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ABSTRACT In this paper, three model-based fault diagnosis algorithms for robotic systems are designed,
compared, simulated, and implemented. The first algorithm is based on a nonlinear adaptive observer
(NLAO), where a sufficient condition for the convergence of the estimator is derived in terms of linear matrix
inequality (LMI) under persistence of excitation condition. The second algorithm is based on an adaptive
extended Kalman filter (AEKF). Unlike traditional approaches, where the fault parameters are considered
as augmented state variables, the AEKF directly estimates the fault parameters from measurement data. The
third algorithm is based on a cascade of a nonlinear observer (NLO) and a linearized adaptive Kalman filter
(LAKF), called the adaptive exogenous Kalman filter (AXKF). The pros and cons for each algorithm are
discussed. The performance of the algorithms is compared in a single-link joint robot system. Furthermore,
the algorithms are implemented in a ball-balancing robot to detect and estimate the magnitude of the actuator
faults.

INDEX TERMS Fault diagnosis, nonlinear observer, Kalman filter, robotics.

I. INTRODUCTION
Robotic systems are vulnerable to various types of faults.
If faults appear in such systems, it can cause harm or injury
for people and other adverse consequences. Fault diagnosis
algorithms can be used as a first step to mitigate these prob-
lems [1]. Fault diagnosis consists of three steps: detection,
localization, and estimation. While fault detection and local-
ization algorithms have been quite well-established, fault
estimation received less attention since the problem is more
difficult to solve [2].

Two approaches for fault diagnosis of dynamical systems
can be found in the literature. The first approach includes
methods in which the system model is not needed. Instead
of the system model, the measurement data is required
for fault diagnosis. The main drawback of this approach
is the large set of data that is required for proper opera-
tion. Neural networks, pattern recognition, variational mode
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decomposition, Bayesian network method, statistical and
expert methods are the examples of this approach [3], [4],
[5], [6]. Recent advancement based on this approach is by
using machine learning methods, such as deep learning [7],
[8], long short-term memory (LSTM) [9], and support vec-
tor machine [10]. The second approach includes methods
in which the mathematical model of the system is needed
(model-based approach) [11]. This paper focuses on the
second approach and is an extension of the first author’s
two IEEE conference papers presented in [12] and [13].
The extension includes design of fault diagnosis algorithms
based on nonlinear adaptive observer (NLAO) and adaptive
extended Kalman filter (AEKF). In particular, we design,
compare, simulate, and implement the two aforementioned
model-based fault diagnosis algorithms with the adaptive
exogenous Kalman filter (AXKF). In contrast with the exist-
ing model-based algorithms, where the fault parameters are
augmented as additional state variables, the algorithms pre-
sented in this paper estimate the faults directly from mea-
surement data. To show the performance of the algorithms,
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FIGURE 1. Schematic diagram of fault diagnosis for robotic systems.

we perform numerical simulations based on a single-link
flexible joint robot system and a real experiment in a ball-
balancing robot.

To outline the contribution of this paper into a general
perspective, the reader can refer to Fig. 1. In this case, the
contribution is the development of fault diagnosis algorithms
for robotic systems. The information regarding fault diag-
nosis can be utilized as a decision support system. If the
fault is detected, the robotic systems can either decide to
stop or continue the operation. When the operation is decided
to continue, the information regarding the magnitude of the
fault (fault estimation) can be used by a fault-tolerant control
algorithm to compensate the fault. A possible algorithm for
the fault-tolerant control is by using model predictive control
(MPC) [14]. In this case, the fault estimation is used to predict
the behaviour of the robotic systems in the prediction horizon
interval.

