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Abstract

This thesis concerns the impact of computational complexity on the verification of

natural language quantifiers. In particular, it deals with the neural consequences of

so-called minimal complexity: the simplest possible algorithm to compute a function.

It can be shown mathematically that quantifiers in natural language divide into

classes depending on the minimal complexity of determining the truth value of a

quantified sentence with that quantifier: Aristotelian quantifiers include ‘all’, ‘some’,

‘none’ etc.; numerical quantifiers refer to numerals – like ‘three’, ‘four’, ‘five’ etc.

– and modifications thereof; parity quantifiers concern the parity of a set, i.e. ‘an

even/odd number of’; and proportional quantifiers denote proportions, e.g. ‘most’,

‘less than half’, ‘a third’ etc.

Importantly, the first three classes can be verified by simple finite state automata

(FSAs), whereas proportional quantifiers require the additional memory component

associated with pushdown automata (PDAs). Since the formal proofs delineate a

lower bound on the complexity of the verification algorithm – there is no strategy

that can simplify the nature of the task – this leads to the prediction that propor-

tional quantifiers, but not the other classes, should recruit memory systems during

verification, also in human subjects.

In three EEG experiments with a picture-sentence verification paradigm, the

cognitive reality of this distinction in complexity is investigated. These experiments

demonstrate that the computational complexity of the verification algorithm for

natural language quantifiers is reflected in distinct neural responses: proportional

quantifiers led to specific effects in the event-related potential (ERP) compared to

Aristotelian and numerical quantifiers, at different positions in a sentence in which

verification occurs; moreover, these distinct effects for proportional quantifiers were

modulated by overall memory load in a task that, in addition to verification, required

participants to temporarily store and recall strings of digits.

This compelling evidence suggests that human language processing is subjected

to the same constraints as those applicable to abstract machines. On the basis of

these results, the thesis goes on to explore open questions at the intersection of

computer science and psycholinguistics, and asks how and whether formal proofs

about the complexity of specific computational problems can inform us about which

class of algorithms is plausibly implemented by the brain. More generally, the

thesis should be viewed as a proof of concept for a growing literature advocating

algorithmic and complexity theoretic analyses in the construction of psychological

and psycholinguistic theories.
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primary supervisor, to discuss a potential PhD application due only three weeks

later. I told him that I envisioned a project involving set theory and neuroscience,

upon which he promptly gave me a fresh off the press book, written by Jakub

Szymanik, who was to become my secondary supervisor. On the newfangled pages

of this book lay the origins of what was to consume my academic life for the years

to follow. While nothing came of this specific PhD application – hardly unexpected,

given the time frame – looking back, this meeting seems like the wheels of a finely

tuned clockwork coming together. The book contained a project waiting to happen,

this project was exactly the sort of project I had envisioned for my PhD, and the

two people who came to supervise me, were exactly the people I needed to be able

to carry out the project.

I would therefore like to begin by sincerely thanking both my supervisors, who

with their deliberative supervision style, in which topics are discussed in a princi-

pled and reasoned manner, have made me feel like I am an equal partner and an

independent scientist.

Secondly, I have to thank everyone who participated in my experiments and en-

dured the tedious monotony of differently colored circles and triangles accompanied

by trivial statements. Relatedly, I wish to thank everyone who helped me recruit

these participants, either by sharing the ads or by nagging family and friends. There

would be no thesis without either of you.

Sincere gratitude is also due to Aniello De Santo for reading and commenting on

an earlier draft of this thesis. Both his pertinent corrections and his exciting ideas

for future research scrambled in the margins, have made the last few months more

enjoyable than they otherwise would have been.

I would also like to extend my appreciation to my colleagues at the Department

of Language and Literature for usually having their doors open and always being

willing to answer my random academic – and other – queries. The same is true for the

administrative staff both within the department and at the Faculty of Humanities,

who have promptly resolved all non-academic problems and created a welcoming

v



atmosphere where everyone feels cared for. However, those who have made me

feel the most at home in the department, is the the PhD and young researcher

community. I would therefore like to express a heartfelt thank you to everyone who

have labored alongside me at various stages of my time as a doctoral research fellow;

you have made me want to go to work, caused me to take too long breaks, and

balanced out the meticulous scientific endeavour with laughter and conversations

with friends.

Lastly, I would like to thank my family for their support and, amazingly, con-

tinued interest in my research. In particular, my deepest gratitude goes to my wife,
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Chapter 1

Introduction

Natural language quantifiers are linguistic expressions that denote quantities. The

morphosyntactic realization of quantifiers exhibit substantial differences, spanning

from monomorphic determiners such as ‘all’ and ‘five’, via modified quantity nouns

like ‘at most two thirds’ and ‘an even number of’, to multiple conjoined phrases: ‘at

least two but no more than five’ or ‘between five and seven or more than ten’. Despite

the apparent diversity of these linguistic expressions, their semantic contribution is

importantly similar. On the regular mathematical definition of quantifiers in formal

semantics (to be discussed in 1.1), quantifiers denote relations between cardinal-

ities of sets. Interestingly, natural language quantifiers constitute a small subset

of the logically possible quantifiers qua cardinality relations (Barwise & Cooper,

1981; Keenan & Stavi, 1986), and quantifier expressions have been shown to be re-

markably invariant cross-linguistically, both in terms of meaning and form (Bach,

Jelinek, Kratzer, & Partee, 1995; Keenan & Paperno, 2017; Matthewson, 2001).

Furthermore, the logical properties that characterize the subset of natural language

quantifiers (in the universe of possible quantifiers) seem to delineate learning bi-

ases for quantitative tasks in non-human primates (Chemla, Dautriche, Buccola,

& Fagot, 2019), as well as quantifier learning more generally (Carcassi, Steinert-

Threlkeld, & Szymanik, 2021; Hunter & Lidz, 2013; Steinert-Threlkeld & Szymanik,

2019; van de Pol, Steinert-Threlkeld, & Szymanik, 2019). These facts suggest that

studying the neurobiology of quantifiers can reveal fundamental truths about the

human capacity for language in general, the place of language in the human mind,

and the evolution of the human cognitive architecture from the primate brain.

The study of brain activity is, however, associated with a number of conceptual

problems. The detection of increased metabolism in areas of the cortex through

functional magnetic resonance imaging (fMRI) or the observation of correlations

between an external stimulus and patterns of electromagnetic activity measured

at the scalp through electroenchephalography (EEG) or magnetoencephalography

(MEG) does not in and of itself answer such constitutional questions. Since ex-
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Chapter 1. Introduction

planations are answers to ‘why’-questions (Garfinkel, 1981; Lipton, 1991, 2004; van

Fraassen, 1977, 1980), a theoretical account of the cognitive resources required to

perform a task – e.g., comprehending quantified sentences – is necessary for neural

data to be explanatory. In other words, the theory explains the activation patterns

observed in neurobiological experiments and thereby the cognitive capacity one is

researching.

In Vision, Marr (1982) famously argued that in computational cognitive science,

three levels of analysis are necessary to explain information processing systems. The

computational level is specifying a procedure as a function, i.e. as an input-output

mapping. The algorithmic level describes the stepwise computation of this function,

i.e. the procedure for transforming inputs into outputs. Finally, the implementa-

tional level details how this algorithm is instantiated in the biological substrate, i.e.

how the brain performs the algorithm that allows it to compute a function. While all

these levels are important, the true explanatory power of this framework comes from

the inferences that can be drawn between the levels. For example, if a function is not

tractable – i.e. computable in realistic time – this cannot be the function that the

brain is computing (van Rooij, 2008; van Rooij, Blokpoel, Kwisthout, & Wareham,

2019). Likewise, if a person computes a function in a certain amount of time, an

algorithm that cannot be computed as quickly given the processing power available

in the brain, cannot be the algorithm that the brain is instantiating (Carruthers,

Stege, & Masson, 2018).

Being constrained both by the function that needs to be computed and by the

limitations imposed by the physical medium of the brain, the algorithmic level can

be viewed as the mediator between the computational and implementational levels

(Baggio, Stenning, & van Lambalgen, 2016; Baggio, van Lambalgen, & Hagoort,

2015; Embick & Poeppel, 2015; S. Lewis & Phillips, 2015). Still the algorithmic

level has not received sufficient attention in semantics (Baggio, 2018, 2020). One

reason for this lack of consideration might be the difficulty in formalizing linguistic

meanings, seeing as formalization is necessary to state a problem in computational

terms. Coincidentally, this is not the case for quantifier expressions.

As well as being important in natural language and cognition, quantifiers lie

at the heart of logic and mathematics, and this thesis seeks to capitalize on this

parallelism to explain how quantification is realized in the brain. More precisely,

its aim is to apply a synthesis of the findings on quantifiers in logic, computability

theory, and linguistics, to the neural processing of quantifiers. In particular, it can

be shown mathematically that quantifiers can be divided into four classes depending

on the computational resources required to verify them (M. Mostowski, 1998; Szy-

manik, 2016; van Benthem, 1986c). The reason for focusing on verification is twofold.

Firstly, verification is a well-defined function, where sentences are mapped to truth

2



values, given a context. Secondly, truth values have an elevated status within formal

semantics, since, conventionally, the extension of a declarative sentence is its truth

value. As a consequence of this prominence, the results about quantifier verification

potentially have far reaching consequences for the meaning and processing of quan-

tifiers. For example, procedural semantics (Moschovakis, 2006; Muskens, 2005; Piet-

roski, Lidz, Hunter, & Halberda, 2009; Suppes, 1982; Szymanik, 2016; Tichý, 1969;

van Benthem, 1986b; van Lambalgen & Hamm, 2005) contends that the meaning of

an expression is a set of algorithms computing its extension, and consequently that

the meaning of quantified sentences is a set of verification algorithms. However, the

work presented in this thesis, remains agnostic on this philosophical position about

meaning.

It is important to note that the formal proofs about quantifier verification do not

implicate specific algorithms for sentence processing. Rather, they identify proper-

ties of classes of algorithms and delineate a lower bound for the verification complex-

ity of different quantifiers (so-called minimal complexity), and to an extent, which

resources need to be recruited in order to verify certain classes of quantifiers, but

not others. As will be discussed in more detail in 1.1 below, as well as in chapter

2, the identification of these properties relies on certain assumptions. In particular,

the formal proofs assume that verification is sequential and exact, i.e. that people

enumerate all the objects in the domain of the quantifier individually. For that rea-

son, these idealized algorithms of quantifier verification are arguably not a realistic

model of human performance on such tasks, at least not in all contexts.

While the formal proofs may not be applicable to human verification in all sit-

uations, this abstraction can still be considered informative: Since there are many

different algorithms people might employ to verify a certain expression, what is im-

portant is the characteristic properties of these algorithms. As Niyogi (2006, p. 39)

writes: “for mathematical models the assumptions are more questionable but the

conclusions are more reliable – for computational models, the assumptions are more

believable but the conclusions more suspect.” For example, while the quest for quan-

tifier specific algorithms explored in a parallel literature (e.g. Hackl, 2009; Hunter,

Lidz, Odic, & Wellwood, 2017; Knowlton et al., 2021; Lidz, Pietroski, Halberda,

& Hunter, 2011; Pietroski et al., 2009; Pietroski, Lidz, Hunter, Odic, & Halberda,

2011; Talmina, Kochari, & Szymanik, 2017; Tomaszewicz, 2011) is interesting and

informative in its own right, it fails to appreciate commonalities between such algo-

rithms. Similarly, plausible models of human reasoning with quantifiers (e.g Khem-

lani & Johnson-Laird, 2022; Tessler, Tenenbaum, & Goodman, 2022) might inform

us about the limitations of human reasoners, but the merit of such models depend

on their ability to mirror behavioral and/or neural data, which in turn can be ex-

plained by properties described in mathematical proofs. This is to say that all these

3



Chapter 1. Introduction

ventures have merit, and contribute to our understanding of quantifier processing

in distinct ways.

Bearing that in mind, I will now go on to derive the different classes of natural

language quantifiers informally. On the basis of this derivation, a few natural re-

search questions will crystallize, and it is the aim of this thesis to begin to answer

these.

1.1 Deriving Quantifier Classes

The semantics of natural language quantifiers, as hinted at initially, can be mathe-

matically represented as relations between cardinalities of sets. While I will reserve

the formal details of such representations to chapter 2, it is helpful to give a few

illustrative examples in a colloquial manner. In order for a quantified sentence like

‘All men are mortal’ to be true, the set of men needs to be a subset of the set of

mortal things. Equivalently, the cardinality of the set of men, i.e. the number of

men, is equal to the cardinality of the set of men who are mortal. One can easily

construct such examples for numerical or parity quantifiers as well, where sentences

like ‘three men are mortal’ or ‘an odd number of men are mortal’ are true just in

case the cardinality of the intersection of men and mortals equals 3 and the number

of mortal men is an odd number, respectively. The relation denoted by propor-

tional quantifiers, however, is slightly different. Consider a sentence like ‘most men

are mortal’, despite its questionable implicature. As the name suggests, propor-

tional quantifiers denote proportions. Specifically, they describe relations between

the things that have a property and the things that do not, in this case men who are

mortal and men who are not mortal. The sentence is true just in case the mortal

men outnumber the immortal men.

Johan van Benthem (1986c) examined some interesting computational proper-

ties of natural language quantifiers qua relations between cardinalities of sets. If we

represent a model of the relevant parts of the universe of discourse – for most quan-

tifiers the set of A, for a quantified sentence Q AB – as a string of binary, where

1s represent the As that are B and 0s represent the As that are not, quantifiers

provably fall into four distinct classes depending on the complexity of the algorithm

required to recognize the string:

Aristotelian: ‘All’, ‘some’, ‘not all’, ‘no’

Numerical: ‘three’, ‘four’, ‘five’,...

Parity: ‘An even/odd number of’

Proportional: ‘Most’, ‘More/less than half’, ‘a third’, ...

4



1.1. Deriving Quantifier Classes

Since quantifiers denote “families of sets” (Barwise & Cooper, 1981), i.e. the set

of sets that make the quantifier expression true, a quantifier can also be said to

denote a set of strings that represents these sets. The computational problem thus

becomes determining whether a string belongs to the set of strings denoted by

a specific quantifier. This is a foundational task in theoretical computer science,

where one builds so-called automata – essentially an algorithm – that can solve this

task (Hopcroft & Ullman, 1979), and van Benthem (1986b) thus aptly named his

approach to quantifier meanings ‘Semantic Automata’.

Setting aside the abstract representations for a moment, we can illustrate these

algorithms more intuitively with the circles and triangles that will become familiar

to the reader throughout this thesis. All algorithms rely on going through the

objects in the domain, e.g. the circles, sequentially, and determining for each object

whether that object has the predicated property, e.g. being red. For a sentence like

‘all the circles are red’, the algorithm outputs true if, after scanning all the circles,

it has not found a non-red circle. For ‘three triangles are yellow’, one ignores all the

non-yellow triangles and counts the yellow until one reaches three, in wich case the

sentence is true.1 Both these classes of quantifiers can be verified using the simplest

kind of automaton, an acyclic finite state automaton (acyclic FSA). Still, they are

slightly different because the complexity of the algorithm for numerical quantifiers

depends on the counting steps denoted by the numeral whereas the complexity of

the Aristotelian quantifier algorithm is fixed. This is because for higher numbers

– compare ‘three’ and ‘five hundred ninety seven’ – there is a more substantial

counting procedure that requires more computational resources (Szymanik, 2016).

Parity quantifiers can also be computed by an FSA, but in this case it needs to be

cyclic (M. Mostowski, 1998). To exemplify, for a sentence like ‘an even number of

circles is yellow’, the algorithm keeps track of whether the current number of yellow

circles is odd or even. This obviously changes every time it sees a yellow circle. If

the algorithm is in the even state, i.e. it has seen an even number of yellow circles,

when it has inspected all the circles, the sentence is true.

By contrast, proportional quantifiers provably cannot be computed by an FSA,

but requires the additional computational resources of a pushdown automaton (PDA)

that has a memory stack (van Benthem, 1986c). This is because it is not enough to

keep track of only the last object one has observed when verifying a sentence with

a proportional quantifier. Consider the sentence ‘Less than half of the triangles are

red’. In order to verify this sentence, the algorithm must keep track of the ratio of

red to non-red triangles. It therefore stores the current ratio in memory and updates

1Numerical quantifiers famously have an at least and an exact reading (e.g. Levinson, 1983),
and this algorithm gives you the at least reading. Since the complexity of the algorithm does not
change depending on the reading, I will not discuss it here, but see chapter 2.2.2 for details.
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Chapter 1. Introduction

it for every triangle it sees. If when all the triangles have been scanned, the non-red

circles outnumber the red circles, the sentence is true.

So while there are four distinct verification classes of natural language quantifiers,

the most prominent distinction is between proportional and non-proportional quanti-

fiers. The minimally complex algorithm for proportional quantifiers is strictly more

complex than the minimally complex algorithm for any class of non-proportional

quantifiers. From the perspective of cognitive science, one interesting aspect of

this complexity is that it is related to memory. At a minimum, the prediction of

the semantic automata theory of quantifier verification is therefore that proportional

quantifiers necessitate the recruitment of memory systems, whereas non-proportional

quantifiers do not.

1.2 Research Questions

As mentioned in the introduction, the aim of this project is to apply formal results to

further our understanding of the processing of natural language quantifiers. There

is preliminary evidence to suggest that the minimal complexity of quantifier verifi-

cation algorithms has real psychological and neural effects (De Santo, Rawski, Yaz-

dani, & Drury, 2019; McMillan, Clark, Moore, Devita, & Grossman, 2005; McMillan,

Clark, Moore, & Grossman, 2006; Morgan et al., 2011; Olm, McMillan, Spotorno,

Clark, & Grossman, 2014; Szymanik, Meijering, & Verbrugge, 2013; Szymanik &

Zajenkowski, 2010a, 2010b, 2011; Troiani, Peelle, McMillan, Clark, & Grossman,

2009a; Zajenkowski, Sty la, & Szymanik, 2011; Zajenkowski & Szymanik, 2013; Za-

jenkowski, Szymanik, & Garraffa, 2014). However, the neural work is either small

scale or has relied on spurious divisions between quantifier classes. It is therefore

paramount to discover whether the predictions borne out in behavioral data has neu-

ral counterparts. Furthermore, the impact of verification complexity on the various

stages of sentence processing has mostly not been examined at all. Since semantic

theory dictates that truth values are important in sentence processing, manipulating

verification complexity might provide a window into how they are important. The

following research questions can be formulated to this end:

(1) Do the differences in the computational complexity of verification algorithms

for proportional and non-proportional quantifiers manifest in distinct brain

responses?

(2) If so, are these brain responses related to memory, as predicted by the au-

tomata theory?

(3) At what point(s) during sentence processing do such differences occur?

(4) What model of sentence processing best explains such patterns?

6



1.3. Outline of the Thesis

If (1) can be answered in the affirmative, it will demonstrate the predictive power

of hypotheses derived from analyzing cognitive tasks in computational terms. In

particular, it would suggest that we can understand crucial aspects of the processing

of quantifiers on the basis of formal results alone. Research question (2), even

if framed in binary terms, is slightly more nuanced. Mathematical theories are

independent of the linking hypotheses that tie them to cognitive systems (van Rooij

& Baggio, 2021), and there is therefore more than one way in which the brain

responses can be related to memory. At most, the theory predicts that a memory

component should distinguish proportional from non-proportional quantifiers, and

the implementational details of this abstract notion of memory needs to be inferred

from the psychology of verification, and ultimately from the extant empirical results.

Considering that human sentence processing happens rapidly, at the scale of

milliseconds, (3) places certain restrictions on the methodological choices in that

the measurements of neural activity needs to have the correct temporal resolution.

Since fMRI relies on the hemodynamic response and therefore the speed of blood-

flow in the homeostatic circulatory system, it does not have the capability to detect

differences between various stages of sentence processing. Consequently, it is nec-

essary to utilize electrophysiological methods such as EEG in order to answer the

research questions. The answer to (3) has consequences for (4) as well. Depend-

ing on whether differences in the verification procedure are observed early or late

in the sentence, it is possible to discern whether participants are actively building

true sentences incrementally, predicting the upcoming verbal material, or whether

they wait and only attempt to verify the sentence once a complete proposition is

available.

1.3 Outline of the Thesis

An elaboration on the derivation of the quantifier classes, with the formal under-

pinnings of generalized quantifier theory and its operationalization into algorithms

is found in chapter 2. Chapter 3 deals with methodological considerations. This

involves both discussing how cognitive neuroscience ought to be informed by formal

theory, and considering the more concrete implementation of the research questions

into a valid experimental paradigm. A summary of the papers is provided in chap-

ter 4, before the results are synthesized in order to answer the research questions

in chapter 5. The thesis ends with chapter 6, where I contemplate the contribution

of this thesis to the larger research community and suggest directions for future

research.
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Chapter 2

Quantifiers and Their Associated

Computational Profiles

In order to demonstrate that quantifiers fall into different classes depending on their

computational complexity, some formal prerequisites are required. This chapter

is devoted to providing these prerequisites. Firstly, the semantics of quantifiers is

specified in section 2.1. Secondly, how to turn these semantics into algorithms is

described in 2.2, before, finally, the different quantifier classes are derived from such

algorithms in 2.3.

2.1 Generalized Quantifier Theory

While quantification is as old as logic itself, both the Aristotelian and Fregean log-

ics were primarily made for the quantifiers used in syllogistic reasoning, i.e. ∀ and

∃. However, in two seminal papers, A. Mostowski (1957) and Lindstrøm (1966)

provided the mathematical framework that laid the groundwork for the later in-

troduction of formal accounts of, potentially, all natural language quantifiers in

semantics (e.g. Barwise & Cooper, 1981; Gärdenfors, 1987; Keenan & Stavi, 1986;

van Benthem & ter Meulen, 1985; Westerst̊ahl, 1985). The groundbreaking idea

was to define the semantics of quantifiers in terms of relations between cardinalities

of sets. I will not provide a full first-order logic with generalized quantifiers, nor a

compositional semantics for how these meanings are derived from syntax, as this is

beyond the prequisites for the results in this thesis; see however Peters and West-

erst̊ahl (2006) and Heim and Kratzer (1998), respectively. I will begin by defining

what generalized quantifiers are in 2.1.1, before demonstrating how this can be ap-

plied to natural language quantifiers in 2.1.2. Finally, I will describe some relevant

logical properties of natural language quantifiers in 2.1.3.
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Chapter 2. Quantifiers and Computation

2.1.1 Formal definitions

In the following, I assume familiarity with set notation and basic first order logical

connectives. On a further notational note, a vocabulary is a finite set V of symbols

denoting predicates of various arities. Let τ = {R1, ..., Rk} be a vocabulary, where ni

is the arity of Ri, for each i. A model of τ is a structure given by M = (M,R1, ..., Rk)

where M is the universe of model M and Ri ⊆ M is an ni-ary relation over M, for

1 ≤ i ≤ k.

Definition 2.1.1. Let t = (n1, ..., nk) be a k -tuple of positive integers. A generalized

quantifier of type t is a class Q of models of a vocabulary τt = {R1, ..., Rk}, such

that Ri is ni-ary for 1 ≤ i ≤ k. Q is isomorphism closed, such that if M and M′ are

isomorphic, then

(M ∈ Q ⇐⇒ M′ ∈ Q).

Definition 2.1.2. If on each universe M, Q is a relation between subsets of M, i.e.

if it is of type 〈1, ..., 1〉, Q is monadic. Otherwise it is polyadic.

In more colloquial terms, a generalized quantifier corresponds to a class of mod-

els, consisting of relations between relations of a universe M in a model M.1 What

class of models is denoted by the quantifier will depend on the specific quantifier, and

which relations are in the universe, will, for our purposes, be given by the surround-

ing linguistic context. For example, the denotation of noun phrase quantifiers, such

as ‘someone’ or ‘everything’, are type 〈1〉 quantifiers that are devoid of linguistic

modification, and therefore denote a property, a unary predicate, on the universe,

M: Qsomeone = {A ⊆ M : A 6= ∅}; Qeverything = {M}. However, the most basic

type of quantifiers in natural language (Peters & Westerst̊ahl, 2006, p. 12) are type

〈1, 1〉 quantifiers, linguistically expressed as determiners, like ‘all’, ‘some’, ‘three’

and ‘most’. These are by far the most common, and most studied, quantifiers, and

are attested in every language (Keenan & Paperno, 2017). As might be inferred

from the typing, the denotation of such quantifiers express relations between sets of

individuals. The specific relations between sets instantiated by such quantifiers will

be dealt with in more detail in 2.1.2 below.

A distinction worth mentioning before eventually setting it aside, is the distinc-

tion made by Partee (1995) between D-quantifiers and A-quantifiers. All quantifiers

discussed so far have been D-quantifiers, which are quantifiers that quantify over

objects and modify noun phrases. By contrast, A-quantifiers quantify over events

and generally function as adverbials. In English, such quantifiers include lexical-

ized adverbs like ‘always’ and ‘seldom’, but A-quantifiers are also commonly derived

1Defining generalized quantifiers in terms of classes of models is equivalent to the definition of
a generalized quantifier as a functional relation between relations that might be more familiar to
the reader (Szymanik, 2016, Corollary 3.1).
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2.1. Generalized Quantifier Theory

from D-quantifiers, e.g. ‘five/most times’. Importantly, the converse does not hold

cross-linguistically: there are no known examples of D-quantifiers being derived from

A-quantifiers, and while all languages have simple A-quantifiers, A-quantifiers are

generally more morpho-syntactically complex than D-quantifiers (Gil, 1993; Keenan

& Paperno, 2017). Relatedly, aside from the entities they denote and their typical

syntactic function, A-quantifiers and D-quantifiers are mathematically, and con-

sequently computationally, the same. Additionally, and more importantly in the

context of the experimental nature of this thesis, A-quantifiers seem to be associ-

ated with the same kind of electrophysiological effects (Augurzky, Hohaus, & Ulrich,

2020). In what follows I will therefore only be concerned with D-quantifiers.

Since the quantifier types discussed so far only deal with relations between unary

predicates, they are all monadic quantifiers. A lot of time has been devoted to

studying the possibilities for polyadic quantification in natural language (Keenan,

1987, 1992; Keenan & Moss, 1985; Moltmann, 1992, 1995; Nam, 2005; van Benthem,

1989) and the possibility to reduce them to monadic quantifiers. The main finding

from these works is that there are quantifiers that have proven irreducible. Among

these are reciprocals, that denote relations between a unary predicate and a relation,

and are consequently of type 〈1, 2〉:

1. Every student admires himself. (Keenan, 1987)

2. The ten students criticized each other. (Keenan, 1987)

3. The candidates criticized each other and each other’s wives (Keenan, 1992)

Same and different comparisons, branching quantifiers, and exception anaphora,

take two sets and express a relation between them, and are of type 〈1, 1, 2〉:

4. Most of the students answered the same number of questions on the exam.

5. Each teacher assigned a different number of problems to the same student.

6. Most philosophers and most linguists agree with each other about branching

quantification. (Barwise, 1979)

7. Every man danced with every woman except John with Mary. (Moltmann,

1995)

However, this falls beyond the scope of the present thesis, in particular since

there are open problems concerning how these quantifiers relate to semantic au-

tomata (Steinert-Threlkeld & Icard III, 2013; Szymanik, 2016; Szymanik, Steinert-

Threlkeld, Zajenkowski, & Icard III, 2013).
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Chapter 2. Quantifiers and Computation

2.1.2 A Semantics for Certain Quantifiers

As promised, I will now return to the semantics for type 〈1, 1〉 determiners. This

section relies heavily on the groundwork in Barwise and Cooper (1981), as this is

where the canonical semantics for most natural language quantifiers are found. We

have already seen the denotations for some type 〈1〉 Aristotelian quantifiers, so let

us first extend universal and existential quantification to relations between two sets

A and B, with the addition of the other Aristotelian quantifiers ‘no’ and ‘not all’:

QallA,B ⇐⇒ A ⊆ B

QsomeA,B ⇐⇒ A ∩B 6= ∅

QnoA,B ⇐⇒ A ∩B = ∅

Qnot allA,B ⇐⇒ A * B

We see that the meaning of these quantifiers can be captured exlusively by reference

to subset relations and the empty set. For example, ‘all’ and ‘not all’ when used in

sentences like ‘(not) all A are B’ specifies whether the set of As is or is not a subset

of B. ‘Some’ and ‘no’ in comparable sentences states that the intersection of A and

B is or is not the empty set.

However, it turns out that these relations are the exceptions rather than the rule.

For most natural language quantifiers, the quantifier specifies a relation between the

cardinalities of A and B:

Qexactly threeA,B ⇐⇒ |A ∩B| = 3

Qat least fiveA,B ⇐⇒ |A ∩B| ≥ 5

Qan even number ofA,B ⇐⇒ 2 | |A ∩B|

Qan odd number ofA,B ⇐⇒ 2 - |A ∩B|

QmostA,B ⇐⇒ |A ∩B| ≥ |A−B|

Qless than halfA,B ⇐⇒ |A ∩B| ≤ |A|
2

Qa third ofA,B ⇐⇒ |A ∩B| = |A|
3

As is evident from the above denotations, there are various relations that can be

said to hold of the cardinality of the intersection between A and B. One can readily

refer to the exact cardinality by using a numerical quantifier, either as a threshold

(‘at least’) or precisely (‘exactly’). Bare numerals are famously ambiguous between

the two readings (e.g. Horn, 1972; Levinson, 1983), and I have therefore written
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2.1. Generalized Quantifier Theory

denotations with a modifier for clarity. Many languages can also refer to the parity

of a cardinality by using ‘an even/odd number of’ as a quantifier. In such cases, there

is a relation between the number 2 and the cardinality of the intersection of A and B:

either 2 divides or does not divide the cardinality.2 The remaining denotations above

are all examples of proportional quantifiers. These all denote relations between the

cardinality of the intersection of A and B and some other cardinality. For example,

‘most As are B’ is true if there are more As that are B than As that are not B, i.e.

the cardinality of the intersection is greater than the cardinality of the difference of

A and B. When the proportion is specified, as in ‘less than half’ and ‘a third of’,

the cardinality of the intersection of A and B is said to be greater/less than or equal

to some proportion of the cardinality of only A, in this case half or a third.

It is pertinent to mention that the denotation for ‘most’ is subject to debate.

Importantly, Hackl (2009) argued convincingly that there is a superlative and a pro-

portional reading for ‘most’, where the proportional reading is the one given above,

which is equivalent to the corresponding denotation for ‘more than half’. However,

on a superlative reading, ‘most’ functions as a regular superlative, comparing the

denotation of the quantified noun-phrase to a comparison class (Farkas & Kiss, 2000;

Heim, 1999; Sharvit & Stateva, 2002; Tomaszewicz-Özakın, 2020). This difference

also manifests in separate lexicalized quantifiers in certain languages (Tomaszewicz,

2011). Importantly, Hackl (2009) points out that the absolute reading of superla-

tives corresponds to the proportional quantifier meaning, and that ‘most’ is therefore

better analyzed as an adjective than a quantifier. As further evidence for this, Hackl

argues that the negative polarity counterpart to ‘most’, ‘fewest’, can only have the

superlative reading, since the absolute reading - smallest subset - is infelicitous be-

cause there is no smallest subset. Nevertheless, it is possible to give generalized

quantifier semantics for both these readings, and while ‘fewest’ and ‘less than half’

are clearly not synonymous, in universes where all As are either B or not B, these

two quantifiers have the same denotation, and ‘fewest’ can therefore be seen as the

polar opposite to ‘most’ in such universes.3

Hackl’s (2009) work also set in motion a debate about differences between ‘most’

and ‘more (than half)’ (e.g. Carcassi & Szymanik, 2021; Denić & Szymanik, 2022;

Knowlton et al., 2021; Lidz et al., 2011; Ramotowska, Steinert-Threlkeld, van Maa-

nen, & Szymanik, 2020; Talmina et al., 2017). In short, ‘most’ appears to connote

2Note that parity quantifiers are an instance of the wider class of divisibility quantifiers, i.e.
quantifiers denoting cardinalities divisible by n. However, such quantifiers mostly belong in math-
ematical logic (see e.g. M. Mostowski, 1991, for a technical definition), and since this thesis is
concerned with natural language, discussing parity quantifiers will suffice.

3I will not discuss the felicity of utterances with ‘fewest’ in English here, since my experiments
were conducted in Norwegian, where such sentences are less marked. For an overview of quantity
superlatives in Germanic languages, the reader is referred to Coppock (2019).
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Chapter 2. Quantifiers and Computation

a larger proportion than ‘more than half’, while at the same time being associated

with a difference in verification strategy, that is better represented by a denotation

along these lines:

QmostA,B ⇐⇒ |A ∩B| ≥ |A| − |A ∩B|

However, as these denotations are truth functionally equivalent, they do not have a

bearing on the complexity of the verification procedures described below, and I will

not pursue this any further.

Since most quantifiers require semantics in terms of relations between the car-

dinalities of sets, it might, for symmetry, be conducive to revisit the semantics for

Aristotelian quantifiers, to show that it is possible to give semantics for the these

quantifiers in terms of cardinality as well:

QallA,B ⇐⇒ |A ∩B| = |A|

QsomeA,B ⇐⇒ |A ∩B| 6= 0

QnoA,B ⇐⇒ |A ∩B| = 0

Qnot allA,B ⇐⇒ |A ∩B| 6= |A|

As a final note on type 〈1, 1〉 determiners, I would briefly like to mention value

judgement quantifiers, i.e. ‘few’, ‘many’, ‘enough’ etc. Such quantifiers are similar to

numerical quantifiers in that they denote a cardinality greater than a certain value,

call it d. The key difference is that d is relative, and its value is determined by

pragmatic or otherwise contextual factors (Rett, 2018). Furthermore, value judge-

ment quantifiers can receive a cardinal – i.e. greater than a specific number – a

proportional – greater than a certain proportion of A – or a reverse proportional –

greater than a certain proportion of B – reading. I give the semantics for ‘many’ on

all these three readings below:

Qcardinal
many A,B ⇐⇒ |A ∩B| > d

Qproportional
many A,B ⇐⇒ |A∩B|

|A| > d

Qreverse proportional
many A,B ⇐⇒ |A∩B|

|B| > d

On a cardinal reading of sentences like ‘Many As are B’, the number of As that are

B is said to be larger than the number that could be expected. On a proportional

reading, a larger proportion of As are B than what is expected, whereas on a reverse

proportional reading, there is a bigger proportion of A that are B, compared to

other things that are B, relative to some expected proportion. All these readings are
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2.1. Generalized Quantifier Theory

attested in language, and they have some interesting properties that will be discussed

briefly below. However, as these formalizations are subject to debate, and their

meanining is determined in non-semantic ways, I will not discuss such quantifiers

any further. For an overview, see Rett (2018), for discussions of formal properties,

see Hackl (2000); Partee (1989); Romero (1998, 2015); or Westerst̊ahl (1985), and

for a discussion of contextually determined value judgments, see Cresswell (1976)

and Rett (2015).

2.1.3 Properties of Natural Language Quantifiers

I will now present and define some properties of natural language quantifiers that are

relevant when defining algorithms of quantifier verification. This means that there

are further properties that are interesting for other purposes, but I will not discuss

these in any detail. For a comprehensive overview, see Peters and Westerst̊ahl

(2006).

Firstly, it is easy to observe that quantifiers occur in complex noun phrases – e.g.

‘most or all’, ‘between 5 and 10’ – that modify the meaning of the quantifier. Such

modification occurs in all languages (Keenan & Paperno, 2017), and it is therefore

necessary to define Boolean combinations of quantifiers.

Definition 2.1.3. Let Q, Q’ be generalized quantifies, both of type 〈n1, ..., nk〉. We

define conjunction:

(Q ∧Q′)M(R1, ..., Rk) ⇐⇒ QM(R1, ..., Rk) and Q′M(R1, ..., Rk)

Disjunction:

(Q ∨Q′)M(R1, ..., Rk) ⇐⇒ QM(R1, ..., Rk) or Q′M(R1, ..., Rk)

Outer negation:

(¬Q)M(R1, ..., Rk) ⇐⇒ not QM(R1, ..., Rk)

Inner negation:

(Q¬)M(R1, ..., Rk) ⇐⇒ QM(R1, ..., Rk−1,M −Rk)

Dual:

Qd = ¬(Q¬) = (¬Q)¬

It might also be helpful to define negation for type 〈1, 1〉 quantifiers, as this is

what we are concerned with in what follows.

Definition 2.1.4. Let Q be a generalized quantifier of type 〈1, 1〉 and A, B ⊆ M.

We define outer and inner negation as below:
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Chapter 2. Quantifiers and Computation

(¬Q)M(A,B) ⇐⇒ not QM(A,B)

(Q¬)M(A,B) ⇐⇒ QM(A,M −B)

This allows us to account for sentences such as:

8. Between 5 and 10 students attended the lecture.

9. Most or all students enjoyed formal semantics.

10. Not all students passed the exam.

11. Some students did not pass the exam.

It also allows us to see that the quantifiers in the following sentences are duals.

12. Not all students did not pay attention.

13. Some students payed attention.

More importantly in the present context, in particular in paper 3, is the fact that

conjunction and negation of natural language quantifiers is used to define so-called

scalar implicatures, typically associated with many quantifier expressions (Horn,

1972; Levinson, 1983). Such implicatures are defined as the inferred negation of a

stronger meaning. For example, the quantifier ‘some’, in a sentence like Qsome(A,B),

frequently gives rise to the implicated meaning that not all the As are B. Conse-

quently, in many instances Qsome(A,B) in fact means Qsome(A,B) ∧ ¬Qall(A,B).

A property that is closely related to negation is monotonicity. A quantifier can

be monotone on either of its arguments, and:

Definition 2.1.5. A quantifier QM of type (n1, ..., nk) is monotone increasing in

the i-th argument if and only if:

If QM [R1, ..., Rk] and Ri ⊆ R′i ⊆ Mni , then QM [R1, ..., Ri−1, R′i, Ri+1, ..., Rk] where

1 ≤ i ≤ k.

Conversely, QM is monotone decreasing in the i-th argument if and only if:

If QM [R1, ..., Rk] and R′i ⊆ Ri ⊆ Mni , then QM [R1, ..., Ri−1, R′i, Ri+1, ..., Rk] where

1 ≤ i ≤ k.

Definition 2.1.6. A quantifier is monotone if it is monotone increasing or decreas-

ing in any of its arguments. Otherwise, it is nonmonotone.

Intuitively, this means that if a monotone quantifier is true of a set, it is also true of

a superset, if it is monotone increasing, or of a subset, if it is monotone decreasing.

