
Master in Computational Colour and Spectral Imaging (COSI)

Metadata Augmented Deep Neural Networks for Wild Animal Classification

Master Thesis Report

Presented by

Aslak Tøn

and defended at the

Norwegian University of Science and Technology

September 2023

1

Academic Supervisor(s): Ali Shariq Imran, Mohib Ullah
Jury Committee:

1. Damien Muselet, University of Jean Monnet, France

2. Dr. Sajib Saha, Commonwealth Scientific and Industrial Research
Organisation, Australia

Submission of the thesis: 10th August 2023
Day of the oral defense: 5th September 2023

2

Abstract
Camera trap imaging has emerged as a valuable tool for modern wildlife

surveillance, enabling researchers to monitor and study wild animals and their
behaviors. However, a significant challenge in camera trap data analysis is the
labor-intensive task of species classification from the captured images. Utilizing
deep learning has been proven to be an effective solution to reduce the workload of
ecological researchers.

This thesis proposes the usage of specific metadata, including temperature,
location, and time, to enhance the established field of image classification. We
demonstrate the effectiveness of this approach on a dataset centered on the Norwe-
gian climate. Our models, compared against existing ones widely used in the field,
demonstrated an increase in accuracy from 98.4% to 98.9%. While this increase
may seem marginal, given that the models are already approaching perfect accuracy,
we argue this improvement is significant.

Furthermore, we demonstrate the potential for improving models with metadata
without the need for extra work in the data collection phase. Using deep learning
models for scene recognition, we achieved high prediction accuracy in an ablative
study focused on classification purely from the metadata in our dataset. This
automated pipeline can be used in future comprehensive networks that incorporate
both image data and metadata, which could significantly enhance the image
classification of wild animals.

Keywords: Wild animal detection, Wild animal classification, deep learning,
data fusion.

I

II

Acknowledgment
I would like to thank my supervisors, Ali Shariq Imran and Mohib Ullah, for

guiding me through this masters thesis. Their willingness to discuss with me, and
dedicate their time to my research has helped me gain better insight into the field,
and utimately, create a significantly better work. Without their advice at key
moments, this thesis would not have come to the same conclusions. Their knowledge
also extended to the report, providing feedback to improve how I conveyed my
contributions to the reader. This thesis would be significantly less friendly to the
reader without the contributions of my supervisors.

Thank you to the Norwegian University of Science and Technology for providing
me with tools to more efficiently perform my research. Tools were always provided
with minimal delay, making for an enjoyable research experience.

I would also like to thank NINA and especially John Linell for allowing us to
work with their dataset. This thesis would not have been possible without the data
they willingly provided us.

III

IV

Glossary
Table 1: Glossary Table

Term Definition
Accuracy The ratio of correct predictions to the total num-

ber of predictions made.
Bounding box A rectangle drawn around the target object in an

image used in object detection tasks.
Camera Trap A stationary camera often fastened to a tree, used

to capture animals in their natural habitat. Uti-
lizes RGB sensors for daytime and IR sensors for
nighttime capture.

Data Augmentation Techniques used to increase the amount of data by
adding slightly modified copies of already existing
data. Discussed further in Section 2.5.3.

Data Fusion The process of integrating data of different modal-
ities. Discussed in Section 2.4.

Datetime A 67-dimensional vector representing the month,
day, and hour of a specific datapoint. See Sec-
tion 4.1.5 for further information.

Deep learning A branch of machine learning using multi-layered
neural networks to interpret complex data pat-
terns. See Section 2.2 for details.

False negative (FN) An outcome where the model incorrectly predicts
the negative class.

False negative rate (FNR) The ratio of false negatives to the sum of false
negatives and true positives.

False positive (FP) An outcome where the model incorrectly predicts
the positive class.

False positive rate (FPR) The ratio of false positives to the sum of false
positives and true negatives.

Label In supervised learning, the ’answer’ or ’result’ por-
tion of an example in the dataset.

One hot encoding A representation of categorical data as binary
vectors where each category is assigned a unique
binary value.

V

Term Definition
Precision The ratio of true positives to the sum of true

positives and false positives.
Recall The ratio of true positives to the sum of true

positives and false negatives.
Scene attribute Presence or absence of a specific attribute to a

scene. discussed in Section 4.1.5.
Scene descriptor The actual scene the image is captured in. Also

discussed in Section 4.1.5.
True negative (TN) An outcome where the model correctly predicts

the negative class.
True positive (TP) An outcome where the model correctly predicts

the positive class.
Viltkamera (en) Wildlife camera, the name used for the Nor-

wegian Camera Trap Project.
F1 score Harmonic mean of precision and recall, used to

measure a model’s performance.

VI

Acronyms
Table 2: Acronym Table

Acronym Definition
ADAM ADAptive Moment estimation
AI Artificial Intelligence
CBAM Channel Block Attention Module
CNN convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
GAN Generative Adversarial Network
GMU Gated Multimodal Unit
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoU Intersection over Union, aka Jaccard Index
LILA BC Labeled information Library of Alexandria: Biology and Conserva-

tion
LION EvoLved Sign Momentum
LLM Large Language Models
MLP Multi-layer perceptron
MCBAM Modified Channel Block Attention Module
NINA Norwegian Institute for Nature Research (NO: Norsk institutt for

naturforskning)
ReLU Rectified Linear Unit
RGB Red Green Blue – usually referring to images/camera handling

visual spectrum
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-sampling Technique
SOTA State Of The Art
SS Snapshot Serengeti
UMAP Uniform Manifold Approximation and Projection
WAC Wild Animal Classification

VII

VIII

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Our Contributions . 3
1.4 Use of Large Language Models . 4
1.5 Thesis Structure . 4

2 Background 5
2.1 SCANDCAM Project . 5
2.2 Deep learning for Image classification 6

2.2.1 Perceptron . 6
2.2.2 Multilayer Perceptron . 7
2.2.3 Loss Functions . 8
2.2.4 Back propagation . 10
2.2.5 Optimizers . 12
2.2.6 Convolution . 15
2.2.7 Transfer Learning . 16

2.3 Existing models . 16
2.3.1 Alex Net . 16
2.3.2 Inception v3 . 17
2.3.3 ResNet . 18
2.3.4 EfficientNet . 18
2.3.5 Channel Block Attention Module 19

2.4 Data Fusion . 20
2.5 Data Augmentation . 20

2.5.1 Class Imbalance . 20
2.5.2 Synthetic Minority Over-sampling Technique 20
2.5.3 Image Augmentation . 21

2.6 Dimensionality Reduction . 23
2.7 Evaluation Metrics . 25

I

CONTENTS

2.7.1 Metrics used . 26
2.7.2 Cohen Kappa Score . 27
2.7.3 Intersection Over Union . 27
2.7.4 Micro versus Macro average 28

3 Related Work 31
3.1 On proper use of Camera Traps . 31
3.2 Animal Camera Trap Projects . 33
3.3 SOTA Classification of WAC . 33
3.4 Data fusion for deep learning . 36
3.5 Handling Multimodal Image Data 37
3.6 Summary . 37

4 Materials and Methods 39
4.1 Datasets . 39

4.1.1 Caltech Camera Traps . 39
4.1.2 Snapshot Serengeti . 39
4.1.3 NINA Viltkamera . 40
4.1.4 Image Data . 42
4.1.5 Metadata . 44

4.2 Implementation Details . 47
4.2.1 Framework . 47
4.2.2 Computing power . 47
4.2.3 Oversampling and Augmentation 48

4.3 Model Evaluation . 48
4.4 Baseline Methods . 48
4.5 Ablation Study . 49
4.6 Our Models . 49

4.6.1 Late Fusion Models . 50
4.6.2 Early Fusion Models . 50
4.6.3 Modified CBAM Model . 51
4.6.4 Hierarchical Models . 53

4.7 Challenges . 56
4.7.1 Data Challenges . 56
4.7.2 Computational Challenges 57
4.7.3 Methodological Challenges 58

5 Results and Discussion 61
5.1 Data Acquisition . 61

5.1.1 Snapshot Serengeti . 61
5.1.2 Nina Viltkamera . 62

II

CONTENTS

5.1.3 Metadata . 64
5.2 Ablation Study . 64
5.3 Complete models . 68

5.3.1 Results . 68
5.3.2 Discussion . 68

5.4 Hierarchical Models . 71
5.5 Typical Misclassification . 72

6 Conclusion and Further Work 77
6.1 Conclusion . 77
6.2 Further Work . 77

A Table of classes in NINA dataset 79

B Web Scraper code 83

C Places Attributes and scenes 85

D Power Consumption and Carbon Emissions 93

E Accepted conference paper 95

Bibliography 101

List of Figures 109

List of Tables 111

III

CONTENTS

IV

1 Introduction

1.1 Motivation

The human species has come to dominate the ecology of our planet over the last
300-400 years. This human expansion and utilization of natural resources has
caused immense strain on the wild animals around the globe. Many factors play a
role in the decrease in wildlife biodiversity, from human caused (Masson-Delmotte
et al. (2021)) climate change (Pörtner et al. (2022)), deforestation (Lata et al.
(2018)), and trafficked roads (Dean et al. (2019)) all play part in the reduction of
wildlife populations, leading to a modern mass extinction event (Pievani (2014)).
This rapid transformation of the natural habitats of wild animals affects the wild
animals both in behavior and population Njamasi et al. (2022). The impact of
humans on the planet is so widespread, a new geologic era has been created. This
geologic era, dubbed “the anthropocene”, is marked as a world dominated by human
actions on the planet Lewis and Maslin (2015). The outsized impact humanity has
on our ecosystems necessitates monitoring of wild animal habitats. This data gives
researchers invaluable evidence to protect and manage decisions in order to maintain
a diverse, sustainable & balanced ecosystem in the face of anthropogenic activities
Berger et al. (2006), Patterson et al. (2008). For instance, due to good access to
wildlife data, Australian researchers managed to chart out an estimated impact
on the wildlife due to the 2019-20 wildfires in Australia (Hyman et al. (2020)).
This information gave policymakers an opportunity to react more appropriately to
preserve the wildlife in the region.

To monitor wildlife, one may employ several techniques. These vary from radio
tracking (Habib et al. (2014)), to wireless sensor network tracking (Garcia-Sanchez
et al. (2010)), remote sensing and Global Positioning Systems (GPS) (Recio et al.
(2011)), radar methods (Flock and Green (1974)), and motion sensitive camera
traps (Cordier et al. (2022)). This thesis will focus on the use of motion sensitive
camera traps, or Wildlife Camera Traps (WCT). Camera traps is an efficient way
of monitoring statistics on animals without requiring tagging animals, or disrupting
the normal habitat significantly. A network of camera traps is a cheap and fast to

1

Chapter 1 INTRODUCTION

deploy monitoring method that can collect vast amounts of data about all animals
inhabiting or migrating through the network region. This data is quite helpful
for monitoring wild animal population and biodiversity. If the samples are taken
over several seasons, it is also possible to infer the change in these variables. In
addition, due to the pictographic nature of Camera Traps, it is also possible to
track individuals of a given species. This subject level information can give us an
even more detailed image of how the current status of a wild animal population.
One of the major issues with camera trap project is the difficulty in extracting
the relevant data from the images. Images needs to be tagged, labeled and sorted
before real data analysis can be performed. Citizen science has been shown to be of
great help here, achieving an accuracy of 96.6% when classifying for the Snapshot
Serengeti project (Swanson et al. (2015)).

With the number of labeled samples available for Camera Trap projects, image
classification using machine learning (ML) is becoming more realistic by the day.
The field is not without challenges. Wild animals are not known for their photogenic
postures, and lighting is rarely in an optimal spot, or even there in the case of
nocturnal animals. However, we believe machine learning can prove to be great
tool when properly tuned for Wild Animal Classification (WAC). Reducing the
workload on scientists significantly, and letting them contribute by analyzing the
data available via automatic WAC instead of spending significant research time
labeling images.

This thesis focuses on a dataset produced by the Norwegian Institute for Nature
Research (NINA), addressing the need for region-specific models for accurate wildlife
detection and classification. Specifically, it will explore the potential benefits of
including metadata in the classification problem using deep learning, highlighting
the necessity of tailoring models to account for climatic and ecological variations.

The field of automatic WAC has already been explored on larger datasets like
Snapshot Serengeti. However, the accuracy of the trained models can significantly
decrease when transferred to different climatic regions, such as Norway, due to
the stark contrast in biodiversity and landscape. In particular, the deep learning
models trained on the Snapshot Serengeti (SS) dataset may not perform well in
the Norwegian climate due to differences in animal species, their behaviors, and
unique visual aspects in their respective environments.

1.2 Research Questions
The research questions, and sub-questions, we wish to explore can be summarized
as follows;

1. How can metadata be effectively incorporated into deep learning models for

2

Our Contributions 1.3

WAC?

(a) Which types metadata provides the greatest impact on WAC?

(b) How does the inclusion of metadata impact the performance of deep
learning models in classifying images from wildlife camera traps (WCT)?

2. How does the performance of modified deep learning models compare to
traditional architectures when applied to WCT image classification?

(a) What classes can be sensibly grouped, using information from metadata,
to increase model performance?

(b) What modifications needs to be done on existing deep learning models
to maximize performance for WAC in a Nordic setting?

1.3 Our Contributions
These are the key contributions of this thesis:

1. Our research involved the collection and preparation of 170 thousand image
and metadata samples from the NINA Viltkamera dataset. We demonstrated
how to effectively tackle issues with missing metadata by filling in the gaps
wherever possible, and otherwise give a network context for when data was
not valid.

2. We explored and evaluated a variety of data fusion techniques between image
data and metadata. We identified methods where application proved beneficial
and pinpointed weaknesses in the methodology.

3. We also proposed a method to aggregate various species into super groups,
making them more distinguishable based on metadata.

4. We were able to demonstrate the potential for metadata to boost the perfor-
mance of Wild Animal Classification models, a notable contribution to the
field.

5. Our work also outlines effective strategies for incorporating metadata into
WAC tasks, without increasing the expected annotation work done by experts.

Parts of this thesis has also been submitted and accepted to the the 11th
European Workshop on Visual Information Processing. This conference paper can
be read in Appendix E.

3

Chapter 1 INTRODUCTION

1.4 Use of Large Language Models
At the request of the consortium, this section is meant to highlight my usage of
Large Language Models (LLMs) like ChatGPT1. The main way the tool has been
used for me is in coding help, akin to how Stack Overflow has been used before,
ChatGPT can take on a similar role. This helped speed up the process of learning
new coding frameworks. Due to the cutoff date for ChatGPT, some information
was inaccurate. In that case, documentation could be given to the model, and an
updated answer was given, which was usually correct. If this still did not give the
desired results, I often ended up reading the documentation myself.

Another application of LLMs was in the design of the report. Mainly, the help
was given in the form of table generation, for more complex or multi-page tables.
Queries to an LLM were faster than searching up and constructing the tables via
online documentation.

LLMs were not used for literature search, as they are unreliable at conveying
accurate information, but it can be hard to identify when this information is false.
Since literature review involves acquiring new knowledge, one cannot easily hand
this task over to an LLM without risk of false statements being added to the thesis
work.

1.5 Thesis Structure
The paper is organized as follows. Chapter 2 presents essential concepts necessary
for understanding this thesis. The reader may skip any or all topics in Chapter 2 if
they have a strong understanding of the concepts discussed. Chapter 3 gives an
overview of related work in the field of Camera Trap projects and Wild Animal
Classification (WAC). Chapter 4 discusses how various data was acquired for
our investigations into Wild Animal Classification (WAC), and how we created,
modified, and used deep learning architectures. Chapter 5 gives the results of the
methodologies applied during the thesis work, and discusses these results. Finally,
Chapter 6 concludes our findings, and gives recommendations for further work in
the field.

1https://chat.openai.com/

4

https://chat.openai.com/

2 Background

This chapter will give the reader an understanding of the concepts used regularly
in this thesis work. The chapter should give the reader all required knowledge to
understand the concepts used throughout this paper. The reader is still encouraged
to read the full papers referenced in this section if they wish to gain further insight
into the tools used.

2.1 SCANDCAM Project

SCANDCAM is a project lead by Odden and Swenson (2023). The stated goal of
the project is to: “Monitor medium and large mammals in the forest with the help
of a large network of camera traps. The project is largely driven by local people
from the Norwegian Hunting- and fishing association and other outdoor enthusiasts.
The project also helps with data for monitoring of wild boar, lynx, and other
animals. In addition, this data is utilized in several wildlife research projects that
is conducted in cooperation with universities and colleges across Scandinavia“1.

To collect this data, the project employs several types of cameras, mainly under
the RECONYX brand2, with various different models used. Some images were
also taken with a BUSHNELL3, no model was provided for BUSHNELL camera.
Finally, the BROWNING, BTC-8FHD-PX4 camera was used. The full table of
cameras used can be seen in Table 2.1. This table also highlights the issue that we
are lacking camera information from 62 thousand samples. Our work did not use
camera type information as metadata, but other projects may struggle if they wish
to utilize this information in their research.

1Disclaimer: This is paraphrased and translated from Norwegian by the author of this thesis
2https://www.reconyx.com/
3https://www.bushnell.com/trail-cameras-2/
4https://browningtrailcameras.zendesk.com

5

https://www.reconyx.com/
https://www.bushnell.com/trail-cameras-2/
https://browningtrailcameras.zendesk.com

Chapter 2 BACKGROUND

Table 2.1: Full list of samples per camera type model

Model Samples
RECONYX, PC900 PROFESSIONAL 37557

RECONYX, HC500 HYPERFIRE 11657
RECONYX, PC800 PROFESSIONAL 7452
RECONYX, PC850 PROFESSIONAL 16972

RECONYX, HF2 PRO COVERT 16466
RECONYX, HC600 HYPERFIRE 5429

RECONYX, UltraFire 305
BROWNING, BTC-8FHD-PX 12054

RECONYX, HC500 HYPERFIRE 13
BUSHNELL, 343

RECONYX, SCANDLYNX 13
No information 62372

2.2 Deep learning for Image classification
Modern deep learning (DL) techniques enables a machine to solve abstract problems
with astonishing accuracy given enough sample data Goodfellow et al. (2016)
Krizhevsky et al. (2017). By giving a computer enough labeled data and a goal,
a machine can learn to transform inputs into the desired output without further
involvement by a human expert. This process is often conveyed as creating an
estimator F such that F (x) = y, here x represents the input while y represents
some output. Both the input and the output may be a value or a vector.

The pursuit of creating a good estimator purely from example data has been
actively sought after for years, as not every problem in programming can be
efficiently solved with algorithms by a programmer. However, Deep learning has
not always been the go-to solution for problems where large amounts of labeled
data is available.

This section will eventually build up to the current state of the art methods
used in image classification using deep learning. However, to get there we first need
to go back to the start of deep learning history.

2.2.1 Perceptron
The concept of the perceptron, the most important building block in a Deep Neural
Network, was implemented back in 1957 Rosenblatt (1958). The mathematical
background for this was created by McCulloch and Pitts (1943). The idea is to

6

Deep learning for Image classification 2.2

combine a number of inputs and weights to give a strong enough signal to “activate”
a neuron. A scalar bias (b) was also typically added to adjust how likely this
neuron was to activate. The neuron had only two states, inactive or active, a binary
classifier. Mathematically, the neuron can be described like this:

f(X) =
{
1 if X + b > 0,
0 otherwise

(2.1)

where

X =
n∑

i=1

wi · xi (2.2)

xi here represents some scalar value while wi is some scalar weight multiplied
by the input value xi.

This model came with two major issues: it failed to approximate some relatively
simple mathematical operations. XOR is a typically given example, where you
want your output to be one if either of the inputs are active, but not if both are
active. Another issue was the lack of a differentiable equation.

This simple classifier was later combined into layers and sequences to form
what we call a Multilayer Perceptron (MLP), which forms the basic concepts of
the modern Deep Neural Nets.

2.2.2 Multilayer Perceptron
Along with his contributions to implementing the singular Perceptron, Rosenblatt
also suggested a multilayer approach, where several pereceptrons were combined
together to form a larger structure Rosenblatt (1958). It is important to note in
this case, that a multilayer perceptron (MLP) is no better than a single layer of
perceptrons unless some or all of the layers have non-linear activation functions.
While a single layer of perceptrons cannot solve the XOR problem, a three-layer MLP
can. (Goodfellow et al., 2016, pp. 171-177) has an excellent explanation for this, they
use a two perceptron input layer, a two perceptron hidden layer h, and an output
perceptron y. We can describe h and y as: h = f (1)(x;W, c) and y = f (2)(h;w, b).
These equations also let us see why non-linearity is an important part of an MLP.
Ignoring the bias, we could represent the transformation h = W⊤x and y = h⊤w,
which algebraically is equivalent to y = w⊤W⊤x. This simplifies down to y = x⊤w′

where w′ = Ww. By using a nonlinear unit, Goodfellow (Goodfellow et al., 2016,
pp. 171-177) create the non-linearity necessary to create an XOR expression. We

can solve the XOR problem using these values: b = 0, c =
[
0
−1

]
, W =

[
1 1
1 1

]
, and

7

Chapter 2 BACKGROUND

w =

[
1
−2

]
, which gives us:

X =

0 0
0 1
1 0
1 1

 =⇒ XW =⇒

0 0
1 1
1 1
2 2

+ c =⇒

ReLU

0 −1
1 0
1 0
2 1

 =⇒

0 0
1 0
1 0
2 1

w + b =⇒

0
1
1
0

 (2.3)

Equation (2.3) is explained in more detail in (Goodfellow et al., 2016, pp. 171 -
177).