A. LITERATURE REVIEW
In principle, model-based fault diagnosis exploits state esti-
mation methods to determine if the system outputs are con-
sistent with the occurrence of a fault. Many methods for
state estimation can be found in the literature. For example,
Kalman filter (KF) has been proven as an optimal solution
for state estimation of linear dynamic systems [15]. KF has
been widely used in different applications due to its sim-
plicity, tractability, and robustness. However, linear KF can
not be used for systems with severe nonlinearity. Since most
of the systems are nonlinear, sub-optimal state estimation
techniques can be used. Extended Kalman filter (EKF) is one
of these sub-optimal techniques in which measurements and
system model equations are linearized [16], such that the lin-
ear KF algorithm can be implemented. However, linearization
in the EKF causes instability of this method particularly for
extremely nonlinear systems. UnscentedKalman filter (UKF)
was presented in [17] to improve the deficiency of the EKF.
The UKF uses a collection of sigma points to estimate the
mean and covariance matrix propagation [18], [19]. Another
group of model-based state estimation techniques is based
on nonlinear observer (NLO). This method takes a global
asymptotic or exponential stability as a design starting point,

and then employ tuning parameters to follow desired perfor-
mance [20], [21], [22]. The aforementioned state estimation
techniques have been widely used in different applications
such as lithium-ion battery state of charge estimation [23],
[24], attitude estimation and fault diagnosis of unmanned air-
craft systems (UAVs) [25], autonomous mapping and explor-
ing [26], locomotion planning of humanoid robots [27], and
state estimation for cyber-physical systems [28].

B. CONTRIBUTION OF THIS PAPER
Fault diagnosis methods based on state and parameter estima-
tion techniques presented in the literature review treated the
fault parameters as additional state variables of the systems.
This approach, however, can cause the augmented system to
be unstable. Thus, there is an incentive to design estimation
methods that can estimate the fault parameters directly from
the measurement data. In this paper, we present three model-
based actuator fault diagnosis algorithms for robotic systems,
for which the fault parameters are estimated directly from the
sensor data. The first algorithm is based on anNLAO,where a
sufficient condition for the NLAO is derived in terms of linear
matrix inequality (LMI). The second algorithm is based on an
AEKF. In contrast with the traditional approach in which the
fault parameters are modelled as additional state variables,
the method estimates the fault parameters under persistence
of excitation condition. The third algorithm is based on a
cascade of nonlinear observer (NLO) and linearized adaptive
Kalman filter (LAKF), called the AXKF. The algorithms are
tested in numerical simulations and implemented in a ball-
balancing robot.

C. ORGANIZATION OF THIS PAPER
This paper is organized as follows. The problem formulation
is presented in Section II. The NLAO, AEKF, and AXKF
algorithms are presented in Section III, IV, and V, respec-
tively. The performance of the algorithms is compared in
Section VI by implementing the algorithms for a single-link
flexible joint robot model. In section VII, the algorithms are
used to estimate the fault parameters in a ball-balancing robot.
Finally, the conclusion is presented in Section VIII.

II. PROBLEM FORMULATION
Before we formulate the problem, we define symbols and
notations used throughout this paper. We denote Rn as the
n-dimensional real Euclidean space, In as the n-dimensional
identity matrix, and 0n as the n-dimensional null matrix.
The symbol 〈·, ·〉 represents the inner product in Rn. This
means for x, y ∈ Rn, 〈x, y〉 = xᵀy, where xᵀ denotes the
transpose of x. The notation ‖x‖ denotes the Euclidean norm
of vector x in Rn. The norm of matrix A is defined as ‖A‖ =√
λmax(AᵀA) = σmax(A), where λmax and σmax denote the

largest eigenvalue of AᵀA and the largest singular value of
A, respectively. Furthermore, A > 0 means A is positive
definite (all eigenvalues are positive), while A < 0 means
A is negative definite (all eigenvalues are negative).
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Let us consider dynamic models of robotic systems, which
can be transformed into the following nonlinear discrete-time
form:

xk+1 = Axk + f (xk )+ Buk +8kθ + wk (1)

yk = Cxk + vk (2)

Remark that system (1) consists of a linear term Axk , a non-
linear term f (xk ), a control term Buk , a faulty term 8kθ , and
an uncertainty term wk . Specifically, xk ∈ Rn denotes the
state vector and A ∈ Rn×n denotes the state transition matrix.
The nonlinear term is represented by f : Rn