For example, suppose a quantifier Q(A,B) is monotone increasing on its second

argument, and that B ⊆ B′. This means that if Q(A,B) is true, then Q(A,B′) is
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2.1. Generalized Quantifier Theory

also true. Or consider a quantifier Q(A,B) that is monotone decreasing on its first

argument, and A′ ⊆ A. Then Q(A,B) is true just in case Q(A′, B) is true. 14-17

give examples of quantifiers that are monotone increasing, monotone decreasing,

nonmonotone, and of how monotonicity interacts with negation.

14. (a) At least 5 boys play football.

(b) At least 5 boys play sports.

15. (a) At most 5 people came to the show.

(b) At most 5 women came to the show.

16. (a) Exactly 5 boys play football.

(b) Exactly 5 boys play sports.

17. (a) All the politicians are furious.

(b) All the politicians are angry.

(c) Not all the politicians are furious.

(d) Not all the politicians are angry.

14 is monotone increasing on the second argument. Therefore (a) entails (b), since

sports is a superset of football. 15 is monotone decreasing on its first argument, and

since women are a subset of people, (a) entails (b). 16 is not monotone and so there

is no entailment relation between the sentences. In 17 we see that negation flips the

direction of the entailment. Without negation (a) entails (b), but with negation (c)

does not entail (d). Rather, (d) entails (c).

While slightly peripheral to the present project, the fact that quantifiers can differ

in their monotonicity is a confound that should be controlled for: There is consider-

able evidence that polarity – which is related to monotonicity in that only downward

monotone quantifiers can be negative (see e.g. Fauconnier, 1975; Israel, 1996, 2001;

Ladusaw, 1979) – affects processing (Clark & Chase, 1972, 1974; Deschamps, Ag-

mon, Loewenstein, & Grodzinsky, 2015; Just & Carpenter, 1971; Nieuwland, 2016;

Urbach, DeLong, & Kutas, 2015; Urbach & Kutas, 2010). More recent evidence also

suggests that being monotone decreasing in itself is more strenuous for processing

(Agmon, Loewenstein, & Grodzinsky, 2019; Geurts & van der Silk, 2005; Schlot-

terbeck, Ramotowska, van Maanen, & Szymanik, 2020). For a discussion of this

evidence, see paper 3.

Recall from definition 2.1.1 above (cf. Lindstrøm, 1966; A. Mostowski, 1957),

that generalized quantifiers are closed under isomorphism – or topic neutral. Infor-

mally, this means that quantifiers are only concerned with the cardinalities of sets
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of elements, and not the specific elements in the set or the order of these elements.

However, there are potential counterexamples to isomorphism closure for natural

language quantifiers. For example, while ‘three’ is isomorphism closed – if there is

a one-to-one mapping between two models and Qthree(A,B) is true of one of them,

it is also true of the other – ‘first three’ or ‘every third’ are not: if two models have

the same cardinality, but do not have the same ordering, ‘first three’ or ‘every third’

may be true in one and false in the other.

Less problematically, it was noted by van Benthem (1986a) that determiners in

natural language, i.e. type 〈1, 1〉 quantifiers, are domain independent, sometimes

also called extensional (Ext). Formally, this can be expressed as follows:

Definition 2.1.7. A quantifier Q of type 〈n1, ..., nk〉 satisfies domain independence

if and only if:

If Ri ⊆Mni , 1 ≤ i ≤ k, M ⊆M ′, then QM(R1, ..., Rk) ⇐⇒ QM ′(R1, ..., Rk).

Informally, it means that the size of the universe does noes matter; if QM is a 〈1, 1〉
quantifier, QM(A,B) depends only on the cardinality of A and the cardinality of

B, and, importantly, not on the cardinality of M. So if, the cardinality of A and B

remains the same, it does not matter what the cardinality of the other elements of M

are. Compare (a) and (b) in Figure 2.1 for a visual representation of this difference.

To exemplify, Qthree(A,B) and QAll(A,B) do not depend on |M−A∪B|, but only on

the elements of A that are B, and so they are both extensional. Even ‘first three’ and

‘every third’ above have this property. In fact, no natural language determiner seems

to be non-extensional. In order to find such quantifiers, we need to venture into the

realms of logic, where e.g. ∀ violates domain independence. For this reason, domain

independence seems to be a universal property of natural language quantifiers.

Another prime candidate for such universality is conservativity. Formally, con-

servativity is defined as follows:

Definition 2.1.8. A type 〈1, 1〉 quantifier is conservative if and only if for all M

and all A, B ⊆ M:

QM(A,B) ⇐⇒ QM(A,A ∩B)

Informally, this is usually paraphrased as ‘Q As are As that are B’. It was

recognized early on (Barwise & Cooper, 1981; Higginbotham & May, 1981; Keenan

& Moss, 1985; Keenan & Stavi, 1986; van Benthem, 1984) that most determiners in

natural language satisify this constraint. Consider the equivalence of sentences like:

18. (a) All dogs bark.

(b) All dogs are dogs that bark.

19. (a) Three women dislike John.
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A B

(a) Domain dependent and
non-conservative

A B

(b) Domain independent and
nonconservative

A B

(c) Domain independent and
conservative

Figure 2.1: Venn diagrams representing relevant objects for quantifiers with different
logical properties.

(b) Three women are women that dislike John.

20. (a) Most people like Mary.

(b) Most people are people that like Mary.

21. (a) Four out of five dentists recommend sugarless gum for their patients who

chew gum.

(b) Four out of five dentists are dentists who recommend sugarless gum for

their patients who chew gum.

Conservative determiners consequently allow a further restriction of the universe,

such that the truth value of a quantified statement QM(A,B) with a conservative

quantifier relies only on A. This is intuitive as well, as it reflects the primacy of the

first argument of the quantifier; a claim like ‘All dogs bark’ is intuitively about dogs,

not about things that bark (van Benthem, 1986a). Visually, this is illustrated in

the Venn diagram in Figure 2.1 (c). Furthermore, van Benthem (1984) showed that

only allowing conservative determiners, reduces the number of possible determiners

considerably (from 24n to 23n , where n is the number of elements in the universe), and

Keenan and Stavi (1986) showed that all conservative determiners were denotable by

an English determiner, thus indicating that conservativity is an important property

for natural language quantifiers.

However, the claim that it is universal has been put under pressure ever since

its conception by apparent counterexamples:

22. Many Scandinavians have won the Nobel Prize in literature. (Westerst̊ahl,

1985)

23. Mostly men walk. (Johnsen, 1987)

24. Only willows weep. (de Mey, 1991)

25. The company hired 75 % women. (Ahn & Sauerland, 2017)
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26. The company hired all women. (Zuber & Keenan, 2019)

There is an evident discrepancy between these quantifiers and the conservative quan-

tifiers above, in that rewriting them in QM(A,A ∩B) form does not result in truth

conditionally equivalent statements:

27. Many Scandinavians are Scandinavians who have won the Nobel Prize in lit-

erature.

28. Mostly men are men who walk.

29. Only willows are willows that weep.

This is because, as discussed in the context of value judgement quantifiers, ‘many’

can have a reverse proportional reading ( |A∩B||B| > d). Westerst̊ahl (1985) pointed

out that this reading is non-conservative; in particular, it depends on the Bs that

are not A, which are not in the intersection of A and B, and so do the other two.

29 is definitely a tautology, and, unless strengthened by a scalar implicature not

all, so is is 28. Such rephrasings are not available for so-called bare proportionals

(Zuber & Keenan, 2019), as these do not appear in the subject position. They are,

however, non-conservative, as their truth-value depends not on the proportion of

the quantified noun phrase, but on the proportion of the other argument (in this

case company hires).

Interestingly, these non-conservatives are the inverse of other conservative quan-

tifiers, or have an equivalent sentence where the order of the arguments is reversed:

30. Many Nobel Prize winners in literature are Scandinavians.

31. Most walkers are men.

32. Every weeper is a willow.

33. 75 % of company hires were women.

34. All company hires were women.

This suggest that the alleged counterexamples are systematically related to con-

servative quantifiers by the inversion relation. Zuber (2004) examines a class of

Polish quantifiers that translate into English ‘only’, and shows that only determin-

ers that are the inversion of a conservative quantifier are grammatical determiners.

This has lead people to explore the possibility that quantifiers may be conservative

on either argument (see e.g. von Fintel & Matthewson, 2008, and references therein).

In the past, semanticists have referred to independent evidence to suggest that

seemingly non-conservative determiners, like ‘many’, ‘mostly’ and ‘only’, are in fact
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not determiners, but adverbs or adjectives (e.g. Keenan & Stavi, 1986; van Benthem,

1986b; von Fintel, 1997). Recently, however, in light of the ubiquitousness of non-

conservative expressions cross-linguistically (e.g. Ahn & Sauerland, 2017; Keenan

& Paperno, 2017), an effort has been made to explain or salvage the conservativ-

ity universal (e.g. Romero, 2015; Romoli, 2015; von Fintel & Keenan, 2018; Zuber

& Keenan, 2019) by weakening it, reanalyzing the alleged non-conservative quan-

tifiers, or deriving the conservativity from other aspects of the linguistic structure.

The latter solution is particularly pertinent, given that studies of the learnability of

quantifiers have shown that conservative quantifiers have different learnability prop-

erties, compared to for example domain independence and monotonicity (Steinert-

Threlkeld & Szymanik, 2019; van de Pol et al., 2019). However, I will remain

agnostic as to the universality of conservativity, as it suffices for what follows, that

the relevant quantifiers are.

Conservative and domain independent quantifiers that are closed under isomor-

phism are known in the literature as CE quantifiers. It was hypothesized in the

foundational literature (Barwise & Cooper, 1981; Keenan & Stavi, 1986) that all nat-

ural language determiners are CE quantifiers, and excluding the examples discussed

above, this hypothesis has been largely corroborated cross-linguistically (Keenan &

Paperno, 2017). It might seem puzzling, given the diversity of the world’s languages

and the expressive power that these language exhibit, that determiners should de-

note only CE quantifiers. While I will not go into the technicalities here (but see

e.g. Keenan, 2002), there are many other mathematical properties of importance to

natural language generally and generalized quantifiers specifically – such as Boolean

closure – that converge to yield precisely this set of quantifiers. Naturally, this leads

to CE quantifiers having properties that are highly interesting for understanding

language, and even cognition.

2.2 Semantic Automata

Among the interesting properties of CE quantifiers, is that since they are concerned

with only one set of objects that either has or does not have a certain property,

they can be represented by strings of binaries. From such strings one can pose

computational problems that can be solved by abstract machines, or automata,

thereby discovering what computational resources are minimally required to verify

a quantified expression. Recall from 1.1, the intuitive idea that sets of strings can

be used to represent Barwise and Cooper’s (1981) “families of sets” that make a

quantified expression true, argued to be the denotation of generalized quantifiers.

The abstract machines described below are consequently charged with the task of

determining whether a string belongs to the set of true strings – i.e. true models of

a quantified expression – which is equivalent to a verification procedure.
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The idea to construct verification algorithms originated with van Benthem’s

(1986c) seminal ‘Semantic Automata’, in which several interesting computational

properties of quantifiers were proven. As mentioned in chapter 1, this specific way

of characterizing quantifiers leads to precise complexity predictions that can be

empirically tested. I will turn to these and subsequent classification results in 2.3,

but I will first discuss the mathematical nature of these automata and the formal

languages associated with them in 2.2.1 and how these relate to the verification of

quantifiers in 2.2.2.

2.2.1 Automata Theory and their Corresponding Formal

Languages

Before applying automata theory to quantifiers, I will first provide formal defini-

tions of certain relevant automata. These definitions rely heavily on the canonical

definitions in Hopcroft and Ullman (1979).

Definition 2.2.1. An alphabet, Σ, is a finite set of symbols. A string, w, is a finite

sequence of symbols. The length of a string, |w|, is the number of symbols in the

string. If |w| = 0, then w = ε, the empty string. Concatenation of w0 and w1 means

joining w0 and w1 together to form a new string w0w1. The concatenation of w and

ε is the same as w : εw = wε = w.

Definition 2.2.2. A finite state automaton (FSA) is 5-tuple (Q,Σ, δ, q0, F ), where

Q is a finite set of states, Σ is a finite input alphabet, q0 is the initial state, F ⊆ Q

is the set of final states, and δ is a function from the Cartesian product Q × Σ to

Q, called the transition function.

Less formally, an FSA is an abstract machine that can be in various states. It

begins in the starting state, and then reads a string of symbols one at a time. For

each symbol, the transition function determines whether the machine will stay in

the same state or move to another state, depending on the input and the state it is

currently in. The set of final states, F, are accepting states. If the machine is in one

of these states when it finishes reading the input, we say that the FSA recognizes,

or accepts, this string. If it is in any other state, i.e. not an accepting state, the

string is not recognized by the FSA. See Figure 2.2 for a visual representation of

such a machine.

The set of strings recognized by an FSA, and other such abstract machines, is

called a formal language.

Definition 2.2.3. A formal language, L, is a set of strings from one alphabet. The

empty set, ∅, and the set of the empty string, {ε} are languages. The language

of all strings over an alphabet Σ is denoted Σ∗, such that if Σ = {a}, then Σ∗ =
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S0

S1

S2

S3

0

1

1

0

0

1 0, 1

Figure 2.2: Example of a finite state automaton. States S0 through S3 are repre-
sented by the labeled circles. The initial state, indicated by an arrow from nowhere,
is S0. The transition function is represented by the arrows between states; the label
on the arrow indicates the string input, and the arrowhead indicates the direction
of the transition. For example, if the machine is in state S0 and reads a 1, it tran-
sitions into state S2. If it reads a 0, it goes to state S1. Staying in the same state
is indicated by a looping arrow, as seen in S3, where the automaton stays in the
same state, regardless of the input. Accepting states are indicated by a double-lined
circle. In this case S3 is the only accepting state. This automaton in particular
recognizes all and only those strings that contain either two consecutive 1s or two
consecutive 0s.

{ε, a, aa, aaa, ...}. For all sets of strings L,L1, L2, ... from Σ∗, let L0 = {ε} and

Li = LLi−1 for i ≥ 1.

The Kleene closure of L, L∗, is the set:

L∗ =
∞⋃
i=0

Li

and the positive closure of L, L+, is:

L+ =
∞⋃
i=1

Li = L∗ − ε

A foundational proof from formal language theory (Kleene, 1951), demonstrated

that the set of strings recognized by finite state automata are precisely the sets that

belong to regular languages.

Definition 2.2.4. For an alphabet Σ, a regular language over Σ is recursively de-

fined:

1. The empty language ∅ is a regular language.

2. For each a ∈ Σ, the singleton language {a} is a regular language.

3. If A and B are regular languages, the union A ∪ B and concatination AB of

A and B are also regular languages.

4. For a regular language A, A∗, and consequently {ε}, is a regular language.
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5. No other languages over Σ are regular.

Regular expressions are a convenient way to describe these languages, and are

defined recursively in a similar fashion:

Definition 2.2.5. For an alphabet Σ:

1. ∅ is a regular expression and denotes the empty set.

2. ε is a regular expression and denotes the set {ε}.

3. For every symbol a in Σ, a is a regular expression denoting the set {a}.

4. If r and s are regular expressions denoting the respective languages R and

S, r + s, rs, and r∗ are regular expressions denoting R ∪ S, RS, and R∗,

respectively.

By convention, ∗ has higher precedence than concatenation, which in turn has prece-

dence over +.

The set of regular languages is thus highly restricted compared to all possible

formal languages, and constitutes the innermost, or bottom, level of the so-called

Chomsky hierarchy (Chomsky, 1956). Many facets of language, such as phonological

patterns and most morphological systems, are in fact regular (e.g. Gazdar & Pullum,

1985; Kaplan & Kay, 1994; Langendoen, 1981). It was argued early on, that syntax

was not regular (Chomsky, 1956), but has to be context free. Context free languages

are more complex and more expressive than regular languages, and are defined by

reference to context free grammars, and I will define both in what follows.

Definition 2.2.6. A context free grammar G = (V, P, T, S), where V and T are

disjoint finite sets of variables and terminals. P is a finite set of productions of the

form A→ α, where A is a variable and α is a string of symbols from (V ∪ T )∗. S is

a special variable called the start symbol.

If α and β are strings of variables, α derives β if β follows from α by zero or

more productions of P.

Definition 2.2.7. The language generated by G is denoted L(G). A string w is in

L(G) if w can be derived from S and w ∈ T ∗.
A language L, is context free if it is L(G) for some CFG G. Two grammars G1

and G2 are equivalent if L(G1) = L(G2).

The canonical example of a context free language, anbn, where n number of

as are followed by exactly n bs for any n, can be generated by a CFG G, where

V = {S}, T = {a, b}, P = {S → aSb, S → ab}. Applying S → aSb n − 1 times,
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followed by one application of S → ab, yields anbn. Since anbn can be derived from S

and consists only of as and bs – i.e. only terminals – anbn is a context free language.

Just like regular expressions have an automaton equivalent, context free gram-

mars have an automaton counterpart in pushdown automata. Essentially, a push-

down automaton (PDA) is an FSA augmented by a memory stack, where informa-

tion about the previous input can be stored. More formally:

Definition 2.2.8. A pushdown automaton (PDA) is defined as a 7-tuplet (Q,Σ,Γ, δ,

q0, Z0, F ), where Q is a finite set of states, Σ is the input alphabet, Γ is the stack

alphabet, q0 ∈ Q is the initial state Z0 ∈ Γ is the start symbol, F ⊆ Q is the set of

final states, and δ is a mapping from Q× (Σ ∪ {ε})× Γ to finite subsets of Q× Γ∗.

This is necessary to account for languages such as anbn because in order to know

whether there are as many as as bs for any arbitrary n, it is not sufficient to transition

into a potential accepting state on the basis of the present input. Let us say that

the present input is b and the automaton is in the state where it would be if the

previous input was three consecutive bs. But this state contains no information

about the number of previous as, since it came from a state that contained a b and

is now seeing a b, and so the automaton cannot determine if there are as many bs

as as unless this information is stored elsewhere in the machine, i.e. in a memory

stack.

Because of the addition of a memory stack, the transition function is augmented,

so that it is a function from a state, input, stack triplet to a state, stack pair.

Intuitively, this means that the automaton considers its input, and depending on

the state it is in and the topmost symbol on the stack, it stays in the same state or

transitions to another state. Additionally, the transition function can simultaneously

manipulate the stack by adding an element to the stack, popping off the topmost

symbol, or not change the stack at all. See Figure 2.3 for an example.

There are two more complex layers in the Chomsky hierarchy that contains

the context sensitive and recursively enumerable formal languages with their cor-

responding automata, the linear bounded automaton and the Turing machine. As

these higher tiers of the Chomsky hiearchy are not relevant for the discussion to

follow, I will not describe them in any detail, but it should be mentioned that some

people have presented linguistic evidence to suggest that syntactic dependencies are

not context free, but mildly context sensitive (Shieber, 1985). Since inner, or lower,

layers are recognized by outer, or higher, levels in the Chomsky hierarchy, this has

been used to argue that the complexity of the linguistic computational procedure is

determined by the most complex expressions that it is possible to denote. So even

though some syntactic expressions are in fact regular, if the most complex syntactic

expressions are mildly context sensitive, even the regular dependencies should be de-
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S1 S2 S3

a,#/a
a, a/a a

ε,#/#
b, a/ε

b, a/ε

ε,#/#

Figure 2.3: Example of a PDA recognizing the language anbn, i.e. an equal number
of consecutive as and bs for any n ≥ 0. Intuitively, the machine reads all the as and
stores them on the stack, before popping off one a for each b it sees. If there are as
many bs as as, the stack memory will be empty and the machine can proceed to the
accepting state. More specifically, the automaton starts in the initial state S1 with
the start symbol # on the stack. If it reads an a as the first character it sees – i.e.
the stack is empty, as represented by the start symbol – it pushes an a to the top
of the stack. If it reads an a and the topmost symbol on the stack is also a, it puts
another a atop the stack. If it reads a b and there is an a at the top of the stack,
it pops off the topmost a and proceeds to S2. It stays in S2, popping off as from
the stack, as long as it reads bs. When there are no more characters, i.e. it reads ε,
it proceeds to the accepting state S3 as long as the string is empty, i.e. the symbol
at the top of the stack is the start symbol #. This automaton also recognizes the
empty string ε (a0b0), since when the string is the empty string, the stack is also
empty, and the automaton can immediately continue to S2 and the accepting state
S3. Notice that there are many options that are not accounted for in this model: If,
e.g., the first symbol on the string is b, or # is not atop the stack when the machine
has read the last b, there are no legal actions described by the transition function.
In this case, the automaton stops and does not reach the accepting state.

scribed as mildly context sensitive. Also worth noting is a growing body of literature

that has shown that phonological patterns are not only regular, but subregular, i.e.

constitutes a proper subset of the regular languages (Heinz, 2018; Heinz & Rawal,

2011). Related work also suggests that morphological patterns (Chandlee, 2017),

syntactic dependencies (Graf, 2012, 2017), and, to a certain extent, lexicalized de-

terminer semantics (Graf, 2019) can be described in subregular terms, given certain

assumptions. If this is the case, it could potentially lead to a unified account of the

computational properties of the language faculty. However, I will set this aside for

now, and return to how these results can inform the work herein in chapter 6.

At this point it might be poignant to address what measure of complexity is

relevant. One approach, taken by, e.g., Ristad (1993), is to define complexity in

terms of computing time and space, i.e. the duration of an algorithm and/or the

amount of memory required to perform a computation, respectively. This approach

has also been applied to quantifier semantics (Szymanik, 2010), but in the present

context, we are more concerned with expressivity, also called expressive power : what

expressive power is needed to define the set of strings, i.e. models, that make a
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quantifier true?4 We can define expressivity over strings, as the ability to define a

larger set of sets of strings. For example, it has been shown that first-order logic is a

subset of the regular languages (more precisely the star free languages) (McNaughton

& Papert, 1971), i.e. all the sets of strings that are definable in first-order logic are

regular, but not all regular languages are definable in first-order logic. In essence,

this is what the Chomsky hierarchy shows: while FSAs and regular expressions have

exactly the same expressive power, context free grammars and PDAs can describe

a strictly larger set of string languages (Chomsky, 1956).

Chomsky (1965) argued that it is only when some grammar fails to generate the

language one is attempting to characterize that expressivity is useful to linguistic

theory, because the reason it fails can tell us about essential properties of the lan-

guage that distinguishes it from other languages of different complexity (see also

De Santo & Rawski, 2022). However, the cognitive correlates of expressivity are

more opaque, at least on a general level, and require explicit linking hypotheses.

I will return to the specific linking hypotheses for this thesis in 2.4 and 3.3, and

discuss the general problem of linking differences in expressive power to cognitive

effects in chapter 6.

2.2.2 Algorithms of Quantifier Verification

As mentioned at the beginning of this section, it is possible to code CE-quantifiers

as strings of binary input. Informally described, the algorithm associated with a

quantifier QM(A,B) is fed a list with the elements of A. All elements are either 0 or

1, where 0 are elements that are A but not B (a ∈ A− B) and 1 are elements that

are in both A and B (a ∈ A ∩B):

Definition 2.2.9. A quantifier corresponds to a class Q, where Q is a language LQ,

describing all models of Q.

To construct CE quantifier languages, one thus enumerates the set A for a quantifier

QM(A,B), and writes a 0 for every element in A− B and a 1 for every element in

A ∩B.

It is also possible to have a four symbol alphabet – e.g. 0, 1, 2, 3 – where each

symbol denotes membership of A or B. Then 0 could be not A and not B, 1 be A

but not B, 2 be B but not A, and 3 be both A and B. This could also be generalized

to quantifiers that relates more than two sets (e.g. M. Mostowski, 1998):

Definition 2.2.10. The class Q can be represented by the language LQ, that does

not contatain the empty string, over the alphabet A = {α0, ...α2n−1}, such that

α ∈ LQ if and only if there is (U,A1, ..., An) ∈ Q and a linear ordering of U =

4See e.g. Gazdar and Pullum (1985) for an application of this notion of complexity to syntactic
patterns.
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(b1, ..., bk), where k is the length of α and the i -th character of α is aj exactly when

bi ∈ S1 ∩ ... ∩ Sn, where:

Sl =

{
Al if interger part of j

2l−1 is odd

U − Al otherwise

However, since we are only concerned with CE quantifiers, we will proceed using

binary notation.

These definitions parallel Barwise and Cooper’s (1981) notion that quantifiers

denote families of sets. In the space of all possible sets of a model, a quantifier can

be seen as dividing up the sets on the basis of which sets are true and false of the

quantifier. Every quantifier can therefore be said to denote all the sets that makes

the quantifier true. Similarly, we have defined a quantifier as a class of models that

make the quantifier true, and a quantifier can denote all and only those strings that

represent these models. Since such sets of strings are, by definition, formal languages,

every CE quantifier corresponds to a formal language over a binary alphabet.

Definition 2.2.11. Let Q be a type 〈1, 1〉 quantifier. Then, the language of Q is

defined as:

LQ = {s ∈ {0, 1}∗|(#0(s),#1(s)) ∈ Q}

where #a(α) is the number of occurences of a symbol a in a word α.

Because formal languages correspond to automata, this means that every quan-

tifier is not only associated with a formal language, but is also associated with a

corresponding automaton that recognizes that language. Considering that the lan-

guage of a quantifier Q consists of all the strings representing true models of Q,

this is effectively a verification algorithm. As described in 2.2.1 above, languages

correspond to automata of varying degrees of complexity, and I will now go on to

show that natural language quantifiers can be classified on the basis of the computa-

tional resources required to verify them (M. Mostowski, 1998; Szymanik, 2016; van

Benthem, 1986c).

2.3 Quantifiers Classified by Algorithmic Com-

plexity

Recall that Aristotelian quantifiers denote the following relations between sets A

and B:

QallA,B ⇐⇒ |A ∩B| = |A|

QsomeA,B ⇐⇒ |A ∩B| 6= 0
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S1 S2

0

1

0, 1

(a) LSome

S1 S2

1

0

0, 1

(b) LAll

Figure 2.4: Aristotelian quantifier automata

QnoA,B ⇐⇒ |A ∩B| = 0

Qnot allA,B ⇐⇒ |A ∩B| 6= |A|

As is apparent, these fall into two kinds: ‘all’ and ‘no’ require all As to be of

one type – either |A ∩ B| or |A − B| – whereas ‘some’ and ‘not all’ requires at

least one instantiation of one of the types. Translating these into string languages,

‘all’ corresponds to the language LAll = 1+, meaning it consists of all languages

containing only 1s. ‘Some’ corresponds to the language LSome = (0 + 1)∗1(0 + 1)∗:

the language of strings containing at least one 1. Comparable languages can be

constructed for ‘no’ and ‘not all’ by replacing the 1s with 0s.

Constructing automata for Aristotelian quantifiers is therefore fairly straightfor-

ward. The automata reads the string representing the model, and in the case of

‘Some’ it starts in the initial state S1 and stays there until it sees a 1, upon which

it changes into the accepting state S2 (see Figure 2.4 (a)). If no 1 is found, the

string is not accepted, and the sentence is false. For ‘All’ (see Figure 2.4 (b)), S1

is both the initial state and the accepting state; it stays in this state as long as it

reads 1, and if it reads a 0, it moves to S2, which is not an accepting state. As a

consequence, it only accepts models where all the As are Bs. As an illustration of

what these machines are mathematically, consider how FSASome can be expressed

more formally:5

FSASome = ({S1, S2}, {0, 1}, {((S1, 0), S1)), ((S1, 1), S2), ((S2, 0), S2),

((S2, 1), S2)}, {S1}, {S2})

Turning to numerical quantifiers, these set requirements on the precise cardinal-

ity of |A ∩ B|. For any Qn, |A ∩ B| = n. As mentioned, numerical quantifiers give

rise to an exact reading and an at least reading (e.g. Horn, 1972; Levinson, 1983):

Qexactly threeA,B ⇐⇒ |A ∩B| = 3

Qat least threeA,B ⇐⇒ |A ∩B| ≥ 3

5Since this is notationally tedious, other quantifiers will not be expressed in this manner.
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(a) At least three

S0 S1 S2 S3 S4
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0

1

0

1

0

1

0, 1

(b) Exactly three

Figure 2.5: Numerical quantifier automata

These correspond to slightly different string languages: Lexactly three = 0∗10∗10∗10∗

and Lat least three = (0 + 1)∗1(0 + 1)∗1(0 + 1)∗1(0 + 1)∗. Both languages contain three

1s, but on the exact reading these three ones can only be surrounded by zero or

more 0s, whereas on the at least reading they can be preceded and followed by zero

or more combinations of 0s and 1s.

For both readings the automaton starts in the initial state S0, and for all states

up until state Sn – in this case S3 – it stays in the same state if it reads a 0, and

changes to the next state if it reads a 1. Sn is the accepting state, and on the at

least reading, the automaton stays in this state regardless of whether it reads a 0 or

a 1. On the exactly reading, however, it transitions into another state, Sn+1, that is

not an accepting state, if it reads a 1. This way, the exactly automaton recognizes

only models where exactly three As are B, whereas the at least automaton accepts

all models where three or more As are B (see Figure 2.5).

Turning next to the parity quantifiers – i.e. ‘an even/odd number of’ – recall that

these require the cardinality of |A ∩ B| to be either even or odd – or equivalently,

two divides or does not divide the cardinality of |A ∩ B|. Consequently, the string

languages associated with parity quantifiers are of the following form:

Lodd = 0∗10∗(0∗10∗10∗)∗

Leven = 0∗(0∗10∗10∗)∗

For odd numbers, every string begins with an arbitrary number of 0s followed by

a 1 and an another arbitrary number of 0s, before zero or more iterations of two

1s with zero or more 0s at either side of them. The language for even numbers is

similar, but the first string contains only zero or more iterations of 0.

Importantly, these quantifiers are not definable in first-order logic, and conse-

quently they are not accepted by acyclic automata (van Benthem, 1986c). How-

ever, one can easily construct a cyclic automaton that recognizes Lodd and Leven
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(a) Odd
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(b) Even

Figure 2.6: Parity quantifier automata

(M. Mostowski, 1998). Both automata start in S1, reading the string of 0s and 1s,

and change states every time they see a 1 (see Figure 2.6). Consequently, S1 is the

even state and S2 is the odd state. As a consequence, the accepting state of FSAodd

is therefore S2, whereas S1 is the accepting state of FSAeven.

All quantifiers considered thus far are therefore recognized by finite state au-

tomata. However, it is provable that proportional quantifiers are not recogniz-

able by such automata, but require a pushdown automaton (PDA) to be computed

(Kanazawa, 2013; van Benthem, 1986c). Recall that proportional quantifiers have

the following semantics:

QmostA,B ⇐⇒ |A ∩B| ≥ |A−B|

Qless than halfA,B ⇐⇒ |A ∩B| ≤ |A|
2

Qa third ofA,B ⇐⇒ |A ∩B| = |A|
3

The string language associated with them, thus take the following form:

Lmost = 0n1n+k, where k ≥ 1

Lless than half = 0n+k1n, where k ≥ 1

La third of = 0n1
n
3

Such languages are context-free. The corresponding PDAs – here illustrated with

‘most’ – can be constructed in the following fashion (see Figure 2.7): The automaton

starts in the initial state S1 with the start symbol # at the top of the stack. If the

string is empty, it does nothing and stays in S1, which is not an accepting state. If it

reads a 1 or a 0, it puts this symbol at the top of the stack. Every time it encounters

the opposite symbol to the one at the top of the stack – e.g. if the top of the stack

is 1 and the input is 0 – it pops that symbol off the top of the stack, whereas if the

input and the stack symbol is the same – e.g. 1 on the stack and 1 in the input – it

puts the new symbol atop the other. When it reaches the end of the string, there

are two possible scenarios. If 0 is the topmost symbol on the stack, it does nothing

and stays in S1, but if it is 1, it clears the stack and moves to the accepting state
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S1 S2

1,#/1
0,#/0
1, 0/ε
0, 1/ε

1, 1/1 1
0, 0/0 0
ε, 0/0
ε,#/#

ε, 1/ε

Figure 2.7: Proportional quantifier automaton recognizing ‘most’

S2. So the PDA only accept strings that represent models where the As that are

B outnumber the As that are not B, which is the precisely the semantics for ‘most’

that we gave above.

2.4 Summary

This leads us to postulate the four complexity classes from the introduction:

(1) Aristotelian: ‘Some’, ‘all’ acyclic FSA

(2) Numerical: ‘Three’ acyclic FSA

(3) Parity: ‘An even/odd number of’ FSA

(4) Proportional: ‘Most’ PDA

Aristotelian and numerical quantifiers are both recognized by acyclic finite state

automata. The difference between them is that the number of states in the Aris-

totelian quantifier FSAs are fixed, whereas the number of states, and consequently

the complexity of the algorithm, increases proportionally to the n denoted by the

specific numerical quantifier for numerical FSAs. Parity quantifier automata are of

the same kind as the Aristotelian quantifier automata, except that the FSA needs

to be cyclic. Proportional quantifiers on the other hand, cannot be recognized by

FSAs, but need a PDA with a memory component. The most significant difference

is therefore between the proportional quantifiers and the other non-proportional

quantifiers.

We have seen that natural language determiners correspond to type 〈1, 1〉 CE

quantifiers that denote relations between sets of individuals. The denotation of such

quantifiers can be said to be the family of sets that make the quantitative relations

expressed by the quantifier true. These families can be represented by formal lan-

guages over a binary alphabet that are recognized by automata. Quantifiers fall

into four classes depending on the computational expressivity of the associated au-

tomata, and the most significant difference is between non-proportional quantifiers,
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that can all be computed by finite state automata, and proportional quantifiers,

that can only be computed by pushdown automata with a memory component.

Since the difference between FSAs and PDAs is the addition of a stack memory,

the linking hypothesis between computational expressivity and cognitive resources is

more straightforward than, e.g., the difference between acyclic and cyclic automata.

Humans rely on memory of different kinds, such as working memory (Baddeley,

2012) or recollection memory (Yonelinas, 2002), which is modulated by task de-

mands. Consequently, we expect the verification of proportional quantifiers to elicit

neural signatures of increased memory load during sentence processing that are not

found in the processing of non-proportional quantifiers.
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Chapter 3

Methodological Considerations

We have seen that verification algorithms for natural language quantifiers delin-

eate four distinct classes of quantifiers as a function of the computational resources

involved in the computation. In particular, it is hypothesized that proportional

quantifiers require additional memory resources compared to other kinds of quanti-

fiers, and that this is reflected in the verification of quantified sentences in human

subjects. The aim of this project is to assess whether such differences are detectable

at the neural level, and it is consequently essential to describe how to measure the

workings of the human brain and to discuss the potential caveats as well as the

precautionary steps that can be taken to overcome these. The nature of these pre-

cautions is not uniform. On the one hand, theoretical – perhaps, even philosophical

– considerations about what role neural data can play in explanations is impor-

tant as a driving force for the project presented in this thesis. On the other, the

impedance of this force by very tangible realities about the available methods for

gathering the neural data, by necessity, plays an equally important role.

Brain activity is generated by cascades of chemical reactions causing changes in

the electric polarization of the cell membrane of individual neurons. This, in turn,

leads to the neurons transmitting, or inhibiting, signals to other neurons via its

axonal connections. The neuronal activity – both of a single neuron and groups of

neurons – are typically conceived of as the conduits of an information processing

system, and such activity is therefore the object of study for cognitive neuroscience.

However, while there are invasive studies that implant electrodes in animal brains

to study the activity of individual neurons, in practice, this is not possible for

experiments on humans. One is therefore relegated to studying the remnants of

such activity detectable outside of the scalp, and this causes some methodological

problems that are the first topic of this chapter. After justifying the choice of

electroencephalography (EEG) in 3.1, I will deal more specifically with the challenges

related to this technique, as well as with the importance of experiments with a strong

theoretical foundation in 3.2. The relevance and importance of algorithmic analysis
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is the topic of 3.3, and section 3.4 is devoted to synthesizing the preceding discussion

into concrete considerations of the experimental design. Finally, I will provide a note

on how Norwegian quantifiers relate to quantification in languages that might be

more familiar to the reader in 3.5. A summary of the chapter is found in 3.6.

3.1 Picking your Poison: Advantages and disad-

vantages of different neuroimaging techniques

As mentioned above, it is seldom possible to study the activity of individual neurons

in humans. However, technological advancements – largely in computer process-

ing power – in recent years have seen the advent of ever more refined functional

neuroimaging techniques that try to circumvent this limitation. Largely speaking,

there are two main approaches: (1) one can either study brain activity indirectly, by

observing changes in blood-flow and oxygen consumption in different areas of the

brain, or (2) one can directly measure the distorted electrical activity reflected in

relative changes in the electrical potential at the scalp. Both of these approaches are

used extensively in neurolinguistics (see, e.g., the respective chapters of de Groot &

Hagoort, 2018), and both have advantages and disadvantages, predominantly man-

ifested in a tradeoff between spatial and temporal resolution. I will address these

approaches in 3.1.1 and 3.1.2, respectively, before justifying my decision to choose

the second approach in 3.1.3.

3.1.1 Arsenic: The BOLD response

Blood-oxygen level dependent imaging is an indirect measure of brain activity that

relies on the fact that increased brain activity is associated with an increase in

blood-flow and oxygen consumption. Since neuronal firing requires energy, a higher

firing rate causes oxygenated blood to flow to the brain areas with increased activ-

ity. Therefore, measuring differences in blood-flow can inform us about the loci of

processing in the brain by contrasting the BOLD response between experimental

conditions.

The imaging techniques associated with this measure is functional Magnetic Res-

onance Imaging (fMRI) and functional Near-Infrared Spectroscopy (fNIRS). The

most important part of MRI equipment is a large magnet, and it records distur-

bances in the magnetic field created by this magnet. fMRI therefore relies on the

different magnetic properties of oxygenated and deoxygenated hemoglobin – oxy-

genated hemoglobin being diamagnetic and deoxygenated being paramagnetic – to

measure increases in blood-flow and oxygenconsumption of populations of nerve cells

in different areas of the brain. fNIRS, by contrast, emits near-infrared light into the

head of a subject, and measures the fracturing and absorption of the light as it leaves
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the scalp. In this case, it is the different properties of near-infrared light absorption

of oxygenated and deoxygenated hemoglobin that is the dependent measure. How-

ever, since it relies on light absorption, it is not able to penetrate as deeply into the

brain as, e.g., fMRI, but can only detect changes in outer layers of the cortex.

While the spatial resolution of these techniques are impeccable, their temporal

resolution is impeded by the hemodynamic response: canonically, it is assumed

that there is a 2 second delay period between a stimulus and the onset of the

hemodynamic response, that it peaks after about 6 seconds, and that it sustains

until the stimulus disappears (Buxton, 2009). The response also saturates over

time, meaning that the BOLD response to a second stimulus of the same type, if

not time-shifted appropriately, is smaller than that to the initial stimulus (Buxton,

Uludağ, Dubowitz, & Liu, 2004; Lindquist, Loh, Atlas, & Wager, 2009). It has been

suggested (Polimeni & Lewis, 2021), that more rapid fMRI sampling rates with more

fine-grained resolution of the hemodynamic response, e.g. vessel dilation, promise

the measurement of much faster brain dynamics, but the practical application of

such techniques are largely still in the future.

