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Abstract
This thesis work explores the usage of a dual-RGB multispectral imaging setup

for enhancing the colour accuracy of photographic films capture. A dual-RGB
multispectral imaging system captures two images from a trichromatic camera
using two different light sources. The combination of trichromatic camera with
two light sources give rise to a six-channels multispectral imaging system. One of
the applications for such a system is in cultural heritage for digitally preserving
the appearance of artworks. The thesis work is mainly divided into six parts.
The first part relates to the characterization of the different components of the
imaging pipepline including the camera, LEDs light source, and colour targets
transmittances. In the second part, dual-RGB simulations are performed on the
630 different combinations of light source pairs to find an optimal light source pair
minimizing the ∆E00 error. The optimal light sources outperformed a simulated
three-channel capture in colour accuracy. The third part of the thesis improves
the colour accuracy of dual-RGB capture simulations. This is done by applying
optimizations on the LEDs intensities. Two optimization methods of Particle
Swarm Optimization (PSO) and genetic algorithm are used. Both algorithms are
shown to converge on the same solution. The optimized light sources are referred
to being part of the dual-RGB-PSO. In the fourth part of the thesis, real capturing
sessions are conducted for three-channel, dual-RGB, dual-RGB-PSO optimized
light sources. Dual-RGB and dual-RGB-PSO are shown to outperform the colour
accuracy measured from three-channel captures. In real captures, both dual-RGB
and dual-RGB-PSO performs equally well in contrast to the simulations where
dual-RGB-PSO performed better than dual-RGB. The fifth part of the thesis is
related to high dynamic range (HDR) imaging in the workflow of dual-RGB. An
HDR pipeline is followed for the dual-RGB and dual-RGB-PSO captures. The
results show a promising direction that can be undertaken by implementing HDR
imaging techniques in dual-RGB context. The sixth part of the thesis relates to the
application of the dual-RGB workflow, which was implemented on photographic
films, for reflective objects. The LED light source which was originally built only for
photographic films, was adapted to be operable for reflective objects with minimal
changes and easy to move back and forth between film and reflective capturing
mode. The simulations in the reflective mode converged to similar optimal light
sources as were obtained for photographic films. Also the light sources optimized
for photographic films showed good results for reflective objects. The results hint
at the possibility of the development of a combined multispectral imaging setup
where both the films and reflective objects can be captured, and possibly, with
minimal changes both in the physical setup and light sources.
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1 Introduction

The journey of a thousand miles begins with one step.

Unknown

This thesis focuses on the implementation of a dual-RGB multispectral imaging
system for photographic films and explores its possible enhancements for the
application in cultural heritage. The enhancements include the expansion of the
solution space with the inclusion of LED intensity variations in the light source
and the utilisation of multi-exposure imaging techniques for high dynamic range
(HDR) imaging. The setup is also utilized for reflective object captures showing
the potential of an interoperable system where both films and reflective objects
can be captured. This chapter provides a concise introduction to the ideas of
spectral imaging, with a specific focus on one variant known as dual-RGB imaging.
Additionally, it explores the application of LEDs as a light source and the utilisation
of high dynamic range imaging techniques.

1.1 Spectral imaging
The technique of spectral imaging integrates the disciplines of spectroscopy and
imaging. In a spectral image, both spatial and spectral information are retained.
Following its effective implementation in remote sensing, spectral imaging has also
demonstrated its utility in the domain of cultural heritage. The VASARI project, as
documented by Saunders and Cupitt (1993), represents one of the earliest examples
of spectral imaging implementation in the field of cultural heritage. This project
involved the utilisation of a multispectral imaging equipment. With advancements
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Chapter 1 INTRODUCTION

in technology, the usage of hyperspectral imaging equipment in the field of cultural
heritage has become increasingly prevalent (Casini et al., 2005)(Delaney et al.,
2010). Both multispectral and hyperspectral imaging techniques are encompassed
under the field of spectral imaging. The primary distinction involves the quantity
of spectral channels that are acquired for the object. Although there are no
clear distinctions between the number of bands in multispectral and hyperspectral
systems, we typically refer to a system as multispectral if it contains between
five and a few dozens bands, and as hyperspectral if it contains more than that.
Multispectral systems typically sample the electromagnetic spectrum using various
filters and light sources. Hyperspectral systems typically utilise either a prism-based
or diffraction grating-based configuration to disperse the incident light into discrete
spectral bands and capture it.

1.2 Dual-RGB imaging

Despite the availability of spectral imaging as a non-invasive means of inspecting
and documenting artworks, its adoption in heritage institutions remains limited.
The cause of the limitation is the installation of a complex system. Furthermore,
the operation of these devices need individuals with a specialised understanding
of colour science and spectral imaging. This motivated researchers to develop
approaches that not only have lower setup and maintenance costs, but also require
a lower level of scientific expertise. One of the techniques employed in this context
is referred to as dual-RGB imaging (Kuzio, 2023).

Dual-RGB imaging system, conceptualised by Berns et al. (2005), refers to
the use of a color-filter array camera and two transmissive filters to generate a
six-channel multispectral image. The utilisation of dual-RGB imaging has been
demonstrated to result in improved colour fidelity when compared to alternative,
more complex methodologies including the use of monochrome cameras coupled
with liquid crystal tunable filters (LCTFs) or transmissive filters (Berns et al., 2005).
The selection of the final filters was facilitated by conducting simulations on a total
of 2380 theoretical filters, which were generated by pairing 41 Schott glass filters.
The criterion for selection was minimising the root-mean-square error (RMSE) of
the predicted reflectances of the colour targets (Berns et al., 2004). Figure.1.1
shows the transmittances of the filters and the corresponding sensitivities of the
six channels.

2



Dual-RGB with LEDs light source 1.3

(a) (b)

Figure 1.1: Dual-RGB imaging setup proposed by Chen and Berns (2012)(Kuzio,
2023). (a) shows the transmittances of the optimal filters for the dual-RGB
multispectral imaging and (b) shows the sensitivities of the resulting channels.

1.3 Dual-RGB with LEDs light source
A simpler kind of dual-RGB imaging has emerged as a result of developments in LED
light sources. The filters-based dual-RGB system employs a broadband light source
along with selective transmissive filters on the camera to achieve the multispectral
characteristics. While this configuration may be preferred by photographers due to
its naturalness, it doesn’t come without its drawbacks. Broadband light sources
are commonly avoided in the context of cultural heritage due to their potential
to cause damage to artwork (France et al., 2010) (Christens-Barry et al., 2009).
Misregistrations between images can occur as a result of using various filters,
which can be caused by physical movements during the installation of the filters or
variations in their optical properties. Additionally, the filters tend to become dirty
with use (Kuzio, 2023). The usage of LED light sources eliminates the need for
filters and broadband light sources. These benefits are in addition to better colour
accuracy in LED-based dual-RGB imaging when compared with optical-filter-based
dual-RGB imaging (Kuzio and Farnand, 2022a).

1.4 Optimization of LED intensities
LED light sources have the capability to be programmatically tunable, allowing
for the adjustment of the intensity of each LED. This functionality is analogous

3



Chapter 1 INTRODUCTION

to the dynamic construction of different optical filters in filter-based dual-RGB
setup. Tunable LED-based imaging systems have been used in medical applications.
Hyttinen et al. (2018) employed the Particle Swarm Optimisation (PSO) optimisa-
tion method to improve contrast in dental lesions images. A similar optimisation
method is additionally used in the detection of diabetic retinopathy in retinal
images (Fält et al., 2011) (Bartczak et al., 2017). The optimisation of a tunable
LED-based system has also been used in the context of cultural heritage. Durmus
et al. (2018) optimises a seven-LED system to reduce the light absorption and
energy consumption of light sources with minimal perceptual changes to paintings.
Like PSO, another evolutionary multi-objective genetic algorithm is used for the
optimization.

Berns (2011) used theoretical LED spectra that were simulated using Gaussian
functions. Two different optimisations were done using the Generalised Reduced
Gradient (GRG) Nonlinear method. The objective of the first optimisation was
to achieve a match with the CIE D65 chromaticity, while the second optimisation
aimed to either maximise or minimise the chroma. CIE D65 was matched due to its
widespread use as a daylight illuminant and its rendering-related benefits, such as
in chromatic adaptation transformations when computing colour differences. The
use of light sources that increase chroma can serve as a means to compensate for the
diminished colorfulness of light-sensitive materials when they are exposed to only low
levels of illumination, resulting in a reduction of their original colorfulness. Likewise,
certain paintings are produced in conditions of low illumination, such as the interiors
of churches, resulting in a reduction in colourfulness in the depicted objects. Artists
used high chromatic colours in order to counterbalance the diminished colourfulness
within the interior spaces. Light sources decreasing the chroma can be used to
compensate for the increased chroma of such artwork.

Schanda et al. (2016) utilised a combination of four red, green, blue, and
warm white LEDs in order to maximise colour fidelity and minimise damage. The
optimised light source was deemed the most acceptable solution based on visual
evaluations conducted by curators. Tuzikas et al. (2014) utilised four red, green,
blue, and amber LEDs to optimise the damage factor and colour appearance while
maintaining constant irradiance.

1.5 High dynamic range imaging
The data for a spectral image is usually recorded on a charge-coupled device (CCD)
or Complementary Metal-Oxide-Semiconductor (CMOS) sensors. The electron
well-depth of these sensors is fixed. The electron well-depth is indicative of the
capacity for storing information in a single exposure. This constrains the dynamic
range of the scene which can be recorded in a capture. This presents a challenge for
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both standard three-channel and spectral images. This limitation is also highlighted
during the capture of a high dynamic range artwork in cultural heritage. The
spectral image of the artwork may exhibit areas that are either overexposed or
underexposed (Daniel et al., 2016). Other situations of over- or under-exposed
areas may occur due to the constraints in the controllability of uniform illumination
on the artwork. This is typically the case when the size of the artwork is very large
or when the artwork’s condition prevents it from being placed on a hyperspectral
linear stage, ultimately leading to non-uniform illumination (Martínez et al., 2019).

Martínez et al. (2019) discusses extreme examples of dynamic range by examining
two hypothetical sections of a painting. One section comprises a material with
extremely low reflectance, on which a very low level of illumination falls, at a
wavelength to which the camera sensor has minimal sensitivity. In this region,
an extremely long exposure time would be required to detect any signal above
the noise floor. Now consider the other region of the painting, which contains a
material with a very high reflectance and is illuminated by a very bright light at
a wavelength where the sensitivity of the camera sensor is very high. A very low
exposure time would be required for such a region in order to avoid saturating
the sensor. Typical hyperspectral cameras lack the capability to adjust exposure
time for different regions of object or wavelengths. This restricts the application of
hyperspectral cameras to scenes that fall within the dynamic range of the camera
sensor.

