-induced nonstationary measurements”. In: Structures 32 (2021),
pp. 1207–1220.

[19] Shuo Wang, Eugene J OBrien, and Daniel P McCrum. “A Novel Acceleration-
Based Moving Force Identification Algorithm to Detect Global Bridge Damage”.
In: Applied Sciences 11.16 (2021), p. 7271.

[20] Muhammad Zohaib Sarwar and Daniel Cantero. “Deep autoencoder architecture
for bridge damage assessment using responses from several vehicles”. In: Engineer-
ing Structures 246 (2021), p. 113064.

[21] Abdollah Malekjafarian et al. “A machine learning approach to bridge-damage
detection using responses measured on a passing vehicle”. In: Sensors 19.18 (2019),
p. 4035.

[22] Hoofar Shokravi et al. “Vehicle-assisted techniques for health monitoring of bridges”.
In: Sensors 20.12 (2020), p. 3460.

[23] Eugene OBrien, Ciaran Carey, and Jennifer Keenahan. “Bridge damage detection
using ambient traffic and moving force identification”. In: Structural Control and
Health Monitoring 22.12 (2015), pp. 1396–1407.

[24] C McGeown et al. “Using measured rotation on a beam to detect changes in
its structural condition”. In: Journal of Structural Integrity and Maintenance 6.3
(2021), pp. 159–166.

[25] Eugene J Obrien et al. “Identifying damage on a bridge using rotation-based Bridge
Weigh-In-Motion”. In: Journal of Civil Structural Health Monitoring 11 (2021),
pp. 175–188.

[26] ZL Wang et al. “Recent Advances in Researches on Vehicle Scanning Method
for Bridges”. In: International Journal of Structural Stability and Dynamics 22.15
(2022), p. 2230005.

[27] Robert Corbally and Abdollah Malekjafarian. “A data-driven approach for drive-
by damage detection in bridges considering the influence of temperature change”.
In: Engineering Structures 253 (2022), p. 113783.

[28] Zhenkun Li, Weiwei Lin, and Youqi Zhang. “Drive-by bridge damage detection us-
ing Mel-frequency cepstral coefficients and support vector machine”. In: Structural
Health Monitoring (2023), p. 14759217221150932.



REFERENCES 23

[29] Robert Corbally and Abdollah Malekjafarian. “Examining changes in bridge fre-
quency due to damage using the contact-point response of a passing vehicle”. In:
Journal of Structural Integrity and Maintenance 6.3 (2021), pp. 148–158.

[30] YB Yang, YC Li, and Kai Chun Chang. “Constructing the mode shapes of a bridge
from a passing vehicle: a theoretical study”. In: Smart Structures and Systems 13.5
(2014), pp. 797–819.

[31] Abdollah Malekjafarian, Patrick J McGetrick, and Eugene J OBrien. “A review
of indirect bridge monitoring using passing vehicles”. In: Shock and vibration 2015
(2015).

[32] Abdollah Malekjafarian, Robert Corbally, and Wenjie Gong. “A review of mobile
sensing of bridges using moving vehicles: Progress to date, challenges and future
trends”. In: Structures. Vol. 44. Elsevier. 2022, pp. 1466–1489.

[33] George Lederman et al. “Damage quantification and localization algorithms for in-
direct SHM of bridges”. In: Proc. Int. Conf. Bridge Maint., Safety Manag., Shang-
hai, China. 2014, pp. 640–647.

[34] Jingxiao Liu et al. “Diagnosis algorithms for indirect structural health monitoring
of a bridge model via dimensionality reduction”. In: Mechanical Systems and Signal
Processing 136 (2020), p. 106454.

[35] William Locke et al. “Using drive-by health monitoring to detect bridge damage
considering environmental and operational effects”. In: Journal of Sound and Vi-
bration 468 (2020), p. 115088.

[36] Reza Malekian et al. “Design and implementation of a wireless OBD II fleet man-
agement system”. In: IEEE Sensors Journal 17.4 (2016), pp. 1154–1164.

[37] Holger Billhardt et al. “Dynamic coordination in fleet management systems: To-
ward smart cyber fleets”. In: IEEE Intelligent Systems 29.3 (2014), pp. 70–76.

[38] Yanqi Wu and Shengli Li. “Damage degree evaluation of masonry using optimized
SVM-based acoustic emission monitoring and rate process theory”. In: Measure-
ment 190 (2022), p. 110729.

[39] Han-Bing Liu and Yu-Bo Jiao. “Application of genetic algorithm-support vector
machine (GA-SVM) for damage identification of bridge”. In: International Journal
of Computational Intelligence and Applications 10.04 (2011), pp. 383–397.

[40] Sujith Mangalathu et al. “Rapid seismic damage evaluation of bridge portfolios us-
ing machine learning techniques”. In: Engineering Structures 201 (2019), p. 109785.

[41] Ji-Gang Xu et al. “Data-driven rapid damage evaluation for life-cycle seismic as-
sessment of regional reinforced concrete bridges”. In: Earthquake Engineering &
Structural Dynamics 51.11 (2022), pp. 2730–2751.

[42] Shuang Sun et al. “Multidamage detection of bridges using rough set theory and
naive-Bayes classifier”. In: Mathematical Problems in Engineering 2018 (2018).

[43] Jordan C Weinstein, Masoud Sanayei, and Brian R Brenner. “Bridge damage iden-
tification using artificial neural networks”. In: Journal of Bridge Engineering 23.11
(2018), p. 04018084.

[44] Frank L Wang et al. “Correlation-based damage detection for complicated truss
bridges using multi-layer genetic algorithm”. In: Advances in Structural engineering
15.5 (2012), pp. 693–706.

[45] Shenfang Yuan et al. “A uniform initialization Gaussian mixture model–based
guided wave–hidden Markov model with stable damage evaluation performance”.
In: Structural Health Monitoring 18.3 (2019), pp. 853–868.



24 REFERENCES

[46] YB Yang, Yi He, and Hao Xu. “Automatically extracting bridge frequencies using
SSA and K-Means clustering from vehicle-scanned accelerations”. In: International
Journal of Structural Stability and Dynamics 22.08 (2022), p. 2250079.

[47] Shinji Baba and Jun Kondoh. “Damage evaluation of fixed beams at both ends for
bridge health monitoring using a combination of a vibration sensor and a surface
acoustic wave device”. In: Engineering Structures 262 (2022), p. 114323.

[48] Adam Santos, Eloi Figueiredo, and Joao Costa. “Clustering studies for damage
detection in bridges: A comparison study”. In: Structural Health Monitoring 2015
(2015).

[49] Gabriele Comanducci et al. “On vibration-based damage detection by multivariate
statistical techniques: Application to a long-span arch bridge”. In: Structural health
monitoring 15.5 (2016), pp. 505–524.

[50] XW Ye, T Jin, and CB Yun. “A review on deep learning-based structural health
monitoring of civil infrastructures”. In: Smart Struct Syst 24.5 (2019), pp. 567–585.

[51] Davıð Steinar Ásgrımsson et al. “Bayesian deep learning for vibration-based bridge
damage detection”. In: Structural health monitoring based on data science tech-
niques (2022), pp. 27–43.

[52] Smriti Sharma and Subhamoy Sen. “Real-time structural damage assessment using
LSTM networks: regression and classification approaches”. In: Neural Computing
and Applications 35.1 (2023), pp. 557–572.

[53] Zhiqiang Shang et al. “Vibration-based damage detection for bridges by deep con-
volutional denoising autoencoder”. In: Structural Health Monitoring 20.4 (2021),
pp. 1880–1903.

[54] Zilong Wang and Young-Jin Cha. “Unsupervised deep learning approach using a
deep auto-encoder with a one-class support vector machine to detect damage”. In:
Structural Health Monitoring 20.1 (2021), pp. 406–425.

[55] Rafaelle Piazzaroli Finotti et al. “Numerical and Experimental Evaluation of Struc-
tural Changes Using Sparse Auto-Encoders and SVM Applied to Dynamic Re-
sponses”. In: Applied Sciences 11.24 (2021), p. 11965.

[56] Bo Zhao et al. “A robust construction of normalized CNN for online intelligent
condition monitoring of rolling bearings considering variable working conditions
and sources”. In: Measurement 174 (2021), p. 108973.

[57] Jongbin Won et al. “Automated structural damage identification using data nor-
malization and 1-dimensional convolutional neural network”. In: Applied Sciences
11.6 (2021), p. 2610.



APPENDICES

25





PAPER IA

Muhammad Zohaib Sarwar, Daniel Cantero

Deep autoencoder architecture for bridge damage assessment using responses
from several vehicles, Engineering Structures 246 (2021) 113064.

IA





Engineering Structures 246 (2021) 113064

Available online 2 September 2021
0141-0296/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Deep autoencoder architecture for bridge damage assessment using 
responses from several vehicles 

Muhammad Zohaib Sarwar *, Daniel Cantero 
Department of Structural Engineering, NTNU Norwegian University of Science and Technology, Trondheim 7491, Norway   

A R T I C L E  I N F O   

Keyword: 
Structural Health Monitoring 
Damage detection 
Indirect monitoring 
Deep learning 
Autoencoders 
Convolutional neural network 
Vehicle-bridge interaction 

A B S T R A C T   

Vehicle-assisted monitoring is a promising alternative for rapid and low-cost bridge health monitoring compared 
to direct instrumentation of bridges. In recent years, centralized management systems for fleets of heavy vehicles 
have been adopted in transportation networks for logistics and other applications. These vehicles can be 
instrumented and easily integrated with the existing fleet management systems to provide information that can 
be used for bridge health monitoring. In this study, a numerical investigation is carried out to evaluate the 
feasibility of an indirect bridge monitoring system considering responses from several vehicles under operational 
conditions. The proposed method uses the vertical acceleration responses from a fleet of vehicles passing over a 
healthy bridge to train a deep autoencoder model (DAE) for bridge damage sensitive features. It is shown that the 
error in signal reconstruction from the trained DAE is sensitive to damage, when considering the distribution or 
results from several separate vehicle-crossing events. The bridge damage is quantified with a damage index based 
on the Kullback-Leibler divergence that evaluates the change in the distributions of the reconstruction errors. The 
performance of the proposed method is evaluated for two numerical scenarios of vehicle populations, for 
different damage cases including the effect of operational uncertainties (road profile, measurement noise, and 
variability in vehicle properties). The proposed method is also evaluated for more realistic multi-span continuous 
bridge for different damage cases in the presence of random traffic. The result show that the proposed method 
can detect damage under operational conditions and that it has the potential to become a new tool for cost- 
effective bridge health monitoring.   

1. Introduction 

The maintenance of ageing infrastructure is taking large parts of the 
total budget available to transport network owners. The continuously 
growing stock of bridges is getting old and many have exceeded their 
design service life. To ensure the safe operation of these bridges, 
monitoring and continuous assessment is essential. In recent years, 
structural health monitoring (SHM) strategies have evolved from 
manual inspection to sensors-based monitoring systems [1,2]. Sensor- 
based monitoring solutions require the direct installation of multiple 
sensing instruments on bridges and the analysis of the collected data [3]. 
The collected information from sensors is analysed through physics and/ 
or data-driven techniques to extract useful features[4]. 

Early damage detection is one of the core objective in SHM and to 
that purpose many vibration-based methods have been proposed [4,5]. 
The measured vibration responses are analysed with some signal pro
cessing method to provide the information about the structure and 

possible damage state. However, these methods generally require mul
tiple sensors installed on the bridge, which increases installation and 
maintenance costs of the monitoring system. In addition, it is chal
lenging to effectively utilize the large data sets generated daily for each 
bridge [6]. Because of these practical and economic considerations, the 
implementation of such systems is generally limited to a relatively small 
amount of long-span bridges [7]. 

As an alternative to traditional SHM methods, many studies have 
proposed indirect or ‘Drive-by’ methods. This idea utilizes the measured 
responses from a moving vehicle while traversing the bridge of interest. 
The method was initially proposed by Yang et al. [8] to identify the 
bridge’s natural frequencies. This method is a low-cost alternative to 
traditional monitoring methods because it removes the necessity for 
individual instrumentation of each bridge. Over the past decade, re
searchers have investigated and provided many solutions for different 
damage detection levels using the indirect method [9]. These methods 
are broadly categorized into two main groups: (1) modal-based; (2) non- 
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modal-based. 
The modal-based indirect method identifies the bridge modal prop

erties, which in turn can be used for damage detection [7,10]. Experi
mental validation of bridge frequency identification is done in [11] 
using instrumented trailer. Similarly, Yang et al. [12] and Zhu et al. [13] 
used empirical mode decomposition (EMD) and ensemble empirical 
mode decomposition (EEMD) for pre-processing the vehicle’s accelera
tion response to extract higher mode frequencies of a bridge. O’Brien 
et al. [14] and Kildashti et al. [15] used the EMD and corresponding 
intrinsic mode functions (IMFs) to define a damage indicator. Modal- 
based indirect methods have been also used for mode shape identifica
tion, which allowed the detection and localisation of damage by ana
lysing the mode shape curvature [16,17]. Yang et al. [18] proposed 
using the Hilbert amplitude of the acceleration response of passing ve
hicles to find bridge mode shapes. Likewise, Malekjafarian et al. [19] 
used the short-time frequency domain decomposition for bridge mode 
identification. Eshkevari et al. [20] proposed the novel pipeline methods 
together with EMD and structural identification using expectation 
maximization (STRIDEX) to identify mode shapes. Despite the ad
vancements in the modal-based method, there are still critical chal
lenges associated with it. Arguably, the main challenge is the need of low 
vehicle speeds in order to achieve sufficient resolution to accurately 
extract the modal parameters. Also, the performance of these methods is 
affected by the presence of the road profile and measurement noise. 

In contrast, several other indirect methods did not directly extract 
modal parameters. These non-modal-based methods, which mainly rely 
on signal processing and machine learning, have been proven effective 
in detecting and localising damage [21–28]. For instance, Zhang et al. 
[27] proposed the estimation of contact-point response to detect dam
age. The vehicle-bridge contact point was estimated using acceleration 
measured on a vehicle. Then an indicator based on the Hilbert instan
taneous amplitude was proposed for damage detection and localization. 
O’Brien et al. [21] effectively applied the moving force identification 
method for damage detection in a numerical study and verified it in an 
experimental investigation [29]. Both studies assume prior knowledge 
of the vehicle’s dynamic properties (masses and suspension stiffness and 
viscous damping). Additionally, several authors have used wavelet 
transform in indirect methods. McGetrick and Kim [30] proposed a 
damage indicator based on the coefficients from the continuous wavelet 
transform (CWT), which was capable of identifying different crack levels 
on a bridge. Similarly, Hester and González [31] use CWT with the 
Mexican Hat basis for the detection of cracks on the bridge. Liderman 
et al. [32] applied signal processing and principle component analysis 
(PCA) to diagnose numerically simulated damage. Liu et al. [33] pro
posed a nonlinear dimensionality reduction method for damage diag
nosis, studied it numerically for a single degree of freedom vehicle and 
verified it with laboratory experiments. Therefore, it is well acknowl
edged that these methods can perform well for damage detection and 
can be used to quantify the severity of the damage. However, their 
practical viability still requires significant physical insights for model 
and method selection. 

Despite the reported progress in indirect health monitoring, several 
challenges and limitations still exist for its practical implementation. 
Bridge damage detection is a task that requires several vehicle passages 
and most of the ‘Drive-by’ methods generally use a single specialized 
vehicle. Thus, arguably the main challenge in this scenario is that it is 
practically impossible to have the same vehicle with the same properties 
over an extended period of time. In addition, operational and environ
mental conditions also directly affect the damage diagnosis process. To 
address these issues multiple frequent runs are an alternative approach 
for bridge monitoring. Miyamoto et al. [34] proposed the idea of using a 
fleet of public transport buses to monitor short and medium span 
bridges. A damage indicator was developed based on the average 
characteristic deflection curve. The authors suggested that heavy vehicle 
responses can be a better option for damage detection because of high 
flexural stiffness of short and medium-span bridges. Mei et al. [25] used 

cepstrum analysis and PCA for damage detection from several vehicle- 
crossing events. Similarly, Malekjafarian et al. [26] and Locke et al. 
[35] proposed the idea of using artificial neural network (ANN) and 
deep learning respectively for damage detection using multiple vehicles 
measurement responses based on numerically generated vehicle-bridge 
interaction (VBI) data. In [26] the authors employed a two-stage 
approach using an ANN model and gaussian process (GP) to detect 
damage features from acceleration responses measured at the vehicles’ 
axles. The combination of ANN and statistical analysis proved to be 
successful in the detection of damage even in the presence of surface 
roughness and measurement noise. Locke et al. [35] further explored 
this idea to only use a single deep learning model for feature extraction 
and damage diagnosis while considering operational and environmental 
affect. The main drawback was that it required labelled data of damaged 
cases, which is not possible in a real case scenario. The above-mentioned 
methods demonstrated that multiple vehicle responses analysed with 
different tools (signal processing, ANN and/or statistical analysis) can be 
successfully employed in indirect SHM. However, generally these 
studies are based on numerical simulations of simple vehicle models 
(mainly quarter-car). Furthermore, these studies consider only a small 
variation in vehicle properties and limited effect of road profile 
roughness. 

On the other hand, recent developments in intelligent transportation 
systems has created the possibility to manage the information from 
multiple vehicles using a centralized system [36]. With progress in 
telemetric technology, the perspective of an on-board monitoring sys
tem for multiple vehicles managed via a centralized system opens new 
prospects for SHM. The multi-sensor (GPS, acceleration, speed, etc.) 
data from a fleet of vehicles can be remotely accessed regularly by 
system managers [37,38]. The big data that is collected from multiple 
vehicles can be further analysed and used for SHM. For big data analysis 
machine learning algorithms have proven to be a valuable tool to extract 
reliable information. Hinton and Salakhutdinov [39] introduced the 
idea of the deep learning (DL) model in machine learning to address the 
issue of gradient vanishing and convergence to local minima associated 
with shallow ANN architecture models. Since then deep neural networks 
have attracted attention in a wide range of applications, mainly in object 
recognition, speech recognition and natural language processing 
[40,41]. For SHM, DL models have been widely explored recently [42], 
where convolution neural networks (CNN) or recursive neural networks 
(RNN) are some of the DL algorithm types used. Abdeljaber et al. [43] 
proposed applying 1D CNN to extract structural damage features from 
the time histories of vibration responses. Similarly, Ni et al. [44] and 
Zhang et al. [45] used 1D CNN for data compression for anomaly 
detection in acceleration data for bridge health monitoring. Wang and 
Cha [46] and Shang et al. [47] used deep convolutional autoencoder to 
detect damage using directly measurements from the structure. For 
more details on recent advancements in vibration-based condition 
assessment, refer to [42,48], which provide a comprehensive review of 
DL and CNN applications in SHM. 

To address the challenges discussed earlier, we propose a bridge 
damage detection method considering the dynamic responses from a 
fleet of vehicles traversing the target bridge. The idea is explored 
numerically with a 5-axle truck model considering a range of vehicle 
properties and speeds, as well as, the presence of road profiles and 
measurement noise. An autoencoder based DL framework is trained to 
extract damage-sensitive features, where the inputs are the vehicles’ 
vertical accelerations while traversing the bridge. Once the model is 
trained it is used to predict subsequent vehicle responses. The difference 
between model-based and actual vehicle responses is the prediction 
error. A damage index is proposed based on the distance between the 
distributions of prediction errors. The numerical study evaluates the 
performance of the proposed method for a range of different damage 
scenarios. 

The remainder of the paper is organized as follows. Section 2 pro
vides an overview of the proposed methodology, including the 
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architecture of the deep neural network model and damage index. 
Section 3 presents the vehicle-bridge interaction model and details 
about the training of the deep learning model. Section 4 evaluates the 
performance of deep learning model. Section 5 provides the numerical 
validation of the proposed damaged detection approach. Section 6 
provides the validation of damage detection for multi-span continuous 
bride model. Section 7 discusses the practical considerations for real life 
application of the proposed method 

2. Proposed method 

The framework proposed in this paper for damage detection is 
mainly divided into three phases. The first phase involves the collection 
of vehicle information and responses (speed and vertical acceleration) 
from a number of vehicle-crossing events. The collected data is then used 
to train a deep autoencoder for damage sensitive features in the second 
phase. The autoencoder architecture is developed using 1D CNN and 
Long short-term memory (LSTM) recurrent neural network. In the third 
phase, the trained model is used to compute the reconstruction error for 
testing data. The KL (Kullback-Leibler) divergence-based damage index 
is proposed to assess the severity of the damage. Fig. 1 shows a 

schematic overview of the proposed framework. More details about the 
data collection, autoencoder, and damage index are discussed in sub
sequent sections. 

2.1. Data collection 

The proposed framework assumes that vehicle responses are 
measured using on-board systems, information that could be accessed 
remotely by a central fleet management system. Different sensor types 
could be used at different vehicle locations to measure a range of re
sponses. However, due to their low cost and ease of installation, this 
study assumes that accelerometers are installed on each passing vehi
cle’s tractor and trailer. Also, this study considers single- vehicle 
crossing events where the entry and exit times on the bridge are known. 