Hemodynamic approaches are consequently best tailored to answer where-questions.

Whenever when-questions are in order, electrophysiological measures are more apt.

3.1.2 Cyanide: Electrophysiological measures

As mentioned in the introduction, neuronal activity is electric. When large popu-

lations of neurons fire at the same time, the sum of the dipoles generated by the

current flowing from the cell body to the apical dendrites, generates electrical cur-

rents large enough to create fluctuations in the brain’s electric field. If, additionally,

the orientation of the neuronal dipoles are aligned and radial to the skull, the ac-

tivity can be detected by amplifying the signal from electrodes placed on the scalp

(e.g. Luck, 2014). This technique is known as electroencephalography (EEG).

This has the advantage that you can measure neuronal activity directly and

in real time, and therefore does not suffer from the poor temporal resolution of

methods reliant on the BOLD signal. However, extracranial EEG suffers from two

electrophysical properties of the head: (1) the brain is conductive, viz. the elec-

tricity spreads out as it passes through the brain, and (2) bone has high electrical

resistance, meaning that the currents that do reach the scull are diverted, causing

further spatial blurring. For this reason, the spatial resolution of EEG is generally

quite poor. Source localization of the dipole generators can only be done through

hypothetico-deductive methods where a generator location is assumed, since there

are infinitely many possible dipole configurations that can explain an observed volt-

age distribution.

There are certain ways to circumvent some of these limitations. Intracranial
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EEG removes the further spatial blurring of the scull, but is very invasive and is thus

usually reserved for medical purposes. Magnetoencephalography (MEG) relies on

measuring the magnetic field generated by any current, and since magnetic fields are

not disturbed by electrical resistivity, the location of the currents can be determined

with a higher degree of certainty. However, MEG does not overcome the problem of

spread through the conductive medium, nor does it detect all the currents. Because

the magnetic field revolves around a current, only dipoles that are tangential to

the surface of the scalp can be detected, whereas the perpendicular dipoles, which

are the ones measured by EEG, never leave the head, and consequently cannot be

measured. MEG and EEG therefore measure complimentary dipoles. Additionally,

the technology used in MEG is reliant on superconductivity, which means cooling

the probes using liquid helium. This makes MEG equipment very expensive to use,

even setting aside the cost of the equipment itself.

3.1.3 Hemlock: The means to answer the research questions

When picking a poison, the nature of the effects one is expecting is therefore of the

essence. The precise temporal localization of neuronal activity is best done with

electrophysical methods, whereas the involvement of specific brain regions is more

easily achieved using hemodynamic measures. Additionally, practical trivialities,

such as time-constraints, cost, and the availability of equipment, play a role.

The effects we are looking for in this project, are predominantly those of memory.

Such effects are typically prolonged in time, and could therefore in principle be

detected even with the low temporal resolution of BOLD response methods. In

fact, there is preliminary fMRI evidence, to be discussed below, of the involvement

of memory systems in quantifier verification (McMillan et al., 2005; Olm et al.,

2014). An fNIRS study to try to replicate these results was planned as a part of this

project, but time-constraint imposed by unforeseen circumstances, predominantly of

a pandemic nature, made this untenable. Regardless, ideal answers to the research

questions should expose both the brain regions involved in as well as the temporal

order of the various stages of verification. While the brain regions involved will

have to be inferred from the literature – see paper 3 – the impact of verificational

complexity on the different stages of sentence processing is also unknown.

We understand the meanings of words and sentences very rapidly, and the dif-

ferent stages of sentence processing are therefore measured in milliseconds, way

below the several seconds required to elicit a BOLD response. Since one of the

research questions is how the computational complexity of verification affects sen-

tence processing, it was necessary to implement electrophysiological measures. MEG

equipment was not available, and consequently, EEG was used to this end.

In analyzing EEG results, there are a number of options as to which aspects of
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these multifaceted data to utilize. The most widely used analyses are time-frequency

representations (TFRs) and event-related potentials (ERPs). TFRs emphasize the

oscillatory activity of neurons, i.e. rhytmic patterns of neuronal firing. The synchro-

nization and desynchronization of such activity in different regions of the cortex, is

thought to reflect coupling and decoupling of the various functional networks in-

volved in cognitive processing (Bastiaansen, Mazaheri, & Jensen, 2012). ERPs, by

contrast, are amplitude changes evoked by some event that it is time-locked to.

Since various cognitive processes are active at any given time – as evidenced by the

constant fluctuations in the EEG signal – ERPs seek to eliminate the impact of the

background EEG, i.e. random variation in the EEG signal, by averaging over a large

number of trials, so that the cogntive process of interest is isolated. In this averaged

signal, one finds patterns of positive and negative deflections in the waveforms that

vary systematically with, and thus plausibly index, functional processes (Rommers

& Federmeier, 2018). Waveforms with established links to cognitive processes are

traditionally labelled ERP components.

There has been increasing interest in TFRs in the last decades, and of particu-

lar interest here, is the systematic correlations between frequency band power and

memory systems that have been established (for a review, see Lisman & Jensen,

2013). TFR analysis would therefore be informative as to whether memory systems

are involved in the verification of quantifiers. However, while the knowledge of the

oscillatory dynamics of sentence processing has recently become quite considerable

(Meyer, 2018), the corresponding ERP literature is much more established (Swaab,

Ledoux, Camblin, & Boudewyn, 2012). Since this is the first systematic study of

the impact of computational complexity on quantifier verification using EEG, and

the nature of the effects was consequently unknown, a more traditional approach

also has merit. For these reasons, ERP analysis was deemed appropriate for the

studies presented here, but future research should look into possible effects in the

time-frequency domain as well.

3.2 The Aims of Cognitive Science and the Kinds

of Experiments they Necessitate

One issue with neuroimaging in general, that is particularly prevalent with event

related potentials (ERPs), is what role such data play in explanations. If “cognitive

neuroscience is the scientific study of how neural activity explains cognition and the

behavior it gives rise to” (Boone & Piccinini, 2016, p. 1515), then it is not imme-

diately obvious what the explantory role of ERPs are. In particular, the various

ERP components are defined on the basis of which cognitive processes manipulate

them. This is particularly evident for components such as the Mismatch Negativity
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(MMN) or the Error-Related Negativty (ERN) – reflecting change detection in au-

ditory stimulation (Näätänen & Kreegipuu, 2012) and the awareness of an incorrect

response (Gehring, Liu, Orr, & Carp, 2012), respectively – but it is also the case

for more generically labeled components such as the P300, which is associated with

increased attentional focus (Polich, 2012).

Effectively, this is a reversal of the explanandum – the phenomenon to be ex-

plained – and the explanans – its explanation – regardless of the specific notion

of explanation you deploy. While a full review of what consitutes a scientific ex-

planation is beyond the scope of this chapter (but see e.g. Salmon, 1989; Weber,

Van Bouwel, & De Vreese, 2013), a brief summary of some key terminology and

insights from this literature is necessary. Such a summary is provided in 3.2.1, and

a derivation of how these insights should inform ERP research is found in 3.2.2.

3.2.1 Notions of Explanation

Firstly, explanations are answers to why-questions (Garfinkel, 1981; Lipton, 1991,

2004; van Fraassen, 1977, 1980). This means that explanations are inherently inter-

est relative, in that they depend on the question asked. For example, the question

“why is this carrot rotten?” can be answered by “because it’s been in the fridge

for ages” or “because at this stage of biodegeneration, the aerobic digestion of mi-

croorganisms has caused the polymer of the carrot to decompose into oligomers

and monomers”, depending on whether it is an informal inquiry about a particular

carrot, or a generic question about the chemistry of rot. Moreover, explanations

are contrastive, since why-questions can, usually, be paraphrased as “why P rather

than Q” (Lipton, 2004). As an example, consider the question “why is this carrot

rotten?” again. If the question is paraphrased as “why is this carrot rotten rather

than fresh”, either of the two explanations above will do. However, if the question

is rather posed as “why is this carrot rotten rather than this potato”, neither expla-

nation suffices. The point here is that an explanation should not only explain why

P, but also why not Q.

In order to be more precise, let us discuss the most prominent type of explanation

within science, namely causal explanation (Salmon, 1984; Woodward, 2003). As a

representative example, consider Woodward’s (2003; 2010) interventionist account

of causation: “X causes Y if and only if there are background circumstances B such

that if some (single) intervention that changes the value of X (and no other vari-

able) were to occur in B, then Y or the probability distribution of Y would change”

(Woodward, 2010, p. 290), where background circumstances are any circumstances

concurrent with X and Y, irregardless of their causal relevance to Y, and an inter-

vention is an idealized manipulation that only changes X, and causes a change in Y.

A causal explanation therefore consists in demonstrating a pattern of dependence,
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such that changes in the explanans X are systematically associated with changes

in the explanandum Y. Moreover, varying X should modulate Y in a fine-grained

way, and the dependence between X and Y should not be altered by altering the

background conditions. Importantly, “X has to be proportional to Y, meaning that

X should not include irrelevant detail nor fail to include details that are relevant”

(Woodward, 2010, p. 296f.), meaning that what we want to explain restricts the set

of possible causes, in the contrastive manner described above. This is even more

clearly stated in D. Lewis (1986), where causal explanation consists in citing a cause

X for Y, that would not have caused another phenomenon Z, so X is the reason why

Y and not Z.

Lastly, it is pertinent to discuss mechanistic explanation (e.g. Bechtel & Abra-

hamsen, 2005; Craver, 2007; Glennan, 2002, 2017; Machamer, Darden, & Craver,

2000), which is particularly relevant to the endeavours of cognitive science. Accord-

ing to Bechtel (2008), a mechanism is a “structure performing a function in virtue

of its component parts” (p. 13). Mechanistic explanation consists in decomposing

a mechanism into such component parts, and explaining it through their function

and organization. An apt analogy is that of a mechanical watch: the watch is able

to tell the time because of the organization of the individual cogs in the clockwork,

and the different functions they perform. To explain a cognitive process, therefore,

is to decompose the process into the various subprocesses, and their subprocesses,

and so on, that jointly make the organism able to perform the process, and figure

out which population of neurons is responsible for performing each of these subpro-

cesses. This form of explanation thus consists in appealing to the lower-level parts,

i.e. the components, of a mechanism to explain its higher level behavior.

3.2.2 How to Make ERPs Explanatory

Problematically, ERPs do not fit the mold on any of these representative notions of

explanation, if we are trying to explain behavior. From a contrastive perspective, we

might for example expect an ERN rather than an MMN when an unintended error

is perceived, but it is not clear why we should expect a realization of unintended

error rather than a perceived change in auditory stimulus when an ERN is detected.

Consequently, it is the behavior explaining the ERP component, and not the other

way around. A causal explanation does not fare any better. If we assume, e.g.,

that salience in the stimuli is caused by a P300, subtle changes in the P300 should

induce subtle changes in the salience of the stimuli. Even setting aside the fact

that subjects can detect salient stimuli without the P300 being visible in the EEG,

at least on single trials, this assumption is absurd: since the P300 is defined in

terms of the salience of the stimuli, there is no way to manipulate the P300 without

manipulating the salience of the stimuli, thus violating the condition that no other

41



Chapter 3. Methodological Considerations

variable in the background circumstances can be altered. However, if we assume

that the salience of the stimuli causes the P300, we encounter no such problem,

and it stands to reason that again it is the behavior explaining the neural response,

which is not the intended direction of explanation.

From a mechanistic perspective, the main problem is that there has been a ten-

dency in the cognitive sciences to characterize the operations underlying a behavior

in terms of that behavior (Bechtel, 2005): in fact, a textbook explanation of an ERP

component as “a scalp-recorded voltage change that reflects a specific neural or psy-

chological process” (Kappenman & Luck, 2012, p. 4) reveals that ERP components

are characterized exactly by the phenomena that they supposedly underlie. How-

ever, “the operations within a mechanism that enable it to perform its behaviors are

[typically] of a different kind from those behaviors” (Bechtel, 2005, p. 320), and the

main challenge for cognitive scientists is to conceptually conceive of what operations

φ1, ..., φn would jointly consitute another operation ψ, without themselves being ψ.

While the order and temporal signature of the various subcapacities can be discov-

ered using ERPs, this information does not add anything to an explanation unless

we know what a particular brain area is doing at a particular time, and we have

concepts that can describe these activities.

If ERPs are not explanatory in and of themselves, their explanatory efficacy must

lie elsewhere. Crucially, ERPs pick out particular temporal sequences of events,

and is used to discover regularities between certain properties of a stimulus and

amplitude changes in regions of the brain’s electric field. Bogen points out that

“the work generalizations do is epistemic rather than explanatory” (Bogen, 2005,

p. 401), in that they can describe facts that warrant explanations, they can refine

and make research questions more precise, they can restrict the space of possible

explanations, and they can support inductive inferences required to theorize about

causes or mechanisms. What is important conceptually, is that ERP components

constitute an intermediate level that facilitates a relation between behavior and a

cognitive mechanism in that you can rephrase your research question in the lan-

guage of ERPs, a language that allows you to refer to lower-level processes that you

otherwise would not have access to. For example, the fact that proportional quanti-

fiers cannot be verified without the use of memory resources, generates a prediction

that ERPs known to be sensitive to memory manipulations should be modulated by

quantifier class. The use of memory resources would have to be inferred indirectly

from behavioral measures such as accuracy and reaction time, whereas the use of

ERPs allows one to measure the involvement of such systems directly.

Importantly, in order to avoid Poldrack’s (2006) infamous problem of reverse

inference – essentially, affirming the consequent – one must hypothesize what ob-

servations one should make on the basis of a theory, and subsequently attempt to
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falsify the theory by demonstrating that the expected outcome does not hold. This

ties in with van Rooij and Baggio’s (2020; 2021) criticisms of psychological theories

in general. In two related papers, they argue that (1) psychology has been too fo-

cused on discovering effects, rather than on explaining capacities – as per the goals

of cognitive neuroscience outlined above – and (2) that theories in psychology – pre-

sumably as a consequence – do not have rigorous hypotheses, but contain too many

hidden assumptions. These considerations have prompted authors like Bird (2021)

to examine the effects of weak hypotheses: if the probability that an hypothesis is

true is low, the base error rate is much higher than rigorous, formal, and plausible

hypotheses. Formalization is therefore a necessary, albeit not a sufficient, criterion

for successful theory generation (van Rooij & Baggio, 2020). Formal rigor – e.g., as

detailed in the previous chapter – is a prerequisite for making clear predictions, and

if one is to utilize the intermediacy of ERPs, computational models of algorithms

are essential for doing ERP research. With a clear theory about what constitutes a

capacity – i.e. what a system is doing and how it is doing it – it becomes possible

to formulate more fine-grained hypotheses that can utilize the ability to measure

the recruitment of cognitive resources directly using EEG. For example, if some

cognitive process is predicted to require more attention by the formal theory, and

the evoked potential shows modulation of a component known to be modulated by

attentional demands – e.g., the N2b (D’Arcy, Connolly, & Crocker, 2000; Wassenaar

& Hagoort, 2007) – the formal theory explains the evoked potential, and the evoked

potential corroborates the formal theory.

3.3 The Algorithmic Level

The idea that one needs to specify what a system is doing and how it does it is

not new, however. In fact, the standard view in computational cognitive science,

originates with Marr’s (1982) three levels of analysis for information processing

systems:

The computational level: specifying a process as a function that takes a

certain input to yield a specific output.

The algorithmic level: detailing the stepwise procedures and subprocedures

required to compute the function.

The implementational level: describing how the algorithm is implemented

in the physical medium of the brain to allow it to compute the function.

The computational and implementational levels are the subject matter for, in the

present context, theoretical linguistics and neuroscience, respectively. In formal
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semantics, it is generally agreed upon that the function computed in semantic pro-

cessing is taking a sentence as the input and outputting a truth value. By contrast,

neuroscience describes the activities of neurons – i.e. receiving and transmitting

electrical signals – and which populations of neurons are involved in different cogni-

tive processes. How to translate the function from sentences to truth values into the

reception and transmission of nerve impulses is not straightforward, however. This

rendering presumably requires the gradual descent into subprocesses and their sub-

processes discussed above, and requires considerable amounts of conceptual work.

This is one of the reasons that the algorithmic level is vital in mediating between the

computational and implementational levels. Another is the fact that the algorithmic

level is constrained both by the computational level and the implementational level,

in that the algorithm necessarily depends on the function to be computed, and also

on the kinds of algorithms that can be implemented by a biological system such as

the brain (Baggio et al., 2016, 2015; Embick & Poeppel, 2015; S. Lewis & Phillips,

2015).

Despite this fact, algorithmic aspects of semantic processing has not yet received

sufficient attention (Baggio, 2018, 2020). This might be a consequence of meaning

being notoriously illusive to formalization, which is required to construct algorithms,

or that for many aspects of semantic processing, there are still disagreements about

the computation being performed. Nevertheless, if we concede that knowing the

truth value means knowing the meaning of a sentence – irregardless of one’s opinions

on the bijectionality of this statement – you can manipulate the truth value of

sentences to observe the processing consequences of truth and falsity. This is in

fact common practice, if not the default practice, in psycholinguistic research on

semantics and pragmatics (Chemla & Singh, 2014; Katsos & Cummins, 2010; Noveck

& Reboul, 2008; for a recent overview, see Cummins & Katsos, 2019). This gives

you a well-defined procedure – verification – that, with the right implementation,

can be operationalized in algorithmic terms.

At the very least, this is a computational problem. Analysis of the computational

complexity of such problems, has been argued to constitute a kind of intermediate

level between the computational and the algorithmic levels (Isaac, Szymanik, &

Verbrugge, 2014). In fact, a growing body of literature (van Rooij & Baggio, 2020,

2021; van Rooij et al., 2019) has been advocating such analyses in psychological

theorizing, generally. Complexity theory, as well as other tools from theoretical

computer science, allows one to (1) demonstrate that certain computational prob-

lems are intractable, i.e. not computable by the brain, thereby falsifying claims

about the computational level, (2) narrow down the possibility space for the algo-

rithms that could be used to compute the computational level functions, and (3)

prove that certain functions constitute more complex computational problems than
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other functions. The research in this thesis is focused on the latter two.

3.3.1 Experiments on the Algorithmic Level

Various complexity results have been used to study cognition, and I will give a few

illustrative examples, beginning with the standard measures of computing time and

computing space (see 2.2.1). Regarding direct measures, behavioral outcomes have

been shown to be predicted by computational complexity for both social cognition

(Szymanik, Meijering, & Verbrugge, 2013) and deductive reasoning (Gierasimczuk,

van der Maas, & Raijmakers, 2013; Zhao, van de Pol, Raijmakers, & Szymanik,

2018) tasks. More indirectly, the fact that humans can approximate a near-optimal

solution to the Euclidian travelling salesperson problem – which grows exponentially

with the size of n – in linear time (Dry, Lee, Vickers, & Hughes, 2006; Dry, Preiss,

& Wagemans, 2012; Graham, Joshi, & Pizlo, 2000; van Rooij, Schactman, Kadlec,

& Stege, 2006), has prompted researchers to search for heuristics or approximate

solutions to such problems (Carruthers et al., 2018). In the case of the travelling

salesperson problem, an hierarchical clustering algorithm produces a near-optimal

solution because the precise order within a cluster does have a large impact on the

overall effectiveness of the route (Graham et al., 2000). Importantly, this is not a

different solution to the same problem, but, by definition, a distinct computational

problem (van Rooij, Wright, & Wareham, 2012), and the tractability of these ap-

proximation problems should be studied in their own right (van Rooij & Wareham,

2012).

Also for language, the intractability of anaphoric reference resolution (Ristad,

1993) or the satisfiability of syllogistic reasoning with relative clauses (Pratt-

Hartmann, 2004), have prompted scholars to investigate approximation algorithms

for natural language as well (Pagin, 2012). More relevantly, complexity as measured

by expressive power, impacts our language use, in that corpus frequency of linguis-

tic constructions generally (Thorne, 2012), and quantifiers specifically (Szymanik &

Thorne, 2017), is a function of computational complexity.

In fact, natural language quantifiers are an especially interesting case in this

context. Since their semantic contribution is defined mathematically in generalized

quantifier theory, their verification is a well-defined computational problem. We

saw in the previous chapter that quantifiers fall into different classes depending on

the automata associated with their verification. In particular, proportional quanti-

fiers are associated with pushdown automata, with a memory component, whereas

non-proportional quantifiers can be verified using a simple finite-state automaton,

without such a memory component.

Two parallel series of studies have in fact demonstrated that this difference

is manifested in real psychological, and even neural, effects. Szymanik and Za-
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jenkowski have demonstrated that participants are less accurate and respond more

slowly when verifying proportional quantifiers, compared to non-proportional (Szy-

manik & Zajenkowski, 2010a). These effects are modulated by memory load (Szy-

manik & Zajenkowski, 2010b, 2011), and are correlated with participants’ working

memory capacity (Zajenkowski et al., 2011; Zajenkowski & Szymanik, 2013; Za-

jenkowski et al., 2014). McMillan and colleagues have shown that these differences

are also reflected in neural activity. Using fMRI, they demonstrated a larger BOLD

response in (pre)frontal areas associated with working memory and executive func-

tion, notably the dorsolateral prefrontal cortex, during the verification of propor-

tional compared to non-proportional quantifiers (McMillan et al., 2005; Olm et al.,

2014). Patients with focal neurodegenerative disorders affecting these regions, are

also impaired with proportional quantifiers only, and the degree of atrophy is cor-

related with performance in a verification task (McMillan et al., 2006; Morgan et

al., 2011). Interestingly, this resonates with fMRI studies from the mathematical

cognition literature (Jacob & Nieder, 2009; Mock et al., 2019, 2018), where bilat-

eral frontal activation is associated with the processing of proportions in adaptation

and magnitude comparison paradigms, irrespective of the mode of presentation –

mathematically or verbally.

Taken together, these findings suggest that algorithmic aspects of semantic pro-

cessing – as well as other cognitive processes – manifest as cognitive costs, using a

variety of psycholinguistic measures. Regardless of the specific algorithms people

use, the minimal complexity of the computational problem can be viewed as a lower

bound, and it is this fact that makes complexity analyses useful in psycholinguistics.

3.4 Methodological Limitations and Precise Im-

plementation of the Research Questions

Since the complexity theory approach to EEG data has not been taken extensively

in the past, it is beneficial to implement a rather conservative paradigm. This is

because we want to as much as possible isolate only the impact of the algorithmic

analysis, and not have uncertainties about the influence of novelties of the paradigm,

the stimuli or the methods of statistical analysis or preprocessing. Since ERPs are,

arguably, the most well-understood approach to EEG data (Rommers & Federmeier,

2018), at least in sentence processing contexts, it was therefore decided to conduct

an ERP study of picture-sentence verification. The choice of the task was motivated

by two main considerations: (1) the fact that all previous examinations of the impact

of complexity have implemented such a task (e.g. McMillan et al., 2005; Olm et al.,

2014; Szymanik & Zajenkowski, 2010a; Zajenkowski et al., 2014), and (2) the fact

that the mathematical proofs are about verification procedures, using objects as
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sequential input.

EEG has some obvious disadvantages when it comes to picture-sentence verifica-

tion: the detectable brain signals at the level of the scalp is very weak, much weaker

than those caused by for example muscle movement. This means that any form of

movement, and in particular eye-movement,1 distorts the EEG signal and obscures

the concurrent brain activity (Luck, 2014; Plöchl, Ossandón, & König, 2012). While

numerous techniques have been suggested to subtract the eye-movement artefact, or

at least minimize its impact on statistical analysis, traditionally such trials are dis-

carded. So if participants were, e.g., scanning a picture while listening to a sentence,

the amount of eye-movement could render the data effectively useless. Because of

this, pictures were presented before each sentence, and only the EEG data recorded

during reading was subjected to analysis. However, this increases the difficulty of

the task considerably, and consequently restricted the potential complexity of the

images. The pictures therefore consisted of clusters of red and yellow circles and

triangles, the minimal number of objects (2 × 2) that allowed us to control when

participants could know the truth value of the sentences. The number of objects in a

cluster were also relatively low (2-5). Furthermore, a block design was implemented,

where one picture was shown before every trial in a block. This was (1) to ensure

that participants could remember the picture, since this is necessary for performing

the task, and (2) to minimize differences in encoding or recall of the picture be-

tween trials. While one might, perhaps rightfully, worry that all quantifier classes

require some form of memory to be verified with this paradigm, the automata theory

demonstrates that proportional quantifiers requires additional memory resources to

maintain and compare two sets of objects in memory, which the other classes do

not. It is therefore predicted that proportional quantifiers should recruit additional

memory resources compared to their non-proportional counterparts. If anything,

the stable baseline of this set up plausibly relates any observed differences to the

experimental manipulation, rather than differences in encoding or retrieval.

For similar reasons, the standard way of presenting sentences visually in ERP

paradigms is through serial visual presentaion (SVP), where a sentence is presented

in chunks at a fixed rate. Since this is the perceived standard, SVP was used in all

experiments conducted for this thesis. However, it should be noted that the mode of

presentation, SVP or (semi)natural aural presentation, has been shown to impact the

processing of quantified sentences (Freunberger & Nieuwland, 2016). Nevertheless,

SVP has an additional advantage in the present context. Since quantifier expressions

differ in length (compare e.g. ‘all’ to ‘more than half’), this difference needs to be

controlled for. In an SVP set up, we could easily present the quantifier as one chunk,

1For a discussion of the constant electrical potential between the cornea and retina, see e.g.
Luck (2014).
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regardless of its length, thus ensuring that processing of the remaining words of the

sentence, presented individually, would be identical between quantifiers.

Turning to the sentences specifically, these were simple copular sentences where

a color (red or yellow) were predicated of a definite quantified noun phrase with

the shape noun (circle or triangle) as the head. This choice was necessitated by the

nature of the pictures. For a discussion of the specific quantifiers used, the reader

is referred to the respective papers, and for general considerations about quantifiers

in Norwegian, see 3.5 below.

Since the ERPs of the distinct quantifier classes are in uncharted territory, it was

useful to design the experiments so that known ERP components were manipulated

as well. In sentence processing, the N400 and the P600 components are the most

studied (Swaab et al., 2012). The P600 – a positive shift in the ERP waveform

that is largest around 600 msec – has been associated with increased difficulty in

integrating the incoming word into the wider context (Brouwer & Hoeks, 2013; Del-

ogu, Brouwer, & Crocker, 2019), decision complexity (Sassenhagen, Schlesewsky, &

Bornkessel-Schlesewsky, 2014), as well as with composition (Baggio, 2021; Fritz &

Baggio, 2020, 2021). The functional significance of the N400 – a negative deflection

in the ERP peaking around 400 msec – is a matter of debate. Specifically, schol-

ars disagree about whether a larger N400 reflects increased difficulty in retrieval

(Brouwer, Fitz, & Hoeks, 2012; Kutas & Federmeier, 2011; Lau, Almeida, Hines,

& David, 2009; Lau, Phillips, & Poeppel, 2008), integration (Brown & Hagoort,

1993; Hagoort, Hald, Bastiaansen, & Petersson, 2004), or both (Baggio & Hagoort,

2011; Nieuwland et al., 2020). Regardless of the specific cognitive process it un-

derlies, however, its amplitude is predominantly modulated by semantic association

(Aurnhammer, Delogu, Schulz, Brouwer, & Crocker, 2021; Kutas, 1993), frequency

(Laszlo & Federmeier, 2014; Rugg, 1990; Van Petten, 1990, 2014), and contextual

predictability (Delogu, Crocker, & Drenhaus, 2017; Nieuwland, Ditman, & Kuper-

berg, 2010; Nieuwland & Kuperberg, 2008; Nieuwland & van Berkum, 2006). Since

we are dealing with the semantics of quantifiers, and the N400 is traditionally associ-

ated with semantic violations, the N400 would arguably be the most likely candidate

to manipulate.

In a picture-sentence verification task, false sentences are incongruent with the

preceding visual context, and should thus elicit a larger N400 than true sentences

(Augurzky, Bott, Sternefeld, & Ulrich, 2017; Knoeferle, Urbach, & Kutas, 2011;

Nieuwland & Martin, 2012). As a sanity check, we therefore manipulated truth

value, so that half the sentences were true and half the sentences were false. If

an N400 was observed for false versus true sentences, it could be inferred that

participants were performing the task correctly. Since the stimuli at the sentence

final adjective – the earliest position where the truth value could be unambiguously
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determined – were otherwise identical, no other factors known to influence the N400,

such as frequency and semantic association, could have an effect.

The schema of the experimental design was thus a picture-sentence verification

task, where a picture was presented before a copular sentence, which was presented

in chunks. The experiments had a blocked design, were the picture remained the

same within a block. The independent variables were Quantifier Class and Truth

Value. Aside from the quantifier, all sentence were syntactosemantically identi-

cal. This allowed us to (1) know whether participants were verifying the sentences

correctly without worrying about movement artefacts, (2) isolate the differences

stemming from the quantifier class manipulation, and (3) investigate at what stages

of processing potential differences between verification algorithms manifest them-

selves. Importantly, the nature of the difference, which is predicted to be related to

memory, could not be inferred from this bare experiment, so additional measures –

i.e. a direct manipulation of memory load – had to be implemented to answer this

research question. For details about the concrete implementation of the experiments

– e.g. stimuli, EEG recording etc. – as well as for modifications of the base design,

the reader is referred to the respective papers, 1 and 2.

3.5 A Note on Norwegian Quantifiers

Before summarizing the chapter, a brief interlude on some aspects of quantification

in Norwegian is required. Generally, Norwegian does not differ in any significant way

from other languages when it comes to quantification. It generally patterns with

its Scandinavian siblings and its Germanic cousins, both in terms of syntax and

semantics of various quantifier expressions. In particular, all quantifier meanings

discussed thus far have Norwegian equivalents, and there are quantifiers from all the

four quantifier classes.

However, parity quantifiers are somewhat marked in Norwegian. Both ‘et like

antall’ (en even number) and ‘et odde antall’ (an odd number) are attested, but

rather infrequent (see table 3.1).2 While this is not necessarily a problem, they

cannot take a definite complement, which was necessary to be matched with the

other conditions in the experiments we conducted, as some of the quantifiers require

definiteness to be referential. One point of contention between the two parallel

research communities that have investigated complexity effects in the verification

of quantifiers previously, is precisely the status of parity quantifiers: whether they

should be grouped with proportional or non-proportional quantifiers (see Szymanik,

2It might also be noteworthy that for the corpora where source data is available, these expres-
sions overwhelmingly come from math and science related domains, as well as chess problems.
This is an indication that they might only be available in specific registers, and that they are not
commonly used in vernacular language.
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Quantifier NoWaC LB HaBiT BM HaBiT NN
Et like antall 5 1 89 1
Et odde antall 4 5 41 1
Corpus size 700 100 1180 55

Table 3.1: Corpus frequency of parity quantifiers from the Norwegian Web As Cor-
pus (NoWaC), Leksikografisk bokmålskorpus (LB), Harvesting big text data for
under-resourced languages (HaBiT) bokmål (BM) and nynorsk (NN) corpora. Cor-
pus size is reported in millions of tokens.

2007; Szymanik & Zajenkowski, 2009; Troiani, Peelle, McMillan, Clark, & Grossman,

2009b). The automata theory predicts them to pair with other non-proportional

quantifiers, and it would therefore be advantageous to be able to demonstrate this

using brain based methods, as this has not been done before. Since this was not

possible in our experiments, future experiments should put this hypothesis to the

test in languages where such expressions are less marked.

Another quirk of Norwegian, as well as the other Scandinavian languages, is

that proportional quantifiers – or quantity adjectives as they are referred to as in

the literature on the semantics of degree – has the opposite definiteness pattern

compared to English. In English, bare ‘most’ has the proportional reading, i.e. more

than half, whereas definite ‘the most’ has a relative meaning, e.g. John read more

books than any other contextually salient individual in a sentence like ‘John read

the most books’. For Norwegian, ‘de fleste’ has the proportional reading, whereas

‘flest’ has a relative reading. For a more thorough review, see Coppock (2019).

Hackl (2009) famously argued that ‘fewest’ does not have a proportional reading,

since, contarary to the biggest subset ‘most’, there is no unique smallest subset:

any singleton set has the same cardinality. ‘De færreste’ is nevertheless commonly

used in Norwegian to express a small minority, and could be paraphrased as very

few, possibly no. However, this meaning is not proportional and could therefore

not be used as the opposite of ‘de fleste’. In order to control for the polarity of

the proportional quantifiers, we chose to include ‘færrest av’. As can be inferred

from the preceding paragraph on definiteness, this gives a relative reading of the

quantifier, in contrast to the proportional quantifier ‘de fleste’. The justification for

this decision was that since there were only two relevant subsets (e.g. yellow and

red triangles), the contextually salient relatively smallest subset and less than half

were denotationally equivalent. This ensured complementarity of the proportional

quantifiers – i.e. that one was true in contexts where the other was false – but

the discrepancy between the two quantifier readings, prompted us to change ‘de

fleste’ to ‘flest av’ for the second study, reported in paper 2. It is important to

note that ‘færrest av’ is much more marked and less frequent than ‘de fleste’ or
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‘flest av’. However, this presumably stems from a bias against downward monotone

quantifiers generally3 (Szymanik & Thorne, 2017), and could not be avoided if we

wanted to match proportional quantifiers for polarity. Because the quantifiers were

easily interpretable in context – as is evidenced also by the high accuracies for

negative proportionals in all experiments – symmetry in the design was allowed to

prevail.

3.6 Chapter Summary

This chapter has dealt with philosophical considerations about explanation in cog-

nitive science, as well as mundane facts about Norwegian quantifiers and practical

considerations of the limitations of experimental implementation. I have attempted

to outline the nature of these opposing methodological considerations and to de-

scribe how they interact, in order to motivate the specific way that the experiments

in this thesis were designed.

After describing the two main ways of studying human neural activity and justi-

fying the choice of event-related potential (ERP) analysis of electroencephalography

(EEG) as the method for the experiments conducted for this thesis, I presented some

foundational problems with this method. Importantly, I argued that ERPs are ex-

plananda rather than explanantia, and that their contribution to our understanding

of cognitive processes are dependent on the theory that explains them. I further

stressed the need for algorithmic and complexity theoretic analysis in explanations

in Marrian cognitive science, and highlighted ways in which such analyses have been

used in the past. These considerations were used to argue for the experimental de-

sign. Participants performed a picture-sentence verification task with Truth Value

and Quantifier Class as independent variables, where the picture was presented be-

fore the quantified sentence. Finally, some peculiarities of the Norwegian quantifier

system were used to explain certain design choices.

3The same is true for ‘more/less than half’, ‘the majority/minority of’ as well.
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Summary of Papers

Paper 1:

Computational Complexity Explains Neural Differences in

Quantifier Verification

Paper 1 consists of two experiments, designed to (1) observe differences between the

quantifier classes, and (2) to assess task effects of verification.

Participants (N = 24 in both experiments after artifact rejection) performed a

picture-sentence verification task, as described in chapter 3, in experiment 1 and

saw the same stimuli in experiment 2, but were not required to verify the sentences.

Instead, they were asked simple comprehension questions about the stimuli. The

design for both experiments was 3× 2, with Quantifier Class (3 levels: Aristotelian,

Numerical, Proportional) and Truth Value (2 levels: True, False) as independent

variables. 1000 msec epochs, including a 200 ms baseline, extracted from the noun

completing the subject noun phrase and from the predicate adjective, were sub-

jected to pairwise comparisons using cluster based permutation statistics (Maris &

Oostenveld, 2007).

In experiment 1, the False-True comparison yielded sentence final negativities

in the 2-500 msec time window for all Quantifier classes, both individually and

overall. Interestingly, the effect of Truth Value was modulated by Quantifier Class,

such that the negative effect was largest for Aristotelian quantifiers and smallest for

Proportional, with Numerical quantifiers falling in between. The negative effect for

Proportional quantifiers was followed by a positive cluster in the P600 time-window.

Since the Truth Value effect presupposes that participants know the truth value, and

therefore by definition that a verification procedure has been completed, we expect

potential verificational differences to occur earlier in the sentence. When comparing

the Quantifier classes at the noun, we found a late positive cluster for Proportional

quantifiers relative to the other two, both individually and collapsed.

In experiment 2, by contrast, the negative effect of the False-True comparison
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was only significant overall and for Aristotelian and Numerical quantifiers. The

positive effect of Proportional quantifiers at the noun also disappeared completely.

These results indicate that the complexity differences between Quantifier classes

manifest as real electrophysiological effects during verification, with additional ef-

fects on subsequent processing. Importantly, when verification is not required to

perform the task, participants are able to track the truth value of Aristotelian and

Numerical quantifiers only, presumably because Proportional quantifiers are too

complex to verify tacitly. The modulation of the Truth Value effect in experiment

1, is further evidence of such downstream consequences of the complexity of veri-

fication. The effects not directly pertaining to verifiation is beyond the predictive

scope of the automata theory, and any interpretation of these are therefore specu-

lative. However, the automata theory predicts the difference between Proportional

and Non-Proportional quantifiers to be the result of a memory component, and the

fact that late positivities have been associated with task-relevant recollection mem-

ory (e.g. Rugg & Curran, 2007), therefore consitutes preliminary evidence for the

involvement of memory systems in the verification of Proportional quantifiers.

Paper 2:

The Interplay of Computational Complexity and Memory

Load in Quantifier Verification

The aim of the experiment in paper 2 was to ascertain whether the differences

between proportional and non-proportional quantifiers were related to memory. To

this end, we modulated memory load during verification and collected measures of

working memory from the participants.

Participants (N = 48 after artefact rejection) completed a working memory

battery, before performing the same sentence-verification task as in the previous

study. While they were performing the verification task, they had to remember 2

or 4 digits presented at the beginning of each trial, and judge whether it matched

a second string of digits at the end of the trial. The design was thus 2 × 2 × 2,

with Quantifier Class (Proportional, Non-Proportional), Digit Load (2, 4 Digits)

and Truth Value (True, False) as independent variables. Data analysis was as close

to identical as that in study 1.

The sentence final effects were replicated, with False sentences being more nega-

tive than True in the same time-window, with a smaller difference for Proportional

than for Non-Proportional, and a later positivity for Proportional quantifiers. Ad-

ditionally, there were main effects of Quantifier Class and Digit Load, such that

Proportional Quantifiers were more negative than Non-Proportional and 4 Digits

were more positive than 2. The effects at the noun were of a completely different
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nature, however. Instead of a late positivity, the Proportional-Non-Proportional

comparison yielded an early left hemispheric negativity, more consistent with sus-

tained left anterior negativities (LAN) or sustained anterior negativities (SAN) (e.g.

