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A B S T R A C T   

The delineating of bedrock from sediment is one of the most important phases in the fundamental process of 
regional bedrock identification and mapping, and it is usually manually performed using high-resolution optical 
remote-sensing images or Light Detection and Ranging (LiDAR) data. This task, although straightforward, is time 
consuming and requires extensive and specialized labor. We contribute to this line of research by proposing an 
automated approach that uses cloud computing, deep learning, fully convolutional neural networks, and a U-Net 
model applied in Google Collaboratory (Colab). Specifically, we tested this method on a site in southwestern 
Norway using both a set of explanatory variables generated from a 10 m resolution digital elevation model 
(DEM) and, for comparison, cloud-based Landsat 8 data. Results show an automatic delineation performance 
measured by an F1 score between 77% and 84% for DEM terrain derivatives against a manually-mapped ground 
truth. Overall, our automated bedrock identification model reveals very promising results within its constraints.   

1. Introduction 

Bedrock exposure identification provides crucial geological and 
geotechnical information which is used in infrastructure project plan
ning, hazard mapping, and other research fields within Earth Science 
(Nordgulen, 2020). The first geological map of England and Wales, 
dated 1815, is one of the first examples of geological maps created 
through manual mapping. Since then, the mapping process has not un
dergone significant change; in general, the mapping geologist becomes 
familiar with the field area of interest, performs field work to observe 
and describe the area, and then analyzes and processes collected data 
and observations by manually digitizing, or drawing, the different 
geological features (Lisle et al., 2011). 

Even though Geographic Information Systems (GIS) have made the 
digitization, storage, and aggregation of different datasets relatively 
easy, geological mapping is still a time-consuming and subjective 
(operator or mapper-dependent) practice. Therefore, there is significant 
untapped potential in using automated machine- and deep learning 
techniques to make geological mapping more efficient (Caté et al., 2017; 
Karpatne et al., 2019; Sircar et al., 2021; Xiong et al., 2018). 

Computer-based methods are rapidly emerging as powerful, efficient, 
and viable tools to analyze, extract, and synthesize large data sets (Chen 
and Lin, 2014; Dargan et al., 2020; Zhu et al., 2017). These methods can 
thus reduce costly and time-consuming manual labor, both in the 
preparation for geological fieldwork and afterwards during the post data 
interpretation and digitalization phase. The group of machine-learning 
algorithms called “deep learning”, a subfield of artificial intelligence, 
is rapidly becoming essential in geosciences (Zhang et al., 2016). Deep 
learning techniques are indeed largely used to classify or predict pat
terns in large datasets (Abiodun et al., 2018; Alavi et al., 2016; Baraniuk 
et al., 2020; Sarker, 2021; Zhou et al., 2019) Deep learning algorithms 
can process and deliver predictions with much less human effort and 
often yield very good performance with the use of multi-dimensional 
data. It has the potential to become a widely used method that in
creases the efficiency of future mapping of large areas in combination 
with expert revision of predictions (Donahue et al., 2017; Sengupta 
et al., 2020; Shelhamer et al., 2017). Previous studies on automated 
classification in geology focus mostly on digital soil mapping (Drǎguţ 
et al., 2006; Grinand et al., 2008; Kerry and Oliver, 2011; MacMillan 
et al., 2004). However, this literature does not consider any automatic 
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delineation and identification of bedrock from sediment. These studies 
rather show the use of high-quality landcover data or multi-scale 
neighborhood geometry, combined with different terrain derivatives 
(e.g., slope) (Behrens et al., 2018; Drǎgut et al., 2011). Bedrock is usu
ally characterized by a distinct rough and fractured terrain surface. It is 
therefore easy to detect from visual representations of high-resolution 
Digital Terrain Models (DTM) (e.g., hillshade). Although automatic 
classification using deep learning seems promising, there is a lack of 
stringent tests using this method. Indeed, the majority of the existing 
publications either still employ manual mapping or use statistics-based 
machine learning. Among the available publications, for example, is a 
study that uses image classification based on a Random Forest classifier 
on legacy land use data, using 43 different layers as predictors (such as 
various terrain derivatives, NDVI, ASTER and Landsat 7) (Scarpone 
et al., 2017). Milodowski et al. (2015) tried to identify areas of rock 
exposure from high resolution LiDAR data by using SVM classification, 
based on short-wavelength topographic roughness, by studying the local 
variability of surface normal vectors in Sierra Nevada, California 
(Milodowski et al., 2015). Harris et al. developed a supervised classifi
cation using an algorithm known as the Robust Classification Method (), 
and applied it to a variety of remotely sensed data, including Landsat 7, 
Landsat 8, Spot 5, Aster imagery and airborne magnetic data, producing 
predictions of bedrock lithology and Quaternary cover in Victoria Is
land, Canada (Harris et al., 2012, 2014), and also shows the use of two 
satellite-derived data layers (Landsat, ASTER) in a Random Forest 
model, over British Columbia (Canada). 