High dynamic range (HDR) imaging provides a method for recovering the
scene’s radiance up to any theoretical limit. Practically, this is restricted by the
sensor noise floor and the maximum amount of exposure before it is damaged
(Mann et al., 2010) (Lapray et al., 2017). In a single exposure, a high exposure
image can provide information about areas with low illumination, while a low
exposure image can provide information about areas with high illumination. One
method for producing HDR images is to convert a set of low dynamic range (LDR)
images pixel values into a quantity proportional to scene radiance. This is achieved
by dividing the image pixel values by the exposure time. This operation increases
low exposure time values while decreasing high exposure time values. As a result,
all of the values are converted to a similar scale that is proportional to the scene
radiance. In practise, this operation should only occur after compensating for the
non-linear processing on the camera’s digital values. This nonlinearity is generally
known as a camera response function (CRF). The non-parametric method proposed
by Debevec is one of the most prevalent approaches to estimating this function
Debevec and Malik (1997). This method predicts the radiance values up to a
scale factor using the principle of reciprocity. Reciprocity is the principle that the
total exposure of a sensor is determined by the product of incoming irradiance and
exposure time. It implies that altering either the irradiance by one-half of it or the
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Chapter 1 INTRODUCTION

exposure time by doubling it does not result in any change in the overall exposure.

1.6 Thesis contribution
The main contributions of this thesis work is summarized below:

• Implementation of dual-RGB multispectral imaging workflow for photographic
films.

• LEDs intensities optimizations in dual-RGB for improved colour accuracy.

• Defining an HDR workflow for dual-RGB imaging.

• Adaptation of photographic films capturing setup for reflective objects.

• Analysis of the interoperability between dual-RGB optimized for films and
reflective objects.

• Study of anomalous behaviour in the camera response functions of mechanical
shutter cameras.

1.7 Thesis outline
The thesis outline is listed below:

• Chapter 2 discusses provides a background on spectral imaging and cultural
heritage.

• Chapter 3 provides a theory of camera simulation.

• Chapter 4 discusses the data collection and methods utilized.

• Chapter 5 discusses the methods and results for the simulations of three-
channel and dual-RGB imaging pipeline.

• Chapter 6 provides details and results about the exploration of change of
intensities of LED light source with multiple optimization techniques.

• Chapter 7 discusses the real captures done against the simulations.

• Chapter 8 provides a background on HDR imaging and how it can be imple-
mented in dual-RGB setup.

6



Thesis outline 1.7

• Chapter 9 discusses how LED light source was modified to convert to reflective
capture mode. The chapter also discusses the simulation and real captures
results for dual-RGB imaging for reflective objects.

• Appendix A provides a study on a characteristic non-linear behavior in a
supposedly linear region of CRF of a camera with mechanical shutter. A
method to characterize this behavior is proposed and a comparison of cameras
with mechanical shutters are drawn with electronic shutter cameras.

• Appendix B discusses a background on colorimetry. This is written for
familiarizing readers with colorimetry who do not have a background in this
field.

• Appendix C discusses different methodologies that were undertaken to calcu-
late the photographic films transmittances.

Usage of tools: For the work on this thesis, QuillBot was used for grammatical
errors checking and ChatGPT was used minimally for things such as generating
BibTeX against a reference, transposing a LaTeX table, etc.

7
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2 Spectral imaging and cultural her-
itage

A wider view reveals a larger canvas of opportunities.

Unknown

Spectral imaging is an advanced imaging technique that seeks to capture the
spectral information of light. This chapter provides a concise overview of imaging,
its expansion into spectral imaging, and its application in the preservation and
processing of cultural heritage through the creation of digital copies.

2.1 Spectral imaging
Spectral imaging originates from two distinct fields, namely spectroscopy and
imaging, both of which have undergone significant advancements and continue to
be effectively employed in various applications. In the next sections, a concise
overview of both fields is provided, followed by a discussion on their integration to
create spectral imaging.

2.1.1 Imaging
According to Garini et al. (2006), imaging refers to the methodologies employed for
capturing light signals in both spatial and temporal dimensions, resulting in the
generation of either monochromatic or trichromatic signals. A simplified depiction
is presented in Fig.2.1. The imaging workflow is outlined below:

9



Chapter 2 SPECTRAL IMAGING AND CULTURAL HERITAGE

1. Light source: The light source emits electromagnetic radiations outwards
into space.

2. Reflectance: The object absorbs light in some wavelengths and reflects
back in other wavelengths. The amount of reflected light depends on its
reflectance.

3. Lens: Within the camera devices, the incident light undergoes transmission
through the lens, which serves the purpose of directing and concentrating the
light onto the plane of the sensors.

4. Aperture: Subsequently, the light traverses an aperture, having the dual
purpose of regulating the quantity of light entering the camera and deter-
mining the depth of field. The term of depth of field refers to the extent of
distance within a scene that appears in sharp focus, meaning that each point
in the scene corresponds to a single point on the sensor plane.

5. Bayer filter: Next, there is an array including three different kinds of filters:
red, green, and blue. The configuration of these filters is commonly referred to
as Bayer filters. Take note of the additional green filters. This is done in order
to collect more samples in the green region, which has the highest overlap
with colour luminance as described by the photopic luminosity function. The
HVS exhibits more sensitivity to variations in luminance compared to changes
in chromaticity, hence requiring a greater number of green filters. This is also
useful for estimating more precise measurements while interpolating pixel
values.

6. Sensors: Once the incident light has passed through the Bayer filter, it
gets recorded by the sensors. It should be noted that these sensors lack the
ability to discern between various colours, making them "color-blind." The
sensors record values based on their spectral sensitivities. The ability to
record colours is only possible because the Bayer filter separates light into
three regions of electromagnetic spectrum.

7. Demosaicking: For each channel, there are missing pixel values due to the
Bayer filter pattern. Interpolation is done for the missing pixel values for
each channel to predict the missing values and generate three channels image.

As stated before, this is a basic approach for image capturing. There exist
numerous additional parameters that affect the quality of images captured by a
camera, some of which are given below:

10



Spectral imaging 2.1

Figure 2.1: Workflow of trichromatic capturing. 1. Light source emits electro-
magnetic radiations. 2. Object reflects light in particular wavelengths according
to its reflectance. 3. Lens focuses light on sensors. 4. Aperture controls amount
of light and depth of field. 5. Bayer pattern filters light into three different regions
of electromagnetic spectrum. 6. Sensors record light signals. 7. Missing channel
pixel values are interpolated (demosaicking) to produce a complete three-channel
image.

1. Spatial resolution: Spatial resolution of the images determine the how
much details of the scene can be resolved through the image. The more the
spatial resolution is, the more the details can be extracted.

2. Spectral sensitivity: Spectral sensitivity of the sensors determine which
wavelengths can be recorded and with how much efficiency. This efficiency is
also given by quantum efficiency which is the number of electrons generated per
photon of a wavelength light. The more the sensor is sensitive to a wavelength
of light, the better the signal can be extracted for that wavelength.

3. Dark noise: Dark noise is the measurements which is generated even if no
light signal is input to the imaging system. This occurs due to the thermal
excitations of the electrons in the sensors. This becomes more relevant in the
applications where availability of incoming photons are limited in applications
such as live-cell imaging. The lesser the dark noise there is, the better the
signal can be extracted.
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4. Well depth: Pixel well depth determines the number of electrons that can be
stored in the sensor for valid readings before being saturated (and potentially
being overflown corrupting the neighboring sensor readings). This determines
the dynamic range capabilities of the sensor. The more the pixel well depth,
the more the dynamic range of the scene can be captured in a single shot.

The quality of the imaging setup is influenced by many other variables, such
as the numerical aperture of the objective lens, the fill area of the sensor (photo-
sensitive area of the sensor), the range of integration time, the resolution of the
analog-to-digital conversion, and additional factors.

2.1.2 Spectroscopy
In the 17th century, Newton made the groundbreaking discovery that white light
is composed of a range of different component lights. This discovery led to the
development of spectrographs in the 19th century, which facilitated the measurement
and analysis of these component lights called as electromangetic spectrum, so
enabling the widespread use of spectroscopy in the study of matter. Spectroscopy
is directly related to the energy-band structure of atoms. Electrons in atoms are
excited from their ground-state energy level to an excited state by light absorption.
When they discharge, they emit a ‘signature’ spectrum of light, which aids in the
atomic study. Spectroscopy is concerned with obtaining and recording the spectrum
of light from a single spatial point in space, making spectroscopic measurements only
a function of wavelength. Similar to imaging, spectrometry quality is determined
by a number of factors, some of which are discussed below:

1. Spectral resolution: Spectral resolution that determines the narrowest
wavelength difference that can be detected

2. Spectral range: Spectral range that determines the minimum and the
maximum recordable wavelengths

3. Dark noise: Same as in imaging.

4. Well depth: Same as in imaging.

2.1.3 Combining imaging and spectroscopy
According to (Li et al., 2013), spectral imaging is a combination of spectroscopy
and imaging techniques, enabling the acquisition of both spatial and spectral data
simultaneously. In the context of imaging, the intensity of an image can be denoted
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as I(x, y), while the spectrum collected through spectroscopy can be represented as
I(λ). A spectral image contains both spatial and spectral information represented by
I(x, y, λ). Generally speaking, in order to obtain a spectral image that corresponds
to n-dimensional spatial information in a scene, at least (n+ 1)-dimensional sensor
array is required. There exist multiple hardware configurations for the acquisition
of a spectral image, as depicted in Fig.2.2 and explained below:

1. Whiskbroom: In this method, each point in the scene its captured one at a
time to get is spectrum and form the whole spectral image. Symbolically, this
corresponds to taking measurements of (x1, y1, λ), (x1, y2, λ), . . . (x1, yn, λ),
(x2, y1, λ), (x2, y2, λ), . . . (xm, yn, λ).

2. Pushbroom: This is also known as line-scanning. This method improves
the time required for the captures by recording a line of spatial location
in a single capture. In other words, in each capture it measures (x1, y, λ),
(x2, y, λ) . . . (xm, y, λ).

3. Band-sequential: This is also known as staring. This involves capturing
the whole spatial information wavelength-by-wavelength i.e. in each capture
it measures (x, y, λ1), (x, y, λ1) . . . (x, y, λk).

4. Snapshot: Although it is in very early stages but this method captures
all the spatial and spectral information in a single capture which means it
captures the whole (x, y, λ) simultaneously.

The aforementioned techniques are mainly used for hyperspectral imaging.
The aforementioned techniques employ either a diffraction grating or a prism
configuration to disperse the incident light signal into its component parts, next
recording it. An alternative method exists for capturing each of the individual
components of the light signal, but with a reduced level of spectral resolution. These
setups are commonly referred to as multispectral imaging. Fig.2.3 illustrates the
two methods by which filters can be employed in combination with a conventional
3-channel RGB camera, resulting in the setting up of a multispectral imaging
system. The figure shows the configuration of two filters, resulting in a system that
is defined as a 6-channel multispectral setup.

It is important to note that in both hyperspectral and multispectral setups,
data acquisition is carried out using imaging sensors such as CMOS or CCD, each
possessing their own spectral sensitivities. In order to record a quantity which is
proportional to the incoming radiance, it is important to remove the effect of the
sensor sensitivity from the measurements.
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Figure 2.2: Hyperspectral capturing techniques. Whiskbroom captures a single
spatial point, at a time, with a linear array of sensors. Pushbroom captures a
line of spatial points with a matrix of sensors. Band-sequential captures all the
spatial points against a single wavelength. Snapshot captures all the spatial points
against all the wavelengths.

(a) (b)

Figure 2.3: (a) represents passive mutltispectral imaging setup where the filter
array is placed before the camera sensor. (b) represents active multispectral
imaging setup where filter array is placed after the light source.