2.2. Deep autoencoder (DAE) 

Autoencoder is an unsupervised neural network model that is used 
for dimensionality reduction and feature extraction. The traditional 
architecture of autoencoder model is consists of an encoder and a 
decoder module, each with a single hidden layer. The encoder module 

Fig. 1. Overview of the proposed framework.  
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maps the input data x into arbitrary lower dimensional space h while the 
decoder modules reconstruct the original input using h as an output x̂. 
The transfer function of each module is expresses as follows: 

h = f (x) = Φ(Wx + b) (1)  

x̂ = g(h) = Φ’(W’x + b’) (2)  

where W, W’ and b, b’ are the weight matrices and bias vectors for 
encoder and decoder modules, while Φ, Φ’ are the activation functions 
of encoder and decoder, which are usually the nonlinear functions sig
moid or hyperbolic tangent. The autoencoder optimizes the learning pa
rameters W, W’, b, b’ using mean squared error as the loss function L 

between input and its reconstruction at the decoder’s output. 
In comparison to traditional autoencoders, deep autoencoders (DAE) 

contain more than one hidden layer (depending on the input data’s 
complexity) in the encoder and the decoder. The DAE model allows for 
the effective feature extraction through hierarchical nonlinear mapping 
via multiple hidden layers, resulting in a significant reduction of training 
dataset [46]. For a DAE model, the loss function can be expressed for an 
unlabelled dataset X = [x1, x2, x3, ⋯xn] as follows: 

L = f (ϕ : X, X) =
1
n

∑N

i=1

(
1
2

||x̂i − xi||
2
)

+ λ(ϕ) (3)  

[
Wl, bl, W’

l , b’
l

]
= argmin

Wl ,bl ,W’
l ,b

’
l

f (ϕ : X, X);

l = 1, 2, 3, ⋯
(4)  

Where subscript l is the number of hidden layers and λ is a regularization 
factor imposed at the weights of the specific layer to prevent overfitting. 

2.2.1. Network architecture for DAE 
Autoencoders have been used in literature, among other 

applications, for feature extraction and dimensionality reduction 
[49,50]. In the proposed framework, these functionalities are utilised to 
learn the compressed feature representation of multiple vehicles’ ac
celeration responses, which can further be used for robust damage 
detection. 

For feature extraction from time-series, recurrent neural network 
(RNN) and 1D convolutional neural network (1D CNN) are widely used. 
RNN is specifically designed for sequential data to extract and augment 
the time-dependent features. However, according to the existing in
vestigations, it is difficult to train RNN for long term sequences because 
of gradient vanishing during backpropagation [51]. To address this Long 
short-term memory (LSTM) is introduced [52]. LSTM is explicitly 
designed to avoid the long-term dependency problem because of its 
internal gates-like architecture that can be used to control the flow of 
information. LSTM has a threshold-based mechanism to fuse similar 
information and filter out redundant information. More details 
regarding LSTMs can be found in [52]. 

A CNN usually consists of a convolutional layer, pooling layer, and 
activation function. In the convolutional layer, the convolutional oper
ations are performed on the input by different convolutional filters, 
which essentially perform cross-correlation on multiple local regions of 
the input to extract low-level features from the raw response. The 
pooling layer aggregates the information from all local regions and 
downsamples the overall feature space. The pooling layer makes the 
learned feature robust and reduces the model’s number of parameters, 
resulting in a computationally efficient model. The activation function is 
applied for nonlinear transformation in each layer. 

DAE architecture is developed as shown in Fig. 2 to extract the 
compact hidden representation of the training dataset. The model can 
reconstruct the input data with high accuracy and is mostly sensitive to 
damage information. The hidden layers of the encoder have two levels. 
The first level includes multiple convolutional blocks, where each 
extract multiple local features from the input data and reduces the 

Fig. 2. Architecture of the proposed deep autoencoder model (DAE).  
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number of parameters by pooling layers. Here, the Leaky-ReLU activa
tion function is used. In this first level, the time-series response is 
reduced to a more compact representation of the most relevant features. 
The extracted features using convolutional blocks are strongly depen
dent upon each other. However, 1-D CNN did not able produce smooth 
and compact latent representation that can be applied for reconstruction 
of the original response. For a robust latent representation, learning 
feature’s temporal dependencies are crucial. A fully connected layer is 
normally used to simply combine the feature with its adjusted weight. 
However, in this case for smooth latent representation, the first level 
feature map is fed into a second-level LSTM layers for retaining the 
temporal dependencies of similar features which would further be used 
for extracting smooth latent space. Then the last LSTM layer is flattened 
and mapped to the bottleneck layer to obtain a fixed latent space rep
resentation. For the decoder, each convolutional block is comprised of 
deconvolutional layers followed by up-sampling and nonlinear activa
tion function Leaky-ReLU. The proposed architecture optimization of 
weight and bias parameters is done by an end-to-end method, in contrast 
to stepwise training of hidden layers, and staking of pre-trained layers 
for final fine-tuning. 

2.3. Damage index (DI) 

For damage detection and severity evaluation, the reconstruction 
loss is evaluated by the mean absolute error (MAE) using Eq. (5). The 
MAE calculates for each vehicle, the difference between the measured 
response and the reconstructed response estimated by the trained DAE 
model. 

MAE =
1
n
∑n

i=1
|x̂(ti) − x(ti)| (5)  

where x̂(ti) and x(ti) are the reconstructed and measured responses 
respectively at sample i for a total of n samples. 

When considering a fleet of vehicles, the MAE error significantly 
varies between crossing events because of the different vehicle proper
ties and speed. However, batches of these events result in distributions 
of MAE values that can be used to differentiate a healthy bridge (base
line) from a damaged one. It is possible to assess the bridge condition by 
evaluating the difference between MAE distributions from different 
batches. In this study, KL divergence is computed to quantify how 
different two distributions are [53]. The KL divergence is the method 
that comes from information theory and measures the information loss 
when a probability distribution p is used to approximate a distribution q. 

The general form of KL divergence is expressed as follows: 

DKL(p‖q) =

∫

x
plog

dp
dq

(6) 

In this paper the MAE distributions are assumed to follow the log- 
normal distribution for each batch of vehicles crossing the bridge. 
These distributions are defined in terms of their corresponding mean μ 
and standard deviation σfor the baseline condition (p0 = logN(x|μ0, σ0)) 
and for an unknown condition (q1 = logN(x|μ1, σ1)). By using the 
probability density functions definitions in Eq. (6) the KL divergence 
between two distributions can be written as: 

DKL(p0‖q1) = ln
[

σ1

σ0

]

+
1

2σ2
1

[(
σ2

1 − σ2
0

)
+ (μ1 − μ0)

2]
(7) 

One can see in Eq. (7) that the relationship between the distributions 
and KL divergence is exponential with a range of [0, ∞]. To obtain a 
robust damage index (DI) the expression is transformed into a linearized 
relationship as Eq. (8) as proposed in [54]. From Eq. (8) it is clear that DI 
value depends upon the batch size of vehicles. If sufficient amount of 
vehicle-crossing data is available, this DI could be used for damage 
detection. This would be later illustrated with numerical results in 
Section 5. 

DI = ln[DKL(p0‖q1) + e ] (8)  

where is e is Euler number. 

3. Numerical modelling 

This section presents the numerical model that simulates the re
sponses of a vehicle-bridge interaction system with road profile. The 
numerical model would be used to generate dataset for training and 
evaluation of DAE. This section also discusses the configuration and 
hyperparameters for DAE training used in this study. 

3.1. Vehicle-bridge interaction model 

Fig. 3 shows the vehicle-bridge system used for numerical simula
tions. The coupled system is modelled as a simply supported beam 
crossed by a 5-axle truck. 

3.1.1. Vehicle model 
The vehicle model consists of an articulated tractor-trailer configu

ration with two and three axles respectively. Fig. 3 shows that the tractor 

Fig. 3. Vehicle-bridge interaction model.  
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and trailer are represented as rigid bodies, whereas the axles are 
modelled as lumped masses. These bodies are interconnected with 
spring and dashpot systems representing the suspensions. The axle tyre 
is modelled as a single spring connecting the axle mass and road profile. 
The vehicle model has a total of 8 independent degrees of freedom 
(DOF’s): vertical displacements of five axles (ua,i), tractor’s vertical 
displacement (ub1) and pitch rotation (θb1), and pitch rotation (θb2) of 
the trailer. The trailer’s vertical displacement (ub2) can be expressed in 
terms of the other DOFs by the geometric relation given in Eq. (9) arising 
from the articulation between tractor and trailer. 

ub2 = ub1 + D1θb1 + D2θb2 (9) 

The equation of motion of the vehicle can be represented by: 

Mvüv + Cvu̇v + Kvuv = fv (10)  

where Mv, Cv, and Kv are the mass, damping and stiffness matrices of the 
vehicle respectively. The uv vector contains the displacements of all 
DOFs and fv is the external force applied to the vehicle system. The 
extended formulation can be found in [55]. The vehicle model assumes 
constant speed for each run. Table A1 in appendix provides the vehicle 
parameters adopted for the numerical studies. The values of the vehi
cles’ parameters are based on European 5-axle trucks, which are adopted 
from [56–58]. Reference [58] also provides the parameters for distri
butions (mean, standard deviation, minimum and maximum) that are 
the basis for generation of batch of vehicles used for Monte Carlo 
simulations. 

3.1.2. Bridge and road profile 
The bridge is modelled as a simply supported beam of 15m span 

length. Its section and material properties are: second moment of area I 
= 0.5273 m4, modulus of elasticity E = 3.5 × 1010 N/m2, and mass per 
unit length ρ = 28125 kg/m, deemed to represent a generic reinforced 
concrete highway bridge. A 2% damping is considered for all modes. The 
finite element model is discretised into 30 elements (each element 0.5 m 
length). The equation of motion of the bridge is described as follows: 

Mbüb + Cbu̇b + Kbub = fb (11)  

where Mb, Cb, and Kb are the global mass, damping and stiffness 
matrices of the bridge respectively and ub is the vector of nodal 
displacements. 

A road profile is also added to the bridge model. A 6 m wide carpet 
road profile of ISO class ‘A’ is generated as shown in Fig. 4. A 100 m 
approach distance is considered before entering the bridge to allow that 
traversing vehicles reach dynamic equilibrium. The transverse vehicle 
position on the road profile is randomly varied for each run following a 
normal distribution. A moving average filter of 0.24 m width is applied 
to the profile to represent the actual contact of a truck tyre [59] 

3.1.3. Vehicle-bridge interaction: 
The response of a vehicle traversing a bridge is characterised by the 

dynamic interaction between both systems. This vehicle-bridge inter

action is achieved by coupling the equations of motion of vehicle Eq. 
(10) and bridge Eq. (11). The final system of coupled equations of mo
tions can be expressed as: 

Mgüg + Cgu̇g + Kgug = fg (12)  

where Mg, Cg, and Kg are the time-varying system mass, damping and 
stiffness matrices respectively and u is the vector of combined bridge and 
vehicle displacements. ug = {ub, uv}. The vector fg contains the external 
forces applied to the coupled system [55]. To solve the coupled system, 
the equation of motions are integrated using Newmark-β scheme and 
solved iteratively to obtain the system responses, which has been 
implemented in MATLAB. More details of the coupling procedure and 
numerical solution can be found in [55,60]. 

3.2. Data generation and pre-processing 

Numerical evaluation of the proposed damage detection method is 
performed using simulated data generated by solving the vehicle-bridge 
interaction system presented in Section 3.1. In this study, two different 
scenarios are considered based on the degree of variation in vehicle 
properties.  

1. Scenario-1: The dataset is generated assuming that a fleet of similar 
vehicles is traversing the bridge. In this case, the variation in vehicle 
properties is considered in such a way that their standard deviation is 
small, while the geometry of the vehicles is identical. Variation in 
vehicle masses and suspension properties is applied to account for 
normal fluctuations in payload and to account for the inherent un
certainty of the reported vehicle properties.  

2. Scenario-2: This data represents a more generic scenario where the 
responses of different 5-axle trucks is considered. Compared to 
Scenario-1, the dataset is generated by randomly varying the vehicle 
properties with a larger standard deviation, while at the same time 
introducing also random variations in vehicle geometry, rendering 
different vehicles for each event. 

The particular vehicle properties and the statistical variability of the 
parameters (i.e. maximum, minimum, and standard deviation) for both 
scenarios are presented in Table A1 in the appendix. For both datasets, 
the vehicle properties are randomly sampled based on the given statis
tical variation within a Monte Carlo simulation. For each scenario, a 
batch of 1000 vehicle events are created. Each dataset contains the ve
hicle’s speed (v) and the vertical acceleration response from tractor (üb1) 
and trailer (üb2) with a sampling frequency of 500 Hz. The length of 
these signals is not uniform across the events in the datasets because of 
the varying vehicle’s speed. For DAE input, the acceleration signals of 
each event are resampled into the spatial domain by multiplying signal 
in time by the vehicle’s speed. Therefore, for each vehicle crossing the 
bridge of 15 m, 1500 samples are recorded. Therefore, the size of a 
dataset X, for either tractor (üb1) or trailer (üb2), is 1000 × 1500. Each 
dataset is normalized using Eq. (13) for better reconstruction perfor
mance of DAE[47]. 

Xn =
X − μX

σX
(13)  

where Xn is the normalized dataset, while μX and σX is the mean and 
standard deviation of the original data set X. 

3.3. Configuration of DAE 

The architecture of DAE is designed by using TensorFlow modules, 
and the implementation code is developed using python 3.7. The 
configuration of the autoencoder model was selected based on lowest 
reconstruction loss after an extensive trial and error process. The detail 
of different model configurations and parameters used in trial and error 

Fig. 4. Road profile of class A (according to ISO 8608).  
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process is summarized in Table 1. The final architecture’s encoder 
module includes an input layer, four convolutional blocks, two LSTM 
layers, and fully connected layers. Each convolutional block has a 1D 
convolutional layer and a max-pooling layer followed by Leaky-ReLU as 
an activation function. For the decoder module, the same number of 
convolutional blocks is used as in encoder but in the reverse direction. In 
the decoder module, a max-pooling layer is replaced with up-sampling 
layer and at the output layer linear activation function is used. For 
robust model performance and to avoid overfitting, a regularization 
term is used as an additional hyperparameter. The regularization term 
applies penalties on weight parameters of the layers. In the proposed 
model, L2 regularization is applied at the bottleneck layer with the value 
of 1 × 10− 4. The detailed architecture of the proposed DAE with 
different hyperparameters (activation function, filters and kernel size) is 

shown in Table 2. For evaluation of proposed method in subsequent 
sections same hyperparameters would be used for all scenarios. 

The learning and decay rates are set to 0.001 and 0.0001 respectively 
for model optimization and training, adaptive moment estimation 
(Adam) with a batch size of 64 samples is considered. For efficient 
training, early stopping criteria is added to the network, which stops the 
training when the model achieves the loss criteria of 1 × 10− 6 or 1500 
epochs. All models training and numerical computations are performed 
on a standard PC with Intel Core i9-10900 K CPUs with 64 GB RAM and 
NVIDIA GTX 2080Ti graphic card. 

4. Damage detection using DAE 

This section evaluates the DAE for damage detection using Scenario- 
1, in which the crossing event correspond to a fleet of similar vehicles as 
discussed in Section 3.2. For this demonstration, the DAE model is 
trained with the acceleration responses from the tractor of the vehicles 
(üb1). For training, the dataset is divided into 700 and 300 vehicle- 
crossing events for training and validation respectively. After training, 
the model achieves mean squared errors of 1.2908 × 10− 6 and 1.2119 ×
10− 6 for training and validation data. The total training time was 1 h and 
16 min. To demonstrate how the trained model can be used for damage 
detection, seven new datasets with different damage severities are 
generated for Scenario-1, in which the damage is modelled as a stiffness 
reduction of a single beam element. The details for the different damage 
cases (DC) are:  

• Baseline: Dataset with no damage  
• DC1: Dataset with 5% damage at midspan  
• DC2: Dataset with 10% damage at midspan  
• DC3: Dataset with 15% damage at midspan  
• DC4: Dataset with 20% damage at midspan  
• DC5: Dataset with 25% damage at midspan  
• DC6: Dataset with 30% damage at midspan 

To visualize the model’s reconstruction performance, two random 
cases are illustrated for the baseline data (undamaged bridge) and 

Table 1 
Different network architectures and hyper-parameters used for model selection.  

Architecture Latent size Activation function L2 regularization 

conv.-latent-conv. 
[{4,6,8}-1- {4,6,8}] 

{8,16,32,64} {tanh, ReLU, leaky- 
ReLU} 

{10− 2,10− 4,10− 6} 

conv.-LSTM-latent- 
conv. 
[{4,6,8}-{1,2,3}-1- 
{4,6,8}] 

{8,16,32,64} {tanh, ReLU, leaky- 
ReLU} 

{10− 2,10− 4,10− 6} 

*conv: convolutional block, LSTM: Long short-term memory layers. 

Table 2 
Architecture of proposed deep autoencoder.  

Layers Output shape Kernel size Activation 

Encoder    
Input (1500 × 1) – – 
Conv_1D (1500 × 256) 1 × 7 Leaky-ReLU 
Max-pooling (500 × 256) 1 × 7 – 
Conv_1D (500 × 128) 1 × 5 Leaky-ReLU 
Max-pooling (250 × 128) 1 × 5 – 
Conv_1D (125 × 64) 1 × 3 Leaky-ReLU 
Max-pooling (125 × 64) 1 × 3 – 
Conv_1D (125 × 32) 1 × 3 Leaky-ReLU 
LSTM (125 × 32) – Leaky-ReLU 
LSTM (125 × 32) – Leaky-ReLU 
Flattened (2000) – – 
Fully connected (16) – Leaky-ReLU  

Decoder    
Fully connected (4000) – Leaky-ReLU 
Reshape (125 × 32) – – 
Conv_1D (125 × 64) 1 × 3 Leaky-ReLU 
Up-sampling (250 × 64) 1 × 3 – 
Conv_1D (250 × 128) 1 × 3 Leaky-ReLU 
Up-sampling (500 × 128) 1 × 3 – 
Conv_1D (500 × 256) 1 × 3 Leaky-ReLU 
Up-sampling (1500 × 256) 1 × 3 – 
Output (1500 × 1) – Linear 

*Conv_1D: 1-Dimenasional convolutional layer, Leaky ReLU: Leaky-Retified 
linear unit, LSTM: Long short-term memory 

Fig. 5. Comparison of original and reconstructed vertical accelerations of two separate events for: (a) healthy and (b) damaged case.  

Fig. 6. Comparison of the difference between measured and reconstructed 
signals for three different vehicle-crossing events. 
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damage case (DC4). Fig. 5 shows the measured and predicted signals for 
two particular vehicle responses from different datasets. The trained 
DAE model is able to reconstruct the response for the healthy bridge case 
(Fig. 5(a)) with great accuracy, whereas for the damaged case (Fig. 5(b)) 
the match between measured and reconstructed signals is somewhat 
different. The proposed method exploits precisely this difference to 
detect damage. This reconstruction error shows large fluctuations be
tween individual events but remains approximately constant when 
larger populations of events are analysed statistically. 

To further quantify the loss in signal reconstruction, three particular 
vehicle-crossing events are investigated. The measured acceleration 
responses are compared to DAE’s reconstructed response in Fig. 6 that 
shows the difference between both. The errors for vehicles from the 
training dataset and baseline are very small and almost the same, while 
for a damaged case event, the model could not reconstruct the response 
with the same accuracy. The reason for the higher reconstruction loss is 
due to the damage in the bridge. Then, the dynamic behaviour of the 
bridge changes, which leads to inaccuracies in vehicle response recon
struction. Because the DAE is trained only for the healthy condition, the 
model cannot reconstruct the response accurately when data from a 

damaged case is used. 
The DAE model generalises the feature space into a continuous 

domain. This capability makes it possible to correctly predict the re
sponses of events with different vehicle properties and travelling at 
different speeds, while at the same time distinguish changing bridge 
conditions. This is achieved because the encoder module in the DAE 
compresses the input data and transforms it into a latent space that 
generalises the feature space. To visualise this capability of the DAE 
model, the t-Distributed Stochastic Neighbour Embedding (t-SNE) is 
applied, which is used to compare high-dimensional datasets [61]. Fig. 7 
shows a two-dimensional visualization of the feature space for the input 
data from three datasets (training, baseline, DC4). This confirms that the 
DAE model produces distinctive clusters for events with different dam
age conditions. 

The studied example shows that it is possible to distinguish the 
structural condition by evaluating the reconstruction error for batches of 
events. To further illustrate this idea, Fig. 8 shows the histogram of the 
reconstruction errors in terms of MAE (Eq. (5)). The figure directly 
compares the distribution of errors of the baseline dataset with the 
different damage cases considered in this study (DC1 to DC6). The re
sults show that as the damage increases, the mean absolute error dis
tribution changes compared to the baseline. In the proposed method, 
this variation in the statistical distribution of different bridge conditions 
is exploited for damage detection and severity quantification. 

In order to quantify the differences between batches of events, log- 
normal distributions are fitted to the histograms of mean absolute 
error. As shown in Fig. 8 the distribution of MAE is always positive, is 
skewed to the right and has a long tail because of outliers. The log- 
normal distribution has similar characteristics, namely a lower bound 
of zero and a positive skewness. Thus the log-normal distribution is 
deemed suitable for representation of the distribution of MAE. The 
statistical parameters of those fits are then used to define the damage 
index discussed in Section 2.3. Fig. 9 shows the fitted distributions to the 
results in Fig. 8. Each distribution has distinct statistical parameters (μ, 
σ) that are then used to compute the corresponding DI following Eq. (8). 

5. Performance of damage detection method 

This section evaluates the performance of the proposed damage 
detection method using vehicle responses for the two different scenarios 

Fig. 7. Feature space visualization using t-SNE on the encoder output.  

Fig. 8. Histogram of mean absolute error for batches of events for different bridge damage cases.  
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presented in Section 3.2. The analysis studies the sensitivity of the 
proposed damage index to damage severity and location. In addition, 
this section explores the influence of number of vehicles, their speeds 
and effect of measurement noise. 

5.1. Damage detection for Scenario-1 

This section illustrates how damage detection can be performed by 
using vehicle responses from a fleet of similar vehicles (Scenario-1) 
when there is a progressive bridge deterioration. This analysis assumes 
that for every given day, 300 vehicle-crossing events are available. The 
condition of the bridge is changed with increases of 5% damage severity 
every 20 days, starting from a perfectly healthy beam (baseline) until a 
30% stiffness reduction at midspan (DC6). For comparison, this scenario 
is studied for acceleration responses from the tractor (üb1) and the trailer 
(üb2). Two separate DAE models are trained with acceleration responses 
from both locations on the vehicles. 