While multiple studies, including those above and many others, have 
used supervised classification and various classifiers with many pre
dictors, most pertain only to soil and sediment mapping, and only very 
few have tried to explore automatic delineation of bedrock outcrops. 
DiBiase et al. (2012) for example, identified rock exposures from 
LiDAR-derived slope measurements with the use of high-resolution 
panoramic photographs. However, the main goal of their study is not 
to automatically delineate bedrock from soil, but to define bedrock in 
steep hillslopes in order to check hillslope response to tectonic forcing, 
using slope maps generated from 1m LiDAR DEM. We believe that given 
the absence of deep learning techniques used for automated bedrock 
identification in the pertinent literature, this study proposes a novel and 
interesting model that will be of use in many areas of geological 
research. 

Our study tests whether it is possible to automatically differentiate 
bedrock from sediments, with high precision, using U-Net architecture, 
Fully Convolutional Neural Networks (FCNN), Google Earth Engine 
(GEE) cloud computation, and Google Colab. The selected study area is 
on the coast in southern Norway, where both sediments and bedrock are 
well represented. Although geologists use Landsat 8 images in many 
mapping contexts, it is seldom used for soil and bedrock mapping. 
Previous studies (Harris et al., 2014; Scarpone et al., 2017) have claimed 
that satellite images can be used to improve bedrock delineation, and 
our study therefore seeks to add to the literature on this hypothesis. We 
expect a low-efficiency prediction when based only on Landsat 8 images 
as many of the outcrops in our study area are covered by vegetation. We 
therefore test the same ground truth data against two separate pre
dictors: freely available cloud-based Landsat 8 images (USGS, 2021a), 
and seven terrain derivatives from a 10 m resolution DEM. Although a 
higher-resolution DEM is freely available for Norway (1 m ground 
sampling distance), as well as LiDAR data, this is not the case for all 
countries. We therefore decided to use a 10 m resolution DEM, to test the 
applicability and reproducibility of our model over other study areas in 
countries with scarcer data availability. Furthermore, we evaluated 
whether the resulting predictions vary according to different properties 
in the training data, such as distribution, amount, size, sampling design, 
and weighing the sampling intensity according to the percentage of 
bedrock in randomly created training rectangles by calculating preci
sion, recall, F1-score and Matthew’s correlation coefficient (MCC) 
scores. The goals of this study were twofold: first, to show whether deep 

learning can be used for delineating bedrock automatically to improve 
future geological mapping and second, to identify the ideal training 
model, by testing the effect on the automatic delineation performance of 
using Landsat 8 data exclusively versus additional terrain derivatives, 
and by testing the use of different settings of randomized training 
rectangles. 

2. Study area 

The study area encompasses the Farsund-Lista area in the most 
southern part of Norway (Fig. 1). This area is characterized by jointed 
and fractured Meso-to-Neoproterozoic granites and gneisses (Falkum, 
1982). Quaternary sediments are generally restricted to valleys and 
troughs where glacial till, glaciofluvial outwash, and peat are found 
(Fredin et al., 2015). Bare bedrock outcrops dominate higher-lying areas 
with minimal sediment and organic (peat) cover. It is assumed that 
Quaternary glaciations have scoured the landscape to a large extent, 
possibly because of the proximity to the highly erosive Norwegian 
channel ice stream during the late stages of the last glaciation (Sejrup 
et al., 2003). The landscape is characterized by Quaternary fjords and 
valleys which cut into bedrock weakness zones. The mostly bare bedrock 
is characterized by small-to-medium topographic relief (0–500 msl) and 
is dissected by brittle fault structures and lineaments (Fig. 1). An 
exception to this pattern is the southwestern part of the Lista peninsula, 
which is covered by thick (i.e., several tens of meters of) drumlinized 
glacial till and marine sediments. The area was manually mapped during 
the years of 2012–2015 using high-quality LiDAR data (1 m ground 
sampling distance) and orthophotos, in combination with extensive field 
observations. The resulting 1:50 000 map clearly separates bedrock from 
sediments (Fredin et al., 2015). Consequently, we consider the area 
suitable for a study on whether this labor-intensive mapping can be done 
using automated methods, or more specifically, whether deep learning 
methods can be used to differ between bedrock and sediments with high 
levels of accuracy. Additionally, the area shows sufficient variation to 
provide both less-than-ideal and very good data, which is desirable both 
to challenge the model and to test the reliability of Landsat 8 data in 
such a zone. The size of this study area is about 307 km2 counting only 
land area. 