2.2 Cultural heritage
Brumann (2015) defines cultural heritage as ‘... the sites, movable and immovable
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artifacts, practices, knowledge items, and other things that a group or society
has identified as old, important, and therefore worthy of conscious conservation
measures, often at the hands of specialized institutions.’ Within the scope of
our thesis, our primary focus revolves around artworks that mainly exist in a
two-dimensional form, such as paintings and photographic films.

The preservation of artwork is essential for gaining insight into how our ances-
tors lived and how the great minds of their time interpreted their surroundings.
When considering art paintings, the optimal condition for preserving the artwork
would involve isolating it from its environment and storing it in complete dark-
ness (Durmus et al., 2020). This goal is in direct contradiction with having the
best colour appearance in museums for visitors, which requires at least 1000 lux
illumination. The ultraviolet and infrared portions of illumination can damage
pigment chromophores, resulting in a colour change, and heat up adsorbed moisture,
altering the painting’s dimensions and structure (Schanda et al., 2016). Thus, the
deterioration of artworks is an unavoidable reality.

Making digital copies of artworks has the potential for their preservation. How-
ever, the task of digitally capturing artworks in a manner that sufficiently fulfils the
requirements of curator interpretation, historical accuracy, human perception, and
the limitations of digital reproduction media is very challenging, if not impossible.
The use of digital copies of artwork offers a non-invasive method for studying the
artwork, eliminating the need for invasive micro-sampling techniques. Both invasive
and non-invasive methods possess their own set of advantages and drawbacks
(Pinna et al., 2009)(Artioli, 2010). Numerous scientific investigations employ a
hierarchical methodology, wherein non-invasive imaging techniques are initially
employed for preliminary material screening. Subsequently, if necessary, an invasive
procedure is undertaken to extract micro-samples of the object for further analysis.
Non-invasive methodologies typically avoid altering the artwork being examined,
thereby enabling the implementation of a continuous monitoring system for the
artwork. This system can be utilised to track the effectiveness of cleaning and
restoration procedures, as well as to monitor the impact of environmental factors
such as humidity and temperature (Picollo et al., 2020b).

There exist a variety of non-invasive approaches that are employed based on
factors such as the value and dimensions of the artwork, study objectives, and avail-
able financial resources. Different methods include ultraviolet-induced fluorescence
(UVF), infrared reflectography (IRR), X-ray radiography (XRR), multispectral
imaging (MSI), hyperspectral imaging (HSI), Macro X-Ray Flourescence (Ma-XRF),
and Time-Domain, Terahertz Imaging (THz-TDI). This study primarily focuses on
the application of spectral imaging (MSI and HSI).

For many years, MSI and HSI have been successfully adapted to the application
of digitizing art paintings (Cucci et al., 2019)(Delaney and Picollo, 2019). These
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works were created for panel paintings that had to cover a maximum of a few
square metres. There have been advances in the application of techniques similar
to remote sensing to much larger objects, such as frescoes and mural paintings
(Liang et al., 2014)(Cucci et al., 2015)(Cucci et al., 2017)(Camaiti et al., 2017). In
addition, hyperspectral imaging (HSI) techniques have been employed in recent
studies to capture photographic materials such as colour negative and positive films
(Picollo et al., 2020a). Compared to the paintings discussed previously, these films
are of very small size and finely detailed.

Digital copies of art paintings are also subject to being limited to how the
painting appeared at the time of capture and to the criteria for a decent appearance
at that time. If the observing conditions or criteria for good appearance have
changed, the shoot must be redone. Decoupling the capturing and rendering
stages are thus important (Berns and Chen, 2012). This issue can be resolved by
incorporating multispectral reflectance data that is independent of observation
conditions or aesthetic considerations. This not only benefits preservation efforts,
but also provides access to more accurate analyses of art (Faries, 2005).

Due to the variety of requirements and criteria for digital reproduction of
artwork, a number of different goals can be defined (Ribés et al., 2003), with
emphasis on some or all of them depending on the application context. The
following aims are defined as:

• Acquiring high resolution multispectral images.

• Faithfully predicting appearance of the painting in different observing condi-
tions.

• Providing high fidelity color reproduction.

• Reconstructing spectral reflectance across all the pixels of the image.
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Prediction is very difficult, especially if it’s about the future.

Niels Bohr

Simulations play a crucial role in the design of devices. The simulation can
be conducted in order to examine the influence of various parameters on the final
objectives of the design. For instance, while examining a printer, the enhancement
of toner particle noise, banding, and halftone patterns on a uniform grey patch can
be achieved by modifying various design parameters of the printer. The criteria
include several factors such as pixels per inch, bits per pixel, and memory efficiency,
among others (MacDonald and Luo, 1999). Likewise, in the context of displays,
the primary objective may involve generating stimuli that produce optimal colour
and luminance accuracy. This objective must be balanced against several design
considerations, including resolution, heat dissipation, size, power consumption,
and other relevant factors. The complexity increases as many design parameters
have interdependence. For example in the case of displays, a brighter output is
linked with a higher power consumption. However, increasing power consumption
necessitates improved heat dissipation, which in turn would need an increase in
the size of the device. With so many conflicting requirements and complexities
involved in the design of a device, simulations are an invaluable resource. This
chapter focuses on the assumptions used during the simulation of devices and
various functionalities, with a specific emphasis on camera simulations. These
assumptions play a crucial role in capturing the essential characteristics of the
device.
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3.1 Underlying assumptions in simulation
Because a simulation represents a very complicated device in the real world, it
is critical to consider simplifications that will keep the simulation models below
tolerable error limits. These simplifications not only facilitate the implementation
of these models but also produce faster outputs. The significance of faster outputs
in a simulation model becomes increasingly evident when doing optimisations on
various combinations of design parameters. In this section, fundamental assumptions
associated with device simulations are discussed.

3.1.1 Device linearity
Devices are assumed to be linear or to have a fixed nonlinearity embedded. CCD
sensors are well-known for their ability to provide a linear response across a wide
range of irradiance levels (Lomheim and Kalman, 2020). Some devices also have
a static non-linearity involved. In the context of displays and cameras, the term
‘gamma function’ has been used, whereas in the case of printers, it is referred to as
the ‘tone reproduction curve.’

3.1.2 Principle of superposition
Once linear device assumption is in place or the device’s fixed non-linearity has been
corrected and made linear, it can be assumed that the principle of superposition
applies to the device outputs. Based on this principle, the device’s response to
a combination of inputs is equal to the sum of the responses produced by each
individual input in isolation. The aforementioned assumption, although may appear
trivial, effectively reduces the computational burden on the simulator. For instance,
in the context of cameras, this assumption indicates that if we know the spectral
and spatial response to a point light source, we can compute the response for any
given input. In the context of printers and displays, this assumption indicates the
possibility of calculating the response to any given input if the response against a
single pixel is known.

3.1.3 Shift invariance
The devices’ spectral and spatial response are considered to be shift invariant. This
implies, for instance, that in the case of displays, the response of each pixel is
identical regardless of its position on the screen. In the context of cameras, this
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implies that the response to a point light source remains the same irrespective of
its location on the sensor array.

3.2 Functions for simulating cameras
Considering a camera as the simulated device, with the assumptions of linearity,
superposition, and shift invariance already defined, the camera’s complete behavior
can be defined with three functions called as camera response function (CRF),
camera spectral response function (CSRF), and camera point spread function
(CPSF).

3.2.1 Camera response function (CRF)
Within the context of a camera, the radiance of a scene traverses the optical system
of the lens and then impinges onto the sensor as irradiance. This results in the
generation of a voltage at the sensor, which is subsequently transformed into a
digital reading or number. Finally, this converted data is recorded within the
camera.

Radiance⇒ Irradiance⇒ Digital number

The relationship between irradiance and digital number is linear if the image
is read in RAW-file format and is non-linear if it is read as a gamma-encoded
version such as an image encoded in sRGB. After defining the relationship between
irradiance and digital number, the relationship between radiance and irradiance
can be formulated. In the simplest of situations, both radiance and irradiance
can be considered proportional. Therefore, establishing a relationship between
the radiance of the scene and the digital number becomes straightforward if the
measurements, up to a scaling factor, are sufficient. The camera response function
(CRF) is the mathematical representation that describes the relationship between
scene radiance and digital number.

The presence of a non-linear relationship between digital numbers and scene
radiance implies that a doubling of the digital number at one pixel is not necessarily
indicative of a doubling of the scene radiance compared to the other pixel. This
nonlinear relationship between digital numbers and radiance must be reversed for
a variety of tasks in many fields, including colour science and computer vision,
for algorithms such as creation of high dynamic range images (Mitsunaga and
Nayar, 1999) (Debevec and Malik, 1997) (Mann and Picard, 1994a), photometric
stereo (Basri and Jacobs, 2001) (Nayar et al., 1990) (Woodham, 1980), shape
from shading (Szeliski, 2005), reflectance estimation (Luong et al., 2002), scene
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illumination (Luong et al., 2002), and color constancy (Finlayson et al., 2001)
(Land and McCann, 1971). Simulating motion blur is also shown to produce more
realistic results if done in linear radiance domain rather than the non-linear camera
domain (Debevec and Malik, 1997).

Non-linearity in the mapping of radiance to digital numbers can be intentional
for the purpose of compressing the high dynamic range of irradiance falling on
the sensor to a limited number of digital number levels that can be produced
by the sensor. Many different algorithms have been proposed to estimate this
non-linearity by assuming a form of gamma-curve (Debevec and Malik, 1997)(Mann,
2000)(Mann and Picard, 1994a)(Mitsunaga and Nayar, 1999)(Tsin et al., 2001).
One commonly employed method for determining the gamma parameter involves
capturing many images of a given scene, each with varying exposure levels. Other
analytical forms have also been proposed (Mann, 2000) and some have also proposed
to assume no particular form and applying smoothness constraints (Debevec and
Malik, 1997)(Tsin et al., 2001). In Fig.3.1, CRFs for different cameras and films
are shown.

Figure 3.1: Different CRFs provided in Grossberg and Nayar (2003). The
CRFs include both photographic film response and sensor response.

3.2.2 Camera spectral response function (CSRF)
The camera spectral response function (CSRF) is the function relating camera
sensor response to different wavelengths of radiance. In a regular 3-channel Bayer
filter camera, CSRF will be a set of three functions which will combine the effect
of sensor wavelength-wise response and the Bayer filters transmittances.

The most common way to characterize the CSRF is the use of a monochromator
(Poorvi and Farrell, 2018) (Farrell et al., 2008). This is also the recommendation
by EMVA standard (EMVA, 2017). Since this method requires both time and

20



Functions for simulating cameras 3.2

resources which might not be feasible for some applications, there have been many
methods devised using the captures of different colorcheckers. Hubel et al. (1994)
estimated the CSRF of the camera by taking captures of Macbeth Colorchecker
using wide-band tungsten light source combined with 8 broadband and 16 narrow-
band filters. Several methods were used to estimate the CSRF like rank-deficient
pseudo inverse method (Farrell, 1993)(Sharma et al., 1993)(Trussell and Sharma,
1994) and Wiener estimation method (Lewis and Odell, 1971)(Mancill, 1975)(Pratt
and Mancill, 1976). We show an example of CSRF in Fig.3.2.