The term MLP can be somewhat ambiguous, where some papers refer to the
topic under the principles outlined in Rosenblatt (1958), based in McCulloch and
Pitts (1943). While others may refer to MLP as any network with multiple neurons,
connected by weights in a feedforward manner. Going forward, we will use the term
deep neural network (or DNN for short) to encompass the general architecture of a
feed-forward network taking n-dimensional inputs, passing them through hidden
layers, and generating some m-dimensional output.

2.2.3 Loss Functions
A loss function aims to quantify how well some DNN performed. These metrics are
especially important for updating the weights of the network, which is discussed
in Section 2.2.4. One of the easiest conceptual loss functions is the Square Error
function: SE =

∑N
i=1(f

∗(xi)− f(xi))
2, where N = # classes. This metric is quite

easy to conceptualize. We measure a “distance” between the estimated function f ∗

and the actual function f , then we square that result to make sure all “distances”
are summed together instead of canceling each other out. The larger the summation
of distances, the worse the performance. While this loss function is quite easy to
conceptualize, it is not that popular in deep learning fields. We will also not utilize
this function, instead focusing on some other more popular functions, or functions
better suited for our needs.

Categorical Cross-entropy

The cross-entropy of an estimated probability distribution q relative to the true
distribution p, can in the discreet case be described as:

8

Deep learning for Image classification 2.2

H(p, q) = −
N∑

i=1

p(xi)log(q(xi)) (2.4)

Do note that in many binary classification problems, it is better to represent
the loss function as:

H(p, q) = −p · log(q)− (1− p)log(1− q) (2.5)

Since we have a binary classifier p will either be 1 or 0, which means either the
loss will be −log(q) if the true class is 1, or −log(1− q) if the true class is 0. this
enables us to calculate cross entropy, without encountering issues with log(0).

Oftentimes we want the loss value to be independent of the number of samples
available. In this case we can modify the equation to divide by the total number of
samples N :

H(p, q) = − 1

N

N∑

i=1

p(xi)log(q(xi)) (2.6)

An example may be helpful. Say we have a coin flip. Assuming the coin is
fair, the distribution p should be [0.5, 0.5], representing the probabilities of heads
and tails respectively. We can then set our q distribution as [0.5, 0.5] and slowly
increase the bias towards tails and observe the increase in cross entropy as the bias
increases from 0 (perfect predictor) to 0.5 (always tails). The cross entropy would
increase as shown in Figure 2.1.

Focal Loss

Focal loss was introduced as a way to handle imbalanced datasets, where positive
cases are obscured by a sea of negative cases. The method was proposed by Lin
et al. (2018). The idea is to add a modulating factor γ to the cross entropy formula.
They define the term pt as follows:

pt =

{
p if y = 1,
(1− p) otherwise

Where y is the true label and p is the predicted label. This makes the focal loss
equation somewhat cleaner: FL(pt) = −(1 − pt)

γlog(pt). The key idea is the
inclusion of the focusing parameter γ. This focusing parameter is only included in
the negative case side of the cross entropy loss equation (Equation (2.5)). Which
in turn causes the loss function to devalue contributions from negative cases.

9

Chapter 2 BACKGROUND

Figure 2.1: Cross entropy of a coin flip predictor

Categorical Focal Loss

Our thesis work focuses on multi class classification problems, which means we
cannot use the binary version of focal loss in most cases. Luckily multi class versions
of the focal loss has been developed. The cross entropy loss function used in deep
learning is:

−1
N

N∑

i=1

[yi · log(ŷi) + (1− yi) · log(ŷi)]

We add the focusing parameter as such:

−1
N

N∑

i=1

[yi · log(ŷi) + (1− yi)
γ · log(ŷi)]

Which results in a generalized multi class focal loss function.

2.2.4 Back propagation
The previous example (Equation (2.3)) was fairly simple, containing only two input
nodes, one output node and two hidden nodes in between. Working through this
algebraic problem, while involved, is not infeasible to solve by hand. Real world
applications of neural networks are rarely this simple. They usually involve several

10

Deep learning for Image classification 2.2

hundreds of input values, combined in several hidden layers, and may result in a
multi-dimensional continuous output variable.

This is where back-propagation, first proposed by Rumelhart et al. (1986),
comes in. In normal operation, information only flows forward through the network.
Back-propagation allows a network to learn by propagating the error backwards
through the network. Using the gradient of the loss function, the network can
adjust its weights to perform better on future samples. Its important to note that
back-propagation simply refers to the calculation of the gradient. It is the role of
the optimizer to actually update these weights (see Section 2.2.5 for further details
on optimizers).

(Goodfellow et al., 2016, pp. 204 - 227) once again provides an excellent
explanation of this procedure with examples. We can represent the output of the
first hidden layer like this:

h(1) = g(1)(W (1)⊤x+ b(1))

In general we can represent the ith layer as:

h(i) = g(i)(W (i)⊤h(i−1) + b(i−1))

Here we represent h(i) as the ith layer in the structure. g(i) represents some function
applied to the result, note that different layers may have different functions. W (i)

is the weights of the ith layer, and b(i) represents the bias vector for the ith layer.
until we get to the final layer ŷ:

ŷ = g(N)(W (N)⊤h(N−1) + b(N−1))

This result (ŷ) is then used together with the actual value y in supervised
learning together with the loss function L to calculate the loss L(y, ŷ). We want to
find the gradient of this loss function with respect to every weight we have in our
network. Working out the backprop algorithm we start with the partial derivative
of the loss function with respect to the output of the final layer:

∂L
∂ŷ

The partial derivative of the output of the final layer with respect to its input
is:

∂ŷ

∂h(N)
= g(N)′(W (N)⊤h(N−1) + b(N−1))

The partial derivative of the output of layer i+1 with respect to its input from
layer i is:

11

Chapter 2 BACKGROUND

∂h(i+1)

∂h(i)
= g(i+1)′(W (i+1)⊤h(i) + b(i)) ·W (i+1)

The partial derivative of the output of layer i with respect to the weight from
node j in layer i-1 to node k in layer i is:

∂h(i)

∂W
(i)
jk

= g(i)
′
(W (i)⊤h(i−1) + b(i−1)) · h(i−1)

j

Using the chain rule, the partial derivative of the loss function with respect to
a weight in the network is:

∂L
∂W

(i)
jk

=
∂L
∂ŷ
· ∂ŷ

∂h(N)
· ∂h(N)

∂h(N−1)
· . . . · ∂h

(i+1)

∂h(i)
· ∂h

(i)

∂W
(i)
jk

It is worth noting that to calculate the loss on layer i − 1 we need the loss
calculated at layer i. We can therefore speed up the algorithm significantly by
storing the loss at each layer, then calculating the loss for the next layer in the
back-propagation. This gradient can then be used to update the weights of the
network using a variety of optimization algorithms.

2.2.5 Optimizers
Optimizers are the algorithms used to update the weights when the gradient is
found. These range from the simple that subtract the gradient vector from the
weights, to the complicated that include momentum, weight decay, variable learning
rates, and more. All these parameters are included to try to nudge the network to
a lower minima. If the hyperspace the loss function was situated in was convex and
smooth, finding the global minima would be fairly straightforward. However, most
real world cases for deep learning do not have a convex smooth space everywhere,
and we need methods to nudge the network out of local minima, while preventing
the network from overshooting once its nearing the global minima.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the implementation of updating weights
directly based on the gradient, with a few caveats. In most cases, deep learning
algorithms do not use their entire dataset to calculate the gradient, instead it uses
minibatches. The gradient is calculated for these minibatches instead of the entire
dataset. Conceptually, we can imagine this as letting the network take more, but
smaller steps that meander towards a minima, instead of fewer steps towards the

12

Deep learning for Image classification 2.2

Figure 2.2: Momentum based weight updates

minima defined by all samples. We also include the learning rate γ. This parameter
can be adjusted to finetune the step size of the weight updates. We can define it as:

W
(i)
jk = W

(i)
jk − γ · ∂L

∂W
(i)
jk

The learning rate is there to prevent the network from overshooting the minima,
resulting in a non-converging network.

We may also want to include a momentum parameter to this. In a way, mo-
mentum represents the direction the weight was traveling before the last calculated
gradient. Many different variations of momentum have been proposed, and will
be discussed further in the following sections. While exactly how momentum is
calculated can be complex, the weight update after the fact is quite simple, as is
shown in Figure 2.2.

ADAM

ADAM Kingma and Ba (2017) stands for “Adaptive Moment Estimation” and was
a suggested improvement to the RMSProp algorithm, an unpublished algorithm
proposed by Geoff Hinton5, and AdaGrad Duchi et al. (2011). The update algorithm
relies on a first moment vector m and v the gradient of the loss function L. We
also have two adjustable parameters β1 and β2. Initially m and v are zero vectors,
but everything gets updated through the algorithm:

5https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

13

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Chapter 2 BACKGROUND

mt = β1 ·mt−1 + (1− β1) ·
∂L

∂W
(i)
jk

vt = β2 · vt−1 + (1− β2) ·
∂2L

(∂W
(i)
jk)

2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

W
(i)
jk = W

(i)
jk − γ · m̂t√

v̂t + ϵ
(2.7)

the “time” t represent each run through the data. We also need to include a
tiny number ϵ to prevent divide by zero issues.

LION: EvoLved Sign Momentum

The lion optimizer, proposed by Chen et al. (2023) is a modification of the ADAM
family of optimizer. It is the optimizer used in the currently best performing models
for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In their
paper, they list out the pseudocode for the LION optimizer:
Require: β1, β2, λ, η, f
1: Initialize θ0,m0 ← 0
2: while θt not converged do
3: gt ← ∇θf(θt−1)
4: update model parameters
5: ct ← β1mt−1 + (1− β1)gt
6: θt ← θt−1 − ηt(sign(ct) + λθt−1)
7: update EMA of gt
8: mt ← β2mt−1 + (1− β2)gt
9: end while

10: return θt

While this optimizer outperformed the standard ADAM for ILSVRC, it failed
to give the same performance numbers in our tests. The optimizer was also slower
than the implementation of ADAM. These factors made the optimizer rarely used
in this thesis work.

14

Deep learning for Image classification 2.2

(a) (b)

Figure 2.3: Edge detection using Sobel Filters. Images by Dr. Xiyun Song

2.2.6 Convolution
Convolution is a mathematical operator involving two functions f and g, creating
a new function f ∗ g. Since neural nets work in discreet values, we will focus on
the discreet version of convolution. However, know that there is a formal definition
for continuous functions f and g as well. The definition of a two dimensional
convolution as used in deep learning is:

h = f ∗ g =
N∑

i=0

M∑

j=0

f(i, j) · g(N − i,M − j) (2.8)

This equation makes a couple of assumptions. The common definition defines
convolution from −∞ to ∞. However, we’re working in image space, and rarely
deal with images (represented by f here) of infinite size or resolution. The kernels
(g) are also generally defined as smaller than the image size. Animations is an
intuitive way to understand this process. If the reader wishes a demonstration of
the operation, an example is provided by Dr. Xiyun Song6. Using specific values
for the kernel, we can extract properties of the image. We can once again look at
the examples given by Dr. Xiyun Song (Figure 2.3), using special kernels g, he
extracted the edges of an image.

The motivation for convolution for image classification and DNNs relies on the
idea that locality plays a role in images. This makes intuitive sense. If we see the
head at the left middle side of an image, we expect a neck to be nearby, and not
on the opposite side of the image. The benefit of introducing convolution is the
reduced number of parameters. If we use the typical convolution kernel of 3× 3,
and an image of size 100× 100, we would have to perform 9 multiplications per

6https://coolgpu.github.io/coolgpu_blog/github/pages/2020/10/04/convolution.
html

15

https://coolgpu.github.io/coolgpu_blog/github/pages/2020/10/04/convolution.html
https://coolgpu.github.io/coolgpu_blog/github/pages/2020/10/04/convolution.html

Chapter 2 BACKGROUND

kernel shift, 98 kernel shifts per row and a total of 98 rows. resulting in a total of
9× 982 = 86436 operations. A significant number, but considering the same case
with a fully connected network of 1002 input nodes and 982 output nodes, with
weights connecting everything means we have 1002 ∗ 982 = 96040000 weights, three
orders of magnitude larger. Factor in multiple layers and it becomes clear why
convolution is favored in feature extraction. In real world applications we often
want more than just one feature map generated from the convolution. We therefore
use more than one kernel. It is still a significantly less computationally expensive
process than using a fully connected network between layers.

2.2.7 Transfer Learning
In many cases, we want a network to perform some specific task, but have a limited
number of data points available. It can help to let the network learn more general
features on a similar dataset first. This lets the network learn low level features
shared between the datasets first. Then, by resetting the last few layers in a network
and training only those layers, we can benefit from the feature extraction process a
network has acquired, to get improved accuracy on our own, smaller, dataset. This
phenomena has been detailed by several papers, many of which are included in the
survey by Zhuang et al. (2020).

2.3 Existing models
No research happens in isolation. Several other groups of researchers have come
up with full systems of deep neural networks. The networks discussed in this
section have shown great promise, by coming up with novel workarounds for
problems present in the deep learning scene, they have achieved greater accuracies
on benchmark datasets than predecessors. We get to benefit from their research,
as their models are publicly available for use by other parties.

2.3.1 Alex Net
AlexNet, proposed by Krizhevsky et al. (2012) is the oldest network this thesis
looked at. It was among the first models used on large scale image datasets. They
benefitted from several new innovations in the field, among them using the Rectified
Linear Unit (ReLU) proposed by Nair and Hinton (2010) function as their activation
function, arguing for its ease of calculating derivatives over the then more popular
sigmoid (1

1+e−x) and tanh function. To prevent overfitting they also employed label
preserving image augmentation (more information in Section 2.5.3), specifically

16

Existing models 2.3

(a) Szegedy et al. (2014) Original Inception
Module (b) Szegedy et al. (2015) Inception v3 block

Figure 2.4: Original and v3 Inception block

image translation, image flipping, and color jitter. Furthermore, they included
dropout layers in their architecture, which combats overfitting by disincentives a
network from overly relying on a few nodes. The method of dropout was new at
the time the network was proposed, being published by Hinton et al. (2012) the
same year as AlexNet.

2.3.2 Inception v3

Inception v3 is a convolutional block used in the GoogLeNet family of networks
by Szegedy et al. (2014). The original paper introduced the inception module
(Figure 2.4a), which attempted to downsample and parallelize the processing to
speed up training. By using different size kernels, the aim was to detect features
at different scales. The original network also employed multiple endpoints for
classification, allowing for better propagation of the gradient, limiting the effects of
vanishing/exploding gradient.

Version three of InceptionNet employs several improvements to the original
architecture. Firstly, instead of using differently sized convolutions, they used
successive 3× 3 convolutions. They hypothesized that successive 3× 3 convolutions
lost little information over larger convolutions. The smaller convolutions would
also promote faster learning. The updated architecture for Inception v3 can be
seen in Figure 2.4b.

17

Chapter 2 BACKGROUND

Figure 2.5: He et al. (2016) representation of a skip connection

2.3.3 ResNet
In deep learning, a relation was found between the number of layers and the
performance of a network. There was however an issue with this methodology,
as the number of layers increased, the training error of networks increased. This
indicates that more than just overfitting is being introduced into the network. The
solution proposed by He et al. (2016) is to allow an identity mapping between the
input of a convolutional block and its output. Expressing the output of a block as
F(x) + x instead of just F(x) allows the network to disregard the additions of a
convolutional block, if it does not provide additional information for the network.
The diagram given by He et al. (2016) shows this mapping efficiently (Figure 2.5).

2.3.4 EfficientNet
EfficientNet Tan and Le (2020) came out as a proposed method of finding more
efficient ways of adjusting a networks depth d, feature map width w, and resolution
r. They mainly propose that the depth, width and resolution should be scaled in a
constant way following

d = αϕ

w = βϕ

r = γϕ

s. t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1 (2.9)

Their experiments found α = 1.2, β = 1.1, and γ = 1.15. They found these values
using small scale networks, as searching on larger networks becomes prohibitively
expensive. They then used the same values as they scaled up the network size.

18

Existing models 2.3

Figure 2.6: Woo et al. (2018) CBAM architecture

2.3.5 Channel Block Attention Module
The final, and newest, network architecture this thesis will look at is the Channel
Block Attention Module (CBAM). CBAM, proposed by Woo et al. (2018). Before
we can discuss the details, we first need to briefly introduce attention mechanics.

Attention, refers in deep learning to a network focusing more on certain parts of
the input data over other parts. This can be beneficial in image processing, where
we may have a large image, but only part of the image contains our subject. Imagine
a picture containing a mouse, most of the image would only contain background
information, irrelevant to the actual classification of a mouse. We want the network
to focus on the region of the image where the rat is contained, and disregard the
rest.

At a high level, the attention mechanism employed by Woo et al. (2018) is easy
to see in Figure 2.6. Here we multiply the incoming feature map by a channel
attention vector and a block attention module. Mathematically written as:

F ′ = Mc(F)⊗ F,

F ′′ = Ms(F
′)⊗ F ′ (2.10)

Where ⊗ represents an element wise multiplication.
This view glosses over exactly how Mc and Ms are found. Taking the mathe-

matical derivations from Woo et al. (2018) we see that Mc is defined as:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(f)) (2.11)

and the block attention map Ms is found like so:

Ms(F) = σ(f 7×7([AvgPool(F);MaxPool(F)])) (2.12)

Here σ is shorthand for the sigmoid function, and f 7×7 denotes a convolution
of the input by a 7 by 7 kernel.

19

Chapter 2 BACKGROUND

2.4 Data Fusion
Data fusion is the process of combining different types of data to give a fuller
description of some problem. The goal of this extra context in our case is the
improved prediction performance of deep learning models for WAC.

Bhatt and Kankanhalli (2011) defines two broad categories of data fusion: Late
fusion, also known as decision-level fusion. This approach is generally regarded
as easier to implement, but also fails to assist in feature extraction augmented by
the extra data available. The other method, feature fusion or early fusion, aims to
extract better features from the original data.

In deep learning for image recognition, feature fusion would use the different
types of data during convolution, creating a new and better feature vector. While
late fusion would concatenate the extra data to the feature vector generated by a
convolution network.

2.5 Data Augmentation
Data augmentation in this setting is the method of increasing the dataset artifi-
cially, using label preserving transformations. Before we discuss the augmentation
techniques used in this thesis, let us first discuss the motivation for augmentation.

2.5.1 Class Imbalance
In most real world cases, the distribution between classes is not even. This can
cause problems for artificial intelligence (AI) and deep learning (DL) algorithms.
The optimization problem often becomes more focused on predicting the majority
class, instead of finding the underlying pattern in the data. Predicting the majority
class is fairly simple compared to actually finding patterns in data, so we need to
discurage our algorithm from finding the majority class. Shorten and Khoshgoftaar
(2019) gives a recent and comprehensive survey on the methods and benefits of
data augmentation for increased performance on minority class prediction. Our
dataset is no different, with a few of the class labels representing the majority of
the dataset, we need to employ techniques to mask this during network training.

2.5.2 Synthetic Minority Over-sampling Technique
Synthetic Minority Over-sampling Technique, or SMOTE for short, is an algorithm
proposed by Chawla et al. (2002). Their proposed algorithm has been shown to
improve detection of minority class instances.

20

Data Augmentation 2.5

However, the SMOTE algorithm also has a weakness, in that it may generate
synthetic samples anywhere in the higher dimensional space. Borderline SMOTE
proposed by Han et al. (2005) aims to improve this. By only generating synthetic
samples on the boundary region between classes, the network gets more hard to tell
samples, which should provide more benefit during training. Borderline SMOTE
takes the set of all samples in the minority class class P = {p1, p2, . . . , ppnum} and
majority class N = {n1, n2, . . . , nnnum}. The next step is to count the number of
majority class samples among the m nearest neighbors of a given point pi. This
number m′ could be any number between 0 ≤ m′ ≤ m. If m′ = m the point is
marked as noise and ignored going forward. If m/2 ≤ m′ ≤ m the minority sample
is marked as a “DANGER” point, as it is likely to be misclassified, as 50% or more
of its nearby neighbors are of the majority class. After all minority samples are
checked, new synthetic samples are generated based on the minority samples in the
DANGER group.

2.5.3 Image Augmentation
Image augmentation techniques are the specific methods we can use to alter an
image while preserving the label associated with the image. The label in our
case is the animal present in the image. Since our dataset contains sparse label
information, there are a few augmentation techniques we cannot perform. Cropping
or translating the image, risks moving the target outside the image frame. This can
be alleviated if a bounding box is given for the animal. But as no such bounding box
is given for our dataset we have to avoid transformations that remove a significant
amount of the pixels in the original image.

We will use a couple notation tricks when talking about image augmentation
going forward. They may be useful to note now:

• I: The original image.

• Ω: The modified image.

• i, j: Variable index of an image. The value of Ii,j is assumed to be scalar.

• M,N : The size of the image: 0 ≤ i < M , 0 ≤ j < N

While these samples assume grayscale image, one can easily transfer the princi-
ples to color images by applying the same transformation across all color channels.

