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Abstract

Flux balance analysis (FBA) remains one of the most used methods for modeling the

entirety of cellular metabolism, and a range of applications and extensions based on the

FBA framework have been generated. Dynamic flux balance analysis (dFBA), the expan-

sion of FBA into the time domain, still has issues regarding accessibility limiting its wide-

spread adoption and application, such as a lack of a consistently rigid formalism and tools

that can be applied without expert knowledge. Recent work has combined dFBA with

enzyme-constrained flux balance analysis (decFBA), which has been shown to greatly

improve accuracy in the comparison of computational simulations and experimental data,

but such approaches generally do not take into account the fact that altering the enzyme

composition of a cell is not an instantaneous process. Here, we have developed a decFBA

method that explicitly takes enzyme change constraints (ecc) into account, decFBAecc.

The resulting software is a simple yet flexible framework for using genome-scale metabolic

modeling for simulations in the time domain that has full interoperability with the COBRA

Toolbox 3.0. To assess the quality of the computational predictions of decFBAecc, we con-

ducted a diauxic growth fermentation experiment with Escherichia coli BW25113 in glucose

minimal M9 medium. The comparison of experimental data with dFBA, decFBA and decF-

BAecc predictions demonstrates how systematic analyses within a fixed constraint-based

framework can aid the study of model parameters. Finally, in explaining experimentally

observed phenotypes, our computational analysis demonstrates the importance of non-lin-

ear dependence of exchange fluxes on medium metabolite concentrations and the non-

instantaneous change in enzyme composition, effects of which have not previously been

accounted for in constraint-based analysis.

Introduction

Computer models are invaluable tools in capturing and systematizing new knowledge, espe-

cially for the complex phenomena found in biology. Genome-scale metabolic models (GEMs)
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are computational models that compile information about the entirety of known metabolic

functions in a given organism or cell type. GEMs typically contain a listing of genes, enzymes,

and reactions, and relationships of dependence between these. For biochemical reactions,

information about substrate, product, and stoichiometry is included in their model representa-

tion, i.e. the consumption and production rates for the involved compounds. Based on how

compounds participate in different reactions, it is possible to infer a metabolic network: a

bipartite network connecting the reactions and metabolites [1]. An additional central compo-

nent in GEMs is the representation of a biomass objective function (BOF), a pseudo-reaction

which represents the metabolites needed for the cell to reproduce. Since it is a key component

of these models, the BOF has recently been the target of increased interest in the field [2–6].

Computational models help identify inconsistencies in our current understanding of the

phenomena they model. They also predict novel system behavior or connections, and aid in

the design of experiments [1, 7–10]. As the use of these models becomes more popular and

necessary to improve systems-level understanding of metabolism, so should their ease of use

and interpretation. Due to the formulation of the GEMs and the assumptions of steady-state,

mass conservation, and optimality of an objective (commonly chosen to be the BOF), the cal-

culation of system-wide flux-states (measured in millimoles per hour per gram of cell dry

weight (mmol h−1 gCDW−1) [1]) can be performed using standard tools for constraint-based

linear optimization [1]. This allows for very rapid arrival at an optimal solution, even for large

networks containing thousands of reactions. The aforementioned analysis and calculation

steps are called flux balance analysis (FBA) [1].

In the years since its inception, FBA and related approaches have given rise to a number of

derivatives and modifications [11]. Two modifications that in particular improve the utility of

FBA are (1) dynamic flux balance analysis (dFBA) and (2) enzyme-constrained flux balance

analysis (ecFBA). In dFBA, the goal is to simulate the interaction between the organism’s

metabolism and the environment over time [7, 12]. In the ecFBA approach, additional con-

straints are applied to the flux distribution to account for the fact that the proportion of active

enzymes in a cell is only a fraction of the cell mass, and these enzymes have a finite capacity to

catalyze biochemical reactions [13, 14].

While first introduced in 1994 [7], dFBA was first explicitly formalized in 2002 [12]. This

formalization emphasized two main approaches: the dynamic optimization approach (DOA),

and the static optimization approach (SOA) [12]. The essential difference between the two

methods is that in DOA, the simulation is solved for a single interval of time (often the total

duration of interest) which determines the optimal strategy, whereas in SOA, a regular FBA

problem is solved for a sequence of time intervals, and the effects from one interval are propa-

gated to the next until the final interval is solved [12]. Effectively, this means that for the same

environment over the same total time frame, DOA is likely to produce a sequence of metabolic

operations that results in a higher sum score for whatever objective it is optimized for than

SOA, as it is able to “plan ahead” e.g. by rationing some to-be-limiting nutrients. One might

therefore speculate that, in general, DOA is likely a better predictor for an organism well

adapted to a predictable environment, while SOA is likely a better predictor for an opportunis-

tic organism in a novel or unpredictable environment. The methods for solving the problems

also differ, as the SOA can be solved using simpler algorithms, being a series of regular (linear)

FBA problems [12]. No matter the kind of dFBA formulation, it can be a useful tool for simu-

lating the conditions in a system such as a bioreactor over time [8]. dFBA, however, faces a few

key challenges, such as unrealistically rapid shifts in flux distributions, and the occasional

numerical issue [15].