Baggio, van Lambalgen, & Hagoort, 2008; Fiebach, Schlesewsky, & Friederici, 2001;

van Berkum, Brown, Hagoort, & Zwitserlood, 2003; Vos, Gunter, Kolk, & Mulder,

2001), associated with increased working memory demands. This effect was modu-

lated by Digit Load, such that it was only significant overall and for 4 Digits, but

a general linear model of cluster amplitude revealed that the interaction was not

significant. Participants’ working memory scores did not predict individual cluster

amplitude or effect size, possibly as a result of low variability in the scores.

The results provide further indicative evidence of the effects of computational

complexity on verification and on subsequent processing. Moreover, the fact that

Digit Load affects the Quantifier Classes differently, in particular during verification,

more firmly suggests that the difference is related to memory, despite the lack of

a significant interaction effect and correlations with individual working memory

capacity. However, the blatant difference in effect type – LAN/SAN, rather than

LPC – suggests that the specific memory systems employed by the brain may differ

depending on the task. Despite this fact, we argue that the constraints on human

quantifier verification is of the same nature as the constraints on abstract machines.

Paper 3:

Neural Algorithms of Natural Language Quantification: A

review of the experimental literature

In paper 3, I attempt to demonstrate that the algorithms of the quantifier classes are

deducible from the extant experimental literature on quantifier verification in the

brain, given the assumption that people should use the simplest possible algorithm

to solve a computational problem (Anderson, 1990; Szymanik, 2016). Since few

studies have compared quantifier classes directly, I survey the studies looking at

only one quantifier class as well.

Aristotelian quantifiers are predicted to primarily rely on attentional mechanisms

required to detect examples or counterexamples. While there is some conflicting ev-

idence regarding the recruitment of magnitude processing in the intraparietal sulcus

(IPS) – which is strictly not required for Aristotelian quantifiers – experiments that

explictly require verification (Morgan et al., 2011; Olm et al., 2014) do in fact ob-

serve (pre)frontal activation associated with attention and detection. ERP data

consistent with these findings reveal that such mechanisms are activited only when

participants are able to unambigously determine the truth value of the sentence,

where a biphasic pattern of an early negativity and subsequent positivity observed
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with false sentences is constituted by the detection of a mismatch and a subse-

quent increase in attention to this counterexample in order to judge the sentence as

false, in line with the algorithm for Aristotelian quantifiers (Augurzky et al., 2017).

The inter- and intraindvidual differences resulting from scalar implicature reading

of ‘some’ (some and not all), are also discussed, as are the complexity consequences

of multiply quantified sentences.

Numerical quantifiers rely on a counting algorithm for their verification, and

they are therefore predicted to involve magnitude processing in the IPS, both by the

automata theory and the Triple code model of mathematical cognition (Dehaene,

1992; Dehaene, Piazza, Pinel, & Cohen, 2003). This prediction is showed to be

supported by the available empirical evidence. Szymanik’s (2016) prediction that

the increase in number of states for higher numbers should lead to an increase in

complexity is discussed, but is set aside for future research due to insufficient data.

The availble data also suggests a preference for an exact – as opposed to an at least

– reading of numerals for most people.

The available neurolinguistic literature concerning parity quantifiers, which, like

Aristotelian quantifiers, should primarily consist in the deployment of executive re-

sources such as cognitive control (Szymanik & Zajenkowski, 2009), is sparse. In

particular, such quantifiers have never been separated out in the analysis in verifi-

cation experiments. While the mathematical cognition literature has revealed dif-

ferences between parity and magnitude estimation, and between judging the parity

of dot arrays rather than numerals, future research is needed to determine whether

human subjects are using the minimally complex algorithm to determine parity in

a verification task.

Proportional quantifiers are the only quantifiers that need the additional memory

resources of pushdown automata (PDAs) to be verified. The prediction is therefore

that additional memory resources should be recruited during proportional quantifier

verification. Both fMRI and patient studies point to the involvement of (pre)frontal

areas as well as the IPS during proportional quantifier verification, indicating that

people are estimating the size of the sets and comparing them by means of working

memory. However, EEG studies have shown that complicating the task, gives rise

to different evoked responses to proportional quantifiers, thereby obscuring the link-

ing hypothesis between the theoretical stack memory and memory resources in the

human brain. Finally, semantic and pragmatic properties irrelevant to verificational

complexity – such as negative polarity – are shown to impact the incrementality and

processing difficulty associated with proportional quantifiers.

The paper concludes with a discussion on what measures of complexity are rel-

evant to quantifier verification, and stresses the importance of embedding formal

results in plausible models of human cognitive processing.
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A Synthesis of the Results

Having summarized the experimental work, it remains to elaborate on what con-

clusions can be drawn. This chapter is devoted to answering the research questions

presented in chapter 1 and repeated below, in so far as it is possible.

(1) Do the differences in the computational complexity of verification algorithms

for proportional and non-proportional quantifiers manifest in distinct brain

responses?

(2) If so, are these brain responses related to memory, as predicted by the au-

tomata theory?

(3) At what point(s) during sentence processing do such differences occur?

(4) What model of sentence processing best explains such patterns?

Recall that in order to answer these research questions, the available literature

on quantifier processing using neural measures was reviewed (Paper 3), and three

experiments were conducted (Papers 1 and 2). These experiments utilized event

related potential (ERP) analysis of electroencephalography (EEG) data, and had

a picture-sentence verification task at its core. The need for explicit verification

(Paper 1) and the modulation of memory load by the addition of a digit matching

task to the experimental paradigm (Paper 2) was manipulated, in order to ascertain

whether the observed effects were related to verification and to memory, respectively.

The differences afforded by algorithmic distinctions is presented in 5.1, and 5.2

is devoted to their relation to the employment of memory resources. The model

of sentence processing suggested by the data and the time-course of verificational

differences is the subject of 5.3. 5.4 summarizes the discussion by way of explicit an-

swers to the research questions. A general outlook and directions for future research

is reserved for Chapter 6.
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5.1 Distinct Neural Patterns of Quantifier Au-

tomata

As is evident from the experimental work presented herein, as well as plausibly in-

ferred from the previous literature, the minimal complexity of the verification algo-

rithm is associated with distinct brain responses. Interestingly, the quantifier classes

do not only diverge during verification proper, but impacts subsequent processing

related to prediction and decision processes as well. However, since such differences

are not strictly predicted by the automata theory, they can only be explained in

the context of a model of sentence processing. Hence they are left to section 5.3.2

below.

The theory predicts proportional, but not non-proportional, quantifiers to trig-

ger known brain signals of memory. This is indeed what we find. As discussed in the

review in paper 3, it can be inferred from the patient studies that quantifier com-

prehension can be selectively impaired, depending on the computational resources

required to compute them (McMillan et al., 2006; Morgan et al., 2011; Troiani et

al., 2009a). Behavioral variant fronto-temporal dementia (bvFTD) patients, whose

symptoms include reduced executive functioning, display poorer behavioral results

for Aristotelian and proportional quantifiers, while corticobasal degeneration (CBD)

patients, who suffer from acalculia, were impaired in the verification of numerical

and proportional quantifiers. The verification scores are also mostly correlated with

relevant behavioral measures of cognitive function – e.g. digit span, stroop color

naming etc. – as well as with atrophy in specific regions of the cortex: (pre)frontal

areas for the bvFTD and temporo-parietal areas for the CBD patients. BOLD fMRI

results of healthy participants (McMillan et al., 2005; Olm et al., 2014) also implicate

these areas in processing, such that Aristotelian quantifiers recruit (pre)frontal ar-

eas, numerical quantifiers recruit parietal areas, and proportional quantifiers recruit

both areas equally. A similar activation pattern to that of proportional quantifiers

is found for proportions in the mathematical cognition literature as well (Jacob &

Nieder, 2009; Mock et al., 2019, 2018). (Pre)frontal areas are typically associated

with working memory, attention and other executive functions (Aron, Robbins, &

Poldrack, 2014; Badre & Wagner, 2004; Brunoni & Vanderhasselt, 2014), whereas

the intraparietal sulcus (IPS) is hypothesized to be the center of magnitude pro-

cessing (Dehaene, 2011; Nieder & Dehaene, 2009; Skagenholt, Träff, Västfjäll, &

Skagerlund, 2018).

This pattern is explained by the automata theory. Because Aristotelian quanti-

fier verification only relies on detecting (counter)examples, counting or other kinds

of magnitude processing is not necessary to perform the task. For numerical quan-

58



5.1. Distinct Neural Patterns of Quantifier Automata

tifier verification, by contrast, only counting is necessary, and the extent of working

memory usage limits itself to remembering the last number counted.1 Lastly, the

algorithm for proportional quantifiers involve both magnitude processing – compar-

ing the As that are B and the As that are not B – and, crucially, memory – keeping

track of both subsets of A. It is therefore exactly as predicted that Aristotelian and

numerical quantifiers are processed predominantly in the (pre)frontal and parietal

cortices, respectively, whereas proportional quantifiers recruit both cortical areas for

their verification.2

Analogs of these differences are also found in evoked potentials. During simple

picture-sentence verification, proportional quantifiers elicit a late positivity com-

pared to non-proportional quantifiers upon the completion of the subject noun

phrase (Bremnes, Szymanik, & Baggio, 2022; De Santo et al., 2019). Such pos-

itivities have been associated with recollection memory, where the so-called late

positive complex (LPC) is a component that appears when recollecting the details

of a stimulus is task relevant (Hubbard, Rommers, Jacobs, & Federmeier, 2019;

Ratcliff, Sederberg, Smith, & Childers, 2016; Rugg & Curran, 2007; Rugg et al.,

1998; Yang et al., 2019). This effect is similar in distribution to the P600, which has

also been linked to episodic memory (O’Rourke & Van Petten, 2011; Van Petten &

Luka, 2012), albeit in single word contexts, and not during sentence processing. In

light of the automata theory, this would seem to indicate that participants recollect

more details of the picture – e.g. both red and non-red circles – when verifying pro-

portional quantifiers, than when verifying non-proportional quantifiers – e.g. only

red circles. However, since De Santo et al. (2019) also observe a similar positivity

in their study even though participants are looking at the picture while hearing the

sentence, such an interpretation is not unproblematic. One worry is that this P600-

like positivity indexes generic processing costs (Brouwer & Hoeks, 2013; Delogu et

al., 2019), rather than recollection memory. But as described in chapter 3, this is

an unwarranted reverse inference. Since ERPs are explananda, and not explanan-

tia, it is the theory that does the explaining. The memory component predicted

by the automata theory is a more specific explanation than the generic processing

cost explanation (Woodward, 2010), and is consequently superior, i.e. deployment

of memory is a specific processing cost. Because the theory is not falsified by the

1It has been hypothesized that the complexity of the numerical verification algorithm should
increase with higher numbers (Szymanik, 2016): keeping track of the number of As that are
B when counting for a long time could potentially trigger some form of working memory, even
though it is not necessary (but see De Santo and Drury (2020) and Shikhare, Heim, Klein, Huber,
and Willmes (2015) for a discussion about how this might be confounded with the magnitude
comparison ratio). However, the numerical quantifiers used in the aforementioned experiments
have all been small numbers, e.g. ‘three’, ‘five’ etc. Since the hypothesis has not been put to the
test, it is not possible to ascertain whether this is in fact the case.

2See also Fitch (2014) for a proposal that the stack memory of pushdown automata is instan-
tiated by mechanisms in the inferior frontal gyrus.
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extant experimental data, abductive inference favors the memory interpretation.

Opponents of this interpretation, should therefore provide a specific processing cost

that is not related to memory.

One candidate is integration into the wider linguistic context (e.g. Brouwer &

Hoeks, 2013). However, this presumably falls into the category of syntacto-semantic

composition effects, since the noun is identical across conditions and the only dif-

ference between the noun phrases is the preceding quantifier: integration into the

linguistic context is equivalent to noun phrase composition in the experiments un-

der discussion. Such effects were not found in the comprehension study in paper 1

(Bremnes et al., 2022), and consequently this interpretation arguably does not fit

the data equally well. One might argue that participants are not actually composing

sentences, but only looking for the specific linguistic and pictorial material required

to answer the comprehension questions. But this leaves the effects of the other two

quantifier classes unexplained. Participants display similar ERP patterns through-

out the sentence for Aristotelian and Numerical quantifiers in both experiments, and

if the lack of composition is selective to proportional quantifiers, this necessitates an

explanation of why these quantifiers are different. The obvious answer is provided

by the automata theory, thus making the argument circular.

Interestingly, the evoked potentials of verification differ with the addition of the

digit matching task in paper 2. At the same place in the sentence, i.e. at the onset of

the noun, proportional quantifiers trigger a left hemispheric negativity in the 250-500

msec time-window relative to non-proportional quantifiers, instead of the positivity

in the P6 time-window. The spatiotemporal distribution of this effect is consistent

with sustained left anterior negativities (LAN) (Fiebach et al., 2001; King & Kutas,

1995; Kluender & Kutas, 1995; Vos et al., 2001) or sustained anterior negativities

(SAN) (Baggio et al., 2008; Müller, King, & Kutas, 1997; Münte, Schiltz, & Kutas,

1998; van Berkum, Brown, & Hagoort, 1999; van Berkum et al., 2003), both of

which have been associated with working memory during sentence processing. This

suggests that the specific memory systems recruited to verify a sentence when the

verification procedure requires memory, differs depending on the nature of the task.

For some tasks, like digit matching, simple recollection might not be sufficient, and

thus working memory resources are engaged. When working memory systems are

already recruited, like in the digit matching task, these systems might be utilized

by the verification algorithm as well, on the assumption that it is better to deploy

more of the same cognitive resources rather than engaging another system. When

these systems are not already recruited, like in the simple verification task in paper

1, other memory systems might be deemed more apt. Another option is that both

systems are recruited during verification with digit matching, but that the late

positivity associated with recollection memory is obscured by the earlier negativity.
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Which alternative turns out to be correct is not predicted by the formal results, and

therefore remains an empirical question that is subject to additional assumptions.

This result is in a way not surprising. As discussed in the introduction, math-

ematically specified theories are independent of implementational detail (van Rooij

& Baggio, 2021). The formal theory serves to isolate indispensible properties of a

pattern, that any computational device must be able to detect in order to perform

a computational problem (De Santo & Rawski, 2022): what is important is that the

algorithms share these essential properties, not the specific details of their imple-

mentation. Nevertheless, it might be useful to disentangle the different notions of

memory in operation.

5.2 Complexity and Memory

There are at least three notions of memory at play in the experimental studies in

this thesis:

(1) The abstract semimetaphorical stack memory of the pushdown automaton

(2) The memory system that implements this stack in human brains

(3) The neural memory systems involved in recalling the contents of the picture

preceding each experimental trial

Obviously, these three notions are interrelated. In particular, the relationship

between (1) and (2) is just a linking hypothesis; (2) is, by definition, the memory

component that instantiates the PDA stack memory. The relation between (2) and

(3) is slightly more complicated. Whether (2) and (3) represent distinct memory

systems, or whether they are in fact the same, is an empirical question. The results

from paper 1 (Bremnes et al., 2022) seem to suggest that they are the same thing,

since the memory component that seems to be modulated, the LPC, has previously

been related to task relevant recollection (Rugg & Curran, 2007). However, the early

negativity observed in paper 2, casts doubt on this simple relation. Since the LAN

and SAN components are associated with working memory and not with recollection,

this result seems to indicate that, at least sometimes, the implementation of the stack

memory and the memory systems underlying recall of the picture can come apart.

This is potentially a problem, since the prediction of the automata theory is that

(1), therefore (2), but what we might actually be observing, at least in paper 1, has

more to do with (3). The crux of answering the research question of whether the

differences are related to memory consequently lies in specifying the precise relation

between (2) and (3).

While the evidence presented in the thesis, along with the extant experimental

literature, is not conclusive, there are some important insights to be had. As men-
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tioned in 5.1 above, De Santo et al. (2019) observed similar effects to those of paper

1 (Bremnes et al., 2022), as well as other picture-sentence verification studies (Au-

gurzky et al., 2017; Augurzky, Schlotterbeck, & Ulrich, 2020), even when participants

do not have to recall the picture, thereby casting doubt on this component’s relation

to recollection. There are other positive components, notably the positive slow wave

(PSW), in the more explicitly working memory related literature (Kusak, Grune,

Hagendorf, & Metz, 2000; Lefebvre, Marchand, Eskes, & Connolly, 2005; Marchand,

Lefebvre, & Connolly, 2006; McEvoy, Smith, & Gervins, 1998; Pelosi, Hayward, &

Blumhardt, 1995, 1998; Pelosi et al., 1992; Ruchkin, Johnson, Grafman, Canoune,

& Ritter, 1992) with a similar spatiotemporal distribution, argued to index retrieval

from short-term memory (Garćıa-Larrea & Cézanne-Bert, 1998), that could be a

plausible interpretation of the late positive effect from paper 1. The involvement of

brain regions associated with working memory during picture-sentence verification

without recall (McMillan et al., 2005, 2006; Morgan et al., 2011; Olm et al., 2014)

could support such an interpretation.

If this is correct, the relation between (2) and (3) is one of no identity and no

overlap. The effects we see are solely related to working memory differences, and

the effect of recall is not observed. This would also make sense since the recall of

the picture, by design, is constant between the quantifier classes; the same images

are shown before all quantifier types, and the only difference between them is the

complexity of the verification task. In order to corroborate this hypothesis, a study

would have to be conducted where the complexity of the recall is not fixed. The

hypothesis would be corroborated if the difference between the quantifier classes was

not modulated by recall complexity. If, on the other hand, we observe an interaction

effect between the complexity of recall and quantifier class, this hypothesis would

be falsified.

However, this leaves us without an explanation for the diametrically different

effect that was observed in paper 2. It is unclear why different memory systems

should be recruited under memory load, if the memory system recruited in paper 1

and in De Santo et al. (2019) is also a working memory system. Above, I suggested

that working memory resources were recruited when systems of recollection memory

were insufficient to perform the task. If this is not the case, some other explanation is

required. One possible such is that the addition of the memory load recruits verbal or

central executive working memory, whereas the simple picture-sentence verification

task only relies on visual working memory (for discussion see e.g. Baddeley, 2012).

A problem with this interpretation is that visual working memory is associated

with negative effects (Axel & Müller, 1996; Rösler, Heil, & Röder, 1997; Ruchkin,

Johnson, Canoune, & Ritter, 1990; Ruchkin et al., 1992; Vogel & Machizawa, 2004),

and the component manipulated in the proposed visual working memory situation
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is positive. A solution along these lines is therefore not straightforward, and is,

arguably, not tenable without additional assumptions and experimental evidence.

Hence, one major remaining open question left by the experimental results pre-

sented herein, is precisely the nature of the memory component and the relation

between (2) and (3) above. Future research should be designed to better under-

stand which contexts facilitate the late positivity observed in paper 1, and in which

contexts an early negativity, like the one observed in paper 2, is observed instead.

5.3 Verification and Sentence-Processing

Since we have explored sentence processing both without an explicit verification task

as well as with explicit verification – with and without memory load – we are able

to disentangle the ways in which verificational properties of quantifiers interact with

participants’ processing of declarative sentences. There are a couple of ways in which

the present results lend themselves to a precise model of sentence processing, most

important of which is the fact that participants are sensitive to the truth value of the

sentence they are reading. I will therefore deal with this issue first, in 5.3.1, before

going on to discuss how this model is affected by the complexity of the verification

algorithm in 5.3.2.

5.3.1 A Model of Sentence Processing

It is evident that participants keep track of the truth value of the sentences they are

reading, since true and false completions of a sentence elicit distinct electrophysi-

ological responses: false sentences are characterized by a large negative deflection

relative to true after around 250 msec following the onset of the sentence final adjec-

tive. The model of sentence processing most consistent with the data, is therefore

one in which participants are building a true model of the sentence in the context of

a preceding picture (Baggio, 2018; Clark, 1976; Clark & Chase, 1972, 1974; Johnson-

Laird, 1983; Just, 1974; Just & Carpenter, 1971; van Lambalgen & Hamm, 2005;

Zwaan & Radvansky, 1998). In other words, the participants expect that the sen-

tence is going be to an accurate description of the picture, despite the irrationality

of such a procedure in the experimental context, where sentences are equally likely

to be true and false. When this prediction is not borne out, this manifests as a

negative deflection in the ERPs, presumably reflecting integration or retrieval dif-

ficulty, depending on ones’ preferred interpretation of N400-family effects (Baggio

& Hagoort, 2011; Brouwer et al., 2012; Brown & Hagoort, 1993; Hagoort et al.,

2004; Kutas & Federmeier, 2011; Lau et al., 2009, 2008; Nieuwland et al., 2020).

Whether the effect that we observe is an early onset N400 (Van Petten, Coulson,

Rubin, Plante, & Parks, 1999; Vissers, Kolk, van de Meerendonk, & Chwilla, 2008)

or an N2b (D’Arcy et al., 2000; Knoeferle et al., 2011; Wassenaar & Hagoort, 2007)
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reflecting perceptual mismatch between the representation of the picture and the

sentence, is inconsequential to the aptitude of such a sentence processing model.

Since both these interpretations require knowing the truth value of the sentence –

in the N2b case, in order to realize that the sentence does not match the picture –

for the present purposes, they amount to the same thing.

On this model of sentence processing, the verification happens incrementally, as

soon as new information becomes available. Upon the completion of the subject

noun phrase, participants start building a model that will make the sentence true

of the preceding picture: if the claim is about ‘most of the circles’, the participants

immediately try to figure out what predicate would make the sentence true, thus

generating predictions about the final word. Because the verification procedure

is instantiated before the participants know the truth value of the sentence, the

verificational differences associated with the quantifier classes are instantiated at

least as early as the noun. As mentioned in chapter 3, the host of differences in

frequency and length etc., would make comparisons at the quantifier unreliable, but

it is entirely possible that the differences manifest as early as this as well. This would

also explain why truth value effects do not arise until the truth value is known (e.g

Augurzky et al., 2017): because the true model of the sentence is not yet falsified,

effects of violated predictions do not occur.

If one is not inclined to accept such a model of sentence processing, one might

attempt a different explanation of the effect, for example one in which the nega-

tivity is in reality a decision effect, akin to what I outline below for the positivity

following the N400-esque activity for the False versus True comparison for propor-

tional quantifiers. So, in this model, you are not building a model and thus have

no predictions for the final word. The negativity is then explained by the fact that

deciding that a sentence is false is more strenuous to the participants. There is some

evidence in the literature that false sentences (Carpenter & Just, 1975; Chang, 1986)

– and even negative sentences in general (Deschamps et al., 2015; Just & Carpenter,

1971) – are associated with longer reaction times. This is true, even in the con-

text of the experiments presented herein. However, then you would firstly have to

assume that false sentences are somehow special. If you are not building a model,

it is not immediately obvious why that should be the case. The model building

approach provides an explanation – violation of prediction – but if participants are

not building a model, one should – in the absence of an alternative account of the

differences – expect that true and false sentences are symmetric, since the only dif-

ference between them is their truth and falsity relative to the model. The challenge

to reconcile their account with the data is therefore on this alternative account.

More problematically, even on this approach, the difference between true and false

sentences relies on knowing the truth value of the sentence. It seems implausible
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given the sentence internal effects we observe, that the verification procedure is not

initiated until the final word, and any alternative explanation must account for these

differences in some other way. We have already established that these effects are

not related to syntacto-semantic composition, since they do not appear in the com-

prehension experiment. Because the nouns were identical across conditions, we can

also rule out frequency effects. A different sentence processing model must therefore

come up with an aspect of processing, not related to verification, that could explain

the sentence internal differences.

5.3.2 Interaction with Computational Complexity

Interestingly, the sentence final effects explained by the proposed sentence processing

model above is modulated by quantifier class. In particular, the difference between

false and true sentences is smaller for proportional quantifiers, both statistically and

in terms of voltage values, and is followed by a positivity in the explicit verification

experiments, both in paper 1 and paper 2.3 Additionally, there are no sentence

final effects for proportional quantifiers in the comprehension experiment in paper

1, despite the fact that non-proportional quantifiers exhibit similar, albeit weaker,

effects as those observed in the explicit verification experiments.

In light of the processing model, this suggests that the increased difficulty, i.e.

the recruitment of additional memory resources, for proportional quantifiers, dis-

turb subsequent processing. A natural interpretation of this disturbance is that

participants may have less resources to predict the final word, resulting in a smaller

N400 (Delogu et al., 2017; Nieuwland et al., 2010; Nieuwland & Kuperberg, 2008;

Nieuwland & van Berkum, 2006). This could be the result of neither completion

of the sentence (‘red’ or ‘yellow’) being as dominant for participants at the time

of final word onset, compared to the non-proportional case. The ensuing positivity

might reflect increased decision complexity (Augurzky et al., 2017; Sassenhagen et

al., 2014), an interpretation that is strengthened by the fact that this positivity is

significant for 4 digits, but not for 2, in the memory load experiment in paper 2.

However, recent evidence (Aurnhammer et al., 2021) presents a unified inter-

pretation. According to Aurnhammer et al. (2021, see also Brouwer, Crocker, Ven-

huizen, and Hoeks (2017)), both the N400 and the P600 is modulated by unexpected

words. If the final word is more unexpected for proportional quantifiers – due to the

higher complexity of the verification algorithm – this interpretation of the N400 and

P600 components predict precisely this pattern. Since the P600 has been argued to

reflect integration difficulty (Brouwer & Hoeks, 2013), and a spatiotemporal over-

lap between the components can cause reductions in one as a result of an increase

in the other (Brouwer & Crocker, 2017), the less predicted final word might cause

3In paper 2, this positivity is only significant for 4 digits and overall, but not for 2 digits.
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subsequent integration into the discourse context to be more difficult, thus yielding

a larger P600 and an accompanying reduction in the N400.

The results presented herein cannot adjudicate between these two interpreta-

tions of the sentence final effects for proportional quantifiers: whether there is more

uncertainty about the final word – i.e. neither alternative is strongly predicted –

leading to a reduction in the N400 and an increase in decision complexity reflected

in a subsequent positivity, or whether the lower expectancy of the final word causes

an increase in the P600 at the expense of the N400.

It is also worth discussing how the complexity of the verification algorithm im-

pacts sentence processing when verification is not task relevant. The waveform pro-

files for non-proportional quantifiers in the comprehension experiment in paper 1,

are largely consistent with the same sentence processing model discussed above: false

sentences elicit a negative deflection relative to true. However, this is not the case

for proportional quantifiers, which do not present any significant effects (no sentence

final effect of truth value and no sentence internal difference between proportional

and non-proportional quantifiers). This suggests that participants are not verifying

sentences with proportional quantifiers, even though they do for non-proportional.

Prompted by this discrepancy, the sentence processing model might be in need

of a slight revision. If the truth-value is not readily available – i.e. if the verification

algorithm requires resources that participants need to perform another task – par-

ticipants are not able to ascertain whether the sentence is an accurate description of

the picture or not. They are thus not able to predict the final word for proportional

quantifiers, since their cognitive resources are devoted to the main task, i.e. paying

attention to whether the sentence and/or the picture contains certain elements, and

consequently have no expectations about what the final word is going to be. This

suggests that the model building approach to sentence processing is affected by algo-

rithmic complexity, such that participants are building a true model of the sentence

only if the complexity of the verification algorithm is below a certain threshold,

which might vary depending on the complexity of experimental task. In the event

that the verification algorithm is too complex, they might instead build two separate

models – one for the picture and one for the sentence – that they compare when

required to do so, e.g. when asked a comprehension question about the picture and

the sentence. Since knowing the truth value of the sentence was never necessary to

respond to the comprehension question, the increased verification complexity never

affected reaction times: the two models were only superficially compared, rather

than being fully integrated.

66



5.4. Chapter summary

5.4 Chapter summary

As a way of summarizing, I will repeat the research questions and answer them in

turn:

(1) Do the differences in the computational complexity of verification algorithms

for proportional and non-proportional quantifiers manifest in distinct brain

responses?

(2) If so, are these brain responses related to memory, as predicted by the au-

tomata theory?

(3) At what point(s) during sentence processing do such differences occur?

(4) What model of sentence processing best explains such patterns?

(1) Brain responses to quantified sentences are affected by the complexity of the

verification algorithm of the quantifier as formalized by the semantic automata the-

ory, and (2) these differences are best explained by the deployment of memory

resources, as evidenced by the recruitment of brain regions associated with working

memory and executive functioning and ERP components associated with memory.

Nevertheless, the nature of these memory resources depend on the task: in a sim-

ple picture-sentence verification task, a late positivity, sometimes associated with

recollection memory, is found for proportional versus non-proportional quantifiers,

whereas an early anterior negativity, traditionally associated with working memory

during sentence processing, is found for the same comparison under memory load.

What prompts the different concrete implementations of the abstract automaton

memory in the human brain cannot be inferred from the extant experimental re-

sults, and further study is required to ascertain the factors influencing the differences

observed between experiments.

(3) There is evidence of differential waveforms between proportional and non-

proportional quantifiers at the earliest point in the sentence where the verification

procedure could be isolated, i.e. the completion of the noun phrase. They might

also be detectable earlier, but confounds of length, frequency, and morphosyntactic

differences prevent valid conclusions to be drawn. However, these differences perme-

ate throughout the entire sentence, influencing subsequent prediction and decision

processes. (4) The results are best explained by a model of sentence processing

where participants are actively predicting the unfolding sentence to match, i.e. be

true of, the active representation of the picture. This is true regardless of whether

participants are actively verifying the sentence, or whether verification is not neces-

sary to perform the task. An important exception is that proportional quantifiers
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do not trigger effects of truth value or verification when verification is not required

to perform the task. The absence of these effects indicate that the complexity of

the verification algorithm impacts the neural signals elicited by sentence process-

ing, irrespective of the relevance of verification, and that limitations in processing

resources compel participants to process sentences differently as a function of the

interaction between task complexity and the complexity of verification.
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Outlook and Directions for Future

Research

The previous chapter was devoted to drawing the conclusions it was possible to

draw on the basis of previous studies and the experimental work presented in this

thesis. This is of course not to say that this concludes the study of the processing

of natural language quantifiers or the application of algorithmic analysis to sentence

processing more generally. This final chapter is therefore devoted to the road ahead,

the questions left open, and possible avenues to pursue for future research. Sections

6.1 and 6.2 deal with how the work generalizes and how its methodology can be

applied to the study of other linguistic domains. I discuss what I believe to be

the most fruitful avenues to pursue in future research in 6.3, before providing some

concluding remarks in 6.4.

6.1 The Present Work as a Proof of Concept

The work presented in this thesis demonstrates that the computational complexity

of the verification algorithm for natural language quantifiers is reflected in distinct

neural responses. This compelling evidence suggests that human language process-

ing is subjected to the same constraints as those applicable to abstract machines. Of

particular interest is the fact that the nature of the difference we explored – requir-

ing or not requiring some abstract notion of memory – manifests in the recruitment

of concrete memory systems. An interesting open question, to be discussed in 6.3.1

below, is that the specific memory systems that are recruited seems to differ depend-

ing on the nature of the task. This, however, does not undermine the importance

of the findings, since what matters is not the translation of the memory effect into

concrete memory systems, but the simple fact that it is translated and the resultant

corroboration of the formal generalizations.

The principle value of the present results lies in their application of predictions

from theoretical computer science to electrophysiological data. Using complexity
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classes like those developed for quantifiers to approximate the algorithmic level,

can help bridge the gap between the computational and the implementational level,

thereby facilitating more integrative neurolinguistic and/or cognitive neuroscientific

theories (Baggio et al., 2016, 2015; Embick & Poeppel, 2015; Isaac et al., 2014;

S. Lewis & Phillips, 2015). Additionally, the mathematical precision of such com-

plexity classes, has caused scholars to maintain the necessity of these analyses for all

psychological theories (van Rooij & Baggio, 2020, 2021; van Rooij et al., 2019). The

fact that these predictions are borne out in a case study on quantifier verification,

indicates, firstly, that complexity theoretic analyses can explain brain responses, but

also that brain responses that are not in line with the formal predictions warrant

revision of the formal analysis, e.g., whether heuristics or approximation algorithms

are involved (Carruthers et al., 2018; van Rooij & Wareham, 2012; van Rooij et

al., 2012). However, as this thesis is primarily concerned with the application of

the formal results and not with their derivation, I will focus on the former in what

follows.

As mentioned in chapter 3, behavioral responses to problems in social cognition

and deductive reasoning are explained as a function of their computational com-

plexity (Gierasimczuk et al., 2013; Szymanik, Meijering, & Verbrugge, 2013; Zhao

et al., 2018). An interesting avenue to pursue, given the results presented herein,

is whether the same patterns hold true for brain responses. Brain responses could

be a sensitive measure of the aptitude of hypothesized approximation algorithms,

such as those proposed for the travelling salesperson problem (Carruthers et al.,

2018; Graham et al., 2000). Also for language, the present results have interesting

implications.

6.2 Implications for Other Linguistic Domains

Circularity is a recurring, and sometimes unavoidable, problem in semantics. The

fact that a word or sentence meaning has to be defined in terms of other word or

sentence meanings, creates a vicious cycle. This has sparked cross-linguistic research

into defining semantic primitives from which all other concepts can be derived (e.g.

Wierzbicka, 1996). Even setting aside the philosophical worry that all primitives

are arbitrary (Goodman, 1977)1, such endeavours have been subject to criticism.

It may not be easily determinable which primitives are necessary and/or sufficient

– i.e. where to stop decomposition – nor whether the meaning of every linguistic

term corresponds to a unique intersection of such primitives (Jackendoff, 2002).2

1Since all terms can be defined in terms of each other, primitives are not privileged. While
primitives are indefinable within a system – in virtue of being primitives – they can easily be
defined outside of the system, using different primitives.

2As an historical example, it is worth mentioning generative semantics (for an overview see e.g.
McCawley, 1995), and its critics (e.g. Fodor, 1970).
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Such problems have caused certain researchers to abandon the search for primitives,

and instead focus on the compositional nature of meaning even at the lexical level

(Pustejovsky, 1995), or how the semantic, qua lingustic, system interacts with our

knowledge of the world (Jackendoff, 2002).

Another option is to try to describe meanings in non-linguistic vocabulary, such

as logic or mathematics. Since quantifiers are one of the few linguistic theories for

which there is a successful non-linguistic theory, they have been utilized in analyzing

a whole range of other linguistic constructions (Peters & Westerst̊ahl, 2006). Aside

from the most accepted extension into adverbial quantification – which has been

shown to give rise to similar electrophysiological effects as their nominal counter-

parts (Augurzky, Hohaus, & Ulrich, 2020) – they have been used to analyze tense

(Fernando, 2004, 2007) and aspect (ter Meulen, 1991), as well as attitude verbs

(Moltmann, 2003) and modals (van der Hoek & de Rijke, 1993).

This means that there is a host of phenomena that, hypothetically, should behave

similarly to quantifiers. Providing semantic automata for these quantifiers – as in,

e.g., ter Meulen (1991) – would generate predictions about the complexity of their

verification. Provided that their domain of quantification – e.g., times, events,

worlds – could be visualized in a similar manner to the concrete objects denoted by

ordinary determiners, these predictions could be tested in a comparable experimental

paradigm. The pictoral nature of Fernando’s (2004; 2007) languages for tense is a

viable candidate for such designs.

One potential problem with many of these other uses is that their resulting formal

languages are all regular, and the differences we have observed are between FSAs

and PDAs, i.e. between regular and context-free languages. While other measures

of complexity have been used, such as approximate Kolmogorov complexity (van de

Pol et al., 2019) or minimal description length (van de Pol, Lodder, van Maanen,

Steinert-Threlkeld, & Szymanik, 2021), their translation into concrete cognitive pre-

dictions is less direct. Similar concerns apply to the subregular distinctions discussed

in 6.3.3 below, that the reader may recall from 2.2.1 concern further decomposition

of complexity within the regular region of the Chomsky hierarchy. However, these

are directions worth exploring both from a formal and an experimental angle.

In fact, recent work in artificial grammar learning (AGL) using ERPs, has inves-

tigated the learning of phonological patterns, that have been shown to be subregular

(Heinz, 2018; Heinz & Rawal, 2011), to explore precisely such issues (Avcu, 2019;

Avcu, Rhodes, & Hestvik, 2019; Tsogli, Jentschke, & Koelsch, 2022). While com-

plexity have not been explicitly manipulated within experiments, varying degrees

of complexity have impacted results: when strictly local complexity increases, but

strictly piecewise complexity does not, participants did not show behavioral or neu-
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ral signs of learning (Avcu, 2019).3 This highlights some methodological problems

– i.e. are participants solving the correct learning problem – but also demonstrates

that, at the very least, there are indirect measures of the complexity of computa-

tional problems that are detectable in the evoked potential. As a consequence, if the

formal specification of learning problems (e.g. Heinz, 2016; Niyogi, 2006) associates

different complexity profiles with learning two distinct phonological patterns, it is

in principle possible to generalize the theoretical foundations of the present project

to radically different domains of linguistics, such as phonology.

6.3 Outstanding Questions

There are, however, still questions pertaining to quantifier verification that remains

unanswered. Most immediate of these is the relationship between the abstract notion

of memory from the automata theory and its precise implementation in human

brains. This will be discussed in 6.3.1. The remaining two sections will be an

attempt to connect with the two research programs that this project falls somewhat

in between. On one side, 6.3.2 deals mostly with the highly experimental ventures of

procedural semantics and the search for canonical verification procedures for certain

quantifier expressions, and, more generally, with the integration of such algorithms

into the wider context of cognition. On the other, 6.3.3 deals with the decidedly

theoretical refinement of the analysis of quantifier languages into distinct subclasses

of regular languages, and consequently of automata types.

6.3.1 The Nature of Memory

Echoing Niyogi (2006), formal algorithmic results are unlikely to accurately repre-

sent cognitive reality, but the insight gained from their mathematical certainty is

profound. It is therefore not surprising that different memory systems are involved

during quantifier verification, depending on the nature and/or complexity of the

task. However, being content with the mathematical insight is arguably an instance

of intellectual indolence, and further experimentation and computational modelling

could help shed light on what causes the differences in the evoked potential between

the two experiments.