Image Rotation

Image rotation can be defined using transformation matricies. Given an image I
we have a pixel value for each Ii,j, We can then define the new image Ωi′,j′ using

21

Chapter 2 BACKGROUND

the rotation matrix M :

M =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2.13)

We find i′ and j′ using:

i′

j′

1

 =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ·

i
j
1

 (2.14)

In reality, it is often easier to use the inverse matrix M−1, as this gives us the
location in the original image to look for the pixel value to palce in Ω. This also
enables easier interpolation when

M−1 ·

i′

j′

1

gives us a fractional value for i and j. Many interpolation algorithms exists to infer
the value for these fractional locations, we used bilinear interpolation.

Image Flipping

Image flipping refers to the process of taking either mirroring the image along the
horizontal or vertical image plane. Mathematically expressed as:

Ωi,N−j−1 = Ii,j, or ΩM−i−1,j = Ii,j (2.15)

A single flip will generate a distinct image compared to rotation. However,
flipping the image in both the horizontal and vertical direction will produce the
same result as image rotation of 180◦. This thesis only utilized horizontal image
flipping, as this produces images that are more likely to occur when taking images
of animals using camera traps. We do not expect animals to appear upside down,
with the ground located above them, when using camera traps.

Color Jitter

Color jitter operates on these four values: Hue, saturation, brightness and contrast.
Color jitter is performed by first converting our RGB image to corresponding Hue,
saturation, brightness (HSB) image. Calculating HSB from RGB can be somewhat
involved, and is therefore omitted from this paper as it is only tangentially relevant

22

Dimensionality Reduction 2.6

to the thesis. But simplified we can think of Hue as the Color “angle”, where red is
defined as 0◦. Saturation describes how much of that hue we have from 0 (grayscale)
to 1. Brightness is how light the color is, a lower brightness leads to darker colors,
while maximum brightness would result in a white color. The final parameter
adjusted with color jitter is contrast. Contrast is a measure of change between
pixels (∂I

∂i
, or ∂I

∂j
). To reduce the contrast we can reduce the average grayscale

value:
Ωi,j = k · Ii,j, where 0 < k < 1

Enhancement can be a bit more involved, but in general is performed by
increasing the distance between the lowest grayscale value and the highest.

Contrast reduction is generally regarded as easier, as due to the discreet na-
ture of images, information is often lost when reducing the contrast of an image.
This information is difficult to reconstruct with an inverse contrast enhancement
algorithm.

Cutout

DeVries and Taylor (2017) suggests another method of label preserving image
augmentation. The algorithm blacks out small patches of the original image before
they are given to the network, forcing the network to become more robust against
noise.

2.6 Dimensionality Reduction
The metadata collected in this thesis work is of a quite high dimensionality. We
wished to utilize dimensionality reduction algorithms in order to represent the
data in some way that is visually processable. We made use of the novel Uniform
Manifold Approximation and Projection (UMAP) by McInnes et al. (2020). This
algorithm based on higher dimension manifolds and topology. McInnes et al.
(2020) demonstrates the qualitative and quantitative superiority of UMAP over
several other dimensionality reduction algorithms like t-SNE, LargeVis, Laplacian
Eigenmaps, and PCA. The underlying math of the method relies on a good
understanding of topology. However, the actual algorithm can be understood with
a few axioms assumed to be true:

1. There exists a manifold on which the data would be uniformly distributed.

2. The underlying manifold of interest is locally connected.

3. Preserving the topological structure of this manifold is the primary goal

23

Chapter 2 BACKGROUND

Given these axioms we can perform a number of steps to create the manifold:

1. Create a weighted k-neighbor graph, weighted by some distance metric d.

2. foreach xi find ρi and σi (Equations 2.16 and 2.18).

3. Create a weighted directed graph. The vertices is represented by the dataset.
The directed edges and weights are outgoing from xi to all xij with weights
given by Equation (2.17).

4. We can represent these weights as an adjacency matrix A. A is used in B
as B = A + A⊤ − A ◦ A⊤. The researchers describe ◦ as “Hadamard (or
pointwise) product”.

5. Repeating this step for all xi gives us the undirected graph G.

ρi = min{d(xi, xij) | 1 ≤ j ≤ k, d(xi, xij) > 0} (2.16)

w =
−max(0, d(xi, xij)− ρi)

σi

(2.17)

k∑

j=1

exp(w) = log2(k) (2.18)

k is a given hyperparameter. d(xi, xij) represents the distance between xi and xij .
σi is implicitly defined to satisfy Equation (2.18).

Once the graph is created, we can reduce the dimensionality of the graph to
our desired dimension. This is done by minimizing the cross entropy between
the graph G and its lower dimension representation graph H. H consists of a set
of points Y = {y1, y2, . . . , yN} in our desired dimension. To group these points,
we apply a set of attracting and repelling forces. The attractive forces between
two vertices are given by Equation (2.19), and for each time an attractive force is
applied to an edge, one of the vertices connected to that edge is repelled according
to Equation (2.20). In these equations, a and b are set hyper-parameters.

−2ab||yi − yj||2(b−1)
2

1 + ||yi − yj||22
w(xi, xj)(yi − yj) (2.19)

2b

(ϵ+ ||yi − yj||22)(1 + a||yi − yj||2b2
(1− w(xi, xj))(yi − yj) (2.20)

24

Evaluation Metrics 2.7

This explanation is quite involved, but an excellent summary was given by
Afridi et al. (2022). They break down the process into two major steps and a
couple minor steps in each major step as so:

1 Learn manifold structure

1.1 Finding nearest neighbors

1.2 Constructing neighbors graph

1.2.1 Varying distance
1.2.2 Local connectivity
1.2.3 Fuzzy area
1.2.4 Merging of edges

2 Finding low-dimensional representation

2.1 Minimum distance

2.2 Minimizing the cost function

2.7 Evaluation Metrics
These metrics are typically used when assessing the performance of a machine
learning algorithm. They are generally found by taking away part of the dataset
as “unseen” samples. By running the algorithms on the input and comparing the
models result against the true labels, we can derive different performance metrics
for the network.

To discuss these performance metrics, a few variables can be useful:

• TP : True positive, the number of samples correctly placed in a class.

• TN : True negative, the number of samples correctly not placed in a class.

• FP : False positives, the number of samples wrongly placed in a class.

• FN : False negative, the number of samples wrongly not placed in a class.

These metrics can be conceptualized easily in a binary class:

Prediction

Actual

[
TN FP
FN TP

]
(2.21)

25

Chapter 2 BACKGROUND

For a multi class problem, the matrix becomes a bit more involved, but can be
more generally summed up as:

Prediciton

Actual

TN . . . TN FP TN . . . TN
... . . . TN

... TN
... TN

TN . . . TN FP TN . . . TN
FN . . . FN TP FN . . . FN
TN . . . TN FP TN . . . TN

... ... TN
... TN

. . . TN
TN . . . TN FP TN . . . TN

(2.22)

In essence, everything not in the row or column of a specific class is a true
negative. Everything in the column of the class but not the row of the class is a
false negative (wrong class predicted), and everything in the row of the class but
not the column is a false positive (class predicted wrongly). This pattern holds for
all classes in a multi class problem.

2.7.1 Metrics used
This thesis will use some commonly used metrics: Accuracy, precision, recall, F1

score, false positive rate (FPR), and false negative rate (FNR). The formal
definition for these are:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

FPR =
FP

FP + TN

FNR =
FN

FN + TP

Accuracy here is the individual class accuracy, and not the overall accuracy of the
model. In that case we instead use:

Overall Accuracy =
1

N

N∑

i=0

ki

26

Evaluation Metrics 2.7

where

ki =

{
1 if ŷi = yi,
0 otherwise

Finally, because of the imbalanced nature of our dataset, it can be useful to
include a metric sensitive to prediction accuracy accounting for class imbalance.
We will be using Cohens kappa score, proposed by Cohen (1960).

2.7.2 Cohen Kappa Score
Cohen kappa score measures the agreement between two predictors who classify N
items into C mutually exclusive classes. To find this agreement we need to first
find the probability of our two predictors predicting identically by random chance
pe:

pe =
1

N2

C∑

k=1

n
(1)
k n

(2)
k

Where n
(i)
k is the number of times predictor i predicted class k.

Po is the observed agreement between samples. Given some observed response
matrix M :

M =

x1,1 . . . x1,C
...

xC,1 . . . xC,C

po is given as:

po =

∑C
i=1 xi,i∑C

i=0

∑C
j=1 xi,j

Finally, we can use pe and po to find the overall kappa score:

κ =
po − pe
1− pe

2.7.3 Intersection Over Union
Intersection over Union (IoU) or Jaccard index is not directly used in this thesis,
but is discussed in some of the related work. For formality’s sake, we have included
it here. The definition of IoU is:

IoU =
A ∩B

A ∪B

27

Chapter 2 BACKGROUND

Visually, it can be represented as shown in Figure 2.7. This metric is often
used when bounding boxes or location masks are used for deep learning and image
processing. It is a convenient metric for finding the overlap between a predicted
bounding box or truth mask, and the actual bounding box or truth mask.

Figure 2.7: Intersection over Union

2.7.4 Micro versus Macro average
When looking at a multi-class problem, we can talk about metrics respective to
each class. Accuracy, precision, recall, FPR, and FNR are discussed in this thesis.
To get an overview of the performance of models, it can often be more efficient to
look at the overall performance for all classes combined.

However, averaging the numbers poses an important question. Should the
average account for the frequency of each class. This is the central question when
performing micro or macro averaging.

An example is helpful to demonstrate. Calculating the recall for a 3 class
predictor where:

• Class 1: 80 TP and 20 FN

• Class 2: 80 TP and 20 FN

• Class 3: 2 TP and 8 FN

The macro average would be 0.8+0.8+0.2
3

= 0.6. While the micro average would
be 80+80+2

100+100+10
= 0.77. The micro average here gives a more true representation

28

Evaluation Metrics 2.7

of the actual performance of the predictor, accounting for the class imbalance.
However, neural networks are in general already prone to favor majority classes over
minority classes. Ecologists, also generally care more about the minority classes, as
the minority classes are generally represented by animals that may be endangered.
We will therefore mainly prioritize macro averaging when reporting results.

29

Chapter 2 BACKGROUND

30

3 Related Work

The aim of this section is to briefly visit other related work in the field. We
will outline the relevant factors when setting up a camera trap project. We will
also highlight many of the existing camera trap projects with annotated data
publicly available. Furthermore, we will discuss how these datasets have been
used to develop State-of-the-art (SOTA) deep learning models for Wild Animal
Classification (WAC). Finally, we will highlight some of the challenges with data
fusion and multimodal image recognition.

3.1 On proper use of Camera Traps
Meek et al. (2014) and Falzon et al. (2019) goes over the principles and best
practices for standardization of camera trap setups. The motivation of this thesis
is to make comparisons easier.

The papers discusses a few different principles that need to be in order when
reporting results. These are: camera model(s), mode of deployment, camera
settings, environment, and study design.

Camera model(s) is quite straightforward, different models have different camera
and motion sensors. This may affect when the camera triggers, and the resulting
image.

Mode of deployment is in essence the methodology used when placing the
camera traps; were the traps randomly placed, or in a regular grid? In the case
of randomly placed camera traps, what is the region the traps were placed in?
What were the minimum, maximum and average distance between traps? If the
cameras were placed along a regular grid, what distance was there between each
trap, and could the researchers place the trap within a certain range of this grid,
or did they have to place it at exact geographical locations? Were traps placed
in deliberately biased areas, where the researchers expect to see a certain kind of
animal more often? If this is the case, it needs to be disclosed. Sometimes, the
work also requires modifications of the habitat the camera is in, such as clearing
branches for a clear view or assembling scaffolding the camera trap can be attached

31

Chapter 3 RELATED WORK

to. If any modifications are performed of the habitat, these need to be disclosed as
well. Finally, some trap setups will make use of bait in order to lure in animals.
Lures need to be disclosed as well if they are used.

Camera settings should also be discussed. These are settings such as video
versus still image. How long is the delay between sensed movement and image
capture? If multiple images are captured, what is the delay between images? The
camera placement with respect to the ground and orientation should also be given,
as the height above ground level will affect what kinds of animals are detected.
The orientation will also have an effect on how animals are detected.

Environment was also discussed as an important factor. Here, one of the most
relevant cases is the IR noise generated by stray heat. A camera trap will perform
worse if the temperature gradient between the animal and the background is small.
The sensor may also then be affected by such factors as direct sunlight. If the sun
heats up the entire sensor, the camera trap becomes less sensitive to movement by
animals.

Finally, the number of images captured, and number of events, as well as the
time period in which they were captured is also relevant information. Any paper
using camera trap data should also mention number of false positive and false
negative images, as well as number of broken and stolen camera traps.

To summarize the findings, a camera trap project should inform about:

• Camera Model(s): Different models have varying camera and motion sensors,
affecting when the camera triggers and the resulting image quality.

• Mode of Deployment: How was the cameras set up, were they randomly
placed, or set in a regular grid? Do they have some deliberate bias to their
placement?

• Camera settings: These include whether video or still image is used, the delay
between sensed movement and image capture, and the camera’s placement
and orientation.

• Study Design: Number of images captured, time period for image capture,
and number of false positives and negatives should be reported. Stolen and
broken camera traps should also be noted.

These principles ensure that the data collected is reliable and can be compared
across different studies.

32

Animal Camera Trap Projects 3.2

3.2 Animal Camera Trap Projects
To perform any kind of deep learning, a large dataset is required in order to tune
the network properly (see Section 2.2, or just Section 2.2.4 and Section 2.2.5 for
specifics). Luckily, there are several projects from several continents that capture
and label camera trap images. We have tabulated a list of several of these, which
can be seen in Table 3.1. A brief explanation of the table: the “Name” refers to
the name of the project. We’ve also included a citation for the reader to trace
the project more easily if desired. “Count” refers to the total number of images.
This may include human images, which are generally removed from the public
dataset due to privacy issues. “Cat.” abbreviation for categories is the number of
animal categories present. Most datasets have an empty category as well, this is
removed from the category count. “B. Boxes” refers to the number of bounding
boxes supplied with the dataset. Images may contain more than one bounding
box. Lastly, “Empty” is the approximate percentage of images that contain no
animals. This is a common occurrence in camera trap datasets, as researchers wish
the cameras to be too sensitive to movement, rather than not sensitive enough.

3.3 SOTA Classification of WAC
Norouzzadeh et al. (2021) proposes a method not only for image classification,
but also suggests that object detection improves the results of image classification.
Their justification is that object detection helps remove irrelevant background
information from the images, helping the network discard data not needed to
determine the animal in the image. The authors also suggest that this performance
increase come without the requirement of extra data needed. Their pipeline used
an existing pre-trained model for object detection. Even so, they managed an
accuracy of 91.71%, with a precision of 84.47% and a recall of 84.24%.

Since bounding boxes were already created at this step, the authors could
fairly easily count the number of animals in each scene by counting the number of
bounding boxes the model gave.

After images were separated into empty and non-empty images, the last step
was to classify what kind of animal was in the non-empty images. Since the target
dataset they used was heavily imbalanced, the model managed to classify the
majority classes with a very high accuracy of 97.7% or better. The paper was less
specific on the minority classes but achieved an overall accuracy of 91.37%.

The paper also discusses active learning methods, wherein the model is first fed
some data to train on, then the model will find the most relevant unlabeled data
points, which the model then can ask an oracle (typically a human) the ground

33

Chapter 3 RELATED WORK

Table 3.1: Camera Trap Projects

Name Count Cat. B. Boxes Empty
Caltech Camera Traps Beery et al.
(2018)

243K 21 66K 70%

ENA24 Yousif et al. (2019) 10K 23 All 0%
Missouri Camera Traps Zhang et al.
(2016)

25K 20 900 0%

North American Camera Trap Images
Tabak et al. (2019)

3.7M 28 8892 12%

WCS Camera Traps Wildlife Conserva-
tion Society (2019)

1.4M 675 375K 50%

Wellington Camera Traps Anton et al.
(2018)

270K 15 0 17%

Island Conservation Camera Traps Is-
land Conservation (2020)

123K 47 65K 60%

Channel Island Camera Traps The Na-
ture Conservancy (2021)

247K 5 All 47%

Idaho Camera Traps Idaho Department
of Fish and Game (2021)

1.5M 62 0 70.5%

Snapshot Serengeti Swanson et al.
(2015)

2.65M 61 150K 76%

Snapshot Karoo Snapshot Karoo (2019) 38K 38 0 83%
Snapshot Kgalagadi Snapshot Kgalagadi
(2019)

10K 31 0 76%

Snapshot Enonkishu Snapshot Enonk-
ishu (2019)

29K 39 0 65%

Snapshot Camdeboo Snapshot Camde-
boo (2019)

30K 43 0 44%

Snapshot Mountain Zebra Snapshot
Mountain Zebra (2019)

73K 54 0 91%

Snapshot Kruger Snapshot Kruger
(2019)

10K 46 0 62%

SWG Camera Traps SWG (2021) 2M 120 102K 13%
Orinoquía Camera Traps Vélez et al.
(2023)

105K 51 0 20%

34

SOTA Classification of WAC 3.3

truth information about. By letting the model itself decide which data points are
most important for future learning, one can dramatically reduce the number of
required data points in order to create a good deep neural network model.

Norouzzadeh et al. (2018) is another paper concerning itself with animal classi-
fication, object counting and action recognition. Additionally, they attempted to
classify whether children were present in the image. They proposed a multi-stage
fusion network, and showed that it outperformed a single shot full classifier model.
The paper lays out four main objectives they want to achieve: Task one is to detect
which images contain animals and which do not, task two is to classify the species
of the animal in the non-empty images, task three is to count the number of animals
in each image, and task four is to add additional attributes to each animal. The
research team tested several models for the binary classification task to determine if
an image were non-empty or empty. In the end the VGG (Simonyan and Zisserman
(2014)) network won out, giving an overall accuracy of 96.8% accuracy. Task two,
also achieved high accuracy scores, with a top-1 accuracy of 94.9% and a top-5
accuracy of 99.1%. The models struggled more to count the number of animals in
the scene. The researchers somewhat simplified the problem here by dividing the
animal count into bins. The model was expected to accurately count the number
of animals from one to ten. However, one bin was dedicated to small herds (11-50
animals), and another bin for large heards (51+ animals). The accuracy here was
62.8% for predicting the correct bin, and 83.6% for counting within one bin of the
actual number. Action detection achieved an accuracy of 75.6%, a precision of
84.5%,and a recall of 80.9%.

Schindler and Steinhage (2021) proposes a two stage fusion network in order
to both classify the animal, and determining what kind of actions the animal is
performing. A mask region-based convolutional neural network (Mask R-CNN) was
chosen as the classification model. This type of model is exceedingly powerful if
performing well, giving pixel level classification information instead of just bounding
boxes around the targets. The paper also discussed the use of temporal information,
as the data available was videos instead of still images. However, the performance
of the Mask R-CNN was still better, and was therefore used for the segmentation
and classification objective.

The action recognition network always used the available temporal data, and
was based on different variations of ResNet-18. The input to the model was
3× T ×H ×W , where T represents the number of frames in the clip. The paper
mentions a typical T value to either be 8 or 16. The 3 is there due to the 3 color
channels of the image. H and W represent the height and width of the image
respectively. There was also a SlowFast network proposed by Feichtenhofer et al.
(2019). However, this network architecture both performed worse, and was slower
to train.

35

Chapter 3 RELATED WORK

Schindler and Steinhage (2021) also defines their own accuracy metrics for
segmentation, the metric used by the paper is to determine how confident the
network is in the bounding box or segmentation mask, along with the Intersection
over Union of said bounding box or segmentation mask. If both the confidence and
the Intersection over Union is above 0.5, as well as the class label being correct,
then the authors describe the match as a True Positive. If the confidence score is
above the threshold while the Intersection over Union is below the threshold, or
the class label is wrong, the paper describes it as an False Positive. False Negative
is then defined when the confidence score is below the required threshold. The
authors did not discuss the True Negative rate. With these criteria in mind, the
best segmentation method found by the researchers achieved an average precision of
63.8%. As for action detection, the models here managed a much more respectable
94.1% accuracy.

3.4 Data fusion for deep learning
The topic of data fusion and deep learning has been explored by several authors
for a myriad of fields. The goal with this data fusion is in general to give the
model additional context to improve the decision-making of said model. Arevalo
et al. (2017) propses a specific multimodal unit to handle data fusion, which they
call a Gated Multimodal Unit (GMU). Their specific case handles two types of
multimodal data, in which case the contribution of each data type is determined
by either σ or 1− σ, where σ is a hyperparameter learned during model training.
Utilizing their GMU, they combine textual descriptors with an image to predict
the genre of movies.

Data fusion was also used for skin lesion classification. Pacheco and Krohling
(2021) and Li et al. (2020) both propose methods for fusing patient data with the
image data to improve prediction accuracy. The general findings from both papers
is that early fusion outperforms late fusion strategies. The papers suggest that
metadata enhances the feature extracition process, that can then be used for better
classification.

Finally, Bi et al. (2022) proposes user generated hintmaps combined with data
fusion for improving skin lesion segmentation. After an initial stage of feature
extraction, the positive and negative hintmaps are combined with the image in
several Hyper Integration Modules to improve the segmentation results. While
the direct model would not be adaptable to the image and metadata case which
this paper studies. The contributions of Bi et al. (2022) are still worth considering
when designing architectures to predict animals in camera traps.