Fig. 10 shows the damage index (DI) calculated using Eq. (8) for the 
discussed scenario. The DI values are distinctively different for different 
bridge conditions. In the case of the baseline, the magnitude of DI is 
small and close to zero. As the severity of the damage increases DI grows 
proportionally. The operational conditions and varying vehicle proper
ties affect the magnitude of DI, which result in daily variations. How
ever, for any given bridge condition the average value of the DI remains 
constant. The sensitivity of the index to the damage severity is clear, 
which allows the identification of damage even considering the daily 
dispersion in results. Therefore, it is evident that the proposed method 
can successfully be used to monitor the evolution in time of the condi
tion of a bridge. 

Fig. 10 also allows for a direct comparison of the damage detection 
method using signals from different locations in the vehicles. While the 
results in Fig. 10(a) come from the analysis of the vertical accelerations 
in the tractors, Fig. 10(b) shows the same analysis but based on the 
signals recorded on the trailers. Both sources of vehicle responses yield 
similar results in terms of sensitivity and variability of the DI. Therefore, 
in subsequent studies in this section only the tractor response (üb1) will 
be considered. 

5.1.1. Influence of the number of vehicles 
The robustness and accuracy of the proposed method depends on the 

number of vehicles considered for a given batch of events. The damage 
index (Eq. (8)) directly relates to the probability distribution of the 
reconstruction error (MAE). Errors for individual events usually 

Fig. 9. Comparison of log-normal distributions of reconstruction loss for 
different damage cases. 

Fig. 10. Evolution of daily damage index (300 events/day) during progressive 
bridge condition change (every 20 days), for Scenario-1. Solid line indicates 20- 
day average value, using signals from: (a) tractor response (b) trailer response. 

Fig. 11. Influence of batch size (number of vehicle-crossing events) in the 
calculation of the damage index. 
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fluctuate because of operational effects and varying vehicle properties, 
but the distribution of errors tends to a remain fixed. The character
ization of that distribution is more precise when larger the number of 
events considered in its calculation. As shown in Fig. 11, the damage 
index fluctuates quite significantly for small fleet sizes. However, with 
increasing number of vehicles, variations in DI decrease. This shows that 
for a sufficiently large fleet size, the effect of operational conditions can 
be reduced. In this study a batch size of 250 vehicle-crossing events are 
deemed appropriate because it results in sufficiently small variations in 
DI. 

5.1.2. Influence of location 
In practical cases, the location of damage can be anywhere along the 

bridge’s length and it has been often reported that it is difficult to detect 
damage close to the bridge’s supports under realistic vehicle and oper
ational conditions [7]. In vibration-based damage detection methods, 
the sensitivity to damage depends on the location. For instance, in the 
case of a damage close to the bridge support the variation in frequencies 
(mainly the lower frequencies) would be much less compared to the case 
with midspan damage. To detect the damage at different locations of the 
beam it is important to consider the full spectra of the signals. The 
proposed method considers time series responses, which include the 
complete frequency content, that enables the damage detection at 
different locations, to some extent. 

To illustrate the robustness and accuracy of the proposed method, 
damage identification is conducted for different beam damage locations. 
The trained model for Scenario-1 is considered with batch sizes of 250 
vehicle-crossing events. Fig. 12 shows the sensitivity of DI for damage 
cases at seven different locations along the beam. The variation in 
magnitude of the damage index for locations between L/4 and3L/4 is 
significant and comparable in order of magnitude to results at L/2. In 
case of locations closer to the supports (L/8 and 7L/8) the magnitude of 
damage index for low damage severity cases is not distinguishable. 
However, if larger batch sizes were considered the robustness of the 
method increases. Then it would be possible to consistently distinguish 
smaller variations of DI due to damages near the supports. 

5.1.3. Effect of vehicle speed 
In vehicle assisted damage assessment, speed and mass of traversing 

vehicle is critical in the presence of road surface. Previously published 
studies [7,27] have shown that vehicles with relatively small masses 
travelling at high speeds cannot detect damage with sufficient accuracy. 
This is mainly due to the short duration of the vehicle signals, hence a 
poor resolution in the frequency domain, but also due to low levels of 
bridge excitation and the presence of road profile. In lightweight vehi
cles at high speeds, the bridge response component is masked by the 
dynamic effects induced by the road profile. Compared to that, 

heavyweight vehicles can sufficiently excite the bridge and are therefore 
considered more suitable for indirect bridge monitoring [34]. However, 
the amount of dynamic interaction between vehicle and bridge depends 
on the traversing speed. To study the effect of vehicle speed, three 
different speed ranges are studied for Scenario-1. New datasets are 
generated with the same properties as shown in Table A1 of the ap
pendix except for the vehicle speeds. For each new dataset, the vehicle 
speeds are randomly sampled following normal distributions defined by 
the values provided in Table 3. Three DAE models are trained using 
tractor accelerations (üb1), one for each new dataset. The trained models 
have tested against the baseline and two damage cases (DC2 and DC4). 
To consider the uncertainty in operational conditions (number of vehi
cle’s, road profile etc) 20 randomly selected fleet size is considered from 
range of 200 to 400. 

Fig. 13 compares the damage index distributions for three damage 
cases (baseline, DC2 and DC4) for three speed ranges (using datasets V1, 
V2 and V3). The comparison is done using a box plot representation, 
which shows the 25th and 75th percentile values in a box together with 
the median value and indicates the maximum and minimum results of 
the DI distribution. The results in all speed ranges allow for the clear 
distinction between healthy and damaged cases. It also shows that at 
lower speed the performance of the trained model is less accurate than at 
higher speeds. The magnitude of the damage index for the baseline 
condition shows that at lower speeds the feature space is not well 
generalised for the damage-sensitive features, compared to higher 
speeds. The physical interpretation on why damage detection is more 
robust at higher speed might be in the relative magnitudes between 
static and dynamic components of the bridge response. At lower speeds 
the bridge behaviour captured by the vehicle response is dominated by 
the quasi-static component. Only a small proportion of energy is present 
at the bridge frequencies, which are therefore hardly captured by the 
passing vehicle. It is found the proposed damage detection method 
performs well using responses of vehicles travelling at normal opera
tional speeds. 

Fig. 12. Effect on damage index of different bridge damage locations (Sce
nario-1). 

Table 3 
Vehicle speed variability (in km/h).  

Dataset name Min. Max. Mean SD 

Dataset V1 25 40 36 7 
Dataset V2 40 70 55 7 
Dataset V3 70 120 90 7  

Fig. 13. Damage index performance comparison for different speed ranges.  
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5.1.4. Influence of measurement noise 
This section presents the sensitivity and performance of the proposed 

damage detection method to measurement noise. In order to analyse the 
effect of noise, two separate datasets of 1000 vehicle-crossing events are 
considered. Dataset N1 was formed by noise-free samples and dataset N2 
by adding normally distributed noise. Noise in acceleration response 
(üb1,noise) is defined according to Eq. (14), for an equivalent nose level 
Elevel. 

üb1,noise = üb1 + Elevel⋅Nnoise⋅σ(üb1) (14)  

where, Nnoise is a vector of standard normal distribution N(0, 1) and 
σ(üb1) is the standard deviation of the measured response. In dataset N2, 
the noise level for each event is randomly sampled for Elevel N(2.5, 0.5)

with value in the range [0, 5]. Both datasets (N1 and N2) are trained 
using the architecture and hyperparameters discussed in Section 3.3. 
The trained models are then tested for three damage conditions (base
line, DC2 and DC3) by including a variations in noise levels Elevel (noise- 
free or 0%, 1%, 2%, 3%, 4%, 5% and 6%). For each noise level to 
consider the statistical uncertainties because of operational variabilities 
20 repeated simulation are computed with randomly selected fleet size 
from range of 200 to 400. 

The noise sensitivity analysis of the proposed damage index (DI) for 
the two datasets is presented in Fig. 14. The results from both datasets 
clearly show that different levels of damages are separable even when 

including large noise magnitudes in the signals. For dataset N1, when 
the model is trained with noise-free samples and tested with different 
noise levels, DI increases linearly with the increase in noise level (Fig. 14 
(a)). It shows that the trained model starts overfitting with increases in 
noise and that variations in the noise level at baseline condition could be 
interpreted as damage. However, Fig. 14(b) shows the results of the 
same model but trained with dataset N2. The magnitude of DI for 
baseline condition remains approximately constant for a range of 
different noise levels compared to the noise-free model. The introduc
tion of noise levels during the training process helped the DAE model to 
generalise the latent feature for healthy conditions under uncertainty. 
From these results, it can be said that the introduction of uncertainty in 
the form of measurement noise during model training results in a more 
stable performance for the baseline condition. 

5.2. Damage detection for Scenario-2 

This section discusses the damage assessment performance of the 
proposed method for Scenario-2, i.e. a more challenging scenario that 
uses a broader range of vehicle properties (as described in Section 3.2). 
For Scenario-2, separate DAE models are trained for both tractor and 
trailer responses of the vehicles. The trained models are tested for the 
damage cases discussed in Section 4, with the only difference that each 

Fig. 14. Effect of measurement noise on the sensitivity of the damage index: (a) 
noise-free; (b) with noise. 

Fig. 15. Evolution of daily damage index (450 events/day) during progressive 
bridge condition change (every 30 days), for Scenario-2. Solid line indicates 30- 
day average value, using signals from: (a) tractor response (b) trailer response. 
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case is simulated for the dataset of Scenario-2. Because of the inherent 
broader variability of the vehicle properties, the damage detection 
method benefits of larger sets of data. This is why 450 vehicles/day and 
intervals of 30 days are considered to illustrate the performance of the 
method, where the damage intensity is increased in 5% increments after 
30 days. The results in terms of DI are shown in Fig. 15. 

It is evident from Fig. 15, when compared to Scenario-1, that the 
daily variation in DI and the magnitude of DI for baseline condition are 
much higher. The trained models cannot fully generalise the latent space 
for damage sensitive features to accommodate the large variation in 
vehicles properties. However, the average value after 30 days is more 
robust and can easily distinguish different damage cases. Furthermore, 
as can be observed in Fig. 15(a), the daily fluctuation in DI when using 
the tractor signals is much less than for the model using the trailer sig
nals Fig. 15(b). This significant difference between model results can be 
attributed to the inherent larger variability in properties of trailers. More 
in particular, trailers can vary considerably in dimensions, mass, and 
inertia properties, factors that have been accounted for during the 
random vehicle generation for Scenario-2. Therefore, the DAE model has 
more difficulties discerning damage sensitive features when using trailer 
responses, which in theory could be improved by increasing the number 
of events. 

5.2.1. Influence of location 
Finally, this section evaluates the sensitivity of the proposed method 

to damage location under the conditions of Scenario-2. Seven damage 
locations along the beam have been studied for different levels of 
damage severity. The trained model for tractor response is used with a 
batch size of 450 vehicles. Fig. 16 shows the damage index values for 
baseline condition and three damage cases (DC2, DC4, and DC 6). The 
magnitude of DI changes quite significantly for different locations. 
However, for a given damage location it is possible discern a healthy 
bridge (baseline) from a damaged one. The proposed method has clear 
damage detection capabilities, and since it is sensitive to damage loca
tion it could potentially be further developed to a damage localisation 

tool. 
In summary, it is shown that the proposed method can be used 

effectively for damage assessment using multiple vehicles responses. A 
DAE can be implemented that finds an adequate generalisation of the 
feature space together with damage sensitive features provided that 
enough data for training is available. 

6. Performance validation on multi-span bridge 

This section evaluates the performance of the proposed method 
simulating the behaviour of an existing multi-span continuous highway 
bridge. Furthermore, this study is extended to evaluate the effect of 
additional random traffic and its influence on the sensitivity of proposed 
damage index. 

6.1. Voigt Drive I-5 bridge 

The Voigt Drive I-5 bridge is located on the Eastern edge of the 
University of California, San Diego (UCSD). The four span reinforced 
concrete box girder structure is 89 m long and constitutes a typical large 
highway overpass. More details on the structure’s properties, di
mensions and configuration can be found in [62]. The bridge is modelled 
here as a multi-span continuous beam. The section properties of the 
beam are computed from the cross-section dimensions of the real bridge. 
The intermediate supports are modelled using vertical and rotational 
springs, as shown in Fig. 17. The values of the support springs are 
manually tunned to match the first three natural frequencies reported in 
[62]. 

Table 4 lists the final section and material properties and the first 
three natural frequencies of the model compared to the measured bridge 
frequencies. 

In line with the studies performed in previous sections, the finite 
element model of the bridge is made of 0.5 m long elements (178 ele
ments in total). A similar carpet road profile of class ‘A’ is included on 
bridge and vehicle’s path, with a 100 m approach distance (as discussed 
in section 3.1.2). The coupled vehicle-bridge interaction model is solved 
using Eq. (12) to extract vehicle body acceleration responses. 

Fig. 16. Effect on damage index for different location of the bridge (Sce
nario-2). 

Fig. 17. Model of Voigt Drive I-5 bridge with instrumented vehicle and random traffic.  

Table 4 
Bridge model properties and first three fundamental frequencies.  

Symbol Description Value 

L Total span length (m) 89 
E Young’s modulus (N/m2) 3.5 ⋅ 1010 

I Second moment of area (m4) 1.3427 
A Cross section area (m2) 5.6180 
ρ Mass per unit length (kg/m) 2500 
kr, (1,2,3) Rotational stiffness for supports (Nm/rad) 4.5 ⋅ 109 

kv, (1,2,3) Vertical stiffness for supports (N/m) 3.5 ⋅ 1010 

ζ Damping (%) 2 
f1,2,3 (model) First three calculated frequencies (Hz) [4.91, 6.54, 13.45] 
f1,2,3 [62] First three measured frequencies (Hz) [4.91, 6.53, 12.84]  
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6.2. Data generation and DAE training 

To examine the sensitivity of the proposed damage index on the 
multi-span continuous bridge, two new scenarios are studied. One sce
nario consists of single 5-axle truck crossing events, which is subse
quently referred to as ‘Without traffic’. On the other hand, the second 
new scenario includes additional random traffic on the bridge, which is 
termed ‘With traffic’. The dataset for both scenarios was generated by 
solving the vehicle-bridge interaction system presented in Section 3.1. 
For dataset generation the statistical variabilities of the 5-axle truck 
parameters remained the same as for Scenario-1 discussed in Section 
3.2. However, for modelling the additional random traffic on the bridge 
for the ‘With traffic’ scenario, two 2-axle vehicles are included in the 
crossing event as shown in Fig. 19. These additional vehicles are 
assigned randomly sampled properties within a Monte Carlo simulation, 
allowing the vehicles to enter randomly from either left or right side of 
the bridge. Additional details on the 2-axle vehicle model and their 
statistical variabilities are provided in Table A2 in the Appendix. 

For each new scenario batches, of 1000 vehicle events are created. 
Each dataset contains the vertical acceleration response from tractor 
(üb1) and vehicle speed (v) of the traversing 5-axle truck. Each dataset is 
resampled from time-domain to space-domain to compute fixed length 
vectors with 1500 samples. A random sampled noise level of 
Elevel N(2.5, 0.5) with value in the range [0, 5] is added to the datasets 
using Eq. (14). The DAE model with the same configuration and 
hyperparameters as discussed in Section 3.3 is used to train the model 
for a healthy bridge condition. The datasets are divided into 700 and 300 
vehicle crossing events respectively for training and validation of the 
model. 

To investigate the performance of the DAE and the sensitivity of the 
damage index, five new damage cases are defined. The type of damage 
and their location of each damage case are:  

• Baseline: Healthy bridge  
• DC1: 30% mid-span stiffness reduction on span 1 (at 8.5 m of the 

bridge)  
• DC2: 30% mid-span stiffness reduction on span 2 (at 31 m of the 

bridge)  
• DC3: 30% rotational stiffness (kr,1) reduction at support 1  
• DC4: 30% rotational stiffness (kr,2) reduction at support 2 

6.3. Damage detection for multi-span bridge 

The five new damage cases are investigated for both new scenarios 
(‘Without traffic” and ‘With traffic’) to assess the performance of the 
proposed method. For each damage case, 20 repeated simulation are 
computed with randomly selected fleet sizes ranging from 400 to 500 
events. Then, as in Section 5, the distribution of the reconstruction loss is 
computed using Eq. (5) and the statistical parameters of fitted distri
butions are further used to compute the Damage index (DI) with Eq. (7). 

Fig. 18 shows the damage sensitivity analysis for both new scenarios 
and the five new damage cases for the multi-span continuous bridge. The 
results suggest that in both scenarios, there is a clear distinction between 
baseline and damage cases. However, it is also evident from the figure 
that for the scenario with additional random traffic the severity com
parison of different damage cases is relatively poor, compared to the 
scenario when no traffic is present on the bridge. This is because the 
trained model cannot fully generalise the latent space for damage sen
sitive features to accommodate the contribution of excitations from 
additional random traffic vehicles. However, broadly speaking this 
problem could be resolved by fine tuning the DAE model’s hyper
parameters and increasing the training dataset. Nevertheless, aside from 
the performance degradation of the method when considering addi
tional random traffic, the proposed method can clearly detect and 
quantify the severity of damages for the multi-span bridge model for all 
other cases. Therefore, the results suggest that the proposed method can 
be used for a wide range of structural configurations, making it a 
potentially useful approach for network-wide road bridge monitoring. 

7. Practical consideration for real-life application 

The method proposed in this paper may be useful to monitor bridges 
and assess their condition. The method relies on the fact that local 
damage, resulting in local bending stiffness reductions, directly affect 
the modal properties of the bridge. These variations can be identified 
from the vertical acceleration signals recorded by the on-board sensors 
of the traversing vehicles. However, it is impossible to identify these 
variations solely using signals from single events, due to the inherent 
fluctuations under operational conditions (e.g. vehicle velocity, road 
profile and signal noise). Instead, this study proposes the use of signals 
from a fleet of vehicles to capture the variations in bridge behaviour. The 
collected signals from multiple vehicles could then be used to extract the 
bridge dynamic features using DAE. 

However, there exist multiple challenges for the practical imple
mentation of the proposed method, including signal collection and 
synchronization, variable vehicle speed, threshold definition and other 
loads (wind, earthquake, temperature). Each of these challenges could 
potentially be adequately addressed by fully utilizing existing 
technologies. 

Arguably, the main challenge to apply the proposed method is the 
collection of the necessary signals and related crossing event informa
tion from passing vehicles. However, this is gradually becoming a real 
possibility considering the current trends in the transport industry. 
Modern trucks are getting an increasing number of built-in sensors, 
which could include (if not already) also sensors measuring the vertical 
acceleration of the tractor. While entry and exit times of the vehicle on 
the bridge can be determined via global positioning systems. Further
more, many truck vendors offer also comprehensive fleet management 
system solutions that could seamlessly accommodate the gathered in
formation. In turn, this information can be used to devise correction 
measures on operational conditions such as variable vehicle speed or 
individual truck mechanical properties. In such a near future scenario, a 
fleet of transport trucks that regularly roam the road network would 
provide a reliable and abundant source of information to put the pro
posed idea into practice. 

On the other hand, bridges are subjected not only to traffic loading 
but also to other types of actions. It is generally known that ambient 

Fig. 18. Damage index performance comparison for multi-span bridge 
considering without traffic and with traffic. 
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temperature fluctuations produce variations in the modal properties of 
bridges. Also, wind loading can be an important source of dynamic 
excitation, particularly on longer bridges. These effects could be 
compensated using dedicated sensors on the bridge to monitor these 
loads or utilizing the information available from nearby weather sta
tions. In case of seismic activity, the duration of this exceptional load is 
very short. Any vehicle crossing event during earthquake excitation 
could be discarded without affecting the overall performance of the 
proposed method. However, if some damage occurs as result of an 
earthquake, the proposed method could be used to detect that damage. 

Moreover, to implement a successful structural health monitoring 
system based on the proposed method, it is required to identify adequate 
thresholds for the damage index. The system has to identify potential 
damage occurrences while minimizing the number of false alarms. This 
challenge can be tackled using statistical techniques on the continuous 
stream of calculated damage indicators from each individual event. Over 
time, the study of statistical moments (mean and standard deviations) 
would provide indications of normal damage index values under oper
ational conditions. Then large deviations on the damage index would 
indicate significant variations in the structural behaviour that could be 
attributed to a possible damage. 

8. Conclusion 

This study proposed a damage assessment technique based on deep 
learning and a statistical distribution-based damage index. The sug
gested SHM method uses the acceleration responses from multiple 
traversing vehicles over the target bridge. The major challenge in 
damage detection using the response from several different vehicles is to 
generalise the relationship between vehicle responses and bridge dy
namics. To address this issue, this paper used deep autoencoders (DAE) 
architecture, considering multiple convolutional layers and LSTM layers 

for dimensionality reduction. The DAE is trained for healthy (or exist
ing) bridge conditions, which constructs a feature space that is sensitive 
to bridge dynamics and robust enough against measurement noise and 
operational conditions. Moreover, the errors between measured and 
reconstructed signals are characterized by distributions that are sensi
tive to bridge damage. The damage index based on the KL divergence of 
these distributions can be used for damage detection and severity 
quantification. 

The proposed method’s effectiveness is evaluated numerically with a 
5-axle truck vehicle model traversing a simply supported bridge and 
multi-span continuous bridge. Two scenarios are considered based on 
the level of variability in vehicle properties and operational conditions 
for simply supported beam model. Similarly, for multi-span bridge 
model, effect of random traffic is also considered. The results show that 
the outlined method is able to detect damage successfully, providing 
robust results under operational conditions (road profile, vehicle prop
erties variability and measurement noise). In conclusion, the proposed 
method has potential to become a practical tool as it removes the need of 
specialised vehicles for long-term bridge monitoring. Additionally, the 
proposed method can easily be integrated with an intelligent transport 
network and can be used as a cost-effective solution for bridge health 
monitoring. 
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Table A1 
5-axle truck model parameters.  