→ Rn. The input
matrix and input vector are denoted by B ∈ Rn×l and uk ∈
Rl , respectively. The output vector is denoted by yk ∈ Rm

and the measurement matrix is denoted by C ∈ Rm×n. The
faults are assumed to be at the actuator and are represented
by the term 8kθ . Here, the matrix sequence 8k ∈ Rn×p is
assumed to be known. The value of the fault is represented
by the constant or piecewise constant with rare jumps vector
parameter θ ∈ Rp and is unknown. If the fault is time-varying,
then the algorithmmay not converge. If p = l, then the matrix
sequence 8k is given by

8k = −Bdiag(uk ) (3)

In this case, when faults occur then the nominal control term
Buk becomes

Buk − Bdiag(uk )θ = B (I l − diag(θ ))uk (4)

Tomodel uncertainty both in the model and the measurement,
we are adding noise wk and vk , respectively. The noises are
assumed to be zero mean Gaussian white noise with covari-
ance matrices QFk and RFk , i.e., wk ∼ (0,QFk ), vk ∼ (0,RFk ).
We assume A, B, C, 8k , QFk , and R

F
k are upper bounded, the

pair (A,C) is uniformly completely observable, and the pair

(A,
√
QFk ) is uniformly completely controllable. Furthermore,

we limit the scope of the paper by assuming no time delay
on the measurement.

The fault diagnosis problem is to estimate the state vector
xk and the unknown vector parameter θ using measurement
data yk under the process and measurement noise wk and vk .
To answer this problem, we present three fault diagnosis algo-
rithms in Section III, IV, and V, respectively. The schematic
diagram of the three algorithms are presented in Fig. 2. The
NLAO-based algorithm is simple and straightforward. Mea-
surement data is utilized by the algorithm after we design an
appropriate observer gain. The observer gain can normally
be obtained by solving an LMI. The AEKF-based algorithm
uses local approximation of nonlinear models to calculate the
covariance estimate. The covariance is then used to update
the state and parameter estimate of the nonlinear system. The
AXKF-based algorithm added an NLO into the AEKF. This
will result in global convergence andmore accurate estimates.

III. ALGORITHM BASED ON NONLINEAR ADAPTIVE
OBSERVER (NLAO)
In this section, we derive a sufficient condition for the
NLAO-based fault diagnosis algorithm in terms of LMI.

FIGURE 2. Schematic diagram of the NLAO (top), the AEKF (middle), the
AXKF (bottom).

Deriving an NLAO for general nonlinearity f is not trivial,
thus, we restrict our analysis only for Lipschitz nonlinearity.
In particular, we consider f as a one-sided nonlinear Lip-
schitz function that satisfies a quadratic inner-boundedness
condition. To this end, let us assume the nonlinear function f
satisfies

‖f (xk )− f (x̌k )‖ ≤ γ ‖xk − x̌k‖ (5)

∀xk , x̌k ∈ Rn. The constant parameter γ > 0 is called the
Lipschitz constant. If there is a constant ρ ∈ R such that the
inequality

〈f (xk )− f (x̌k ), xk − x̌k 〉 ≤ ρ‖xk − x̌k‖2 (6)

is satisfied, then the nonlinear function f is called a one-sided
Lipschitz function, i.e., for ε1 > 0, we have

ε1

(
x̆k
1f k

)ᵀ

 ρIn −
In
2

−
In
2

0n

( x̆k
1f k

)
≥ 0 (7)

where x̆k = xk − x̌k and1f k = f (xk )− f (x̌k ). Furthermore,
if there are constants β, η ∈ R such that

1f ᵀk1f k ≤ β‖xk − x̌k‖
2
+ η〈xk − x̌k ,1f k 〉 (8)

then f satisfies the quadratic inner-boundedness condition,
i.e., for ε2 > 0, we have

ε2

(
x̆k
1f k

)ᵀ
βIn ηIn

2
ηIn
2 −In

( x̆k
1f k

)
≥ 0 (9)
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To guarantee the exponential convergence of both the state
and the fault estimation errors, persistence of the excitation
condition is employed. In this case, we assume there exist
positive constants c2 ≥ c1 > 0, such that for N ∈ Z

c1Ip ≤
k+N−1∑
i=k

8
ᵀ
i 8i ≤ c2Ip, ∀k (10)