36

Handling Multimodal Image Data 3.5

3.5 Handling Multimodal Image Data
An issue with camera trap images is the wide variety of lighting conditions which
may occur during its operation. This has lead most cameras to at least employ two
cameras, one RGB image camera for recording animals during daytime, and one
IR camera for operation during nighttime. This however poses an extra problem
for a deep learning model to overcome, as it must now be expected to both classify
grayscale images, and color images. One option is to simply convert all images
to grayscale. This does not however quite solve the issue as the grayscale images
produced by converting an RGB image to grayscale does not produce the same
result as an image captured from an IR camera. Liu (2018) proposes a reference
less method for converting IR images to daytime RGB images. The method used
did however introduce a significant amount of noise as well, meaning it may cause
more harm than good to use this methodology.

de Lima et al. (2022) Offers the inverse method of Liu (2018). Where instead of
reconstructing RGB images from IR images, they instead attempt to estimate the
IR response using a Generative Adversarial Network (GAN). This thesis seemed to
show more promising results than Liu (2018), this may be due to the already close
to NIR imaging the red channel has, in fact most camera sensors use an IR filter
to remove IR radiation when capturing images. However, no code was provided,
and recreating these results would be infeasible in the time available.

This thesis has to deal with this issue, as the images generated by camera traps
are multimodal, meaning daytime images are taken with an RGB sensor, while the
nighttime images are taken with an IR sensor. This forces the network to either
be color and illuminant agnostic. It cannot be only color agnostic, as converting
RGB images to grayscale will not result in the same kind of lightness for animals
as an IR image of that same animal. It would have to be animal detection on the
general shape and size of animals only.

3.6 Summary
We can summarize the related work as follows:

• Meek et al. (2014) and Falzon et al. (2019) suggests several guidelines when
creating camera trap projects. They reccomend listing out: Camera Model(s),
mode of deplyment, Camera Settings, and study design.

• Section 3.2 lists out camera trap projects by several teams and contributors.
The project consists of millions of labeled images with thousands of bounding
box samples.

37

Chapter 3 RELATED WORK

• Several proposed networks have been used on different datasets. Norouzzadeh
et al. (2018) and Norouzzadeh et al. (2021) focuses on object detection
and counting, image classifications, and action recognition for the Snapshot
Serengeti dataset. They achieve accuracies ranging from 81% to 97.7% on
different task across the different papers. Schindler and Steinhage (2021) and
Feichtenhofer et al. (2019) focused more on the use of image sequences or
videos for object detection and action recognition. Schindler and Steinhage
(2021) was the best performer here, and pushed action recognition up to a
respectable 94.1%.

• The goal of data fusion, as discussed in this section, is to provide extra context
for a network to make a decision. Several methods have been proposed for this
task. Arevalo et al. (2017) proposed a special neural unit to handle feature
fusion. While Pacheco and Krohling (2021) and Li et al. (2020) propose using
metadata as vectors that can interact with feature maps to create improved
feature vectors. Bi et al. (2022) also proposes a fusion network, using user
generated hintmaps. They show an improved segmentation network for skin
lesions.

• Finally, we have discussed some issues related to the multimodality of Camera
Trap images. While methods were explored to solve this issue (Liu (2018),
de Lima et al. (2022)), we found issues with applying these to our models. The
general consensus among classification problems is simply to use a mixture of
IR and RGB images, and rely on the networks to become color agnostic.

38

4 Materials and Methods

This chapter describes the methodology used to acquire the data used for exper-
iments, along with the experimental design. The aim is to give the reader the
required knowledge to reproduce results found in this thesis work. However, the
data was acquired with the permission of NINA, and may not be easily accessible
by third parties without explicit permission from NINA. If access to data is desired,
contact the authors of this thesis.

4.1 Datasets

4.1.1 Caltech Camera Traps
The Caltech camera trap project is the least used dataset in this thesis. The details
of the dataset were discussed in Section 3.2, with the statistics given in Table 3.1.
This dataset was only used to test how our finished models reacted on empty
images. This dataset was used, as it has an environment closer to a Nordic setting,
being located in southwestern US over Tanzania. It would be more ideal to use a
more northerly dataset. However, not all of these contain the desired data type
“empty”.

We fetched 200 random empty images from this dataset, pruned any corrupted
images and any images that were mislabeled (human images were sometimes labeled
empty). This resulted in 191 images that were empty, which we could then attempt
to classify using our networks.

4.1.2 Snapshot Serengeti
The Snapshot Serengeti (SS) dataset by Swanson et al. (2015), is a set of camera
trap image sequences taken from the Serengeti National Park in Tanzania. It
consists of 2,65 Million images of wildlife. The dataset is available through two
avenues, direct browser download, or download through the tools gsutil or azcopy.
Downloading the files through the browser is not recommended, as many factors

39

Chapter 4 MATERIALS AND METHODS

may cause the download to be canceled. Instead, the recommended way is to use
gsutil or azcopy. By specifying a URL one can download specific seasons, or the
entire dataset via command line interface.

The metadata on the other hand, while large, is not too large not to download
via browser if desired. They are small enough that the risk of disruptions on the
connection is negligible.

The full information on how to install images from the SS dataset can be found
on Lila Science web page1.

4.1.3 NINA Viltkamera

Overview

This dataset consists of images of several different types of animals in the Norwegian
climate. The images have mostly been captured in central Norway. The next few
sections will talk about how exactly the dataset was acquired, however a brief
overview can be seen in Figure 4.1.

Basic Metadata

Acquisition of the NINA Viltkamera dataset was a significantly more involved
step. The original intention was to recive a data blob from NINA that could be
downloaded. However, this proved to be challenging for them to create, and NINA
eventually aggreed to allow a webscraper to extract the information. All images are
technically publicly available through the links: https://viltkamera.nina.no/
Media/h1-h2-h3-h4-h5.jpg, where h1 through h5 represents hash values. The
hash values have no real pattern to them, at least as far as we could tell, so accessing
them through a naive ascending request paradigm would not work. Just to give an
idea of the number of potential URLs we can observe the hash values:

• h1: 168 values

• h2, h3, and h4: 164 values each.

• h4: 1612 values.

This gives us a total number of 16(8+3·4+12) = 1632 unique image values.
This mapping is a commonly used technique for different devices to create

“unique” ID’s without communicating with other devices. The mapping is known
as a “universally unique identifier” (UUID) and was introduced by Leach et al.

1https://lila.science/image-access

40

https://viltkamera.nina.no/Media/h1-h2-h3-h4-h5.jpg
https://viltkamera.nina.no/Media/h1-h2-h3-h4-h5.jpg
https://lila.science/image-access

Datasets 4.1

Figure 4.1: Process for acquiring the NINA dataset

41

Chapter 4 MATERIALS AND METHODS

(2005). This high probability of uniqueness means that it is completely infeasible
to attempt a structured or exhaustive search of the possible UUID values.

Luckily, there is another solution to our problem. NINA has provided an
interface website for accessing all the datapoints2. This website offers an interactive
map with several pins (Figure 4.2). Each pin represents one camera trap, and
clicking this pin lets us view the images taken with this camera trap (Figure 4.3).

Since the images are available through the website https://viltkamera.nina.
no/, it means we can create a script to extract these image URLs as well.

To do this, we first had to identify where the URLs were stored. This was in
an object on the website simply called “vm”. It turns out, every time the user
clicked a pin on the website, “vm” updated with the specific information of that pin.
Furthermore, “vm” contained a public data member called “media”. Each entry in
“vm.media” contained a JSON object listing a filename (NOR: “Filnavn”), as well
as a foreign key referencing the species id (NOR: “FK_ArtID”). The entry also
contained various useful metadata to store. However, location info and the name
of the species was missing here.

To access the reference between “FK_ArtID” and the species name, we had to
utilize the function “vm.arter()”. This returned a list of JSON objects with a key
number “ArtID”, and the corresponding name (e.g. “Bever”). In the same vein, we
could find the approximate location of the camera by utilizing “vm.lokaliteter()”.
This function returned a Location ID, and its corresponding latitude and longitude.
The location ID we knew from clicking on the specific pin, so it was a simple
matching problem to find a latitude and longitude for a specific pin number,
observing Figure 4.3 we see this specific camera had Location ID “4725”.

The aforementioned steps could then be repeated for each pin present on the
map to access all samples, and their corresponding image URL. Performing these
steps for all pins would become tedious quickly, so instead we developed a compact
script to be run in the browser to automatically fetch this information and download
it as a JSON object. The full code can be found in Appendix B. Once the partial
metadata had been acquired, we could continue by fetching image data, as well as
fetch auxiliary metadata and filling missing metadata values.

4.1.4 Image Data
Once filenames were acquired, we could move on to downloading the images
directly from the URL: https://viltkamera.nina.no/Media/‘‘filename’’. To
minimize strain on NINAs servers, we throttled the download to a conservative
5 images per second. To speed up the process, we used the downtime between

2https://viltkamera.nina.no/

42

https://viltkamera.nina.no/
https://viltkamera.nina.no/
https://viltkamera.nina.no/Media/``filename''
https://viltkamera.nina.no/

Datasets 4.1

Figure 4.2: Interactive map presented on https: // viltkamera. nina. no/

43

https://viltkamera.nina.no/

Chapter 4 MATERIALS AND METHODS

Figure 4.3: Window after clicking a pin on https: // viltkamera. nina. no/

image downloads to process the images, extracting implicit metadata, as well as
requesting other servers for missing temperature metadata.

Processing involved cropping out the bands of information at the top and
bottom of each image. Afterwards, the image was resized to 512× 512. A shape
small enough to be easily portable, yet large enough that we would not struggle
with low resolution in the future.

4.1.5 Metadata
Accessing metadata was also an involved process. Some of the metadata was
included in the base file we could download from https://viltkamera.nina.no,
either directly or indirectly by finding Foreign key links. However, temperature
data was oftentimes incomplete here. Of the 170 thousand samples collected, over
90 thousand samples had missing temperature data. To recover this data we had
to utilize other services that could give us an estimated temperature for the time
and location of the datapoint. Luckily, no datapoints were missing location info or
date information.

Temperature data

To estimate the missing temperature we utilized the Norwegian Metrological
Institutes Frost API3. We used existing information about when an image was

3https://frost.met.no/index.html

44

https://viltkamera.nina.no/
https://viltkamera.nina.no
https://frost.met.no/index.html

Datasets 4.1

taken, along with the latitude and longitude data to fetch temperature data from
the closest weather station to the given camera trap. We limited the data point
to ±24 hours of the time the image was captured. This may still have caused
some issues, as not every image in the dataset had a corresponding weather station
reading within 24 hours of the capture, nor does it account for natural temperature
swings over a day.

To handle any values still missing after using the Frost API, we stored the
temperature as a 2-dimensional vector. The first of these values told us whether the
current temperature value was valid or not. If the value was 1, the following value
was valid, if the first value was 0, the second value was not valid. This method
was used to help tell the network when the temperature value could be trusted and
when it should be ignored.

Datetime

The date and time values were stored as a one-hot encoded 67-dimensional vector.
This was done due to the challenges of representing the circular nature of time to a
neural network. By representing the month as a 12-dimensional vector, the day as a
31-dimensional vector, and the hour as a 24-dimensional vector, we could perfectly
reconstruct the initial date while preventing discontinuities at the end of the year.
We did consider using sine curves instead, since they would capture the circular
nature better than a linear scale. However, we worried about the equivalent values
which would occur around either seasons (spring and fall values would be identical),
as well as the time of day (dawn and dusk would also be indistinguishable). This
issue can be seen in Figure 4.4.

Position

The motivation for including latitude and longitude was the suspicion that different
animals may roam different regions, especially if we included time into the picture
as well. As mentioned before, the latitude and longitude was available through
the web scraper. However, this information is somewhat imprecise, because the
accuracy of the information is only given to about a kilometer’s radius of the pins
given location. We do not believe this approximate location information will be
to the detriment of classification, as animals tend to roam in areas larger than
1 kilometer. We still believe it is worth disclosing the fact that we only have
approximate location information, rather than precise location information.

45

Chapter 4 MATERIALS AND METHODS

Figure 4.4: Conversion of the day of the year to a sine curve.

Implicit Metadata

Scene Attributes is the first implicit data that was fetched out using other deep
learning models. Using the models outlined in Zhou et al. (2017), 102 scene
attributes were extracted from each image, which was then stored with other
metadata for that image. The labels associated with the scene attributes can
be seen in Appendix C. These attributes could then later be fetched during our
own model training. Finding the implicit metadata and storing it caused our own
models to train faster, as we did not have to run another model mid training to
get the required implicit metadata.

Along with scene attributes, the models pretrained on the Places365 dataset
(Zhou et al. (2017)) offered scene recognition functionality. This scene descriptor
information was the goal of the Places365 dataset, and was what models were
evaluated on while the competition was running. We found the scene attributes to
be more beneficial to improve the classification results. However, scene recognition
also offered some accuracy increase in our ablation studies, and was therefore
included in many of our tested models alongside the scene attributes.

Both scene attributes and the scene descriptor was included as we believed it
could give our models more context when classifying the different species. The
thought was that some animals may prefer certain geography to others. As an
example, goats would be likely to prefer mountainous regions more than deers, if
we then had a parameter which told the network that the current image had a high
response as a “mountain” image. It would preferentially predict goats, especially
in hard to tell cases. Attributes had a similar reasoning, where certain attributes

46

Implementation Details 4.2

would be associated more strongly with some species than others.

4.2 Implementation Details

4.2.1 Framework
To create and run the models, we used Python programming language, with PyTorch
Paszke et al. (2019) framework for creating, importing, and training models. The
models primarily used categorical cross-entropy Zhang and Sabuncu (2018) as the
loss function and the Adam optimizer Kingma and Ba (2017).

Training the models was in general done for 50 epochs, this was to assess the
capabilities of the different architectures, without requiring an infeasible amount
of computational power. While performance could improve beyond the 50 initial
epochs, it tended to be near its best performance already. This was enough to
assess how well a model may perform at its peak as well, especially in cases where
evaluation metrics has significant differences between different models.

The main loss function used was categorical cross entropy, this popular loss
function has proved effective in many tasks, and was the most effective in our
experiments as well. We also tested other loss functions, such as focal loss Lin et al.
(2018) and multi class variations of focal loss.

Optimization was mainly done using the Adam algorithm Kingma and Ba
(2017). This optimizer is also highly popular, and was found to be more effective
in our case than optimizers such as SGD, ADADELTA Zeiler (2012), and more
modern optimizers like LION Chen et al. (2023) which was used in the currently
best performing model on “Image Classification on ImageNet” challenge.

We also wished, but did not have the computational capacity, to implement k-
fold cross validation. This method increases the overall certainty of the performance
of our models. In place of this, we instead used a set seed when testing all models.
This makes the dataset split deterministic, as well as the initialization of the weights
in a model. We utilized the initial seed 1234 for initialization of all modules that
utilized randomness.

4.2.2 Computing power
The networks were mainly created and trained on a Linux computer using an
intel-i9-12900KF CPU, 128 Gigabytes of RAM and a RTX3080-Ti GPU. Some
networks were too large for practical training on this setup and was either moved
to another desktop with a RTX4090 or remote cloud compute power and trained on

47

Chapter 4 MATERIALS AND METHODS

a RTX A100 80GB version. The cloud computer was provided by NTNUs central
cloud computer solution IDUN4.

4.2.3 Oversampling and Augmentation
Oversampling was performed using PyTorch Paszke et al. (2019) “WeightedRan-
domSampler”. The augmentation of the oversampled images was performed with
an augmentation pipeline using Albumentations python package (Buslaev et al.
(2018)). How these augmentation techniques work, is outlined in Section 2.5.3.
Each of the augmentation techniques had a certain probability of being applied
and a certain limit. We used these limits:

• Horizontal Flipping: P = 0.5

• Rotation: −45◦ ≤ θ ≤ 45◦, P = 1

• Color Jitter: Brightness, contrast, hue, and saturation all ±0.1, P = 1

• Droput: size = 32× 32, holes = 8, P = 1

4.3 Model Evaluation
This thesis will use several of the evaluation metrics discussed in Section 2.7.1. We
will utilize accuracy (abbreviated Acc.), precision (prec.), recall (rec.) F1 score
(F1), false positive rate (FPR), false negative rate (FNR) and cohen kappa metric
(κ). Where applicable, we will use macro averages over micro averages. The exact
motivation for this was discussed in Section 2.7.4, but in brief, macro averages
lends equal weight to all classes, while macro averages will claim high performance
if the majority class is performing well. Performance of minority classes is more
important to us in this thesis work than the overall performance of the model.

4.4 Baseline Methods
To properly evaluate if metadata is improving classification problems for WAC, we
first need data on performance for networks without metadata applied. This is the
purpose of the baseline models. Using the models discussed in Section 2.3, we gave
only the image data to the models and evaluated them using the metrics discussed
in Section 2.7.

4https://www.hpc.ntnu.no/idun/

48

https://www.hpc.ntnu.no/idun/

Ablation Study 4.5

4.5 Ablation Study
Our ablation study focuses on whether metadata can help prediction results at all.
This methodology may be somewhat viewed as the opposite of the methodology
discussed in Section 4.4. Here we only supply the models with metadata, and do
not give any access to the image associated with that metadata.

Ideally, we would investigate which metadata factors impact the prediction
accuracy, and which groupings of animals benefit most from which metadata.
However, this quickly becomes infeasible. Metadata can be split into: datetime,
temperature, position, scene attributes, and scene descriptors. Likewise we have 25
animal classes, or more conservatively 13 classes, we want to investigate. Looking
at all pairs, tripples, quads, etc. of animals, together with any permutation of
metadata would result in 253, 518 combinations. This is not a feasible number of
models to run through for us. Instead we reduced the number of samples to nine
(Fox, Deer, Mustelidae, Bird, Lynx, Cat, Sheep, Rodent, Wolf), and combining the
relatively short position and temperature information into one combined pos_temp
vector, we reduce the number of combinations down to 7529.

To address the issue of imbalanced datasets, we utilized Borderline SMOTE
(see Section 2.5.2 for details). We augmented the training data available for the
network, but left the validation and testing data untouched.

4.6 Our Models
Our models are based on the ResNet50 architecture, with different modifications
that attempt to incorporate metadata into the model. While other models did
outperform ResNet50 we selected to use ResNet50 as our backbone for a couple of
reasons.

Firstly, the design of the ResNet50 model is in a sense more directional than the
Inception v3 block. This makes fusion of metadata with the convolutional blocks
easier to do in a sensible way.

Secondly, through our early work on the Snapshot Serengeti dataset, we utilized
variations of the ResNet model. This familiarity made it faster to migrate the
models over to our main dataset. The minor accuracy improvement Inception v3
models had over ResNet is believed to not have any major effects of the overall
conclusions of this paper.

Lastly, we opted for ResNet50 due to its easier comparability to the CBAM
model. The supplied resources for CBAM utilized ResNet50 as a backbone, which
is then easier to compare against our other architectures.

49

Chapter 4 MATERIALS AND METHODS

Figure 4.5: Late Fusion

4.6.1 Late Fusion Models
The conceptually simplest model we used was the late fusion or decision fusion
models. If we have a feature vector v1 = ResNet50(x), which is the final feature
vector before classification has occured, and we have v2 =M, which is the metadata.
The concatenated vector is v1

⊕
v2 = V . After concatenation of the vectors, we

run the full vector V through three layers of a fully connected network:

ŷ = g3(g2(g1(V)))

Here, each of g1, g2, and g3 represent a fully connected linear layer, followed by
a ReLU activation function. Conceptually, the model can also be described by
Figure 4.5.

4.6.2 Early Fusion Models
The other broad category of fusion is early fusion, or feature fusion, networks.
These kinds of network hope to fuse the different data modalities early on in the

50

Our Models 4.6

process in order to enhance the feature extraction process. Once early fusion is
the topic, how to fuse the metadata becomes an open question. Our model applies
metadata fusion at three points during the bottleneck block of the Residual Net.
This fusion was performed by multiplying the metadata vector by the feature map
generated by each convolution block. To ensure that these fit, the metadata was
passed through one linear layer with the same output shape as the output of the
feature map of the convolution layer. After the linear layer, the metadata was
also passed through a Sigmoid function to introduce further non-linearity in our
network.

Mathematically, each block of the Residual Net has been modified like this:

out = in+ g3(g2(g1(c(in)× f1(M))× f2(M))× f3(M))

f1, f2, and f3 represent the nonlinear functions that enables the metadata to
fit the shape of the feature maps generated by the convolutions. The sign × here
implies a layer wise multiplication between the feature map and the metadata. The
different g’s represent normalization steps and nonlinear layers the convolution is
passed through, and is present in a normal ResNet50 architecture as well. Finally,
c represents the first convolution done in each block.

Figure 4.6 gives an overview of how early fusion is performed in our thesis work.
Input may be the image, or it may be the output of a previous block.

4.6.3 Modified CBAM Model
This model relies on the CBAM module discussed in Section 2.3.5. However, we
included an extra step after channel and block attention was applied to the network.
We dub this last component “Metadata attention”. Again, looking at the overall
structure of the network with our inclusion may be helpful (Figure 4.7).