5-Axle-truck Scenario-1 Scenario-2 

Parameters Min. Max. Mean SD Min. Max. Mean SD 

Mass (kg)         
Tractor body mb1  2800 3400 3100 80 2500 4000 3200 250 
Trailor body mb2  15,000 25,000 20,000 1000 10,000 40,000 25,000 4500 
Tractor axles mu1,mu2  500 1000 750 30 300 1000 600 100 
Trailer axles mu3,mu4 ,mu5  800 1400 1100 50 600 1600 1100 100  

Moment of inertia (kg⋅m2)         
Tractor body Ib1  4250 5500 4875 50 4000 5800 4900 150 
Trailer body Ib2  112,000 135,000 123,000 2500 106,000 140,000 123,000 6000  

Viscous damping (N⋅s/m)         
Front suspensions Cs1,Cs2  1.0 ⋅ 104 8.0 ⋅ 104 4.0 ⋅ 104 0.5 ⋅ 104 1 ⋅ 104 12 ⋅ 104 6 ⋅ 104 2 ⋅ 104 

Rear suspensions Cs3 ,Cs4,Cs5  2 ⋅ 105 16 ⋅ 105 8 ⋅ 104 1 ⋅ 104 2 ⋅ 104 24 ⋅ 104 12 ⋅ 104 4 ⋅ 104  

Spring stiffness (N/m)         
Front suspensions Ks1,Ks2  4.0 ⋅ 106 8.0 ⋅ 106 6.0 ⋅ 106 0.5 ⋅ 106 1 ⋅ 106 12 ⋅ 106 6 ⋅ 106 1 ⋅ 106 

Rear suspensions Ks3,Ks4,Ks5  5.0 ⋅ 106 15 ⋅ 106 10 ⋅ 106 0.5 ⋅ 106 2.5 ⋅ 106 15.0 ⋅ 106 10.0 ⋅ 106 2.0 ⋅ 106 

Front tyre Kt1 ,Kt2  1.25 ⋅ 106 2.25 ⋅ 106 1.75 ⋅ 106 0.20 ⋅ 106 1.0 ⋅ 106 4.0 ⋅ 106 2.0 ⋅ 106 0.7 ⋅ 106 

Rear tyre Kt3 ,Kt4 ,Kt5  2.75 ⋅ 106 4.75 ⋅ 106 3.50 ⋅ 106 0.20 ⋅ 106 2.0 ⋅ 106 8.0 ⋅ 106 4.0 ⋅ 106 1.0 ⋅ 106  

Geometry (m)         
D1  – – 5 – 3.5 6.5 5.0 0.1 
D2  – – 4 – 3.0 5.0 4.0 0.02 
e1  – – − 1.09 – − 0.50 − 1.20 − 0.80 − 0.01 
e2  – – 3.5 – 3.00 4.00 3.50 0.05 
e3  – – 1.2 – – – 1.2 – 
e4  – – 2.2 – – – 2.2 – 
e5  – – 3.2 – – – 3.2 –  

Velocity (km/h)         
Velocity v  36 60 40 5 36 60 40 8  
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interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix 

Table A1 provides the model parameters with their statistical vari
ability for simulation of 5-axle truck as shown in Fig. 3. Monte Carlo 
simulation used the statistical variability of the parameter to generate 
the dataset for two scenarios. Table A2 provides the model parameters 
with their statistical variability of 2-axle vehicles as shown in Fig. 19, 
which are used in the ‘With traffic’ scenario in Section 6 
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[29] McGetrick PJ, Kim C-W, González A, Brien EJO. Experimental validation of a drive- 
by stiffness identification method for bridge monitoring. Struct Health Monitoring 
2015;14(4):317–31. https://doi.org/10.1177/1475921715578314. 

[30] McGetrick PJ, Kim CW. A Parametric Study of a Drive by Bridge Inspection System 
Based on the Morlet Wavelet. Key Eng Mater 2013;569–570:262–9. https://doi. 
org/10.4028/www.scientific.net/KEM.569-570.262. 
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Abstract

Structural health monitoring (SHM) systems have been increasingly em-
ployed to continually assess the current state of bridges. However, the vast
amounts of sensor data generated by SHM systems, along with constantly
changing environmental and operational conditions, make structural damage
assessment a computationally demanding and challenging task. Traditional
data-driven approaches primarily utilise machine learning methods for pat-
tern recognition and feature extraction to address this issue. This paper in-
troduces a methodology for assessing bridge conditions using a probabilistic
temporal autoencoder (PTAE). The proposed approach effectively extracts
features and captures temporal relationships in multi-sensor data collected
only during train crossings. By calculating the reconstruction loss and KL
divergence-based of damage features, the methodology enables the identifica-
tion of potential damage of a monitored bridge. An Exponentially Weighted
Moving Average (EWMA) filter and a control chart-based threshold mecha-
nism are applied to further refine the damage assessment process, facilitating
the distinction between healthy and progressively deteriorating damage cases.
The proposed method is adaptable to various monitoring scenarios and sensor
configurations, and robust to varying operational and environmental condi-
tions. The effectiveness of the methodology is assessed using numerically
generated data and validated with real-world data from the KW51 bridge.
The results demonstrate that the proposed method can detect damage with
a limited number of sensors, making it a valuable approach to enhance bridge
safety.
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Train-induced vibration, damage assessment, EWMA, probabilistic
autoencoder, Structural health monitoring, KW51 Bridge
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1. Introduction

The rapidly ageing bridge infrastructure has become a growing concern
worldwide, as a significant number of bridges in developed countries reach
the end of their design life. Increased mobility, traffic volume, and climate
change have resulted in deviations from original design assumptions, acceler-
ating the deterioration process [1, 2]. Presently, bridge maintenance decisions
rely primarily on manual and visual inspections, which are time-consuming,
expensive, and partly subjective. As a result, there is an urgent need for
more efficient and objective methods to monitor and maintain ageing bridges.
Structural Health Monitoring (SHM) techniques present a promising alter-
native to traditional manual inspections, providing real-time, objective data
on bridge conditions [3]. Among various SHM techniques, vibration-based
methods have attracted considerable attention due to their ability to capture
a structure’s global behaviour and detect damage without prior knowledge
of the damage location [4].

Vibration-based SHM approaches for detecting damage can generally be
divided into model-based and data-driven methods. The model-based ap-
proach involves using a numerical model combined with experimental data to
obtain information about the structural integrity. Although widely popular
and known for their accuracy, these methods possess inherent computational
complexity, rendering them less appropriate for extensive SHM applications
[5]. Conversely, data-driven or non-model-based methods primarily focus
on utilising data mining and advanced signal processing techniques to de-
rive valuable insights directly from the sensor data collected from the target
bridge. Due to their computational simplicity, data-driven methods are more
attractive and cost-efficient for real-time damage assessment in large-scale
structures [6].

There has been extensive discussion in the literature regarding strate-
gies for identifying bridge damage using data-driven methods. One such
approach, proposed by Alamdari et al. [7], involves identifying rotation in-
fluence lines using only two instrumented locations at the bridge bearings.
This technique was implemented to evaluate cable losses in a cable-stayed
bridge. Similarly, Huseynov et al. [8] and O’Brien et al. [9] used accelerom-
eters to determine structural rotation and the corresponding influence lines
for identifying damage related to the loss of bending stiffness in the bridge
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deck. In addition, authors Quqa et al. [10, 11] showed that filter banks con-
sisting of low and bandpass filters can be used to identify damage-sensitive
structural features from acceleration measurements. Although these methods
have been effective in assessing damage, practical implementation remains a
challenging task due to the uncertainty associated with varying operational
and environmental conditions in long-term monitoring data.

Continuous structural health monitoring (SHM) systems face challenges
in dealing with the influence of operational and environmental conditions
due to the complex, nonlinear relationship between the mechanical and ma-
terial properties of the structure and external factors [12]. This has led to
increasing interest in the application of machine learning (ML) techniques,
which are effective in handling these challenges [13, 5]. ML models are essen-
tially black box models that automatically extract information from datasets,
identify patterns, and make predictions about future outcomes. There are
two types of ML methods: supervised and unsupervised. Supervised ML
requires input and output labels, while unsupervised ML only requires input
data. In situations where only data obtained from the original state of the
structure is available, unsupervised ML is particularly relevant [14, 15]. This
is often the case in civil structures, where monitoring data frequently lacks
information for damage cases. Overall, ML methods have significant poten-
tial for improving the accuracy and reliability of SHM systems in the face of
operational and environmental uncertainties [16].

In the context of unsupervised machine learning methods, Principal Com-
ponent Analysis (PCA) is often considered the simplest and most common
approach [17]. PCA computes the linear relationship between measured fea-
tures and the deviation of features from the identified relationship, referred to
as the damage state. Due to its efficiency and practicality, many researchers
prefer using PCA for dimensionality reduction and damage detection [18].
For instance, Ni et al. [19] proposed a damage detection and localisation
method based on fixed moving principal component analysis, where princi-
pal components and eigenvalues are used as damage-sensitive features. Sim-
ilarly, Ma et al. [20] introduced a probabilistic variant of PCA for anomaly
detection. Although PCA constitutes the majority of commonly used di-
mensionality reduction techniques in SHM, other methods such as tensor
decomposition and autoencoders are also prevalent [21]. In recent years, au-
toencoders have gained significant attention in the SHM field. Researchers in
various studies have used modal parameters to train autoencoders for dam-
age detection [22, 23]. Ma et al. [24] and Silva et al. [25] introduced a
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damage-sensitive feature extraction method using an autoencoder by utilis-
ing raw acceleration data. Wang and Cha [26] combined autoencoders with
one-class support vector machines for damage assessment. Giglioni et al. [27]
expanded upon Wang and Cha’s idea by introducing ensemble learning and
a threshold mechanism. In their work, the authors developed a methodol-
ogy that uses an autoencoder to reconstruct the acceleration response. The
damage-sensitive feature is computed by calculating the reconstruction loss,
and a number of short sequences are grouped to form a macro sequence for
damage detection. Moreover, Zhang et al. [28] and Sarwar and Cantero [29]
presented the idea of using a 1D convolutional autoencoder. The convolu-
tional autoencoder is trained on acceleration data of the undamaged state of
bridges and then the trained model is further used for damage assessment.
Shang et al. [30] used a deep convolutional denoising autoencoder to combine
multiple sensors and extract damage-sensitive features. Compared to ordi-
nary autoencoders, convolution-based autoencoders enable the possibility of
combining multiple sensors to extract damage-sensitive features. This makes
convolutional autoencoders more attractive for applications in SHM, where
multiple sensor fusion has proven to be beneficial. For more detail on the
application of convolutional autoencoders and their application refer to [15].

The majority of research conducted on data-driven methods for bridge
damage assessment primarily relies on ambient vibration data or static ef-
fects. However, recent studies have acknowledged that structural responses
generated by vehicle crossings can also be effective for bridge damage as-
sessments [16]. In this context, most research related to monitoring tech-
niques and data interpretation focuses on highway bridges, but these tech-
niques are generally applicable to railway bridges as well [31]. Gonzalez
and Karoumi [32] proposed an artificial neural network (ANN)-based dam-
age detection method. Their approach utilises deck acceleration and bridge
weigh-in-motion data to train a machine learning model, which is then used
in conjunction with statistical processes for classifying the bridge’s health
and damage states. In [33], the authors validated this idea using real bridge
measurements. One of the main drawbacks of this strategy is the need to
train an ANN model for each individual sensor. Azim and Gul [34] proposed
a time series analysis-based method for the global monitoring of railway
bridges using operational data. Their method employs the autoregressive
moving average (ARMA) model to analyse the free vibration response of the
bridge, in order to extract damage features. Similarly, Meixedo et al. [35]
presented the idea of using autoregressive (AR) models to extract damage-
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sensitive features from traffic-induced vibration responses. Their method
effectively removes the influence of temperature, train type, and speed from
the damage-sensitive features using Multiple Linear Regression (MLR) and
Principal Component Analysis (PCA). However, the main challenge with
their proposed method is the manual extraction of damage-sensitive features
for each sensor, which requires careful analysis of the AR parameters.

Despite the strong potential, the real-world application of vehicle-induced
dynamic response for Structural Health Monitoring (SHM) implementation
remains limited. Most of the existing works and methodologies have certain
limitations, such as disregarding the influence of environmental and opera-
tional conditions, specific loading effects, and validating methods using sim-
ple numerical models. Consequently, this study aims to develop a methodol-
ogy for damage assessment that can automatically extract damage-sensitive
features from responses generated by trains crossing at varying speeds and
loading conditions. To this end, a multivariate temporal convolutional au-
toencoder is proposed. The proposed autoencoder is first trained using the
current, healthy state of the bridge. Then, the trained model is utilised for
damage assessment. In practice, it is impossible for training data to en-
compass all varying conditions, such as temperature and loading conditions.
Therefore, it is crucial that the proposed autoencoder can generalise the fea-
ture space for the healthy state of the bridge and quantify the uncertainty
arising from limited data. This challenge is addressed by developing a tempo-
ral convolutional autoencoder as a Bayesian deep learning approach. More-
over, for damage assessment, the features extracted from the autoencoder are
combined with an Exponentially Weighted Moving Average (EWMA) filter,
a pattern recognition algorithm capable of distinguishing minor damage cases
under varying operational conditions. The EWMA control chart is employed
for threshold selection in damage detection. Likewise, a one-class Support
Vector Machine (OC-SVM) is implemented using the input from the EWMA
output for damage detection. The proposed methodology is evaluated across
a range of different damage scenarios using both numerical and real-life field
data.

The remainder of the paper is structured as follows. Section 2 offers an
overview of the suggested methodology, encompassing details of the prob-
abilistic deep autoencoder and the damage index. Section 3 presents the
specifics of the numerical case study, which includes the train-track bridge
model used to generate data, as well as an evaluation of the proposed method’s
performance for the numerical case study. Section 4 describes the monitoring
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details of railway bridge KW51 and validates the proposed method by de-
tecting various bridge conditions. Lastly, Section 5 summarises the findings
of this research.

2. Proposed methodology

2.1. Overview

The main overview of the proposed methodology is shown in Fig. 1, which
involves collecting sensor data as trains cross the bridge. The sensor data
for a single event is further divided into n windows. The collected data is
then utilised to train a probabilistic temporal autoencoder (PTAE). The ar-
chitecture of the PTAE consists of multiple convolutional blocks and a Long
Short-Term Memory (LSTM) recurrent neural network. For damage assess-
ment, the reconstruction loss of each window is computed first, followed by
the calculation of a KL (Kullback-Leibler) divergence-based damage feature
between the baseline condition and a subsequent single train crossing. In
the final step, an Exponentially Weighted Moving Average (EWMA) filter
is applied to the damage feature. The EWMA control chart-based thresh-
old mechanism is developed to distinguish between healthy and subsequent
damage states. Further details about each step are discussed in subsequent
sections.

Figure 1: Overview of proposed damage detection framework
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2.2. Probabilistic deep autoencoder

An autoencoder is a neural network architecture designed to replicate
its input X to itself, namely Y = X via a bottleneck structure. A deep
autoencoder consists of two main components: an encoder and a decoder.
The encoder maps the input data X to a lower-dimensional latent repre-
sentation z, also known as the bottleneck layer, while the decoder recon-
structs the input data from this latent representation. This means that in
an autoencoder, we select a model FW,b(X) to concentrate the information
required to accurately recreate X. Suppose that we have N input vectors
X = {x1, . . . , xN} ∈ RM×N . The transfer function of the encoder and de-
coder can be expressed by Eq. 1 and Eq. 2 respectively.

z(0) = X

z(l) = ϕ(W (l)z(l−1) + b(l)), for l = 1 to L
(1)

y(0) = z(L)

y(l−L) = ϕ′(W ′(l)y(l−L−1) + b′(l)), for l = L+ 1 to 2L
(2)

where ϕ, ϕ′ are the activation functions of the encoder and decoder mod-
ules, while W,W ′ and b, b′ are the weights and biases of each module, and L
is the number of hidden layers in the encoder. In an autoencoder, we fit the
model FW,b(X) and optimise the weights W,W ′ and biases b, b′ parameters
using the backpropagation algorithm by employing the mean squared error
as the loss function, which is expressed as:

L = f(X : Θ) =
1

n

N∑

i=1

(
1

2
∥x̂i − xi∥2

)
+ λ(Θ) (3)

where λ is a regularisation factor applied to the weights of a specific
layer in order to prevent overfitting. In a standard autoencoder, the learning
parameters are optimised as single deterministic estimates based on a given
dataset. However, in various applications, the ability to represent uncertainty
is of paramount importance. Unfortunately, standard autoencoders do not
possess the capability to account for or represent model uncertainty.

Bayesian neural networks (BNN) or probabilistic neural networks (PNN)
can incorporate uncertainty in a systematic manner, as opposed to standard
neural networks. BNNs handle uncertainty by treating weights as stochas-
tic variables with a prior distribution. One major drawback of BNNs is
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their computational cost. In the case of deep networks, BNNs need to ob-
tain posterior distributions across the network’s parameters, which become
high-dimensional probability distributions as the model complexity increases.
To address this issue, Gal and Ghahramani [36] proposed a more computa-
tionally efficient algorithm called Monte Carlo Dropout (MC Dropout). In
their work, the authors showed that applying dropout before weight layers
in any neural network, regardless of its depth and non-linearities, can be
interpreted as a Bayesian approximation of the probabilistic deep Gaussian
process. Dropout, which randomly deactivates neurons in a neural network
during training, is typically employed as a regularisation technique to re-
duce overfitting, without being used during prediction. However, when each
unit is dropped during prediction with some probability p the output ceases
to be probabilistic. Training a neural network with dropout can be con-
sidered as training a set of pruned networks with extensive weight sharing.
Each dropout configuration corresponds to a sub-network, producing multi-
ple output predictions for a given input, as illustrated in Fig. 2. Uncertainty
can be quantified by calculating the variance of numerous predictions across
different dropout configurations, while the predictive mean of the output is
represented by the mean of these multiple predictions.

Figure 2: Different MC-Dropout configurations for autoencoder
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2.3. Network architecture of probabilistic temporal autoencoder

Deep learning models have shown great promise in combining information
from multiple sensors to perform a range of tasks, including classification and
regression [16]. Automatic feature extraction from time series data often re-
lies on the use of 1D convolutional neural networks (1D CNN) and recurrent
neural networks (RNN). However, training RNNs for long-term sequences
can be challenging due to the vanishing gradient problem encountered dur-
ing backpropagation [37]. To address this issue, Long Short-Term Memory
(LSTM) networks were introduced [38]. In this study, the network architec-
ture of the proposed probabilistic temporal autoencoder (PTAE) is primarily
built using 1D CNN and LSTM. The architecture of the proposed PTAE is
primarily inspired by the temporal autoencoder proposed by Madiraju [39].

In this study, the input dataset for damage assessment comprises multi-
sensor information, including accelerations, displacements, and rotations.
Time series data from different sensors exhibit considerable variations in
important properties and features on the temporal scale and dimensionality.
Considering the nature of multi-sensor information in the time series data,
the network architecture is designed to ensure that each time scale contains
informative features.

For an autoencoder, it is crucial to have an effective latent representation
that can be used to reconstruct the input. In this study, this is achieved by
employing PTAE, as shown in Fig. 3. The model’s architecture is divided into
two stages. The first stage consists of 1D convolutional layers that extract
key short-term features, followed by a pooling layer of size P , activation
functions, and an MC-dropout layer. The first stage reduces the time series
data to a more compact representation of the most relevant features. To
obtain a latent representation and learn temporal changes, the output of the
first stage is fed into an LSTM. The LSTM module learns temporal changes
across each time step, collapsing the input signals into all dimensions except
the temporal one and casting the inputs into a much smaller latent space.
For reconstruction, the decoder is developed by using an upsampling layer of
size P followed by a deconvolutional layer to obtain the autoencoder output.
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Figure 3: Architecture of proposed Probabilistic Temporal Autoencoder (PTAE)

The proposed PTAE is implemented using TensorFlow and Keras. The
optimisation of weight and bias parameters in the proposed architecture is
performed using an end-to-end approach, taking into account the loss func-
tion as illustrated in Eq. 3.

2.4. Data collection and preprocessing

In the proposed framework, a permanent Structural Health Monitoring
(SHM) system is assumed to be installed on the bridge, capable of capturing
multiple sensor data such as accelerations, displacements, and rotations at
various locations. Sensor measurements are collected exclusively when a train
crosses the bridge, with known entry and exit times. It is important to note
that due to varying train speeds, each crossing event produces signals of
different lengths.

Signal preprocessing is a critical step for both damage assessment and
training of the PTAE. This process involves standardising the time series data
collected by each sensor, ensuring zero mean and unit variance. Additionally,
for every individual train crossing event, the time series signals are divided
into appropriate window lengths. Each sliced window’s data matrix consists
of sensors as rows and sequences of measured responses as columns, as shown
in Fig. 4.
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Figure 4: Illustration of the windowing of single event

To train the autoencoder, numerous train crossing events are gathered
when the bridge is in a healthy condition. These events are standardised and
divided into fixed-length windows, as previously described. During training,
the PTAE focuses on reconstructing the time series sequences present in each
data matrix.

2.5. Damage feature

To evaluate damage, the discrepancy between original and reconstructed
time series signals within fixed-length windows is quantified by computing
the normalised root mean square error (NRMSE) for each sensor. This cal-
culation is performed using Eq. 4.

NRMSE =

√
1
n

∑n
i=1(xi − x̂µi)2

σx

(4)

where xi is the actual value of the i
th sample, and x̂µi is the mean predicted

value of PTAE, while σx is the standard deviation of the measured time series
sequence of each sensor.

During the training phase, considering multiple train crossing events, the
NRMSE of each window for various sensors varies between events due to
fluctuating train speeds and loading conditions. Nonetheless, the NRMSE
distributions for individual events can be employed to distinguish between
healthy and damaged states. This can be accomplished by calculating the
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statistical variation between the NRMSE distributions of baseline conditions
and subsequent train crossing events. To quantify the dissimilarity between
two distributions, this study utilises the Kullback–Leibler (KL) divergence.
The KL divergence is a technique that measures the information loss when
a probability distribution p is employed to approximate a distribution q.

In this study, it is assumed that the NRMSE distributions follow a Gaus-
sian distribution for both the baseline condition and each subsequent train
crossing event. For multiple sensors, these distributions are characterised
by their respective mean vectors (µ1,µ2) and covariance matrices (Σ1,Σ2).
The KL divergence between two multivariate Gaussian distributions can be
expressed using Eq. 5.