Several software packages have been built that enable the performance of simple dFBA [15–

21], but many are either difficult to acquire [15, 19], have become unavailable [17], or only
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contain parts of a solution [16, 20], thus requiring decisions to be made on the part of the mod-

eler that may produce different results from the same underlying data. Such decisions are

always a part of modeling, but in the case of dFBA, they are not usually explicit, leading to a

number of different solutions to the same basic problems.

A notable exception is the modeling framework COMETS, which hosts a range of function-

alities and provides interfaces for several popular programming languages to its open-source

code, although most of that code is implemented in Java [18, 21]. Overall, the tools for per-

forming dFBA are generally aimed at expert users who are either able to improvise the

required coding themselves or have very specific aims.

Most biochemical reactions need to be catalyzed by enzymes to proceed at a physiologically

relevant rate (or at all). As an enzyme both has a finite rate of catalysis and a mass, this places a

constraint on the possible productivity of a given amount of cells. While there are a few differ-

ent approaches to incorporate this as a limitation in FBA [9, 13, 22], they all spring from the

above assertions and assumption that this carries additional, meaningful constraints on the

flux distribution in a metabolic network. Here, we collectively refer to these approaches as

enzyme-constrained FBA (ecFBA). Besides the sound arguments underlying the ecFBA

approaches, they also improve the ability of the constraint-based framework to reproduce

some phenomena observed experimentally that are outside the capability of basic FBA without

the addition of extensive and somewhat arbitrary constraints. An example is the modeling of

overflow metabolism, where glucose is incompletely metabolized, thus yielding a much lower

amount of energy per glucose molecule, yet a higher amount of energy per time [9, 23]. While

the ecFBA approaches are useful in many situations, these models are data-hungry and require

extensive information on enzymes associated with different reactions, namely their mass and

the turnover numbers [9]. As these enzyme-constrained models can be somewhat cumber-

some to build, requiring extensive retrieval processes from databases such as SABIO-RK [24]

and BRENDA [25], efforts have been made to facilitate the process through automation and

more standardized protocols [9, 14, 26].

A common application of FBA is to study the interaction between a given organism and its

environment over time, such as in the case of a batch fermentation [11]. While it is not strictly

necessary to run a dFBA simulation of the entire process to do so, batch fermentation provides

a natural testing ground for assessing the accuracy of both the GEM and the model of the fer-

mentor itself, as well as testing the validity of the different assumptions at work. It is also a dis-

play of a GEMs predictive powers that might be easier to grasp than more domain-specific

analysis methods such as phenotype-phase-plane analysis [27]. Due to the potential profits of

improving the efficiency of industrial batch production of added-value bio-molecules, and the

requirements for model fidelity in order to do so, a natural step then becomes to combine the

simpler-to-interpret aspects of dFBA with the increased fidelity of ecFBA [28–31], a combina-

tion we will call decFBA in the following. The DOA approach requires added theoretical as it

increases the complexity of both formulating and solving the mathematical problems involved.

In the case of SOA, it can be implemented in a straightforward way. One of the key merits of

ecFBA is that it improves a GEM’s ability to reproduce certain metabolic phenomena crucial

to the accurate description of cellular behavior, such as overflow metabolism [9].

Also required for accurate simulation is the BOF, which is defined as a pseudo-reaction,

listing the amount of different (pseudo-) metabolites needed per hour to produce a growth

rate of 1 h−1. As a model of this type operates in a gCDW−1 capacity, this becomes the transient

amount of different metabolites needed for 1 gCDW to produce 1 gCDW h−1, without explic-

itly considering the compounding effects of exponential growth [1]. As the BOF serves a cen-

tral role in GEMs, determining the overall flux distribution by being the objective of the entire

system it is trying to optimize for, it should receive special care and attention. While the
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traditional approach has been to approximate it based on data compiled from literature, often

from different strains or conditions, the subject has been the target of increasing interest in

recent years [2–6]. Yet, much work remains to be done, both in terms of establishing protocols

and analysis techniques [6], and in terms of a theoretical framework for integrating the result-

ing data [5] before we can reasonably expect BOFs to allow accurate predictions in varying

and novel environments. Due to its central role in metabolism, the BOF is of special impor-

tance when trying to quantitatively predict metabolic behavior. Thus, the simulation of a con-

crete situation can be a useful test for verifying a given GEM biomass composition. This is

especially true when looking at parameters such as terminal biomass, where the amount of bio-

mass produced in a given fermentation should be predictable in a simulation using a GEM

containing an accurate BOF.