Matmematically speaking we can define the process as:

F ′ = Mc(F)⊗ F,

F ′′ = Ms(F
′)⊗ F ′,

F ′′ = Mm(M)× F ′′ (4.1)

Do note that we multiply the metadata vector by the feature maps generated
by F ′. In line with methodologies used by Li et al. (2020) and Liu (2018). Mm is
then defined as:

Mm(M) = σ(MLP (M)) (4.2)

51

Chapter 4 MATERIALS AND METHODS

Figure 4.6: Early Fusion

52

Our Models 4.6

Figure 4.7: Modified CBAM architecture

4.6.4 Hierarchical Models

The hierarchical models are based upon findings from the ablation study. The
discussion on this can be found in Section 5.2. Since this methodology differs
somewhat from the process outlined in Section 4.6, we also included ResNet50
without metadata, to compare the hierarchical models against. As for metadata
augmented models, we included both the Late fusion and Early fusion strategies.
The goal here is to split the classes into the 13 class list defined in Figure 5.1b. To
do this, we first split the dataset into a binary class: “Deer” vs “Not Deer”. Deer
can then be split into the three subclasses under deer: “Roe Deer”, “Deer”, and
“Capreolinae”.

The next steps were influenced by the projections generated by UMAP (see
Section 2.6 for further details on UMAP). We want to separate out the classes most
easily distinguishable by the metadata. Looking at a reprojection of the metadata,
we see mustelidae as the clear separated class (see Figure 4.8).

Once the Mustelidae class is separated, we can rerun the algorithm with the
nine remaining classes (Figure 4.9).

We keep removing the most separated class, and rerunning the UMAP projection
on the remaining data. And find that we can furhter separate the data into “Fox”,
“Feline”, “Farm Animal”, and “Boar” (see Figure 4.10). The remaining classes are
not so easily separated by the metadata, as can be seen in Figure 4.11. These hard
to separate classes were combined together into one group “Other Animals”, that
could be classified later. While the “Boar” class was separable using metadata, the
number of samples for boars were quite low at only 393. Therefore, boars were also
placed into the “Other Animals” group.

The different splits can also be seen in Figure 4.12. Here each label represents
an intermediary or final class. The leaf nodes represent the final classes of the
hierarchical model.

53

Chapter 4 MATERIALS AND METHODS

Figure 4.8: UMAP projection with ten classes

Figure 4.9: UMAP projection with nine classes

54

Our Models 4.6

(a) (b)

(c) (d)

Figure 4.10: UMAP Projections demonstrating a separation between classes

Figure 4.11: UMAP no longer cleanly separates the classes

55

Chapter 4 MATERIALS AND METHODS

Figure 4.12: Hierarchical Model split

4.7 Challenges

4.7.1 Data Challenges
There were three main issues with the data: collection, completeness, and validation

Collection

The NINA Viltkamera dataset had no formal way to access it. This forced us to
collect it via web scrapers. This was done with the knowledge of NINA. However,
to limit the load on their servers, we throttled the download rate of the dataset to
5 images per second. Collecting all 170 thousand images at a rate of 5 images per
second, lead to a lot of waiting for the dataset to become complete.

Access to the dataset was supposed to be in collaboration with NINA, and they
were working on providing us a central location for downloading a large amount of
their available data. Creating this proved to be more challenging than expected,
and lead to the final data being available later than expected. To alleviate this

56

Challenges 4.7

issue, we used the SS dataset (Swanson et al. (2015)) in the interim to test models
and methodologies.

Completeness

As previously discussed in Section 4.1.5, some images lacked complete metadata
information. Especially temperature data was lacking from several samples. To
combat this issue, we first tried to fill in the samples by using available metrological
data, along with location and date. This left us with a few missing values that we
had to handle. We considered setting them to the average temperature, or set the
value to zero. However, both were problematic as zero degrees is not an uncommon
temperature in Norway, and the average temperature still means something. We
ultimately decided to use a 2-dimensional vector for the temperature values. Where
the first value told us whether the temperature was valid via a binary digit, and
the second value was the actual temperature. In the case where we don’t know the
temperature, we simply set the second value to zero.

Validation

The issue with using a less common dataset is the lack of validation on said
dataset. Several samples with one given class were in fact a different class (see
Figure 4.13). Unfortunately, due to the sheer number of samples, combined with the
lack of relevant expertise from the authors of the paper, reclassifying the animals
is infeasible. Luckily, the vast majority of labels are correct, with only around
0.5%− 1% of labels being wrong.

4.7.2 Computational Challenges

Deep learning is a computationally heavy task. With millions of tunable parameters,
being updated thousands of times, the total computation done is mind boggling.
This thesis would also benefit from more computational power. Extra power would
let us more quickly assess good models and bad models. Which may have enabled
the creation of better architectures that could outperform the baseline models.

However, it may not always be beneficial with more power. We did a quick
sidetrack to get a rough estimate for how much CO2 was emitted during this thesis
work. This small sidenote can be found in Appendix D.

57

Chapter 4 MATERIALS AND METHODS

(a) (b)

(c) (d)

Figure 4.13: Animal misclassifications. All are labeled as “Sheep”

4.7.3 Methodological Challenges

There were several methodogial issues that ran throughout this thesis work. The
first one we will discuss is the lack of expertise from the thesis writer. This issue
comes mainly in the form of how to combine, group, and prioritize the animals
in the NINA dataset. Fairly naive, and suboptimal methods were used at first to
separate the original 65 classes. The first method relied on simple pruning of the
minority classes with too few samples to be realistically classified. This threshold
was set to roughly 100 samples, meaning any of the samples outlined in Table A.1
with fewer than 100 datapoints would be removed. This is not ideal, as ecologists
often care more about the species with fewer samples related to them. These species
are most likely to be endangered, and therefore require more monitoring. Later
methods instead combined these animals based on common taxa, which keeps some
of the data intact (removing the original label, replacing it with a more generic

58

Challenges 4.7

one).
Furthermore, some of the models, especially the older ones, were created using

a sub-optimal pipeline. This meant that instead of defining new architectures for
each model, a previous model was modified in response to issues the researchers
discovered with the previous model run. This made reproducibility harder to
achieve, as it was not always possible to recover the original model based on the
notes made by the author. The results could still be somewhat analyzed, since a
confusion matrix was stored for every model run, but it was suboptimal. Later
models were always defined as their own separate class, regardless of how minor
changes were from previous models. And the last step was to save the entire model
architecture as a binary file along with the final weights for each model, making
evaluation easier.

59

Chapter 4 MATERIALS AND METHODS

60

5 Results and Discussion

This chapter is dedicated to displaying results from data acquisition, as well as
model performances after training the various networks.

5.1 Data Acquisition

5.1.1 Snapshot Serengeti
In total, seasons one through six were collected. As well as the image labels and
bounding boxes where those existed. We elect not to discuss this data in much
detail, as it was primarily used for early experimentation and learning. However,
some discussion on our findings can be valuable.

We could then fetch the image during training by reading the image path
from the metadata JSON object, and fetching that specific image. This strategy
revealed one issue in our methodology: fetching images from a Hard Disk Drive is
terribly slow. The GPU utilization was around 20% while the disk usage was 100%
constantly. A couple of solutions were considered here. Hadoop Distrubted File
System1, Lustre2, and WekaFS3. The problem with all of these file systems is their
distributed nature. These file systems are more aimed at distributed computing
problems, where we use several computing and data nodes which work together
to solve a task. Since we did not utilize cloud computers and multiple nodes for
the majority of the project, it would only increase the complexity of the solution
while providing only minor benefits. Instead, we focused on storing as much of
the data as possible on faster Non-Volatile Memory Express (NVMe) Solid State
Drives (SSD). This solved our problem, letting us fully utilize the GPU for network
training.

1https://hadoop.apache.org/
2https://www.lustre.org/
3https://www.weka.io/resources/datasheet/wekafs-the-weka-file-system/

61

https://hadoop.apache.org/
https://www.lustre.org/
https://www.weka.io/resources/datasheet/wekafs-the-weka-file-system/

Chapter 5 RESULTS AND DISCUSSION

5.1.2 Nina Viltkamera

Description and Statistics

The NINA Viltkamera dataset had a total of 100 classes that images could be
classified as. However, not all 100 classes had any samples in them. Only 65 classes
in the downloaded dataset had one or more samples associated with them. The
class labels and count can be seen in Table A.1. Creating a good classifier for all
65 classes would be quite challenging, especially considering the low number of
samples for some of the classes. We therefore combined them into super-classes.
A mild combination can be seen in Figure 5.1a. Note that due to the significant
variance in the number of samples per class, we used a log scale in the figure. We
have included the total number of samples per class above the bar for easier reading.
The most significant combination here is combining all birds into one super-class
“Bird”. This 25-class dataset is still quite imbalanced, and while the larger classes
like “Roe Deer” will fare well, we worry some of the smaller classes will be ignored.
Therefore, we created a more aggressive grouping of the classes, which can be seen
in Figure 5.1b. This 13-class dataset is what we will use as our initial dataset,
which can be expanded later to include some or all of the more specific labels from
the 25-class distribution.

(a) Mild grouping of animals

(b) Aggressive grouping of animals

Figure 5.1: Data distribution

62

Data Acquisition 5.1

Figure 5.2: Distribution of samples by year.

Figure 5.3: Distribution of samples by year and month.

Over on the temporal side we can observe a couple of things about the data.
Most of the data was collected after 2016 (Figure 5.2), with the largest year of
collection being in 2017. 2023 is an outlier here since the cutoff date for data
collection was March 11th, but the project is still ongoing, and more data is
expected to be added in 2023 and forward. We can also observe that data is
collected over the years in a cyclical pattern (Figure 5.3), with most of the data
being collected in the early summer of the year. This is clearer if we look at the
aggregate days of the year for data collection, which can be seen in Figure 5.4.

Finally, we can observe some samples from the different classes. This can give
us an idea of the challenges the network needs to overcome in order to classify the
different classes. Figure 5.5a displays a deer somewhat camuflaged due to its hairs

63

Chapter 5 RESULTS AND DISCUSSION

Figure 5.4: Seasonal distribution of data. Downward spike on day 60 of the
year is due to leap years.

while Figure 5.5b demonstrates the issues of the blitz function during nighttime.
We may also contend with partial images like Figure 5.5c and 5.5d. While these
images are challenging, they are not the hardest images available. Some images
have only slight bristles hair visible (Figure 5.6a), or are so blurry it is hard to
make out anything at all (Figure 5.6b).

5.1.3 Metadata
The missing temperature data was successfully aquired as described in Section 4.1.5.
The original dataset of 170 thousand samples, contained 90 thousand samples
where temperature data was missing. After we performed external temperature
acquisition with the Frost API, we were left with only 16 thousand samples where
temperature data were still missing. While not ideal to have a missing datapoint
for roughly 9% of our data, it is much preferable over the initial 53% of temperature
data that was lacking before fetching temperatures from the Frost API.

5.2 Ablation Study
The purpose of the ablation study was to find whether metadata could tell the
difference between the animals at all, this topic was more closely discussed in
Section 4.5.

64

Ablation Study 5.2

(a) (b)

(c) (d)

Figure 5.5: Image variety and challenges

65

Chapter 5 RESULTS AND DISCUSSION

(a) (b)

Figure 5.6: Challenging images

We’ve decided to use an ID for each species instead of the said species’ name.
The corresponding ID to species is 0: ‘Fox’, 1: ‘Deer’, 2: ‘Mustelidae’, 3: ‘Bird’,
4: ‘Lynx’, 5: ‘Cat’, 6: ‘Sheep’, 7: ‘Squirrel’, 8: ‘Rabbit’, 9: ‘Rodent’, 10: ‘Cattle’,
11: ‘Boar’, 12: ‘Wolf’, and 13: ‘Bear’. We can look at the best prediction results
for m classes when using n metadata types. The metadata was closer discussed in
Section 4.1.5. In Table 5.1, we see that the “Scene attributes” information yields
the best single feature to include in the prediction. We also see as we increase the
number of features included performance also increases.

However, the average performance of the different features is less clear-cut.
We can quantify this relation better by looking at the “winner” when comparing
the performance of n predictors against each other to predict between m classes.
By finding and counting the best predictor(s) for all combinations of animals,
we get Figure 5.7. To save space, we used abbreviated versions of the feature
names, ‘SA’ equates to scene attributes, ‘Pl’ is short for “Places” which are the
Scene descriptors, ‘DT’ is the datetime vector, and ‘P & T’ is the position and
temperature information. We see that “Scene attributes” is the clear best single
predictor. However, it is not among the pair of best predictors, being beaten
out by the combination of “Datetime” and “Places”. Its worth noting that this
method of counting the winner does not take into account how much better one
predictor performed than another. We do not know whether “Scene Features”
dominated the competition as the singular feature or if other features were close
seconds to the best performance of “Scene Features”. However, we can conclude

66

Ablation Study 5.2

Table 5.1: Metadata Predictors Scores

Classes Features used Acc κ

4, 6 Scene attributes 0.948 0.894
6, 12 Position and temperature, Scene attributes 0.982 0.945
4, 6 Places, Position and temperature, Scene attributes 0.967 0.932
6, 12 Datetime, Places, Position and temperature, Scene

attributes
0.989 0.964

3, 4, 6 Scene attributes 0.87 0.779
3, 4, 6 Position and temperature, Scene attributes 0.869 0.782
3, 4, 6 Datetime, Places, Scene attributes 0.866 0.775
3, 4, 6 Datetime, Places, Position and temperature, Scene

attributes
0.878 0.796

2, 3, 4, 6 Scene attributes 0.696 0.552
3, 4, 6, 12 Position and temperature, Scene attributes 0.731 0.603
3, 4, 6, 12 Datetime, Position and temperature, Scene at-

tributes
0.729 0.614

3, 4, 6, 12 Datetime, Places, Position and temperature, Scene
attributes

0.746 0.63

(a) (b) (c)

Figure 5.7: The best n features to use to distinguish a set of m animals

that accuracy, in general, improves when more features are included. Meaning
all the metadata contributes something valuable to the prediction of the animal
feature. Remember that these predictions of animal classes are purely based on
the metadata information, no image of the animal is given to the model, yet it can
quite confidently predict between two classes.

Lastly, we can note that as we introduce more classes, the performance of
prediction goes down. We can see this trend more clearly in Figure 5.8. This is
an understandable trend, as guessing between two classes is easier than guessing
between ten. However, the kappa score takes account for the random guess factor,
but this also goes down. This suggests that as we increase the number of classes,
the differentiating power of metadata is reduced. This suggests that to get the

67

Chapter 5 RESULTS AND DISCUSSION

Figure 5.8: Prediction score versus number of classes to distinguish

maximum effect of differentiation from metadata, we should focus on cases where
we have as few classes as possible. And we need to ensure that those classes are
distinct when looking at the metadata.

5.3 Complete models

5.3.1 Results
We will first first lay out the results of most of our models, before discussing those
results in the next sections. The results for all full models can be seen in Table 5.2.
The only models not included in the results are the hierarchical models. The
hierarcical model will be discussed later in Section 5.4.

5.3.2 Discussion

Baseline models

The result of unmodified or “Baseline” models are the first few entries in Table 5.2.
These results reflect the performance of models that only have minor to no mod-
ifications from the proposed methods outlined in the original papers the models
were a part of. These papers and their methodology can be seen in Section 2.3.
The purpose of these models is to compare our models against something known.

68

Complete models 5.3

Table 5.2: Baseline model results

Model Acc. Prec. Rec. F1 FPR FNR κ
ResNet18 0.966 0.953 0.964 0.958 0.003 0.036 0.959
ResNet50 0.983 0.974 0.978 0.976 0.001 0.022 0.98
AlexNet 0.888 0.841 0.909 0.872 0.01 0.091 0.867

EfficientNet B3 0.982 0.98 0.979 0.979 0.002 0.021 0.978
Inception v3 0.984 0.981 0.979 0.980 0.001 0.021 0.980

CBAM 0.805 0.688 0.789 0.720 0.017 0.211 0.768
Late fusion 0.987 0.986 0.98 0.983 0.001 0.02 0.984
Early fusion 0.989 0.984 0.986 0.984 0.001 0.014 0.987
MCBAM 0.795 0.703 0.783 0.735 0.018 0.217 0.758

We can infer the efficacy of metadata augmentation by seeing how well metadata
augmented models function, compared to a variety of models not augmented by
metadata.

We can observe that the general accuracy of models is already quite good,
making any improvements relatively small percentage wise. Of the baseline models
tested, the Inception v3 architecture has minor performance advantage over the
other models. With ResNet50 coming at a close second. While only EfficientNet
B3 is shown here, we did perform testing of all EfficientNet iterations and used
only the best performer in our further testing.

Some of our early experiments tested if the performance would be improved if
we had smaller datasets. Our theory was that the extra data may help a network
learn faster, conversly it may also learn slower, as more parameters needed tuning.
We artificially removed 70% of the original dataset for training, and then compared
performance of metadata augmented versus non-augmented models. We found
no performance increase in our experiments, suggesting that the extra data does
not make up for the extra complexity introduced into the models by including
metadata.

Our Models

The results of our models can also be seen at the end of Table 5.2. We see that
two of our three models perform at the same or better than our baseline models.
MCBAM is the only model that does not seem to benefit from the inclusion of
metadata, dropping by a whole percentage in prediction accuracy. MCBAM does
have a higher overall precision than the baseline CBAM model. However, the gain
in precision does not make up for the drop in the recall. This may still be desireable,
as a higher precision suggests that we are less likely to predict the majority class.

69

Chapter 5 RESULTS AND DISCUSSION

We can evaluate this better by comparing CBAM and MCBAMS accuracy per
class.

Table 5.3: Comparison of the accuracy per class of the CBAM and MCBAM
models with counts for each species

Class CBAM MCBAM Count
Fox 0.746 0.699 22168

Roe Deer 0.829 0.792 56143
Mustelid 0.784 0.804 23332

Bird 0.823 0.777 10118
Feline 0.775 0.716 5640
Deer 0.793 0.903 12262

Capreolinae 0.818 0.877 14634
Farm Animal 0.897 0.956 5477

Rodent 0.679 0.719 6543
Lepus 0.855 0.798 12552
Boar 0.846 0.786 393
Wolf 0.87 0.69 1256
Bear 0.545 0.667 115

We see here that CBAM is generally better at the majority class classifications.
While MCBAM performs slightly better on the minority class samples. The tradeoff
here has to be determined on a case by case basis, based on the needs of the ones
using the models. It is still promising to see that the inclusion of extra data from
metadata, does not mean that a model will be more likely to predict the majority
class.

Our late fusion model does outperform the best baseline models by a small
margin. However, we are more interested in the early fusion model, as this one
performs slightly better again. This observation of early fusion outperforming late
fusion is in line with other papers that discuss the matter (Arevalo et al. (2017),
Liu (2018), Li et al. (2020)).

We can once again compare the performance on a class by class basis. Table 5.4
shows us that only a few classes are now better classified by the best baseline
model. This is especially promising, as we only tested a couple of architectures
for metadata augmented models. We are certain other models will outperform
the models tested here, one may even consider constructing architectures from the
ground up, with metadata augmented feature extraction incorporated in from the
start.

70

Hierarchical Models 5.4

Table 5.4: Comparison of the accuracy per class of the Inception v3 and Early
Fusion models with counts for each species

Class Inception v3 Early Fusion Count
Fox 0.985 0.99 22168

Roe Deer 0.981 0.986 56143
Mustelid 0.982 0.99 23332

Bird 0.981 0.987 10118
Feline 0.991 0.989 5640
Deer 0.988 0.997 12262

Capreolinae 0.994 0.994 14634
Farm Animal 0.993 0.995 5477

Rodent 0.968 0.988 6543
Lepus 0.986 0.99 12552
Boar 0.964 1.0 393
Wolf 0.992 0.992 1256
Bear 0.917 0.917 115

5.4 Hierarchical Models
The results of running the hierarchical models were not promising. The partial
results can be seen in Table 5.5. Only overall accuracy and kappa score has been
included, as some classes failed to get a single sample, making metrics such as
precision ill defined. The issues with the hierarchical model could already be seen at
the first step of training, where deers were separated from non-deers. The accuracy
at this step was around 98% for the validation set. Meaning, regardless of how well
the model performed on the sub-classes, it was bound to have an accuracy of 98%
or less.

Table 5.5: Hierarchical Classification Results

Model Acc. κ
ResNet50 0.412 0.292

Late Fusion 0.412 0.294
Early Fusion 0.410 0.291

The results of the hierarchical models indicates that one should be careful when
fusing metadata and image data together. Not every method available will result
in improved performance. We do not have enough data to say for certain that
hierarchical models are not the way forward, but we can conclusively say that our
methodology did not work as intended.

71

Chapter 5 RESULTS AND DISCUSSION

5.5 Typical Misclassification
This section aims to demonstrate some typical misclassifications done by a well-
trained network. These networks range in the 89-98% accuracy threshold, and
generally performs well. Some misclassifications are hard to say why are miss-
classified. These images are in general clear, and should not be difficult to tell
which animals are which.