After defining the nonlinearity, we are ready to design the
NLAO. Let us assume all states are measurable, the NLAO
can be designed as follows

x̄k+1 = Ax̄k + f (x̄k )+ Buk +8k θ̄k + J−1Yy̆k (11)

θ̄k+1 = θ̄k +8
ᵀ
k4k

(
x̆k+1 − Kx̆k −1f k

)
(12)

where the pair (x̄k , θ̄k ) denotes the state and fault estimation
from the nonlinear adaptive observer, while x̆k = xk − x̄k ,
1f k = f (xk ) − f (x̄k ), and y̆k = yk − x̄k . The observer gain
J and Y are to be determined later. The fault estimation gains
are given by

K = A− J−1Y (13)

4k = 2
(
8k8

ᵀ
k + Q

)−1 (14)

where Q = Qᵀ is a positive definite matrix. Thus, 4 =
4ᵀ > 0. Remark that, 4 is uniformly bounded by 0 <

2
82+qb

≤ 4(k) ≤ 2
qs
, ∀k . Here, qs denotes the smallest

eigenvalue of Q, while qb denotes the largest eigenvalue of
Q. Let θ̆ = θ − θ̄ denotes the fault parameter error. The error
dynamics of the state estimation are given by

x̆k+1 = Kx̆k +1f k +8k θ̆k (15)

θ̆k+1 =
(
Ip −8

ᵀ
k4k8k

)
θ̆k (16)

The main result of this section can be stated as follows.
Theorem 1: If there exist a matrix J = Jᵀ > 0 ∈ Rn×n

and a matrix Y ∈ Rn×n such that the following LMI is
satisfied −J + a1In Lᵀ + a2In Lᵀ

L+ a3In J + a4In 0n
L 0n −J

 < 0 (17)

where L = JA− Y , a1 = ν + ε1ρ + ε2β, a2 =
ηε2−ε1

2 , a3 =
ηε2−ε1

2 , a4 = −ε2 for ε1, ε2, ν > 0 and η, ρ, β ∈ R, then the

equilibrium
(
x̆k , θ̆k

)
= 0 of the error dynamics (15)-(16) is

globally uniformly asymptotically stable.
Proof of Theorem 1 can be obtained by modifying steps

in the first author’s conference paper [13]. Remark that the
adaptive observer (11)-(12) has three tuning matrices: J and
Y , which can be obtained from Theorem 1, and Q > 0.

The main advantage of using the NLAO is that the algo-
rithm is guaranteed to converge to the actual value. Further-
more, the algorithm is easy to implement with minimum
computational effort compared to other methods. However,
for general nonlinearity the algorithm may not be suitable
and the observer gains that satisfy (17) may not be found.
Another disadvantage is that the algorithm is not designed
to handle process and measurement noise. In many cases,

Algorithm 1 Nonlinear Adaptive Observer

Initialization x̄0, θ̄0
Determine J and Y based on (17), select Q = Qᵀ > 0
Recursions for k = 0, 1, 2, · · ·
Calculate the fault estimation gains K and 4k

based on (13)-(14)
Calculate the vector state x̄k+1 and fault θ̄k+1

based on (11)-(12)

it also requires measurement of all state variables, whichmay
not be available. In summary, the fault diagnosis algorithm
based on the NLAO is robust with respect to different initial
conditions and Lipschitz nonlinearity, but not robust with
respect to noise.