In the following, we expand decFBA using the SOA approach by explicitly adding con-

straints on how rapidly the mass fraction occupied by enzymes can be reallocated, named

enzyme change constraints (ecc). We demonstrate how this has significant effects on model-

ing dynamics by showing its impact on GEM behavior during simulation of generic diauxic

growth on glucose. Finally, we proceed to test the impact of the ecc on a GEM’s ability to

recreate a specific fermentation experiment, and how the ecc can help to explain observed

behavior.

Materials and methods

Batch fermentation

A carbon-limited batch fermentation of E. coli BW25113 (from the Keio collection [32]) (here-

after E. coli), was carried out in a 3 L Eppendorf NewBrunswik BioFlo 115 bioreactor in batch

setup, using minimal glucose media as specified in S1 File (the NaCl was supplied by VWR,

while the rest of the compounds were supplied by Sigma-Aldrich). Glycerol stock solution

samples prepared from a single colony were grown in 250 mL baffled shake flasks overnight at

37˚C and 200 rpm shaking in glucose minimal M9 medium. The fermentors containing 1.5 L

of sterile medium were then inoculated with 40 mL of culture. The fermentation parameters

were 37˚C, pH 7, and 40% dissolved oxygen (DO). During setup, the pH electrodes were cali-

brated with pre-mixed solutions of pH 4 and 7. The pH was prevented from dropping below 7

through automated addition of NaOH (4 M). The DO electrodes were calibrated to 0% by

flushing the electrode for 20 min with nitrogen gas, and to 100% by running the reactor with

the medium and filtered air inflow of� 600 mL min−1 at 500 rpm stirring until equilibrium.

Stirring was then coupled to DO, ensuring an oxygen saturation in the medium of� 40%,

with 200 rpm and 1000 rpm as lower and upper bounds. Analysis of the off-gas composition

and flow-rate was performed using a ThermoScientific Prima BT Benchtop MS, which was cal-

ibrated before each run.

Sampling was performed every 30 minutes for optical density (OD) measurements and

medium analysis, and every 30–60 minutes for dry weight. The OD was measured using a

spectrophotometer at a wavelength of 600 nm by sampling 5 mL. An aliquot of the sample was

diluted with purified water such that the measured OD was between 0.2 and 0.6. The medium

samples were taken as 2 mL aliquots from the OD samples. They were spun at 6700 RCF for 2

min, the supernatant was sterile filtered (0.2 μm polyethylensulfon syringe filters) and stored

at −20˚C until it was analyzed. For dry weight measurements 10 mL were sampled, washed

(centrifuged and redissolved) once with 5 mL 0.9% NaCl before being centrifuged again and

redissolved in purified ion-free water, and added to a dried and weighed aluminum pan. The

pans were completely dried (for� 36 h at 120˚C) before being weighed again.
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Medium analysis

The quantification of medium constituent concentrations was performed by NMR, using ERE-

TIC2 [33] in the Bruker TopSpin 4.0.8 software. The protocol is based on Søgaard et al. [34]

and was further developed.

The samples were thawed and mixed 1:10 D2O with 0.75% TSP (purchased from Sigma),

before 600 μL of the resulting solution was added to a 5 mm 7 inch NMR tube. It was then ana-

lyzed using a 600 MHz (14.1 T) Bruker NMR spectrometer running with the H2O + 10% D2O

solvent setting and water suppression (1H NMR, noesygppr1d). The acquisition parameters

were: 4 dummy scans, 32 scans, SW 20.8287 ppm, O1 2820.61 Hz, TD 65536, TE 298.0 K, D1 4

s, AQ 2.621 439 9 s. P1 was calibrated for each sample to ensure accurate quantification. A cre-

atine solution (70 mM in D2O-TSP solution) was used as an external standard, quantified

using the singlet at� 3 ppm. Compounds responsible for peaks in the spectra were identified

based on reference 1H-NMR spectra available in the Human Metabolome Database (HMDB)

[35–37], as well as the software Chenomx [38] and published literature by Fan [39]. Note

that, glucose quantification was not based on the α-Glucose doublet at� 5.2 ppm, as these

peaks can be affected by the water suppression sequence [40]. Instead, we used the quartet

at� 3.2 ppm for this quantification (reference HMDB compound ID HMDB0000122).

GEM, COBRA and code availability

The GEM used for all modeling was the E. coli iJO1366 [41] model, or more specifically, its

enzyme-constrained modification iJO1366� as presented by Bekiaris [14]. The coding and

modeling was performed with MATLAB 2020a, using version 3.0 of the COBRA Toolbox for

MATLAB [20], and the linear program solver for version 2.7 of the GNU Linear Programming

Kit (glpk) solver (https://www.gnu.org/software/glpk/). Using the glpk solver, the feasTol

parameter had to be lowered from the default 1e − 6 to 1e − 9 to prevent numerical issues with

the algorithm placing limits on enzyme reallocation.