(a) Classified as Sheep (b) Classified as Bird

(c) Classified as Boar (d) Classified as Bear

Figure 5.9: Example of poorly classified images

72

Typical Misclassification 5.5

We used an earlier ResNet18 based late fusion model to find some examples of
wrongly predicted images. While the model is a bit older than the final versions
used in the thesis, it still achieved an accuracy of 96%, and should be representative
of the sorts of misclassified samples we get in the best models as well. The
examples in Figure 5.9 are images that should be properly classified. However,
the easily classifiable images, are for some reason still misclassified. This is one of
the challenges with neural networks. You may not always know why an image is
misclassified. Figure 5.9d is maybe the only image that is hard to tell. The glare
of the image significantly degrades the quality of the image, causing classification
to be harder. We also have other images that are significantly harder to classify.
Images in Figure 5.10 are some examples of where the model predicted wrong label,
but we can give it some leeway, as the images are already really hard to tell what
animal it actually is. Either the image is partial, and has a lot of missing context.
Images can also be blurry, making classification more challenging as well.

One interesting image here is Figure 5.10b. This image, with a true label “Bird”
is classified as “Rodent”. The model may have learned that these seemingly empty
images are more likely to contain small animals that are typically associated with
the “Rodent” class. We can investigate if this is the case by looking at the networks
reaction when feeding empty images into it. To get some empty images, we utilized
the Caltech Camera Trap project (see Section 4.1.1 for further details on this
dataset).

Using the same ResNet 18 model that gave the image results shown in Fig-
ure 5.10b, we find that “Bird” is the most popular class to predict when an empty
image is presented. This is followed by the class “Rodent”. The total distribution
of predictions can be seen in Figure 5.11. Since “Bird” is the most popular classifi-
cation result when presented with empty images, one may wonder why a “Rodent”
was predicted. This phenomena is here caused by a sampling bias. The images
above are only samples taken when the predicted class is wrong.

The samples displayed in Figure 5.9 and Figure 5.10 are displayed because of
automated flagging when a sample was wrongly predicted. One of the flagged
images was a seemingly empty image. Our model is most likely to predict “Bird”
when given a seemingly empty image. However, if our model predicted “Bird” in
this case, we would not flag it as wrongly predicted. We unfortunately have no
real data on which images in the NINA Viltkamera dataset that are empty, as no
images has the label empty. But, we can probably assume that a decent amount of
images labeled as “Bird” and “Rodent” may in fact be empty, or at least seemingly
empty to the camera. We can summarize that the network has learned that an
empty image means there is a small animal present in the image. Since the network
cannot locate that animal, it just guesses based on the frequency of small animals.

73

Chapter 5 RESULTS AND DISCUSSION

(a) Classified as Feline (is a bird) (b) Classified as Rodent (is a bird)

(c) Classified as Bear (is a Caprelionae/Moose) (d) Classified as Bird (is a fox)

Figure 5.10: Example of hard to tell misclassified images

74

Typical Misclassification 5.5

Figure 5.11: ResNet18 prediction distribution on empty images

75

Chapter 5 RESULTS AND DISCUSSION

76

6 Conclusion and Further Work

6.1 Conclusion
This thesis work demonstrated that the use of metadata can be used as a classifier
of wild animals, especially when few different classes are involved. The strength of
the classifier goes down as more animal species are included. We also demonstrated
that more metadata will increase performance. However, the increase in metadata
features has diminishing returns. The strongest metadata feature found in our
work was Scene Attributes, which can be automatically extracted from any image.

We also demonstrated that this metadata can give a increase in performance
to deep learning models using both image data and metadata. This connection
was clearest in our early fusion model. However, our experiments are not extensive
enough to properly validate if this result extends to other Wild Animal Classification
projects outside the Norwegian setting.

In conclusion, while the incorporation of metadata has been shown to potentially
enhance the performance of deep learning models, our study suggests that this is not
universally true for all models and caution must be exercised to prevent overfitting.
The increased number of parameters introduced by metadata necessitates a thorough
evaluation and comparison of models with and without metadata. While our study
is one of the first in the field of Wild Animal Classification to explore the use of
metadata, it is crucial to recognize that there is no established precedent to guide
our expectations. Thus, while the successful implementation of data fusion in other
deep learning domains provides a promising outlook, it would be premature to
assume its universal applicability in the field of Wild Animal Classification without
further extensive research and experiments.

6.2 Further Work
We recommend further investigations into the use of metadata enhanced Wild
Animal Classification. Especially the usage of automatic scene attribute and

77

Chapter 6 CONCLUSION AND FURTHER WORK

descriptor detectors such as the ones proposed by Zhou et al. (2017). These
automatic models can be implemented into Image Classification topics without the
need for manual annotation by a human expert. Providing extra value to a dataset
essentially for free.

Furthermore, we advice camera trap projects to as much as possible provide
metadata for captured data. We utilized temperature, location, and time from the
captured samples, but encountered issues collecting especially temperature data
from the original set. Information such as air pressure and humidity could also be
relevant factors we did not have the options to explore. Easy access to these kinds
of data makes creation of models relying on metadata easier as well.

78

A Table of classes in NINA dataset

Table A.1: All species in NINA dataset

Animal Count
Fox 22168

Roe Deer 56143
Badger 20647
Bird 6882
Lynx 4002
Deer 12253

Moose 14633
Cat 1638

Sheep 5011
Squirrel 5819
Marten 2352

Woodcock 287
Hare 12490

Grouse 429
Blackbird 511

Jay 59
Great Tit 266

Small Rodent 721
Cattle 466

Wild Boar 393
Bird of Prey 6
Wood Pigeon 286

Nuthatch 4
Tit sp. 61

Song Thrush 124
Thrush sp. 124

Continued on next page

79

Appendix A TABLE OF CLASSES IN NINA DATASET

Table A.1 – continued from previous page
Animal Count

Capercaillie 448
Wolf 1256

Wolverine 274
Bigfoot 0
Bear 115

Black Grouse 42
Tawny Owl 8
Blue Tit 32

Other Mustelid 33
Stoat 11

Buzzard 7
Wood Grouse 60

Crow 12
Magpie 170

Canada Goose 2
Crane 32

Fieldfare 49
Pied Flycatcher 12

Fallow Deer 9
Black Woodpecker 20

Great Spotted Woodpecker 10
Redwing 52
Bullfinch 14

Southern Hare 62
Lemmings 3

Raven 54
Grey Heron 2

Peregrine Falcon 1
Mink 5

Polecat 10
Chaffinch 15

Mistle Thrush 19
Robin 9

Green Woodpecker 1
Great Grey Owl 1

Reindeer 1
Continued on next page

80

Table A.1 – continued from previous page
Animal Count

Nutcracker 3
Siberian Jay 2
Greenfinch 1

Spotted Flycatcher 1

81

Appendix A TABLE OF CLASSES IN NINA DATASET

82

B Web Scraper code

f unc t i on s l e e p (ms) {
re turn new Promise (r e s o l v e => setTimeout (r e so l v e , ms)) ;

}

async func t i on downloadData () {
// Get a l l p ins
l e t p ins = document

. que rySe l e c to r (’ . l e a f l e t −marker−pane ’)

. ch i ldNodes ;

f o r (l e t i = 0 ; i < pins . l ength ; i++) {
p ins [i] . c l i c k () ;
// 1 second delay to l e t vm ob j e c t load
await s l e e p (1000) ;

// f e t ch the l o c a t i o n from dynamic HTML tag
l e t h2Content = document

. que rySe l e c to r (’# dia logheader ’)

. textContent ;
const number = h2Content . match (/ Loka l i t e t : \ s (\d +) /) [1] ;
const l o k a l i t e t I d = par s e In t (number) ;
l e t l o k a l i t e t e r = (vm. l o k a l i t e t e r ())

// f i nd the cor re spond ign long / l a t i from l o c a t i o n id
const obj = l o k a l i t e t e r

. f i nd (o => o . Loka l i t e t ID === l o k a l i t e t I d) ;
const l a t i t u d e = obj . Lat i tude ;
const l ong i tude = obj . Longitude ;

// add long i tude / l a t i t u d e to each ob j e c t o f vm. media
l e t j son = vm. media .map(obj => (

83

Appendix B WEB SCRAPER CODE

{ . . . obj ,
l a t i t u d e : l a t i t ude ,
l ong i tude : l ong i tude

})) ;

// Create a blob from the JSON ob j e c t
l e t blob = new Blob (

[JSON. s t r i n g i f y (j son)] ,
{ type : ’ a pp l i c a t i o n / json ’ }
) ;

// Create and c l i c k a download l i n k f o r the f i l e
l e t downloadLink = document . createElement (’ a ’) ;
downloadLink . h r e f = URL. createObjectURL (blob) ;
downloadLink . download = ’ data ’ + i + ’ . json ’ ;
downloadLink . c l i c k () ;

}
}

downloadData () ;

84

C Places Attributes and scenes

85

Appendix C PLACES ATTRIBUTES AND SCENES

Scene attributes

boating driving biking
transporting sunbathing touring
hiking climbing camping
reading studying training
research diving swimming
bathing eating cleaning
socializing congregating waiting in line
competing sports exercise
playing gaming spectating
farming constructing shopping
medical activity working using tools
digging conducting business praying
fencing railing wire
railroad trees grass
vegetation shrubbery foliage
leaves flowers asphalt
pavement shingles carpet
brick tiles concrete
metal paper wood
vinyl plastic cloth
sand rock dirt
marble glass surf
ocean running water still water
ice snow clouds
smoke fire natural light
sunny indoor lighting aged
glossy matte sterile
moist dry dirty
rusty warm cold
natural man-made open area
semi-enclosed area enclosed area far-away horizon
no horizon rugged scene vertical components
horizontal components symmetrical cluttered space
scary soothing stressful

86

Scene Descriptors

airfield airplane_cabin
airport_terminal alcove
alley amphitheater
amusement_arcade amusement_park
apartment_building/outdoor aquarium
aqueduct arcade
arch archaelogical_excavation
archive arena/hockey
arena/performance arena/rodeo
army_base art_gallery
art_school art_studio
artists_loft assembly_line
athletic_field/outdoor atrium/public
attic auditorium
auto_factory auto_showroom
badlands bakery/shop
balcony/exterior balcony/interior
ball_pit ballroom
bamboo_forest bank_vault
banquet_hall bar
barn barndoor
baseball_field basement
basketball_court/indoor bathroom
bazaar/indoor bazaar/outdoor
beach beach_house
beauty_salon bedchamber
bedroom beer_garden
beer_hall berth
biology_laboratory boardwalk
boat_deck boathouse
bookstore booth/indoor
botanical_garden bow_window/indoor
bowling_alley boxing_ring
bridge building_facade
bullring burial_chamber
bus_interior bus_station/indoor

87

Appendix C PLACES ATTRIBUTES AND SCENES

butchers_shop butte
cabin/outdoor cafeteria
campsite campus
canal/natural canal/urban
candy_store canyon
car_interior carrousel
castle catacomb
cemetery chalet
chemistry_lab childs_room
church/indoor church/outdoor
classroom clean_room
cliff closet
clothing_store coast
cockpit coffee_shop
computer_room conference_center
conference_room construction_site
corn_field corral
corridor cottage
courthouse courtyard
creek crevasse
crosswalk dam
delicatessen department_store
desert/sand desert/vegetation
desert_road diner/outdoor
dining_hall dining_room
discotheque doorway/outdoor
dorm_room downtown
dressing_room driveway
drugstore elevator/door
elevator_lobby elevator_shaft
embassy engine_room
entrance_hall escalator/indoor
excavation fabric_store
farm fastfood_restaurant
field/cultivated field/wild
field_road fire_escape
fire_station fishpond
flea_market/indoor florist_shop/indoor

88

food_court football_field
forest/broadleaf forest_path
forest_road formal_garden
fountain galley
garage/indoor garage/outdoor
gas_station gazebo/exterior
general_store/indoor general_store/outdoor
gift_shop glacier
golf_course greenhouse/indoor
greenhouse/outdoor grotto
gymnasium/indoor hangar/indoor
hangar/outdoor harbor
hardware_store hayfield
heliport highway
home_office home_theater
hospital hospital_room
hot_spring hotel/outdoor
hotel_room house
hunting_lodge/outdoor ice_cream_parlor
ice_floe ice_shelf
ice_skating_rink/indoor ice_skating_rink/outdoor
iceberg igloo
industrial_area inn/outdoor
islet jacuzzi/indoor
jail_cell japanese_garden
jewelry_shop junkyard
kasbah kennel/outdoor
kindergarden_classroom kitchen
lagoon lake/natural
landfill landing_deck
laundromat lawn
lecture_room legislative_chamber
library/indoor library/outdoor
lighthouse living_room
loading_dock lobby
lock_chamber locker_room
mansion manufactured_home
market/indoor market/outdoor

89

Appendix C PLACES ATTRIBUTES AND SCENES

marsh martial_arts_gym
mausoleum medina
mezzanine moat/water
mosque/outdoor motel
mountain mountain_path
mountain_snowy movie_theater/indoor
museum/indoor museum/outdoor
music_studio natural_history_museum
nursery nursing_home
oast_house ocean
office office_building
office_cubicles oilrig
operating_room orchard
orchestra_pit pagoda
palace pantry
park parking_garage/indoor
parking_garage/outdoor parking_lot
pasture patio
pavilion pet_shop
pharmacy phone_booth
physics_laboratory picnic_area
pier pizzeria
playground playroom
plaza pond
porch promenade
pub/indoor racecourse
raceway raft
railroad_track rainforest
reception recreation_room
repair_shop residential_neighborhood
restaurant restaurant_kitchen
restaurant_patio rice_paddy
river rock_arch
roof_garden rope_bridge
ruin runway
sandbox sauna
schoolhouse science_museum
server_room shed

90

shoe_shop shopfront
shopping_mall/indoor shower
ski_resort ski_slope
sky skyscraper
slum snowfield
soccer_field stable
stadium/baseball stadium/football
stadium/soccer stage/indoor
stage/outdoor staircase
storage_room street
subway_station/platform supermarket
sushi_bar swamp
swimming_hole swimming_pool/indoor
swimming_pool/outdoor synagogue/outdoor
television_room television_studio
temple/asia throne_room
ticket_booth topiary_garden
tower toyshop
train_interior train_station/platform
tree_farm tree_house
trench tundra
underwater/ocean_deep utility_room
valley vegetable_garden
veterinarians_office viaduct
village vineyard
volcano volleyball_court/outdoor
waiting_room water_park
water_tower waterfall
watering_hole wave
wet_bar wheat_field
wind_farm windmill
yard youth_hostel
zen_garden

91

Appendix C PLACES ATTRIBUTES AND SCENES

92

D Power Consumption and Carbon
Emissions

This chapter is purely meant as a rough estimate of the energy consumed during
this master’s thesis. It is by no means an accurate estimate, as accurate time
keeping was not done before the tail end of the project. Regardless we can make
some rough estimates. To estimate the power consumption we first need to list out
the devices that have used power during the project. We can list up all components
that consume a noticable amount of power in the following table:

Device Average consumption Hours utilized
Nvidia RTX 3080-Ti 340 W 2500

Nvidia RTX 4090 440 W 15
Nvidia A100a 300 W 160

a80 GB version

Given this we can calculate the total power consumed as 340W ∗ 2500Hours+
440W ∗ 15Hours + 300W ∗ 160Hours = 904600Wh = 904.6kWh. To figure
out exactly how much CO2 was produced by this process, we can find the CO2

intensity for generating one kWh of energy. Different calculations may yield
different statistics here. We opted for using the EU-27 average given by European
Environment Agency (2020). The reason for using this data instead of the local
Norwegian ones, which is a lot friendlier than the average due to reliance on
hydropower (18.92 gCO2/kWh), is somewhat unrealistic as the Norwegian power
grid is heavily integrated with the rest of the European Union. The numbers given
are 295.74 gCO2/kWh, which means the total amount of CO2 released by this
project is roughly 904.6kWh ∗ 295.75g CO2

kWh
= 267535.45gCO2 = 267.52kgCO2.

93

Appendix D POWER CONSUMPTION AND CARBON EMISSIONS

This number can be hard to grasp, so we can use some comparisons. Using
information from Miljødirektoratet1. We find that this amount of CO2 is equivalent
to 100.57 liters of diesel. My car consumes an average of 4.8 Liters of diesel per
100km. Meaning I could drive a total of 2,095km and release the same amount
of CO2 as this project generated, or roughly the distance from Gjøvik, Norway
to Saint-Étienne, France (2,400km). If we instead considered Norways carbon
intensity (gCO2/kWh), we would end up having about 6.4 liters of diesel. Just
enough to get me to from Gjøvik to Oslo, with a few kilometers to spare.

1https://www.miljodirektoratet.no/ansvarsomrader/klima/
for-myndigheter/kutte-utslipp-av-klimagasser/klima-og-energiplanlegging/
tabeller-for-omregning-fra-energivarer-til-kwh/

94

https://www.miljodirektoratet.no/ansvarsomrader/klima/for-myndigheter/kutte-utslipp-av-klimagasser/klima-og-energiplanlegging/tabeller-for-omregning-fra-energivarer-til-kwh/
https://www.miljodirektoratet.no/ansvarsomrader/klima/for-myndigheter/kutte-utslipp-av-klimagasser/klima-og-energiplanlegging/tabeller-for-omregning-fra-energivarer-til-kwh/
https://www.miljodirektoratet.no/ansvarsomrader/klima/for-myndigheter/kutte-utslipp-av-klimagasser/klima-og-energiplanlegging/tabeller-for-omregning-fra-energivarer-til-kwh/

Wild Animal Species Classification from Camera
Traps Using Metadata Analysis

Aslak Tøn∗, Ali Shariq Imran† and Mohib Ullah‡
Department of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway

Email: ∗aslakto@stud.ntnu.no, †ali.imran@ntnu.no, ‡mohib.ullah@ntnu.no

Abstract—Camera trap imaging has emerged as a valuable tool
for modern wildlife surveillance, enabling researchers to monitor
and study wild animals and their behaviours. However, a signifi-
cant challenge in camera trap data analysis is the labour-intensive
task of species classification from the captured images. This study
proposes a novel approach to species classification by leveraging
metadata associated with camera trap images. By developing
predictive models using metadata alone, we demonstrate that
accurate species classification can be achieved without accessing
the image data. Our approach reduces the computational burden
and offers potential benefits in scenarios where image access is
restricted or limited. Our findings highlight the valuable role
of metadata in complementing the species classification process
and present new opportunities for efficient and scalable wildlife
monitoring using camera trap technology.

Index Terms—Metadata, Camera trap imaging, Neural net-
works, Data fusion, Scene recognition.

I. INTRODUCTION

Human-induced influences like climate change [1], [2],
deforestation [3], and trafficked roads [4], [5] have resulted
in a dramatic wildlife strain, ushering in an era termed ”An-
thropocene” [6]. Monitoring such habitats [7], [8] is crucial,
as shown by the 2019-20 Australian wildfires [9]. Camera
traps offer rich insights [10]–[12], but growing data volumes
necessitate robust filtering [13], [14]. Databases like LILA BC
and the Snapshot Serengeti (SS) dataset [15] exist, and this
paper utilizes a smaller dataset from the Norwegian Institute
for Nature Research [16]. Past studies mainly employed im-
age analysis for species identification [13], [14], [17], with
few incorporating metadata [18]–[20]. Our study emphasizes
metadata’s significance, defining explicit metadata as data
accompanying the image (like temperature, date, and location)
and implicit metadata as indirect information about the image
itself (like scene descriptors and attributes), extracted using
pre-trained models on the places365 dataset [21]. We advance
species classification by using metadata alongside image data,
enhancing accuracy in camera trap research. The paper pro-
ceeds with: Related work in section II, section III discusses
the methodology for data acquisition and how the classification
was done, Results and discussion is in section IV, and finally
we conclude our findings in section V.

II. RELATED WORKS

Although there are numerous papers discussing various
aspects of metadata usage, limited attention has been given to
its direct application for classification purposes. In this section,

we explored related works concerning image classification,
explicitly focusing on animals. For example, Norouzzadeh et
al. [13] suggest image classification is enhanced by object
detection, filtering irrelevant background data without requir-
ing additional resources. They used an existing pre-trained
model for object detection, achieving an accuracy of 91.71%,
precision of 84.47%, and recall of 84.24%. Animals in each
scene were counted via bounding boxes, and the kind of animal
in non-empty images was identified. Despite an imbalanced
dataset, they achieved high accuracy for the majority of classes
and an overall accuracy of 91.37%. The paper also explores
active learning methods. Norouzzadeh et al. [14] focuses on
animal classification, object counting [22], action recognition
[23], and detecting children’s presence. Their multi-stage fu-
sion network outperforms a full classifier model, tackling four
objectives: animal species classification [24], social interaction
[25], animal count [26], and attribute addition [27]. They
achieved 96.8% accuracy with VGG [28] network for the first
task, top-1 accuracy of 94.9%, and top-5 accuracy of 99.1%
for the second. Binned animal count achieved 62.8% accuracy
and 83.6% when counting within one bin. Action detection
yielded 75.6% accuracy, 84.5% precision, and 80.9% recall.
Similarly, Schindler et al. [29] proposes a two-stage fusion
network using Mask R-CNN for animal classification and
action determination. Temporal data from the video were used
for action recognition, with variations of ResNet-18 handling
3×T ×H ×W frame input. The SlowFast network proposed
by [30] underperformed. The authors also present their own
accuracy metrics for segmentation, with the best segmentation
method achieving 63.8% average precision and 94.1% action
detection accuracy.