Figure 3.2: CSRF of Kodak KAF-1600C sensor in DCS-200 camera (Hubel
et al., 1994)

Mathematically, CSRF can be defined as:

Dc =

∫ λmax

λmin

CSRFc(λ)I(λ)R(λ)dλ (3.1)

where Dc is linearized digital count, CSRFc is the camera spectral response
function of channel c, I is the illumination, R is the reflectance of object, and
c ∈ {R,G,B}. Since in the cameras we get access to the digitized values, we can
write the continuous function definition in discrete form as

Dc =
λmax∑

λ=λmin

CSRFc,λIλRλ (3.2)
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3.2.3 Camera point spread function (CPSF)
In linear and time-invariant (LTI) systems, the system can be completely defined
by knowing the impulse response. This means that for an LTI system, we can
calculate output of the system to any arbitrary input if we know the response of
the system to an impulse. An impulse is generally defined as a Dirac delta function.
Dirac delta function’s output is non-zero only at the input value of zero. One
example of an estimated CPSF in Fig.3.3.

Figure 3.3: One example of CPSF (Jiang et al., 2018). The graph shows the
respone of the camera for a single point light source. The u- and v-axis show
spatial position of pixels and the vertical axis shows the response of the pixels.
Notice that multiple pixels get activated against a point light source.

The response of a camera to a 2D Dirac delta function is called as a camera
point spread function (CPSF). 2D Dirac delta function can be realized by capturing
an image of a very small point light source. The CPFS quantifies the degree
of blurring shown by the acquired image of a point light source. Usually this
function is different for different wavelengths of light source. Hence CPSF becomes
a function of both spatial and spectral dimensions.

There are various ways to measure or estimate the CPSF of camera. It can
majorly be divided into three categories of blind CPSF estimation (Sun et al.,
2013)(Cho et al., 2011)(Joshi et al., 2008), non-blind CPSF estimation (Joshi
et al., 2008)(Mosleh et al., 2015)(Kee et al., 2011)(Brauers et al., 2010), and direct
measurement (Du and Voss, 2004)(Lehr et al., 1998)(Jemec et al., 2017)(Navas-
Moya et al., 2013).

The estimation of CPSF is an ill-posed problem, indicating that several combi-
nations of the input sharp image and CPSFs can result in the same blurred image.
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In blind CPSF estimation, constraints can be put either on the blurring kernel or
the sharp image. Joshi et al. (2008) adopts a methodology that imposes constraints
on the sharp edges of the image, assuming them to be step edges. By using this
methodology, it is possible to estimate both uniform and spatially varying CPSFs
if the image contains a sufficient number of edges with different orientations. Sun
et al. (2013) adopts an optimisation strategy to estimate a statistical prior by
using a database of natural images. However, this methodology is ineffective when
applied to spatially varying CPSFs, as it operates under the assumption that the
CPSF remains constant across the whole image.

In non-blind estimation methods, fixed calibration images are used. The type of
calibration images used varies from checkerboard with circles inside the blocks (Kee
et al., 2011), arc-shaped checkerboard (Joshi et al., 2008), and random noise target
(Brauers et al., 2010). The CPSF estimation methods also vary from least-square
minimization (Kee et al., 2011) and Bayesian method with maximum a posteriori
(Joshi et al., 2008).

The third type of CPSF estimation is directly measuring it. These methods
are useful for covering the spatial-variance of CPSF. Navas-Moya et al. (2013) and
Jiang et al. (2018) both uses LCD screen with illuminated pixels as point light
sources. Navas-Moya et al. (2013) method is affected by dark noise because of large
required exposure time. Jiang et al. (2018) proposes to utilize the principles of
single-pixel imaging for measurment of CPSFs which is less affected by noise. Other
than LCD screens, lasers have also been used as a point light source achieving high
SNR (Du and Voss, 2004) and sub-pixel accuracy (Jemec et al., 2017). Though
lasers can provide high SNR but it is difficult to measure spatially varying CPSFs
with them.
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4 Simulation data

Predicting rain doesn’t count. Building arks does

Warren Buffet

The preceding chapters have provided an overview of imaging and the mechanics
involved in simulating these processes. The present chapter provides a discussion
of the data necessary for the simulations and the methods employed to gather such
data for the context of this thesis.

The Nikon D610 DSLR camera is used for our imaging workflow. This camera
was chosen based on its availability in our lab and the fact that it was one of the
most up-to-date models we owned. Given that simulations will be performed using
this camera, it is important to thoroughly characterise its behaviour. The two most
significant functions for us are its CRF and CSRF.

4.1 Camera response function (CRF)

4.1.1 Experimental setup
Fig.4.1 shows the experimental setup for measuring CRF as well as one example
capture. The X-Rite Spectrallight III lightbooth is utilised as the light source. The
light simulation is configured to use the CIE D50 illuminant. The camera’s lens is
detached during the process of capturing images. It enables a uniform irradiance
across the camera’s entire sensor plane. The camera is set to a minimum ISO of 50.

For reading the images, the RAW file format is used. As discussed in Chapter
3, this RAW file format has a linear relationship between the incoming radiance on
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(a) (b)

Figure 4.1: Experimental setup for measuring CSF. (a) shows Nikon D610
camera on a tripod pointing towards X-Rite Spectrallight III lightbooth. The
camera has its lens removed for having a uniform irradiance over its sensor plane.
(b) shows one of the captures at 1

160 seconds integration time.

the camera and recorded digital numbers. The RAW file format gives access to
the least altered information that the sensor of the camera received without any
compression or post-processing applied. This format gives access to the mosaicked
image. For measuring CRF, average values from any of the three channels can
be taken. In this study, the green channel is selected so more pixels data can be
averaged as discussed previously that there are more green channels in Bayer filter.
The bit-depth of the data is 14-bits which means the digital numbers range from 0
to 16383.

4.1.2 Results

The resulting camera response function is shown in Fig.4.2. It is clear that the
camera is linear till the digital count of 11,000. This is approximately one-third of
the bit-depth range. It is worth noting that the relationship plotted is between
integration time and digital number, as opposed to radiance or irradiance v.s digital
number, as discussed in Chapter 3. This is done since the light booth does not have
an adjustable illumination level. However, raising the radiance or the integration
time by the same factor has the same effect on the camera sensor reading, which
is known as the principle of duality. As a result, the technique of modifying the
camera integration time was chosen for this study.
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Figure 4.2: An example of demosaicked capture for measuring CRF at the
exposure time of 1/160 seconds. The digital numbers are in 14-bits. Note that
after 11,000 digital number, the sensor shows a non-linear behavior.

4.2 Camera spectral response function (CSRF)

4.2.1 Experimental setup

To characterise the CSRF, direct measurement with a monohcromator is adopted
as the method of choice. The experimental setup for the measurement of CSRF
is shown in Fig.4.3. A halogen lamp is used as the light source. This light source
is fed through a Bentham monochromator, which converts it into monochromatic
light whose wavelength is adjusted by Bentham software. The monochromatic light
output from the monochromator is diffused by an integrating sphere. The camera
is positioned perpendicular to the monochromatic light and is aimed directly at
the integrating sphere. The telespectroradiometer (TSR, Konika Minolta CS2000)
is used to take measurements in the same location as the camera. DigiCamControl
software (digiCamControl, 2023) is used to control the captures from the computer
so that the camera does not move throughout the capturing sessions. The camera’s
ISO is set to its lowest setting of 50. The integration time is adjusted so that the
highest response obtained across all monochromatic light and camera channels is
considerably below the non-linear region.
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Figure 4.3: Camera spectral response function measurement setup. The green
circle shows the halogen lamp covered with a black covering. The lamp directs its
light inside the Bentham monochromator highlighted in orange. The monochro-
mator output is diffused by an integrating sphere shown in blue. The Nikon D610
camera, highlighted in red, is fixed to take measurements perpendicularly to the
integrating sphere. The telespectroradiometer (TSR) Konica Minolta CS2000 is
shown in yellow. Note that while capturing from TSR, it is placed in place of
D610.

4.2.2 Results
The monochromatic lights utilised in the measurements have a peak wavelength
range of 380nm to 800nm with a step size of 10nm. Fig.4.4 shows monochromatic
light measurements from TSR and the light source used in the monochromator.

Fig.4.5 shows the captures of the monochromatic lights at 480nm, 540nm, and
600nm. It shows the mosaicked image, demosaicked imaged, and a four pixels in
the central region of the measurement area. Note the mosaicked image is greyscale
since Bayer pattern sensor arrangement is a 2D-matrix of sensors. The color code

of the four pixels also emphasize the Bayer pattern which is
[
R G
G B

]
. The spatial

resolution of each of the captured images is 4028x6080 (rows x columns) and the
averaging region defined is of 250 x 250 dimension.

The wavelengths across the different captures where the three filters display

28



Camera spectral response function (CSRF) 4.2

Figure 4.4: Light source used for monochromator. The transparent spectra
shows the monochromatic light measurements. The solid line indicates the peak
of each of monochromatic light spectra which defines the light source spectrum.

highest values are shown in Table 4.1. It can be seen that the captures are much
below the 11,000 digital value, after which the CRF shifts to the non-linear region.

Table 4.1: Table showing the peak monochromatic wavelengths across which the
three channels showed maximum values. For example, when the monochromatic
light is 480nm, the peak blue pixel value obtained in all samples from 380nm to
800nm is 5670. All the values are less than 11,000 which marks the end of the
linear region of the CRF. The data is in 14-bits.

Filter Monochromatic light Digital number peak value
Blue 480 5670
Green 540 8786
Red 600 7546

The CSRF at each wavelength is calculated as:

CSRF (λ) =
DN(λ)

L(λ)
(4.1)

where CSRF (λ) is the camera spectral response function when the peak
monochromatic light at wavelength λ is captured, DN(λ) is the mean digital
number that we get from each square region (see Fig.4.5) defined in capture, and
L(λ) is the peak value of the light source radiance captured at λ. Also note that
the mean values of the channels are taken after demosaicking. Results of CSRF
before demosaicking are also checked but no difference is found. The resulting
CSRF is shown in Fig.4.6.
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(a) Capture of 480nm monochromatic light

(b) Capture of 540nm monochromatic light

(c) Capture of 600nm monochromatic light

Figure 4.5: The first column shows the Bayer-patterned mosaicked image. The
red squares represent the area of the images where the mean digital numbers
of the images were taken for each channel as the response of camera at the
monochromatic light. The second column is one of four pixels in square region
where the color code shows the Bayer pattern and the numbers show the digital
numbers at those pixels in 14-bits. The third column is the demosaicked image.

4.3 LED light source

4.3.1 Equipment
Fig.4.7 and 4.8 show the 10 LEDs-based light source and its spectra. The light
source is originally developed for capturing photographic films (Trumpy et al.,
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Figure 4.6: CSRF for three channels of the camera. The color coding represents
the measurements against the red, green, and blue channels.

2021). Notice that the relative intensity of 6th and 7th LEDs are quite low in
comparison with other LEDs. Table 4.2 shows the LEDs relative and absolute
intensities along with at which wavelengths the peaks occur.

Figure 4.7: LED imaging device. The yellow circle highlights the integrating
sphere with 10 LEDs fixed across its radius. At the top of integrating sphere it
has a black covering to stop the unwanted light from the integrating sphere leaking
into the captures. At the center of black covering it has a collimating lens. In the
red circle it has the stage where the photgraphic films can be fixed. It also has the
option to slide in a diffuser. In the blue circle, the camera holder is shown.
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(a) LEDs spectra (b) LEDs spectra 6th and 7th

(c) LEDs spectra 6th and 7th exaggerated

Figure 4.8: (a) shows the 10 LEDs spectra of the light source. (b) shows the
6th and 7th LEDs seperately. (c) shows all the 10 LEDs spectra again but 6th
and 7th LEDs scaled up 50 times.