The code produced and used in the paper is available in S3 File, and on GitHub, at https://

github.com/emikar/FermentationSim. Anyone is permitted and encouraged to freely copy the

code and implement their own modifications as needed. Details for the software can be found

in S2 File.

Simulating the fermentation

The batch fermentation performed as part of this work displays the well-known phenomenon

of overflow metabolism [42]. Reproducing this is possible using basic FBA with many arbitrary

constraints, but is better captured using a model with properly tuned enzyme constraints,

exemplified e.g. by the GECKO method [9]. The AutoPACMEN [14] package is streamlined

to allow the addition and tuning of enzymatic constraints to a GEM. Its proof-of-concept, the

iJO1366� E. coli model, was therefore considered suitable for this work. Before tuning, all

exchange reaction bounds were set to ±1000 mmol gCDW−1 h−1. As specified in section GEM,

COBRA and code availability, the Matlab program used for the simulation is detailed in S2

File, and the code can be found in S3 File.

In order to produce a dFBA scenario corresponding to the batch fermentation, the follow-

ing tuning steps were performed:

1. As micronutrients are not supposed to be limiting in the given situation, exhaustion of the

various ions and trace minerals was disabled (see S2 File for details on how, and S3 File

FermentationSim/input/exchange_reactions/fermCL_ionsNotLimiting.csv for details on

which).
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2. As stirring was coupled to DO in the fermentation, exhaustion of oxygen from the medium

was also disabled.

3. The model-encoded uptake rates of glucose and oxygen were too high. These are closely

linked, and as such both were lowered by limiting the oxygen uptake rate to a maximum of

15 mmol gCDW−1 h−1.

4. The only secondary metabolite observed in the medium analysis of the batch fermentation

to be excreted at an appreciable rate was acetate. However, the following were also excreted

by the iJO1366� model: lactate, dihydroxyacetone, ethanol, and pyruvate. Their excretion

rates were therefore iteratively constrained to zero (both isomers where applicable), in the

listed order.

5. Finally, the excretion rate of acetate was set to match observations. This resulted in a maxi-

mal acetate excretion of 2.2 mM gCDW−1 h−1 (see further discussion of this in the Results

section).

Snapshots of the simulation for different parameter sets are showcased in Fig 2. The corre-

sponding parameters are given in Table 1. The acetate excretion feedback is detailed in the

Results and discussion section.

The medium recipe is given in S1 File. For the modeling, this was transcribed into a CSV

file where the concentrations of the different constituent compounds are given in mmol L−1.

This can be found in S3 File. As implied by the tuning steps above, only the concentrations of

glucose and ammonium were potentially limiting during the simulations. Of these, only glu-

cose was exhausted.

After the above tuning steps, we applied the ecc constraint to observe the effect on the mod-

el’s correspondence to experimental measurements. See Results and discussion.

Modeling a time-constrained change in enzyme composition

The central parameter in constraining the change in enzyme composition is implemented in

the enzyme change constraint (ecc). This parameter limits the total change in enzyme compo-

sition with time, and is given in g gCDW−1 h−1 (referred to as “mass per hour”, mph).

Before the ecc can be applied, a method for attaining the enzyme mass distribution is

needed. In order to infer enzyme compositions, the flux through each reaction is multiplied by

the corresponding bottom element of the sMOMENT stoichiometric matrix (S-matrix) and

then multiplied by −1. The bottom element gives the molecular weight of the corresponding

enzyme divided by the enzyme’s turnover number. We get the total amount of mass currently

dedicated to that enzyme per gCDW by multiplying this bottom element with the flux through

the corresponding reaction. Multiplication by −1 corrects for the fact that the bottom row is

all-negative in the sMOMENT formulation [14].

Table 1. Model parameters for reproducing fermentation. The constraints that change through the iterative modifications in our attempt to recreate the experimental

observations made during the fermentation. These correspond to the differences between the different panels in Fig 2. The various values given for lb refer to the lower

bounds on the corresponding exchange reaction in the COBRA model, while the ub refer to the upper bounds. The exchange reactions are: ox, oxygen; lac, lactate; dha,

dihydroxyacetone; ac, acetate; pyr, pyruvate. Where applicable, both stereoisomers are affected by the changes. The acetate excretion feedback (“ac feedback”) is described

in the Results and discussion section.