3. Methods – data and computing 

3.1. Data input 

3.1.1. Data and sampling design for generating training and evaluating 
dataset 

A raster dataset (tiff format) that delineates bedrock and sediments 
over the study area was set as ground truth data. It was based on a recent 
quaternary map manually produced by the Geological Survey of Norway 
(NGU) at a scale of 1:50 000 (Fredin et al., 2015). This is the most precise 
manmade and published map of the area depicting bare rock and gives 
us an opportunity to predict bedrock at the same scale (i.e., 1:50 000). 
On the map, sediments are classified according to genesis. Two of the 
classes on the map cover 53% of the study area (shown in Fig. 2) and 
were chosen as reference data for training and validation of our model: 
“bare rock” and “thin organic soil on bedrock”. The “bare rock” sediment 
class consists of exposed bedrock with minimal cover, although a small 
amount of vegetation and organic remains may be present in some cases. 
The bare rock signature, with visible bedrock slabs, joints, and fractures, 
is readily visible in LiDAR data and in the field. The “thin organic soil on 
bedrock” sediment class consists of bare bedrock with 10–30 cm of 
organic cover (plant remains), but no other sediments. Bare bedrock and 
thin organic soil on bedrock have very similar signatures and cannot be 
distinguished from each other using elevation model derivatives. How
ever, when using aerial photographs or other optical remote sensing 
data, the “thin organic soil on bedrock” class has a signature resembling 
that of other vegetation-covered sediments, but that is beyond the scope 
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of this study. For all practical purposes, bare bedrock and thin organic 
soil on bedrock can be considered as similar categories, and because the 
main attempt here was performed using the elevation model for auto
mated classification, the two categories “bare bedrock” and “thin 
organic soil on bedrock” were merged. The ground truth dataset was 
converted to a raster dataset and superimposed with sea and water 
layers (Kartverket, 2018) to exclude water bodies from the calculations. 
For further calculations, the quaternary map was reclassified and given 
the value 1 (presence) for the bedrock/bare rock and 0 (absence) for 
sediments. 

Fig. 2 shows two sets of rectangles: 10 evaluating rectangles in red 
and 10 training rectangles in blue. Training rectangles defined the areas 
used by the algorithm to learn how to differentiate between bedrock and 
sediments. Evaluating rectangles are used by the algorithm to check that 
features meet the conditions defined in the learning stage, to improve 
the quality. We generated the rectangles using a python script ensuring 
random location, random size (within a predetermined range), and some 
additional limiting conditions outlined below, to see how different 
sampling approaches influenced the prediction results. In addition, the 
rectangles had a common restricting condition, wherein they should all 
be entirely within the boundaries of the study area. The settings were as 
follows:  

1) 10 training and 10 evaluating rectangles (within a range of 1.5–4 
km2) randomly spread across the study area;  

2) 10 training and 10 evaluating rectangles (within a range of 1.5–4 
km2) randomly spread across the study area where the rectangles 
contain a minimum of 70% bedrock and do not intersect fjords;  

3) 15 smaller training and 15 smaller evaluating rectangles (within a 
range of 0.3–0.8 km2) randomly spread over the study area;  

4) 15 smaller training and 15 smaller evaluating rectangles (within a 
range of 0.3–0.8 km2) randomly spread across the study area where 
the rectangles contain a minimum of 70% bedrock and do not 
intersect fjords. 

For each of these four settings, we repeated the process five times to 
create five different cases (such as depicted in Fig. 2), to be able to 
observe any patterns and to compare variation in the determined setting. 
As illustrated in Fig. 3, this sample design resulted in twenty cases drawn 
from the 4 settings. 

Rectangles of different sizes were used in an attempt to increase the 
automated randomization of the data. The advantage to this method lies 
in its ability to show more reliably how well the predictions perform, 
both in higher terrain and on the coast/in areas of little-to-no bedrock. 
We also wanted to determine if using more rectangles increased the 
quality of the results, and if using smaller rectangles was in fact suffi
cient. A further goal was to determine whether rectangles with little-to- 
no bedrock data would be less useful to the machine learning than those 
in >70% bedrock areas. 