Dkl(p∥q) =
1

2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)−m+ log
|Σ2|
|Σ1|

)
(5)

where µ1 and Σ1 denote the mean vector and covariance matrix of the
multivariate Gaussian distribution for the baseline condition, respectively.
Similarly, for subsequent events, µ2 and Σ2 represent the mean vector and
covariance matrix of the multivariate Gaussian distribution, respectively. In
addition, m corresponds to the number of sensors in use, and tr(·) signifies
the trace of a matrix. From Eq. 5 it is evident that the KL divergence
is exponentially related to the distance between distributions. For damage
detection, the equation is mapped to a linear relationship, as shown in Eq. 6,
where e is Euler number.

DF = ln [Dkl (p∥q) + e]− 1 (6)

2.6. Exponentially weighted moving average

For damage assessment, it is crucial to employ a robust method capable
of identifying small changes caused by structural damage. To this end, sta-
tistical process-based control charts have been used as a novelty detection
method [40, 30]. One such technique is the Exponentially Weighted Moving
Average (EWMA), a widely used statistical method for detecting underlying
patterns in time series data [41]. EWMA calculates the average of a series
of data points while assigning exponentially decreasing weights to older data
points. This allows EWMA to respond more quickly to recent changes in the
data, making it effective for detecting small shifts in the underlying process.
The EWMA process can be defined as follows:
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Zt = αXt + (1− α)Zt−1 (7)

where Zt is the EWMA value at time t, which is typically the control
variable to be monitored, Xt is the observed data point at time t, and α is
the smoothing parameter, with 0 < α ≤ 1. The parameter α determines the
degree of weight given to the most recent data points. When α is close to 1,
more weight is assigned to recent data points, whereas when α is close to 0,
the weight is distributed more evenly across the entire series.

In the context of this study, the control variable is the Damage Index
(DI), and the observed variable is the Damage Feature (DF) defined by Eq. 6.
Therefore, we modify Eq. 7 for this study as follows:

DIj = αDFj + (1− α)DFj−1 (8)

where j is the number of inspections or train crossing events.
For effectively assessing the structural condition, it is essential to establish

a fixed threshold to monitor the Damage Index (DIj). In the context of the
EWMA control chart, two thresholds, known as the Upper Control Limit
(UCL) and Lower Control Limit (LCL), are utilised to determine whether
the process is in control or not. The UCL and LCL are defined as follows:

UCL = µ0 + Lσ

√
α

(2− α)
[1− (1− α)2j] (9)

LCL = µ0 − Lσ

√
α

(2− α)
[1− (1− α)2j] (10)

In these equations, µ0 represents the average value of the EWMA statis-
tics when the process is in control, while σ denotes the standard deviation
of the Damage Feature (DF) values. The parameter L is a constant that
determines the width of the control chart.

These limits allow for the identification of anomalies or shifts in the pro-
cess. If the Damage Index (DIj) lies within the UCL and LCL, the process
is considered to be in control, indicating that the structural condition re-
mains unchanged. However, if the DIj exceeds the UCL or falls below the
LCL, it signals a potential anomaly or change in the structural condition
that warrants further investigation.
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3. Numerical case study

3.1. Model description

This section presents the numerical model used to validate the strategies
and techniques proposed in this study. The numerical model integrates the
behaviour of the train, ballasted track, and bridge, as depicted in Fig. 5. A
2D representation is utilised for the entire problem, an approach that has
been widely adopted by researchers for analogous studies. Each modelling
component is briefly discussed next.

Firstly, the train is modelled as a sequence of individual vehicles, each
characterised by a multibody system with a six-degree-of-freedom configu-
ration. A primary suspension connects the two axles of each bogie, while a
secondary suspension system supports the main body on two bogies. This
vehicle model has been extensively employed in the literature and effectively
captures the primary components. Rail irregularities, which serve as a signif-
icant source of excitation, contribute to the combined dynamic response of
the vehicle and infrastructure [42]. In this study, Class 6 track irregularities
from the Federal Railroad Administration are employed [43].

Figure 5: Overview of the Train-Track-Bridge model

The track model comprises a combination of elements, as illustrated in
Fig. 5, including rail, pad, sleeper, ballast, and sub-ballast. The rail is
modelled as a beam, with the remaining components represented as lumped
masses. Dashpot and spring systems interconnect these elements, exhibiting
the viscoelastic behaviour of each component. The bridge is represented as
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an Euler-Bernoulli beam using a Finite Element Model (FEM) with beam
elements, each consisting of two nodes and two degrees of freedom per node.
he bridge’s specifications are based on a simply supported concrete bridge,
as reported in [44]. The bridge has a length of le = 50m, a second moment
of area I = 51.3m4, a mass per unit length ρ = 69000kg/m, and a modulus
of elasticity E = 3.5× 1010N/m.

The subsystems are integrated into a unified system, with the equations
of motion for the train, track, and bridge coupled together through the mass,
stiffness, damping, and force matrices, These matrices are time-varying and
change according to the vehicle’s position. The time-varying equations of
motion are solved using numerical integration with the Newmark-β scheme,
yielding the dynamic response of the train as it traverses the bridge. The
reader can refer to [45] for a complete description and more detail of the
coupling procedure and its validation.

In this study, the vehicle configuration of the ICE3 Velaro train is consid-
ered, comprising a convoy of eight wagons. The mechanical properties and
dimensions are provided in Gia et al. [46]. To establish the dynamic equi-
librium of the vehicle before it enters the bridge, a track 100m longer than
the bridge is modelled. The rail is designed as a standard UIC60 rail with
a sleeper spacing of 0.6m. The Matlab implementation of the train-track
model for numerical simulation is available at [42]

3.2. Modelling of damage and temperature effect

For damage assessment using the train-track model, damage is simulated
by implementing a localised stiffness reduction in the beam elements. The
bridge is discretised into 160 elements, resulting in elements with a length
of 0.3m. Damage is modelled at the mid-span of the bridge by reducing the
stiffness of two elements, which is approximately equal to 1.2% of the total
bridge length.

Another critical aspect of long-term bridge monitoring is accounting for
the influence of temperature, as it directly affects the bridge’s material prop-
erties and, consequently, its modal properties. In the present study, the
temperature’s effect is modelled using an empirical model derived from real
bridge measurements, which establishes the relationship between tempera-
ture and bridge properties. One such model proposes a bi-linear equation for
the bridge’s elastic modulus [47], as shown in Eq. 11.
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ET = E0

[
Q+ S, T +R

(
1− erf

(
T − κ

τ

))]
(11)

In Eq. 11, the temperature-dependent elastic modulus is denoted by
ET , while E0 represents its value at a specific reference temperature. The
parameters Q and S establish the linear relationship, and the expression
R
(
1− erf

(
T−κ
τ

))
modifies the relationship to account for sub-zero temper-

atures. In Eq. 11, the temperature is expressed in degrees Celsius as T , with
κ and τ serving as parameters that dictate the transition around the freezing
point.

Figure 6: Effect of temperature on modes of the bridge

In this study, the effect of temperature is assessed using a 1-year dataset
of temperature records from a weather station in Trondheim, Norway. In the
numerical model, temperatures for each train crossing event are randomly
chosen from these records. The elastic modulus of the concrete is then ad-
justed accordingly with Equation 11. To accommodate possible uncertain-
ties, parameters within this equation are also randomly sampled, following
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the suggestion in [47], based on the mean and standard deviation values
listed in Table 1. Fig. 6 illustrates the influence of fluctuating temperature
on the first four modes of the bridge, both in its healthy condition and with
damage introduced. All modes exhibit a bi-linear relationship with varying
temperature.

Table 1: Mean and standard deviation values for the modelling of the effect of temperature
on concrete’s elastic modulus

Q S κ τ R
µ 1.0129 -0.0048 0.1977 3.1466 0.1977
σ 0.003 0.0001 0.0027 0.0861 0.0027

3.3. Data generation

The evaluation of the proposed damage assessment method is carried
out using numerically simulated data generated by solving the Train-Track-
Bridge interaction model presented in Section 3.1. The dataset is created
by assuming that the train speed varies for each crossing, while the vehicle’s
suspension properties remain constant. Small variations in the body mass of
each train wagon are also considered to account for the inherent uncertainty
in the payload. The varying train parameters and the statistical variability
of these parameters (i.e., maximum, minimum, and standard deviation) are
presented in Table 2. To generate the dataset, these parameters are ran-
domly sampled based on the given statistical variation within a Monte Carlo
simulation. For the healthy case, a batch of 200 events is created. For each
event, displacement, rotation, and acceleration responses are measured at
three locations on the beam, as shown in Fig. 5, with a sampling frequency
of 1000Hz. To account for a realistic scenario for each event, noise levels are
randomly sampled from a Gaussian distribution N (30dB, 1dB) with values
in the range [30dB, 40dB] signal-to-noise ratio, and added to all measured
responses.

To demonstrate the performance of the proposed method, this study con-
siders four different scenarios. Each scenario is defined based on the available
sensor information:

• Scenario-1: The data contains only displacement responses from 3 lo-
cations on the bridge.
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• Scenario-2: The data contains only rotation responses from 3 locations
on the bridge.

• Scenario-3: The data contains only acceleration responses from 3 loca-
tions on the bridge.

• Scenario-4: The data contains all responses, including acceleration,
rotation, and displacement from 3 locations on the bridge.

For PTAE input in each scenario, all measured signals are standardised
to have zero mean and unit variance. Each event is then sliced into windows
of length 128, as discussed in Section 2.4, resulting in a dataset shape of
(N × l × m), where N is the number of windows in a single event, l is the
length of the window, and m is the number of variables or sensors. For the
200 events, considering only acceleration responses at three different bridge
locations, the size of the dataset becomes (8847 × 128× 3).

Table 2: Train model parameters variability

Min. Max. Mean SD
Velocity (km/h) 150 170 160 3
Body Mass (kg) 42100 53500 47800 500

3.4. Training and evaluation method

The PTAE architecture is built using TensorFlow modules, and the code
is developed in Python 3.9. The selected network architecture is based on
achieving the lowest reconstruction loss after carrying out a random search for
hyperparameter optimisation. The encoder module of the PTAE comprises
three convolutional blocks, followed by two LSTM layers. Each convolutional
block consists of a 1D convolutional layer, Leaky-ReLU activation function,
max-pooling layer and an MC-Dropout layer. The decoder utilises the same
number of convolutional blocks arranged in reverse order, with the max-
pooling layer replaced by an up-sampling layer. An MC-Dropout rate of 0.5
is chosen, meaning that during each forward pass, 50% of the connections
are dropped, enhancing the model’s robustness and preventing overfitting.
Table 3 displays the detailed architecture of the proposed PTAE, including
various hyperparameters such as activation function, filters and kernel size,
and dropout rate.
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The training process employs adaptive moment estimation (Adam) with
a batch size of 128 samples, while setting learning and decay rates at 0.001
and 0.0001 respectively. The model undergoes training for 1500 epochs.
All training and numerical computations for the models are conducted on a
standard PC fitted with an Intel Core i9-10900 K CPU, 64 GB RAM and an
NVIDIA GTX 2080Ti graphics card.

(a)

(b)

Figure 7: Comparison of original and reconstructed signals of two different type of sensors;
(a) Displacement signal at mid-span of the bridge, (b)Acceleration signal at mid-span of
the bridge

The proposed PTAE architecture is trained separately for all four sce-
narios, maintaining the same network architecture as presented in Table 3,
with m = 3 and the size of the latent space dimension z = 1. However, for
Scenario-4, the value of m increases to 9 and the dimension of the latent
space to z = 3. Each model is trained using only the healthy bridge data.
For training, 70 train crossing events are selected from the available dataset
of 200 events. To visualise the model’s reconstruction performance, two ran-
dom cases from the validation dataset are illustrated in Fig. 7. These cases
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are reconstructed using the PTAE model trained for Scenario-4. The trained
model undergoes 50 simulations, with each layer’s 50% connection randomly
pruned, as discussed in Section 2.2. Fig. 7 displays the reconstructed output
for each forward pass and compares the mean value of all forward passes
to the original input signal. The zoomed-in section of the figure reveals an
almost perfect match between the input signals and the mean of the recon-
structed signals. The results demonstrate the PTAE-trained model’s ability
to replicate the bridge’s healthy state.

Table 3: Architecture of proposed PTAE

Layers Output shape Kernel size Activation
Encoder

Input (128 × m) – –
Conv 1D (128 × 512) 1 × 5 Leaky-ReLU

Max-pooling (64 × 512) 1 × 5 –
MC-Dropout (64 × 512) – –
Conv 1D (64 × 256) 1 × 5 Leaky-ReLU

Max-pooling (64 × 256) 1 × 5 –
MC-Dropout (64 × 256) – –
Conv 1D (64 × 128) 1 × 3 Leaky-ReLU

Max-pooling (64 × 128) 1 × 3 –
MC-Dropout (64 × 128) – –

LSTM (64 × 128) – Leaky-ReLU
LSTM (64 × z) – Leaky-ReLU

Decoder
TimeDistributed (64 × 128) – Leaky-ReLU
Up-sampling (64 × 128) 1 × 5 Leaky-ReLU
Conv 1D (64 × 128) 1 × 5 –

MC-Dropout (64 × 128) – –
Up-sampling (128 × 128) 1 × 5 Leaky-ReLU
Conv 1D (128 × 256) 1 × 5 –

MC-Dropout (128 × 256) – –
Up-sampling (128 × 256) 1 × 5 Leaky-ReLU
Conv 1D (128 × 512) 1 × 5 –

MC-Dropout (128 × 512) – –
Conv 1D (128 × m) – Linear

m Number of sensors. z Size of latent space dimension.
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3.5. Damage detection using PTAE

In order to demonstrate the performance of PTAE, and how it can be
utilised for damage detection, four new datasets with different damage sever-
ities are simulated, where damage is modelled as a stiffness reduction as dis-
cussed in Section 3.2. Each dataset consists of 100 train crossing events. The
details for different damage cases are:

• DC0: Healthy case

• DC1: Damage at mid-span with 10% stiffness reduction

• DC2: Damage at mid-span with 20% stiffness reduction

• DC3: Damage at mid-span with 30% stiffness reduction

To demonstrate the capability of the proposed method for damage detec-
tion, for each damage case, NRMSE is computed for each window sequence
to quantify the discrepancies between the original and the reconstructed se-
quence as discussed in Section 2.5. Similarly, NRMSE is also computed for
the window sequence of the training dataset. The mean vector (µ1) and co-
variance matrices (Σ1) of multiple events of the training dataset establish a
baseline condition. For subsequent inspections, the distribution of NRMSE
of each single crossing event with mean vector (µ2) and covariance matri-
ces (Σ2) is used to compute the variation in distribution using Eq. 6. The
damage feature (DF) is computed for all four scenarios. Here it is important
to mention that the damage index based on EWMA proposed in this paper
is sensitive to outliers, so it is important to carefully analyse the computed
damage feature and if there are outliers that need to be taken care of with
the appropriate method.

3.5.1. Outlier removal using Tukey’s method

Tukey’s method is a robust technique employed to detect outliers in a
dataset [48]. This approach is based on the interquartile range (IQR), which
is the difference between the first quartile (Q1) and the third quartile (Q3)
of a dataset. The (IQR) represents the central 50% of the data, and Tukey’s
method identifies data points outside this range as potential outliers. When
using a fixed window size, this method can be applied to detect outliers within
each window of the dataset. In this method, the lower and upper bounds
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for outliers are determined using Q1 − I × IQR and Q3 − I × IQR, respec-
tively, where I is a constant typically ranging from 1.5 to 3. This method
is advantageous for outlier detection because it is less sensitive to extreme
values compared to methods based on the mean and standard deviation. By
employing a fixed window size, this approach facilitates the detection and re-
moval of local outliers within each window, which is particularly useful when
dealing with non-stationary or heterogeneous datasets.

Figure 8: Removal of outliers using Tukey’s method

To compute the damage index using Eq. 8 for all scenarios, the outlier
removal method is utilised. To illustrate how the outlier removal method is
employed, the damage feature (DF) for Scenario-1 is computed where dis-
placement sensors are used. Outlier analysis is performed considering a non-
overlapping window size of 20. For each window, Tukey’s method is applied
with the value of I = 3 as discussed previously, and outliers are marked in red
as shown in Fig. 8. The figure demonstrates that the outlier removal method
effectively removes outliers with progressively varying damage features due
to increasing damage severity.

3.6. Results

In the numerical case study, all four scenarios mentioned in the previous
section are examined. Each scenario involves separately training PTAE and
computing damage features for each trained model. The outlier removal
method discussed earlier is applied before utilising EWMA to calculate the
damage index. To compute the damage index using EWMA, the value of
α is set to 0.02, while L = 4. The LCL and UCL are determined using
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the validation dataset according to Eq. 10 and Eq. 9 respectively. These
values will be employed to establish the threshold for differentiating between
the healthy and damaged conditions of the bridge. For comparison, the
threshold-based system is also examined alongside the commonly used one-
class support vector machine (OC-SVM) anomaly detector. The OC-SVM
is implemented with an RBF kernel function and regularisation parameters
ν = 0.1 and γ = 10, which define the decision boundary’s shape. The OC-
SVM is trained using damage features from the validation dataset, similar
to the threshold selection in the EWMA-based damage index.
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(a) Scenario-1

(b) Scenario-2

(c) Scenario-3

(d) Scenario-4

Figure 9: Evolution of damage index during progressive bridge condition change for dif-
ferent scenarios. Dashed line indicate the UCL and LCL threshold values.

To demonstrate the performance of the proposed method, the results of
all four scenarios for different damage cases are illustrated in Fig. 9. In the
figure, the black dashed lines represent the UCL and LCL thresholds. For
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DC0 in all scenarios, the majority of the damage index values fall within the
thresholds, confirming the bridge’s unaltered healthy state. Similarly, OC-
SVM accurately predicts DC0 as the healthy condition of the bridge in all
scenarios. As the severity of damage increases from DC1 to DC3, the damage
index proportionally rises. These results demonstrate the sensitivity of the
proposed damage index to damage severity in all scenarios, unlike OC-SVM,
which only functions as an anomaly detector.

The results in Fig. 9 enable also a direct comparison of the method’s
performance based on various measured load effects. The results indicate
that Scenario-1, which employs displacement signals, outperforms the other
scenarios (Fig. 9a). This is because displacements are more sensitive to struc-
tural damage than acceleration or other load effects. Rotation measurements
offer also insights into a structure’s global behaviour by tracking changes in
the overall structural response. However, this load effect is generally less
sensitive to minor, localised damage and may not effectively capture higher
mode shapes [8]. This is evident in the results presented in Fig. 9b, where
some events of DC1 are misclassified as healthy bridge conditions. The re-
sults (Fig. 9d) also highlight that integrating multi-sensor information can
improve damage sensitivity across different damage cases. Therefore, re-
gardless of the sensor type, the proposed damage assessment strategy can be
effectively applied.

4. KW51 bridge case study

4.1. Introduction

The experimental validation of the proposed method considers the signals
recorded on a steel bowstring bridge in Leuven, Belgium, known as KW51
railway bridge. This bridge spans 115m and is 12.4 meters wide, with two
separate ballasted tracks, designated as track A and track B, located on
the north and south sides respectively. Both tracks have curved horizontal
alignment, and a speed limit of 160km/h is enforced for passenger trains.
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Figure 10: (a) KW51 Railway bridge in Leuven, Belgium (Image by Kristof Maes) [49];
(b) situation sketch [49]

The monitoring system was installed on the bridge in September 2018
with a configuration as shown in Fig. 11. Various sensing devices were placed
on the structure, including accelerometers on the bridge deck in both lateral
and vertical directions, as well as accelerometers on the arch in the lat-
eral direction. Additionally, strain sensors were installed on the bridge deck
along the longitudinal direction. A National Instruments data acquisition
system collected the measurements, which also included temperature and
relative humidity measurements taken beneath the bridge deck. This study
only considers the acceleration measurements from the bridge deck, because
strain signals for multiple train crossing are missing. For a comprehensive
description of the monitoring system and data, readers are directed to [50].

During the monitoring period, the bridge underwent retrofitting to ad-
dress a construction error. This process involved reinforcing the connections
between the diagonals, arches, and bridge deck. The retrofitting occurred
between 15 May and 27 September. Therefore, there exist measurements
from three distinct time periods: the original bridge before the retrofit (7.5
months); during the works of retrofit installation (4.5 months); and for the
strengthened bridge with the operational retrofit (3.5 months).
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Figure 11: Sketch of KW51 bridge with an overview of the measurement setup. Sensors
installed on the diagonals and the arches are shown in the side view and sensors installed
on the bridge deck are shown in the top view [49]

.