Recall from chapter 5 that one remaining open problem is whether the concrete

implementation of the abstract automata stack memory overlaps with recollection

memory or whether the two are distinct. I suggested in 5.2, that the results from

paper 1 are consistent both with an interpretation where the component modulated

by proportional quantifiers is a late positive component (LPC), related to recollection

(Rugg & Curran, 2007), or a positive slow wave, argued to index retrieval from

3See e.g. De Santo and Rawski (2022) or Rogers et al. (2013) for an introduction to different
subregular languages.
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short-term memory (Garćıa-Larrea & Cézanne-Bert, 1998). The fact that we find

an early left anterior negativity (LAN) or sustained anterior negativity (SAN) when

modulating memory load in paper 2, seems to favor an interpretation where the

effect in paper 1 is an LPC, and that the effect in paper 2 is related to working

memory. However, this interpretation is in conflict with previous results that do not

involve recollection, but elicit comparable responses (De Santo et al., 2019; McMillan

et al., 2005, 2006; Morgan et al., 2011; Olm et al., 2014).

It is therefore pertinent to manipulate the complexity of recollection. This could

be done in a paradigm similar to that applied in paper 1, with the addition of

recollection complexity as an independent variable. This could involve increasing

the number of objects in the picture preceding the trial, either in the form of more

tokens or more types; removing the 2x2 grid structure for half of the trials; or

having half the experiment conducted in a similar fashion to those presented in the

thesis, with the same picture before every trial in a block, and having a different

picture before every trial in the other half. If the differences are not affected by

manipulating recollection complexity, then the component manipulated is plausibly

a PSW. If, on the other hand, there is an interaction between quantifier class and

recollection complexity, then a case can be made that the component is an LPC.

However, this is intertwined with another open problem. The differences we

observe between experiments – i.e. a late positivity with no additional memory task

and an early negativity under memory load – seem to be driven by task effects. As

discussed in 5.1, this can be explained in two ways: Either (1) the early negativity

obscures a later positivity, or (2) the complexity of the task forces other working

memory systems to be recruited. (1) seems to presuppose that the positivity is

related to recollection, but could also be the result of a modular working memory

(Baddeley, 2012). More problematically, its reliance on unobservables – i.e. the

concealed positivity – makes it very hard to test. A more fruitful approach would

therefore be to pursue (2). If one is able to ascertain in which situations the two

components are evoked, one might be able to gauge what memory systems are

engaged and what triggers the switch from one to the other. We already know that

the presence of a digit matching task alters the evoked potential, so a likely first

avenue is to manipulate other working memory subsystems, such as the visuospatial

scratchpad, by, e.g., making participants remember the location of a dot.

Summing up, it is timely to point out that their platonic reality notwithstanding,

formal results will only get you so far. At the level of neurobiological systems,

additional assumptions are required to make specific predictions. These assumptions

could be put to the test by systematic alternations of the paradigm presented in this

thesis. However, there are also other possiblities to consider.
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6.3.2 Procedural Semantics

As mentioned in the introductory chapter, procedural semantics views the meaning

of declarative sentences as the set of algorithms computing the extension of the sen-

tence, i.e. its truth value (Moschovakis, 2006; Muskens, 2005; Pietroski et al., 2011;

Suppes, 1982; Szymanik, 2016; Tichý, 1969; van Benthem, 1986b; van Lambalgen

& Hamm, 2005). The experiments presented herein were not designed to test this

philosophical position, but it is pertinent to point out that verification effects, at

least for proportional quantifiers, seem to be reserved for explicit verification tasks.

That being said, the model of sentence processing I argued for in chapter 5 is very

much in line with the procedural semantics view. I would therefore like to suggest

how the work presented herein can inform, as well as be informed by, procedural

semantics.

The representations upon which the algorithms are hypothesized to operate,

greatly affect the issues of complexity discussed in the present work. As mentioned

in chapters 1 and 2, the semantic automata rely on examining each and every object

denoted by the quantified noun phrase sequentially. However, the psychological

literature on quantity perception has known for a long time that this is not how

humans perceive quantities. Small numbers are recognized immediately through a

process known as subitizing (e.g. Brysbaert, 2018; Feigenson, Dehaene, & Spelke,

2004), whereas large numbers are approximated using the Approximate Number

System (ANS) (see e.g. Dehaene, 2011; Odic & Starr, 2018). Importantly, none

of these processes involve counting or inspecting objects sequentially. It has been

shown that behavioral measures are affected by the mode of presentation (Knowlton

et al., 2021; Lidz et al., 2011; Pietroski et al., 2009; Steinert-Threlkeld, Munneke, &

Szymanik, 2015), such that, e.g., the verification of ‘more than half’, but not that

of ‘most’, benefits from paired visual stimuli, i.e. that all B As and all non-B As are

immediately next to each other, with the remainder (e.g. the As that are B if ‘more

than half’ is true) being by themselves. This can be explained by the algorithm

on paired stimuli being computable by a finite-state automaton (FSA), whereas the

non-paired requires a pushdown automaton (PDA) (Steinert-Threlkeld et al., 2015).

This means that one’s conception of a visual stimuli can influence the complexity of

the algorithm.

Conversely, it has been argued that the semantics of certain quantifiers can im-

pact one’s conception of a visual scence (Hackl, 2009; Knowlton, Pietroski, Halberda,

& Lidz, 2022; Knowlton, Trueswell, & Papafragou, 2022; Lidz et al., 2011). Fuelled

by the procedural semantics idea to describe the set of algorithms computing the

extension of quantified expressions, researchers have attempted to associate certain

kinds of algorithms with specific quantifiers. In particular, Lidz et al. (2011) coined
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the Interface Transparency Thesis (ITT), according to which speakers are biased

towards a verification algorithm that mirrors the canonical specification of an ex-

pression’s truth conditions. Of particular interest are expressions that are logically

equivalent, but are seemingly associated with different verification strategies. The

original example is ‘most’ and ‘more than half’ (Hackl, 2009; Talmina et al., 2017).4

The fact that ‘most’ is not affected by paired stimuli (Lidz et al., 2011; Steinert-

Threlkeld et al., 2015) has been explained by ‘most’, rather than being a precise

notion of more than half, relying on the ANS to make an estimate as to which of

the subsets A ∪ B and A − B is the largest. More recent work has also sought to

attribute differences in the verification of universal quantifiers to algorithms operat-

ing on first- or second-order predicates (Knowlton, Pietroski, et al., 2022; Knowlton,

Trueswell, & Papafragou, 2022), or, for proportional quantifiers ‘most’ and ‘more’,

differences in their set-theoretic description (Knowlton et al., 2021).

Starting with how the present work can be informed by procedural semantics,

the two experimental avenues above can perhaps shed light on some seeming incon-

sistencies in the experimental data. Rather than being related to the recruitment

of distinct memory systems, it might be worth noting that the proportional quan-

tifiers in paper 2 were different to those in paper 1. Paper 2 explicitly targeted

‘more/less than half’ and ‘majority/minority’, as well as the comparative version of

‘most’ and ‘fewest’ (‘flest/færrest av’), rather than the proportional ‘de fleste’ and

compartive ‘færrest av’ from paper 1. Seeing as these have been found to give rise

to different verification strategies (Hackl, 2009; Knowlton et al., 2021; Lidz et al.,

2011; Pietroski et al., 2009; Steinert-Threlkeld et al., 2015; Talmina et al., 2017),

perhaps the different ERP components that were recruited could be explained by

this. In fact, Steinert-Threlkeld et al. (2015) found that only ‘more than half’ inter-

acted with working memory load in their experiment. Assuming that ‘most’ relies

heavily on the ANS and that only ‘more than half’ involves counting, it is possible

that the effect in paper 1 is recollection of the visual stimulus in order to estimate

the ratio between red and yellow circles or triangles, whereas the effect in paper 2

is an effect of counting the objects stored in short-term memory. In that event, it

is not surprising that we observe an LPC in paper 1 and a SAN or LAN in paper

2. An experiment could easily be designed to test this hypothesis: it only requires

that there be enough trials with ‘most’ and ‘more than half’ to be able to compare

them directly.

The nature of the pictorial stimuli could also be put under scrutiny. For simplic-

ity’s sake, the images in the present experiment consisted of grouped shapes that,

within each quadrant, were subitizable. Since this was a first attempt at detecting

4But see Denić and Szymanik (2022) for an argument that they are not truth-conditionally
equivalent.
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complexity differences, the most important consideration was to ensure that par-

ticipants could verify the images. Considering that different quantifiers seemingly

interact with magnitude representations differently, subsequent studies should aim

to test whether randomized or paired stimuli impact the evoked potenital. Of par-

ticular interest is the fact that the ‘more than half’ algorithm operating on pairs

is computable by an FSA (Steinert-Threlkeld et al., 2015), and should therefore

not recruit the memory resources associated with PDAs. This would provide an-

other avenue that can explore the neuropsychological consequences of the choice

of verification algorithm, and could thus inform the research program of procedu-

ral semantics. One interesting open problem is the interaction between quantifier

verification and the ANS (Knowlton et al., 2021; Knowlton, Pietroski, et al., 2022;

Lidz et al., 2011), which should be informed by the complexity theoretic notions

of approximation algorithms (Carruthers et al., 2018; van Rooij & Wareham, 2012;

van Rooij et al., 2012).

6.3.3 Subregularity and Permutation Closure

Going into further detail, it is also worth mentioning that a growing body of lit-

erature has been examining more fine-grained notions of the complexity of string

languages and their associated automata. As mentioned in 2.2.1, many scholars have

come to hypothesize subregularity – i.e. being a proper subset of regular languages

– to be a unifying feature of human language (Chandlee, 2017; De Santo & Rawski,

2022; Graf, 2012, 2017, 2019; Heinz, 2018; Heinz & Rawal, 2011). Despite previously

having had its primary application in phonology and syntax, subregular analyses

have recently been applied to generalized quantifiers. Motivated by the counterin-

tuitive fact that, e.g., ‘an even number of’ and ‘all’ have the same computational

complexity, i.e. regular, Graf (2019) demonstrates that Aristotelian and numerical

quantifiers are all tier-based strictly local (TSL), whereas parity quantifiers are not.

He further subdivides the TSL quantifiers into monotonic and non-monotonic TSL,

where only the former type seems to be instantiated as lexical determiners in natural

languages.

This demonstrates that there is more nuance in the complexity of generalized

quantifiers that could potentially be explored, and leaves the open question of

whether such nuances are detectable at the neural level. As mentioned in 6.2 above,

the learnability of subregular patterns has been demonstrated to give rise to elec-

trophysiological effects in AGL experiments, but these do have some methodological

problems (Avcu, 2019): what type of patterns are subjects looking for when they

are learning a pattern? Some patterns are very complicated if they are viewed as

strictly local (SL), but might turn out to be very simple strictly piecewise (SP) or

TSL. One advantage of quantifier verification over AGL, is that, as demonstrated
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in this thesis, the minimal complexity of the verification algorithm has been shown

to manifest in the evoked potential. A related phenomenon is the hypothesis that

numerical quantifiers should increase with higher numbers (Szymanik, 2016), which

does have some support in behavioral data (Szymanik & Zajenkowski, 2010b), or the

fact that parity quantifiers require cyclic FSAs, whereas Aristotelian and numerical

quantifiers do not. Testing whether such minor differences between subsets of FSAs

(see McNaughton & Papert, 1971; Rogers et al., 2013, for examples of such subsets)

are reflected in detectable neural responses is one potential follow-up to this study.

However, as discussed in 6.2 above, the differences between such abstract machines

have less clear cognitive counterparts; the difference between requiring or not requir-

ing memory is a clear cognitive difference in a way a cyclic or acyclic automaton is

not. On the other hand, it could shed light on the nature of the differences observed

in present experiment, by adjudicating between interpretations of the ERP compo-

nents: if similar difference waves are observed between cyclic and acyclic FSAs and

the difference between FSAs and PDAs in one of the experiments, this is an argu-

ment that it should be viewed as a generic processing cost rather than specifically

memory.

Lastly, a final point made by Graf (2019) ties in with the discussion in 6.3.2.

Recall that generalized quantifiers are, by definition, permutation invariant. How-

ever, if quantifier languages are not required to be permutation invariant, it turns

out that the languages corresponding to proportional quantifiers such as ‘most’ or

‘half’, can be described as a monotonic TSL language, and they are thus computable

by FSAs. Without going into the formalities, if you are not allowed to start or end

with non-B As for a quantifier Q(A,B), ‘most’ is true if there are no consecutive

non-B As, i.e. for every non-B A there is at least one B A. This mirrors the pairing

effect for ‘more than half’ (Lidz et al., 2011; Steinert-Threlkeld et al., 2015), and

suggests that there are interesting parallels between purely theoretical definitions

of patterns in the subregular complexity literature and the attempt in psycholin-

guistics to place representations of semantic information within the wider systems

of cognition. If anything is to be learned from the present thesis, it is precisely the

reciprocal benefit of integrating formal computer science and psycholinguistics.

6.4 Concluding Remarks

I envision this thesis to be the first step on the path of a new research program

that explores the neural consequences of formal algorithmic results. While there are

answers and borne out predictions to be found, the doors that are opened by these

answers are, potentially, far more interesting. For quantifier verification specifically,

it will be worthwhile to explore task effects as well as the impact of the choice of

quantifiers and/or visual stimuli. This will allow us to describe how the abstract
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notions of computational complexity, such as stack-memory, manifest in the recruit-

ment of concrete memory resources in human subjects, as well as how algorithms of

quantifier verification interact with other cognitive systems such as the magnitude

processing system. It might additionally provide an avenue for exploring whether

more fine-grained distinctions, such as subregular languages and their correspond-

ing subsets of finite automata, also manifest as detectable neural effects. If they

are, this opens up a host of other research areas such as examining the learning

of phonological patterns, or testing whether other semantic phenomena analyzed in

terms of generalized quantifiers or formal languages, are apt descriptions of their

cognitive reality.

An alternative avenue to explore, is whether different kinds of complexity theo-

retic analysis have the same predictive power as the minimal complexity of a compu-

tational problem. This concerns, e.g., whether algorithms are computable in linear,

logarithmic or exponential time, and applies to problems such as the travelling sales-

person problem.

However, for both the more and the less fine-grained analyses of computational

problems and their associated algorithms, the challenge to the researcher is to con-

ceptualize what their parallel in human cognition should be. As an example, consider

algorithms that are computable in linear time. These predict a linear increase in

reaction time, but the consequences for cognitive resources are much more opaque.

Since every subsystem must have a specified role for mechanistic explanation to

be possible, more theoretical work is needed in order for the translation between

computer science and cognitive science to be fruitful.
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Computational complexity explains neural differences in 
quantifier verification 
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A R T I C L E  I N F O   

Keywords: 
Natural language quantifiers 
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Semantic automata 
Picture-sentence verification 
Event-related potentials 

A B S T R A C T   

Different classes of quantifiers provably require different verification algorithms with different complexity 
profiles. The algorithm for proportional quantifiers, like ‘most’, is more complex than that for nonproportional 
quantifiers, like ‘all’ and ‘three’. We tested the hypothesis that different complexity profiles affect ERP responses 
during sentence verification, but not during sentence comprehension. In experiment 1, participants had to 
determine the truth value of a sentence relative to a previously presented array of geometric objects. We 
observed a sentence-final negative effect of truth value, modulated by quantifier class. Proportional quantifiers 
elicited a sentence-internal positivity compared to nonproportional quantifiers, in line with their different 
verification profiles. In experiment 2, the same stimuli were shown, followed by comprehension questions 
instead of verification. ERP responses specific to proportional quantifiers disappeared in experiment 2, sug-
gesting that they are only evoked in a verification task and thus reflect the verification procedure itself. Our 
findings demonstrate that algorithmic aspects of human language processing are subjected to the same formal 
constraints applicable to abstract machines.   

1. Introduction 

Quantifiers are linguistic expressions that denote quantities and 
relate sets of objects. The ability to quantify is fundamental to human 
cognition. It is therefore not surprising that quantifiers are ubiquitous in 
natural languages, logic, and mathematics. Somewhat more surpris-
ingly, given their superficial morphosyntactic diversity – ranging from 
simple determiners such as ‘all’ to multiple conjoined phrases like ‘less 
than half and more than a third’ – natural language quantifiers are 
remarkably invariant cross-linguistically (Bach et al., 1995; Keenan & 
Paperno, 2017; Matthewson, 2001) and constitute a small subset of the 
mathematically possible quantifiers (Barwise & Cooper, 1981; Keenan & 
Stavi, 1986). Furthermore, their characteristic formal properties delin-
eate learning and processing biases in quantitative tasks for humans, 
non-human primates, and machine learning algorithms alike (Carcassi, 
Steinert-Threlkeld, & Szymanik, 2021; Chemla, Dautriche, Buccola, & El 
Fagot, 2019; Hunter & Lidz, 2013; Steinert-Threlkeld & Szymanik, 2020; 
van de Pol, Steinert-Threlkeld, & Szymanik, 2019). 

For these and other reasons, quantifiers have been studied exten-
sively in theoretical linguistics, psycholinguistics, and cognitive neuro-
science. One common theme in the cognitive neuroscience literature is 

that quantifiers can give rise to different truth-conditions depending on 
the surrounding linguistic context (Freunberger & Nieuwland, 2016; 
Kounios & Holcomb, 1992; Nieuwland, 2016; Noveck & Posada, 2003; 
Urbach et al., 2015; Urbach & Kutas, 2010) or the order of the quanti-
fiers in multiply quantified sentences (Dwivedi et al., 2010; McMillan 
et al., 2013). One empirical question is whether quantified sentences are 
verified and interpreted incrementally or whether instead their inter-
pretation is delayed until the whole sentence has been parsed. Another 
question is whether incrementality interacts with negation or negative 
polarity more generally (Augurzky et al., 2020a; Freunberger & 
Nieuwland, 2016; Nieuwland, 2016; Urbach et al., 2015; Urbach & 
Kutas, 2010). 

What unifies these studies is that they all use verification paradigms. 
As will be more thoroughly discussed in Section 1.1, different classes of 
quantifiers require distinct verification procedures, and these can in turn 
be classified differently in terms of their computational complexity. The 
aims of the present study are to explicitly manipulate quantifier class in 
a verification task, to demonstrate that computational complexity plays 
a role in determining which type of algorithm is implemented in the 
verification of different classes of quantifiers, and to gather initial 
empirical information on how quantifiers are verified by the brain. 
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Aside from being relevant to the processing of quantifiers specif-
ically, the approach exemplified herein can help shed light on algo-
rithmic aspects of semantic processing more generally – an area that 
hitherto has not received sufficient attention (Baggio, 2018, 2020). 
Arguably, in order to explain the capacity to comprehend and produce 
meaningful utterances, it is not enough to know what computation is 
being carried out and which brain areas are activated when over the 
course of the computation. In line with Marr's (1982) levels of analysis in 
cognitive science, algorithms are essential in mediating between the 
computational and implementational levels, since they are restricted 
both by the nature of the computation and by what kinds of processes 
can be carried out by the physical medium of the brain (Baggio, 
Stenning, & van Lambalgen, 2016; Baggio, van Lambalgen, & Hagoort, 
2015; Embick & Poeppel, 2015; Lewis & Phillips, 2015). Regardless of 
the cognitive plausibility of truth functional semantics, verification is a 
well-defined computation, and knowing the impact of different verifi-
cation procedures on sentence processing is, at a minimum, useful in 
disentangling effects of task from effects of representation, 
structure-building, prediction, and other processes. 

Relatedly, there is a growing body of literature advocating so-called 
procedural semantics (Moschovakis, 2006; Muskens, 2005; Pietroski 
et al., 2009; Suppes, 1982; Szymanik, 2016; Tichý, 1969; van Benthem, 
1986; van Lambalgen & Hamm, 2005), where the meaning of an 
expression is a set of algorithms computing its extension, which for 
declarative sentences amounts to a model-building or verification pro-
cedure. However, the theory we test and the task we employ here are 
focused on verification, not meaning representation as such. Conse-
quently, the data cannot be used to argue for or against this philo-
sophical position about the nature of meaning or its linguistic and 
computational instantiations. 

1.1. Quantifier automata and the computational complexity of 
verification 

Originating with van Benthem's (1986) seminal paper ‘Semantic 
Automata’, the computational properties of different quantifier expres-
sions have been extensively studied (e.g. Kanazawa, 2013; Mostowski, 
1998; Szymanik, 2016). A consequence of van Benthem's work is that 
proportional quantifiers – e.g., ‘most’, ‘less than half’, ‘a third’ etc. – are 
provably more computationally complex to verify than nonproportional 
quantifiers – expressions containing, e.g., Aristotelian quantifiers like 
‘all’ and ‘some’ or numerical quantifiers like ‘three’ and ‘five’. 

Informally, verification algorithms go through the objects in the 
domain denoted by the quantified phrase sequentially in order to check 
whether the property predicated of these objects holds true. For Aris-
totelian quantifiers, this entails going through the contextually relevant 
objects one after the other and looking for a (counter)example of an 
object with(out) the predicated property; once the (counter)example is 
(not) found, it can be established whether the expression is true. To 
exemplify, when verifying a sentence like ‘All the circles are red’ in a 
domain of differently colored circles, the algorithm searches through all 
the circles until it finds a non-red circle, in which case the sentence is 
false. If a non-red circle is not found, the sentence is true. In the same 
vein, for numerical quantifiers, one counts the number of objects with the 
predicated property, and if one finds the number of objects required by 
the quantifier, the quantifier expression is true. As an illustration, 
consider the sentence ‘Three of the circles are red’ in a domain as above. 
For this sentence, the algorithm looks for red circles and counts until 
three red circles have been found. If three red circles are found, the al-
gorithm outputs true, and if not, it outputs false. Because these algo-
rithms only require paying attention to one type of object, either with or 
without the predicated property, these kinds of quantifiers can all be 
computed by a finite state automaton (FSA) and can equivalently be 
described in a regular language (Kleene, 1951). 

To verify proportional quantifiers, by contrast, one needs to enumerate 
both the objects that have the predicated property and those that do not. 

Once one has considered and classified all the objects, one compares the 
number of objects in the two sets. If the ratio of objects with the pred-
icated property to objects without it conforms to the ratio set by the 
quantifier, e.g., ‘more than half’, the expression is true. In a domain 
corresponding to the examples above, to verify a sentence like ‘most 
circles are red’ the algorithm must keep track of both the red circles and 
the non-red circles, and if the red circles outnumber the non-red circles, 
the algorithm outputs true; it outputs false if there are more non-red 
than red circles. Such verification algorithms for proportional quanti-
fiers cannot be computed by an FSA, and instead require a push-down 
automaton (PDA) with a memory component where the information 
about both types of objects can be stored. PDAs correspond to context- 
free languages (Hopcroft & Ullman, 1979, p. 116), and are thus 
strictly more complex than regular languages – and FSAs – according to 
the Chomsky hierarchy (Chomsky, 1956). For a formal description and 
textbook explanation of the different algorithms, see Szymanik (2016, 
chapter 4). 

1.2. Previous research and relevant electrophysiological effects 

Previous studies have shown that computational differences between 
quantifiers have significant cognitive effects in terms of accuracy and 
reaction time in picture-sentence verification tasks (Szymanik & 
Zajenkowski, 2009, 2010, 2011; Zajenkowski & Szymanik, 2013; 
Zajenkowski et al., 2014). Furthermore, fMRI studies (McMillan et al., 
2005; Olm et al., 2014) have found that (pre)frontal areas associated 
with working memory and executive function, notably the dorsolateral 
prefrontal cortex, have found an increase in BOLD responses for pro-
portional relative to nonproportional quantifiers in the same type of 
task. Building on these findings, verification paradigm studies of pa-
tients with neurodegenerative diseases (McMillan et al., 2006; Morgan 
et al., 2011) have found that atrophy in these regions is associated with 
decreased performance with proportional, but not nonproportional 
quantifiers. Similar effects are also found in fMRI experiments in the 
mathematical cognition literature, where bilateral frontal activation is 
associated with processing of proportions both in adaptation and 
magnitude comparison paradigms (Jacob & Nieder, 2009; Mock et al., 
2018, 2019). The same effects are found regardless of whether pro-
portions are presented mathematically or verbally, i.e., by means of a 
natural language quantifier (Jacob & Nieder, 2009). 

By contrast, previous electrophysiological studies of quantifiers have 
either considered only one class of quantifiers in each experiment 
(Augurzky et al., 2017; Augurzky et al., 2019; Augurzky et al., 2020a; 
Augurzky et al., 2020b; Kounios & Holcomb, 1992; Noveck & Posada, 
2003), or have used quantifiers from different classes as polar opposites 
(Freunberger & Nieuwland, 2016; Nieuwland, 2016; Urbach et al., 
2015; Urbach & Kutas, 2010). To our knowledge, the only exception is a 
small-scale study by De Santo et al. (2019), to be discussed below, that 
looked at differences between Aristotelian ‘some’ and proportional 
‘most’. 

Additionally, few studies have looked at sentence verification in 
relation to a picture. Spychalska et al. (2019, 2016) were only interested 
in sentence final effects of implicature violations, and showed the pic-
ture mid-sentence, immediately before the final word. This modulated 
the N400 and post-N400 positivities. The authors were able to show that 
participants’ pragmatic sensitivity had an effect on the evoked potential 
in trials where scalar implicatures were modulated. However, the design 
did not allow investigating incremental effects of verification that could 
originate at earlier points in the sentence. Hunt III et al. (2013) and 
Politzer-Ahles et al. (2013) were also interested in implicature viola-
tions, but presented pictures before each sentence. The former found 
graded N400 responses with a visual world paradigm for true, under-
informative and false sentences: false sentences elicited the strongest 
effect compared to true, whereas underinformative fell in the middle. 
Politzer-Ahles et al. (2013) looked at effects on the quantifier. In a 2 × 2 
design with ‘some’ and ‘all’ – where ‘all’ was true when ‘some’ was 
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underinformative, and false when ‘some’ was strictly true – they found 
sustained positivities for quantificational violations with ‘all’, but sus-
tained negativities for implicature violations with ‘some’. Augurzky 
et al. (2017, 2019, 2020a, 2020b) have all addressed issues of incre-
mentality. They found that, regardless of quantifier type – Aristotelian or 
proportional, in nominal, e.g., ‘all the circles’, or adverbial form, e.g., 
‘every day’ – the N400, and related truth value effects, are only found at 
the position where the sentence is disambiguated. When the presented 
linguistic material is compatible with the sentence being both true and 
false, N400 effects do not arise. The only exception to this pattern is the 
negative proportional quantifier ‘less than half’, for which the N400 
does not arise at all (see also Nieuwland, 2016; Urbach et al., 2015; 
Urbach & Kutas, 2010). In these cases, they instead found an increased 
positivity on the quantifier, which they attributed to the semantic 
complexity of the negative polarity (see e.g. Deschamps et al., 2015; Just 
& Carpenter, 1971). In all experiments, a sustained positivity was also 
found after the N400 in false trials where the truth value could not be 
known immediately, but only when participants performed a verifica-
tion task. The authors attributed this to increased attention to the 
picture-sentence mapping in complex contexts, and argue that it is a 
P600-as-P3 decision effect (Sassenhagen et al., 2014). 

De Santo et al. (2019) conducted a small-scale study (N = 8) where 
they compared proportional and Aristotelian quantifiers in a 
picture-verification task in which participants saw an array of geomet-
rical shapes while hearing a quantified sentence. The auditory stimuli 
were divided into subject and predicate segments, and presented with a 
200 ms interval between them. In the predicate segment, they found a 
small difference in the N200 for true versus false for ‘some’ sentences, 
but not for ‘most’ sentences. Furthermore, there were no differences in 
the N400, and both elicited a post-N400 positivity for false versus true 
trials, which lasted until the end of the trial for ‘most’, but not for ‘some’. 
In the subject segment, a significant positivity was found for ‘most’ 
relative to ‘some’, visible from around 300 ms and sustained throughout 
the epoch. 

Summing up, previous studies have shown that truth value relative 
to a picture does elicit the same truth value effects as verification tasks 
without pictorial material, i.e., larger N400s for false than for true 
sentences. These N400s do not arise before the truth value of the sen-
tence can be confidently determined, and they are followed by an 
increased positivity when the complexity of sentence-picture matching 
places greater cognitive demands on the decision process. Furthermore, 
sustained effects are observed earlier in the sentence, indicating that 
verification affects the processing of the entire sentence, and not just the 
final disambiguating word. This is true regardless of whether the 
complexity stems from the picture or the sentence. 

1.3. The present study 

In two ERP experiments, we sought to determine whether differences 
in the computational complexity of the verification algorithm for 
different quantifier classes are reflected online during sentence pro-
cessing. Notably, proportional quantifiers should be computationally 
more demanding, in terms of the neural responses they elicit, than 
nonproportional quantifiers, here Aristotelian and numerical quantifiers 
(Baggio, 2018; Baggio & Bremnes, 2017). The complexity differences 
between proportional and nonproportional quantifiers should be re-
flected in real-time ERP signals in an explicit verification task, and not 
when participants are only asked comprehension questions. 

Importantly, this question is on a higher level of abstraction than the 
one posed in a parallel behavioral literature, investigating specific al-
gorithms associated with specific quantifiers (Hackl, 2009; Hunter et al., 
2017; Knowlton et al., 2021; Lidz et al., 2011; Pietroski et al., 2009; 
Pietroski et al., 2011; Talmina et al., 2017; Tomaszewicz, 2011). The 
formal proofs outlined above demonstrate that, regardless of which 
specific algorithm is implemented to verify a proportional quantifier, the 
algorithm still minimally requires a push-down automaton (PDA) with a 

memory component to perform the task, thereby making it more 
computationally complex than the corresponding finite state automaton 
(FSA) algorithms for the nonproportional quantifiers. Relatedly, the 
notion of memory evoked by the automata theory is also highly abstract. 
The implication of specific types of memory resources employed by the 
brain, and therefore of specific ERP components associated with them, is 
not strictly predicted by the theory, and as such remains an open 
empirical question not addressed by the experiments presented herein. 

In the present study, participants saw images of red or yellow circles 
and triangles, and subsequently read quantified sentences about the 
contents of the picture. In the first experiment, participants had to judge 
whether the sentence was true or false of the picture, and in the second, 
they had to answer comprehension questions about the picture, the 
sentence, or both. 

We expect false sentences to elicit a sentence-final N400 type of 
response. If that is observed, we can reasonably conclude that the sen-
tence has been processed and understood. Furthermore, if effects of 
truth value are indeed detected, we can also infer that, at that stage, the 
verification algorithm has already been executed. Possible ERP differ-
ences resulting from algorithmic complexity must then be observed 
prior to the onset of the truth value effect. To establish that these effects 
are related to the verification procedure, we must rule out that these 
differences stem from other sources, in particular comprehension pro-
cesses. Thus, if different ERP effects between quantifier classes are 
observed only in experiment 1 (verification) but not in experiment 2 
(comprehension), then they can be hypothetically considered as candi-
date neural signatures of the algorithmic processes posited by the formal 
theory. 

2. Experiment 1 

2.1. Method 

2.1.1. Design 
We used a 3 × 2 design with the factors Quantifier Class (3 levels: 

Aristotelian, Numerical, and Proportional) and Truth Value (2 levels: 
True and False). Participants performed a picture-sentence verification 
task for each trial. To prevent eye movements that would affect the EEG 
recording, participants could not look at the picture while the sentence 
was presented and verified. Instead, a picture was shown before each 
sentence, at the beginning of each trial. To ensure that participants could 
memorize the picture well enough, and that memory encoding or recall 
of the picture as such would not interfere with deployment of memory 
resources for verification, the same picture was used within a block. 
Additionally, participants had the opportunity to study the picture as 
long as they wanted at the beginning of each block. Details on stimulus 
presentation, block design, and task are given below. 

In this experimental set-up, all quantifier classes require some form 
of memory in order for participants to perform the task. However, the 
automata theory shows that verification of proportional quantifiers 
further requires manipulation of items in memory, specifically 
comparing two sets of objects: this requires an additional memory 
component. This is predicted to further increase memory load, as 
compared to the other two classes. 

2.1.2. Participants 
Thirty right-handed native Norwegian speakers (13 female; mean 

age 21.53, SD = 2.58; age range 18–27), with normal or corrected to 
normal vision and no psychiatric or neurological disorders, were 
recruited from the local student community. Twenty-four participants 
(11 female; mean age 21.65, SD = 2.73; age range 18–27) met the in-
clusion criteria of having an average of at least 20 artifact-free trials per 
condition, and were included in the final analysis. All participants gave 
written informed consent and were compensated with a voucher. The 
study was approved by The Norwegian Centre for Research Data (NSD; 
project nr. 455334). 
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2.1.3. Materials 
Twelve images consisting of clusters of 2–5 red and yellow circles 

and triangles in a 2 × 2 grid were constructed. The colors red and yellow 
were chosen because their color words both end in consonants in Nor-
wegian (‘rød’ and ‘gul’, respectively), and preference for plural ‘-e’ 
congruence marking on color words ending in vowels varies within the 
population (Faarlund et al., 1997, p. 370). The location, number, and 
color of the shapes were varied pseudorandomly. Importantly, we chose 
to vary both shape and color to guarantee that participants could not 
know the truth value of the sentence before the final word. Previous 
experiments with similar set-ups (e.g. Brodbeck et al., 2016) have all 
emphasized the need for simple pictures from which quantity informa-
tion can be rapidly extracted to minimize memory encoding and sub-
sequent retrieval. This is particularly important since quantifier class is 
expected to modulate memory, and such effects would be hard to detect 
if memory load was already high in all conditions. Note that the hy-
pothesis above, derived from the formal proofs, is that proportional 
quantifiers are more difficult and require a memory component 
regardless of the cardinality of the set of objects: there is no strategy that 
can simplify the task. 

To construct the sentences, two quantifiers from each quantifier class 
were chosen. Consequently, 6 different quantifiers were used in the 
stimulus set. In order to maintain syntactic identity between sentences, 
only quantifiers that take a plural definite complement were chosen. 
Numerical quantifiers were ‘tre av’ (three of) and ‘fem av’ (five of), and 
the Aristotelian quantifiers were ‘alle’ (all) and ‘ingen av’ (‘none of’). 
‘Some’ was not chosen because it affords two interpretations: a logico- 
semantic at least one reading and a pragmatic some but not all reading 
(e.g. Levinson, 1983, p. 134). For proportional quantifiers, ‘de fleste’ 
(most) and ‘færrest av’ (the fewest) were chosen. Downward monotone 
quantifiers are less frequent than upward monotone (Szymanik & 
Thorne, 2017), but since we wanted the two quantifiers to have com-
plementary truth values, we decided to include ‘færrest av’. Another 
issue with the proportional quantifiers, is that ‘de fleste’, like ‘most’ (e.g. 
Hackl, 2009), has both a proportional and a superlative/comparative 
meaning, whereas ‘færrest av’ does not. However, since the two mean-
ings are denotationally equivalent in binary contexts, when there are 
only two alternatives, this issue was ignored. It is also important to note 
that ‘færrest av’ – in contrast to its English translation – takes a definite 
complement, and thus behaves identically to all the other quantifiers 
with respect to predicating a property of a set of objects. For an overview 
of the semantics of quantity adjectives in Germanic languages, and in 
particular the differences between the Scandinavian languages and En-
glish with respect to definiteness, see Coppock (2019). 

All sentences had the form of quantifier + shape noun + copula +
color adjective, see Table 1. Each quantifier was presented equally many 
times with all shape and color combinations in a total of 288 sentences 
(48 per quantifier and 96 per quantifier class). The sentences were 
counterbalanced according to truth value between each of twelve blocks 
with 24 trials each. Because the image remained the same within a 
block, some sentences occurred more frequently in some blocks than in 

others, and the ratio of true to false sentences differed slightly between 
blocks (range: 9–14; median: 12.5), but were evenly balanced through 
the experiment overall. The order of the sentences were randomized 
within each block. Further, we created 2 randomizations of the order of 
the blocks, and these were run both forward and backward, resulting in 
4 different orders of the blocks, to ensure that training effects were 
distributed equally across trials: the imbalance of sentence-types in the 
different blocks was counterbalanced by participants encountering them 
at different stages of the experiment in random order. 

All pictures and sentences can be found in the supplementary 
material. 

2.1.4. Procedure 
After reading the information sheets and signing the consent forms, 

participants were seated in front of a computer screen in a dimly lit, 
sound attenuated, and electrically shielded EEG booth. They were 
instructed to judge whether each sentence was true or false of the picture 
seen before each trial by using two predefined response buttons (Fig. 1). 
Which button indicated true or false was counterbalanced between 
blocks, and participants were informed of this by two squares with the 
words ‘sant’ (true) and ‘usant’ (false) on horizontally opposing sides of 
the screen, with the alternatives on the side of the screen corresponding 
to the relative placement of the response keys. This information was 
provided both at the beginning of the block and every time they had to 
make a truth value judgement. As numerical quantifier interpretation is 
known to vary between participants, they were asked to interpret these 
exactly (e.g., three and no more than three) rather than as a lower bound 
(e.g., at least three). It was especially important to ensure that all par-
ticipants interpreted the sentences in the same way, because the two 
readings have been shown to give rise to different ERP profiles (Spy-
chalska et al., 2019). The choice of the exact reading was made on the 
grounds that this reading is preferred by the majority of people (Shetreet 
et al., 2014; Spychalska et al., 2019). Finally, they were told not to blink 
or move while reading the sentences, and that any necessary such ac-
tivity could take place only while looking at the picture or when they 
saw a fixation cross. 

At the beginning of each block, after the indication of which buttons 
corresponded to true and false was provided, participants saw the pic-
ture that would be presented before each trial in that block. They were 
advised to study the picture carefully and press a button when they were 
ready to begin. Each trial began with the presentation of the picture for 
4 s. The picture was followed by a 500 ms fixation cross and 500 ms of 
blank screen. Subsequently, the sentence was presented one word at a 
time for 400 ms with a 400 ms blank screen onset delay. The quantifier 
was always presented as one expression and on a single screen frame, 
even if it was not a single syntactic word. This was done in order to make 
the length of every trial identical, which was necessary to be able to 
compare verification procedures. After the sentence had been presented, 
the same fixation cross and blank screen followed, before participants 
had to press a button to indicate whether the sentence was true or false. 
Once they had responded, or if they had not responded for 4000 ms, a 
new trial started immediately. When they had completed all 24 trials in 
the block, the experiment was paused and the participant had to press a 
button to begin the next block. Consequently, participants were free to 
determine the length of the break themselves. Each experimental session 
lasted between 1:10 and 1:20 hours, including breaks. 

2.1.5. EEG-recording 
EEG signals were recorded from 32 active electrodes (Fp1, Fp2, F7, 

F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, TP9, CP5, CP1, 
CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, and PO10), using 
the actiCAP system by Brain Products GmbH. The implicit reference was 
placed on the left mastoid, and all channels were re-referenced off-line 
to the averaged mastoids. EEG data were sampled at 1000 Hz using a 
1000 Hz high cutoff filter and a 10 s time constant. Impedance was kept 
below 1 kOhm across all channels throughout the experiment. 

Table 1 
Experiment sentences.  

