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Abstract Collective intelligence (CI) in demand-side management (DSM) can 
enhance the flexibility of urban energy systems. Extreme climates cause intensively 
high loads on the urban energy systems resulting in power outages. To avoid this, 
quick responses are needed from buildings to adjust their operation in favor of the 
grid. Most of the available approaches are computationally expensive. CI-DSM offers 
a simpler approach that relies on distributed intelligence paradigm. It allows fast 
and (semi-) autonomous reactions to the continuously changing environment. This 
research investigates the application of CI-DSM in a residential building in the south 
of Sweden. The focus of the study is managing the building’s heating demand in an 
extremely cold winter. Heating setpoint and ventilation rate are defined as the adapta-
tion measures. To activate the system and take an action by the agents, signals of 0/1 
with 15-min intervals are sent, when heating demand exceeds the baseline. Managing 
the performance of buildings using CI-DSM could reduce the heating demand and 
peak power by 25% and 20%, respectively, over an extreme cold February compared 
to typical conditions. 
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144.1 Introduction 

Smart buildings and smart cities concept are becoming dominant due to the advances 
in information and communication technologies (ICT) and the prevalence of the 
internet of things (IoT) (Chourabi et al. 2012), leading toward higher levels of the 
energy performance of the built environment (Fokaides et al. 2014). The building 
sector is responsible for around 40% of the total energy use in Europe (Domínguez-
Torres et al. 2022). Extreme climate events have been experiencing with stronger 
magnitudes and higher frequencies in the past two decades (Hosseini et al. 2022), 
increasing the risk of energy systems malfunction (Jessel et al. 2019) and empha-
sizing the need for higher flexibility (Perera et al. 2019). The Energy Performance 
of Buildings Directive (EPBD) promoted a Common Union scheme for rating the 
smart readiness of buildings, encouraging the use of ICT and other smart technolo-
gies to ensure the efficient operation of buildings (Smart’ buildings – smart readi-
ness indicator (definition and calculation) 2022). ICT solutions have been introduced 
to provide interaction between buildings and buildings with grid/microgrid (MG), 
applying a range of centralized to distributed approaches (Nik et al. 2021)–(Vázquez-
Canteli and Nagy 2019). Thereafter, it is crucial to define an optimum algorithm to 
manage the interaction between agents (i.e., smart control device in thermal zones) 
in an energy system. 

Considering the variety of agents and decisions in an energy system, as well as 
costly computation processes, this research, among all proposed methods, investi-
gates a nature-inspired solution known as Collective intelligence (CI). Deploying 
CI on the demand-side management (CI-DSM) can improve the performance of 
the energy systems by enhancing demand flexibility, increasing the adaptability of 
the building in environment variations (Nik and Moazami 2021). CI is “a form of 
universally distributed intelligence, constantly enhanced, coordinated in real-time, 
and resulting in the effective mobilization of skills” (Suran et al. 2020) which refers 
to any large, distributed collection of interacting agents with the least or no central-
ized control (Wolpert and Tumer 1999). Within a CI-based energy system, agents 
perform reinforcement learning (RL) algorithms, improving the individual perfor-
mance of agents to maximize the performance of the entire system (Qin et al. 1549). 
Moreover, distributed intelligence without a main central processor magnifies the 
suitability of CI to be applied on the demand side; due to the distributed computation 
that reduces the computation cost (Krafft et al. 2021), and less data sharing leading 
to higher security and privacy (Arulprakash and Jebakumar 2021). 

The performance of CI-DSM is investigated in this research using two adapta-
tion measures on a residential apartment within a multifamily building block in the 
south of Sweden, exploiting a calibrated building performance simulation (BPS) 
model. A set of synthesized weather data, representing extreme conditions, devel-
oped by Nik (Nik 2016) is used for BPS. To evaluate the realistic extreme cold 
conditions, the results and analysis are concentrated on short periods in February as 
the coldest month. The methodology of these process is explained in detail in the
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next chapter, following by the results and discussion. Finally, the conclusion of the 
work is presented. 