3.1.2. Predictors - terrain derivatives from DEM and Landsat 8 
We compared two sets of predictors: (1) a cloud-free Landsat 8 

composite scene and (2) derivatives from a DEM. Our first predictor was 
a three-month cloud-free composite cloud-based Landsat 8 dataset 
providing seasonal coverage of the global landmass (Catalog, 2021; 
NASA, 2022). We used both optical and thermal bands in our approach: 
(a) optical bands with 30 m resolution, B1 (Coastal aerosol), B2 (Blue), 
B3 (Green), B4 (Red), B5 (Near Infrared), B6 (SWIR 1), and B7 (SWIR 2) 
and (b) thermal bands with 100 m resolution, B10 (Thermal Infrared 1) 
and B11 (Thermal Infrared 2) (USGS, 2021b). The 100 m resolution 
bands were resampled to 30 m. We tested the relevance and usefulness 
of this predictor in our area on its own, to test the applicability of our 
model using easily accessible cloud-based satellite data. Our second 
predictor, the DEM and its derivatives, had a resolution (grid size) of 10 
× 10 m and an accuracy of ± 2–3 m standard deviation in height 
(Kartverket, 2013). We calculated the terrain derivatives shown in 
Table 1 using QGIS (a free and open-source desktop GIS) and uploaded 
the set of layers to the Google Earth Engine (GEE) for computing. Seven 
different terrain derivatives were created based on the 10 m DEM 

Fig. 1. Bare bedrock and different sediment types superposed on a hillshade in the investigated area (image closely corresponds with study area). Large amounts of 
sediments (till, glaciofluvial) were deposited during the last glaciation. Marine, slope, aeolian deposits and peat were formed in post-glacial time (around the last 
12–14 ka). 
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(Table 1). We tested these separately, but the best results were achieved 
when using a combination of all of them. All training and evaluating 
rectangles, and both sets of predictors, were uploaded, and stored in the 
cloud for further analysis and modeling. 

3.2. Method – cloud computing (sampling, training, prediction, and 
visualization) 

As mentioned, we chose to use a method relatively new in geology, a 
type of machine learning and artificial intelligence called deep learning. 
In contrast to traditional supervised classification in machine learning 
which can use training points as ground truth, in our case, deep learning 
uses image patches (for example, 128 × 128 pixels) as its training basis. 
Each image patch must contain predictor layers (Fig. 3) and a ground 
truth layer (bedrock) which shows how the deep learning algorithm 
should sort each pixel into two classes: presence (bedrock) or absence 
(sediment). Here, we provide a complete field design for collecting data, 
where samples for training were produced (section 3.2.2), and finally 
how predictions were generated (section 3.2.3). The deep learning al
gorithm itself (U-Net) is written in Python in Google Colab and the 
model is trained in the computing cloud (section 3.2.3). 

3.2.1. Cloud computing and Google Earth Engine (GEE) 
Recently, GEE is commonly used in various research communities 

(Arruda et al., 2021; Liang et al., 2020; Shaharum et al., 2020). Its ability 

to analyze remote sensing data and to provide high-performance 
computing resources for processing large geospatial datasets online, 
without downloading and processing the imagery locally, makes it easy 
to access and use for everybody (Li et al., 2019). The GEE platform 
provides a user-friendly environment and cloud-based processing of free 
and available data using the power of thousands of computers located in 
Google data centers. We used GEE as well as Colab to store, customize, 
and export the ground truth data for cloud-based deep learning 
modeling. Colab allowed us to write and execute Python code through 
the browser connected to GEE. Deep learning is an important element of 
data science, which includes statistics and predictive modeling and 
consists of three steps: training, prediction, and visualization, as illus
trated in Fig. 4. 