Quantifier Shape Copula Color 

De fleste    
Most of    
Færrest av sirklene  røde 
The fewest of the circles  red 
Tre av    
Three of  er  
Fem av  are  
Five of    
Alle trekantene  gule 
All of the triangles  yellow 
Ingen av    
None of     
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2.1.6. Data analysis 
Accuracy and reaction time data were collected. The principal 

function of accuracy in this experiment was to ensure that participants 
were actually correctly verifying the sentences. Reaction times were 
primarily gathered in order to compare our study to previous behavioral 
experiments, but as there was a 1400 ms delay between the presentation 
of the final word and the response due to the fixation cross, it was 
acknowledged that they would not be directly comparable. The accuracy 
and reaction time data were subjected to mixed effects logistic and linear 
regression, respectively, using the glmer function of the lme4 package 
(Bates et al., 2015) in R. Quantifier class and truth value were fixed 
effects and the models had random intercepts by participant. We did not 
include random intercepts by item, since aside from the experimental 
manipulation (i.e. replacing the quantifier) the experimental stimuli 
were identical. As a consequence, the variance between items is not 
random, but is captured by a fixed effect. For both fixed effects, model 
comparison was performed. 

EEG data were analyzed using FieldTrip (Oostenveld et al., 2011). At 
the quantifier, at the noun completing the noun phrase, and at the 
sentence-final adjective, 1000 ms epochs were extracted, including a 
200 ms prestimulus interval that was used for baseline correction, and 
re-referenced to the averaged mastoids. Using automated artifact 
rejection, any trial in which one or more electrodes exceeded ±150 μV 
relative to baseline were rejected. Additionally, trials including eye 
movements were excluded by thresholding the z-transformed value of 
the preprocessed raw data from Fp1 and Fp2 in the 1–15 Hz range. The 
remaining trials were subsequently low-pass filtered at 30 Hz. Partici-
pants that had an average of fewer than 20 out of 24 trials per condition 
were excluded from the analysis. 6 participants did not meet these 
criteria. 

ERPs were computed for each sentence segment by averaging all 
trials in one condition, that is, a sentence segment by quantifier by truth 
value. The same procedure was used to compute ERPs for collapsed 
conditions: sentence segment by quantifier class, truth value at the final 
word, and quantifier class by truth value at the final word. Numerical 
and Aristotelian quantifiers were computed both as individual classes 
and as a collapsed class. Because the quantifier was presented in a single 
frame, quantifiers differed both in length, frequency, and to a certain 
extent morphology and syntax: any differences here might be caused by 
small saccadic eye-movements, frequency, or ease of comprehension. In 
order to avoid these confounds, we only analyzed the parts of the sen-
tence where participants were presented with identical linguistic ma-
terial, so that the only difference between them was based on the 
algorithm being computed. 

The ERPs were analyzed using non-parametric cluster-based statis-
tics (Maris & Oostenveld, 2007), with alpha thresholds at 0.05 for both 
sample and cluster level. To assess differences between conditions, each 
channel-time pair (or sample) in two conditions were compared by 
means of a t-test. If the results of this test were significant at the 0.05 
alpha level in at least 2 neighbouring channels and 2 neighbouring 
time-points, these channel-time pairs were made into a cluster, and the 
t-values of all channel-time pairs were summed. To assess statistical 
significance at the cluster-level, p-values were estimated using Monte 

Carlo simulations. In a cluster, all participant level channel-time pairs 
across conditions were collected into a single set which was then 
randomly partitioned into two subsets. This procedure was repeated 
1000 times. The p-value was estimated by the number of partitions in 
which the test statistic was larger than in the observed data. In each case, 
the output is a set of (possibly empty) spatio-temporal clusters in which 
a pair of conditions are significantly different: we report the Tsum, size (S) 
and estimated p-values in the highest-ranked clusters. For additional 
details, see Maris and Oostenveld (2007). 

2.2. Results 

2.2.1. Behavioral results 
Overall accuracy was high (mean = 0.945, SD = 0.229), and even 

within groups all means were above 0.9 (see Table 2 for descriptive 
statistics). When fitted to a mixed effects logistic regression model with 
accuracy as a binomial dependent variable and random intercepts by 
participants (see Table 3), β estimates revealed that participants were 
significantly (p < 0.0001) less accurate with both proportional and nu-
merical quantifiers relative to Aristotelian quantifiers. The effect of truth 
value was not significant (p = 0.9). We then re-fitted the models without 
one of the fixed effects, and we compared the re-fitted models to the full 
models by means of an ANOVA. Removing condition led to a signifi-
cantly poorer model (χ2 = 103.17, p < 0.0001), whereas removing the 
effect of truth value did not significantly impact model fit. 

Response times were fast both in general (mean = 659.8 ms, 
SD = 566.6) and across quantifier classes (see Table 2). A mixed effects 
linear regression model was fitted to the data with random intercepts by 
participants (see Table 4). It revealed a significant increase in reaction 
time for numerical (p = 0.005) and proportional (p < 0.0001) quanti-
fiers relative to Aristotelian quantifiers. True sentences also elicited 
significantly (p = 0.035) faster responses than false sentences. Results of 
the same type of model comparison as for the logistic regression above, 
indicated that both quantifier class (χ2 = 23.34, p < 0.0001) and truth 
value (χ2 = 5.194, p = 0.023) contributed to explaining the variance in 
reaction time. 

2.2.2. EEG results 

2.2.2.1. Sentence-final effects: adjective. We first consider ERP effects at 
the sentence-final adjective. This is the earliest point in time at which 
participants can determine with confidence whether a sentence is true or 
false. We therefore expect that neural responses at the adjective will 
show sensitivity to truth value. Overall, false trials show a more 

Fig. 1. Structure of a single trial from experiment 1. Trial structure was the same in experiment 2, except that the true/false (sann/usann) screen was replaced by a 
comprehension question (4000 ms) followed by a maximum 4000 ms interval within which the participant could produce an answer. 

Table 2 
Accuracy and response times, Experiment 1.   

Accuracy Response time 

Quantifier class Mean SD Mean SD 

Aristotelian 0.979 0.143 623.3 507.7 
Numerical 0.915 0.279 662.7 575.4 
Proportional 0.939 0.238 694.0 610.6  
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negative-going complex ERP response than true trials, largely similar 
across quantifier classes (Fig. 2). Statistical analyses of ERP effects in the 
comparison between false and true trials, collapsing across quantifier 

classes, show a large negative cluster between 200 and 500 ms from 
adjective onset with a broad scalp distribution (first-ranked cluster, 
NEG1: Tsum = − 28189.93, S = 5631, p < 0.001) and a smaller negative 
cluster between 600 and 800 ms (second-ranked cluster, NEG2: 
Tsum = − 6246.91, S = 2123, p = 0.019; Fig. 3). The effect is also present 
for each quantifier class taken separately (Aristotelian, first-ranked 
cluster, NEG1: Tsum = − 41153.75, S = 10532, p < 0.001; numerical, 
first-ranked cluster, NEG1: Tsum = − 15925.43, S = 4123, p = 0.002; 
proportional, first-ranked cluster, NEG1: Tsum = − 6389.83, S = 2136, 
p = 0.012; Fig. 3). These were the only clusters in which the associated 
Monte Carlo p-values are below the α = 0.05 threshold. The decreasing 
cluster sizes (S) and cluster-level Tsum statistics from Aristotelian to 
numerical to proportional indicate that the size of the truth value effect 
in ERPs varies accordingly, with the largest effect observed for Aristo-
telian quantifiers and the weakest for proportional quantifiers. 

An inspection of ERP waveforms (Fig. 2) provides further informa-
tion on the nature of these effects and their possible underlying physi-
ology. ERP waveforms do not differ between conditions in the first 
200 ms after adjective onset, up to and including the N100-P200 com-
plex. From about 200 ms, waveforms differ qualitatively between false 
and true trials, and these qualitative differences are modulated by the 

Table 3 
Logistic regression on accuracy, Experiment 1.  

Condition β SE z p 

Intercept 3.9402 0.1819 21.659 < 0.0001 
Numerical − 1.4870 0.1636 − 9.092 < 0.0001 
Proportional − 1.1107 0.1698 − 6.540 < 0.0001 
True 0.0134 0.1065 0.126 0.9  

Table 4 
Linear regression on response times, Experiment 1.  

Condition β SE t df p 

Intercept 638.291 54.267 11.762 24.84 <0.0001 
Numerical 41.847 15.019 2.786 6806.99 0. 0054 
Proportional 72.404 15.042 4.813 6806.99 <0.0001 
True − 27.991 12.282 − 2.279 6806.99 0.0227  

Fig. 2. Grand-average ERP waveforms from 9 selected channels, time locked to the onset of the sentence-final adjective (0 ms) in experiment 1. True trials are shown 
in black, false trials in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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quantifier classes. All true trials present a clear P300 component, 
particularly visible over posterior channels (Fig. 2, black lines). The 
P300 component appears largest for true trials with Aristotelian quan-
tifiers and smallest for true trials with proportional quantifiers, with 
numerical quantifiers falling in between. These differences persist 

throughout the epoch (Fig. 2). In direct comparisons between true trials 
across quantifier classes, we only found a marginal effect for the first- 
ranked cluster in the contrast between Aristotelian and proportional 
quantifiers (Tsum = 2081.42, S = 806, p = 0.072), and no effects for 
Aristotelian vs numerical or numerical vs proportional. These data 

Fig. 3. ERP effects of truth value (False-True) across quantifier classes, time locked to the onset of the sentence-final adjective (0 ms) in experiment 1. Raw effect 
waveforms (left column) are displayed along with contour maps of sample-level statistics (middle column) and raster plots of cluster-level statistics (right column). 
Clusters with an associated p-value below the specified threshold (α = 0.05) are shown in blue shades; all other clusters (gray shades) were statistically not sig-
nificant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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indicate that verification strategies at the sentence-final word for true 
trials do not differ, in terms of underlying physiology, between quanti-
fier classes. 

ERP waveforms appear qualitatively different in false trials. All false 
trials present a visible rising flank of the N400 component (Fig. 2, red 
lines) or possibly of an N200-N400 complex. After 300 ms from adjec-
tive onset, waveforms from false trials show a positive-going deflection: 
this coincides temporally with the P300 in true trials, suggesting that a 
P300 wave may overlap with the peak and the falling flank of the N400 
component, rendering its characteristic features less visible here. 
Importantly, from around 300 ms, the waveforms for false trials diverge 
between the quantifier classes. They pattern together in false trials with 
Aristotelian and numerical quantifiers, showing more negative voltage 
values overall and no differences between them (no positive or negative 
clusters with a significant effect). Differences were found between 
Aristotelian and proportional quantifiers (first-ranked cluster: 
Tsum = − 5013.65, S = 1635, p = 0.015) and between numerical and 
proportional quantifiers (first-ranked cluster: Tsum = − 3969.17, 
S = 1394, p = 0.034), indicating that proportional quantifiers are asso-
ciated with a more positive-going deflection in ERPs than both 

Aristotelian and numerical. These results suggest that verification stra-
tegies at the sentence-final word for false trials differ, in terms of un-
derlying physiology, between proportional quantifiers and Aristotelian- 
numerical quantifiers. 

2.2.2.2. Sentence-internal effects: noun. We now consider ERP effects at 
the sentence-internal noun position. This is the earliest point in time at 
which participants can effectively initiate the verification process, 
recalling from memory the content of the picture, storing in memory the 
content of the sentence, and integrating the two. We therefore expect 
that neural responses at the noun will show sensitivity to the compu-
tational complexity of the different quantifier classes, with proportional 
quantifiers resulting in qualitatively different ERP responses than Aris-
totelian and numerical quantifiers. At the noun, we observed diverging 
ERP responses between the quantifier classes following the N100-P200 
complex. Numerical quantifiers exhibit a more negative-going ERP 
response throughout the epoch, proportional quantifiers elicit a more 
positive-going response, and Aristotelian quantifiers tend to fall between 
the two (Fig. 4). Direct comparisons between numerical and Aristotelian 
quantifiers reveal only a marginal ERP effect in one small negative 

Fig. 4. Grand-average ERP waveforms from 9 selected channels, time locked to the onset of the sentence-internal noun (0 ms) in experiment 1. Trials from nouns 
following Aristotelian quantifiers are shown in black, blue is numerical quantifiers, and red is proportional quantifiers. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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cluster (first-ranked cluster, NEG1: Tsum = − 2193.62, S = 814, 
p = 0.081; Fig. 5). In contrast, we found larger positive clusters in the 
comparisons between proportional and Aristotelian quantifiers (first- 
ranked cluster, POS1: Tsum = 3183.25, S = 1237, p = 0.041), propor-
tional vs numerical quantifiers (first-ranked cluster, POS1: 

Tsum = 3231.82, S = 1177, p = 0.040), and proportional vs numerical 
and Aristotelian collapsed (first-ranked cluster, POS1: Tsum = 5888.53, 
S = 2225, p = 0.019; Fig. 5). This positive ERP shift, driven by propor-
tional quantifiers relative to the two other classes, is largest after 600 ms 
from noun onset, both in terms of voltage values and statistically. Its 

Fig. 5. ERP effects of pairwise comparisons between quantifier classes, time locked to the onset of the sentence-internal noun (0 ms) in experiment 1. Raw effect 
waveforms (left column) are displayed along with contour maps of sample-level statistics (middle column) and raster plots of cluster-level statistics (right column). 
Clusters with an associated p-value below the specified threshold (α = 0.05) are shown in yellow shades; all other clusters (gray shades) were statistically not 
significant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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temporal profile and posterior distribution (Fig. 5, contour plots of 
sample-level statistics) appear more consistent with a P600 effect than 
with earlier positivities, such as the P300. 

2.3. Interim discussion 

The sentence-final negative effect of truth value revealed that par-
ticipants are correctly performing the task. The negativity was also 
modulated by Quantifier Class, such that the largest effect was found for 
Aristotelian and the smallest for proportional, with numerical quanti-
fiers in between. Furthermore, while there were no significant differ-
ences between the classes in true trials, proportional quantifiers differed 
from the other two in false trials. Notably, we observed that, from 
around 300 ms, proportional quantifiers are more positive than Aristo-
telian and numerical. These results are comparable to the effects from 
Augurzky et al. (2017) in that the negative effect is somewhat earlier 
than a standard N400, and the condition that is predicted to be more 
complex gives rise to a post-N400 positivity. Since a truth value effect 
presupposes that a verification procedure has been performed, we have 
no reason to believe that these effects reflect the verification procedure 
while it is taking place. Rather, they are more likely an effect of verifi-
cation complexity on subsequent cognitive processes, such as 
task-relevant attentional or decision processes (Augurzky et al., 2017; 
Sassenhagen et al., 2014). 

If participants have already established sentence truth value at the 
final word, as our evidence indicates, then algorithmic verification dif-
ferences should be observed earlier in the sentence. Indeed, we found 
that proportional quantifiers differed significantly from the other two 
classes, showing a broadly distributed positivity. The effect was largest 
for proportional quantifiers relative to the other two classes collapsed, 
but is also clearly observed between proportional quantifiers and Aris-
totelian and numerical individually. This effect appears consistent with 
a P600, both spatially and temporally. Because the ERP is recorded from 
the onset of the noun, where the participants were presented with 
identical linguistic material, the effect cannot stem from the noun itself. 
This leaves three options: it can be (1), an attentional or decision effect 
of the same kind observed at the final word; (2) an effect of the syn-
tactosemantic combinatory procedure, such as building a compositional 
representation of the noun phrase or the sentence as a whole (Fritz & 
Baggio, 2020, 2021); or (3) an effect reflecting algorithmic verification 
differences between proportional and nonproportional quantifiers. It 
seems unlikely that participants would initiate decision making pro-
cesses this early in the sentence – recall that such effects have previously 
only been observed when truth value can be unambiguously deter-
mined, and this only happens at the final word in the current set-up. 
Regarding (2), it has been claimed (Hackl, 2009) that ‘most’ is syntac-
tically derived from its root adjective form ‘many’ and superlative 
morphology, thus creating a more complex noun phrase than the other 
classes, which both contain proper determiners rather than derived 
adjectives. If this is the case, then this could be a P600 integration or 
composition effect (Baggio, 2021; Brouwer & Hoeks, 2013). However, it 
is also consistent in distribution with the LPC, a centro-parietal posi-
tivity that peaks around 600 ms, associated with decision-relevant 
memory retrieval (Hubbard et al., 2019; Ratcliff et al., 2016; Rugg 
et al., 1998; Yang et al., 2019). This would be in line with the predictions 
of the automata theory, where the difference between the proportional 
and nonproportional quantifiers is precisely a memory process. 

Despite these arguments, it is not possible to assess which of the 
above interpretations is the correct one just on the basis of data from 
experiment 1. We therefore conducted a second experiment, without an 
explicit verification task, to determine whether the effects persist when 
verification is no longer required, but participants still have to view the 
images and read the sentences. Importantly, if the positivity on the noun 
is a syntactosemantic combinatory effect, it should still be seen when 
participants read and comprehend the sentences. Similarly, the post- 
N400 decision effect on false sentence completions with proportional 

quantifiers should also disappear, as the complexity of the task remains 
constant between all three quantifier classes, and so no additional 
attentional demands are placed on participants. 

3. Experiment 2 

3.1. Method 

3.1.1. Participants 
Twenty-seven (14 female; mean age 23.53, SD = 3.55; age range 

19–34) participants were recruited from the same student community as 
in experiment 1. Twenty-four participants (12 female; mean age 23.21, 
SD = 3.46; age range 19–34) met the inclusion criteria and were 
included in the final analysis. All participants gave written informed 
consent and were compensated with a voucher. The study was approved 
by The Norwegian Centre for Research Data (NSD; project nr. 455334). 

3.1.2. Materials 
The picture and sentence stimuli were identical to those in experi-

ment 1, as was the order of presentation both within and across blocks. 
In addition, we constructed comprehension questions that concerned 
either the picture, the sentence or both. To ensure that participants were 
paying as much attention to both types of stimulus, half the questions 
included questions about both the sentence and the picture, and the 
other half contained an even number of questions about either. The 
sentence questions were of the form ‘Er setninga en påstand om (quan-
tifier/adjective) shape?’ (Is the sentence a claim about (quantifier/adjective) 
shape?), whereas the questions about the picture asked ‘Er det adjective 
shape på bildet?’ (Are there adjective shape in the picture?). The questions 
about both were of the same form as the picture questions, but with the 
possible omission of the adjective: ‘Er det (adjective) shape både på bildet 
og i setninga?’ (Are there (adjective) shape both in the picture and in the 
sentence). Importantly, the questions about the picture and about both 
the picture and the sentence could not contain reference to the quanti-
fier, as this could trigger explicit verification of the sentences. This 
meant that there was more variation in the questions about the sentence, 
than in the other two categories. The questions were balanced according 
to truth value and distributed evenly across the quantifier classes. 
However, like in experiment 1, due to the nature of the images, it was 
not possible to balance the truth value within each block completely, nor 
avoid repeating the same questions multiple times for some images. All 
questions can be found in the supplementary material. 

3.1.3. Procedure 
The procedure replicated as much as possible the procedure in 

experiment 1. Participants sat in the same booth and used the same 
response buttons, received the same information at the beginning of 
each block, and had the same opportunity to take breaks. They also 
received the same instructions prior to the experiment, but the expla-
nation of the task necessarily differed. The block and trial structure was 
essentially the same except that, after the sentence was presented, par-
ticipants saw the comprehension question for 4000 ms, before they had 
to answer it with the same time-constraint as in experiment 1. This 
meant that the experimental sessions took approximately 20 min longer. 

3.1.4. EEG-recording 
There were no differences in EEG recording between experiments. 

3.1.5. Data analysis 
EEG data were processed and analyzed in the same fashion as in 

experiment 1. For the behavioral data, we constructed comparable 
mixed effects logistic and linear regression models as in experiment 1, 
for the accuracy and reaction time data, respectively. The only differ-
ence was that, in addition to quantifier class and sentence truth value, 
the question type – about the picture, the sentence, or both – and 
whether the question required an affirmative or negative answer, were 
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added as fixed effects. 

3.2. Results 

3.2.1. Behavioral results 
Also in this experiment accuracy was high (mean = 0.934, 

SD = 0.247). A mixed effects logistic regression model with accuracy as 
a binomial dependent variable, random intercepts by participant and 
question type, question truth value, quantifier class and sentence truth 
value as fixed effects were fitted to the data. The model revealed that 
participants were significantly (p < 0.0001) more accurate with ques-
tions that only concerned the picture, relative to questions about both 
picture and sentence, and that they were marginally more accurate 
(p = 0.038) when the sentence contained a numerical compared to an 
Aristotelian quantifier. All other β-estimates were not significant. 

Participants also responded quickly to the comprehension questions 
(mean = 654.9 ms, SD = 569.8). We fitted a mixed effects linear 
regression with the same parameters as in the logistic regression above 
to the data. Reaction times were lower when the question only con-
cerned the picture (p < 0.0001) or the sentence (p = 0.003) compared to 
both, when the question required an affirmative as opposed to a negative 
answer (p = 0.036), and when the sentence contained a proportional 
rather than an Aristotelian quantifier (p < 0.001) (see Tables 5–7). 

3.2.2. EEG results 

3.2.2.1. Sentence-final effects: adjective. In experiment 2 there is no 
explicit verification task. Participants had to answer questions about the 
picture or the sentence, and establishing the truth value of the latter was 
never required to perform the task. However, participants might still 
covertly track the truth and falsehood of sentences, to the extent that 
cognitive resources, not expended in the main comprehension task, are 
available for implicit verification. If covert truth tracking indeed occurs, 
ERP signals at the sentence-final adjective should still show sensitivity to 
truth value. Overall, collapsing over the quantifier classes, false trials 
result in more negative-going ERPs at the adjective than true trials. This 
negative cluster shows a similar temporal and spatial distribution to its 
counterpart in experiment 1, but is weaker statistically (first-ranked 
cluster, NEG1: Tsum = − 5204.02, S = 1860, p = 0.011; Figs. 5 and 6). 
Moreover, and most importantly, it is only observed in the comparisons 
between false and true trials in Aristotelian (first-ranked cluster, NEG1: 
Tsum = − 2948.82, S = 1119, p = 0.040) and numerical quantifiers (first- 
ranked cluster, NEG1: Tsum = − 3741.65, S = 1340, p = 0.018), but not 
in proportional quantifiers, where the effect is absent (the three highest- 
ranked clusters are all positive clusters, but none has an associated p- 
value below threshold; Fig. 7). The negativity observed in experiment 1 
in the contrast between false and true trials with proportional quanti-
fiers is here not elicited. These results indicate that implicit verification, 
or covert tracking of the truth and falsehood of sentences, may still occur 
in either true or false trials, or both, with Aristotelian and numerical 
quantifiers, but it does not occur for proportional quantifiers. 

3.2.2.2. Sentence-internal effects: Noun. ERP results from the sentence- 

final word in experiment 2 suggest that, in a comprehension task that 
does not require verification, participants do not compute the truth 
values of sentences containing proportional quantifiers. If this is correct, 
and if the positivity observed at the sentence-internal noun position for 
proportional quantifiers in experiment 1 reflects the complexity of the 
verification process, then that effect should disappear in the same 
contrast in experiment 2. That was indeed what we found at the noun 
position. As in experiment 1, ERP waveforms appear more negative for 
numerical than for Aristotelian quantifiers (Fig. 8), however there were 
no significant negative or positive clusters for that comparison specif-
ically (Fig. 9). Contrary to experiment 1, where proportional quantifiers 
resulted in positive effects compared to both Aristotelian and numerical 
quantifiers, such effects are absent in experiment 2: there are no visible 
waveform differences between proportional quantifiers and the other 
two classes (Fig. 8) and no negative or positive clusters with associated 
p-values below the specified threshold (Fig. 9). These results indicate 
that implicit verification of sentences containing proportional quanti-
fiers does not happen in experiment 2 (missing sentence-final effect of 
truth value) and is not even attempted (missing sentence-internal effect 
of quantifier class). These conclusions support the hypothesis that the 
positivities observed at the noun and at the adjective in experiment 1 
reflect the computational complexity of the verification process for 
sentences containing proportional quantifiers. 

3.3. Interim discussion 

We observed sentence-final negative effects for false versus true 
completions for Aristotelian and numerical quantifiers, albeit smaller 
and statistically less robust than in experiment 1. By contrast, the 
negativity on proportional quantifiers disappeared completely. The data 
therefore suggest that with Aristotelian and numerical quantifiers, par-
ticipants are still able to track truth value even when not explicitly 
verifying the sentence, but they are not with proportional quantifiers. 
This may be explained by the algorithm for proportional quantifier 
verification being too complex to deploy when it is not strictly task 
relevant: the working memory resources required by the proportional 
verification algorithm are not available because they are allocated in the 
main task. This is further evidenced by the absence of sentence internal 
effects at the noun. An interesting side effect of participants not verifying 
sentences with proportional quantifiers is that it makes them faster at 
responding to the comprehension question. Since the more complex 
verification procedure is not performed at all, participants have more 
cognitive resources to devote to the experimental task when reading 

Table 5 
Accuracy and response times, Experiment 2.   

Accuracy Response time 

Question type Mean SD Mean SD 

Both 0.920 0.272 682.8 606.7 
Picture 0.974 0.158 614.3 498.4 
Sentence 0.924 0.265 640.0 558.2 

Quantifier class     
Aristotelian 0.928 0.259 674.1 602.8 
Numerical 0.944 0.230 666.9 581.2 
Proportional 0.932 0.253 623.8 521.4  

Table 6 
Logistic regression on accuracy, Experiment 2.  

Condition β SE z p 

Intercept 2.4918 0.1742 14.305 < 0.0001 
Picture Question 1.2251 0.1656 7.399 < 0.0001 
Sentence Question 0.0836 0.1125 0.743 0.4573 
Question True 0.0693 0.1000 0.693 0.4886 
Numerical 0.2586 0.1244 2.079 0. 0376 
Proportional 0.0941 0.1187 0.793 0. 4280 
Sentence True − 0.0771 0.0996 − 0.775 0.4386  

Table 7 
Linear regression on response times, Experiment 2.  

Condition β SE t df p 

Intercept 719.479 46.924 15.333 27.776 < 0.0001 
Picture Question − 72.638 15.668 − 4.636 6807.004 < 0.0001 
Sentence Question − 46.773 15.711 − 2.977 6807.007 0.0029 
Question True − 26.989 12.850 − 2.100 6807.008 0. 0357 
Numerical − 7.147 15.792 − 0.453 6807.005 0. 6509 
Proportional − 53.745 15.757 − 3.411 6807.005 0. 0007 
Sentence True 0.060 12.794 0.005 6807.014 0.9963  
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proportional quantifier sentences than they do when they are simulta-
neously reading and verifying nonproportional sentences. This post hoc 
explanation of the decrease in reaction time also supports our inter-
pretation of the cognitive process manifested in the evoked potentials. 
Finally, as predicted, the post-N400 positivity for proportional quanti-
fiers in false trials also disappeared, further strengthening the view that 
this positivity is an attentional or decision effect. 

4. General discussion 

Overall, we found that computational complexity, as measured by 
algorithmic verification differences, impacts neural activity during 
sentence processing. When participants had to perform an explicit 
picture-sentence verification task (experiment 1), we found a negativity 
in the N200-N400 time-window at the final word. The effect of false 
versus true trials is larger for Aristotelian (e.g. ‘all’) than for propor-
tional quantifiers (e.g. ‘most’), while numerical quantifiers (e.g. ‘three 
of’) fall in between: this finding is beyond the predictive scope of the 
automata theory of quantifier verification, but it shows that different 
quantifier classes have specific processing consequences at various 
stages of verification. With a comprehension question task (experiment 

2), the truth value effect is attenuated for Aristotelian and numerical 
quantifiers, and disappear completely for proportional quantifiers. 
Additionally, proportional quantifiers were significantly more positive 
than the other two classes, both individually and collapsed, on the noun 
completing the subject noun phrase in the verification experiment. No 
such effect was found in the comprehension experiment, indicating the 
effect is due to verification and not to syntactosemantic differences 
relating to composition as per Hackl (2009). 

These ERP effects can be interpreted in light of the previous litera-
ture. Most saliently, this is the same pattern observed with the auditory 
stimuli over pictorial contexts by De Santo et al. (2019). They found a 
positivity for ‘most’ relative to ‘some’ on the subject segment, and a 
larger positivity in false trials on the predicate segment. Importantly, we 
also observed differences in the size of the N200-N400 negativity, which 
De Santo et al. (2019) did not. This could be a power-issue, as their study 
only had a small number of participants, but could also be due to the 
mode of presentation: their participants could verify the sentence while 
looking at the picture, whereas our participants had to recall the image 
from memory. Additionally, serial visual presentation of sentences is 
known to elicit different neural responses than auditory stimuli 
(Freunberger & Nieuwland, 2016). Since no other studies have 

Fig. 6. Grand-average ERP waveforms from 9 selected channels, time locked to the onset of the sentence-final adjective (0 ms) in experiment 2. True trials are shown 
in black, false trials in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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compared different classes of quantifiers using EEG, a graded N400 ef-
fect could not have been observed. Particularly worthy of consideration 
is the fact that negative quantifiers – like ‘the fewest’ in this study – have 
been found not to give rise to N400 effects (Augurzky et al., 2020a; 
Nieuwland, 2016; Urbach et al., 2015; Urbach & Kutas, 2010). One 

possibility is therefore that this is what is driving the reduced 
N200-N400 effect for proportional quantifiers, as this class contained 
both a positive and a negative quantifier. However, even if this is the 
case, the fact that the N200-N400 effect is graded, i.e., largest for Aris-
totelian, smaller for numerical, and smaller yet for proportional, 

Fig. 7. ERP effects of truth value (False-True) across quantifier classes, time locked to the onset of the sentence-final adjective (0 ms) in experiment 2. Raw effect 
waveforms (left column) are displayed along with contour maps of sample-level statistics (middle column) and raster plots of cluster-level statistics (right column). 
Clusters with an associated p-value below the specified threshold (α = 0.05) are shown in blue shades; all other clusters (gray shades) were statistically not sig-
nificant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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remains to be explained. 
Another issue with the observed N200-N400 negativity is its latency. 

Like Augurzky et al. (2017) (see also Knoeferle et al., 2011; Vissers et al., 
2008), the negativity observed for false trials is earlier than traditional 
N400s. It is therefore possible that it is a N2b (D’Arcy et al., 2000; 
Wassenaar & Hagoort, 2007), reflecting a mismatch between the active 
representation of the picture and the sentence. Early onset N400 effects 
have been demonstrated when semantic expectancy is very high (Van 
Petten et al., 1999), such as in the context of a picture (Vissers et al., 
2008). Since both of these interpretations require the construction of a 
model or mental representation of the picture and the sentence, the 
argument made in the following does not rely on which of these in-
terpretations turns out to be correct. 

More generally, our results are consistent with and similar to pre-
viously observed ERP effect patterns. As in Augurzky et al. (2017, 2019, 
2020a, 2020b), the more complex task – in our work, verifying pro-
portional quantifiers; in their work, more complex pictorial stimuli – 
gave rise to a late positivity at the disambiguating position that only 
occurred in the verification task and that is thus plausibly related to an 
increase in decision complexity. The positivity at the noun also has 

antecedents in the literature, whether it be for semantic violations 
(Politzer-Ahles et al., 2013) or the increase in complexity due to nega-
tive polarity (Augurzky et al., 2020a). 

Our results are best explained by a procedure in which participants 
are building a model verifying the sentence on-line (Baggio, 2018; Clark, 
1976; Clark & Chase, 1972, 1974; Johnson-Laird, 1983; Just, 1974; Just 
& Carpenter, 1971; van Lambalgen & Hamm, 2005; Zwaan & Radvan-
sky, 1998). Note that alternative explanations, for example in terms of 
visual context effects (Knoeferle et al., 2011; Vissers et al., 2008), also 
presuppose the construction of a model. This is evidenced by the 
N400-like negativity in false sentences relative to true, which pre-
supposes that a verification procedure – building a model of the sentence 
– has taken place. Interestingly, this negativity appears to be modulated 
by the complexity of the verification algorithm in that the more complex 
the verification procedure, the smaller the negativity. As the N400 is 
known to be modulated by probability in a context, this could imply that 
participants are less able to predict, or less confident of, the final word 
for proportional quantifiers, an option further substantiated by the 
positivity following the N400 in false trials for proportional quantifiers. 
Crucially, this positivity can be argued to be a decision effect reflecting 

Fig. 8. Grand-average ERP waveforms from 9 selected channels, time locked to the onset of the sentence-internal noun (0 ms) in experiment 2. Trials from nouns 
following Aristotelian quantifiers are shown in black, blue is numerical quantifiers, and red is proportional quantifiers. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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increased cognitive demands (Augurzky et al., 2017; Sassenhagen et al., 
2014), particularly as this effect disappears when the decision 
complexity is kept constant in the comprehension question experiment. 
The decreased certainty for proportional quantifiers may stem from the 
fact that more cognitive resources are required to perform the 

verification algorithm for proportional quantifiers, and consequently 
fewer resources are available for prediction. 

If a model of sentence meaning has been built at the final word, then 
the positivity at the noun can be argued to be a signature of verification. 
The time-course and distribution of the effect is similar to the LPC 

Fig. 9. ERP effects of pairwise comparisons between quantifier classes, time locked to the onset of the sentence-internal noun (0 ms) in experiment 2. Raw effect 
waveforms (left column) are displayed along with contour maps of sample-level statistics (middle column) and raster plots of cluster-level statistics (right column). 
Clusters with an associated p-value below the specified threshold (α = 0.05) are shown in yellow shades; all other clusters (gray shades) were statistically not 
significant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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component – often called the parietal old/new effect – from the recog-
nition memory literature (Hubbard et al., 2019; Ratcliff et al., 2016; 
Rugg et al., 1998; Yang et al., 2019). The LPC is associated with recol-
lection memory (Rugg & Curran, 2007) – i.e., when recollecting 
contextual details of a stimulus – and is only observed when it is 
task-relevant (Yang et al., 2019). Since the algorithms for proportional 
and nonproportional quantifiers differ precisely in the use of a memory 
component, an explanation in which participants recruit additional 
memory to perform proportional quantifier verification is well grounded 
in formal theory. The fact that this effect disappears along with the N400 
for proportional quantifiers in the comprehension experiment further 
supports this interpretation. Given that a syntactosemantic composition 
effect would presumably manifest itself regardless of task, this expla-
nation of the positivity at the noun is weakened by experiment 2. 
However, while links between P600 effects and episodic memory have 
been proposed (O’Rourke & Van Petten, 2011; Van Petten & Luka, 
2012), this hypothesis has not been tested in actual sentence processing 
paradigms, but only with single words. This interpretation is therefore 
problematic, and there is a possibility that the positivity here indexes 
generic processing costs. De Santo et al.'s (2019) preliminary results, 
observing a similar effect when participants are listening to a sentence 
while viewing the picture, could be taken to support such a criticism. At 
the same time, the automata theory proves that, if participants go 
through the objects sequentially, memory resources are necessarily 
recruited for proportional quantifiers, but not for nonproportional 
quantifiers, and as such no strong conclusions can be drawn on the basis 
of an objection along these lines. 

Regardless of the final interpretation of the observed effects, the 
present study demonstrates that the complexity of the verification al-
gorithm impacts sentence processing online. Importantly, when verifi-
cation is required by the task, proportional quantifiers modulate the 
evoked potential both when participants are constructing a true model 
of the sentence, as indicated by the positivity on the noun, and when this 
model is evaluated in relation to falsified predictions, as evidenced by 
sentence-final effects. On the other hand, when verification is not task- 
relevant, the construction of a true model that generates predictions for 
the final word does not occur for proportional quantifiers even though it 
does for both nonproportional classes. 

There are some limitations of the current study. Most notably, and as 
mentioned above, both a sentence internal positivity and the lack of 
N400 effects have been observed in relation to negative polarity quan-
tifiers (Augurzky et al., 2020a; Nieuwland, 2016; Urbach et al., 2015; 
Urbach & Kutas, 2010). As the current experiment did not control for 
polarity, it is not possible to distinguish which effects are due to negative 
polarity and which are due to quantifier class. To circumvent these 
limitations, one could firstly refer to the evidence that suggests that 
quantifier class also gives rise to this positive effect (De Santo et al., 
2019). Secondly, if the reduced N400 effect is merely due to negative 
polarity, a similar effect should be seen for Aristotelian quantifiers, 
which included positive ‘all’ and negative ‘none of’, but this was not 
observed. In fact, the N400-like effect for Aristotelian quantifiers is the 
largest of all three classes. A second limitation is that while the theory 
predicts the algorithmic difference to stem from a memory component, 
it is not possible to ascertain whether the difference we observed is 
indeed related to memory. The argument made above is hypothetical: 
further research is needed to establish the exact cognitive and physio-
logical nature of the observed sentence-internal verification positivity. 

5. Conclusion 

We have shown that the algorithmic verification complexity of 
different quantifier classes is associated with different patterns of neural 
responses. Our findings suggest that algorithmic aspects of language 
processing are subjected to the same formal constraints applicable to 
abstract machines. Results of previous quantifier verification experi-
ments, to the extent that they do not take formal distinctions between 

quantifier classes into account, may not generalize and may not be 
jointly interpretable: different classes of quantifiers are provably veri-
fied using different algorithms, and thus give rise to qualitatively 
distinct evoked potentials. An exciting open question at the intersection 
of computer science and psycholinguistics is whether formal proofs 
about the complexity of specific computational problems, such as veri-
fication, can inform us about which class of algorithms is plausibly 
implemented by the brain. Our research may serve as a stepping stone in 
that direction and as a proof of concept for a growing literature advo-
cating algorithmic and complexity theoretic analyses in the construction 
of psychological and psycholinguistic theories (Isaac et al., 2014; van 
Rooij & Baggio, 2020, 2021; van Rooij et al., 2019). 
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Abstract

Formal analysis of the minimal computational complexity of verification algorithms for natural lan-

guage quantifiers implies that different classes of quantifiers demand the engagement of different

cognitive resources for their verification. In particular, sentences containing proportional quantifiers,

e.g., ‘most’, provably require a memory component, whereas non-proportional quantifiers, e.g., ‘all’,

‘three’, do not. In an ERP study, we tested whether previously observed differences between these

classes were modulated by memory load. Participants performed a picture-sentence verification task

while they had to remember a string of 2 or 4 digits to be compared to a second string at the end of

a trial. Relative to non-proportional quantifiers, proportional quantifiers elicited a sentence-internal

sustained negativity that was larger for 4 than for 2 digit strings. Our results suggest that the formal

constraints applicable to abstract machines are of the same nature as the constraints on cognitive

resources deployed during human sentence processing and verification.

Keywords: Quantifiers; Computational complexity; Semantic automata; Memory; Picture-sentence

verification; ERPs

1 Introduction

Quantification is a fundamental aspect of human cognition. It lies at the heart of our linguistic, logical,

and mathematical abilities and as a consequence it has been studied extensively at least since Aristotle.