IV. ALGORITHM BASED ON ADAPTIVE EXTENDED
KALMAN FILTER (AEKF)
In this section, we extend the work of [29] to nonlinear
systems. Linearizing (1) at x̂k , we have

xk+1 = Fk (x̂k )xk + Ek (x̂k )+ Buk +8kθ + wk (18)

where

Fk (x̂k ) = A+
∂f (xk )
∂xk

∣∣∣∣
x̂k

(19)

Ek (x̂k ) = f (x̂k )−
∂f (xk )
∂xk

∣∣∣∣
x̂k
x̂k (20)

For simplicity, let Fk = Fk (x̂k ) and Ek = Ek (x̂k ). The
Kalman gain Kk+1 and the error covariance matrix P+k+1 are
computed using the following recursion

P−k+1 = FkP+k F
ᵀ
k + Q

F
k (21)

6k+1 = CP−k+1C
ᵀ
+ RFk (22)

Kk+1 = P−k+1C
ᵀ6−1k+1 (23)

P+k+1 = [In − Kk+1C]P−k+1 (24)

while the fault estimation gains0k+1 andϒk+1 are computed
using the following recursion

ϒk+1 = (In − Kk+1C)Fkϒk + (In − Kk+1C)8k (25)

�k+1 = CFkϒk + C8k (26)

3k+1 =
[
λ6k+1 +�k+1Sk�

ᵀ
k+1

]−1 (27)

0k+1 = Sk�
ᵀ
k+13k+1 (28)

Sk+1 =
1
λ
Sk −

1
λ
Sk�

ᵀ
k+13k+1�k+1Sk (29)

where λ denotes the forgetting factor, which determines the
convergence rate of the fault estimator. The fault parameter
and state variable are calculated using the following formula

θ̂k+1 = θ̂k + 0k+1ỹk (30)

x̂k+1 = Ax̂k + f (xk )+ Buk +8k θ̂k

+Kk+1ỹk +ϒk+1[θ̂k+1 − θ̂k ] (31)
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where

ỹk = yk − Cx̂k (32)

Algorithm 2 Adaptive Extended Kalman Filter

Initialization x̂0, θ̂0, P+0 , ϒ0, S0, λ
Recursions for k = 0, 1, 2, · · ·

Calculate the Jacobian matrix ∂f (xk )
∂xk

∣∣∣
x̂k

Calculate the observer gains 0k+1,Kk+1,ϒk+1
based on (21)-(29)
Calculate the fault θ̂k+1 and the vector state x̂k+1

based on (30)-(31)

The main advantage of using the AEKF is the method
applicable for general nonlinearity, once the Jacobian matrix
has been computed. Furthermore, the method can handle pro-
cess and measurement noise. However, due to linearization,
the estimates may not converge to the actual values. This
limitation is addressed in the third algorithm below, where we
add an NLO to guarantee the stability. In summary, the fault
diagnosis algorithm based on the AEKF is robust with respect
to noise, but not robust with respect to severe nonlinearity.

V. ALGORITHM BASED ON ADAPTIVE EXOGENOUS
KALMAN FILTER (AXKF)
The third algorithm for fault diagnosis is based on the AXKF.
The idea of the AXKF is to cascade an NLO and an LAKF.
The NLO is used to guarantee the convergence of the state
variable estimate to the actual value, while the LAKF is
used to estimate the magnitude of the fault and to handle the
process and measurement noise.

Let us assume there are m measurements, such that C ∈
Rm×n and yk = Cxk . The NLO is designed as follow

x̄k+1 = Ax̄k + f (x̄k )+ Buk +8k θ̂k + J−1Yy̆k (33)

Remark that in (33), the vector parameter fault is obtained
from the LAKF at k . This is to simplify the analysis since
estimating the vector parameter fault θ using a nonlinear
adaptive observer is very challenging. The error dynamic is
given by

x̆k+1 =
(
A− J−1YC

)
x̆k +1f k +8k θ̆k (34)

Here, the NLO is used to estimate only the state variables. The
fault parameter θk is estimated using the LAKF in the second
stage. Following the NLAO design in Section 3, we have the
following result.
Theorem 2: If there exist a matrix J = Jᵀ > 0 ∈ Rn×n

and a matrix Y ∈ Rn×m such that−J + a1In Hᵀ
+ a2In Hᵀ

H + a3In J + a4In 0n
H 0n −J

 < 0 (35)

where H = JA − YC, a1 = ε1ρ + ε2β, a2 =
ηε2−ε1

2 ,
a3 =

ηε2−ε1
2 , a4 = −ε2 for ε1, ε2 > 0 and η, ρ, β ∈ R,

then the equilibrium
(
x̆k , θ̆k

)
= 0 of the error dynamic (34)

is globally uniformly asymptotically stable.
Proof of Theorem 2 can be obtained bymodifying the steps

in the first author’s conference paper [12]. The difference
between Theorem 1 and Theorem 2 is that the dimension
of the measurement matrix C and the constant a1. In this
case, full state measurement is not required for the AXKF
algorithm.