3.2.2. Sampling - training and evaluating 
A general recommendation is to use, on average, at least 1000 

samples per class when training a deep learning algorithm (Theophano, 
2019). In our case, we trained the model to predict one class only, that is, 
bedrock. What was not predicted as bedrock was marked as undefined 
but contained mostly sediments. Therefore, to obtain a reliable and 
representative number of samples with which to train and evaluate our 
model, the algorithm was directed to create a total of 2000 sample image 
patches of bedrock (where bedrock was present) of 128 × 128-pixels for 
every training and evaluating rectangle in each test. All image patches 
contained one layer with the feature to be predicted (i.e., bedrock) 

Fig. 2. Bare rock (and thin organic soil on bedrock) ground truth dataset based on a 1:50 000 quaternary map (Fredin et al., 2015) with training (blue) and 
evaluating (red) rectangles superposed. Example of 1 case (Setting 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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stacked upon all the other layers in the predictor stack (i.e., the stack 
with DEM derivatives or the Landsat 8 stack). It resulted in a total of 20 
000 samples for settings (1) and (2) and resulting in 30 000 samples for 
settings (3) and (4) (Fig. 3). The image patches from each rectangle were 
merged into a single export file and stored in Google Cloud Storage as 
TFRecord files, which contained patches of pixel values in each record. 

3.2.3. Training the model, prediction, and visualization 
The chosen model is a scaled-down version of a deep learning ar

chitecture called U-Net with Keras implementation. Keras is open-source 
software that provides a python interface for artificial neural networks 
and for the TensorFlow 2 library1 (Huang and Le, 2021). U-Net is a 
convolutional network architecture with a unique U-shaped 

architecture. The network is based on a fully convolutional neural 
network (Shelhamer et al., 2017). The input image was propagated 
through the entire path of the U-Net architecture, resulting in a classified 
map (Educative Answers Team, n.d.). The goal of a semantic segmen
tation is to label each pixel of the ground truth image with the class that 
represents a specific object (Bihani et al., 2022; Du et al., 2021; Zhuang 
et al., 2019). U-Net has proven to be very powerful in scenarios with 
limited data, having no restrictions regarding ground truth image size 
(Isensee et al., 2021; Yadav, 2017; Zou et al., 2021; Zunair and Hamza, 
n.d.). Our model was trained with 15 epochs to reach a stable output 
performance and to avoid overfitting (Brownlee, 2022). An epoch in 
machine learning is one complete pass of the training dataset through 
the algorithm and can be compared to a “for-loop” common in pro
gramming. After 15 iterations, our model was trained and was applied to 
the whole study area (Brownlee, 2022). 

3.2.4. Performance evaluation 
The resulting predictions were evaluated quantitatively, as follows. 

The bedrock vector layer (ground truth) was converted to a binary raster 
to compare it with the automated bedrock predictions. In order to 
evaluate the performance of the proposed model and to compare the 
outcome predictions, based on different parameters and different pre
dictors (Landsat 8 vs. DEM derived terrain derivatives), a map of 
confusion matrix values was created, showing true positive (TP), false 
positive (FP), false negative (FN) and true negative (TN) values. From 
these, the performance metrics precision, recall, F1-score, accuracy, and 
Matthew’s correlation coefficient (MCC) scores were calculated 
(Table 2). The MCC score is considered to be the most appropriate metric 
for comparing the results which produces a high score only if the pre
diction obtained good results in all of the four confusion matrix cate
gories (TP,FP,FN,TN) (Chicco and Jurman, 2020). For a binary model, 
the MCC gave a score between 0 and 1; with 0 indicating a model with 
no correlation (random predictions) and 1 indicating a perfect correla
tion (all correct predictions). 

Fig. 3. Sampling strategy: four different settings were applied to produce five sets (cases) each of training and evaluating rectangles, combined with one of two 
predictors, creating 2000 image patches of bedrock for further calculation from each rectangle where possible (see 3.2.2 for more details on image patches). 

Table 1 
Terrain derivatives used for digital bedrock extraction; Relative relief in 12-pixel 
neighborhood; TPI3 and TPI9 (Topographic position index in 3- and 9-pixel 
neighborhoods).  

Variable/terrain 
derivative 

Definition 

Slope angle of inclination to the horizontal plane 
Elevation elevation above the sea (geodetic datum) 
Slope_sum sum of slope values in the 12-pixel neighborhood 
Relative relief relative difference in elevation between a 

morphological feature and the features surrounding it 
Valley depth difference between the elevation and an interpolated 

ridge level 
TPI3 (Topographic 

position index) 
difference between a central pixel and the mean of its 
surrounding cells by 3 pixels 

TPI9 difference between a central pixel and the mean of its 
surrounding cells by 9 pixels  

1 TensorFlow 2 is a free and open-source software library developed partic
ularly for the training of ML algorithms. 
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4. Results 