Table 4.2: Table shows the wavelengths at which the LEDs peaks occur in the
10-LEDs light source. It also shows their relative and absolute intensities.

LED Peak wavelength (nm) Relative peak value Peak value (Wsr−1m−2)
1 416 0.88 0.0244621
2 448 1.00 0.0275599
3 467 0.663 0.0182769
4 491 0.183 0.00504516
5 520 0.198 0.0054696
6 545 0.014 0.00037581
7 572 0.003 0.0000795212
8 597 0.165 0.00455702
9 626 0.300 0.00827383
10 680 0.565 0.0155592

4.3.2 LEDs stability
In order to check the stability of LEDs over time, measurements are taken for each
LED for 1 hour at a step size of 10 seconds. The results are plotted in Fig.4.9.
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In all of the measurements, the wavelengths shift from lower to higher (in nm).
Notice that the measurements for LED 10 nearly died down towards the end to an
irrecoverable state. This LED was not replaced with a new one further on, because
as it will be seen later on, LED 10 does not end up being used in the simulations
and real captures because it does not contribute in minimizing the errors.

Figure 4.9: 10 LEDs spectra measured for 1 hour at an interval of 10 seconds.
All LEDs shift their spectra towards higher wavelengths (in nm). LED 10 mal-
functioned by the end of the measurements.

The shift in peak wavelength for each LED with respect to the first peak
wavelength when the LED is turned on is shown versus time in Fig.4.10. LED4
has the greatest shift of 7nm. There is no change in peak wavelength for LED7.
Also, for the first 10 seconds, there is no shift in wavelength peaks across all LEDs.
This finding, along with the fact that LED 10 malfunctioned after a longer period
of operation, encouraged the usage of LEDs within the first 10 seconds of their
on-time. This is also consistent with how the original developers of the LED light
source used it, where Trumpy et al. (2021) used the average value of the first twenty
seconds measurements of LED spectra for the calculations.
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Figure 4.10: Shift in peak wavelength of 10 LEDs w.r.t to the first peak
wavelength measured when the LED is switched on plotted against time. The
minimum difference that can be detected is of 1nm because the spectral resolution
of the used TSR is 1nm.

4.4 Training and testing
For training and testing photographic films of IT8 Colourchecker and Colourchecker24
are used respectively as shown in Fig.4.11. The transmittances of the colorcheckers
have been calculated through various different setups which have been described
in the appendix. This section describes the setup whose measurements were fi-
nalized for usage in the experiments and simulations. It is to be noted that the
photographic films are 35mm films having the dimensions of 24mm x 36mm. The
IT8 colourchecker has 288 patches in the small mentioned area. For measuring
the transmittances using the conventional means of TSR is not possible. A setup
is devised utilizing a overhead projector with halogen lamp. This setup allows to
enlarge the colourchecker image making it possible to use TSR for the transmittance
measurements.

The overall setup for transmittance calculation is shown in Fig.4.12 and the
workflow for measurement is depicted in Fig.4.13. An overhead projector with a
halogen lamp is used for projecting the photographic films on a neutral gray pattern
tile. This setup allows for the enlargement of the film image by which we can use
the TSR for the spectral measurements. Although the lamp was made to warm
up for an hour, light source measurement for each of the patches measurements
are done. This was deemed necessary to be extra sure about the correctness of the
measured transmittances in case the light source spectrum changes significantly
over time. In Fig.4.14, the measured transmittances of the IT8 colorchecker and
colorchecker24 are shown.
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(a) (b)

Figure 4.11: (a) IT8 colourchecker used for training data. (b) Colourchecker24
used for testing data.

Figure 4.12: Setup for measuring transmittances of photographic films. The
overhead projector utilizing a halogen lamp illuminates a neutral gray pattern
tile. The background of the tile is covered with a gray cardboard so the light does
not reflect off the metal cabins at the back. The TSR is placed to take reading
perpendicularly from the gray pattern tile.

4.5 Function interpolations
The data described till now are all functions of wavelengths, but these are defined
over a different range and increments of wavelengths. Table 4.3 summarizes the
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: (a) shows how the film is projected by placing it over an overhead
projector. The film is fixed in a black paper cutting fit for the film size. This
stops the redundant light other than the one passing from the film. A small
opening is made beside the film cutting on the paper. This serves as an opening
for light source measurements. The paper cuttings are made slide-able in order
to take measurements of both the film and light source. (b) shows the projected
colourchecker on the back cardboard for the sake of demonstration. Also notice the
small opening of light below the colourchecker projection. This is the light source
opening that was mentioned earlier. (c) shows the projected colourchecker on the
gray pattern tile. (d) shows the setup of TSR where a phone’s camera is set up to
see through the eye piece. The phone’s camera is connected to the computer over
WiFi. This allows for the TSR measurement area to be visible while handling the
film. (e) shows the interface where the TSR eye-piece images are forwarded to
computer. The software used is Camo Studio (Studio, 2023). This software also
allows to change image attributes like exposure time, hue, saturation. too. This
helps in distinguishing the boundaries of the patches which are very similar. (f)
shows another black paper cutting of the size of a single patch on colourchecker.
This opening is used on top of the colourchecker patch to stop the redundant light
from other patches.

domains of the functions.
In order to work with these functions together, the domain of wavelength needs

to be the same. The starting wavelength for all the functions is selected to be
410nm, ending wavelength to be 780nm, and at a step-size of 10nm. For this
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(a) IT8 colorchecker transmittances (b) Colorchecker24 transmittances

Figure 4.14: Transmittances of colorcheckers used for training and testing

Table 4.3: Table showing the region of wavelengths over which the CSRF, LEDs
spectra, and colourchecker transmittances are defined.

Function From (nm) To (nm) Stepsize (nm)
CSRF 380.00 780.00 10.00

LEDs spectra 380.00 780.00 1.00
Colorchecker trasmittances 407.47 998.11 3.19

purpose linear interpolation is carried out. The most significant impact is on CSRF
as shown in Fig.4.15, where it can be seen that the spectra of the first LED is cut
in half.

Figure 4.15: CSRF after skipping values of 380, 390, and 400nm because of
interpolation.

4.6 Calculation of ground-truth tristimulus
values

The ground-truth tristimulus values are calculated as:
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X =

100
780∑
410

L(λ)T (λ)x̄(λ)

780∑
410

L(λ)ȳ(λ)

, Y =

100
780∑
410

L(λ)T (λ)ȳ(λ)

780∑
410

L(λ)ȳ(λ)

, Z =

100
780∑
410

L(λ)T (λ)z̄(λ)

780∑
410

L(λ)ȳ(λ)

(4.2)
where X, Y , and Z are tristimulus values, L is the CIE D65 illuminant, x̄, ȳ, z̄

are 2◦ CMFs, and T is the transmittance.

38



5 Simulation

The best way to predict the future is to create it

Abraham Lincoln

The preceding chapter detailed what and how data for the simulation was
acquired. The discussion of the simulation itself continues in this chapter. The
simulation is performed for a pair of captures acquired by a 3-channel camera under
two distinct light sources in order to minimise the ∆E00 error on the training data.
Instead of directly simulating the final setup, this chapter builds up from the basic
principles of imaging in order to see the different problems encountered during the
simulation and appreciate their solutions.

5.1 3-channel imaging workflow
Firstly, the capturing workflow for a regular 3-channel camera is shown in Fig.5.1.
Considering a light source emitting a radiance of L(λ), onto an object with tris-
timulus values of X1, Y1, Z1 (taken under CIE D65 by CIE 2◦ observer), and a
reflectance of R(λ). Also consider this reflected light is captured by a 3-channel
camera with optical path trasmittance of O(λ), a Bayer-pattern three filters B(λ),
sensor spectral response S(λ), and giving rise to a triplet of R1, G1, B1 values. The
final values of R1, G1, B1 generated can be calculated as follows:

c =

∫ λmax

λmin

L(λ)R(λ)O(λ)B(λ)S(λ)dλ (5.1)
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Figure 5.1: 3-channel imaging workflow. The light starts its journey from
the light source towards a reflective object. The object reflects light according
to its reflectance. The reflected light enters the camera through its lens and
aperture. The light is filtered into three channels by the Bayer pattern filter and
the transmitted light is recorded by the imaging sensor. Finally the missing pixel
values are demosaicked which results in final three channels of the image.

where c ∈ {R,G,B}.
If the same procedure is followed for N different uniformly colored patches, a

mapping from RGB to XY Z values are formed for the patches. This allows to set
up an equation where B is the tristimulus values, C is the RGB values, and A is
the transformation matrix:

B = CA (5.2)X1 X2 . . . Xn

Y1 Y2 . . . Yn

Z1 Z2 . . . Zn

T

=

R1 R2 . . . Rn

G1 G2 . . . Gn

B1 B2 . . . Bn

T a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 (5.3)

Finding the transformation matrix A would have been straightforward by
calculating C−1B, but this requires C to be a square matrix, which is not the case
in our situation. Nonetheless, the transformation matrix A′ can be estimated which
minimizes the squared difference between the predicted and ground-truth through
Moore-Penrose pseudoinverse as (Penrose, 1956):

A′ = (CTC)−1CTB (5.4)

Then using the estimation, the tristimulus values can be predicted as:
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B′ = CA′ (5.5)X ′
1 X ′

2 . . . X ′
n

Y ′
1 Y ′

2 . . . Y ′
n

Z ′
1 Z ′

2 . . . Z ′
n

T

=

R1 R2 . . . Rn

G1 G2 . . . Gn

B1 B2 . . . Bn

T a′1,1 a′1,2 a′1,3
a′2,1 a′2,2 a′2,3
a′3,1 a′3,2 a′3,3

 (5.6)

Once the predictions are in place, the mean error ME can be calculated as:

ME =
1

n

n∑
i=1

∆E00(Bi, B
′
i) (5.7)

5.2 Extension to 6-channel multispectral imag-
ing setup (dual-RGB imaging)

Though the spectral imaging provides a non-invasive technique for the inspection
and recording of artworks, the conservators and museum curators have been able
to utilize such setups in normal practices to a very limited cases. One reason
for it is the installation and operational costs of these setups. Additionally, an
expertise in the field of colour science and spectral imaging are often required for the
operation of such setups. One method to lower down the barrier of spectral imaging
utilization in cultural heritage context is called as dual-RGB imaging (Kuzio, 2023).
In this section, the extension of the 3-channel imaging workflow to 6-channel
multispectral imaging is discussed. Six channels are chosen because they have been
shown to provide a good trade-off between additional channels and colour accuracy,
where a 6-channel multispectral imaging setup provided comparable accuracy as a
10-channels setup in the context of cultural heritage (Kuzio and Farnand, 2021).