Iteration ox lb lac ub dha ub ac ub ac lb pyr ub ac feedback

A -1000 1000 1000 1000 -1000 1000 No

B -15 0 0 1000 -1000 1000 No

C -15 0 0 2.2 -10 0 No

D -15 0 0 2.2 -10 0 Yes

https://doi.org/10.1371/journal.pone.0280077.t001
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Any given enzyme-catalyzed flux vi is limited by the amount of enzyme gi dedicated to the

enzyme, and its effective catalytic rate kcat,i. The amount of enzyme gi is in turn limited by the

amount of mass that can be allocated to that enzyme, and the enzyme’s molecular weight

MWi. Expressed mathematically (similarly to Bekiaris & Klamt [14]), we get:

� vi �
MWi

kcat;i
� gi �MWi: ð1Þ

where vi is the flux for reaction i in mmol gCDW−1 h−1, MWi is the mass of the enzyme (com-

plex) catalyzing reaction i in g mol−1, kcat,i is the turnover number of enzyme (complex) i, and

gi is enzyme “concentration” in mmol gCDW−1.

If we assume the cell utilizes all its available enzyme in an optimal manner, we get:

gi �MWi ¼ vi
MWi

kcat;i
ð2Þ

Using this equation, it is possible to keep track of the enzyme composition of the cell. Note

that in this formulation, gi is purely implicit during computation. The mass for each enzyme is

calculated directly from the reaction flux multiplied by the molecular weight of a given enzyme

(complex) divided by its turnover number.

We apply an ecc rate limit by storing the enzyme composition as a vector. This vector has a

length equal to the number of reactions, and specifies the amount of enzyme (in g gCDW−1

h−1), grams per gram of cell dry weight per hour) dedicated to each reaction. Subsequently, the

ecFBA problem (without ecc constraints) is solved once, before the resulting enzyme composi-

tion is checked against the former composition. The difference in enzyme composition is cal-

culated by multiplying the number of hours in the time step by the enzyme change limit, given

in g gCDW−1 h−1. If the difference is smaller than or equal to the amount of change permitted

for that time step, the enzyme composition vector is updated to match the solution. If, how-

ever, the difference is greater than the limit for that time step, the enzyme composition is cal-

culated by weighted linear interpolation. This interpolation occurs between the former

enzyme composition and the optimal one, and a new ecFBA problem is solved with upper

bounds on the flux values corresponding to this new interpolated enzyme composition.

Expressed mathematically, we have the enzyme composition vector of the current time step

mt, giving the protein mass dedicated to each enzyme in gCDW:

mt ¼ ½m1;m2; . . . ;mE�; ð3Þ

where E is the number of enzymes in the vector, which for the purposes of the sMOMENT

model is inflated to the number of (uni-directional) fluxes in the model.

For each time step, the composition vector of the former time step mt−1 is compared to the

optimal composition vector mo acquired by solving a new ecFBA problem, thus giving the dif-

ference vector md:

md ¼ mo � mt� 1: ð4Þ

If the sum of the positive elements in this difference vector is smaller than the enzyme compo-

sition change constraint γ for the current time step, then:

mt ¼ mo: ð5Þ

Otherwise, the value for mt will be calculated by weighted linear combination. First we find the
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proportion of the change, α, permitted by the composition change constraint γ:

a ¼
g

P
imd;i

: ð6Þ

Next, we acquire the new mt by weighted linear combination of mo and mt−1:

mt ¼ mo � aþmt� 1 � ð1 � aÞ: ð7Þ

This option can be activated in the configuration file by setting the enzyme composition

change limit for a given simulation. If set to −1, it allows the enzyme composition to change

freely on every step without tracking, while set to any positive value (including 0), it constrains

the change in enzyme composition to that number of gCDW h−1. Any other number will limit

the rate of change in enzyme composition to that fraction of total biomass per gCDW per

hour. E.g. setting it 0.1 will allow 0.1 grams of enzyme to be replaced per gCDW per hour,

which for the standard enzyme allocation setting of the sMOMENT model iJO1366� of 0.0948

would amount to replacing 0:1

0:0948
¼ 1:05, or 105%, of total enzyme per hour.

To test the effect of constraining enzyme reallocation on a dFBA simulation, we first ran a

model equivalent to standard dFBA, then added total enzyme constraints (decFBA), and

finally added enzyme change constraints (decFBAecc). We selected a simple test scenario: a 1

L reactor with an initial biomass of 0.1 gCDW growing on 10 mM glucose. The bounds on glu-

cose and oxygen uptake rates are specified in Table 2.

First, to get a regular dFBA equivalent, we used a version of iJO1366� with the protein-pool

constraint increased to allow arbitrarily high fluxes. This effectively inactivates the enzyme

constraint, resulting in standard dFBA. Second, we ran a version of the same GEM where the

protein-pool constraint remained at its default setting, thus performing standard decFBA.

Third, and finally, we ran a version of the model where the rate of enzyme redistribution was

constrained to a plausible rate value. This results in what we have called decFBAecc.

Results and discussion

Experimental batch fermentation

During the exponential growth phases, growth rates were measured to 0.66 h−1, while the ter-

minal biomass values were measured to 8.2 gCDW L−1. The experimental results, including

sampling history and raw data from the fermentor’s monitoring software and off-gas analyzer

are given in the S4 File.