The performance of the U-Net model applied in a cloud-based envi
ronment is presented in this section. First, we aimed to evaluate whether 
the inclusion of additional parameters, such as the definition of a min
imal amount of bedrock in both training and evaluating areas (Setting 1 
and 3), influenced the resulting prediction. We can clearly see that there 
are only minimal differences when applying this parameter. The statis
tics presented in Table 3 show the performances when applying different 
settings. When comparing the size and amount of training and evalu
ating rectangles (Settings 1 and 2 vs. Settings 3 and 4), we can observe 
lower performances for both Landsat 8 and DEM predictors when the 
size of the rectangles is decreased, and the number increased (Table 3). 
Setting 1 for Landsat 8 shows an MCC value of 40%, while Setting 2 
shows an MCC value of 27%. When using smaller rectangles, the MCC 
scores only 19% for Setting 3 and 21% for Setting 4. Different 

performances are also clear when looking at the statistics for DEM de
rivatives that show MCC score differences between Setting 1 and 2 of 74 
vs 71%, while for Setting 3 and 4 MCC scores are equal to 63 and 68% 
respectfully. 

All the 20 predictions (see Fig. 3) using Landsat 8 images showed low 
accuracy performance. Fig. 5 depicts one of the most representative 20 
cases and shows the geographical distribution of the false positive and 
false negative errors. True positive results are shown in green, false 
positive in red and false negatives in blue. The black boxes highlight the 
areas of the poorest predictive performance, namely large parts of the 
coastal areas, and the area around the airport. These areas have been in 
fact erroneously predicted as bedrock. The low predictive performances 
of Landsat 8 are confirmed also by the F1 score values presented in 
Table 3. Setting 4 and 5 show values around 20%. 

Contrary to the poor prediction performances obtained by using 
Landsat 8 data, when using the same ground truth data in combination 
with the terrain derivatives, a spatial match with higher statistical 
values is obtained (see Table 3). In these cases, when different param
eters have been introduced, the variance in the predictions is not sta
tistically significant. Both visually and statistically the predictions 
performed similarly for all four settings. For this reason, we decided to 
show only the prediction result with the best result from each setting 
(Table 3), and the confusion map of the best result (based on evaluating 
and training accuracy values) among the 20 predictions (see Fig. 6). The 
errors in all the predictions consist mostly of false positives, represented 
by the red patches in Fig. 6. The accuracy assessment of the predictions 
is performed by comparing our prediction results with ground truth, as 
shown in Tables 3 and in Fig. 6. 

5. Discussion 

This study has presented an automated approach for delineating 
bedrock from sediments as an alternative to traditional methods, based 
on the application of freely available cloud computing, and deep 
learning techniques (Fully Convolutional Neural Networks) using a U- 
Net model applied in Google Collaboratory (Colab). Our approach is 
novel in three ways. First, we tested the potential of cloud computing 
and using the Google Earth Engine (GEE) interface on bedrock. Second, 
we compared the performance of freely available cloud-based Landsat 8 
images versus a set of explanatory variables generated from terrain 
parameters uploaded to the cloud. Third, we applied a deep learning 
approach and U-Net architecture for delineating bedrock outcrops, using 
sediment maps as ground truth data (Fredin et al., 2015). 

When using an automatic method to train a new model, there will 
always be slight variations in the results when compared to a traditional 
manual approach on the exact same ground truth, because of the inner 

Fig. 4. Workflow applied in GEE: (1) sampling, (2) training and evaluating, (3) training the model, resulting in metrics on accuracy, (4) prediction, and (5) 
visualization in GEE. 

Table 2 
Equations for performance evaluation metrics from confusion matrix 
values.  

Metric Formula 

Precision TP
TP + FP 

Recall TP
TP + FN 

F1-score 2TP
2TP + FP + FN 

Accuracy (TP + TN)

(TP + TN + FP + FN)

MCC TP × TN − FP × FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 3 
Performance metrics for bedrock detection using four sampling strategies (set
tings) for Landsat 8 (L8) and DEM terrain derivatives as predictors, showing F1- 
score, MCC, accuracy, prediction, and recall. The Matthews correlation coeffi
cient (MCC) shows the most reliable statistical rate. It produces a high score only 
if the prediction obtained good results in all of the four confusion matrix cate
gories (true positives, false negatives, true negatives, and false positives) (Chicco 
and Jurman, 2020).   