In natural languages, quantitative relations are often expressed using determiners, like ‘all’, ‘three’,

and ‘most’, that are unusually homogeneous across languages (Bach et al., 1995; Keenan and Paperno,

2017; Matthewson, 2001). Pioneering work (Barwise and Cooper, 1981; Keenan and Stavi, 1986) has

demonstrated that natural language quantifiers constitute a small subset of the quantitative relations

expressible with logical vocabulary. More recently, it has been shown that certain characteristic formal

properties of this subset delineate learning biases for humans, non-human primates, and machine learning
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algorithms (Carcassi et al., 2021; Chemla et al., 2019; Hunter and Lidz, 2013; Steinert-Threlkeld and

Szymanik, 2019; van de Pol et al., 2019). These findings suggest that studying natural language quantifiers

can inform cognitive science about the human language capacity specifically and human cognition more

generally.

In Marrian cognitive (neuro)science (Marr, 1982), information processing systems can be understood

at three levels of analysis: (i) a computational level, describing a computation in terms of a function

mapping inputs to outputs; (ii) an algorithmic level, detailing the stepwise procedures and subprocedures

required to compute the function; and (iii) an implementational level that specifies how this algorithm

is implemented in the biophysical medium of the brain. Algorithmic analyses are constrained both by

the nature of the computation and by the limitations placed on the kinds of processes the brain is able

to carry out. Since the algorithmic level is indispensable in mediating between the computational and

the implementational levels (Baggio et al., 2015, 2016; Embick and Poeppel, 2015; Lewis and Phillips,

2015), specifying the properties of the algorithms that underlie cognitive computation is essential. It

might therefore seem puzzling that algorithmic aspects of semantic processing hitherto have not received

sufficient attention (Baggio, 2018, 2020). One reason for this might be the fact that meanings are

notoriously hard to formalize and that such formalizations are required to study algorithms.

Natural language quantifiers are an interesting exception to this rule, because their precise meaning

contributions can be formalized in generalized quantifier theory as relations between the cardinalities of

sets (Barwise and Cooper, 1981; Peters and Westerst̊ahl, 2006). This approach has made quantifiers a

linchpin in the development of formal semantics (Partee, 2013), and it also enables the construction of

verification algorithms for quantifiers, to be discussed in more detail in 1.1. Once these algorithms are

specified, it is mathematically provable that quantifiers can be divided into different classes, based on

the computational resources required to verify them. When determining the computational properties of

quantifier verification, the difference between proportional quantifiers – e.g. ‘most’, ‘less than half’ – and

other quantifiers is that proportional quantifiers cannot be verified by a simple finite-state automaton

(FSA), but instead require a push-down automaton (PDA) with its memory component. In a previous

study (Bremnes et al., 2022), we showed that quantifier class modulates ERP responses in a verification

task: proportional quantifiers resulted in ERP effects that were absent for non-proportional quantifiers.

Moreover, such effects were observed only in a verification task, and not in a task that required participants

to just read and understand quantified sentences. The goal of the present study was to ascertain whether

the observed differences in evoked potentials are in fact related to the usage of memory resources in the

service of verification, and to gather initial evidence for the specific memory systems deployed.

1.1 Algorithms of quantifier verification

The idea to construct verification algorithms for natural language quantifiers originated with van Benthem

(1986) and has led to many subsequent mathematical results about the computational properties of such

algorithms (e.g., Kanazawa, 2013; Mostowski, 1998; Szymanik, 2016). The semantics for natural language

quantifiers given in generalized quantifier theory (Barwise and Cooper, 1981; Keenan and Stavi, 1986)

as (conservative and extensional) relations between cardinalities of sets, allows determiner meanings to
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be modeled as sets of strings of binary recognized by abstract computational models called automata.

These are foundational tools from theoretical computer science and formal language theory, and can be

used to mathematically prove differences in the minimal complexity of different computational problems

(Chomsky, 1956; Hopcroft and Ullman, 1979).

The strings of binary represent the objects being quantified over as having or not having a predicated

property, for example a set of circles as having the property of being red for a sentence like ‘All the circles

are red’. These algorithms run through all the elements in the set and for each of them check if they

have that property. If, by the time a given algorithm has checked all the objects, the number of objects

with the property conforms to the quantitative relation expressed by the quantifier, the sentence is true.

Otherwise it is false.

Let us informally illustrate this procedure for the quantifiers ‘no’, ‘at least four’, and ‘more than half’,

as applied to red circles. For ‘no’, the minimal algorithm scans all the circles, and if it does not find a red

circle, the sentence is true. In the case of ‘at least four’, the same kind of algorithm scans all the circles

and keeps track of the red circles it sees until it has reached four. At that point, all the subsequent circles

are irrelevant, because the sentence will be true regardless. Both these kinds of quantifiers, so-called

Aristotelian and numerical quantifiers, respectively, can be computed by the simplest kind of machine:

finite state automata (FSA). This is not the case for ‘more than half’, which is a proportional quantifier:

such quantifiers are concerned with the proportion of red to non-red circles. They provably require a

memory component where an algorithm can store information about red and non-red circles, and can

minimally be verified by a pushdown automaton (PDA). For ‘more than half’, the simplest algorithm

keeps track of both the red circles and the non-red circles as it scans the set. Once it has scanned the

final circle, it checks if the red circles outnumber the non-red circles, and if they do, the sentence is true.

For formal definitions and explanations of the automata, see Szymanik (2016, chapter 4).

Importantly, this leads to two qualitatively different kinds of verification algorithms. Any algorithm

for proportional quantifiers is of a different nature than the minimal verification algorithms for both

Aristotelian and numerical quantifiers. It is therefore essential to distinguish between proportional and

non-proportional quantifiers, because of the different computational resources required to verify them. In

particular, only proportional quantifiers are predicted to require the storing and manipulation of objects

in memory.

1.2 Previous studies

Numerous studies have examined quantifier verification (e.g., Freunberger and Nieuwland, 2016; Kounios

and Holcomb, 1992; Noveck and Posada, 2003; Nieuwland, 2016; Urbach and Kutas, 2010; Urbach et al.,

2015), and several have used a picture-sentence verification task for quantified sentences (Augurzky et al.,

2017, 2019, 2020a,b; Hunt III et al., 2013; Politzer-Ahles et al., 2013; Spychalska et al., 2016, 2019). These

studies have predominantly focused on effects of truth value and have shown that false sentences exhibit

larger N400-like responses than true sentences. More interestingly, the complexity of the verification –

either as a result of the picture or the sentence – manifests itself as an increased positivity after the N400

time frame and as sustained effects earlier in the sentence.

3



In previous experiments (Bremnes et al., 2022), we demonstrated that differences in the verification

procedure for proportional quantifiers, as described above, give rise to specific ERP effects. In a picture-

sentence verification task, participants saw red and yellow circles and triangles and had to judge the truth

value of quantified sentences, e.g., ‘All the circles are red’. In addition to the expected N400-like effects

of truth value at the final word, and to a post-N400 positivity for proportional quantifiers, we observed

a sustained positivity in the P600 time-window on the completion of the subject noun phrase (‘Most of

the circles’) for proportional quantifiers compared to non-proportional. This pattern was also observed

in the only other study that has explored ERP effects of quantifier class (De Santo et al., 2019).

The literature on memory and quantifier verification has hitherto been disjoint, but the nature of the

present project necessitates their integration. It is therefore pertinent to discuss different ERP compo-

nents that have been associated with various kinds of memory, as well as their functional interpretation,

in order to make more refined predictions about which components could plausibly be modulated in a

verification task.

Late positivities, such as the one found in Bremnes et al. (2022), have often been described in the

literature on recollection memory, where they are labelled the late positive component (LPC) or the

parietal old/new effect (e.g., see Rugg et al., 1998; Ratcliff et al., 2016; Hubbard et al., 2019; Yang et al.,

2019). This effect is observed when participants are recalling contextual details of a stimulus (Rugg

and Curran, 2007), when recollection is task relevant (Yang et al., 2019). Positive slow waves have also

been observed in paradigms that examined short-term or working memory (for discussion see Baddeley,

2012, and references therein), such as serial recall tasks (Kusak et al., 2000), delayed matched to sample

(DMTS) tasks (McEvoy et al., 1998; Ruchkin et al., 1992), the Sternberg task (Pelosi et al., 1992, 1995,

1998), or other digit span tasks (Lefebvre et al., 2005; Marchand et al., 2006), and have been argued to

index retrieval of information from short-term memory (Garćıa-Larrea and Cézanne-Bert, 1998).

However, sustained negative ERPs have also been reported for increased memory load. The sustained

anterior negativity (SAN) has been reported in sentence processing when working memory resources have

to be recruited for the recomputation of discourse models (Baggio et al., 2008; Müller et al., 1997; Münte

et al., 1998) or as a result of referential ambiguity in the model (van Berkum et al., 1999, 2003). Sustained

negativities have also been shown to arise under increased working memory load in sentence processing

(Vos et al., 2001) or other working memory tasks, for instance during the retention interval of DMTS

tasks (Ruchkin et al., 2003) and in visual working memory tasks (Axel and Müller, 1996; Rösler et al.,

1997; Ruchkin et al., 1990, 1992; Vogel and Machizawa, 2004). These effects are similar in distribution

to the left anterior negativity (LAN), occasionally accompanied, in biphasic patterns, by P600 effects in

morphosyntactic violation paradigms (Baggio, 2008). However, studies have reported both short-lived

and sustained left anterior negative ERPs. It is not clear whether short-lived LAN effects index working

memory load in sentence processing (Fiebach et al., 2001; King and Kutas, 1995; Kluender and Kutas,

1995; Vos et al., 2001). Sustained left-anterior negativities seem more likely candidates ERP signatures

of working memory usage during sentence processing.

Interestingly, what presents itself as a posterior negative slow wave in adults is observed as an anterior

positivity in children (Barriga-Paulino et al., 2014), a reminder that the same underlying process may
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manifest itself in different polarities depending on brain anatomy and the orientation of dipole generators

(for discussion, see Luck, 2014). This can also be seen in the differing polarities of slow waves over

posterior and frontal regions in certain working memory paradigms, such as the n-back task (Bailey

et al., 2016; McEvoy et al., 1998) and DMTS (Ruchkin et al., 1990, 1992). Furthermore, scores from

working memory assessments have been shown to be correlated with sustained effects (Adam et al., 2020;

Amico et al., 2015; Barriga-Paulino et al., 2014; Fukuda et al., 2015; Harker and Connolly, 2007; Lefebvre

et al., 2013; Luria et al., 2016; Marchand et al., 2006). However, while some studies have found a larger

ERP effect to be associated with higher performance, others have found the reverse pattern, i.e., worse

performance associated with a larger effect. In language processing, larger sustained negativities have

been associated with lower reading span scores when dividing participants into high and low span groups

(Fiebach et al., 2002; Vos et al., 2001). A reduction of the P400 for 5 versus 1 digits in the Sternberg

short-term memory task has also been shown to correlate with better task performance (Pelosi et al.,

1992). By contrast, an increase in the LPC is associated with higher accuracy in recognition memory

paradigms (Harker and Connolly, 2007), increased SAN amplitudes have been associated with greater

auditory short-term memory capacity (Lefebvre et al., 2013), and a more negative parietal slow wave is

associated with higher scores on working memory tests in the visual working memory literature (Barriga-

Paulino et al., 2014; Luria et al., 2016). This demonstrates that such ERPs are modulated by individual

working memory capacity, but that the direction of the modulation might depend on the task or on the

specific memory systems involved.

1.3 The present study

The aims of the present study were to determine (1) whether the ERP differences between proportional

and non-proportional quantifiers first reported in Bremnes et al. (2022) are replicable, and (2) whether

these differences are related to memory, as predicted by the automata theory. To that end, we conducted

an EEG experiment using the same picture-sentence verification task as our previous study, augmented

with a digit matching task that allowed us to manipulate memory load. Before each trial, participants

saw a string of 2 or 4 digits that they had to remember while completing the verification task. Once the

verification task was completed, they saw another string of digits that either matched the original string or

differed by a single digit, and had to decide whether the two strings were the same or different. In addition,

participants performed a series of preliminary tasks that allowed us to test whether the electrophysiological

differences were related to individual differences in working memory, attention, and control capacities.

Negative proportional quantifiers have been associated with some of the effects observed in our previous

study. Here, we decided to increase the number of trials for positive and negative proportionals compared

to Bremnes et al. (2022), so that we would be able to rule out the possibility that negative proportionals

are driving the effect. A more detailed description of the task is found in 2.1 below.

Regarding memory load, two results would corroborate the theory. Firstly, memory load, introduced

by the digit span task, could increase processing differences between the quantifier classes, resulting in

larger amplitude differences between proportional and non-proportional quantifiers. In this case, memory

load from verification and digit matching may affect the proportional quantifiers more because it strains
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working memory capacity. Alternatively, memory load could attenuate the differences between quantifier

classes, resulting in smaller differences between them. This pattern could be explained by finite memory:

memory capacity may already be at ceiling with proportional quantifiers, but not with non-proportional

quantifiers. In both scenarios, memory would affect the two quantifier classes differently, so both outcomes

would support the conclusion that the verification differences are related to memory.

However, there are two additional outcomes worth considering. The memory load from the verification

task and from the digit matching task could result in an additive effect, impacting proportional and non-

proportional quantifiers equally: the difference between the two quantifier classes would then be similar

between memory loads. Although strictly compatible with the theory, this result would be inconclusive

because, in that event, it is conceivable that the difference is related to something other than memory.

Finally, it is possible that memory load does not affect brain responses at all, namely that there is no

difference between the high and the low memory condition. This is more problematic for the theory, since

this would imply that the differences are not related to memory at all.

On the basis of previously observed behavioral effects (Zajenkowski et al., 2011; Zajenkowski and

Szymanik, 2013; Zajenkowski et al., 2014), we expect individual differences in the preliminary tasks

to correlate with the ERPs. However, the direction of this correlation is not predicted, as working

memory capacity and amplitude have displayed both positive and negative correlations in the past (see

above). The fact that some people are faster or more accurate in these tasks need not impact the

verification process itself. This issue is particularly important, considering the fact that the automata

theory does not predict the involvement of specific memory systems or their associated effects. The

relevant automata theoretic notion of memory is abstract, and it is an empirical question, partially

considered here, which human memory systems are involved. Relatedly, while the complexity analyses

presented here remain on the computational level, a growing body of work attempt the exact specification

of verification algorithms for natural language quantifiers (Hackl, 2009; Hunter et al., 2017; Knowlton

et al., 2021; Lidz et al., 2011; Pietroski et al., 2009, 2011; Talmina et al., 2017; Tomaszewicz, 2011).

In this literature, truth conditionally equivalent quantifiers are shown to be verified differently on the

basis of whether they benefit from certain properties of the visual stimulus, such as grouping effects,

or not. From this finding, scholars infer that these quantifiers recruit different non-linguistic systems

– such as cardinality estimation based on the approximate number system or exact counting (see e.g.

Dehaene, 2011; Odic and Starr, 2018), or one-to-one mapping (e.g. Feigenson, 2005) – depending on what

appears to be their canonical verification procedure. However, rather than trying to detect differences

within quantifier classes, what we are trying to demonstrate is that, irrespective of the specific algorithms

implemented by the brain, at the very least proportional quantifier verification involves memory resources

of some kind, that verification of non-proportional quantifiers do not.
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2 Methods

2.1 Design

The study used a 2×2×2 design with the factors Quantifier Class (Proportional/Non-proportional), Digit

Load (2/4), and Truth-Value (True/False). Each trial consisted of two tasks: after reading the sentence,

the participant had to perform a sentence-picture verification task; next, they had to recall a string of 2

or 4 digits presented at the start of the trial and decide whether it was the same or different from another

string of digits presented at the end of the trial. The set-up was comparable to that of our previous study

(Bremnes et al., 2022). Specifically, the picture was presented before the sentence to avoid eye-movement

disturbances of the EEG signal. Furthermore, the same picture was presented before each trial in a block.

Participants had the opportunity to study this picture for as long as they wanted at the beginning of

each block. This was (i) because remembering the picture is a prerequisite for performing the task, and

we wanted to make sure that participants could memorize the picture, and (ii) because we did not want

memory encoding or recall of the picture to interfere with the deployment of memory resources relevant

to verification or digit recall. A potential worry is that all quantifier classes require some form of memory

in this set-up. However, as noted above, the automata theory shows that proportional quantifiers require

additional memory resources to maintain and compare two sets of objects in memory, which is predicted

to increase memory load only for this class of quantifiers (Bremnes et al., 2022). This set-up ensures a

stable baseline, where the differences detected are plausibly related to the experimental manipulations,

and not to differences in encoding or recollection of the picture.

2.2 Participants

Fifty native speakers of Norwegian (28 female; mean age 22.98, sd = 2.93; age range 19-30), with normal

or corrected to normal vision and no psychiatric or neurological disorders, were recruited from the local

student community. Two of these did not meet the inclusion criteria of having an average of at least 80%

artifact free trials per condition, and were excluded from the final data analysis. We then analyzed data

from 48 participants (26 female; mean age 22.95, sd = 2.9; age range 19-30). All participants gave their

written informed consent and were compensated with a voucher. The study had been approved prior to

commencement by the Norwegian Centre for Research Data (NSD; project nr. 455334).

2.3 Materials and tasks

At the beginning of a session, participants were administered three tests of executive function, memory,

and attention. All tests began with a series of practice trials (10 for the Eriksen task, 5 for the Sternberg

task, 4 for the Brown-Peterson task) before the main experiment began (details below).

The first task was a version of the classic Eriksen flanker task (Eriksen and Eriksen, 1966), aimed at

measuring attention. Participants were shown rows of arrows and had to determine in which direction

the middle arrow pointed. The rows could be either congruent (all arrows pointed in the same direction)

or incongruent (different directions). Each participant saw 60 rows (30 congruent) with an equal number
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of correct right and left responses.

In order to test working memory capacity, the second task implemented a Sternberg scanning paradigm

(Sternberg, 1966), in which participants saw 4, 6, or 8 digits presented consecutively. They then saw a

digit in red and had to determine whether this digit was also included in the preceding digit sequence.

Each sequence length was presented 16 times, with 8 trials where the target number was presented and

8 trials where it was absent.

The third task was a Brown-Peterson short-term memory task (Brown, 1958; Peterson and Peterson,

1959), targeted at working memory capacity in the presence of distractors. Each trial consisted of a

to-be-remembered consonant trigram (e.g. ‘FCQ’) and a number between 150 and 500, from which the

participant had to count backwards in threes out loud. The counting lasted 4, 6, or 12 seconds, and

the participant was subsequently prompted to recall the trigram or, as a control trial, the latest number

they counted. There were 8 trials for each counting interval, or 24 trials in total, with 3 controls for each

interval length. We opted for 4, 6, and 12 as a short, medium, and long condition respectively, which

is comparable to intervals used previously (Neath et al., 2019; Quinlan et al., 2015). These particular

intervals allowed us to keep the task manageable in terms of total duration. It has been shown that

accuracy in this task decreases sharply from 1 to 9 seconds but flattens out after that, so that there is

only a small accuracy difference between, e.g., 12 and 18 seconds (Rai and Harris, 2013).

As mentioned in 2.1 above, the main task was to memorize a string of 2 or 4 digits, then perform a

picture-sentence verification task, and finally judge whether another string of digits matched the string

seen at the beginning of each trial.

For the digit matching task, we opted for one high and one low digit load conditions. Previous studies

(Szymanik and Zajenkowski, 2010, 2011) found that, with 4 and 6 digits, digit recall was poor at 6 digits.

In contrast, performance on the verification task increased, both in terms of accuracy and RT, for 6 digits

compared to 4, suggesting that the task was too difficult with 6 digits. We therefore used 2 digits as the

low load condition and 4 digits as the high load condition. First, we constructed random strings of 2 and

4 digits. For half of these, we also created mismatch strings by replacing one random digit in each string

with another random digit. For example, if the string was 4459, we would replace the second digit with 8

to create 4859, or the third digit with 2 to create 4429. The decision to make digit string pairs minimally

distinguishable by a single digit was made because, with completely different strings, participants could

easily adopt a strategy where they only memorized the first two digits and still be correct in many cases.

This would effectively render the distinction between 2 and 4 digits useless.

For the verification task, we constructed 8 pictures consisting of clustered red and yellow circles and

triangles in a 2×2 grid. The grid location, number and color of these shapes were varied pseudorandomly.

The grid design with a 2×2 potential shape by color alternation secured that participants could not know

the truth-value of the sentence before reading the final word. The number of objects at each grid location

ranged from 2 to 5. For every picture in which the shapes of one type (e.g., circles) were all in one color,

the other was always in different colors. Each picture was shown for all trials in one block, meaning that

there were 8 blocks in the experiment. See Supplementary material A, section I, for all pictures.

The sentences were simple subject-predicate copular sentence, in which a certain color was predicated
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Quantifier Class Quantifier Shape Copula Color

Aristotelian
Samtlige av

sirklene
the
circles

er
are

røde
red

Ingen av
Enkelte av

Numerical
Tre av
Fire av
Fem av

Positive
Proportional

Flesteparten av

trekantene
the
triangles

gule
yellow

Flest av
Over halvparten av

Negative
Proportional

Minsteparten av
Færrest av
Under halvparten av

Table 1: The experimental sentences were constructed by combining every element of one column with
every element of the other columns, resulting in 12 × 2 × 1 × 2 = 48 different sentences. For the
translations of the quantifier column, see main text. All experimental sentences with translations can be
found in Supplementary material A, section II.

of a certain quantity of shapes s (e.g. ’Flest av sirklene er røde’, Most of the circles are red). We

wanted the syntax and the semantics of the sentences to be as closely matched as possible, aside from the

quantifier manipulation. We therefore decided to only use quantifiers in partitive constructions, which is

the most natural – and, for some quantifiers, the only – way to express quantitative relations between

definite objects in Norwegian. This also ensured that all shape nouns were definite plurals and that

adjectives agreed in number with these shape nouns. We used 12 quantifiers, 3 of each type. The non-

proportional quantifiers were Aristotelian (‘samtlige av’: all of ; ‘ingen av’: none of ; ‘enkelte av’: some

of ) and numerical quantifiers (‘tre av’: three of ; ‘fire av’: four of ; ‘fem av’: five of ). The proportional

quantifiers included three positive (‘flesteparten av’: the majority of ; ‘flest av’: most of ; ‘over halvparten

av’: more than half of ) and three negative quantifiers (‘minsteparten av’: the minority of ; ‘færrest av’:

fewest of ; ‘under halvparten av’: less than half of ). Combined with two shape nouns and two color

adjectives, this yields a total of 48 experimental items (Table 1). Note that Norwegian and English differ

with regards to the definiteness of proportional quantifiers (Coppock, 2019). See Supplementary material

A, section II, for all experimental sentences with translations.

Each sentence was presented once for every truth-value and digit load: each sentence was true twice,

once with 2 digits and once with 4 digits, and false twice, once for each digit condition. Thus, there were

192 trials overall, with 96 true/false trials in the main verification task and 96 trials with 2/4 digits in

the digit matching task. There were 48 trials in each cell in the 2×2×2 design. This number is standard

in ERP research, but this meant that there were only 12 trials per quantifier type (e.g., Aristotelian) by

digit load by truth-value: it was then acknowledged that it would not be possible to compare truth-value

by digit load EEG effects at the level of each individual quantifier type.

As mentioned, the 8 pictures constituted the block structure, and consequently there were 24 trials

in each block. Because the picture remained the same within a block and there were more possible

quantifier by truth-value by digit load triplets than pictures (16 triplets per quantifier), not all sentences

were shown after a particular picture and some sentences had to be shown twice within the same block,

that is, both digit conditions in one block. However, both truth-value and digit load were evenly balanced
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both within each block (12 true/false, 12 2/4 digits) and overall. It was not possible to match the number

of 2 and 4 digit matches within a block (range of 2/4 digit matches: 5-7) while simultaneously retaining

the balance overall. Note that this cannot possibly affect the EEG, as participants have no way of

knowing whether the upcoming digits will match or mismatch the memorized string when the EEG is

recorded, i.e., when they read the sentence. To avoid conflicting interpretations, quantifiers that give rise

to scalar implicatures, i.e., the inferred negation of a stronger meaning (see e.g. Horn, 1972; Levinson,

1983, 2000), were not shown in contexts where both the semantic and pragmatic meanings are available.

First, ‘enkelte av’ (some of ), which gives rise to a scalar implicature not all, was not shown in pictures

where the denotation of the shape noun was all in one color, e.g. ‘Some of the circles are red’, when there

were only red circles. For the same reason, we also avoided proportional quantifiers in such contexts,

e.g. ‘more/less than half of the triangles are red’, when all the triangles had the same color. Second,

numerical quantifiers, that can have both an exactly and an at least interpretation, were never shown

after pictures where the number of shapes in the predicated color exceeded the number denoted by the

quantifier, e.g., ‘three of the circles are yellow’, when there were four yellow circles. Finally, if one shape

was all in one color and the sum of the shapes in the two grid locations matched the number denoted

by a numerical quantifier, e.g., if there were 2 + 3 = 5 yellow triangles, then sentences containing that

quantifier were not shown.

Trials were randomized within each block. To counterbalance sentence types within a block, we also

constructed 2 randomized orders of the blocks, that we ran both forward and backward for a total of 4

different randomizations, so that participants would encounter the sentence types at different stages of

the experiment.

2.4 Procedure

Each experimental session began with participants signing their informed consent sheet. They were then

instructed about the three preliminary tests described in section 2.3, before they were seated in front of

an LCD computer screen in a dimly lit, sound attenuated, and electrically shielded EEG booth. The same

booth was used for the three preliminary tests, administered without EEG, and for the main experiment.

Participants then performed the three tests in order: Eriksen flanker task, Sternberg scanning, and Brown-

Peterson short-term memory task. Each test began with an on-screen reminder of the instructions, as well

as practice trials. After they had completed these tests, participants were prepared for EEG recording,

as described in 2.5 below. While the electrodes were mounted, participants received instructions about

the task: they were told that they had to judge whether each sentence was true of the preceding picture,

using two predefined response buttons, while at the same time remembering a string of 2 or 4 digits, and

that after the truth-value judgement they would have to assess whether another string of digits matched

the original string by using the same response keys as in the verification task. They were told to respond

as soon as they knew the answer, but that accuracy was more important than speed. The truth values

coded by the different response keys were counterbalanced between blocks. Which key corresponded to

true or false was indicated by two squares with the words ‘sant’ (true) or ‘usant’ (false) on horizontally

opposing sides of the screen, whose left-right order mirrored the relative keyboard position of the response
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Figure 1: Structure of a single trial.

keys. This information was provided at the beginning of each block and every time they had to respond.

Finally, they were instructed not to blink or move while they read the sentences, and that if such activities

were necessary, they should only take place when looking at the picture or when they saw a fixation cross.

Each block began with the following preamble: participants were first informed about which buttons

corresponded to true and false; they were then presented with the picture that would also be shown in

each trial in the block, advised to study this picture carefully, and told to press either response button to

begin with the trials. There was no time limit on how long they could study the picture. Each trial began

with the presentation of a string of 2 or 4 digits for 4 seconds, preceded and followed by 500 msec of

blank screen and a 500 msec fixation cross. Next, the picture was presented for 3 seconds, before another

identically timed blank-screen fixation-cross pair. The sentence was presented visually in 4 chunks, where

the first chunk contained the quantifier (2-3 words) and each of the remaining three contained only a

single word (noun, copula, and adjective) (see Table 1, where each column represents one chunk). The

reason the quantifier was presented in one chunk, was to ensure that all trials were of the same length,

which is a prerequisite for comparing the different stages of the verification processes. Each chunk was

shown for 400 msec with a 400 msec onset delay. Following this sequence was another 500 msec blank

screen and a 500 msec fixation cross, before the response key indicators reappeared on the screen and

participants could judge whether the sentence was true or false. When participants responded, or if they

had not responded before 8 sec had passed, another blank screen and fixation cross pair preceded the

response screen for the digit task. This screen contained the response key information, except the words

for true and false were replaced by ‘like’ (same) and ‘ulike’ (different) together with the second string of

numbers in the center of the screen. When participants had responded, or another 8 second time limit

had expired, another identical trial started immediately (See Figure 1 for an example trial). After all

24 trials in a block had been completed, the experiment was paused and the participants were free to

choose the duration of the break. The next block began when the participant pressed either response

button. Each experimental session usually lasted between 2 and 2:30 hours, including the preliminary

tests (20-25 mins), EEG setup (30-40 mins), and the main experiment with breaks (1:10-1:30 hours).

2.5 EEG-recording

EEG signals were recorded from 32 active scalp electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2,

FC6, T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, and

PO10), using the actiCAP system by Brain Products GmbH. The implicit reference was placed on the

left mastoid, and all channels were re-referenced off-line to the average of signals from the mastoids using

TP10 on the right mastoid. EEG data were sampled at 1000 Hz using a 1000 Hz high cutoff filter and a

11



10 sec time constant. Impedance was kept below 1 kOhm across all channels throughout the experiment.

2.6 Data Analysis

Accuracy and reaction time data were collected for both the sentence verification and the digit recollection

tasks, also to be able to compare our results with those of previous behavioral studies. However, accuracy

was further used to ensure that participants were performing the task correctly. Note that reaction times

are not a valid measure of the difficulty of the verification procedure, as participants could not respond as

soon as they knew the answer, when the final word was presented, but had to wait for the response buttons

to appear on screen 1400 msec later. For digit matching, this was not an issue, since participants could

judge whether the post-trial numbers matched the pre-trial numbers immediately upon their presentation.

Missed trials, where participants took too long to respond, were excluded from the analysis.

EEG data were analyzed using FieldTrip (Oostenveld et al., 2011). 1000 msec epochs, with a 200 msec

pre-stimulus baseline, were extracted at the quantifier, at the noun, and at the sentence-final adjective.

Trials with voltage values exceeding ±150µV relative to baseline in one or more electrodes were excluded.

Trials contaminated by eye movements were also excluded by thresholding the z-transformed value of the

preprocessed raw data from Fp1 and Fp2 in the 1–15 Hz range. The remaining trials were subjected to

a 30 Hz low-pass filter. ERPs were computed by averaging over all trials in each condition for individual

participants, before sample-level ERPs were computed by averaging across participants.

ERPs were analyzed using non-parametric cluster-based statistics (Maris and Oostenveld, 2007), using

the default alpha thresholds (.05) at both the sample and cluster levels. To assess ERP differences between

two conditions, each sample (i.e., channel-time pair) was compared by means of a t-test. Adjacent samples

passing a test would be added to form a cluster, and their t-values were summed. To determine whether

two conditions were significantly different, p-values were estimated by using Monte Carlo simulations. For

each cluster, all participant level channel-time pairs were collected into a single set before being randomly

partitioned into two subsets. This procedure was repeated 1000 times. The cluster-level p-value was the

number of random partitions that had a larger test statistic than the observed data. The output here is

a (possibly empty) set of spatio-temporal clusters in which two conditions differ: we report the Tsum in

each cluster, cluster size (S), and estimated p-values for the highest ranked clusters.

To assess interaction effects between Quantifier Class and Digit Load, we extracted participant-level

amplitudes for all channel-time pairs in the relevant clusters and we used participant mean amplitude as

the dependent variable in a mixed-effect linear regression with Quantifier Class, Digit Load, and their

interaction as independent variables. To determine whether working memory, attention and executive

function scores were related to the ERP data, z-transformed overall accuracy (z = x−m
sd ) for the Sternberg

and Brown-Peterson tasks, and z-transformed median reaction time difference between congruent and

incongruent trials in the Eriksen flanker task, as well as their interaction with Quantifier Class and

Digit Load, were also included in the model. The models had random intercepts by participant and

were estimated using the lmer function of the lme4 package (Bates et al., 2015) in R, and p-values were

computed using the lmerTest package (Kuznetsova et al., 2017). We also computed individual level

Tsums in relevant clusters, and constructed models with these as the dependent variable, instead of mean
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Overall
Accuracy RT

M SD M SD
Proportional 0.926 0.263 1748.3 1297.5
Non-Proportional 0.910 0.287 1531.2 1055.9

2 digits 4 digits
Accuracy RT Accuracy RT
M SD M SD M SD M SD

Proportional 0.925 0.263 1724.8 1281.9 0.926 0.263 1772.9 1313.5
Non-Proportional 0.905 0.294 1554.8 1099.4 0.915 0.280 1509.1 1013.4

Table 2: Descriptive statistics for the linguistic verification task by Quantifier Class, with means and
standard deviations of accuracy and reaction time overall and in the two Digit conditions.

Overall
Accuracy RT

M SD M SD
2 Digits 0.915 0.279 1503.7 981.9
4 Digits 0.888 0.315 1730.5 1005.4

Proportional Non-Proportional
Accuracy RT Accuracy RT
M SD M SD M SD M SD

2 Digits 0.914 0.280 1488.6 971.1 0.916 0.277 1518.4 992.4
4 Digits 0.894 0.308 1703.7 955.1 0.882 0.323 1756.8 1014.7

Table 3: Descriptive statistics for the digit matching task by number of digits, with means and standard
deviations of accuracy and reaction time overall and in the two Quantifier Class conditions.

amplitude (Marchand et al., 2002, 2006).

3 Results

3.1 Behavioral results

In the sentence verification task, accuracy was high in all conditions, regardless of quantifier class or how

many digits needed to be stored in memory (Table 2). Reaction times were markedly longer than in our

previous experiment, which did not involve a digit span task. As in our previous study, however, standard

deviations for reaction time data were large. Recall that the response is not produced immediately upon

knowing the truth value, but after 1400 msec, when the response screen is displayed. The main function

of the behavioral data was to ensure that participants were correctly performing the task, and the results

confirm that they were. The reader is referred to Supplementary material B, section A, for inferential

statistics.

Turning to the digit task, we also found very high accuracy overall and for each digit condition (Table

3). Response times were on average longer for 4 digits than for 2 digits, and, contrary to response times

for the sentence verification task, there is reason to believe that response times here are representative of

the underlying memory process, since there was no delay between the task and the response.

Turning lastly to the results of the three preliminary tests, means and standard deviations are found
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M SD
Eriksen 62.250 32.356
Sternberg 0.866 0.072
Brown-Peterson 0.383 0.182

Table 4: Descriptive statistics of the measures of executive function. The measure for the Eriksen task
is the difference in median reaction time for congruent and incongruent trials in msec. For the Sternberg
and the Brown-Peterson, the measure is overall accuracy.

DAcc DRT QPAcc QNPAcc Eriksen Sternberg BP
DAcc 1
DRT -0.162 1
QPAcc 0.691*** -0.354* 1
QNPAcc 0.443** -0.345* 0.561*** 1
Eriksen 0.006 0.115 -0.223 -0.263 1
Sternberg 0.397** -0.249 0.365* 0.361* -0.342* 1
BP 0.394** -0.097 0.290* 0.490*** -0.239 0.324* 1

Table 5: Correlation matrix of behavioral and working memory measures, where DAcc = Digit Accuracy,
DRT = Digit RT, QPAcc = Proportional quantifier accuracy, QNPAcc = Non-Proportional quantifier
accuracy, BP = Brown-Peterson task. Pearson correlation coefficients are reported with coded significance
values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. After Bonferroni correction (p < 0.007), only the
correlation between DAcc and the other variables, between QPAcc and QNPAcc, and between QNPAcc
and BP was significant.

in Table 4. Of particular note is that accuracy in the Sternberg task is very high and exhibits very little

variance, while accuracy in the Brown-Peterson task is quite low.

We found strong correlations of accuracy in the digit matching task with the verification task and

the Sternberg and Brown-Peterson tasks (Table 5). The correlation is stronger for Proportional than for

Non-Proportional quantifiers. There is also a strong correlation between accuracy in the verification task

for Proportional and Non-Proportional quantifiers. The Brown-Peterson score is most strongly correlated

with verification accuracy for Non-Proportional quantifiers.

3.2 ERP results

3.2.1 Sentence-final effects: Adjective

We began by analyzing the effects on the sentence-final adjective: the earliest point in the sentence where

its truth value could be known. The waveforms (Figure 2) display a similar pattern to that found in the

previous study: True and False sentences diverge after the N200, with False trials displaying a continuous

negative-going deflection that overlaps temporally with the P300 wave in True trials. The two truth values

largely reconverge around 450 msec. This waveform difference is also reflected in the statistics (Figure

2): we see a broadly distributed negative effect of False versus True (first-ranked negative cluster, NEG1:

Tsum = −16685.102, S = 3629, p = 0.001). The cluster begins at around 250 msec and ends at around

420 msec after the onset of the adjective, with the broadest distribution and largest difference between

310 and 380 msec and the peak around 350 msec. The effect is largest on centro-parietal electrodes.

Next, we consider the effect of Digit Load. Visual inspection of the ERPs reveals that 4 and 2 Digit

trials diverge around the P300 (Figure 3). From this point onward, the 4 Digit trials are distinctly more

positive than the 2 Digit trials, at least up until 500 msec. This effect is confirmed by statistical analysis
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Figure 2: ERP effects of truth value (False – True) across quantifier classes (upper row), time locked to
the onset of the sentence-final adjective (0 msec). Raw effect waveforms (upper left) are displayed along
with contour maps of sample-level statistics (upper middle) and raster plots of cluster-level statistics
(upper right). Clusters with an associated p-value below the specified threshold (α = 0.05) are shown in
blue shades; all other clusters (gray shades) were statistically not significant. ERP waveforms of midline
electrodes (bottom row), time locked to the onset of the sentence-final adjective (0 msec). True trials are
shown in black, False trials in red. Proportional quantifiers in thick lines, and Non-Proportional in thin.

(Figure 3). We found a positive cluster (first-ranked positive cluster, POS1: Tsum = 2356.829, S = 929,

p = 0.049) with a central, but more posterior distribution at 260-340 msec.

The last main effect we consider, is the effect of Quantifier Class. This manipulation appears to have

a similar effect on the waveforms as the Truth Value manipulation. Proportional Quantifiers diverge from

Non-Proportional after the N200, where the negative ERP shift is greater for Proportional than Non-

Proportional (Figure 4). Statistical analyses reveal a broadly distributed negative cluster (first-ranked

negative cluster, NEG1: Tsum = −6943.639, S = 2260, p = 0.015) around 260 to 410 msec after adjective

onset, and a smaller cluster (NEG2: Tsum = −1797.026, S = 719, p = 0.079) from 500 to 570 msec

(Figure 4).

To sum up the main effects, there are clear effects of Truth Value, Quantifier Class, and Digit Load.

False trials and Proportional quantifiers are both associated with a more negative going deflection in the

250-400 msec range, compared to their True and Non-Proportional counterparts. By contrast, 4 Digits is

associated with a more positive going deflection than 2 Digits in approximately the same time window.