In order to extend the 3-channel imaging setup, discussed in last section, to
6-channel multispectral imaging setup, two filters can be introduced just before
the light enters the camera. These two filters will be used to capture two different
captures. This is called the passive multispectral imaging setup. This approach
of filtering the incoming light into the camera through the usage of filters had
been conceptualized by Berns et al. (2005) in the context of cultural heritage
(Berns, 2005). Such a setup has been termed as dual-RGB imaging. Notice now
the equation for the pixel value becomes

c =

∫ λmax

λmin

L(λ)R(λ)F (λ)O(λ)B(λ)S(λ)dλ (5.8)

where F (λ) is the filter transmittance.
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It can be seen that the position of the factors of R(λ) and F (λ) can be
interchanged without changing the equation which would convert it into an active
multispectral setup. Both the setups of active and passive multispectral imaging
are shown in Fig.5.2. The active setup can be written mathematically as:

c =

∫ λmax

λmin

L(λ)F (λ)R(λ)O(λ)B(λ)S(λ)dλ (5.9)

(a) (b)

Figure 5.2: 6-channel imaging workflow. The six channels are achieved by
the introduction of a filter wheel either after the light source or the reflective
object. The filter wheel filters the light either directly from the light source or
the reflected light. After which the light enters the camera through its lens and
aperture upon which it is filtered into three channels by the Bayer pattern filter
and then recorded by the imaging sensor. Finally the missing pixel values are
demosaicked which results in three channels of the image. When this process is
repeated for the other filter in filter wheel and the resulting three channels are
stacked with the previously got three channels, a 6-channel image is formed.

The approach of the replacement of optical filters with LEDs light sources has
been shown to provide better colour accuracy than optical filters utilization in the
context of cultural heritage (Kuzio and Farnand, 2022a). Moreover a dual-RGB
based approach utilizing LEDs light source is also being employed in the context
of cultural heritage into the open-source software termed Beyond RGB (Kuzio and
Farnand, 2022b).

The filter wheel and the light source combinedly work to an equivalent setup
where two different light sources are used. This motivates the replacement of both
light source and filter wheel with a N-LED system (N=10 in this case) to provide
two different light sources as shown in Fig.5.3. The figure shows that one capture
is done using 6 LEDs as the light source and the second capture is done with 4
LEDs. The resulting camera response can be given as:

ci =

∫ λmax

λmin

Li(λ)R(λ)O(λ)B(λ)S(λ)dλ (5.10)
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where c ∈ {R,G,B}, and i ∈ {1, 2}.

Figure 5.3: 6-channel imaging workflow with LEDs. The light source uses six
LEDs to emit light towards a reflective object. The object reflects light according
to its reflectance. The reflected light enters the camera through its lens and
aperture upon which it is filtered into three channels by the Bayer pattern filter
and then recorded by the imaging sensor. Finally the missing pixel values are
demosaicked which results in three channels of the image. When this process is
repeated with the light source using the other four-LEDs as a light source and
the resulting three channels in camera are stacked with the previously got three
channels, a 6-channel image is formed.

The pair of the RGB images which are captured with two different LED
combinations are called as a dual-RGB capture. Notice that in all of these setups
a mapping from 6-channel RGB images to tristimulus values are formed which can
be written mathematically as:

B = CA (5.11)

X1 X2 . . . Xn

Y1 Y2 . . . Yn

Z1 Z2 . . . Zn

T

=


R1,1 R1,2 . . . R1,n

G1,1 G1,2 . . . G1,n

B1,1 B1,2 . . . B1,n

R2,1 R2,2 . . . R2,n

G2,1 G2,2 . . . G2,n

B2,1 B2,2 . . . B2,n



T 
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
...

...
...

a6,1 a6,2 a6,3

 (5.12)

Estimating the transformation using the pseudo inverse similar to last section:
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B = CA (5.13)

X ′
1 X ′

2 . . . X ′
n

Y ′
1 Y ′

2 . . . Y ′
n

Z ′
1 Z ′

2 . . . Z ′
n

T

=


R1,1 R1,2 . . . R1,n

G1,1 G1,2 . . . G1,n

B1,1 B1,2 . . . B1,n

R2,1 R2,2 . . . R2,n

G2,1 G2,2 . . . G2,n

B2,1 B2,2 . . . B2,n



T 
a′1,1 a′,12 a′1,3
a′2,1 a′2,2 a′2,3
...

...
...

a′6,1 a′6,2 a′6,3

 (5.14)

Now the mean error can be calculated as in Eq.5.7.

5.3 Dual-RGB imaging for photographic films
In the context of this thesis work, the setup of dual-RGB imaging works on
transmissive photographic films. So the actual working is a slight modified version
as shown in Fig.5.4. The difference is the replacement of reflectance R(λ) with
transmittance T (λ).

Figure 5.4: Dual-RGB imaging workflow for transmissive objects. The only
difference between this and Fig.5.3 is the replacement of reflective object with
transmissive film. The light source uses six LEDs to emit light towards a trans-
missive object. The object transmits light according to its transmittance. The
reflected light enters the camera through its lens and aperture upon which it is
filtered into three channels by the Bayer pattern filter and then recorded by the
imaging sensor. Finally the missing pixel values are demosaicked which results in
three channels of the image. When this process is repeated with the light source
using the other four-LEDs as a light source and the resulting three channels in
camera are stacked with the previously got three channels, a 6-channel image is
formed.
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5.3.1 Which LED combination to choose?

5.3.1.1 Iterating over each LED combination

The very first question to answer for moving forward is to decide on which LED
light source pair one should choose. The following criterion is defined for selecting
the best LED light source pair:

Criterion: Choose the light source pair which minimizes the mean ∆E00 error
on the training set.

A straightforward solution will be to iterate over each LED light source pair
possible and check the mean ∆E00 error and select the one which gives the minimum
error. Running a crude approximation for the total number of LED pairs: There are
10 LEDs in a light source which makes it 210 different ways to define a single light
source. Since two light sources need to be defined, this makes 210 · 210 ≈ 1million
different combinations of light sources. This poses a practical challenge for running
the simulations. Hence a better strategy needs to be defined to choose the LED
pair for evaluation.

5.3.1.2 Reducing the number of LED combinations to evaluate

The efficacy of a multispectral imaging setup is highly dependent upon the amount of
new information that each channel carries. This gives a hint on what combinations
of light source pairs are more probable to provide reduced errors. The effective
sensitivity of the imaging system is defined as:

Seff = L(λ)O(λ)B(λ)S(λ) (5.15)

The LED spectra are divided into three bins having 3, 3, and 4 LEDs from
shortest to longest wavelength as shown in Fig.5.5. A single light source is defined
by an LED triplet where each of the LEDs are taken from each of the bin defined:
one bin, one LED. The motivation for doing this is if two LEDs are chosen from
a single bin, it does not add much new information that is expected from a new
separate channel in the imaging system. This approach is similar to the one
employed by Kuzio and Farnand (2022b) for the reduction of LEDs light sources
combinations in a 10-LEDs based system.

Using this LED pair combination reduction scheme, A single light source can
be defined by 3 LEDs which can be chosen in 3 · 3 · 4 = 36 different ways. Two light
sources can be defined by 36 · 35 = 1260 different ways. Here 35 is used because
the pair used as first light source should not be used as the second light source i.e.
two light sources should not be same. Since order of light sources does not matter,
the total number of light source combinations are 1260/2 = 630. Hence the total
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Figure 5.5: Spectra of the 10-LEDs system (see Chapter 4) is shown with LED
6 and 7’s spectra scaled up 50 times. The dotted black vertical lines represent the
boundaries of the bins selected. Each bin have 3, 3, and 4 LEDs. A single light
source can be defined by taking one LED from each of the bin.

number of possible light source pairs combinations reduced from 1 million to only
630. This allows to change the previous light source pair selection criterion to:

Criterion: Choose the pair of LED triplets from the three defined bins which
minimizes the mean ∆E00 error on the training set.

The above described workflow is summarized in Fig.5.6.

5.4 Simulation results

5.4.1 Optimal light sources
After simulating the errors from all 630 pairs of light sources, ∆E00 is calculated
for each of them. The best three combinations are shown in Table.5.1 and the
corresponding light source plots in Fig.5.7.

Table 5.1: The table shows the best pair of light sources defined by two LED
triplets. The table also shows the training error calculated by using each light
source.

Light source 1 Light source 2 Error
(1, 6, 8) (3, 5, 9) 0.31
(1, 6, 8) (3, 5, 10) 0.35
(1, 6, 9) (3, 4, 8) 0.37

The minimum error is 0.31 from light sources pair formed from LEDs (1, 6, 7)
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and (3, 5, 9). The test error for this pair of light sources on Colourchecker24 is
0.66. The final channels of the imaging system is the product of the pair of light
sources with CSRF which is shown in 5.8.

(a) First (b) Second

(c) Third

Figure 5.7: The best pair of light sources defined by two LED triplets. The light
source combinations are mentioned in the title of each plot. The training errors
calculated by using each of the light source is also mentioned on the right side of
each plot pair.

(a) Camera response light source 1 (b) Camera response light source 2

Figure 5.8: The resulting channel sensitivities for the best pair of light source.

5.4.2 Error on patches
For the visualization of errors in this report, the colour patches are converted
to sRGB colour space. The sRGB colour space is a widely used colour space
across electronic devices, making it important to know the chromaticities of the
patches with respect to the gamut of sRGB (W3C, 2022). Note that a gamut of
the colour space is a three-dimensional construct, containing both the information
of chromaticity and luminance. But in this thesis work, the colour specifications
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are normalized by the luminance of the white patch of the training colourchecker.
Hence only the chromaticities are compared for the gamut comparison. Fig.5.9
shows the chromaticities of both training and testing data as well as the gamut
of sRGB. The figure shows that there are 42 data points in training and one in
testing which are out of gamut for this sRGB visualization. Especially for these
out-of-gamut points, it is better to only refer to the numerical errors.

Moreover, in order to have a comparison with the dual-RGB imaging setup,
simulations are conducted for a three-channel imaging setup under the CIE D65
illuminant. The three-channel simulations can be processed as discussed in Section
5.1 and Eqs.5.2-5.7.

The Fig.5.10 and Fig.5.14 shows the ∆E00 for each of the training and testing
patches as well as mean ∆E00 values along with the results of the three-channel
imaging workflow. The advantage of dual-RGB imaging over three-channel imaging
is evident where the training mean ∆E00 error reduced from 1.25 to 0.31 (75%
reduction) and the testing mean ∆E00 error from 1.53 to 0.66 (57% reduction).
This is also visible by the colour coding visualization of errors where the colour
code varies from brown, red, orange, yellow, to green for highest to lowest errors.
It can be observed that the dual-RGB has more green codes and three-channel has
more red and yellow codes assigned. For the neutral patches, a trend is visible
where the error generally decreases as the lightness of the patch increases.

The Fig.5.11 and Fig.5.15 shows a reproduction of ground-truth, dual-RGB
predicted, and three-channel predicted colours in sRGB colour space for training
and testing data. Each patch consists of four sub-blocks in the form ( GT TC

GT DR ), where
GT is for ground truth, TC for three-channel, and DR for dual-RGB sub-block.
The yellow boundaries represent the out-of-gamut colours for the sRGB colour
space. As mentioned before, the difference in patches cannot be visualized for these
out-of-gamut colours, limiting the observations to only their ∆E00 values for these
patches.

Moreover, a generally good correlation is observed between the ∆E00 errors
and perceivable differences in colour patches. The Fig.5.13 shows five example
patches taken from the Fig.5.11. The ∆E00 errors are mentioned below each block.
The errors are taken between the ground-truth and three-channel predictions. The
patches are selected such that the errors are in approximate increments of one
∆E00. This figure highlights a good correlation between the perceivable difference
and the ∆E00 errors. This signals to the correctness of the parameters used for the
∆E00 in this thesis work.