For the LAKF, let us linearize the nonlinear term f (x̄k )
about the state estimation from the observer x̄k . Linearizing
(1) at x̄k , we have

xk+1 = Fk (x̄k )xk + Ek (x̄k )+ Buk +8kθ + wk (36)

where

Fk (x̄k ) = A+
∂f (xk )
∂xk

∣∣∣∣
x̄k

(37)

Ek (x̄k ) = f (x̄k )−
∂f (xk )
∂xk

∣∣∣∣
x̄k
x̄k (38)

For simplicity, letFk = Fk (x̄k ) andEk = Ek (x̄k ). In this case,
the fault and state are calculated using the following formula

θ̂k+1 = θ̂k + 0k+1ỹk (39)

x̂k+1 = Fk x̂k + Ek + Buk +8k θ̂k

+Kk+1ỹk +ϒk+1[θ̂k+1 − θ̂k ] (40)

Algorithm 3 Adaptive Exogenous Kalman Filter

Initialization x̄0, θ̄0, x̂0, θ̂0, P+0 , ϒ0, S0, λ
Determine J and Y based on (35), select Q = Qᵀ > 0
Recursions for k = 0, 1, 2, · · ·
First stage estimation:
Calculate the vector state x̄k+1 based on (33)

Second stage estimation:

Calculate the Jacobian matrix ∂f (xk )
∂xk

∣∣∣
x̄k

Calculate the observer gains 0k+1,Kk+1,ϒk+1
based on (21)-(29)
Calculate the fault θ̂k+1 and the vector state x̂k+1

based on (39)-(40)

The advantage of using this two-stage estimation is that
the algorithm is stable and can handle the process and mea-
surement noise. However, similar to the NLAO, the observer
gains may be difficult to find. In summary, the fault diagnosis
algorithm based on the AXKF is both robust with respect to
nonlinearity and noise.

VI. NUMERICAL SIMULATIONS
To test and compare the algorithms, we perform numerical
simulations based on a single-link flexible joint model. The
aims of the numerical simulations are threefold:
• To test the convergence rate and the transient response
of the algorithms
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• To compare the performance of the fault estimation
algorithms

• To investigate the effect of the forgetting factor λ

The dynamics of the robot can be described by using the
following first-order nonlinear ordinary differential equations

φ̇m = ωm (41)

ω̇m =
k
Jm
(φl − φm)−

B
Jm
ωm +

Kτ
Jm

(1− θ )u (42)

φ̇l = ωl (43)

ω̇l = −
k
Jl
(φl − φm)−

mgh
Jl

sin(φl) (44)

where φm and φl denote the rotation angles of the motor and
the link, while ωm and ωl denote the angular velocities of the
motor and the link, respectively.

Remark that the only nonlinearity is the sinusoidal function
in (44), which is a Lipschitz continuous function. All param-
eters (k , Jm, B, Kτ , Jl , m, g, and h) for this simulation are
taken from [30]. Applying the Euler method and taking the
sampling time 1t = 0.001s to ensure the numerical scheme
is stable and capture the transient response, the system resem-
bles (1)-(2) with

A =


1 0.001 0 0

−0.0486 0.9988 0.0486 0
0 0 1 0.001

0.0195 0 −0.0195 1


B =

(
0 0.0216 0 0

)ᵀ
f (xk ) =

(
0 0 0 −0.00333 sin(φl,k )

)ᵀ
The fault transition matrix is given by

8k = −
(
0 0.0216 0 0

)ᵀ uk (45)