III. METHODOLOGY

A. Acquisition

The acquisition of the NINA Viltkamera dataset metadata is
a complex task. All images and their corresponding metadata
are publicly available on the Norwegian Institute for Nature
Research (NINA) website. However, direct downloading is
not feasible due to the extensive number of potential unique
URLs. Therefore, we resorted to web scraping to acquire the
necessary data. Within the website’s interactive map, each
camera trap pin held specific metadata. By creating a script,
we automated the extraction process of these URLs and their
corresponding metadata. Each URL was linked to a JSON
object under the ”VM” entity on the website. This JSON object

979-8-3503-4218-5/23/$31.00 ©2023 IEEE

contained essential metadata like the filename and a foreign
key referencing the species id (NOR: ”FK ArtID”). To link
the foreign key with the species name, we utilized the function
”vm.arter()”. Furthermore, the ”vm.lokaliteter()” function was
used to map the location ID to its corresponding latitude and
longitude. This strategy allowed us to automate the extraction
of metadata, which was essential for our study. In total, meta-
data was collected for 170 thousand camera trap images. These
samples were split into 65 original classes. These classes were
severely imbalanced, to the point where some classes had
one or two samples. To combat this, we employed both class
combination and data augmentation. More information on this
is discussed in Section III-B. In terms of additional metadata,
temperature data was often missing. To fill in these gaps,
we used the Norwegian Metrological Institute’s Frost API1.
This API provided temperature data from the nearest weather
station to the camera trap. We limited temperature readouts to
within a 24-hour window of the image capture time. This still
left some missing temperature values (16 thousand samples);
these were set to the average temperature of the entire dataset.
The date and time were stored as a one-hot encoded vector,
dubbed the “datetime” vector. This preserves the cyclical
nature present in time data while eliminating any ambiguity
that may arise. We first considered a sine curve to represent
time, as this would also capture the cyclic nature of time.
However, this may have confused, as spring and fall would
result in the same values. In the same vein, dawn and dusk
would also result in the same values. Latitude and longitude
were also included to capture potential geographical variations
in animal distribution. It is important to note that the positional
data acquired is only approximate, as the locations of the pins
are only accurate to within about a kilometre radius. Lastly,
implicit metadata was obtained through pre-trained models on
the Places365 dataset. This provided us with scene attributes
and scene descriptors, which offered extra context for species
identification. To prevent computation delays during model
training, these attributes were pre-extracted and stored along-
side the image metadata.

B. Class Imbalance

As mentioned previously, the 170 thousand data points
collected were severely imbalanced. The largest class “Roe
Deer” consisted of 53 thousand samples alone, while other
classes, like “Lemmings” only had three. The birds were es-
pecially prone to low sample size, as each individual species of
bird was catalogued. Two methods were used to combat this:
Class combination and data augmentation. Class combination
combines certain classes, like the different bird species, into
one larger super-class. In the case of bird species, we com-
bined them to form the “Bird” superclass. Other classes were
similarly combined, “Rodent” became one superclass, as did
“Deer”. In total, with these combinations, we ended up with
25 classes. Furthermore, to balance out the class representation
when running deep learning, we utilized Borderline Synthetic

1https://frost.met.no/index.html

Minority Oversampling Technique (Borderline SMOTE) [31].
Borderline SMOTE generates more valuable sample points
than the regular SMOTE algorithm. Borderline SMOTE gener-
ates synthetic samples on the boundary region between classes,
which gives the network more hard-to-tell samples, which
should provide more benefit during training.

C. Noisy Labels

One issue with this dataset is the lack of validation on
the said dataset. Several samples with one given class were,
in fact, a different class (see Fig. 1). Unfortunately, due to
the sheer number of samples, combined with the lack of
relevant expertise from the authors of the paper, reclassifying
the animals is infeasible. Luckily, the vast majority of labels
are correct, with only around 0.5%−1% of labels being wrong.

D. Evaluation metrics

Our study primarily focuses on two significant metrics:
Accuracy and the Cohen Kappa Score. Accuracy quantifies
the fraction of true results (including both true positives
TP and true negatives TN) in the total number of samples
analyzed. Formally, Accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Where:

• TP stands for True Positives: the number of samples
correctly classified to class yi.

• TN represents True Negatives: the samples correctly not
assigned to class yi.

• FP is False Positives: the samples wrongly assigned to
class yi but should have been classified to a different class
yj .

• FN denotes False Negatives: the samples that should
have been classified to yi but were classified to yj .

This metric provides a view of our model’s overall perfor-
mance. Due to the imbalanced nature of our dataset, we
opted to use a metric sensitive to prediction accuracy that
accounts for class imbalance. Thus, we incorporate the Co-
hen Kappa Score. The Cohen Kappa Score measures the
agreement between two raters who classify N items into C
mutually exclusive classes. The score calculates the possibility
of the agreement occurring by chance (pe) and the observed
agreement (po). Initially, the probability of random agreement,
pe, is calculated as:

pe =
1

N2

C∑

k=1

n
(1)
k n

(2)
k

Here, n(i)
k is the number of times the rater i predicted class

k. Next, the observed agreement, po, is calculated as:

po =

∑C
i=1 xi,i∑C

i=1

∑C
j=1 xi,j

Fig. 1: Animal misclassifications. All are labelled as “Sheep”

Here, the elements xi,j constitute the observed response matrix
M . Finally, the Cohen Kappa Score (κ) is calculated using
these probabilities:

κ =
po − pe
1− pe

This score provides a more robust measure than accuracy
as it considers both the class imbalance and the probability
of a correct prediction occurring by chance, offering a more
nuanced view of our model’s performance.

E. Classification

To properly evaluate what effects metadata would have on
classification, we need to perform an exhaustive search of
the classes and features available. This involves classifying n
classes using m features, where n ≥ 2 and m ≥ 1. To run all
these combinations, we would have a total of 1, 040, 186, 586
individual cases to test. This amount of computation is cur-
rently unrealistic. Instead, we opted to look at a subset of the
classes. The classes we decided to investigate were: ‘Fox’,
‘Deer’, ‘Mustelidae’, ‘Bird’, ‘Lynx’, ‘Cat’, ‘Sheep’, ‘Rodent’,
and ‘Wolf’. We also combined temperature and position into
one feature. The reasoning is that the single data point of
temperature would likely not be a perfect classifier. This
left us with nine classes and four features that could be
included or excluded. This gives a more manageable 7529
combination that we exhaustively classify. We focused on the
quantitative study of all permutations of animals and metadata
information. We used a 4-layer fully connected network, with
batch normalization and dropout between each layer to combat
overfitting. The hidden layers were static, having 64 and 32
neurons, respectively. The input layer had a dynamic number
of neurons equal to the number of input features currently
selected. Likewise, the output layer was set to the current
number of classes to be classified.

F. Data Visualization

Another efficient way of assessing if metadata can be used
to classify different species is the use of data visualization
tools. Our data consists of 538 data points, meaning we could
map the data in a 538-dimensional space and assess what
groupings are present in the data. As no currently known
technique exists for viewing visual information above three
dimensions, four if you include temporal information, we

had to rely on dimensionality reduction techniques instead.
Dimensionality reduction, in general, aims to preserve the
structure of the data as much as possible while reducing
the overall information saved for each data point. Our paper
utilizes a new approach to dimensionality reduction proposed
by [32]. Uniform Manifold Approximation and Projection, or
UMAP for short, utilizes topology, higher dimensional mani-
folds, and graph theory in order to project high dimensional
data down to a lower dimension while minimizing the cross
entropy between the original projection and the re-projection.
The algorithm has been demonstrated to equal or outperform
other popular dimensionality reduction techniques such as t-
SNE [33], LargeVis [34], and Laplacian eigenmaps [35]. The
theory behind UMAP is quite involved, requiring a good
understanding of the topic of topology. However, an excellent
summary was given by [36]. They break down the process into
two major steps and a couple of minor steps in each major
step as so:

1 Learn manifold structure
1.1 Finding nearest neighbours
1.2 Constructing neighbours graph

1.2.1 Varying distance
1.2.2 Local connectivity
1.2.3 Fuzzy area
1.2.4 Merging of edges

2 Finding low-dimensional representation
2.1 Minimum distance
2.2 Minimizing the cost function

Utilizing UMAP, we can investigate if any patterns emerge on
animal clusters. If we find local clusters in the dimensionality-
reduced space, we can expect those same patterns to hold in
the original 538-dimensional space we cannot investigate.

G. Implementation Details

To create and run the models, we used Python program-
ming language, with PyTorch [37] framework for creating,
importing, and training models. The models primarily used
categorical cross-entropy [38] as the loss function and the
Adam optimizer [39]. The networks were mainly created and
trained on a Linux computer using an intel-i9 12900KF, 128
Gigabytes of RAM and an RTX3080-Ti. All weights were
randomly initialized, with the optimizer set with an initial

Classes Features used Acc κ

4, 6 Scene attributes 0.948 0.894
6, 12 Position and temperature, Scene attributes 0.982 0.945
4, 6 Places, Position and temperature, Scene attributes 0.967 0.932
6, 12 Datetime, Places, Position and temperature, Scene attributes 0.989 0.964
3, 4, 6 Scene attributes 0.87 0.779
3, 4, 6 Position and temperature, Scene attributes 0.869 0.782
3, 4, 6 Datetime, Places, Scene attributes 0.866 0.775
3, 4, 6 Datetime, Places, Position and temperature, Scene attributes 0.878 0.796
2, 3, 4, 6 Scene attributes 0.696 0.552
3, 4, 6, 12 Position and temperature, Scene attributes 0.731 0.603
3, 4, 6, 12 Datetime, Position and temperature, Scene attributes 0.729 0.614
3, 4, 6, 12 Datetime, Places, Position and temperature, Scene attributes 0.746 0.63

TABLE I: Metadata Predictors Scores

learning rate of 1e − 3. The learning rate was then reduced
by an order of magnitude every seven epochs, and a total of
25 epochs ran for each model. The samples were split into
mini-batches of 64. For each epoch, the model was validated
using 10% of the test samples; if the model performed worse
than previous runs, it was reset back to its best-performing
iteration. Finally, the model was evaluated using 10% of the
data that was left aside before training started.

To ensure balanced representation in the training data. Bor-
derline SMOTE [31] was utilized. By having the same number
of samples from each class, the network cannot “cheat” by
only predicting the majority class to achieve an acceptable
result. The validation sets and testing sets were left unaltered.

IV. RESULTS AND DISCUSSION

We can see the results for two or three separate classes using
one, two, three or all four features. Looking at Table I, we see a
reasonably high accuracy for classifying some animal species,
despite not having any image data. We’ve decided to use an
ID for each species instead of the said species’ name. The
corresponding ID to species is 0: ‘Fox’, 1: ‘Deer’, 2: ‘Weasel’,
3: ‘Bird’, 4: ‘Lynx’, 5: ‘Cat’, 6: ‘Sheep’, 7: ‘Squirrel’, 8: ‘Rab-
bit’, 9: ‘Rodent’, 10: ‘Cattle’, 11: ‘Boar’, 12: ‘Wolf’, and 13:
‘Bear’. We see that the “Scene attributes” information yields
the best single feature to include in the prediction. We also see
as we increase the number of features included increases, the
best performer is still “Scene attributes”. However, including
extra attributes does yield diminishing returns. The average
performance of the different features is less clear-cut. We can
quantify this relation better by looking at the “winner” when
pitting n predictors against each other to predict between m
classes. By finding and counting the best predictor(s) for all
combinations of animals, we get Fig. 2. To save space, we
used abbreviated versions of the feature names, ‘SA’ equates
to scene attributes, ‘Pl’ is short for “Places” which are the
Scene descriptors, ‘DT’ is the datetime vector, and ‘P & T’ is
the position and temperature information. We see that “Scene
attributes” is the clear best single predictor. However, it is
not among the pair of best predictors, being beaten out by the
combination of “Datetime” and “Places”. Its worth noting that
this method of counting the winner does not take into account

(a)

(b)

(c)

Fig. 2: The best n features to use to distinguish a set of m
animals

how much better one predictor performed than another. We do
not know whether “Scene Features” dominated the competition
as the singular feature or if other features were close seconds
to the best performance of “Scene Features”. However, we
can conclude that accuracy, in general, improves when more
features are included. Meaning all the metadata contributes
something valuable to the prediction of the animal feature.
Remember that these predictions of animal classes are purely
based on the metadata information, no image of the animal is
given to the model, yet it can quite confidently predict between
two classes.

Fig. 3: Prediction score versus the number of classes to
distinguish

The prediction score does steadily decrease as more classes
are included. Fig. 3 demonstrates this clearly. We postulate this
is due to the increased homogeneous actions of the animals.
Some animals may be active during the daytime, others during
nighttime; some are preferentially spotted in some locations,
while others avoid those same locations. When we only have
two animals, we can use these facts to separate them. However,
once multiple animals act similarly, we can no longer separate
them purely using this metadata, and image data are required.
This issue of reduced performance when more classes make
intuitive sense. It is harder to guess between 5 categories than
it is to guess between only two. However, the kappa score
should account for this increased performance of randomly
guessing the correct class, but it is also declining. Some of
the explanations for this can be seen by using UMAP. Fig. 4a
shows Mustelidae cleanly separating into its own cluster. This
indicates that some higher dimensional line can be drawn that
can confidently classify Mustelidae away from other animals.
However, once we remove many of the classes, we find that
UMAP no longer cleanly separates these classes. This problem
can be seen in Fig. 4b. We can summarize that metadata has
the ability to help differentiate species from each other without
the need for image data to be included. These findings are
more valuable when we include image data once again. By
designing networks that can incorporate metadata to image
feature extraction for networks, we believe we can enhance
the classification results over standard network architectures.
Metadata should prove even more helpful in cases where there
are few classes to choose from or where the existing classes
have distinct behavioural patterns that separate them from each

other at a metadata level, such as different biomes, locations,
or sleep schedules that result in image capture during different
hours.

(a) UMAP separating Mustelidae cleanly from other classes

(b) UMAP struggling to separate the remaining classes

Fig. 4: UMAP embedding of metadata features and classes

V. CONCLUSION

In our study, we have showcased the effectiveness of
utilizing explicit and implicit metadata associated with cam-
era trap images for animal prediction. The results obtained
highlight the potential of metadata-driven augmentation for
deep-learning approaches in the field of animal classification.
Building upon these findings, we recommend employing a
two-step classification process: First, identifying the appropri-
ate subgroups into which animals can be separated using the
available metadata and then utilizing more specific prediction
models to assign the final species label to each animal.
This coarse-to-fine classification methodology aligns well with
the outcomes and implications presented in the paper. Our
work holds promise for improving the overall accuracy and
efficiency of animal classification in camera trap research.

ACKNOWLEDGMENT

We would like to acknowledge the provision of images
by the SCANDCAM project, which is coordinated by the
Norwegian Institute for Nature Research and has received
funding from the Norwegian Environment Agency and various
Norwegian county councils.

REFERENCES

[1] V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan,
S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang,
K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield,
O. Yelekçi, R. Yu, and B. Zhou, Eds., Human Influence on the Climate
System, pp. 423–552, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2021.

[2] Muhammad Munsif, Hina Afridi, Mohib Ullah, Sultan Daud Khan,
Faouzi Alaya Cheikh, and Muhammad Sajjad, “A lightweight convolu-
tion neural network for automatic disasters recognition,” in 2022 10th
European Workshop on Visual Information Processing (EUVIP). IEEE,
2022, pp. 1–6.

[3] Kusum Lata, Arvind Kumar Misra, and Jang Bahadur Shukla, “Model-
ing the effect of deforestation caused by human population pressure on
wildlife species,” Nonlinear Analysis: Modelling and Control, vol. 23,
no. 3, pp. 303–320, 2018.

[4] W Richard J Dean, Colleen L Seymour, Grant S Joseph, and Stefan H
Foord, “A review of the impacts of roads on wildlife in semi-arid
regions,” Diversity, vol. 11, no. 5, pp. 81, 2019.

[5] Maryam Hassan, Farhan Hussain, Sultan Daud Khan, Mohib Ullah,
Mudassar Yamin, and Habib Ullah, “Crowd counting using deep learning
based head detection,” Electronic Imaging, vol. 35, pp. 293–1, 2023.

[6] Simon L Lewis and Mark A Maslin, “Defining the anthropocene,”
Nature, vol. 519, no. 7542, pp. 171–180, 2015.

[7] Joel Berger, Steven L Cain, and Kim Murray Berger, “Connecting the
dots: an invariant migration corridor links the holocene to the present,”
Biology Letters, vol. 2, no. 4, pp. 528–531, 2006.

[8] Toby A Patterson, Len Thomas, Chris Wilcox, Otso Ovaskainen, and
Jason Matthiopoulos, “State–space models of individual animal move-
ment,” Trends in ecology & evolution, vol. 23, no. 2, pp. 87–94, 2008.

[9] Isabel T Hyman, Shane T Ahyong, Frank Köhler, Shane F McEvey,
GA Milledge, Chris AM Reid, and Jodi JL Rowley, “Impacts of the
2019–2020 bushfires on new south wales biodiversity: a rapid assessment
of distribution data for selected invertebrate taxa,” Technical reports of
the Australian Museum online, vol. 32, pp. 1–17, 2020.

[10] Franck Trolliet, Cédric Vermeulen, Marie-Claude Huynen, and Alain
Hambuckers, “Use of camera traps for wildlife studies: a review,”
Biotechnologie, Agronomie, Société et Environnement, vol. 18, no. 3,
2014.

[11] Allan F O’Connell, James D Nichols, and K Ullas Karanth, Camera
traps in animal ecology: methods and analyses, vol. 271, Springer, 2011.

[12] Francesco Rovero, Fridolin Zimmermann, Duccio Berzi, and Paul Meek,
“” which camera trap type and how many do i need?” a review of camera
features and study designs for a range of wildlife research applications.,”
Hystrix, 2013.

[13] Mohammad Sadegh Norouzzadeh, Dan Morris, Sara Beery, Neel Joshi,
Nebojsa Jojic, and Jeff Clune, “A deep active learning system for species
identification and counting in camera trap images,” Methods in ecology
and evolution, vol. 12, no. 1, pp. 150–161, 2021.

[14] Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala,
Alexandra Swanson, Meredith S Palmer, Craig Packer, and Jeff Clune,
“Automatically identifying, counting, and describing wild animals in
camera-trap images with deep learning,” Proceedings of the National
Academy of Sciences, vol. 115, no. 25, pp. E5716–E5725, 2018.

[15] AB Swanson, M Kosmala, CJ Lintott, RJ Simpson, A Smith, and
C Packer, “Data from: Snapshot serengeti, high-frequency annotated
camera trap images of 40 mammalian species in an african savanna,”
2015.

[16] John Odden and Jon E. Swenson, “Scandcam project,” https://
viltkamera.nina.no/, 2023, Images provided by the SCANDCAM project
coordinated by the Norwegian Institute for Nature Research with funding
from the Norwegian Environment Agency and multiple Norwegian
county councils.

[17] Mohib Ullah, Zolbayar Shagdar, Habib Ullah, and Faouzi Alaya Cheikh,
“Semi-supervised principal neighbourhood aggregation model for sar
image classification,” in 2022 16th International Conference on Signal-
Image Technology & Internet-Based Systems (SITIS). IEEE, 2022, pp.
211–217.

[18] John Arevalo, Thamar Solorio, Manuel Montes-y Gómez, and Fabio A.
González, “Gated multimodal units for information fusion,” arXiv
preprint arXiv:1702.01992, 2017, Submitted on 7 Feb 2017.

[19] Andre GC Pacheco and Renato A Krohling, “An attention-based
mechanism to combine images and metadata in deep learning models

applied to skin cancer classification,” IEEE journal of biomedical and
health informatics, vol. 25, no. 9, pp. 3554–3563, 2021.

[20] Weipeng Li, Jiaxin Zhuang, Ruixuan Wang, Jianguo Zhang, and Wei-
Shi Zheng, “Fusing metadata and dermoscopy images for skin disease
diagnosis,” in 2020 IEEE 17th international symposium on biomedical
imaging (ISBI). IEEE, 2020, pp. 1996–2000.

[21] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba, “Places: A 10 million image database for scene recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

[22] Sultan Daud Khan, Ahmed B Altamimi, Mohib Ullah, Habib Ullah,
and Faouzi Alaya Cheikh, “Tcm: Temporal consistency model for head
detection in complex videos,” Journal of Sensors, vol. 2020, pp. 1–13,
2020.

[23] Mohib Ullah, Muhammad Mudassar Yamin, Ahmed Mohammed, Sul-
tan Daud Khan, Habib Ullah, and Faouzi Alaya Cheikh, “Attention-
based lstm network for action recognition in sports,” Electronic Imaging,
vol. 33, pp. 1–6, 2021.

[24] Tinao Petso, Rodrigo S Jamisola, and Dimane Mpoeleng, “Review
on methods used for wildlife species and individual identification,”
European Journal of Wildlife Research, vol. 68, pp. 1–18, 2022.

[25] Habib Ullah, Sultan Daud Khan, Mohib Ullah, and Faouzi Alaya Cheikh,
“Social modeling meets virtual reality: An immersive implication,” in
Pattern Recognition. ICPR International Workshops and Challenges:
Virtual Event, January 10–15, 2021, Proceedings, Part IV. Springer,
2021, pp. 131–140.