4.2. Data preparation and training

To validate the proposed method, only acceleration signals during train
passages are considered. Each day the bridge was in operation, two train
passages were recorded. For each passage, vibration data was collected from
10 seconds before the train entered the bridge until 30 seconds after the
train left. To focus on data collected while the train was on the bridge, a
10-second time window was removed. For each sensor, the moving root-mean-
square (RMS) value of acceleration was calculated for a 1-second interval, and
when that value fell below the 0.05 m/s2 threshold, the remaining signal was
discarded. The acceleration signals had a sampling frequency of 825.8065Hz.
In this study, six acceleration sensors were used, including four in the vertical
direction and two in the lateral direction, as shown in Fig. 11.
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Figure 12: (a) Identified frequencies of the KW51 Bridge, with the shaded area represent-
ing the time period during which the installation of the retrofitting was carried out; The
color blue corresponds to the lateral modes of the arches, while red represents the lateral
modes of the bridge deck. The color green denotes global vertical modes, and magenta
indicates global torsional modes; (b) Visualisation of dataset used for assessing bridge
conditions. In brackets, number of train crossing events

For the PTAE training, 284 train crossing events were considered be-
fore the retrofitting, and 130 train passage events were identified after the
retrofitting for damage detection cases. No train passages were taken into
account during the retrofitting stage, as Fig. 12a clearly shows significant
changes in bridge modal frequencies. Any existing damage detection method
would identify the change in structural behaviour. This period of the moni-
toring campaign is not representative of typical damage. On the other hand,
after the bridge is fully strengthened (retrofitted) the structural response can
be considered as ”positive” damage. a change in the structure. The train
crossing events before retrofitting were further divided for training, valida-
tion, and testing, as shown in Fig12b.
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(a)

(b)

Figure 13: Comparison between original and reconstructed signals from two sensors;
(a)Vertical acceleration signal at mid-span of the bridge (Track A, North side ); (b)Vertical
acceleration signal at mid-span of the bridge (Track B, South side

A pre-processing step was implemented to slice the signal into fixed win-
dow lengths of 128 and 256 samples, using the procedure discussed in Sec-
tion 2.4. Two separate PTAE models were trained with the same architecture
as described in Section 3.4, withm = 6 and z = 1. For the model using a win-
dow size of 256, the input shape became (256 x m), and the architecture’s
shape was adjusted accordingly. During training and subsequent testing,
50% random connection pruning was performed for each forward pass. The
trained PTAE network was tested with 50 simulations for the same input.
Fig. 13 displays the reconstructed signals and their respective mean responses
of randomly chosen events from the testing dataset. The zoomed-in sections
of each signal show that the mean value of multiple passes aligns well with
the original input signal. These results were expected since the model was
trained and tested with a dataset from the same bridge conditions (before
retrofitting).
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4.3. Results

This section evaluates the PTAE model’s ability to detect changes in the
bridge’s condition (after retrofitting). The trained PTAE is employed to re-
construct the input frames for training, validation, and testing data. The
NRMSE is calculated for each window frame. The distribution of computed
NRMSE for the training dataset of all acceleration sensors is utilised to com-
pute the mean (µ1) and covariance matrices (Σ1), representing the baseline
condition. Likewise, for each subsequent event, the statistics (mean (µ2)
and covariance matrices (Σ2)) of NRMSE are calculated and used in Eq. 6
to compute the damage feature. Before applying the EWMA-based damage
index, outliers are removed from the dataset using the method discussed in
Section3.5.1. The EWMA is applied with the value of α = 0.02 and L = 4
to compute the damage index using Eq. 8. The threshold is calculated using
the damage index data computed for the validation events by employing the
UCL (Eq. 9) and LCL (Eq. 10) expressions. Similar to the numerical case
study, OC-SVM with the same parameters is also trained with the valida-
tion dataset and subsequently used to differentiate between the two bridge
conditions.
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(a)

(b)

Figure 14: Evolution of damage index over periods of the monitoring campaign. The
dashed lines indicate the UCL and LCL threshold values. (a) PTAE is trained with
window size 128; (b) PTAE is trained with window size 256.

Fig. 14 demonstrates how to track the bridge condition’s evolution using
train crossing events. A threshold line is established, and significant devia-
tion from this line indicates a change in the structure’s condition. Fig. 14a
and Fig. 14b display the results of the bridge’s condition assessment using
two different window lengths. The effect of retrofitting is clearly depicted
by the jump in the damage index at the end of the time period when no
retrofitting had been applied. Likewise, OC-SVM can effectively differenti-
ate between the two bridge conditions, particularly when the model is trained
using a length of 128, as depicted in Fig. 14a. In instances where the win-
dow length was 256, both the proposed method and SVM misclassified a few
train crossing events; however, the overall result remains within a satisfactory
performance scope.

In summary, the analysis of the results showcases the effectiveness of
the proposed PTAE model-based damage index in detecting changes in the
bridge’s condition, particularly when the extent of damage or alteration in
condition is minimal. The method presents a reliable and efficient means for
assessing the bridge’s condition by solely utilising train-induced responses,
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while employing different window lengths and monitoring the damage in-
dex. It is important to note that the proposed method exhibits considerable
robustness against environmental fluctuations, even without implementing
specific data pre-processing methods to eliminate the effects of varying envi-
ronmental and operational conditions. This study sets the stage for further
advancements in structural health monitoring and provides valuable insights
for implementing bridge monitoring systems using vehicle-induced responses.

5. Conclusions

This paper presents an innovative methodology for assessing bridge con-
ditions using a probabilistic temporal autoencoder (PTAE). By gathering
multi-sensor data during train crossings and employing a PTAE comprising
multiple convolutional blocks and an LSTM recurrent neural network, the
framework effectively extracts features and captures temporal relationships
in the data. Through the computation of the reconstruction loss and KL
divergence-based damage features, the methodology enables the detection of
potential damage in the bridge structure. The application of an Exponen-
tially Weighted Moving Average (EWMA) filter and a control chart-based
threshold mechanism further refines the damage assessment process, allowing
for differentiation between healthy and subsequent progressive damage cases.
The effectiveness of the proposed method was evaluated using numerically
generated data, where a train crossed a simply supported bridge under real-
istic speed and loading conditions. Similarly, the methodology was validated
by applying it to data obtained from the KW51 bridge to detect different
bridge conditions. The main findings and advantages of this study can be
summarised as follows:

• The proposed methodology accommodates multi-sensor data, such as
accelerations, displacements, and rotations, making it adaptable to var-
ious monitoring scenarios and sensor configurations. This also allows
for the avoidance of manual feature extraction or single sensor level
model training for similar tasks.

• The probabilistic nature of the autoencoder enhances robustness for
varying operational and environmental conditions and enables the quan-
tification of uncertainty in predictions under these conditions.
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• The Exponentially Weighted Moving Average (EWMA) control chart-
based threshold mechanism facilitates the identification of subtle changes
in the bridge’s condition, allowing for early damage detection and
timely maintenance interventions.

• The results of this study suggest that detecting and quantifying dif-
ferent types of damage is possible even without employing any pre-
processing method to remove the effects of operational and environ-
mental conditions.

• By incorporating model uncertainty and providing accurate damage as-
sessments, the methodology supports better decision-making in main-
tenance planning and resource allocation.

• The proposed method can be easily integrated with existing monitoring
systems and data collection platforms, enabling seamless adoption and
implementation in various contexts.

In conclusion, this methodology holds significant potential for the future
of bridge health monitoring and maintenance, offering a data-driven solution
that can enhance the safety of infrastructure.
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[33] A. C. Neves, I. González, R. Karoumi, Development and validation of
a data-based shm method for railway bridges, Structural Health Moni-
toring Based on Data Science Techniques (2022) 95–116.

[34] M. R. Azim, M. Gül, Damage detection of steel girder railway bridges
utilizing operational vibration response, Structural Control and Health
Monitoring 26 (11) (2019) e2447.

[35] A. Meixedo, J. Santos, D. Ribeiro, R. Calçada, M. Todd, Damage de-
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A B S T R A C T

Vehicle assisted monitoring has shown promising potential for the condition assessment of existing bridges in
a road network, by removing practical complications faced in traditional Structural health monitoring (SHM)
methods such as traffic interruption and dense deployment of sensors. However, the combination of different
measurement sources during vehicle assisted monitoring has not yet been fully explored. This paper aims to
evaluate the potential benefit of considering multiple measured responses from various sources, including fixed
sensors on the bridge and on-board vehicle sensors. To this end, this paper proposes a Probabilistic Deep Neural
Network, a stochastic data-driven framework for damage assessment. This framework enables the combination
of vehicle and bridge responses to extract damage sensitive features for the classification of different damage
states. In addition, the proposed method estimates the uncertainty of its predictions, providing an indication
of the reliability of the result. The proposed method is validated using two numerical based case studies
while considering realistic operational conditions, which include temperature oscillations, additional traffic,
and measurement noise. The results from this study indicate that combining multiple sensor information results
in lower uncertainties in damage detection and localisation. The results also suggest that the proposed method
is robust in handling measurement noise and varying environmental conditions.

1. Introduction

The growing stock of bridges is continuously subjected to deterio-
ration caused by different factors, such as excessive loading, fatigue,
corrosion, and environmental impact [1]. A failure to identify these
damages at an early stage can lead to catastrophic outcomes in terms of
human life and the economy. Currently, for safe and reliable operation
of bridges, visual inspection based methods are in practice, which are
generally expensive and prone to errors [2]. With recent advancements
in sensing technologies and data acquisition systems, vibration-based
health monitoring solutions are promising alternatives for effective
and accurate tracking of the structural deterioration processes [3].
These methods mainly rely on the detection of damage and potential
anomalies by analysing the dynamic response of bridges.

Vibration-based Structural Health Monitoring (SHM) systems can
be categorised into fixed or mobile sensing frameworks. In a fixed
sensing framework, the sensors are directly installed at a fixed location
of the target bridge. There are three main challenges associated to
this framework. First, the extensive deployment requirements in terms
of cost and labour, that is generally prohibitive for the inspection of
short to medium span bridges. Second, the spatial information obtained
with a fixed sensing system is mainly confined to certain discrete loca-
tions, which adversely affects the outcome of the bridge’s assessment.
The third main challenge is that often the collected vibration data is

∗ Corresponding author.
E-mail addresses: muhammad.z.sarwar@ntnu.no (M.Z. Sarwar), daniel.cantero@ntnu.no (D. Cantero).

obtained during ambient and forced vibration. However, the bridge
response induced by ambient vibrations and random traffic loading
may not be sufficiently big to excite the stiff bridge properly and the
measured responses are often corrupted by measurement noise [4].
While forced vibration responses can be obtained using impact load
testing, human-induced loads or by applying hydraulic actuators, which
in practice significantly affect the serviceability of the bridge and
increase maintenance costs. In recent years Vehicle assisted monitoring
is an active research topic. In vehicle assisted monitoring, traversing
vehicles are used as the source of excitation. The forced response of
the bridge is measured using installed sensors on the bridge or sensors
installed inside the moving vehicles. With this framework the process
of the bridge’s excitation becomes relevantly economical and bridge
vibration data is only acquired when the vehicle is on the bridge.
Moreover, when vehicles are acting as mobile sensors, the measured
responses contain all the spatial information of the target bridge, which
significantly improves the condition assessment of bridges [5].

In recent years, many researchers have explored vehicle assisted
monitoring systems to perform damage assessment. Shokravi et al. [6]
conducted a comprehensive review on conventional vehicle assisted
bridge damage assessment techniques. These techniques can be cat-
egorised into direct (fixed sensing) or indirect (mobile sensing). Us-
ing direct sensing, [5,7] applied Moving Force Identification (MFI)
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Fig. 1. Main overview of proposed framework.

method for bridge damage assessment. Furthermore, in [8,9] the au-
thors utilised the measured rotational response of a bridge under the
influence of moving loads for damage assessment. On the other hand,
indirect techniques (or drive-by) have also been studied for bridge
damage assessment, of which Wang et al. [10] provide a detailed
overview of their application. The reported methods mainly rely on
advanced signal processing techniques and machine learning methods
for damage detection. For instance, [11,12] used data driven tech-
niques and statistical analysis for damage detection and quantification.
While [13,14] estimate the contact point response between vehicle and
bridge for damage detection and localisation.

Therefore, it can be concluded that vehicle assisted monitoring
systems have great potential to be used for damage assessment. The
reported methods have limitations and face unaddressed challenges,
which include the influence of vehicle speed, the effect of road pro-
file and additional random traffic, and the requirement of specialised
vehicles, among others. However, considering the merits of direct and
indirect methods, it is possible that the combination of both strategies
could be advantageous and complement each other. The combination
of recent advancements in wireless sensing systems to instrument the
infrastructure together with the increasing trend of equipping vehicles
with multiple sensors, opens the possibility for Vehicle to Infrastructure
(V2I) connectivity. This integration has shown potential benefits to
improve traffic and resources management [15,16]. However, to the
author’s best knowledge this interconnectivity between vehicle and
bridge sensors has not been fully explored in the context of damage
assessment and bridge maintenance.

Traditionally, free and ambient vibration responses have been used
for SHM relying on the assumption that the acquired structural re-
sponses are linear and stationary. However, this assumption does not
hold when the bridge is exited by a moving vehicle, when the structural
dynamic properties are time-varying making the response nonstation-
ary. Then, combining multi-variant data (fixed sensors and moving
sensors) and extracting damage sensitive features is a challenging task.
Recently, Deep Learning (DL) models are getting significant attention
in SHM applications. Deep learning models are tools that can be used
to find complex non-linear correlations within the datasets. These
models have the ability to combine multi-sensor data and perform
various tasks, including non-linear feature extraction, classification and
regression. For damage assessment, Ni et al. [17] and Zhang et al. [18]
used a 1-D Convolutional Neural Network (CNN) to extract damage

sensitive features from acceleration responses. Zhang et al. [19] used
phase motion estimation and CNN for damage detection application.
In [20,21] applied the CNN based method for condition assessment of
engine valve and rolling bearings. Similarly, for bridge health moni-
toring Ma et al. [22] applied a convolutional variational autoencoder
to compress the high-dimensional data to a low-dimensional feature
space, which was then used to establish a damage index, and validated
experimentally. In [23], the authors proposed the idea of the natural
excitation technique for data normalisation and then applied 1-D CNN
for automated damage detection. Nevertheless, the practical implemen-
tation of DL models for SHM is hindered because the collected training
data does not contain all operational and loading conditions, which
would facilitate the quantification of the uncertainty in decision output
of the model. For reliable decision making, the SHM system must be
able to handle uncertainty in its predictions.

Therefore, the goal of this study is to develop a damage assessment
method for bridges by combining forced response data obtained from
fixed and moving sensors, capable of quantifying the uncertainties
of the output. This study presents a data-driven method for damage
assessment using vehicle assisted monitoring data. The main overview
of the proposed framework is shown in Fig. 1, where data from mul-
tiple sources is collected. The gathered data is further analysed using
advanced data-driven methods for damage assessment. A probabilistic
Deep Neural Network (PDNN) based framework is developed in order
to extract damage sensitive features and account for uncertainty in
predictions. The framework leverages the usage of probabilistic neural
layers, which can represent the problem’s uncertainties. Monte Carlo
analysis is used to sample the weights from trained models to predict
different damage states. To evaluate the performance of the proposed
approach, ten different information scenarios (signal source combina-
tions) are considered for training each PDNN. The idea is validated
numerically for two types of bridges traversed by 5-axle trucks. The
study considers a range of vehicle dynamic properties and the presence
of road profile and evaluates the effect ambient temperature variations,
additional traffic, and measurement noise.

The remainder of the paper is organised as follows. Section 2
provides an overview of the proposed deep learning strategy, includ-
ing architecture of the model and implementation details. Section 3
presents the details of the vehicle-bridge interaction model used to gen-
erate the datasets. Section 4 evaluates the performance of the proposed
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Fig. 2. Basic ANN model; (a) with deterministic weights; (b) with probabilistic weights.

method for two case studies, a simply supported bridge and a multi-
span continuous bride. Section 5 provide the discussion on overall
finding of the proposed studies. Section 6 summarises the findings of
this study.

2. Deep learning model

2.1. Research significance

Deep Learning (DL) based models are widely used in SHM applica-
tions, including damage assessment. In that case, these models provide
solutions to tackle the problem of differentiating among large number
of damage classes [1]. However, DL models are prone to underfitting or
overfitting, which affect their generalisation capabilities for the given
data [24]. What is more, these models also tend to be overconfident in
their predictions and do not account for the inherent uncertainties [25]
of the problem. To overcome these issues, probabilistic deep learning
based models have been proposed. These models provide the frame-
work to account for the uncertainty in their predictions. Probabilistic
Deep Neural Networks (PDNN) are stochastic artificial neural networks
that are trained by using a Bayesian approach [26].

2.2. Probabilistic deep neural network

Standard Deep Neural Network (DNN) are built using an input layer
𝒍𝟎, multiple hidden layers 𝒍𝑖 (for 𝑖 = 1, 2,… , 𝑛 − 1) with non-linear
operations, and a final output layer 𝒍𝑜. For a simple feedforward net-
work, each layer 𝒍 is composed of linear transformation and activation
function denoted as 𝛼. The goal in a simple DNN is to approximate an
arbitrary function 𝒀 = 𝛷(𝑿), based on the input 𝑿. Their architecture
can be summarised as follows:
𝒍𝟎 = 𝑿,

𝒍𝒊 = 𝛼(𝑾 𝑖𝒍𝑖−1 + 𝒃𝑖) 𝑖 ∈ [1, 𝑛],
𝒀 = 𝒍𝑛

(1)

Here, 𝑛 is the number of hidden layers while 𝑾 and 𝒃 are the
weights and biases of the network. These learning parameters 𝜽 =
(𝑾 , 𝒃) are optimised as single deterministic estimates for a given data
set (Fig. 2a) using backpropagation algorithm.

On the other hand, stochastic neural networks or PDNN are built by
introducing stochastic components into the network [27]. The stochas-
tic neural networks are mainly built to account for two types of
uncertainties: either the randomness in the input data or the uncer-
tainties in the estimated parameters of the deep learning model. The
first one can be handled by using probability distributions in the
loss function as discussed in thoroughly in [28]. While the latter can
be accounted for by considering weights as stochastic (Fig. 2b) to
simulate multiple possible model parameters 𝜽 with their associated

probability distribution 𝑝(𝜽). For this study the main goal of PDNN is
to capture the associated uncertainty of the underlying processes. This
can be achieved by evaluating predictions of multiple parameterised
𝜽 sampled models. If the outputs of multiple models agree, then the
uncertainty is considered to be low. While in the case of extended
disagreement in predictions, then the uncertainty is considered as high.
The process at a high level can be expressed as:

𝜽 ∼ 𝑝(𝜽),
𝒀 = 𝑃𝐷𝑁𝑁𝜃(𝑿) + 𝜀

(2)

where 𝜀 represents a noise to account for the fact that 𝑃𝐷𝑁𝑁𝜃 is only
a probabilistic approximation of a function.

In order to design the PDNN, the first step is to select the archi-
tecture of the neural network, namely a fully connected network or
a convolutional neural network. Then the second step is to include
the selection of prior distributions over the possible model parameters
𝑝(𝜽) and their prior confidence over the predictive power of the model
𝑝(𝒀 |𝑿,𝜽). For supervised learning, Bayesian posteriors can be com-
puted as shown in Eq. (3) by applying Bayes’s theorem and considering
independence between the input data 𝐷 and the model parameters 𝜽.

𝑝(𝜽|𝐷) =
𝑝(𝐷𝑦|𝐷𝑥,𝜽) 𝑝(𝜽)

∫ 𝑝(𝐷𝑦|𝐷𝑥,𝜽∗) 𝑝(𝜽∗) 𝑑𝜽∗
(3)

where 𝐷𝑥 and 𝐷𝑦 are training inputs and training labels for the dataset
𝐷. In complex models such as deep neural networks, Bayesian pos-
teriors become high dimensional probability distributions. This issue
makes computing and sampling using the standard method an in-
tractable problem, especially computing the evidence (denominator)
in Eq. (3). To mitigate this problem and for practical implementation,
variational inference is applied, which learns a variational distribution
to approximate the exact posterior. The main idea behind variational
inference is to have a prior variational distribution 𝑞𝜙(𝐻) parameterised
by a set of parameters 𝜙 and then learn those parameters such that it is
close to the exact posterior. More details about variational inference
can be found in [25]. Therefore, the probabilistic prediction with
known posterior can be expressed as:

𝑝(𝒀 |𝑿, 𝐷) = ∫ 𝑝(𝑌 |𝑋,𝜽∗) 𝑝(𝜽∗|𝑫) 𝑑𝜽∗ (4)

Eq. (4) can be interpreted as the predictive distribution of an infi-
nite ensemble of networks. In practice 𝑝(𝒀 |𝑿, 𝐷) is sampled indirectly
from Eq. (2). The final prediction can be computed via a Monte Carlo
analysis [29] by using a finite number of randomly sampled weight pa-
rameters from the posterior to compute the series of possible outputs as
shown in Fig. 3. In order to measure the uncertainty in the classification
problem the average model prediction will give the probability of each
class, which can be computed as follows:

𝒑̂ = 1
𝑁

∑
𝜽𝒊∈𝑵

𝑃𝐷𝑁𝑁𝜽𝒊 (𝑿) (5)
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Fig. 3. Illustration to compute final prediction for single input using probabilistic deep neural network.

where 𝑁 is the number of total samples used for the Monte Carlo
analysis. To get the final prediction as shown in Fig. 3, the most likely
class can be taken as:

𝒀̂ = argmax
𝑖

𝑝𝑖 ∈ 𝒑̂ (6)

2.3. Network architecture of probabilistic deep neural network

In recent years, Fully Convolutional Neural networks (FCN) have
shown the state of the art performance in classifying time series
datasets for a wide range of fields, including SHM [1,30]. FCN has
been mainly developed to avoid the demanding pre-processing and
feature extraction task on raw data in classification problems. How-
ever, they are mainly limited to univariate time series [31]. Karim
et al. [32] proposed the augmentation of FCN with Long Short-Term
Memory (LSTM) recurrent neural network. This significantly enhances
the performance of FCN with a nominal increase in computational cost
and has also shown satisfactory performance on various multivariate
time series datasets [33]. The network architecture proposed in this
paper is mainly inspired by [33] with some modifications according to
the problem at hand.

For vehicle assisted damage assessment, the input dataset would
include information from multiple sensors (vehicle speed, axle loads,
acceleration responses and temperature). The proposed neural network
is designed to utilise all (or parts) of this information. The proposed
model is mainly divided into two modules, as shown in Fig. 4. The
first module takes the time series measurements as input. The archi-
tecture of this module is similar to what is proposed in [33]. This
module includes three temporal convolutional blocks used as a feature
extractor. Each convolutional block includes convolutional layers with
filter sizes 128, 256 and 128, strides value as 2 and a kernel size of 7,
5 and 3 respectively. Each convolutional layer is followed by a non-
linear activation function (ReLU). In addition to that, it is assumed
that the bias and kernel in the convolutional layers are drawn from
distributions. Finally, the extracted features are fed into global average
pooling layers, which substantially reduces the number of weights
of the model, as opposed to feeding the dataset directly to a fully
connected layer.