For the NLAO-based algorithm, first we choose Q =
0.0001I . Solving the linear matrix inequality (17) for J and
Y with ν = 0.0001, ε1 = 1, and ε2 = 100, we obtain

J =


46.2 0.5 −0.5 0.05
0.5 22.27 −11.34 0.1725
−0.5 −11.34 27.28 0.19
0.05 0.17 0.19 0.5075

 (46)

and

Y =


16.96 0.17 0 0.002
−8.63 16.96 0 0.002
4.11 −1.57 20 0.002
0.012 −0.05 0 0.01

 (47)

For the AEKF-based algorithm, we choose S0 = 0.01 and
ϒ0 = 0. The covariance matrices QFk and RFk are updated
using the following formulas [31]

QFk+1 = aQFk + (1− a)(Kk ỹk ỹ
ᵀ
k Kk ) (48)

RFk+1 = aRFk + (1− a)(ỹk ỹ
ᵀ
k + CP

+

k C
ᵀ) (49)

FIGURE 3. Comparison of the state estimation of φm and φl from the
three algorithms.

FIGURE 4. Comparison of the transient response from the three
algorithms.

where 0 < a ≤ 1. For the AXKF-based algorithm, the
procedure to find the parameters is similar to the two afore-
mentioned methods. In this case, solving the (35) we obtain

J =


0.0295 0 0 0

0 0.0756 0.0402 0.1253
0 0.0402 0.0835 0.3002
0 0.1253 0.3002 3.5489

 (50)

and

Y =


0.7500 −0.0015 0 0
0.1944 0.3934 0.0486 0
0.0000 −0.2663 1 0.001
−0.0777 −0.7336 −0.0195 1

 (51)

The simulation is running for 6s, in which the fault is
introduced after 2s. We assume the fault is constant. The
result of the state estimation for the motor and link angle can
be seen from Fig. 3. Here, the three algorithms converge to the
actual values. The transient responses of the three algorithms
are presented in Fig. 4. Since the nonlinearity is not severe, the
estimation from the AEKF performs well. The convergence
rate for the NLAO can be increased by choosing different
values for J and Y .

Table 1 shows the principal characteristics of the three
algorithms, which include the accuracy through the Root
Mean Square Error (RMSE), computational time, and
computational complexity. We note that the computational
complexity of the AEKF and the AXKF is O(n3) since the
calculation involves 3 matrix multiplication.

From Table 1, we can observe that the AXKF provides
better accuracy but takes more computational effort. The
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TABLE 1. Performance indicators of the algorithms.

FIGURE 5. Fault estimation from the three algorithms.

FIGURE 6. Comparison of different forgetting factors λ in the AXKF
algorithm.

actuator fault estimation from the three algorithms can be
seen in Fig. 5. It can be observed that the AXKF algorithm
converges faster than the AEKF algorithm. On the other hand,
the AXKF algorithm is also better than the NLAO in terms
of noise reduction. This result can be seen as a compromise
solution between the convergence rate and the noise reduc-
tion. The convergence rate of the AXKF can be adjusted by
changing the forgetting factor λ, as can be seen from Fig. 6.
Smaller λ causes the algorithm to converge faster. However,
choosing λ too small can cause the estimation result to be
noisy.

VII. EXPERIMENTS IN A BALL-BALANCING ROBOT
The ball-balancing robot has four DC motors powered by a
separate power supply consisting of 6 AA batteries connected
in series and is designed to move in the x and y direction,
as can be seen in Fig. 8 (left). The robot is completedwith four
omni-wheels which are positioned in-line, each actuated with
its own motor. This design simplifies the control problem
and makes sure that the system will always be supported on
a driving wheel. A motor driver shield expansion board is
used to interface themotors with theArduinomicrocontroller.
The motor driver consists of 2 L293D, a 4 half H-bridge
driver, which acts as four full H-bridges, allowing up to

FIGURE 7. Circuit diagram of the IMU and Bluetooth.

four DC-motors to run in both directions. These drivers are
connected to 8-bit PWM I/O pins of the microcontroller. All
communication and debugging were done using a wireless
connection. In this case, we use an HC 05 Bluetooth master
and slave module (Fig. 7). The algorithms are then written
in the microcontroller using the Arduino Integrated Develop-
ment Environment (IDE).