The Fig.5.12 shows plot for Lightness vs. Chroma and a∗ vs. b∗ in CIELAB
colour space for training data, where the positions of dots represent the ground-
truth data. The plots show both colour codes for errors as well as colour code
representing the sRGB reproduction of colour patches. Considering the Lightness
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vs. Chroma plot elaborates more clearly on the trend that was mentioned before
that the errors generally decrease as the lightness increase. It can be seen that as
the plot is traversed from low lightness to high lightness values, the errors generally
decrease. This plot highlights another factor into this observation, that the errors
also decrease with decreasing chroma. This means that the most light and the least
chromatic colours perform the best in terms of ∆E00 errors. These observations
are true for both three-channel and dual-RGB setup.

Looking at the a∗ vs. b∗ plots for training, more elaboration on the previous
observations are found. Previously it was seen that increasing the chroma also
generally increased the colours. The a∗ vs. b∗ plots show that these errors tend
to fall more on the side of bluish and reddish colours. It can also be seen that
errors generally increase moving out from the center which is also consistent with
increasing errors with increasing chroma observation.

The Fig.5.16 show similar plots for Lightness vs. Chroma and a∗ vs. b∗ for
testing data. For testing data no obvious patterns are visible which are as much
visible as it was for training data. This might be because of the low number of
colour patches in testing data.

(a) (b)

Figure 5.9: Data points on chromaticity diagram with a comparison to sRGB
colour space. (a) shows the chromaticity points for training data and (b) shows
the chromaticity points for testing data. The black points correspond to in-gamut
and red points correspond to out-of-gamut chromaticities.
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(a)

(b)

(c)

Figure 5.12: Plots for dual-RGB and three-channel training patches. (a) shows
a∗ vs. b∗ and Lightness vs. Chroma plots for dual-RGB.(b) represents the same
set of plots for three-channel captures. The dots represent the ground-truth data
and the color code represents the mean ∆E00 error. (c) shows similar a∗ vs. b∗

and Lightness vs. Chroma plots but the colours represent the sRGB colours of
the ground-truth patches.
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Figure 5.13: The figure shows five example patches from Fig.5.11, where each
patch block is made up of four sub-blocks in the form

(
GT TC
GT DR

)
, where GT is

for ground truth, TC for three-channel, and DR for dual-RGB block. The ∆E00

errors are mentioned below each block. The errors are taken between the ground-
truth and three-channel prediction. The patches are chosen such that the errors
are in approximate increments of ∆E00. This highlights the correlation between
the ∆E00 errors and perceptible differences.

5.5 Discussion
This chapter discussed the workflow for a three-channel imaging and 6-channel
multispectral imaging (dual-RGB). The approach for predicting a ground-truth tris-
timulus values from the simulated digital numbers from the camera was elaborated.
Different approaches for dual-RGB were discussed including active and passive
multispectral imaging using filters and multispectral imaging with LEDs-based
light source. The approach of LEDs-based light source was further elaborated
which was used with transmissive photographic films. It was discussed how the
different combinations of the 10-LEDs could generate around a million different
pair of light sources for dual-RGB captures. These combinations were reduced to
630, by dividing the LEDs into three bins of 3, 3, and, 4 LEDs. This limited the
number of combinations of light source pairs because now one light source could
only be created by a total of three LEDs where each LED is selected from different
bin.

All the different 630 combinations of light sources were simulated and the one
giving the least ∆E00 mean error was selected as the final light sources pair. The
mean error for training was 0.31 and for testing it was 0.66. These errors were
compared with the mean error from a three-channel imaging which gave 1.25 for
training and 1.53 for testing. This showed that the dual-RGB approach reduced
the errors by 75% for training and 57% for testing. Looking at the individual errors
of patches in Fig.5.10 and Fig.5.14, a general trend was seen for neutral patches
that as the lightness increased, the errors were reduced. This is sensible since more
lightness would correspond to more light being transmitted from the film increasing
the signal to noise ratio for the capture.
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(a)

(b)

(c)

Figure 5.16: Plots for dual-RGB and three-channel testing patches. (a) shows
a∗ vs. b∗ and Lightness vs. Chroma plots for dual-RGB.(b) represents the same
set of plots for three-channel captures. The dots represent the ground-truth data
and the color code represents the mean ∆E00 error. (c) shows similar a∗ vs. b∗

and Lightness vs. Chroma plots but the colours represent the sRGB colours of
the ground-truth patches.
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The sRGB visualizations of the ground-truth and the predicted patches are also
shown in Fig.5.11 and Fig.5.15 along with the highlighting of colours which were
out-of-gamut for sRGB colour space. These figures showed the perceivablity of the
difference in three-channel and dual-RGB imaging. The three-channel predictions
gives a perceivable different colour especially for reddish and bluish patches. The
dual-RGB approach generally gives imperceivable results from the ground-truth
even for reddish and bluish regions.

The Fig.5.12 and Fig.5.16 showed the CIELAB a∗ vs. b∗ and Lightness vs.
Chroma plots for the training and testing data. These plots further confirmed
the obeservation of decreasing errors as the lightness increased. These plots also
showed another pattern of decreasing error with decreasing chroma. This can be
attributed to the fact that for less chromatic colours, more channels participate in
providing the signal hence increasing the signal to noise ratio. These trends are
not obvious for testing data, one reason might be because of the low number of
colour patches for testing.

With all these different plots and visualizations, it is clear that in simulations,
dual-RGB performs better than a regular three-channel imaging workflow in terms
of colour accuracy.
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6 Exploring change of intensities

To improve is to change; to be perfect is to change often.

Winston Churchill

In the previous approach for selecting the pair of LED triplets, the LEDs were
considered at their full intensities. But a single pair of LED triplets can have
a varied intensity, giving very different results on the colour difference. As an
example, it is shown here how much of a difference changing the intensity of one
LED can make on the error. As it was found out previously, the best pair of LED
triplets are (1, 6, 8) and (3, 5, 9). As an example, the intensity of LED 5 can be
varied from 0 (no intensity) to 1 (full intensity) at a step-size of 0.01 as shown in
Fig6.1. Fig.6.2 shows that the optimal intensity for LED 5 (keeping the intensity
of other LEDs at full) is 0.57, which gives an error of 0.29 in comparison to 0.31 at
full intensity.

Although the error might not have been reduced to a significant level for this
particular LED and its combination, this definitely gives a hint of the potential of
exploring changing intensities of LEDs for the reduction of errors. For this reason,
for each of the light source pair combinations, the varying intensities for each LED
are also explored to search for the optimal LED intensities that give the minimum
error. For finding these optimal intensities, Particle Swarm Optimization (PSO)
has been implemented. The PSO is selected because of its simplicity and because
it gives the best success rate and solution quality and the second best processing
time in continuous and discrete optimization tests competing against the four other
evolutionary algorithms, i.e., the genetic algorithm, memetic algorithm, ant-colony
systems, and shuffled frog leaping (Elbeltagi et al., 2005).
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Chapter 6 EXPLORING CHANGE OF INTENSITIES

Figure 6.1: From the best pair of light sources selected in the Chapter 5, the
intensity of LED5 is changed from 0 (off) to 1 (full intensity) at a step size of
0.01 while keeping the rest same.

Figure 6.2: The plot shows the mean ∆E00 error found for the best light source
pair found in Chapter 5 by changing the intensity of LED 5 from 0 (off) to 1
(full intensity) while keeping the rest same. The error is found out to be 0.29
when the intensity is 0.57 in comparison to 0.31 when it was full.
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Particle Swarm Optimization (PSO) 6.1

6.1 Particle Swarm Optimization (PSO)
PSO is part of a larger class of algorithms called as evolutionary algorithms.
Evolutionary algorithms are stochastic searching methods that are inspired by
either the biological evolution of species or their social behaviour, or both. This is
analogous to ants finding the shortest path to food or birds finding the destination
in migration (Lovbjerg, 2002). This behaviour for finding the target is analogous
to optimization in computational problems. This way of optimization is simulated
computationally in the category of evolutionary algorithms. In literature, genetic
algorithms were the first evolutionary algorithms proposed based on the principles
of survival of the fittest and reproduction. Genetic algorithms have demonstrated
their ability to solve a large set of problems in both science and engineering. An
example of it is the ‘evolved antenna’ called X-band in NASA’s ST5 Mission, whose
design is far from being proposed by an experienced antenna designer, giving
maximum data throughput with lesser power requirements (Hornby et al., 2006).
With the benefits also comes the time complexity that genetic algorithms have.
This leads to the creation of other evolutionary algorithms that can be faster and
even provide better solutions; PSO is such an algorithm (Elbeltagi et al., 2005).

Kennedy and Eberhart (1995) proposed PSO as being inspired by the social
behaviour of birds migrating to an unknown destination. In PSO, each solution
is considered a bird and called a particle. The whole flock is called a swarm.
Each particle has its own intelligence, which allows it to search its local space for
solutions. The whole swarm has a combined intelligence that allows each of its
particles to direct themselves towards the best solution found by the swarm. Each
bird has its own location, direction, and speed of flight. After getting information
about the best solution found by the flock, the particle updates its location which
gets affected by the best solution this particle has found, its speed and direction,
and the best solution found by the whole swarm.

6.1.1 Algorithm
The PSO is summarized in Algorithm 1 and the parameters are explained below:

1. C0 refers to the inertia of particle. C0 < 1 implies deceleration of particle
and C0 > 1 implies accleration.

2. C1 refers to the weightage given to the cognition of the individual particle.

3. C2 refers to the weightage given to the global cognition of the swarm.

4. Lmax is maximum number of iterations for optimization.
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5. N is total number of particles in swarm for optimization.

Data: Lmax, N, C0, C1, C2

Result: x = [µ1, µ2, ..., µM ]
for n in [1, . . . , Lmax ] do

for i in [1, . . . , N ] do
Randomize r1 and r2
Update velocity: vi ←
C0vi + C1r1 ⊗ [xi, best − xi] + C2r2 ⊗ [xbest − xi]
Update position: xi ← xi + vi

Enforce constraints for xi

Calculate value of cost function: ci = COST (xi)
if ci < ci, best then

ci, best ← ci
xi, best ← xi

end
if ci < c best then

c best ← ci
x best ← xi

end
end

end
Algorithm 1: Algorithm for Particle Swarm Optimization

6.2 PSO for LED intensities optimization
In the dual-RGB setup for this thesis, there are 630 different combinations of light
sources that can be created by utilizing the three bins of LEDs. In each of these
630 combinations, there is a pair of LED triplets that define the light source pair.
These 630 combinations of light source pairs are created by considering each LEDs
at their peak illumination. A big part of the solution space is skipped for the
minimization of ∆E00 by not considering the change of the illumination level for
each of the LED involved in the LEDs triplet pair. In order to optimize the LEDs
illumination level in a pair of LED triplets, the problem needs to be formulated in
such a way that it can be used in the PSO algorithm. The algorithm is detailed in
Fig.6.3 and the problem formulation is defined in subsequent subsections.
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6.2.1 Parameters
The intensity of an LED is defined as a value in the range 0 to 1 where 0 corresponds
to no illumination of the LED and 1 corresponds to maximum illumination. The
optimization problem is parameterized by considering the intensities of the LEDs as
the parameters to be optimized i.e. six dimensions of solution space are considered,
where each dimension corresponds to each of the LED intensity. The solution is
defined as:

x = [µ1,1, µ1,2, µ1,3, µ2,1, µ2,2, µ1,3] (6.1)

where µi,j is the intensity for ith light source having jth LED.