In addition, we examined the contrast between Proportional and Non-proportional quantifiers for 4

Digit trials and 2 Digit trials separately, on the assumption that working memory load would interact

with memory usage for quantifier verification. We found that the negativity for Proportional quantifiers

is driven by the effect in the 4 Digit condition (Figure 4): there were large and almost adjacent negative

clusters between approximately 160 msec and the end of the epoch (NEG1: Tsum = −12537.21, S = 4294,

p = 0.002; NEG2: Tsum = −10599.67, S = 3960, p = 0.004), which were not found in the 2 Digit condition

(no significant clusters). We also compared positive and negative Proportional Quantifiers to make sure
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Figure 3: ERP effects of Digit Load (2 Digits – 4 Digits) across quantifier classes (upper row), time locked
to the onset of the sentence-final adjective (0 msec). Raw effect waveforms (upper left) are displayed
along with contour maps of sample-level statistics (upper middle) and raster plots of cluster-level statistics
(upper right). Clusters with an associated p-value below the specified threshold (α = 0.05) are shown in
yellow shades; all other clusters (gray shades) were statistically not significant. ERP waveforms of midline
electrodes (bottom row), time locked to the onset of the sentence-final adjective (0 msec). 2 Digit trials
are shown in black, 4 Digit trials in red. Proportional quantifiers in thick lines, and Non-Proportional in
thin.

that the effects of proportionality were not caused exclusively by the negative quantifiers. We found no

significant differences overall, nor for any Digit Load or Truth Value comparison.

The results from the sentence final adjective suggest two conclusions. Firstly, there are clear effects

of Truth Value, comparable to those found in our previous study, suggesting that at the time of adjective

onset, participants know whether the sentence is True or False. Secondly, these Truth Value effects may

be modulated by Quantifier Class and Digit Load. Indeed, most of the differences are found in the Truth

Value effect time window (i.e., 250-400 msec), which is compatible with an effect of Quantifier Class and

Digit Load on verification. However, these results cannot be attributed to modulations of a single ERP

component, as the differences that reach significance in the different comparisons originate at different

points in the epoch.

3.2.2 Sentence internal effects: Noun

Because a truth value has been computed at the sentence final adjective, as evidenced by the truth value

effects we observe, a verification procedure is plausibly completed by this point. Consequently, we expect

the effects of memory storage on the verification algorithm to occur earlier in the sentence, i.e., at the

noun, as was the case in our previous study. Because the truth value could not be known at this point

in the sentence, we did not distinguish between true and false trials.

We first examined the overall effect of Quantifier Class, comparing Proportional to Non-Proportional

quantifiers irrespective of Digit Load. Upon visual inspection, ERP differences seem to occur early in the
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Figure 4: ERP effects of Quantifier Class (Proportional – Non-Proportional) across Digit Loads (upper
row), and for 4 Digits (middle row), time locked to the onset of the sentence-final adjective (0 msec). Raw
effect waveforms (left column) are displayed along with contour maps of sample-level statistics (middle
column) and raster plots of cluster-level statistics (right column). Clusters with an associated p-value
below the specified threshold (α = 0.05) are shown in blue shades; all other clusters (gray shades) were
statistically not significant. ERP waveforms of midline electrodes (bottom row), time locked to the
onset of the sentence-final adjective (0 msec). 2 Digit trials are shown in black, 4 Digit trials in red.
Proportional quantifiers in thick lines, and Non-Proportional in thin.

epoch, particularly on left-hemispheric electrodes, possibly already around the N100-P200 components.

Non-proportional quantifiers appear to be associated with a larger P200. Neither Quantifier Class shows

a distinctive P300 component. Rather, the difference between the classes sustains throughout the epoch,

with Proportional Quantifiers being more negative than Non-Proportional, particularly on temporal and

centro-parietal electrodes of the left hemisphere (Figure 5).

Assessing these differences statistically, we found a broadly distributed, predominantly left-hemispheric,

sustained negative effect (first-ranked negative cluster, NEG1: Tsum = −5610.515, S = 1975, p = 0.017)

that lasts from approximately 260 to 500 msec. There were no effects of Digit Load, and no differences

between 2 and 4 Digits within each quantifier class. Like for the sentence-final effects, we compared the

different quantifier types within a class. None of the quantifier types (Aristotelian vs Numerical, Positive

vs Negative Proportional) were significantly different overall or for either digit condition (2 or 4).

In summary, Quantifier Class is what is driving the sentence-internal effect. In particular, Proportional

Quantifiers are associated with consistently more negative waveforms, particularly in the left hemisphere.
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Figure 5: ERP effects of Quantifier Class (Proportional – Non-Proportional) across Digit Loads (upper
row), and for 4 Digits (middle row), time locked to the onset of the sentence-internal noun (0 msec). Raw
effect waveforms (left column) are displayed along with contour maps of sample-level statistics (middle
column) and raster plots of cluster-level statistics (right column). Clusters with an associated p-value
below the specified threshold (α = 0.05) are shown in blue shades; all other clusters (gray shades) were
statistically not significant. ERP waveforms of selected left-hemispheric electrodes (bottom row), time
locked to the onset of the sentence-internal noun (0 msec). 2 Digit trials are shown in black, 4 Digit trials
in red. Proportional quantifiers in thick lines, and Non-Proportional in thin.

There are some differences in the comparison between Quantifier Classes depending on Digit Load. While

4 Digit Proportional quantifiers are more negative than their 2 Digit counterparts, Non-Proportional

quantifiers are more positive in the 4 Digit than in the 2 Digit case. As a result, the effect of Quantifier

Class is larger for 4 Digits while the effect for 2 Digits does not reach significance.

3.2.3 Linear models of interactions between ERPs and individual WM scores

In order to ascertain whether the differences we found for the different Digit Loads and Truth Values

were true interaction effects, we computed the individual mean cluster amplitude and Tsum for each

participant and constructed general linear models to assess significance.

At the noun, the linear model using mean amplitude in the first-ranked negative cluster did not reveal

any significant effect (see Table 6). In particular, the interaction between Digit Load and Quantifier

Class is not significant, and there were no significant main effects of WM measures on the ERPs, nor any

significant interactions between WM measures and the two experimental manipulations. These results
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Condition β SE df t p
Intercept -1.455 0.683 166.641 -2.129 0.035
Proportional -0.711 0.791 135.000 -0.899 0.370
4 Digits 0.039 0.177 135.000 0.220 0.826
Eriksen 0.846 0.620 127.371 1.363 0.175
Sternberg -0.024 0.637 127.371 -0.380 0.705
Brown-Peterson 1.094 0.616 127.371 1.777 0.078
Quantifier Class × Digit Load -0.079 0.250 135.000 -0.315 0.754
Quantifier Class × Eriksen -0.099 0.272 135.000 -0.364 0.716
Quantifier Class × Sternberg 0.129 0.279 135.000 0.461 0.646
Quantifier Class × Brown-Peterson -0.029 0.270 135.000 -0.108 0.914
Digit Load × Eriksen -0.096 0.136 135.000 -0.706 0.481
Digit Load × Sternberg -0.033 0.139 135.000 -0.237 0.813
Digit Load × Brown-Peterson -0.131 0.135 135.000 -0.970 0.334

Table 6: Linear mixed-effects model of mean amplitude in the first-ranked negative cluster at the noun
for Proportional versus Non-Proportional Quantifiers.

Condition β SE t p
Intercept -17.028 4.382 -3.886 < 0.001
Eriksen -7.360 4.762 -1.545 0.129
Sternberg 1.746 4.888 0.357 0.723
Brown-Peterson -6.119 4.730 -1.294 0.203

Table 7: Linear model of individual Tsum in the first-ranked negative cluster at the noun for Proportional
versus Non-Proportional Quantifiers Overall.

were replicated for the Tsum analysis, where working memory scores had no significant impact on the

difference between Proportional and Non-Proportional Quantifiers in either of the significant clusters

(i.e., overall and 4 Digits). See Table 7 for the overall cluster, and Supplementary material B, section

B.1, for the 4 Digit case.

At the sentence final adjective, the linear mixed-effects model of mean cluster amplitude in the first-

ranked negative cluster for quantifier class and truth value revealed only significant main effects for Digit

Load and Truth Value, and no significant interaction effects (see Table 8). In the regression on individual

level Tsums, only the intercept was significant, indicating that most of the variation is due to random

individual differences. We report the result for the overall cluster in Table 9 and refer the reader to

Supplementary material B, section B.2, for the same analysis of significant clusters by Digit Load and

Truth Value.

4 Discussion

Overall, we found that memory load affects processing of Proportional and Non-Proportional Quantifiers

differently. Both kinds of quantifiers exhibit a negative effect in the N200-N400 time-window for False

vs True completions of the sentence, indicating that neural processes are sensitive to the truth value of

the sentence at the final word. At the sentence-internal noun, we found a sustained negative effect of

Proportional relative to Non-Proportional quantifiers, larger for 4 Digits than for 2.

Comparing these results with other reports in the literature, the sentence-final effects are consistent

with those found in our previous experiment (Bremnes et al., 2022). The effect of Truth Value is earlier

19



Condition β SE df t p
Intercept 0.133 0.717 220.587 0.186 0.852
Proportional 0.443 0.815 316.000 0.543 0.587
Digit Load 0.450 0.173 316.000 2.589 0.010
True 2.026 0.348 316.000 5.829 < 0.0001
Eriksen 0.992 0.779 220.587 1.274 0.204
Sternberg 0.290 0.799 220.587 0.363 0.717
Brown-Peterson 0.276 0.773 220.587 0.357 0.722
Quantifier Class × Digit Load -0.382 0.246 316.000 -1.555 0.121
Quantifier Class × Truth Value -0.528 0.491 316.000 -1.075 0.283
Quantifier Class × Eriksen -1.394 0.886 316.000 -1.574 0.117
Quantifier Class × Sternberg -0.212 0.909 316.000 -0.234 0.815
Quantifier Class × Brown-Peterson -0.970 0.880 316.000 -1.103 0.271
Digit Load × Eriksen -0.096 0.189 316.000 -0.510 0.611
Digit Load × Sternberg 0.029 0.194 316.000 0.150 0.881
Digit Load × Brown-Peterson 0.056 0.188 316.000 0.299 0.765
Truth Value × Eriksen -0.675 0.377 316.000 -1.790 0.074
Truth Value × Sternberg -0.248 0.388 316.000 -0.641 0.522
Truth Value × Brown-Peterson -0.026 0.375 316.000 -0.069 0.945
Quantifier Class × Digit Load × Eriksen 0.369 0.267 316.000 1.381 0.168
Quantifier Class × Digit Load × Sternberg 0.045 0.274 316.000 0.165 0.869
Quantifier Class × Digit Load × Brown-Peterson 0.208 0.265 316.000 0.785 0.433
Quantifier Class × Truth Value × Eriksen 0.084 0.534 316.000 0.158 0.875
Quantifier Class × Truth Value × Sternberg -0.070 0.548 316.000 -0.128 0.898
Quantifier Class × Truth Value × Brown-Peterson 0.253 0.530 316.000 0.477 0.634

Table 8: Linear mixed-effects model of mean amplitude in the first-ranked negative cluster at the adjective
for Proportional versus Non-Proportional Quantifiers.

Condition β SE t p
Intercept -25.088 5.319 -4.717 < 0.0001
Eriksen -5.724 5.780 -0.990 0.327
Sternberg -4.130 5.932 -1.172 0.490
Brown-Peterson -6.728 5.741 -1.172 0.248

Table 9: Linear model of individual Tsum in the first-ranked negative cluster at the adjective for Propor-
tional versus Non-Proportional Quantifiers Overall.

than a traditional N400 (Augurzky et al., 2017; Vissers et al., 2008; Knoeferle et al., 2011). This effect can

be followed by a positivity for more complex stimuli or tasks (Augurzky et al., 2017, 2019, 2020a,b), and

we find indications of that in contrasts involving Proportional quantifiers. Early onset N400-like effects

have been observed in contexts where semantic expectancy is very high (Van Petten et al., 1999), such

as in the context of a picture (Vissers et al., 2008), but such early negativities have also been argued to

reflect a mismatch between an active representation of the picture and the representation of the incoming

sentence, manifesting as an N2b (D’Arcy et al., 2000; Wassenaar and Hagoort, 2007). Which of these

interpretations turn out to be correct is inconsequential to our main argument, as both of them entail

the completion of a verification procedure.

The sentence-internal effects described here are different from those we found in the previous study

(Bremnes et al., 2022) and from those observed in earlier research on quantifier verification (Augurzky

et al., 2020a; De Santo et al., 2019; Politzer-Ahles et al., 2013). These studies found positivities for

proportional quantifiers, negative polarity, and semantic violations, respectively, while here we observed

a negativity in the 250-500 msec time-window at the noun. Politzer-Ahles et al. (2013) did find a
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sustained negativity for pragmatic violations on quantifiers, but their effect was different both in terms of

latency (500-1000 msec post-stimulus) and distribution (posterior) than our own negativity. The effect of

Proportional quantifiers is more akin to the SANs observed for recomputation and ambiguity in discourse

models (Baggio et al., 2008; Müller et al., 1997; Münte et al., 1998; van Berkum et al., 1999, 2003) or the

LANs observed for long-distance dependencies (Fiebach et al., 2001; King and Kutas, 1995; Kluender and

Kutas, 1995; Vos et al., 2001). Of particular note is the fact that such negativities have been reported to

be modulated by working memory load (Vos et al., 2001).

Since our behavioral results are partially in line with earlier work (Szymanik and Zajenkowski, 2011;

Zajenkowski and Szymanik, 2013; Zajenkowski et al., 2014), in that task performance is correlated with

working memory scores, one might expect performance on the measures of executive function to correlate

with the ERPs (Fiebach et al., 2002; Vos et al., 2001). However, no significant correlation was found. It

is worth noting that the behavioral correlations are statistically weaker than those observed previously,

and the Eriksen task did not correlate at all, contrary to previously reported effects (Zajenkowski and

Szymanik, 2013; Zajenkowski et al., 2014).

4.1 Embedding the automata theory in the psychology of verification

It is important to distinguish the effects predicted by the automata theory from those that fall outside

its purview. In particular, the modulation of the sentence-final effect is more likely to reflect a decision

process based on the expectation that the sentence is true of the given picture, and not the unfolding of

the verification procedure as such (Bremnes et al., 2022). Any interpretation of these effects can therefore

only be inferred from the previous literature. By contrast, the negativity at the sentence-internal noun is

plausibly related to the verification of the sentence, given that every other linguistic property was identical

at this position in the sentence. The fact that we observed differences between the two Quantifier Classes

at this position, and that these differences are more marked in the highest digit load condition, provides

evidence that the observed on-line differences between Proportional and Non-proportional quantifiers are

indeed related to memory resources. However, the direction of the interactions and the precise memory

systems underlying them are not predicted by the theory, and interpretation thus remains speculative.

Bearing that in mind, the procedure that best explains our results is one in which participants build

a model verifying the sentence on-line (Baggio, 2018; Clark and Chase, 1972, 1974; Clark, 1976; Johnson-

Laird, 1983; Just and Carpenter, 1971; Just, 1974; Zwaan and Radvansky, 1998; van Lambalgen and

Hamm, 2005), or proceed on the basis of the expectation that the picture provides a model for the

sentence, i.e., that the sentence is true of the picture. One possibility here is that the brain entertains

two models – one model of the picture, and one of the sentence – that it expects will conform to one

another. The sentence model is being updated with each incoming word, and previous studies have shown

that the picture model constrains the sentence model and gives very high semantic expectancy for the

upcoming words (Augurzky et al. 2017; Knoeferle et al. 2014; Kuperberg 2016; Zwaan 2015; for evidence

of the converse relation, see Coco et al. 2017). The incompatibility of the final word with this model of

the sentence – i.e., the sentence matching the picture – is what is causing the N400-like activity observed

for the False versus True comparison. This is true irrespective of whether this negativity is a true N400 or
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whether it reflects perceptual mismatch (Knoeferle et al., 2011; Vissers et al., 2008), as both alternatives

presuppose the construction of a model for the sentence. It is therefore likely that these sentence-final

effects reflect recomputation of the sentence model and/or decision-making processes (Augurzky et al.,

2017; Knoeferle et al., 2014). The differences between Quantifier Classes at this point – compared to

Non-Proportional, Proportional Quantifiers have a smaller N400, followed by a positivity for the False

versus True comparison – do suggest that the entire process of verification, from determining the truth

value to making a judgement, is affected by the complexity of the computational problem, as these effects

are comparable to the effects of other kinds of complexity (Augurzky et al. 2017, 2020a; Politzer-Ahles

et al. 2013; see also Nieuwland 2016; Urbach and Kutas 2010). However, the automata theory does not

predict these differences, but only differences in determining the truth value. Importantly, in order to

make a sentence model that is true of the sentence, one needs to know what completion of the sentence

would make it true, which is equivalent to verifying the sentence. We therefore expect that the differences

in the verification procedure predicted by the automata theory should occur prior to the effect of Truth

Value. If participants are building a model of the sentence as the sentence unfolds, and this model is

completed by the final word, as evidenced by the sentence-final Truth Value effect, then the difference

between Quantifier Classes observed at the noun is plausibly an effect of differences in the verification

procedure. The fact that these differences are modulated by Digit Load can therefore be taken as evidence

that the verification procedure is modulated by memory.

Still, there are a couple of objections to such a view that are worth considering. It has been argued

that while quantifiers are interpreted incrementally, their semantic representations are underspecified in

such a way as to allow the final interpretation to occur significantly later, in particular in contexts where

task demands are high, like in our case (Urbach and Kutas 2010; Urbach et al. 2015; see also Arcara et al.

2019). One conceivable alternative is therefore that the verification procedure is some kind of counting

or estimation algorithm that returns numerosities, and that the actual verification happens only after

adjective onset, where the participants are comparing the estimated numerosities of, e.g., all circles and

all red circles. This would be an alternative explanation of the differences between quantifier classes

at the adjective: instead of being downstream consequences of verification, they are direct verification

effects. However, this does not change the complexity claims we set out to test: unbounded counting,

which would be required by any quantifier without a specified numerical value, is not doable with an FSA

(Hopcroft and Ullman, 1979).

More problematically, this alternative account leaves the effect of truth value unexplained. One could

argue that there is an inherent cost to processing false, as opposed to true, sentences (Just and Carpenter,

1971; Clark and Chase, 1972, 1974), but that presupposes knowing the truth value. Since knowing the

truth value is equivalent to having verified the sentence, the most likely explanation is that a verification

processes has already been completed at the adjective, i.e., the participants predict the sentences to

be a true description of the picture. The interpretation we are advocating provides an explanation of

sentence-final effects in terms of violation of predictions. But if participants are not building a model,

one should, in the absence of an alternative account of the differences, expect symmetry between true

and false sentences, since the only difference between them is their truth and falsity relative to the model.
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The burden is therefore on an alternative account to explain the observed asymmetry.

4.2 The implementation of the memory component

The fact that the sentence internal effect is different than the one observed previously warrants an

explanation. As mentioned, the polarity of the effect is dependent on the orientation of the dipole

generator, but the effect in the present study is different in both distribution and latency as well. This

suggest that different memory components are involved depending on the task. For example, in the

absence of the digit matching task, systems of recollection memory might suffice to perform the task,

thus yielding an LPC-like effect (Rugg and Curran, 2007). By contrast, in the presence of the digit

matching task, additional systems of working memory and executive function are recruited, resulting

in ERP signatures traditionally associated with working memory in sentence processing, such as the

SAN (Baggio et al., 2008; Müller et al., 1997; Münte et al., 1998; van Berkum et al., 1999, 2003) or

sustained LAN (Fiebach et al., 2001, 2002; Vos et al., 2001). This could also explain the differences

between Quantifier Classes by Digit Load, since the different nature of the kinds of verification algorithms

(requiring or not requiring memory) potentially alters the task of verifying the sentence substantially

enough to cause different memory systems to be recruited. On the basis of the results presented here,

it is not possible to decide which memory systems (recollection memory, working memory) are engaged

by verification of the different Quantifier Classes. Speculating, one possibility is that the negative effect

of working memory effectively cancels the positive effect of recollection memory, i.e., that the negativity

obscures a later positivity. Another possibility is that given a certain task complexity, the entire task is

performed using a different memory system.

The data do not allow us to reverse inference which memory components are involved, but only give us

new hypotheses to test. An important caveat for interpreting the present results is that while we observe

an effect of Quantifier Class, the effect is different from the effects that have been observed previously.

Whether this is the result of different memory systems being recruited, and if so, what causes different

cognitive resources to be deployed in different tasks, remains an open question. Subsequent experiments

should therefore be designed to answer these unresolved issues. A negative finding is that we could

not correlate the ERPs to the working memory measures, as predicted by the theory. Future studies

should further probe these correlations, possibly with other measures of working memory capacity, such

as reading or digit span. The low variation, at least for some of the working memory tasks, does suggest

that either (1) the tests are not valid because they are either too easy or too hard, so that the variation

in the sample cannot be detected, or (2) the sample is too homogeneous. It might be that case that the

population our sample comes from – i.e., university students – might not have enough spread in working

memory capacity, and future research should aim at including a more diverse sample to explore whether

the amplitude differences increase proportionally to the spread in the population. On the other hand, if

the working memory battery we used was not appropriate, it might be possible to find correlations using

more sensitive measures.
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5 Conclusion

We have shown that the algorithmic complexity of a minimal verification algorithm is associated with

different electrophysiological patterns, thus providing further evidence that psycholinguistics ought to

be informed by results from theoretical computer science. One major limitation of the previous study

(Bremnes et al., 2022) was that the relation to memory had to be inferred from the theory, and could

not be demonstrated experimentally. The findings presented herein, however, suggest that the formal

constraints applicable to abstract machines are not only applicable to but are of the same nature as the

constraints on algorithms of human sentence processing.

It has been suggested that computational complexity analyses constitute an intermediate level between

the computational and the algorithmic level (Isaac et al., 2014). These analyses should be able to assess

whether posited computational problems are plausibly computable by the brain (van Rooij, 2008; van

Rooij et al., 2019). Our results, here and in Bremnes et al. (2022), demonstrate that the minimal

complexity of an algorithm delineates a lower bound on the algorithms used by the brain, regardless of

their precise implementation. If, as our results indicate, the nature of the computational resources, e.g., a

memory requirement, can be inferred from the formal theory, the space of possible algorithms used by the

brain is considerably narrower. By observing that humans are constrained by computational resources

derivable from formal theory and observable in the evoked potential, the Marrian perspective permits us

to ignore computationally implausible hypotheses that would otherwise have to be tested. Consequently,

the integration of formal and experimental results enables well-founded, plausible hypotheses that can

likely reveal deep properties of the human capacity for language and cognition more generally (Bird,

2021; van Rooij and Baggio, 2020, 2021).
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Slow wave maturation on a visual working memory task. Brain and Cognition, 88:43–54.

Barwise, J. and Cooper, R. (1981). Generalized Quantifiers and Natural Language. Linguistics and

Philosophy, 4:159–219.

25
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complex in event-related potentials tracks memory signals when they are decision relevant. Scientific

Reports, 9:9469.

Zajenkowski, M., Sty la, R., and Szymanik, J. (2011). A computational approach to quantifiers as an

explanation for some language impairments in schizophrenia. Journal of Communication Disorders,

44:595–600.

Zajenkowski, M. and Szymanik, J. (2013). MOST intelligent people are accurate and SOME fast people

are intelligent. Intelligence, working memory, and semantic processing of quantifiers from a computa-

tional perspective. Intelligence, 41(5):456–466.

33



Zajenkowski, M., Szymanik, J., and Garraffa, M. (2014). Working Memory Mechanism in Proportional

Quantifier Verification. Journal of Psycholinguistic Research, 43(6):839–853.

Zwaan, R. A. (2015). Situation models, mental simulations, and abstract concepts in discourse compre-

hension. Psychonomic Bulletin & Review, 23:1028–1034.

Zwaan, R. A. and Radvansky, G. A. (1998). Situation models in language comprehension and memory.

Psychological Bulletin, 123:162–185.

34



Paper 3
Neural Algorithms of Natural Language Quantification: A review of

the experimental literature



162

This paper is awaiting publication and is not included in NTNU Open 



Appendices



204



Supplementary material
for Computational complexity explains neural differences in quantifier

verification



206



Supplementary material for Computational Complexity Explains Neural Differences in Quantifier Verification

Contents

1 Images presented before the sentences a

2 All experimental sentences b

3 Comprehension questions in Experiment 2 c

1 Images presented before the sentences

a Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio



Supplementary material for Computational Complexity Explains Neural Differences in Quantifier Verification

2 All experimental sentences

Proportional quantifiers
De fleste sirklene er gule Most circles are yellow
De fleste sirklene er røde Most circles are red
De fleste trekantene er gule Most triangles are yellow
De fleste trekantene er røde Most triangles are red

Færrest av sirklene er gule Fewest of the circles are yellow
Færrest av sirklene er røde Fewest of the circles are red
Færrest av trekantene er gule Fewest of the triangles are yellow
Færrest av trekantene er røde Fewest of the triangles are red

Numerical quantifiers
Tre av sirklene er gule Three of the circles are yellow
Tre av sirklene er røde Three of the circles are red
Tre av trekantene er gule Three of the triangles are yellow
Tre av trekantene er røde Three of the triangles are red

Fem av sirklene er gule Five of the circles are yellow
Fem av sirklene er røde Five of the circles are red
Fem av trekantene er gule Five of the triangles are yellow
Fem av trekantene er røde Five of the triangles are red

Aristotelian quantifiers
Alle sirklene er gule All the circles are yellow
Alle sirklene er røde All the circles are red
Alle trekantene er gule All the triangles are yellow
Alle trekantene er røde All the triangles are red

Ingen av sirklene er gule None of the circles are yellow
Ingen av sirklene er røde None of the circles are red
Ingen av trekantene er gule None of the triangles are yellow
Ingen av trekantene er røde None of the triangles are red

b Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio



Supplementary material for Computational Complexity Explains Neural Differences in Quantifier Verification

3 Comprehension questions in Experiment 2

Questions about the sentence
Er setninga en p̊astand om de fleste sirklene? Is the sentence a claim about most circles?
Er setninga en p̊astand om færrest av sirklene? Is the sentence a claim about fewest of the circles?
Er setninga en p̊astand om tre av sirklene? Is the sentence a claim about three of the circles?
Er setninga en p̊astand om fem av sirklene? Is the sentence a claim about five of the circles?
Er setninga en p̊astand om alle sirklene? Is the sentence a claim about all the circles?
Er setninga en p̊astand om ingen av sirklene? Is the sentence a claim about none of the circles?

Er setninga en p̊astand om de fleste trekantene? Is the sentence a claim about most triangles?
Er setninga en p̊astand om færrest av trekantene? Is the sentence a claim about fewest of the triangles?
Er setninga en p̊astand om tre av trekantene? Is the sentence a claim about three of the triangles?
Er setninga en p̊astand om fem av trekantene? Is the sentence a claim about five of the triangles?
Er setninga en p̊astand om alle trekantene? Is the sentence a claim about all the triangles?
Er setninga en p̊astand om ingen av trekantene? Is the sentence a claim about none of the triangles?

Er setninga en p̊astand om gule sirkler? Is the sentence a claim about yellow circles?
Er setninga en p̊astand om gule trekanter? Is the sentence a claim about yellow triangles?
Er setninga en p̊astand om røde sirkler? Is the sentence a claim about red circles?
Er setninga en p̊astand om røde trekanter? Is the sentence a claim about red triangles?

Er setninga en p̊astand om sirkler? Is the sentence a claim about circles?
Er setninga en p̊astand om trekanter? Is the sentence a claim about triangles?

Questions about the picture
Er det gule sirkler p̊a bildet? Are there yellow circles in the picture?
Er det gule trekanter p̊a bildet? Are there yellow triangles in the picture?
Er det røde sirkler p̊a bildet? Are there red circles in the picture?
Er det røde trekanter p̊a bildet? Are there red triangles in the picture?

Questions about both the picture and the sentence

Er det gule sirkler b̊ade p̊a bildet og i setninga?
Are there yellow circles both in the picture
and in the sentence?

Er det gule trekanter b̊ade p̊a bildet og i setninga?
Are there yellow triangles circles both in the picture
and in the sentence?

Er det røde sirkler b̊ade p̊a bildet og i setninga?
Are there red circles both in the picture
and in the sentence?

Er det røde trekanter b̊ade p̊a bildet og i setninga?
Are there red triangles circles both in the picture
and in the sentence?

Er det sirkler b̊ade p̊a bildet og i setninga?
Are there circles both in the picture
and in the sentence?

Er det trekanter b̊ade p̊a bildet og i setninga?
Are there triangles circles both in the picture
and in the sentence?

c Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio



210



Supplementary material A
for The interplay of computational complexity and memory load

during quantifier verification



212



Supplementary material A
Memory Load Interacts with Computational Complexity in the Neural Signals of Quantifier Verification
Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio
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II All experimental sentences

Non-Proportional Quantifiers
Samtlige av sirklene er røde All of the circles are red

Aristotelian

Samtlige av sirklene er gule All of the circles are yellow
Samtlige av trekantene er røde All of the triangles are red
Samtlige av trekantene er gule All of the triangles are yellow

Ingen av sirklene er røde None of the circles are red
Ingen av sirklene er gule None of the circles are yellow
Ingen av trekantene er røde None of the triangles are red
Ingen av trekantene er gule None of the triangles are yellow

Enkelte av sirklene er røde Some of the circles are red
Enkelte av sirklene er gule Some of the circles are yellow
Enkelte av trekantene er røde Some of the triangles are red
Enkelte av trekantene er gule Some of the triangles are yellow

Tre av sirklene er røde Three of the circles are red

Numerical

Tre av sirklene er gule Three of the circles are yellow
Tre av trekantene er røde Three of the triangles are red
Tre av trekantene er gule Three of the triangles are yellow

Fire av sirklene er røde Four of the circles are red
Fire av sirklene er gule Four of the circles are yellow
Fire av trekantene er røde Four of the triangles are red
Fire av trekantene er gule Four of the triangles are yellow

Fem av sirklene er røde Five of the circles are red
Fem av sirklene er gule Five of the circles are yellow
Fem av trekantene er røde Five of the triangles are red
Fem av trekantene er gule Five of the triangles are yellow

c Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio
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Proportional Quantifiers
Flertallet av sirklene er røde The majority of the circles are red

Positive

Flertallet av sirklene er gule The majority of the circles are yellow
Flertallet av trekantene er røde The majority of the triangles are red
Flertallet av trekantene er gule The majority of the triangles are yellow

Flest av sirklene er røde Most of the circles are red
Flest av sirklene er gule Most of the circles are yellow
Flest av trekantene er røde Most of the triangles are red
Flest av trekantene er gule Most of the triangles are yellow

Over halvparten av sirklene er røde More than half of the circles are red
Over halvparten av sirklene er gule More than half of the circles are yellow
Over halvparten av trekantene er røde More than half of the triangles are red
Over halvparten av trekantene er gule More than half of the triangles are yellow

Mindretallet av sirklene er røde The minority of the circles are red

Negative

Mindretallet av sirklene er gule The minority of the circles are yellow
Mindretallet av trekantene er røde The minority of the triangles are red
Mindretallet av trekantene er gule The minority of the triangles are yellow

Færrest av sirklene er røde The fewest circles are red
Færrest av sirklene er gule The fewest circles are yellow
Færrest av trekantene er røde The fewest triangles are red
Færrest av trekantene er gule The fewest triangles are yellow

Under halvparten av sirklene er røde Less than half of the circles are red
Under halvparten av sirklene er gule Less than half of the circles are yellow
Under halvparten av trekantene er røde Less than half of the triangles are red
Under halvparten av trekantene er gule Less than half of the triangles are yellow

d Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio
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Supplementary material B
The interplay of computational complexity and memory load during quantifier verification
Heming Strømholt Bremnes, Jakub Szymanik, and Giosuè Baggio

Contents
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A Inferential statistics on behavioral data

Mixed effects logistic and linear regression models for the accuracy and reaction time data, respectively, were
constructed using the glmer function of the lme4 package (Bates et al., 2015) in R. The sentence verification
task and the digit recollection task were modeled separately. Fixed effects were condition (Proportional/Non-
Proportional for the linguistic task, and 2/4 Digits for digit recollection) and interaction (2/4 digits for sentence
verification, and Proportional/Non-Proprotional for digit matching) and the measures of executive function. The
measures of executive function were z-transformed overall accuracy (z = x−m

sd ) for the Sternberg and Brown-
Peterson tasks, and the z-transformed median reaction time difference between congruent and incongruent trials
in the Eriksen flanker task. The models had random intercepts by participant and individual quantifier.

For verification task accuracy, β-estimates from the logistic regression (see table 1) revealed that participants
were marginally more accurate with Proportional quantifiers. Furthermore, higher accuracy on the Brown-
Peterson and Sternberg tasks was associated with higher accuracy, and participants were also more accurate
with True sentences than with False. Lastly, accuracy was independent of digit load, meaning that there was
no significant difference between storing 2 or 4 digits in memory.

In the linear regression on reaction time (see table 2), β-estimates revealed no effect of Quantifier Class,
but participants were significantly faster with True sentences than with False. None of the working memory
measures were associated with a significant increase or decrease in reaction time, thus suggesting that the
variance is not related to individual differences in working memory capacity. We attempted to include random
intercepts by randomization - i.e., presentation order - but they did not explain any of the variance, and were
therefore omitted in the final model to avoid over-fitting.

Condition β SE z p
Intercept 2.286 0.120 19.041 < .0001
Eriksen -0.035 0.091 -0.388 0.698
Sternberg 0.192 0.092 2.089 0.037
Brown-Peterson 0.252 0.092 2.743 0.006
Proportional 0.220 0.112 1.968 0.049
4 Digits 0.070 0.077 0.910 0.363
True 0.321 0.077 4.146 < .001

Table 1: Logistic regression on accuracy, Sentence verification task

Turning to the digit matching task, the logistic regression (see table 3) revealed that participants were
significantly less accurate with 4 Digits, compared to 2. Higher accuracy on the Sternberg and Brown-Peterson
tasks, as well as a larger difference median reaction time difference between congruent and incongruent trials in
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Condition β SE t df p
Intercept 1565.653 98.837 7.419 15.841 < .0001
Eriksen 48.828 74.141 43.995 0.659 0.513
Sternberg -59.798 76.092 43.995 -0.786 0.436
Brown-Peterson -32.691 73.631 43.992 -0.444 0.659
Proportional 218.999 99.746 2.000 2.196 0.159
4 Digits -7.097 22.839 9126.665 -0.311 0.756
True -61.407 22.679 9136.100 -2.708 0.007

Table 2: Linear regression on response times, Sentence verification task

the Eriksen flanker task, parametrically increased accuracy, and trials were the digit pairs matched were also
more likely to elicit a correct response in the digit task.

For reaction times, β-estimates from a linear regression revealed a significant difference between 2 and 4
Digits, such that participants were significantly slower with 4 Digits. They also responded faster in matching
trials. Quantifier Class in the sentence verification task did not modulate response times in the Digit task, and,
in contrast to accuracy, response times were not related to any working memory score.

Condition β SE z p
Intercept 2.439 0.111 21.888 < .0001
Eriksen 0.204 0.096 2.118 0.034
Sternberg 0.262 0.099 2.656 0.008
Brown-Peterson 0.274 0.097 2.815 0.005
4 Digits -0.321 0.072 -4.483 < .0001
Proportional 0.055 0.078 0.710 0.478
Match 0.209 0.071 2.923 0.003

Table 3: Logistic regression on accuracy, Digit matching task

Condition β SE t df p
Intercept 1664.081 58.771 38.664 28.315 < .0001
Eriksen 11.602 58.254 43.996 0.199 0.843
Sternberg -86.835 59.787 43.995 -1.452 0.153
Brown-Peterson -5.153 57.853 43.994 -0.089 0.929
4 Digits 224.864 19.073 9143.687 11.790 < .0001
Proportional -31.851 31.405 2.014 -1.014 0.417
Match -285.887 19.122 8913.745 -14.950 < .0001

Table 4: Linear regression on response times, Digit matching task
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B Linear models of interactions between ERPs and individual WM
scores

B.1 Sentence-internal noun

Condition β SE t p
Intercept -15.028 4.243 -3.636 < 0.001
Eriksen -9.702 4.611 -2.104 0.041
Sternberg -0.010 4.732 -0.021 0.983
Brown-Peterson -6.309 4.579 -1.378 0.175

Table 5: Linear model of individual Tsum in the first-ranked negative cluster at the noun for 4 Digit Proportional
versus 4 Digit Non-Proportional Quantifiers.

B.2 Sentence-final adjective

Condition β SE t p
Intercept -60.250 15.940 -3.780 < 0.001
Eriksen 15.010 17.32 0.866 0.391
Sternberg 15.110 17.78 0.850 0.400
Brown-Peterson 11.86 17.200 0.690 0.494

Table 6: Linear model of individual Tsum in the first-ranked negative cluster at the adjective for Proportional
versus Non-Proportional Quantifiers in True trials.

Condition β SE t p
Intercept -80.755 19.961 -4.046 < 0.001
Eriksen 13.280 21.692 0.612 0.544
Sternberg -12.368 22.263 -0.556 0.581
Brown-Peterson -2.566 21.543 -0.119 0.906

Table 7: Linear model of individual Tsum in the first-ranked negative cluster at the adjective for Proportional
versus Non-Proportional Quantifiers for 4 Digits.

Condition β SE t p
Intercept -41.271 11.167 -3.696 < 0.001
Eriksen 10.616 12.135 0.875 0.386
Sternberg 18.523 12.454 1.487 0.144
Brown-Peterson -7.036 12.052 -0-584 0.562

Table 8: Linear model of individual Tsum in the first-ranked negative cluster at the adjective for Proportional
versus Non-Proportional Quantifiers in 2 Digit True trials.

Condition β SE t p
Intercept -108.818 30.924 -3.519 0.001
Eriksen 10.148 33.605 0.302 0.764
Sternberg 0.573 34.489 0.017 0.987
Brown-Peterson 37.469 33.374 1.123 0.268

Table 9: Linear model of individual Tsum in the first-ranked negative cluster at the adjective for Proportional
versus Non-Proportional Quantifiers in 4 Digit True trials.
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Condition β SE t p
Intercept -76.530 21.740 -3.520 0.001
Eriksen 3.629 23.625 0.154 0.879
Sternberg -4.198 24.247 -0.173 0.863
Brown-Peterson -4.911 23.463 -0.209 0.835

Table 10: Linear model of individual Tsum in the first-ranked negative cluster at the adjective for Proportional
versus Non-Proportional Quantifiers in 4 Digit False trials.
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