In parallel, the time series input is passed through the dimension
shuffle layer. The transformed input is then passed to the LSTM block

followed by the activation function and dropout layer. The main goal of
this block is to learn the global temporal information of each variable at
each time step. The multivariate time series has 𝑇 time steps (length of
signal) and 𝐾 variables (number of different sensors). Each variable 𝐾
is defined as a channel of the FCN block. However, if the same data
is passed through the LSTM block, then the LSTM would require 𝑇
time steps to process 𝐾 variables per time step, which significantly
increases the computational cost and adversely affects the efficiency
of the model. Instead, the dimension shuffle layer is applied, which
effectively transposes the temporal dimension of the input data. After
this operation, the input of LSTM now receives the entire time history
𝑇 of each variable 𝐾 at each time step. As a result, the LSTM block has
global temporal information of each variable at the same time, which
significantly helps in improving the overall performance of the model
and also reduces the time of training.

In addition, the input data can also have some discrete valued
information. In the case of vehicle assisted monitoring, vehicle speed,
axle weights and temperature information can be combined to see the
overall effect of these features in damage assessment. In order to add
these features, the second module is designed using 4 fully connected
layers, with layer sizes (32, 64, 64 and 32), followed by the ReLU
activation function. Here it is assumed that the bias and kernel in the
fully connected layers are also drawn from distributions, as done in
the convolutional layers. The output of the last fully connected layer,
the global average pooling layer of FCN, and the LSTM block are
concatenated and fed into a fully connected layer with Softmax as an
activation function for the classification task.

2.4. Implementation

The proposed model is implemented using TensorFlow’s probability
module and Keras [34]. The FCN convolutional layers are implemented
using the convolutional1DFlipout, while DenseFlipout layer is used for
the fully connected layers. These layers implement the Bayesian infer-
ence by assuming that the bias and kernel are drawn from distributions,
which are approximated with the Flipout Monte Carlo estimator [35].
The implementation of each layer assumes the prior for weight 𝑾 as
Gaussian distribution with zero mean 𝜇 and unit variance 𝜎2. For the
approximation of the posterior distribution and the classification task,
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Fig. 4. Architecture of probabilistic deep neural network (PDNN).

Flipout gradient estimator is used to minimise the loss function, called
as negative Evidence Lower Bound (ELBO) which is expressed as:

𝑳(𝑾 (𝜇,𝜎2)) = argmin
𝜇,𝜎2

∑
(𝑿,𝒀 )∈𝑫

𝑙𝑜𝑔[𝑝(𝐷𝑦|𝐷𝑥,𝜽)] +𝐷KL(𝑞𝜙 ||𝑃 ) (7)

The loss term shown in Eq. (7) is the sum of the negative log-
likelihood and the approximated Kullback–Leibler (KL) divergence,
which measures the distance between variational and posterior dis-
tributions. The KL term here acts as a regularisation term to prevent
overfitting on the training dataset.

3. Numerical modelling

This section presents the vehicle-bridge interaction model used to
simulate the vehicle responses while traversing a bridge. Fig. 5 shows
the schematic representation of the vehicle-bridge coupled system.
This numerical model can simulate multiple vehicle crossing events at
different speeds, while including the effect of road irregularities. The
generated vehicle responses constitute the signals used to evaluate the
performance of the proposed PDNN model for damage detection and
quantification.

The vehicle model used in this study represents an articulated 5-axle
truck with a tractor-trailer configuration. The tractor has two axles and
the trailer has three axles at the back. The main bodies of tractor and
trailer are modelled as rigid bodies, while the axles are represented
as lumped masses. The main bodies are connected to the axle masses
by spring and dashpot systems, while the axle masses are connected
to the road profile using single springs representing the tyres. The
vehicle model has a total of 8 independent Degrees Of Freedom (DOFs)
and 1 dependent DOF because of the articulation between tractor and
trailer [36,37]. The generic equation of motion of such a vehicle model
can be represented as:

𝑴𝒗𝑢̈𝑣 + 𝑪𝒗𝑢̇𝑣 +𝑲𝒗𝑢𝑣 = 𝑭 𝒗 (8)

In Eq. (8), 𝑴𝒗, 𝑪𝒗, and 𝑲𝒗 are the mass, damping and stiffness
matrices, while 𝑢𝑣 contains the displacements of all DOFs of the ve-
hicle model. The vehicle parameters and their variability are taken
from [12], for the realisation of Monte Carlo simulations. The values
of the vehicle parameters are mainly based on European 5-axles trucks
and adopted from [38,39]. This study utilises the 5-axle truck model be-
cause it is arguably the most frequent heavy vehicle found on European
roads.

The bridge is simulated using a Finite Element Model (FEM) rep-
resentation, consisting of beam elements with 2 nodes and 2 DOFs per
node. The bridge has length 𝐿, second moment of area 𝐼 , mass per unit
length 𝜌, and modulus of elasticity 𝐸. Eq. (9) represents the equation
of motion of the bridge model:

𝑴𝒃𝑢̈𝑏𝑟 + 𝑪𝒃𝑢̇𝑏𝑟 +𝑲𝒃𝑢𝑏𝑟 = 𝑭 𝒃𝒓 (9)

where 𝑴𝒃, 𝑪𝒃, and 𝑲𝒃 are the mass, damping and stiffness matrices,
while 𝑢̈𝑏𝑟, 𝑢̇𝑏𝑟 and 𝑢𝑏𝑟 are the vectors of accelerations, velocities and
displacements for each node. To consider the effect of pavement ir-
regularities on the vehicle and bridge responses, the road profile is
represented as ISO class A [40]. Fig. 6 shows the road profile generated
for the two bridges studied in Section 4. In each figure, the black lines
indicate the span of the bridges. In addition, the road profiles have
a 100 m approach distance to allow the traversing vehicle to achieve
dynamic equilibrium before entering the bridge. In order to represent
the contact surface of the truck tyres, a moving average filter of 0.24 m
is applied to the profile as suggested in [41].

Finally, to simulate the vehicle-bridge interaction, the equations of
motion of the vehicle and bridge models are coupled together into the
system of second order differential equations shown in Eq. (10).

𝑴𝒄 𝑢̈𝑐 + 𝑪𝒄 𝑢̇𝑐 +𝑲𝒗𝑢𝑣 = 𝑭 (10)

where in 𝑴𝒄 , 𝑪𝒄 , and 𝑲𝒄 are the time varying mass, damping and
stiffness matrices respectively. The vectors 𝑢̈𝑐 , 𝑢̇𝑐 , and 𝑢𝑐 contain the
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Fig. 5. Vehicle-bridge interaction model for a 5-axle truck traversing a simply supported bridge.

Fig. 6. Road profile of class A and location of bridges (black lines); (a) for study with 15 m simply supported bridge; (b) for study with multi-span continuous bridge.

responses (accelerations, velocities and displacements) of all DOFs of
vehicle and bridge. The VBI analysis is carried out by integrating the
equations of motion using Newmark-𝛽 scheme and implemented in
MATLAB [42]. For more details about the coupling procedure and the
solution method, the reader is referred to [43].

4. Validation of proposed method

This section applies the proposed damage detection method to 2
separate case studies. Each case study is investigated for a range of
damage cases, information scenarios and simulation modes. Fig. 7
provides a schematic overview of all the possibilities considered in this
study. The case study A is based on a relatively short simply supported
reinforced concrete bridge. It is used to investigate the performance
of the proposed method for different damage cases and information
scenarios for simulation mode 1 only. At the same time, this case
study is used as an example to explain in detail several aspects of the
proposed method. In case study B, the method is applied to a multi-
span continuous bridge to evaluate the influence of environmental
(temperature) and operational effects (additional traffic) by considering
different simulation modes (Fig. 7). For both case studies, the crossing
vehicles are modelled as fleet of similar vehicles. To model the fleet
of the vehicle the variation in vehicles properties is applied to account
for normal fluctuations in payload and the inherent uncertainties of the
mechanical properties of each vehicle.

4.1. Case study A: Simply supported bridge

4.1.1. Data generation
In this case study, 5-axle trucks travelling over a class A road profile

traversing a simply supported bridge, as shown in Fig. 5, are simulated

with the vehicle-bridge interaction model presented in Section 3. The
FEM of the bridge consists of 30 elements for a total span length 𝐿 of
15 m. The corresponding section and material properties are: second
moment of area 𝐼 = 0.5273 m4, mass per unit length 𝜌 = 28 125 kg∕m,
modulus of elasticity 𝐸 = 3.5×1010 N∕m2, and 2% damping. To simulate
bridge damage, a localised stiffness reduction in a beam element is
considered. In particular, 5 different locations along the beam length
are studied with 3 different damage magnitude levels (15%, 30%, 45%)
for each location. Therefore, the list of all different damage cases is:

– Healthy case
– Section 𝐿∕4 and stiffness reductions of: 15%, 30%, 45%
– Section 3𝐿∕8 and stiffness reductions of: 15%, 30%, 45%
– Section 𝐿∕2 and stiffness reductions of: 15%, 30%, 45%
– Section 5𝐿∕8 and stiffness reductions of: 15%, 30%, 45%
– Section 3𝐿∕4 and stiffness reductions of: 15%, 30%, 45%

The dataset is generated considering the variation in vehicle prop-
erties in such a way that it mimics a fleet of similar vehicles crossing
the bridge. The vehicle properties are randomly sampled considering
the statistical variability presented in Table A.1. For each of the 16
damage cases, 1000 vehicle passages are simulated, which results a
in total 16 000 crossing events. Each event in the dataset contains
the information from both, vehicle and bridge. For the 5-axle truck,
acceleration measurements from all five axles 𝑢̈𝑎𝑖 is available with a
sampling rate of 1000 Hz, as well as, the vehicle speed 𝑣, the static
axle loads and the ambient temperature. As for the bridge, acceleration
readings 𝑎̈𝑏𝑟𝑖 are available from 3 assumed sensors installed on the
bridge, as indicated in Fig. 8.

The length of the acceleration signals is not the same for all events
because the vehicle speed 𝑣 was randomly sampled for each vehicle
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Fig. 7. Overview the possibilities considered in the numerical studies to evaluate the proposed damage detection method.

passage. For the PDNN input, equal length accelerations signals are
obtained by zero padding the signals. The length of the required signals
depends on the minimum vehicle speed 𝑣 in the dataset. For this study,
the input to the time series module is fixed to 𝑇 = 3072. Therefore, the
input size for the time series module of dataset 𝑋 is (𝑁, 3072, 𝐾), for
𝑁 number of events and 𝐾 number of variables (number of sensors).
On the other hand, the size of the input dataset for the discrete feature
module is (𝑁,𝑀), where𝑀 is number of input features and𝑀 is equal
to 3. The dataset has a total 16 output labels, namely the healthy case
and 15 different damage scenarios.

4.1.2. Pre-processing
It is well known that the road profile has significant impact on vehi-

cle vibrations. Any measured acceleration within a vehicle is dominated
by the excitation produced by the road profile. These road induced
vibrations generally mask the component directly related to the bridge
response. In previous studies, researchers have applied different tech-
niques to remove the effect of the road profile in vehicle accelerations
signals. For instance, in [44], the authors compute the residual response
of two connected vehicles, which poses the practical limitation of
requiring 2 identical vehicles. Then [45] applied a narrow band pass
filter to remove the dynamic effect of the road profile. However, this
approach requires to have prior knowledge of the bridge’s fundamental
frequency. It is safe to say that there is a need for a reliable method that
can be used to automatically extract the bridge dynamic response from
sensors in passing vehicles.

To address this challenge, in the present study the authors employed
the Maximal Overlap Discrete Wavelet Packet Transforms (MODWPT)
proposed in [46]. A filter bank based on MODWPT is used here to
suppress the road profile component from the vehicle’s vertical ac-
celeration signals. MODWPT decomposes the signal 𝑥(𝑡) into wavelet
components of narrow band frequencies using a wavelet filter [46].

The main advantage of MODWPT over the traditional Discrete Wavelet
Transform (DWT) is that it can decompose the signal in both low-
frequency and high-frequency signals at each level, whereas DWT can
only decompose the signal in low frequency signals [47]. For a given
signal 𝑥(𝑡), MODWPT produces 2𝑛 equivalent wavelet components 𝑊𝑗 ,
where each has a passband range of 𝐹𝑠∕2𝑛+1, for a sampling frequency
𝐹𝑠 and level number 𝑛. Then, the sum of all wavelet components is
equal to the approximation of the original signal, as shown in Eq. (11).
Similarly, the MODWPT partition of the energy at each wavelet com-
ponent and the sum of the energy over all the wavelet components is
equals the total energy of the input signal [48].

𝑥(𝑡) =
𝑛∑

𝑗=1
𝑊𝑗 (𝑡) (11)

In the case of a single vehicle passage, when the truck enters
the bridge, the response of the first axle 𝑢̈𝑎1 measures the transient
response of the bridge as well as the excitation from the road profile.
Then, subsequent axles also cross the same locations on the bridge
exposed to the same road profile. Therefore, the dynamic response of
all axles should contain the same (or similar) contributions from the
road profile. Thus, if the component containing the frequency content
of the road profile can be identified in the measured dynamic response,
then the contribution of the road profile can be eliminated.

To remove the effect of the road profile from the responses of a
vehicle travelling with speed 𝑣, the MODWPT with 𝑛 = 8 levels is
applied to the axle accelerations 𝑢̈𝑎𝑖 . Fig. 9(a) shows the energy level
of the first 25 wavelet components (out of 256) for axles 1 and 2. The
wavelet components 2 and 3 for axle 1 show significant high energy in
comparison to the other components. The additional energy in axle 1 at
those particular components can be attributed to the transient response
of the bridge. Therefore, it is possible to argue that the sum of certain
wavelet components (2 and 3 in this case) from all axle signals 𝑢̈𝑎𝑖
contains predominantly the dynamic response of the bridge.
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Fig. 8. Samples of signals for case study A.

Fig. 9. Pre-processing example; (a) Energy of the wavelet components for axles 1 and 2; (b) Power spectral density of axle responses before applying MODWPT; (c) Power spectral
density of axle responses after applying MODWPT.

Fig. 9(b) and (c) show the Power Spectral Density (PSD) of the 5 axle
acceleration signals before and after applying MODWPT. The PSD of
the raw signals (Fig. 9(b)) shows that the peaks for the first two bridge
modes are not distinguishable. However, when the PSD is computed
for the sum of the 2nd and 3rd wavelet components, the peaks of

first two modes of the bridge are clearly distinguishable (Fig. 9(c)).
The advantage of applying MODWPT is clear because it isolates, to
a large extent, the contribution of the bridge response in the vehicle
acceleration signals. Therefore, the use of filtered vehicle responses via
MODWPT is advantageous for structural condition assessment using
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drive-by measurements. In this study all vehicle acceleration signals are
pre-processed following the procedure discussed in this section.

4.1.3. Evaluation method
In order to demonstrate the performance of the proposed damage

detection method, this study considers a range of different information
scenarios. Each scenario is defined in terms of the available information
for each vehicle crossing event. In some scenarios, the bridge might
be instrumented with one or more accelerometers at different sections.
In other scenarios, the vehicle might provide no information, discrete
values about the event (speed, static axle loads, and temperature),
or continuous axle acceleration signals. Thus, several possible sce-
nario exist, which are defined by the amount of information available
from both, the vehicle and the bridge. To clearly characterise a given
scenario, the following notation has been used:

– B0: No measurement available of the bridge
– B1: Bridge acceleration measurement at section 𝐿∕2
– B2: Bridge acceleration measurement at sections 𝐿∕4 and 3𝐿∕4
– B3: Bridge acceleration measurement at sections 𝐿∕4, 𝐿∕2, and
3𝐿∕4

– V0: No information or measurement available from the vehicle
– V1: Vehicle speed, static axle loads and ambient temperature
– V2: As V1 plus measured axle accelerations

For example, the scenario B1/V2 corresponds to the situation where
mid-span bridge accelerations are measured (B1), and the vertical
accelerations of all axles of the 5-axle truck are also recorded (V2).
Therefore, there exist 10 possible valid scenarios to consider for struc-
tural assessment, (since scenarios B0/V0 and B0/V1 do not provide any
information about the structure).

The proposed method is applied to these 10 different scenarios, to-
gether with a comparative study of the method’s performance. Separate
PDNN models are created for every information scenario. Fig. 10 shows
the flow diagram for training and validation of the PDNN models. More
in particular, the datasets are divided into 70–30 splits, for training
and validation respectively. For training of the PDNN, a batch size
of 128 events is considered, while learning and decay rates are set
to 1 ⋅ 10−4 and 1 ⋅ 10−6 respectively, and adaptive moment estimation
(Adam) is used as an optimiser. All models are trained using Intel Core
i9–10 900 K CPUs with 64 GB RAM and NVIDIA GTX 2080Ti graphic
card. Once the model is trained, the single input dataset is evaluated by
Monte Carlo based weight sampling from the trained model. The mean
value of each prediction by Monte Carlo simulation is computed using
Eq. (5). The outcome of the model is the label with the maximum mean
probability, and computed using equation Eq. (6).

4.1.4. Results
For the case study A (simply supported beam), the 10 different

information scenarios discussed in previous section are studied sepa-
rately. For each scenario a separate model is trained. The performance
of the proposed method for each scenario is evaluated on the basis
of overall accuracy of the trained model. The overall accuracy for
damage assessment for different combinations of bridge/vehicle infor-
mation sources is shown in Table 1. It shows that the accuracy of
the trained model for scenario B0/V2 (where only vehicle information
is available) is equal to 84.2%, which is significantly less compared
to the other scenarios. On the other hand, the accuracy of proposed
method raises to 91.0% when only using the measurement from a
single sensor on the bridge (B1/V0). Then again, the performance of
the trained model improves by 4.5 percentage point when including
also vehicle axle responses (B1/V2). In addition, the results show that
there is no significant performance improvement, in terms of accuracy
for damage assessment, when discrete valued vehicle information (V1)
is combined with bridge sensors. This can be attributed to the fact that
the bridge signals indirectly contain the information (speed and axle

Fig. 10. Flow diagram of probabilistic deep learning model (PDNN).

Table 1
Performance comparison for case study A.
Scenario V0 V1 V2

B0 NA NA 84.2%
B1 91.0% 91.2% 95.7%
B2 98.7% 98.9% 99.1%
B3 99.6% 99.2% 99.5%

loads) of the passing vehicle. Furthermore, accuracy improvements are
only marginal in scenarios with multiple bridge signals (B2 and B3)
combined with full vehicle information availability (V2). Therefore, the
results indicate that a PDNN model can differentiate multiple damage
cases with sufficient accuracy solely by extracting damage sensitive
features from the bridge signals.

The performance comparison of the trained models on the vali-
dation data provides an indication of the potential use of different
information scenarios for damage assessment. But in addition, the use
of the PDNN architecture allows us to quantify the uncertainty in
the predictions. This is best illustrated with an example. Consider the
analysis of a single randomly chosen event crossing a bridge with a
15% damage at section 𝐿∕2. Fig. 11 shows the outputs obtained for
different information scenarios in terms of the mean probability of
detection of the trained models for different damage labels, computed
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Fig. 11. Damage localisation and quantification, for a single vehicle crossing event in case study A with a 15% damage at L/2 section, for different information scenarios.

using Eq. (6). From the results it can be observed that some scenarios
show large uncertainties in damage detection. This is evident, espe-
cially in Fig. 11(b), where only vehicle signals are available (B0/V2).
The analysis assigns similar mean probabilities to a series of damage
cases. There is no clear predominant label. Similarly, when only signals
from a single bridge sensor are considered (as in scenarios B1/V0 and
B1/V1) the models have difficulties differentiating the exact location
and magnitude of the damage, as shown in Fig. 11(c) and (d). However,
when the measurement information from the bridge is combined with
vehicle sensors (B1/V2), the uncertainty in the decision decreases.
Then, the correct label is more prominent (Fig. 11(e)), which indicates
that the model in such scenario would be able to locate and quantify
the damage. The remaining information scenarios show high and very
high certainties providing the correct damage case label.

It is important to stress that the final output decision is solely based
on the maximum of the mean probability of detection. Therefore, based
on the results in Fig. 11, all the models are able to detect the correct
label. From these results, it can be concluded that the PDNN has some
difficulty in differentiating damage location and magnitude when only
vehicle information is considered. However, by combining sources of
information, the damage assessment reliability increases drastically.

4.1.5. Effect of measurement noise
Measurement noise is arguably the most important factor that can

affect the performance of the proposed damage assessment procedure.

In order to study the effect of noise, white Gaussian noise is added to
the acceleration signals by using Eq. (12).

𝑢̈𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 = 𝑢̈ + 𝜎  (0, 1) (12)

where 𝑢̈𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 is the noise polluted signal, ü is the clean signal, and (0, 1) is a noise vector with zero mean and unit standard deviation.
The standard deviation of the noise component 𝜎 is computed using the
definition of Signal to Noise Ratio (SNR) as follows:

𝑆𝑁𝑅 =
𝑃𝑢̈

𝜎2
(13)

where 𝑃𝑢̈ is the power of the noise-free signal. By using predefined SNR
values, the corresponding standard deviation 𝜎 of the noise signal can
be computed. Often, SNR is given in decibels (𝑑𝐵) and so Eq. (13) can
be rewritten as follows:

𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10
(
𝑃𝑢̈

𝜎2

)
(14)

To evaluate the performance of the proposed damage assessment
method in the presence of measurement noise, a single random vehicle
crossing is studied in detail. The randomly chosen event corresponds
to a B0/V2 scenario, i.e., only vehicle information and signals are
available. Four different levels of signal to noise ratios (20 dB, 15 dB,
10 dB, and 5 dB) are added to the axle acceleration signals using
Eq. (12).
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Fig. 12. Effect of measurement noise on damage localisation and quantification for a single crossing event in a B0/V2 scenario.