The fermentation data are plotted in Figs 2 and 3, where they are compared with different

simulation results. As can be seen, the fermentation follows a typical timeline for diauxic

growth of E. coli on glucose [7], with the depletion of glucose and concurrent accumulation of

acetate, which subsequently is depleted. The concentrations of the various organic compounds

in the medium were determined using the NMR protocol outlined in the Materials and meth-

ods section. Of note is the observation that biomass per volume starts to drop off after peaking,

Table 2. Iterative change in constraints from dFBA to decFBAecc. The parameters that are subject to change are the

total fraction of mass available for enzymes (ec; g gCDW−1) and the amount of enzyme in terms of total mass that can

be replaced per hour (ecc; g gCDW−1 h−1).

Approach ec ecc

dFBA 5000 -

decFBA 0.0948 -

decFBAecc 0.0948 0.01

https://doi.org/10.1371/journal.pone.0280077.t002
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likely due to starvation and cell death. Since the measurements of biomass are actual dry

weight measurements, the drop-off is not a result of simple change in cell morphology.

In order to get stronger signatures for the NMR medium analysis, high concentrations were

used during the fermentation. As a side effect of this, the concentration of acetate seemed to

reach saturation earlier than predicted by the computational simulations. This is potentially

linked to thermodynamic feedback in the Pta-AckA pathway [43].

Applying enzyme change constraints to a dFBA model

In Fig 1 we show the effects of adding different constraints to the dFBA formulation, thus tran-

sitioning from standard dFBA to a decFBA approach, to a situation with enzyme composition

change constraints (decFBAecc).

For these simulations, we set the O2 maximum uptake rate to 15 mmol gCDW−1 h−1 and

the glucose maximal uptake rate to 10.5 mmol gCDW−1 h−1. The constraints are listed in

Table 2.

The first parameter set (“dFBA”, Table 2) corresponds to standard dFBA, realized through

increasing the sMOMENT protein pool constraint from 0.0948 to 5000 g gCDW−1 of enzyme.

Here, glucose is rapidly depleted as the amount of biomass grows and acetate is excreted,

before the model fully depletes the glucose and then also rapidly depletes the acetate.

The second parameter set (“decFBA”, Table 2) corresponds to decFBA as realized by run-

ning the sMOMENT approach unmodified in a dFBA setting. Here, glucose is consumed

more slowly than for simple dFBA simulation, and acetate accumulates at a higher rate. This

is typical when enzyme constraints are added, as incomplete metabolism of glucose through

glycolysis produces more energy per time per amount of enzyme than does the full aerobic

breakdown through TCA cycle and electron transport chain. Once glucose is depleted, the

acetate concentration quickly follows suit at a similar rate to what is the result in the dFBA

case.

The third parameter set (“decFBAecc”, Table 2) corresponds to decFBAecc as realized by

running the sMOMENT model unmodified in a dFBA setting while constraining the amount

of enzyme mass that can be reallocated per time. The resulting curves seem identical to the

decFBA case until glucose is depleted. This is expected since the only difference is the rate at

which enzyme can be reallocated, and both decFBA and decFBAecc are initialized at optimal

enzyme composition for the consumption of glucose. Following this, the acetate depletion rate

builds up gradually, as the biomass curve under decFBAecc displays a lag phase. The final bio-

mass concentration is lowered due to the application of these constraints reducing the total

conversion efficiency of glucose to biomass.

Overall, we find that constraining the rate at which enzyme mass can be reallocated has a

profound impact on the dynamics of cell metabolism. While the impact in terms of terminal

biomass is small between decFBA and decFBAecc, the impact of the timing at which the termi-

nal biomass is reached is significant. This has implications for microbial production of com-

pounds where a change in growth conditions is often used as a trigger for production of a

compound in question. In conclusion, the inertia in the cells’ change in enzyme composition

appears to warrant further investigation.

Modeling feedback in acetate excretion

When comparing fermentation data with model predictions, we found that the model over-

predicted the external acetate concentration peak. Specifically, the acetate excretion seemed to
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slow with a higher external concentration of acetate. This phenomenon is described by Enjal-

bert et al. [43], and appears to be caused by thermodynamic feedback.