The dynamics of the ball-balancing robot can be modelled
as an inverted pendulum, as can be seen from Fig. 8 (left),
where the vector diagram is presented in Fig. 8 (right). The
configuration of the motors can be seen from Fig. 9. If we
denote x1 = ψ , x2 = ẋ1, x3 = x, and x4 = ẋ3, then the
dynamic model for the ball-balancing robot in the x direction
is given by

ẋ1 = x2 (52)

ẋ2 =
(M + m)g sin(x1)− u

M
(53)

ẋ3 = x4 (54)

ẋ4 =
−mg sin(x1)+ u

M + m
(55)

where u is themotor torque, which can be adjusted by control-
ling the current. Discretizing the above equation using Euler’s
method, the system resembles (1)-(2) with

A =


1 0.001 0 0
0 1 0 0
0 0 1 0.001
0 0 0 1



f (xk ) =


0

(M + m)g sin(x1,k )
M
0

−mg sin(x1,k )
M + m

 , B =


0

−
1
M
0
1

M + m


In this experiment, the mass of the robot (as shown in

Figure 9) is M = 1.94 Kg, while the mass of the pendulum
(the structure above the robot) is m = 0.81 Kg. Furthermore,
we assume a fault has occurred in the actuator system and
can be modelled as a drastic gain loss θ . The experiment
is performed for 40s and the fault, which is introduced into
the ball-balancing robot as a gain loss of 10%, occurs after
20s. An MPU6050 Inertial Measurement Unit (IMU) sensor
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FIGURE 8. SDU ball-balancing robot (left) and simplified vector diagram
in x direction (right).

FIGURE 9. Motor configuration.

is used to measure the angle ψ and the position x of the
robot. The sensor combines a microelectromechanical sys-
tems gyroscope and accelerometer and uses a standard I2C
bus for data communication. Since we only able to measure
two variables associated with the angle ψ and the position x,
we have

C =
(
1 0 0 0
0 0 1 0

)
(56)

The fault is estimated using the three algorithms. To this end,
for the AXKF the observer gains are selected as follow

J =


2 0 0 0
0 0.001 0 0
0 0 2 0
0 0 0 0.001

 , Y =


2 0
0 0
0 2
0 0

 (57)

In the second stage estimation using the LAKF, the Jaco-
bian matrix is given by

F(x̄k ) =


0 0 0 0

(M + m)g cos(x̄1,k )
M

0 0 0

0 0 0 0
−mg cos(x̄1,k )

M + m
0 0 0

 (58)

The position in xy-plane from the three algorithms can be
seen in Fig. 10, while the fault parameter can be seen in
Fig. 11. The ground truth is determined by optical tracking.
It can be observed that the AXKF algorithm performs better
than the NLAO and the AEKF. In this experiment, we show
that the AXKF can be used to estimate the magnitude of the
actuator fault accurately with guaranteed stability.

FIGURE 10. Position of the ball-balancing robot in xy-plane.

FIGURE 11. Fault parameter.

VIII. CONCLUSION
In this paper, we present three model-based algorithms that
can be used to estimate the magnitude of the fault parameters.
The algorithms are based on the NLAO, the AEKF, and the
AXKF, where the latter can be considered as a compromise
solution to the former. The main strength of the NLAO is its
stability, while the main strength of the AEKF is its ability
to handle noise. We show all algorithms are able to estimate
the fault magnitude accurately. Limitations of the algorithm
include: (i) the model relies on accurate representation of the
system, which may not be easy to find, (ii) the LMIs (17) and
(35) may not have solution, and (iii) the algorithms only work
for constant/piecewise constant fault. The information of the
fault magnitude can be used in fault-tolerant control algo-
rithms, e.g., using model predictive control (MPC). Future
works include development of fault-tolerant MPC consider-
ing time delay on the measurement.
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