Setting 1 Setting 2 Setting 3 Setting 4 

L8 DEM L8 DEM L8 DEM L8 DEM 

F1-score 0,6 0,84 0,39 0,83 0,2 0,81 0,22 0,77 
MCC 0,4 0,74 0,27 0,71 0,19 0,68 0,21 0,63 
accuracy 0,73 0,87 0,67 0,85 0,67 0,85 0,67 0,83 
precision 0,64 0,81 0,71 0,76 0,72 0,81 0,76 0,82 
recall 0,56 0,88 0,26 0,9 0,12 0,81 0,13 0,72  
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nature of deep learning procedures (Swedberg, 2016). It is a well-known 
characteristic that deep learning techniques introduce errors differen
tiating each new prediction from the previous one, when new training 
samples are introduced to the algorithm. All the prediction outputs are 
evaluated for the accuracy of the model’s performance and guide the 
choice of ideal predictors. We tested, both visually and statistically, how 
changing and combining various settings for training and evaluating 
rectangles increases the quality of the predictions. 

Our results show that there are only small variations in model pre
dictions when using training rectangles of varying sizes, and with more 
or less bedrock composition, and that by using the 10 m DEM together 
with terrain derivatives we obtain excellent and robust mapping results 
when tested against the manually mapped validation dataset. We were 
expecting that ideal cases would possibly produce more reliable pre
dictions. However, we observed that no additional parameters were 
required to increase the quality of the final prediction, but rather that 
the model creates enough well-defined samples from the available data 
when mapping bedrock areas in all settings. Final mapping results were 
not, however, satisfactory when using the Landsat 8 dataset alone in 
such variable terrain, despite Landsat 8 showing good potential for 
application in exposed, mountainous areas in other studies. (DiBiase 
et al., 2012; Milodowski et al., 2015). Scarpone et al. (2017) claimed 
that using high-resolution satellite images, such as Landsat 8, could 
improve predictions for isolating exposed bedrock from other sediment. 
We believe the difference in success may relate to two factors; first, the 
method used in Scarpone et al. (2017) is based on a random forest model 
while we are using a deep learning approach, and second, our study area 
is a coastal area with vegetated peaks and small elevation differences, 
while Scarpone et al. (2017) tested a machine-learning approach with 
apparently greater success in the southern part of British Colombia 
where the elevation difference is much greater (up to 2300 m), with 
jagged peaks and ridges dominating the landscape. We conclude then 

that Landsat 8 is not suitable on its own as a predictor in our type of 
landscape with a lot of forest, but we assume that satellite images in 
combination with terrain derivatives can improve prediction results in 
various areas, including those with more mountains. 

Although cloud computing with the use of GEE is time consuming 
because of data preparation and training, the resources needed are small 
compared to those needed for traditional geological mapping of 
bedrock. The predictions of our study, supported by ground truth, found 
clear evidence for the possibility to automatically delineate bedrock 
from sediments for more efficient future production of geological maps. 
Our model creates predictions with a high success rate (precision up to 
82% and recall up to 88% as shown in Table 3). The positive predictions 
therefore exceed the negatives and the limitations of computer-based 
techniques. These predictions give geologists a good foundation map 
of an area, which allows efficient planning of where field work is 
necessary to map areas of uncertainty, instead of mapping entire areas. 
This makes it possible to efficiently map larger areas within the same 
time frame. 

The ground truth dataset we used is a complete map of sediments at a 
scale of 1:50 000. To automate the classification of bedrock, the reso
lution of the ground truth data determines to what extent it is possible to 
create maps of higher quality, as it is not possible to create predictions 
with a higher resolution than that provided by the ground truth data. 
While higher resolution sediment maps would be ideal, because current 
geological maps are produced at this scale, it is very helpful for geolo
gists to have predictions adapted to exactly this scale for improving the 
quality and resolution of the mapping of the entire country. For the 
future publication, we have tested our model, as a pre-trained model, 
over other areas of Norway characterized by very similar geophysical 
conditions and have obtained solid and promising outputs. However, 
these preliminary tests have found that our model has some difficulties, 
in its current state, over inland areas with very different terrain, and 

Fig. 5. Landsat 8-based prediction: The map shows the spatial distribution of the modelled prediction of bedrock areas in comparison with the ground truth bedrock 
areas from the geological map (Setting 1, case 4 with 99% training match and 86% evaluating) visualized as true positive (green), false positive (red), false negative 
(blue) and true negative (grey) over the entire study area (left) and with the inset areas (right). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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further training on different ground truth data would be advantageous 
to increase the applicability of the model. 