In order to capture this dynamic in our modeling framework, we tried to match their data

to a number of functional forms using regression analysis: linear, polynomial (degree 2–5),

Fig 1. Transitioning from standard dFBA to decFBAecc. Shown in the figure are glucose (glc), acetate (ac) and biomass (DW) concentrations for

dFBA, decFBA, and decFBAecc. Most reactions are unconstrained, but glucose uptake is limited to 10.5 mmol gCDW−1 h−1, and oxygen uptake is

limited to 15 mmol gCDW−1 h−1. In the dFBA case, the iJO1366� model has been adjusted with an arbitrarily large protein pool constraint (5000 g

gCDW−1 of enzyme, which allows every flux to reach 1000 mmol gCDW−1 h−1) to produce standard dFBA results; glucose is rapidly depleted, while

acetate is accumulated before being rapidly depleted as well. In the decFBA case, the iJO1366� model is simulated without modifying the protein pool

constraint (0.0948 g gCDW−1 of enzyme), allowing slightly slower growth; glucose is depleted slower than in the dFBA case, and more acetate

accumulates before being depleted at a similar rate. In the decFBAecc case, the protein pool constraint is the same as default setting, but the rate at

which the enzyme composition is allowed to change has been limited to 1% per hour (as opposed to being instantaneous); the trajectories are identical

until the metabolism shifts from growth on glucose to growth on acetate, at which point there is a short lag phase.

https://doi.org/10.1371/journal.pone.0280077.g001
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and logarithmic. We found that a logarithmic function provided an excellent fit, but that the

parameters from our regression model did not allow our model to reach the experimentally

measured concentration of external acetate.

The difference could owe to differences in the strains of E. coli used, or due to differences

in medium or exact growth environment. The expression we devised to fit our data is given in

Eq 8:

ExAc;maxðcAcÞ ¼ �
1

lnð cAc;s
VAc;max

Þ
� lnð cAc

cAc;s
Þ; ð8Þ

where ExAc,max is used as the upper bound on acetate excretion, and cAc is the concentration of

acetate in the environment. VAc,max = 2 is the max excretion rate for acetate, while cAc,s = 13 is

the external acetate concentration at saturation.

Fitting model parameters to batch fermentation

Fig 2 shows the effects of the sequential adjustment of model parameters as we attempt to cap-

ture the specific metabolic behavior displayed in our experiment. The adjustments are listed in

the Materials and methods section and summarized in Table 1.

The base dFBA computational modeling, as seen in Fig 2 panel A, uses the iJO1366 model.

It depletes glucose too rapidly and produces an acetate peak that is too high. Terminal biomass

is not too far off, however. In Fig 2 panel B, oxygen uptake has been limited to a more realistic

value (see Table 1), which caused excretion of lactate and dihydroxyacetate. As these secondary

metabolites were not observed to be excreted in our batch fermentation, they have been

blocked. Overall, this results in a slower glucose depletion and a higher acetate peak, without

an appreciable change in terminal biomass. In Fig 2 panel C, acetate excretion and uptake are

limited to more realistic values (see Table 1) [43]. This caused excretion of pyruvate, which

was subsequently also blocked, as no appreciable amounts were detected in the medium. This

step appears to make growth, glucose, and acetate curves align much better with experimen-

tally measured values. Finally, in Fig 2 panel D, we added an expression for negative feedback

from external acetate concentration on acetate export (see Modeling feedback in acetate excre-

tion for details) motivated by the results by Enjalbert et al. [43]. The resulting concentration

curve for external acetate appears to align closely with our experimentally measured values,

except its utilization is too rapid after glucose depletion.

After all tuning steps are done, the growth rate and carbon source consumption on glucose

are 0.65 h−1 and 7.9 mmol gCDW−1 h−1 respectively, while on acetate (after the diauxic shift)

they are 0.25 h−1 and 10 mmol gCDW−1 h−1.

Consequences of the enzyme change constraint

Finally, we investigated the effect on the diauxic shift, from glucose to acetate, of applying a

constraint on the rate of change in the cell’s enzyme composition, as formulated in the decF-

BAecc method (see Materials and methods). Here, one would expect to see a slower adaptation

than for dFBA/decFBA without the ecc constraint, as time is required to reallocate part of the

enzyme pool to allow optimal utilization of acetate rather than glucose.

The resulting simulation outputs are plotted in Fig 3 for a range of sample values for the ecc

parameter. The consequences of applying the constraint on the rate of enzyme reallocation

are most apparent in the depletion of external acetate, and, to a lesser extent, in the terminal

biomass.

The more constrained the reallocation of enzymatic mass becomes, the slower the rate of

acetate depletion approaches its optimum. This has a consequence of lowering the terminal

PLOS ONE A study of a diauxic growth experiment using an expanded dynamic flux balance framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0280077 January 6, 2023 11 / 17

https://doi.org/10.1371/journal.pone.0280077


biomass, as more acetate is consumed for energy by the non-growth associated maintenance

sink function before it can be used as an energy and carbon source to fuel growth. This is to be

expected, as the optimal enzyme distribution for utilization of glucose is not the same as the

optimal enzyme distribution for utilization of acetate.