Fig. 12 shows the results of the sensitivity analysis of measurement
noise for damage assessment. The input label shows that the considered
event has damage at section 3𝐿∕8 with a 15% stiffness reduction.
Fig. 12(b), (c), and (d), show the output prediction of the PDNN models
with no noise, 20 dB and 15 dB respectively. For these cases, the trained
models are able to localise and quantify the damage with similar levels
of uncertainty in the output. However, for larger levels of noise, the
performance reduces. For the case of 10 dB SNR (Fig. 12(e)), the output
of the model is not able to identify the correct label of damage and in-
stead shows almost equal probabilities for three different damage cases.
In the case of very high noise (5 dB SNR), as reported in Fig. 12(f), the
PDNN mode failed to quantify and localise the damage case completely.
The results from this analysis highlight that the proposed PDNN-based
procedure is capable of compensating for normal operational levels of
noise, but ceases to work for large noise levels.

4.2. Case study B: Multi-span continuous bridge

4.2.1. Data generation
This section evaluates the proposed damage detection method ap-

plied to the case of an existing multi-span continuous bridge. The Voigt
Drive I-5 bridge, shown in Fig. 13, is a reinforced concrete box girder
bridge with 4 spans and a total length of 89 m [49]. The bridge is
simulated as an updated FEM with 0.5 m long beam elements. The
section properties have been computed using the actual material prop-
erties and cross section dimensions shown in Fig. 13(b). The column
supports of the continuous beam model are represented using vertical
and rotational springs, of stiffness 𝐾𝑣 and 𝐾𝑟 respectively. The values
for these stiffness have been tuned to match the first three measured
frequencies of the original bridge [49]. The final list of the updated
bridge properties is presented in Table 2. In addition, and similar to
case study A, a road profile of class A is considered with a 100 m
approach distance shown in Fig. 6(b).

In line with case study A, damage is modelled as local stiffness
reductions also in case study B. But because it is a different bridge,
different damage cases have been defined to evaluate the performance
the PDNN-based procedure. The Damage Cases (DC) considered in case
study B are:

– DC0: Healthy case
– DC1-DC2: Damage at mid-span of span 2 with stiffness reductions
of: 30%, 45%

– DC3-DC4: Damage at mid-span of span 3 with stiffness reductions
of: 30%, 45%

Table 2
Multi-span bridge model properties.
Description Symbol Value

Total span length (m) 𝐿 89
Young’s modulus (N∕m2) 𝐸 3.5 ⋅ 1010
Second moment of area (m4) 𝐼 1.3427
Cross-section area (m2) 𝐴 5.6180
Mass per unit length (kg∕m) 𝜌 2500
Rotational stiffness (N m∕rad) 𝐾𝑟,(1,2,3) 4.5 ⋅ 109
Vertical stiffness (N∕m) 𝐾𝑣,(1,2,3) 3.5 ⋅ 1010
First three modal frequencies (Hz) 𝑓(1,2,3) [4.91, 6.54, 13.45]

– DC5-DC6: Stiffness reduction of 30% at supports 1 and 2

The dataset for this case study is generated by solving the vehicle-
bridge interaction model presented in Section 3. To examine the sen-
sitivity of the PDNN method in realistic situations, three simulation
modes are examined. Mode 1 considers events with individual 5-axle
trucks crossing the multi-span bridge. In addition, simulation mode 2
includes the environmental effect of daily and seasonal temperature
variations. Finally, in mode 3, the simulation includes random traffic
on the bridge, in addition to the individual 5-axle trucks and tem-
perature oscillations. The dataset for all these three simulation modes
is generated considering the statistical variability of the 5-axle truck
parameters, by means of Monte Carlo analysis. For Modes 2 and 3, the
environmental effect is included by modelling the temperature depen-
dency of concrete’s elastic modulus, which is discussed in greater detail
in the following subsection. The additional random traffic in mode 3,
is modelled including 2-axle vehicles with randomly sampled entry
times, speeds, travelling directions and mechanical properties. Addi-
tional information about the 2-axle vehicle model and its corresponding
parameter values are included in Appendix.

For each simulation mode, separate datasets are generated for dif-
ferent information scenarios. As in the analysis for case study A, these
scenarios are defined in terms of the available information from the
bridge and the passing vehicles. For the latter, the same definitions
for V0, V1 and V2 are used as in Section 4.1.3. However, because the
modelled bridge is different now, the information scenarios regarding
the available bridge information is different. Case study B defines
the possible bridge instrumentation with four accelerometers 𝑎̈𝑏𝑖 as
shown in Fig. 13(a). The corresponding bridge information scenarios
considered now are listed below.

– B0: No measurement available of the bridge
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Fig. 13. Voigt Drive/I-5 Bridge; (a) Multi-span bridge model; (b) Cross-section.

– B1: Bridge acceleration measurements at mid-span of spans 1 and
4

– B2: Bridge acceleration measurements at mid-span of spans 2 and
3

– B3: Bridge acceleration measurements at mid-span of all spans

Therefore, this section considers 7 different bridge conditions for
each of the 10 valid information scenarios, for each of the 3 simulation
modes. Each of the 21 datasets consist of batches of 1000 vehicle
crossing events with randomly sampled configurations and properties.
These datasets are pre-processed as in Section 4.1.2 to remove the
contribution of the road profile from the vehicle signals. The PDNN
models are trained using the same hyperparameters, and the datasets
are divided in 70–30 splits for training and validation respectively.

4.2.2. Modelling the effect of temperature
In long-term bridge monitoring, variation in temperature plays an

important role because it directly influences the material properties of
the bridge. As a result the structure experiences changes of its modal
properties, that ultimately lead to different dynamic behaviour for
the same load. Temperature dependent material properties have been
included in the VBI model in order to evaluate the performance of the
proposed PDNN model in the presence of oscillating temperatures. This
subsection explains how the effect of temperature variation has been
modelled.

Concrete’s elastic modulus depends on the material’s temperature,
and this relationship can be linearised for typical ambient temperature
ranges [50,51]. It is also known that this linear relationship is different
for temperatures below the freezing point [52]. Such bi-linear rela-
tionships have been reported, for instance, at the Dowling Hall Foot
bridge [53]. Nevertheless, modelling the relationship between temper-
ature and elastic modulus is not a straightforward task and depends

on structure’s type, location, and environmental conditions. To solve
this, empirical models from bridge measurements can be leveraged to
establish the relationship between temperature and changes in bridge
properties. One such model was developed in [53], where the authors
proposed the bi-linear equation for bridge elastic modulus as given
in Eq. (15).

𝐸𝑇 = 𝐸0

[
𝑄 + 𝑆 𝑇 + 𝑅

(
1 − 𝑒𝑟𝑓

(𝑇 − 𝜅
𝜏

))]
(15)

In Eq. (15), 𝐸𝑇 is the temperature dependent elastic modulus
and 𝐸0 is its value for a reference temperature. The linear relation-
ship is defined in terms of the parameters 𝑄 and 𝑆, while the term
𝑅
(
1 − 𝑒𝑟𝑓

(
𝑇−𝜅
𝜏

))
modifies the relationship for temperatures below

zero. In Eq. (15), 𝑇 is the temperature in degrees Celsius, while 𝜅 and 𝜏
are the parameters that govern the transition around the freezing point.
More details about the temperature dependency of concrete and the
model parameters can be found in [54].

In the present study, the influence of temperature has been simu-
lated considering a 2 year temperature record obtained from a weather
station in Trondheim (Norway), shown in Fig. 14. For simulation modes
2 and 3, temperature for each crossing event was randomly sampled
from these records. Then, the elastic modulus of the concrete was
adjusted accordingly using Eq. (15). The parameters in this relationship
are also sampled randomly to account for possible uncertainties, as
suggested in [54], based on the mean and standard deviation values
given in Table 3.

4.2.3. Results
This section reports the results of the proposed damage detection

method applied to the case of the multi-span bridge considering the
damage cases discussed in Section 4.2.1. The results are presented in
a similar format as for case study A. The performance test results for
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Fig. 14. Daily average temperature record of Trondheim (Norway), and corresponding damage case considered on the bridge.

Table 3
Mean and standard deviation of parameters modelling the effect of temperature on
concrete’s elastic modulus.

𝑄 𝑆 𝜅 𝜏 𝑅

𝜇 1.0129 −0.0048 0.1977 3.1466 0.1977
𝜎 0.003 0.0001 0.0027 0.0861 0.0027

Table 4
Performance comparison for multi-span bridge case and simulation mode 1.
Scenario V0 V1 V2

B0 NA NA 96.1%
B1 97.2% 97.4% 97.4%
B2 98.1% 98.3% 99.0%
B3 98.2% 98.7% 99.2%

each information scenario, are presented in a table format, indicating
the overall accuracy of the trained models. However, in case study
B, the analysis is repeated for 3 simulation modes, namely mode 1
(single 5-axle events), mode 2 (with additional temperature variations)
and mode 3 (with additional random 2-axle traffic), as discussed in
Section 4.2.1.

The results for mode 1 are reported in Table 4. It shows that
the PDNN-based approach exhibits comparatively high accuracy in
damage assessment for all scenarios. This is even the case for the B0/V2
scenario, where only vehicle sensor information is used. The overall
accuracy in this scenario is good (96.1%), and much better that the
corresponding result in case study A (see Table 1), which was 84.2%.
This improvement is attributed to the duration of the crossing event.
Vehicles traversing a longer bridge, spend more time interacting with
the structure, which results in longer signals for the proposed method.
In addition, the vehicle to mass ratio decreases drastically, ensuring
that there is practically no variation of the bridge’s modal properties
during the crossing event. It is also worth noting that the damage
cases considered in case study B are more distinct, as opposed to those
considered in case study A. This makes each label (damage case) more
distinctive, which facilitates the classification task. The combination of
these reasons allow the PDNN model to generalise more precisely the
damage sensitive features, leading to the improved accuracy observed
in case study B for simulation mode 1.

Table 5 presents the overall performance results for simulation
mode 2. In this mode the temperature variations have been included

Table 5
Performance comparison for multi-span bridge case and simulation mode 2.
Scenario V0 V1 V2

B0 NA NA 74.6%
B1 89.2% 90.4% 81.4%
B2 93.9% 94.3% 92.8%
B3 94.2% 94.7% 95.6%

in the simulation, affecting directly the elastic modulus of the bridge
model, as discussed in Section 4.2.2. In the simulated information
scenarios the temperature is provided by the passing vehicles, and
therefore only available in scenarios with V1 and V2. In this setup, it
is possible to study what is the effect of that additional information on
the performance of the PDNN-based models. By direct comparison of
the results between V0 and V1 scenarios, it can be seen that adding
the temperature information as input has little impact on the overall
accuracy of the models. In addition, the accuracy improvements are of
similar magnitude as those reported for mode 1 (where no temperature
variations were considered). However, there is an overall decrease in
accuracy compared to mode 1 results. This is because the varying
temperature creates fluctuations in bridge modal properties (especially
first and second mode), which mask the variations associated to small
damage cases. This temperature effect is particularly relevant in sce-
narios using vehicle information (V2). The pre-processing of the vehicle
signals effectively isolates the first and second frequencies of the bridge,
as shown in Fig. 9(c). As a result of this pre-processing, the PDNN model
is not able to properly classify the less severe damage cases, which
contributes to the decrease in overall accuracy for scenario B0/V2
reported in Table 5. Compared to bridge only scenarios, where the
signals contain the full spectrum, the proposed model can successfully
generalise the feature space and thus classify different damage cases
more accurately. Furthermore, the results show that when V2 informa-
tion is combined with B1 and B2 the accuracy of the model decreases.
This decrease in accuracy is attributed to the relative weight given by
the model to the actual input signals. In B1/V2 and B2/V2 the inputs
to the model are 5 vehicle signals and 2 bridge responses. The model
gives more weight to the vehicle signals, which are affected more by
the effect of temperature variations, resulting in a decrease in accuracy.

Simulation mode 3 imitates the actual operational conditions found
in a real case. The bridge vibrations captured by the passing 5-axle
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Fig. 15. Effect of measurement information scenario on the accuracy for damage localisation and quantification, for case study B and simulation mode 3.

trucks are affected by the continuous oscillations in ambient temper-
ature and the disturbances induced by additional traffic. The perfor-
mance results for mode 3 (see Table 6) indicate overall performance
reduction but similar trends as those reported for mode 2. Vehicle
responses are highly influenced by temperature and by the presence
of random traffic compared to bridge response. This is clearly seen in
overall decrease of accuracy for all scenarios when V2 information is
combined with bridge sensors as discussed in previous section for mode
2.

However, when compared to the other simulation modes, the per-
formances for mode 3 are significantly lower for all scenarios. This is
expected because of the additional random traffic, which is unknown to
the models. The PDNN models do not get any information about this
extra traffic, because these vehicles are not instrumented. The added
mass of these additional vehicles affect the bridge dynamic response.
The PDNN-based models achieve a suboptimal generalisation of the
feature space, and thus have more difficulties classifying the event
among the different damage case labels. This is then reflected in overall
poorer accuracy, as reported in Table 6.

Taking advantage of the PDNN architecture, it is possible to explore
the uncertainty in the model prediction. The analysis of one single
crossing event can be presented in terms of mean probability of detec-
tion, as explained in Section 2.2. Here, the analysis is repeated for all
information scenarios considering one random event under simulation
mode 3, and presented in Fig. 15. In particular, in this event the bridge
had a damage at the mid-span section of the second span with a severity

Table 6
Performance comparison for multi-span bridge case and simulation mode 3.
Scenario V0 V1 V2

B0 NA NA 44.1%
B1 79.2% 82.0% 60.1%
B2 81.1% 82.3% 76.8%
B3 82.4% 84.1% 82.1%

of 30% stiffness reduction. The analysis shows that in scenario B0/V2,
when only vehicle measurements are available, the PDNN-based model
is not able to correctly identify the damage label. The model distributes
the probability among 3 different labels, including the correct one (see
Fig. 15(b)). The final outcome of the model is selected as the label
with greatest mean probability, which in this case is the wrong answer.
However, for the rest of information scenarios, the PDNN models are
able to correctly identify the damage with very low uncertainty in the
output.

Therefore, from these results it can be concluded that random traffic
on the bridge adversely effects the damage detection capability of the
proposed PDNN-based method. This negative influence is particularly
evident for damage assessment using exclusively the signals from pass-
ing vehicles. Therefore, the recommendation for drive-by methods in
general is to utilise signals from instrumented vehicles that traverse the
target bridge without the presence of additional traffic. Furthermore,
the presented results also indicate that to reduce the uncertainties in
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damage assessment, it is beneficial to combine the vehicles’ responses
with the signals from a limited number of sensors mounted on the
bridge.

5. Discussion

The results presented here provide the proof of concept for the
applicability of vehicle assisted bridge monitoring. The study demon-
strates the merits of combining multiple sensory information, including
fixed sensor as well as moving sensors (vehicle mounted). The strengths
of the proposed PDNN model approach are: (1) scalability, because
the proposed method can easily incorporate different types of mea-
surements for damage assessment tasks; (2) robustness, because of the
inherit probabilistic nature of proposed method, the effect of noise
and different loading conditions do not alter the overall accuracy; (3)
implementable, because it does not require heavy pre-processing of the
measurements since it can work with raw signals; and (4) enhanced
performance of damage detection and localisation in comparison to the
similar methods reported in literature [23,45], because the proposed
method does not only provide the damage detection results but also
quantifies the uncertainty in the output decision.

Furthermore, the novelty of the proposed method can be sum-
marised in three points. First, the proposed PDNN model can combine
multiple sensors and extract the damage sensitive features without any
pre-processing of the input signals, even when considering realistic
operational conditions. The accuracies of damage assessment results
for different sensor combinations highlight the ability of the proposed
model to distinguish small changes in structural dynamic characteris-
tics. Secondly, compared to other commonly used data driven methods,
the proposed PDNN model provides additional insights, since it can
quantify the reliability of the model’s decision. In previous studies
reported in literature, the deep learning models have been trained
with fixed weights. This makes their generalisation ability highly sus-
ceptible to changing operational and environmental conditions. The
proposed PDNN model addresses this issue by replacing fixed weights
by probabilistic distributions of weights. This, not only enhances the
generalisation ability of the PDNN model, but also quantifies the re-
liability of the decision making. Lastly, this study can be used as a
guideline for future planning of bridge health monitoring systems in
practice. The study comprehensively discussed multiple bridge health
monitoring scenarios for different levels of damage. Bridge owners can
greatly benefit from this study while considering their needs for a
monitoring campaign for a particular bridge.

However, there are still some limitations for the implementation of
the proposed method. Arguably, the main limitation is related to the re-
quirement of damage labels while training the proposed PDNN model.
At present, this can be addressed by combining hybrid approaches
and transfer learning techniques, as discussed in [55]. In a hybrid
approach, the target bridge labels can be acquired from numerical
simulations from Finite element model (FEM) of the bridge and then
further combined with real measurements of the bridge for further
damage assessment. Nevertheless, this line of work still requires more
studies to properly demonstrate the ability for damage assessment in a
real life implementation. The other minor limitation is the requirement
of synchronised signals from multiple sensors. This can be addressed
by adequately utilising existing technologies.

6. Conclusions

This paper has explored the feasibility of vehicle assisted monitoring
for damage assessment. The study had two main objectives; (1) to
develop a damage assessment method by combining direct and indirect
measurement response; (2) to study and quantify the influence of
different sensor information combinations. To that end, a probabilistic
deep neural network (PDNN) based method was proposed, which is
capable of quantifying the uncertainty of its predictions under varying

Fig. A.1. 2-axle vehicle model.

operational and environmental conditions. The effectiveness of the
proposed method was evaluated with two case studies, which consisted
of 5-axle trucks traversing a simply supported beam and a multi-span
continuous bridge. These studies considered several damage cases and
investigated the effect of measurement noise, temperature variations,
and random traffic. The main findings of this study can be summarised
as follows:

• The overall results suggest that vehicle assisted monitoring has
the potential to detect small and realistic damage cases under the
influence of varying operational and environmental conditions.

• By employing the wavelet transform based filter bank the contri-
bution of the road profile can be removed from vehicle responses
which is one of the main hinders in deployment of on-board
vehicle sensors for structural damage assessment.

• The combination of sensor information from vehicle and bridge
enables a more reliable damage assessment with lower uncer-
tainty in the decision making.

• Random traffic on the bridge adversely affects the ability of the
proposed method to detect and localise the damage, when only
vehicle sensors are used. Thus, is drive-by or indirect monitoring
strategies, it is recommended to use only vehicle responses with
no additional traffic present on the bridge.

• Road authorities and bridge owners can use the proposed proba-
bilistic deep neural network based method as a reliable decision
making tool for damage assessment.
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Table A.1
5-axle truck model parameters.
Parameters Min. Max. Mean SD

Mass (kg)
Tractor body 𝑚𝑏1 2800 3400 3100 80
Trailer body 𝑚𝑏2 15000 25000 20000 1000
Tractor axles 𝑚𝑢1, 𝑚𝑢2 500 1000 750 30
Trailer axles 𝑚𝑢3, 𝑚𝑢4, 𝑚𝑢5 800 1400 1100 50

Moment of inertia (kg m2)
Tractor body 𝐼𝑏1 4250 5500 4875 50
Trailer body 𝐼𝑏2 112000 135000 123000 2500

Spring stiffness (N/m)
Tractor suspension 𝑘𝑆1, 𝑘𝑆2 4.0 ⋅ 106 8.0 ⋅ 106 6.0 ⋅ 106 0.5 ⋅ 106
Trailer suspension 𝑘𝑆3, 𝑘𝑆4, 𝑘𝑆5 5.0 ⋅ 106 15.0 ⋅ 106 10.0 ⋅ 106 0.5 ⋅ 106
Tractor tyre 𝑘𝑇 1, 𝑘𝑇 2 1.3 ⋅ 106 2.3 ⋅ 106 1.8 ⋅ 106 0.2 ⋅ 106
Trailer tyre 𝑘𝑇 3, 𝑘𝑇 4, 𝑘𝑇 5 2.8 ⋅ 106 4.8 ⋅ 106 3.5 ⋅ 106 0.2 ⋅ 106

Viscous damping (N s/m)
Tractor suspension 𝑐𝑆1, 𝑐𝑆2 1.0 ⋅ 104 8.0 ⋅ 104 4.0 ⋅ 104 0.5 ⋅ 104
Trailer suspension 𝑐𝑆3, 𝑐𝑆4, 𝑐𝑆5 2.0 ⋅ 104 16.0 ⋅ 104 8.0 ⋅ 104 1.0 ⋅ 105

Geometry (m)
𝑏1 3.50 6.50 5.00 0.10
𝑎2 3.00 5.00 4.00 0.02
𝑑1 −0.50 −1.20 −1.09 −0.01
𝑑2 3.00 4.00 3.50 0.05
𝑑3 – – 1.20 –
𝑑4 – – 2.20 –
𝑑5 – – 3.20 –

Velocity (km/h)
Velocity 36 72 54 8

Table A.2
2-axle truck model parameters.
Parameters Min. Max. Mean SD

Mass (kg)
Body mass 𝑚𝑏1 5000 16000 10500 500
Tractor axles 𝑚𝑢1, 𝑚𝑢2 600 1200 900 100

Moment of inertia (kg m2)
Body 𝐼𝑏 45000 65000 53651 2000

Spring stiffness (N/m)
Suspension 𝑘𝑆1, 𝑘𝑆2 4.0 ⋅ 106 8.0 ⋅ 106 6.0 ⋅ 106 0.5 ⋅ 106
Tyre 𝐾𝑇 3, 𝐾𝑇 4 1.25 ⋅ 106 2.25 ⋅ 106 1.75 ⋅ 106 0.20 ⋅ 106

Viscous damping (N s/m)
Suspension 𝑐𝑆1, 𝑐𝑆2 0.5 ⋅ 104 1.5 ⋅ 104 1.0 ⋅ 104 0.2 ⋅ 104

Geometry (m)
𝑑1 4 6 – –

Velocity (km/h)
Velocity 36 72 54 8

Appendix

Table A.1 provides the numerical values of the parameters for the
5-axle truck model, together with their statistical variability, used for
the Monte Carlo simulations. Similarly, Table A.2 provides the model
parameter for the 2-axle vehicle model (shown in Fig. A.1), which
is used to simulate the additional random traffic in case study B
(Section 4.2).
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