144.2 Methods 

The research progress consists of BPS model using a set of representative weather 
data, in addition to a Python code based on a CI algorithm, simulating the CI-DSM. 

144.2.1 Energy Performance Simulation 

The BPS modelling, developed in the previous work of the authors (Hosseini et al. 
2022), is carried out in Rhino/Grasshopper using EnergyPlus as the simulation 
engine. The model, consists of a six-room apartment, is calibrated against measured 
energy use for heating and indoor temperature, based on the in-place measured 
weather data. Each room is defined as an agent, separated entirely by adiabatic 
walls, presented in Fig. 144.1. Thereafter, the calibrated BPS model is used to run 
simulation with representative weather data for the typical and extreme conditions. 
The model considers the building operated in a conditioned mode for the full year. 
An ideal active system provides all the energy needs required to meet the winter and 
summer setpoint temperatures. Heating setpoint is adjusted on 21 °C and air flow 
rate is set to 0.3 l/s/m2. (Check Hosseini et al. 2022 (Hosseini et al. 2022) for  more  
information about CV(RMSE), NMBE, BPS settings, schedules, and geometry). 

Fig. 144.1 The BPS model: Entire building block (left) and the studied apartment with thermal 
zones (right)
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Fig. 144.2 Outdoor drybulb temperature for synthesized weather data over the analysis period: 
TDY (green) and ECY (blue) 

144.2.2 Weather Data 

A set of representative typical downscaled year (TDY) and extreme cold year (ECY) 
over the period of 2020 to 2040 is utilized for BPS. The representative weather 
data is synthesized from regional climate models (RCMs) dynamically downscaling 
five global climate models (GCMs) with three different representative concentration 
pathways (RCPs) (Nik 2016). TDY represents the most typical months in the corre-
sponding period, while ECY shows the coldest projected months. The provided data, 
include all required data for building energy simulation, shows averages of around 
1 °C for TDY and − 8 °C for ECY in February (the analysis period). The outdoor 
drybulb temperature is depicted in Fig. 144.2. TDY and ECY show a larger difference 
in the first half of the February than the second half; therefore, the analysis period 
in this research is divided into two timespans, week 1–2 and week 3–4. (Check Nik, 
2016 (Nik 2016) for details of projected future weather data). 

144.2.3 Collective Intelligence on the Demand-Side 

While complex adaptive systems are commonly used among scientists, the concept 
of CI is grabbing more and more attention. CI is based on the idea that a group 
of individuals working together have a higher level of intelligence than each of 
them (Heylighen 1999). CI is the intelligent behavior that arises in collaborative 
environment (Lopez et al. 2015), and collective decisions emerges from information 
exchanges between many agents (Solé et al. Oct. 2016). Currently, due to the highly 
developed smart technologies and ICT infrastructure, flexible DSM is becoming 
an essential measure for improving energy flexibility in buildings without much 
additional investment (Chen et al. 2018). Meaning that buildings are provided a
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Fig. 144.3 CI system components and workflow 

higher level of capability to absorb the shocks, caused by extreme conditions through 
interaction with other buildings and grid (Luc et al. 2019). 

The outlined CI system in this work is comprised of (1) rule of engagement, 
(2) signal, (3) agents, (4) assemblies, (5) adaptation measures, (6) actions, and (7) 
policies. CI-DSM is implemented in the urban scale, divided into divisions equipped 
with smart device, named cluster nodes. Cluster node is on top of a set of agents and 
send the periodic signal of 0 and 1 to the agents. The breakdown of the described 
CI-DSM is illustrated in Fig. 144.3. 

The mentioned components need to be defined explicitly. Table 144.1 denoted the 
definitions for CI-DSM components in this work.