Fig 2. Model parameter adjustment. Shown in the figure are glucose (glc), acetate (ac) and biomass (DW) concentrations for four snapshots of the

model tuning process. It displays a comparison of modeling results with measurements throughout successive adjustments of base sMOMENT model

parameters. As can be seen, several export reactions need to be blocked, and several rates limited in order to reproduce realistic behavior, even with the

total enzyme pool constraints. The order and nature of adjustments are listed in Table 1. In short: panel A is iJO1366 out-of-the-box, panel B is oxygen

uptake-limited with lactate and dihydroxyacetone export blocked. Panel C has acetate exchange bounded and pyruvate excretion blocked, while panel

D has acetate excretion feedback enabled.

https://doi.org/10.1371/journal.pone.0280077.g002
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In this particular case, a rate of replacing 2% of total biomass worth of enzymes per hour

produces the best fit with experimental data according to our analyses, with a root mean

square deviation (RMSD) of 1.04. The entire interval 1.8–6.1% for the value of the ecc

appeared to fit experimental data quite well, with an RMSD below 1.10.

Fig 3. Enzyme composition change rate adjustment. Shown in the figure are glucose (glc), acetate (ac) and biomass concentrations (DW) for a range

of ecc (enzyme change constraint) parameter values. It showcases a comparison of modeling results with experimental measurements when varying

constraints on rate of change of enzyme composition. The rate is given as percentage of total cell mass (not enzyme mass) per hour (denoted mph in the

legend) that can be reallocated. The rate of change of enzyme composition has a dramatic effect on the transient behavior of the model during diauxic

growth, and a rate of 2% mph appears to best match the data measured from the fermentation experiment. The difference in terminal biomass is caused

by the non-growth-associated maintenance (NGAM) function, which forces hydrolysis of ATP at a rate of 3.15 mmol gCDW−1 h−1.

https://doi.org/10.1371/journal.pone.0280077.g003
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It should be noted that the ecc rate is likely to be highly dependent on rate-limiting compo-

nents in the enzyme reallocation process, i.e. gene expression, which should place a lower

bound on how rapidly this can occur. A more accurate model would also have the ecc rate rep-

resented as a vector of separate values for different reactions, though a lack of appropriate data

makes this infeasible at present.

With the general approach used for decFBAecc, one would expect a similar effect for dia-

uxic shifts involving other substrates, such as glucose/glycerol or glucose/lactose. In their

paper from 2006, Bettenbrock et al. modeled diauxic shifts on a number of substrate combina-

tions, with a focus on the signal transduction processes involved [44]. This model, in their own

terms, “describes the expression 17 key enzymes, 38 enzymatic reactions, and the dynamic

behavior of more than 50 metabolites” [44]. While their model by and large yields good fits

with the data, it is custom-built to describe the process, and may leave out other elements of

interest when modeling the process. The strength of the decFBAecc approach lies in its foun-

dation, the robust framework and formalisms surrounding GEMs, FBA and constraint-based

analysis. This foundation allows standardized approaches to applying enzymatic data, such as

in the case of sMOMENT [14]. This in turn allows the representation of enzyme reallocation

dynamics with minimal additional overhead and parameters using decFBAecc.

Conclusion

In this work, we have presented a computationally robust and flexible framework for simu-

lating fermentation with dynamic flux balance analysis. We use this framework to make iter-

ative changes in computational constraints applied to a simple example of diauxic growth on

glucose. This approach illustrates the consequences of adding constraints on the rate of real-

location of enzyme. Based on these findings, we perform a simple fermentation experiment

for E. coli as a case study, which we attempt to recreate using our computational simulation

framework.

We have two primary findings. First, we find that applying constraints on the rate of

enzyme mass reallocation, in addition to applying constraints on total mass allocation to

enzymes, produces markedly different modeling results for key processes of interest. The new

constraints have a sound rationale, and allow the model in this case to better capture experi-

mental observations. One key consequence is that they markedly change the timing at which

maximum biomass is reached during diauxic growth. They do not, however, markedly change

the terminal amount of biomass in the considered case, meaning their utility in verifying a

BOF may be limited. Another key consequence is that they drastically alter the rates and tim-

ings of substrate depletion during a change in growth environment, such as a diauxic shift.

This could have important implications for industrial production of added-value compounds.

And as the method is relatively straightforward to apply, at least for organisms for which high-

quality GEMs exist, it can be readily employed for such purposes.

Second, we strengthen the notion that non-linear feedback dynamics on acetate excretion

are necessary to capture the behavior of E. coli in environments with high initial concentra-

tions of glucose. This agrees with the findings of Enjalbert et al. [43], and has important conse-

quences for modeling of metabolism at high external concentrations of export products.

Supporting information

S1 File. The carbon-limited medium used in the fermentation. An Excel file detailing the

nutrient composition of the medium used in the fermentation.

(XLSX)
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S2 File. Manual for the simulation program for Matlab. A PDF manual containing specifica-

tions and user instructions for the fermentation simulation program written in Matlab.

(PDF)

S3 File. Zip file of project source code. A zip file containing the Matlab source code.

(ZIP)

S4 File. The fermentation data. Excel file detailing the fermentation, including protocol and

sampling history.

(XLSX)
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