[26] Colin J Torney, David J Lloyd-Jones, Mark Chevallier, David C Moyer,
Honori T Maliti, Machoke Mwita, Edward M Kohi, and Grant C
Hopcraft, “A comparison of deep learning and citizen science techniques
for counting wildlife in aerial survey images,” Methods in Ecology and
Evolution, vol. 10, no. 6, pp. 779–787, 2019.

[27] Milan Kresovic, Thong Nguyen, Mohib Ullah, Hina Afridi, and
Faouzi Alaya Cheikh, “Pigpose: A realtime framework for farm animal
pose estimation and tracking,” in IFIP International Conference on
Artificial Intelligence Applications and Innovations. Springer, 2022, pp.
204–215.

[28] Karen Simonyan and Andrew Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[29] Frank Schindler and Volker Steinhage, “Identification of animals and
recognition of their actions in wildlife videos using deep learning
techniques,” Ecological Informatics, vol. 61, pp. 101215, 2021.

[30] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He,
“Slowfast networks for video recognition,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 6202–
6211.

[31] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao, “Borderline-smote:
a new over-sampling method in imbalanced data sets learning,” in
International conference on intelligent computing. Springer, 2005, pp.
878–887.

[32] Leland McInnes, John Healy, and James Melville, “Umap: Uniform
manifold approximation and projection for dimension reduction,” 2020.

[33] Geoffrey E Hinton and Sam Roweis, “Stochastic neighbor embedding,”
Advances in neural information processing systems, vol. 15, 2002.

[34] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei, “Visualizing
large-scale and high-dimensional data,” in Proceedings of the 25th
International Conference on World Wide Web. apr 2016, International
World Wide Web Conferences Steering Committee.

[35] Mikhail Belkin and Partha Niyogi, “Laplacian eigenmaps for dimen-
sionality reduction and data representation,” Neural computation, vol.
15, no. 6, pp. 1373–1396, 2003.

[36] Hina Afridi, Mohib Ullah, Øyvind Nordbø, Faouzi Alaya Cheikh, and
Anne Guro Larsgard, “Optimized deep-learning-based method for cattle
udder traits classification,” Mathematics, vol. 10, no. 17, pp. 3097, 2022.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” 2019.

[38] Zhilu Zhang and Mert R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” 2018.

[39] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” 2017.

Bibliography

Afridi, H., Ullah, M., Nordbø, Ø., Cheikh, F. A., and Larsgard, A. G. (2022).
Optimized deep-learning-based method for cattle udder traits classification.
Mathematics, 10(17):3097. (cited on page 25)

Anton, V., Hartley, S., Geldenhuis, A., and Wittmer, H. U. (2018). Monitoring
the mammalian fauna of urban areas using remote cameras and citizen science.
Journal of Urban Ecology, 4(1). (cited on page 34)

Arevalo, J., Solorio, T., Montes-y Gómez, M., and González, F. A. (2017). Gated
multimodal units for information fusion. arXiv preprint arXiv:1702.01992. Sub-
mitted on 7 Feb 2017. (cited on pages 36, 38, and 70)

Beery, S., Horn, G. V., and Perona, P. (2018). Recognition in terra incognita. In
Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part XVI, volume 11220 of Lecture Notes in Computer
Science, pages 472–489. Springer. (cited on page 34)

Berger, J., Cain, S. L., and Berger, K. M. (2006). Connecting the dots: an invariant
migration corridor links the holocene to the present. Biology Letters, 2(4):528–531.
(cited on page 1)

Bhatt, C. A. and Kankanhalli, M. S. (2011). Multimedia data mining: state of the
art and challenges. Multimedia Tools and Applications, 51:35–76. (cited on page 20)

Bi, L., Fulham, M., and Kim, J. (2022). Hyper-fusion network for semi-automatic
segmentation of skin lesions. Medical Image Analysis, 76:102334. (cited on pages
36 and 38)

Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V. I., and Kalinin, A. A.
(2018). Albumentations: fast and flexible image augmentations. ArXiv e-prints.
(cited on page 48)

101

BIBLIOGRAPHY

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357. (cited on page 20)

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu, Y., Pham, H., Dong, X.,
Luong, T., Hsieh, C.-J., Lu, Y., and Le, Q. V. (2023). Symbolic discovery of
optimization algorithms. (cited on pages 14 and 47)

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46. (cited on page 27)

Cordier, C. P., Smith, D. A. E., Smith, Y. E., and Downs, C. T. (2022). Camera
trap research in africa: a systematic review to show trends in wildlife monitoring
and its value as a research tool. Global Ecology and Conservation, page e02326.
(cited on page 1)

de Lima, D. C., Saqui, D., Mpinda, S. A. T., and Saito, J. H. (2022). Pix2pix
network to estimate agricultural near infrared images from rgb data. Canadian
Journal of Remote Sensing, 48(2):299–315. (cited on pages 37 and 38)

Dean, W. R. J., Seymour, C. L., Joseph, G. S., and Foord, S. H. (2019). A review
of the impacts of roads on wildlife in semi-arid regions. Diversity, 11(5):81. (cited
on page 1)

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional
neural networks with cutout. (cited on page 23)

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(7). (cited on page 13)

European Environment Agency (2020). Co2 intensity of electricity generation.
European Environment Agency (EEA). Prod-ID: DAT-232-en. (cited on page 93)

Falzon, G., Lawson, C., Cheung, K.-W., Vernes, K., Ballard, G. A., Fleming, P. J.,
Glen, A. S., Milne, H., Mather-Zardain, A., and Meek, P. D. (2019). Classifyme:
a field-scouting software for the identification of wildlife in camera trap images.
Animals, 10(1):58. (cited on pages 31 and 37)

Feichtenhofer, C., Fan, H., Malik, J., and He, K. (2019). Slowfast networks for
video recognition. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202–6211. (cited on pages 35 and 38)

102

BIBLIOGRAPHY

Flock, W. L. and Green, J. L. (1974). The detection and identification of birds
in flight, using coherent and noncoherent radars. Proceedings of the IEEE,
62(6):745–753. (cited on page 1)

Garcia-Sanchez, A.-J., Garcia-Sanchez, F., Losilla, F., Kulakowski, P., Garcia-Haro,
J., Rodríguez, A., López-Bao, J.-V., and Palomares, F. (2010). Wireless sensor
network deployment for monitoring wildlife passages. Sensors, 10(8):7236–7262.
(cited on page 1)

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
(cited on pages 6, 7, 8, and 11)

Habib, B., Shrotriya, S., Sivakumar, K., Sinha, P. R., and Mathur, V. B. (2014).
Three decades of wildlife radio telemetry in india: a review. Animal Biotelemetry,
2:1–10. (cited on page 1)

Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-smote: a new over-
sampling method in imbalanced data sets learning. In International conference
on intelligent computing, pages 878–887. Springer. (cited on page 21)

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778. (cited on pages 18 and 109)

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. (cited on page 17)

Hyman, I. T., Ahyong, S. T., Köhler, F., McEvey, S. F., Milledge, G., Reid, C. A.,
and Rowley, J. J. (2020). Impacts of the 2019–2020 bushfires on new south wales
biodiversity: a rapid assessment of distribution data for selected invertebrate
taxa. Technical reports of the Australian Museum online, 32:1–17. (cited on page 1)

Idaho Department of Fish and Game (2021). Idaho department of fish
and game camera traps. https://lilablobssc.blob.core.windows.net/
idaho-camera-traps/public/. (cited on page 34)

Island Conservation, D. W. (2020). Island conservation camera traps. https:
//lilablobssc.blob.core.windows.net/islandconservationcameratraps/
public. (cited on page 34)

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.
(cited on pages 13 and 47)

103

https://lilablobssc.blob.core.windows.net/idaho-camera-traps/public/
https://lilablobssc.blob.core.windows.net/idaho-camera-traps/public/
https://lilablobssc.blob.core.windows.net/islandconservationcameratraps/public
https://lilablobssc.blob.core.windows.net/islandconservationcameratraps/public
https://lilablobssc.blob.core.windows.net/islandconservationcameratraps/public

BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc. (cited on page 16)

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90.
(cited on page 6)

Lata, K., Misra, A. K., and Shukla, J. B. (2018). Modeling the effect of deforestation
caused by human population pressure on wildlife species. Nonlinear Analysis:
Modelling and Control, 23(3):303–320. (cited on page 1)

Leach, P., Mealling, M., and Salz, R. (2005). A universally unique identifier
(uuid) urn namespace. RFC 4122, RFC Editor. Also available online at https:
//www.rfc-editor.org/rfc/rfc4122.txt. (cited on page 40)

Lewis, S. L. and Maslin, M. A. (2015). Defining the anthropocene. Nature,
519(7542):171–180. (cited on page 1)

Li, W., Zhuang, J., Wang, R., Zhang, J., and Zheng, W.-S. (2020). Fusing
metadata and dermoscopy images for skin disease diagnosis. In 2020 IEEE 17th
international symposium on biomedical imaging (ISBI), pages 1996–2000. IEEE.
(cited on pages 36, 38, 51, and 70)

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2018). Focal loss for
dense object detection. (cited on pages 9 and 47)

Liu, S. (2018). Deep learning based multi-modal image analysis for enhanced
situation awareness and environmental perception. PhD thesis, University of
British Columbia. (cited on pages 37, 38, 51, and 70)

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S.,
Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy,
E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou,
B., editors (2021). Human Influence on the Climate System, pages 423–552.
Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA. (cited on page 1)

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5:115–133. (cited on
pages 6 and 8)

104

https://www.rfc-editor.org/rfc/rfc4122.txt
https://www.rfc-editor.org/rfc/rfc4122.txt

BIBLIOGRAPHY

McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uniform manifold approxi-
mation and projection for dimension reduction. (cited on page 23)

Meek, P., Ballard, G., Claridge, A., Kays, R., Moseby, K., O’brien, T., O’connell, A.,
Sanderson, J., Swann, D., Tobler, M., et al. (2014). Recommended guiding prin-
ciples for reporting on camera trapping research. Biodiversity and conservation,
23(9):2321–2343. (cited on pages 31 and 37)

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814. (cited on page 16)

Njamasi, Y. R., Ndibalema, V. G., and Kioko, J. (2022). The influence of human
activities on wildlife in kwakuchinja migratory corridor, tarangire/manyara
ecosystem, northern tanzania. International Journal of Tropical Drylands, 6(1).
(cited on page 1)

Norouzzadeh, M. S., Morris, D., Beery, S., Joshi, N., Jojic, N., and Clune, J. (2021).
A deep active learning system for species identification and counting in camera
trap images. Methods in ecology and evolution, 12(1):150–161. (cited on pages 33
and 38)

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., Packer,
C., and Clune, J. (2018). Automatically identifying, counting, and describing wild
animals in camera-trap images with deep learning. Proceedings of the National
Academy of Sciences, 115(25):E5716–E5725. (cited on pages 35 and 38)

Odden, J. and Swenson, J. E. (2023). Scandcam project. https://viltkamera.
nina.no/. Images provided by the SCANDCAM project coordinated by the
Norwegian Institute for Nature Research with funding from the Norwegian
Environment Agency and multiple Norwegian county councils. (cited on page 5)

Pacheco, A. G. and Krohling, R. A. (2021). An attention-based mechanism to
combine images and metadata in deep learning models applied to skin cancer
classification. IEEE journal of biomedical and health informatics, 25(9):3554–3563.
(cited on pages 36 and 38)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance
deep learning library. (cited on pages 47 and 48)

105

https://viltkamera.nina.no/
https://viltkamera.nina.no/

BIBLIOGRAPHY

Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., and Matthiopoulos, J.
(2008). State–space models of individual animal movement. Trends in ecology &
evolution, 23(2):87–94. (cited on page 1)

Pievani, T. (2014). The sixth mass extinction: Anthropocene and the human
impact on biodiversity. Rendiconti Lincei, 25:85–93. (cited on page 1)

Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría,
A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B.,
editors (2022). Cross-Chapter Paper 1: Biodiversity Hotspots, pages 2123–2161.
Cambridge University Press, Cambridge, UK and New York, NY, USA. (cited on
page 1)

Recio, M. R., Mathieu, R., Denys, P., Sirguey, P., and Seddon, P. J. (2011).
Lightweight gps-tags, one giant leap for wildlife tracking? an assessment approach.
PloS one, 6(12):e28225. (cited on page 1)

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386. (cited on
pages 6, 7, and 8)

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536. (cited on page
11)

Schindler, F. and Steinhage, V. (2021). Identification of animals and recognition
of their actions in wildlife videos using deep learning techniques. Ecological
Informatics, 61:101215. (cited on pages 35 and 38)

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. Journal of big data, 6(1):1–48. (cited on page 20)

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556. (cited on page 35)

Snapshot Camdeboo (2019). Snapshot camdeboo camera trap im-
ages. https://lilablobssc.blob.core.windows.net/snapshot-safari/
CDB/CDB_public. (cited on page 34)

Snapshot Enonkishu (2019). Snapshot enonkishu camera trap im-
ages. https://lilablobssc.blob.core.windows.net/snapshot-safari/
ENO/ENO_public. (cited on page 34)

106

https://lilablobssc.blob.core.windows.net/snapshot-safari/CDB/CDB_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/CDB/CDB_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/ENO/ENO_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/ENO/ENO_public

BIBLIOGRAPHY

Snapshot Karoo (2019). Snapshot karoo camera trap images. https://
lilablobssc.blob.core.windows.net/snapshot-safari/KAR/KAR_public.
(cited on page 34)

Snapshot Kgalagadi (2019). Snapshot kgalagadi camera trap images. https://
lilablobssc.blob.core.windows.net/snapshot-safari/KGA/KGA_public.
(cited on page 34)

Snapshot Kruger (2019). Snapshot kruger camera trap images. https://
lilablobssc.blob.core.windows.net/snapshot-safari/KRU/KRU_public.
(cited on page 34)

Snapshot Mountain Zebra (2019). Snapshot mountain zebra camera trap
images. https://lilablobssc.blob.core.windows.net/snapshot-safari/
MTZ/MTZ_public. (cited on page 34)

Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., and Packer, C.
(2015). Data from: Snapshot serengeti, high-frequency annotated camera trap
images of 40 mammalian species in an african savanna. (cited on pages 2, 34, 39,
and 57)

SWG (2021). Northern and central annamites camera traps 2.0: Iucn ssc asian
wild cattle specialist group’s saola working group. https://lilablobssc.blob.
core.windows.net/swg-camera-traps. (cited on page 34)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with convolutions.
(cited on page 17)

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Rethinking
the inception architecture for computer vision. (cited on page 17)

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J., VerCauteren,
K. C., Snow, N. P., Halseth, J. M., Di Salvo, P. A., Lewis, J. S., White, M. D.,
et al. (2019). Machine learning to classify animal species in camera trap images:
Applications in ecology. Methods in Ecology and Evolution, 10(4):585–590. (cited
on page 34)

Tan, M. and Le, Q. V. (2020). Efficientnet: Rethinking model scaling for convolu-
tional neural networks. (cited on page 18)

The Nature Conservancy (2021). Channel islands camera traps 1.0. https:
//lilablobssc.blob.core.windows.net/channel-islands-camera-traps/
images. (cited on page 34)

107

https://lilablobssc.blob.core.windows.net/snapshot-safari/KAR/KAR_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/KAR/KAR_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/KGA/KGA_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/KGA/KGA_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/KRU/KRU_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/KRU/KRU_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/MTZ/MTZ_public
https://lilablobssc.blob.core.windows.net/snapshot-safari/MTZ/MTZ_public
https://lilablobssc.blob.core.windows.net/swg-camera-traps
https://lilablobssc.blob.core.windows.net/swg-camera-traps
https://lilablobssc.blob.core.windows.net/channel-islands-camera-traps/images
https://lilablobssc.blob.core.windows.net/channel-islands-camera-traps/images
https://lilablobssc.blob.core.windows.net/channel-islands-camera-traps/images

BIBLIOGRAPHY

Vélez, J., McShea, W., Shamon, H., Castiblanco-Camacho, P. J., Tabak, M. A.,
Chalmers, C., Fergus, P., and Fieberg, J. (2023). An evaluation of platforms for
processing camera-trap data using artificial intelligence. Methods in Ecology and
Evolution, 14(2):459–477. (cited on page 34)

Wildlife Conservation Society (2019). Wcs camera traps. https://lila.science/
datasets/wcs-camera-traps. (cited on page 34)

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). Cbam: Convolutional block
attention module. (cited on pages 19 and 109)

Yousif, H., Kays, R., and He, Z. (2019). Dynamic programming selection of object
proposals for sequence-level animal species classification in the wild. IEEE
Transactions on Circuits and Systems for Video Technology. (cited on page 34)

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. (cited on page 47)

Zhang, Z., He, Z., Cao, G., and Cao, W. (2016). Animal detection from highly
cluttered natural scenes using spatiotemporal object region proposals and patch
verification. IEEE Transactions on Multimedia, 18(10):2079–2092. (cited on page
34)

Zhang, Z. and Sabuncu, M. R. (2018). Generalized cross entropy loss for training
deep neural networks with noisy labels. (cited on page 47)

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A. (2017). Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence. (cited on pages 46 and 78)

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q.
(2020). A comprehensive survey on transfer learning. Proceedings of the IEEE,
109(1):43–76. (cited on page 16)

108

https://lila.science/datasets/wcs-camera-traps
https://lila.science/datasets/wcs-camera-traps

List of Figures

2.1 Cross entropy of a coin flip predictor 10
2.2 Momentum based weight updates 13
2.3 Edge detection using Sobel Filters. Images by Dr. Xiyun Song . . . 15
2.4 Original and v3 Inception block . 17
2.5 He et al. (2016) representation of a skip connection 18
2.6 Woo et al. (2018) CBAM architecture 19
2.7 Intersection over Union . 28

4.1 Process for acquiring the NINA dataset 41
4.2 Interactive map presented on https://viltkamera.nina.no/ . . . 43
4.3 Window after clicking a pin on https://viltkamera.nina.no/ . . 44
4.4 Conversion of the day of the year to a sine curve. 46
4.5 Late Fusion . 50
4.6 Early Fusion . 52
4.7 Modified CBAM architecture . 53
4.8 UMAP projection with ten classes 54
4.9 UMAP projection with nine classes 54
4.10 UMAP Projections demonstrating a separation between classes . . . 55
4.11 UMAP no longer cleanly separates the classes 55
4.12 Hierarchical Model split . 56
4.13 Animal misclassifications. All are labeled as “Sheep” 58

5.1 Data distribution . 62
5.2 Distribution of samples by year. 63
5.3 Distribution of samples by year and month. 63
5.4 Seasonal distribution of data. Downward spike on day 60 of the year

is due to leap years. 64
5.5 Image variety and challenges . 65
5.6 Challenging images . 66
5.7 The best n features to use to distinguish a set of m animals 67
5.8 Prediction score versus number of classes to distinguish 68

109

https://viltkamera.nina.no/
https://viltkamera.nina.no/

LIST OF FIGURES

5.9 Example of poorly classified images 72
5.10 Example of hard to tell misclassified images 74
5.11 ResNet18 prediction distribution on empty images 75

110

List of Tables

1 Glossary Table . V
2 Acronym Table . VII

2.1 Full list of samples per camera type model 6

3.1 Camera Trap Projects . 34

5.1 Metadata Predictors Scores . 67
5.2 Baseline model results . 69
5.3 Comparison of the accuracy per class of the CBAM and MCBAM

models with counts for each species 70
5.4 Comparison of the accuracy per class of the Inception v3 and Early

Fusion models with counts for each species 71
5.5 Hierarchical Classification Results 71

A.1 All species in NINA dataset . 79

111

	Introduction
	Motivation
	Research Questions
	Our Contributions
	Use of Large Language Models
	Thesis Structure

	Background
	SCANDCAM Project
	Deep learning for Image classification
	Perceptron
	Multilayer Perceptron
	Loss Functions
	Back propagation
	Optimizers
	Convolution
	Transfer Learning

	Existing models
	Alex Net
	Inception v3
	ResNet
	EfficientNet
	Channel Block Attention Module

	Data Fusion
	Data Augmentation
	Class Imbalance
	Synthetic Minority Over-sampling Technique
	Image Augmentation

	Dimensionality Reduction
	Evaluation Metrics
	Metrics used
	Cohen Kappa Score
	Intersection Over Union
	Micro versus Macro average

	Related Work
	On proper use of Camera Traps
	Animal Camera Trap Projects
	SOTA Classification of WAC
	Data fusion for deep learning
	Handling Multimodal Image Data
	Summary

	Materials and Methods
	Datasets
	Caltech Camera Traps
	Snapshot Serengeti
	NINA Viltkamera
	Image Data
	Metadata

	Implementation Details
	Framework
	Computing power
	Oversampling and Augmentation

	Model Evaluation
	Baseline Methods
	Ablation Study
	Our Models
	Late Fusion Models
	Early Fusion Models
	Modified CBAM Model
	Hierarchical Models

	Challenges
	Data Challenges
	Computational Challenges
	Methodological Challenges

	Results and Discussion
	Data Acquisition
	Snapshot Serengeti
	Nina Viltkamera
	Metadata

	Ablation Study
	Complete models
	Results
	Discussion

	Hierarchical Models
	Typical Misclassification

	Conclusion and Further Work
	Conclusion
	Further Work

	Table of classes in NINA dataset
	Web Scraper code
	Places Attributes and scenes
	Power Consumption and Carbon Emissions
	E Accepted conference paper
	Bibliography
	List of Figures
	List of Tables