The computational requirements for training the samples and 
running the model with the use of deep learning techniques are not in 
the capacities of every computer. Our aim is to make the delineation of 
bedrock available for anybody, we therefore applied and tested the 
feasibility of using exclusively cloud-based solutions (GEE, Google 
Storage and Colab). Colab provides relatively cheap computing re
sources and a user-friendly interface (Almeida et al., 2021; Liang et al., 
2020; Prasai et al., 2021). It is known that training time for deep 
learning algorithms takes many hours or even months (Gupta et al., 
2015; Miranda and Von Zuben, 2015). However, with the use of cloud 
solutions and GPUs provided by GEE, all the procedures can be done in a 
reasonably efficient way that is available to everyone. GEE also provides 
support such as the cloud availability of the large datasets and the 
storage needed for the calculations, samples and predictions. This pro
cess was functional, but we found that deep learning with the usage of 
cloud computing has some limitations. Calculations being able to run 
continuously and the ability to create and export predictions for larger 
areas would be an interesting improvement. Also, the overall usage 
limits, timeout periods, and GPU types vary over time and Google does 
not guarantee unlimited usage of GEE, Google Storage and Colab 
(Google, 2021). The user is therefore limited by the abilities and re
strictions of these resources. This may have influenced the final pre
dictions in this study and will be an important consideration in future 
such studies. 

6. Conclusions 

Development in computing, deep learning algorithms and increased 
availability of high-quality and free data have the potential to automate 
many mapping problems in Earth sciences. Although Fully 

Convolutional Neural Networks (FCNN) have recently been used in 
various fields, such asautonomous driving (Aladem and Rawashdeh, 
2021) and medical-image processing (Tajbakhsh et al., 2016), its 
application in geology for delineating bedrock from sediments has not 
yet been investigated thoroughly. The aim of our study was to investi
gate if the deep learning FCNN model could potentially be a simple and 
efficient method to automatically separate bedrock from sediments for 
the production of geological maps. The proposed framework is based on 
a U-Net architecture and cloud-computing deep learning predictive al
gorithms. Moreover, the open code and cloud-computation makes our 
framework accessible for anyone who wants to test the predictions of the 
algorithm with the use of their own data over their areas of study. 

Our deep learning approach proved to differentiate bedrock from 
sediments much more quickly than manual mapping and with good 
precision. We observed that variable parameters to produce training and 
evaluating data have little influence on the quality of the final predic
tion, although Landsat 8 data alone was insufficient for predictions on 
variable terrain (despite its proven utility in exposed mountainous 
areas). We can however create high-value predictions based on a DEM 
and its derivatives with 10 m resolution. Using DEM and its derivatives 
has important implications for cost-effective geological mapping: field
work would be more efficient because it could be targeted towards the 
areas with uncertain predictions (e. g. those with abundant sediment 
cover), and mapping can potentially be done over larger areas within the 
same resource restrictions. It is also possible that operator or mapper 
bias might be reduced through the use of deep learning mapping. 

Code availability section 

The source code is available for download here: https://github. 
com/alexandra-jarna/EarthEngine/blob/9ea0d173ad32f1ab007b7a 
5c1ac61b33a51f9ea0/u-net_bedrock_sediment_calassification.ipynb 

Fig. 6. Spatial distribution of the DEM terrain derivatives-based prediction. The map shows the modelled prediction of bedrock areas in comparison with the ground 
truth bedrock areas from the geological map (Setting 1, case 5 with 97% training match and 83% evaluating) visualized as true positive (green), false positive (red), 
false negative (blue) and true negative (grey) over the entire study area (left) and with the inset areas (right). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

A.J. Ganerød et al.                                                                                                                                                                                                                             

https://github.com/alexandra-jarna/EarthEngine/blob/9ea0d173ad32f1ab007b7a5c1ac61b33a51f9ea0/u-net_bedrock_sediment_calassification.ipynb
https://github.com/alexandra-jarna/EarthEngine/blob/9ea0d173ad32f1ab007b7a5c1ac61b33a51f9ea0/u-net_bedrock_sediment_calassification.ipynb
https://github.com/alexandra-jarna/EarthEngine/blob/9ea0d173ad32f1ab007b7a5c1ac61b33a51f9ea0/u-net_bedrock_sediment_calassification.ipynb


Applied Computing and Geosciences 18 (2023) 100119

9

Program language 

Python 

Software required 

Google Earth Engine, Google Colab, data preparation (ArcGIS Pro/ 
QGIS). 
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