According to the definitions, the workflow of this research starts from making 
assemblies to provide the connection between agents within the assembly. Each 
agent can make an assembly with certain points of interest such as similarities in 
function (e.g., residential or office) or size (e.g., area or energy demand). In this 
work assemblies are made of three agents including the creator (the agent that make 
the assembly) and two members (two other agents that are chosen by the creator to 
make connection with) which are assigned randomly. Due to the small number of 
agents in this work, each agent can be in several assemblies, which cause eliminating 
freedom of agents in decision-making, meaning that each choice is dependent on 
more parameters. In actual case, however, agents would be in only one assembly 
with more self-customized choices. 

In the next step, agents receive the signal from the environment through cluster 
node. An agent can accept or reject to take action once receives signal 1. Agents 
tend to rebound to the initial settings; therefore, they do not reject signal 0. In this 
work they decide based on a random algorithm with 95% probability for accept and 
5% for reject. An agent cannot reject a signal 1 if both other agents in the assembly 
do rejection, and this overrides its choice to accept or reject, saying that at least one 
agent in each assembly must accept the signal 1. 

Adaption measures are (1) heating setpoint [°C] and (2) ventilation rate per floor 
area [l/s/m2]. The heating setpoint can be changed in a range from 21 to 17 °C
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Table 144.1 Definitions of the CI-DSM components 

Components of CI-DSM Definition 

Rule of engagement The conditions in which an agent needs to take an action; for 
instance, extreme climate events (universal stimulus) or need for 
ventilation in a crowded event (local stimulus) 

Adaptation measure The modifiable building characteristic to update the agent’s energy 
performance aiming to achieve the universal energy goals 

Signal The stimulus of the agents which is 0/1 and does not carry any other 
information. The signal is sent periodically every 15 min to all agents 
universally 

Agents The smart equipment in thermal zones within the apartment. Agents 
have a certain level of intelligence and are able to send/receive signals 
to/from the environment in addition to their assemblies 

Action Action is the response of the agent to the signal which appears in 
adaptation measures 

Policy A set of actions is called policy, which defines the priority and order 
of the actions that have to be taken by the agent 

Assembly A group (a subset of cluster node) of agents which each agent creates 
to provide interconnection. Assemblies are made based on the 
topological distance which refers to making group with a certain 
number of agents regardless their physical distance but interest [23]

with 1 °C steps (5 choices). Air flow rate is adjustable from 0.30 to 0.12 l/s/m2 

with 0.06 l/s/m2 steps (4 choices). Owing to the fact that analysis time step is short 
(15 min), the effects of air flow between different zones are neglected. 

144.3 Results 

The heating demand in an extremely cold February adjusted by implementing CI-
DSM is presented and discussed in this chapter. To provide a better comparison 
between heating demand and outdoor temperature, statistical summary of typical 
and extreme weather conditions is appended to the demand data, denoted in Table 
144.2.

The first analysis period (week 1–2) has 13.5 °C lower average temperature in 
ECY compared to TDY, while the second period has 5.7 °C lower temperature. 
Applying CI-DSM with 15-min intervals reduces the heating demand by 18% and 
25% for week 1–2 and week 3–4, and peak demand by 17% and 20%, respectively. 
The hourly heating demand under TDY (Baseline), ECY (Without CI-DSM), and 
ECY (With CI-DSM) for the first period is presented in Fig. 144.4, left diagrams. 
To neglect the impacts of extreme weather conditions on heating demand over the 
first period, both adaptation measures (red and orange) are applied to the highest 
level during nearly all 366 h (14 days). Moreover, all zones (purple) are involved
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Table 144.2 Statistical summary of weather conditions and demand in typical and extreme condi-
tions. Relative difference (RD) is calculated from ((x2−x1) × 100/x2), and difference (Diff.) is 
(x2−x1) 

Heating demand Outdoor temperature 

ECY 
[kWh] 

CI-DSM 
[kWh] 

RD [%] TDY [ °C]  ECY [ °C]  Diff [ °C]  

Week 1–2 Mean 13.1 9.9 −18 Mean 3.4 −10.1 −13.5 

Max 18.2 14.6 −17 Min −0.9 −20.3 −19.4 

Sum 4416 3333 −18 Max 7.7 −0.2 −7.8 

Week 3–4 Mean 11.4 9.3 −25 Mean −2.0 −7.7 −5.7 

Max 16.2 13.4 −20 Min −13.2 −17.5 −4.3 

Sum 3827 3120 −25 Max 4.6 1.6 −2.9

in this adjustment progress. The first graph on top shows the performance of CI-
DSM to narrow down the deviation between demand for typical (green) and extreme 
conditions (blue). Nonetheless, due to the extreme difference, heating demand is 
above typical conditions, except short periods from February 11th over the nights. 
There are a few hours that some of the agents rejected to take action, even though 
the demand exceeded the baseline. 

The results for the second period, presented in Fig. 144.4, right diagrams, show 
that CI-DSM could approximately reach the baseline demand (TDY) in the extreme 
conditions (Dark blue line touches the green line). The heating setpoint is lowered 
to 17 °C for 140 (38%) hours and air flow rate is cut down to 0.12 l/s/m2 over 215 
(58%) hours out of 366 h. In total, 1882 zone · hour participation happens in this 
period among all 2016 (366 × 6) zone · hour (93%) and 7% rejection occur. 

As explained in the method chapter, to simplify the research progress, most of the 
parts of the system are created by random algorithms. To further develop the method, 
it is essential to investigate conditions for agents to accept or reject the incoming 
signal, optimizing the policy making from possible actions, and to highlight the

Fig. 144.4 Hourly heating demand, setpoint, air flow rate and involved zone over the first (left) 
and second (right) period. The gray area represents nighttime (18:00–06:00) 
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importance of applying user preferences. Applying CI-DSM can provide a higher 
level of adaptability to climate variations using distributed computation, without 
essential needs to high computation power through a central brain. 

144.4 Conclusions 

To deal with the growing frequency of extreme weather events and enhance the energy 
flexibility with a higher performance and affordability, a demand-side management 
method based on Collective Intelligence, called CI-DSM, has been developed, taking 
the opportunity of advances in information and communication technology (ICT) and 
the common willing for enhancing the level of smart readiness of buildings. 

This work investigates an apartment in the south of Sweden with a detailed 
building performance simulation (BPS) model. CI-DSM is applied to heating system 
within six thermal zones in the apartment. Each zone is equipped by smart device 
to enhance the level of intelligence. Thus, each zone is correlated to an agent which 
can communicate and make decision. Two adaptation measure are defined including 
heating setpoint temperature and ventilation rate, which can be adjusted as a response 
to the changes in the environment. Periodic signal of 0/1 is sent to the agents from 
environment, which activate or deactivate their action. If energy demand exceeds the 
baseline demand (i.e., energy demand under typical weather conditions), signal 1 is 
sent and the agent makes a decision to whether take an action based on the defined 
adaptation measures or reject it. In this work, agents are connected in smaller groups, 
called assembly. Therefore, agents are able to consider their neighbors’ conditions 
in their decision-making. 

The results of the application of CI-DSM show a 25% and 20% reduction in 
heating demand and peak load, respectively, in extreme cold conditions (ECY) 
compared to typical weather conditions (TDY). In this research, the provided weather 
data for ECY shows significantly lower temperature over the first half of the month, 
where the results show that, even though heating demand is not reduced to the level of 
TDY, it is curtailed by a considerable fraction. Over the second half, due to a milder 
difference in temperature, CI-DSM could cut back heating demand to the level of 
typical conditions, with lower amount of zones participation and more moderate 
changes in adaption measures. 

All in all, applying CI-DSM shows positive effects on energy systems. These 
effects can be increased by considering more actions and policies through learning 
algorithms or measurements. Distributed decision-making provides more customized 
solution based on the agents’ conditions and potential. The application of CI-DSM 
needs to be further explored with a broader range of building conditions and, specially, 
considering user preferences.
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