6.2.2 Constraints
For the optimization to give results that are physically realizable and to make the
modelling closer to real captures, two types of constraints are defined.

6.2.2.1 Clipping of negative intensities

The negative LED intensity values are clipped because they correspond to negative
illumination, which implies that an LED reduces the illumination at the wavelengths
it is defined. Achieving this would technically be possible if the LEDs had high
overlapping regions in wavelengths because a light source is defined by additively
mixing three LEDs. In this case, a negative contribution to illumination from a
single LED can still lead to net positive illumination across all wavelengths because
of other LEDs contributions. This would make the light source physically realizable.
But the LEDs wavelengths do not overlap substantially, so any negative intensity
is clipped to zero during the optimization steps. Mathematically, it can be written
as:

µi,jclipped = max(0, µi,j) (6.2)

6.2.2.2 Normalization of intensities

For the simulations, the relative intensities of the LEDs are important hence LEDs
spectra are normalized. Since there are two light sources each defined by a LEDs
triplet, each LEDs triplet is normalized with the the maximum intensity among
them. Mathematically, it can be written as:
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µ1,j =
µ1,j

max(µ1,1, µ1,2, µ1,3)
(6.3)

µ2,j =
µ2,j

max(µ2,1, µ2,2, µ2,3)
(6.4)

This type of normalization also reflects the real captures setting more closely
because for each of the two captures in dual-RGB imaging, the exposure time is
set individually for each capture. This also allows for compensating for the very
low illumination of the LEDs 6 and 7 since the exposure time can be increased for
the captures involving the light sources with these LEDs to get more signal in the
image.

6.2.3 Cost function
The cost function is ∆E00 with the parameters kL, kC , and kH defined to be 1.

6.2.4 Tuning parameters
• C0 is set as the average of 1.4 and 0.5 values range proposed in Shi and

Eberhart (1998).

• Both C1 and C2 are set as 2 from the recommended values of Kennedy and
Eberhart (1995).

• Lmax is set as 10 and N as 200. These are empirically set by author consid-
ering the trade-off between computational resources, time, and errors being
achieved.

6.3 Results
The PSO is applied on each of the 630 combinations of light source pairs to optimize
the intensities of the LEDs involved. In this way, the pair of light sources and their
corresponding LEDs intensities which minimize the ∆E00 error are found. The
workflow is summarized in Fig.6.4.

The Fig.6.5 shows the final optimized LED light source pair. Notice that the
light source pair has changed from (1, 6, 8) and (3, 5, 9) selected at full intensity to
(1, 6, 7) and (2, 4, 9). Since the effective channels of the dual-RGB imaging setup is
the combined effect of LED illumination with the CSRF, the channels of the overall
system are shown in Fig.6.6. This highlights the fact that optimizing the LEDs
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at varying intensities expands the solution space. The results are summarized in
Table.6.1.

The Fig.6.7 and Fig.6.10 show the patch-wise ∆E00 error for training and testing
data similar to previous chapter. The training mean error comes out to be 0.17 and
testing error of 0.28. The training error has reduced further by 86% and testing
by 82% of what had been calculated for three-channels imaging setup in Chapter
5. Note that dual-RGB had reduced the errors by 75% for training and 57% for
testing. Dual-RGB-PSO provides further reduction of 11% for training and 25%
for testing. Similar to the observation in neutral grays of decreasing errors with
increasing lightness, a similar trend is shown in these figures.

The Fig.6.8 and Fig.6.11, like in last chapter, shows the colour reproduction of
ground-truth and predicted patches. This time each block has four sub-blocks in
the form ( GT TC

DRP DR ), where GT is for ground truth, TC for three-channel, DR for
dual-RGB, and DRP for dual-RGB-PSO sub-block.

The Fig.6.9 shows the plot for Lightness vs. Chroma and a∗ vs. b∗ in CIELAB
for training data. like as shown last chapter. For Lightness vs. Chroma, dual-RGB-
PSO plot also shows a similar trend of having least errors at the bottom right of
the plot which represents highest lightness and minimum chroma. As the lighthness
is reduced or chroma is increased, the errors are generally increasing. The a∗ vs. b∗
plot shows, again, the same trend as dual-RGB i.e. having least error at the center
of the plot representing neutral colours and increasing errors as the point move
outwards. The Fig.6.12 shows Lightness vs. Chroma and a∗ vs. b∗ plots for testing
data with no obvious patterns to observe.

Table 6.1: Details and comparison of PSO optimized intensity with full intensi-
ties and 3-channel system.

Condition 3-channel Full intensity PSO intensity
Source 1 LEDs D65 (1, 6, 8) (1, 6, 7)
Source 2 LEDs N/A (3, 5, 9) (2, 4, 9)

Source 1 intensities N/A (1.0, 1.0, 1.0) (0.07, 0.58, 1.0)
Source 2 intensities N/A (1.0, 1.0, 1.0) (0.12, 0.56, 1.0)

Train error 1.25 0.31 0.17
Test error 1.53 0.66 0.28
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Chapter 6 EXPLORING CHANGE OF INTENSITIES

Figure 6.5: Final PSO-optimized light sources among all the 630 different
combinations of light sources pairs.

Figure 6.6: Resulting channels of the overall multispectral system got after
multiplication of light source pairs with CSRF.

6.4 Further exploration on intensities: Ge-
netic algorithm

The solution obtained from the PSO might be a result of some local minimum in
the solution space or, in the worst scenario, a by-product of some algorithm-specific
details. This gives motivation to get a ‘second opinion’ from other optimizing
algorithms too. For this purpose, genetic algorithm is selected because it has
been utilized in literature for LEDs optimization in art paintings context (Durmus
et al., 2020) and also because of its wide usage in science and engineering problems
(Elbeltagi et al., 2005).

First a population of µ randomly generated solutions are generated. In each
iteration λ offsprings are generated by either crossover operation with a probability
of pc or mutation. If the offspring is different from the parent then the fitness
function is evaluated, otherwise the same fitness value as parent is assigned to the
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(a)

(b)

(c)

Figure 6.9: Plots for dual-RGB-PSO and dual-RGB training patches. (a)
shows a∗ vs. b∗ and Lightness vs. Chroma plots for dual-RGB-PSO. (b) is
reproduced from Fig.5.12a for convenience. It represents a∗ vs. b∗ and Lightness
vs. Chroma plots for dual-RGB. The dots represent the ground-truth data and
the color code represents the mean ∆E00 error. (c) is reproduced from Fig.(c)
for convenience. It shows similar a∗ vs. b∗ and Lightness vs. Chroma plots but
the colours represent the sRGB colours of the ground-truth patches.
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(a)

(b)

(c)

Figure 6.12: Plots for dual-RGB and three-channel testing patches. (a) shows
a∗ vs. b∗ and Lightness vs. Chroma plots for dual-RGB-PSO.(b) is reproduced
from Fig.5.16a which represents a∗ vs. b∗ and Lightness vs. Chroma plots for
dual-RGB. The dots represent the ground-truth data and the color code represents
the mean ∆E00 error. (c) is reproduced from Fig.c, which shows similar a∗ vs.
b∗ and Lightness vs. Chroma plots but the colours represent the sRGB colours of
the ground-truth patches.
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offspring. The best µ solutions from both parents and off-springs are selected to
move to the next generation (iteration). The crossover is a function which generates
an offspring by taking parts of the parameters from parents and concatenating them
to generate an offspring solution. The mutation is another of way generating an
offspring which is to take a single parent and randomly change one of its parameters.
The fitness function evaluates the error for a solution. The algorithm is summarized
in Algorithm.2.

Data: Population sizes µ, λ, crossover probability pc, mutation rate p;
Result: P = {x(1), x(1), . . . , x(µ)}
Set P = {x(1), x(1), . . . , x(µ)} randomly across the solution space
for t in [1, . . . , Lmax ] do

P ′ ← ∅
for i in [1, . . . , λ] do

Sample r ∈ [0, 1];
if r ≤ pc then

select two individuals x, y from P ;
z(i) ← Crossover(x, y);
if z(i) /∈ {x, y} then

evaluate f(z(i));
else

infer f(z(i)) from parent;
end

else
select an individual x from P ;;
z(i) ← Mutation(x;)
if z(i) ̸= x then

evaluate f(z(i))
else

infer f(z(i)) from parent;
end

end
P ′ ← P ′ ∪ {z(i)};

end
P is updated by the best µ points in P ∪ P ′

end
Algorithm 2: Genetic algorithm (µ+ λ)
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6.4.1 Results for genetic algorithm and comparison
with PSO

As shown in Fig.6.13, Fig.6.14, and Table.6.2, genetic algorithm optimizes to not
just the same LED pairs but also very closely to the relative intensities of the LED
pairs too. This gives more confidence for the LED optimization solution by PSO
for being more closer to global minimum rather than some local one and also not
being a result of some algorithm-specific result.

(a) Light source 1 (b) Light source 2

Figure 6.13: Comparison of light sources optimized from PSO and genetic
algorithm.

Table 6.2: Details and comparison of PSO optimized intensity with Genetic
algorithm intensities

Condition PSO intensity Genetic intensity
Source 1 LEDs (1, 6, 7) (1, 6, 7)
Source 2 LEDs (2, 4, 9) (2, 4, 9)

Source 1 intensities (0.07, 0.58, 1.0) (0.06, 1.0, 1.0)
Source 2 intensities (0.12, 0.56, 1.0) (0.15, 0.68, 1.0)

Train error 0.17 0.18
Test error 0.28 0.28

6.5 Discussion
This chapter discussed the limitation of the solution space in the dual-RGB workflow
elaborated in Chapter 5. In dual-RGB workflow, the LEDs were only considered
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Chapter 6 EXPLORING CHANGE OF INTENSITIES

at their full intensities for defining a pair of light sources. It was shown that how
the optimal light source pair, in terms of mean ∆E00 error, from the dual-RGB
simulations can further be optimized by changing the intensities of LEDs defining
the light source. As an example, the Fig.6.2 showed that by changing only one
LED keeping the rest at full, the mean error was reduced from 0.31 to 0.29.

For the LEDs optimizations, an evolutionary algorithm called Particle Swarm
Optimization (PSO) was chosen and adapted for dual-RGB (hence called dual-
RGB-PSO). After parameterizing the problem of LEDs intensity optimization, PSO
was applied to all the 630 combinations of light source pair which could be defined
in dual-RGB. Those LEDs and their corresponding intensities were selected as the
final light source which gave the minimum mean ∆E00 error. The final pair of light
sources was shown in Fig.6.5 and their corresponding spectral channels in Fig.6.6.
The mean error for dual-RGB-PSO was 0.17 for training and 0.28 for testing. This
shows a reduction of 86% and 82% for training and testing in comparison to the
three-channel imaging errors. In comparison, the dual-RGB had reduced the errors
to 75% and 57%. Moreover, the dual-RGB-PSO selects different LEDs than the
dual-RGB which highlights the fact that dual-RGB was exploring a limited solution
space for the minimization of the errors.

The sRGB colour reproductions of ground-truth, three-channels, dual-rgb, and
dual-RGB-PSO colour patches for training and testing data were shown in Fig.6.8
and Fig.6.11. Like in Chapter 5, three-channel shows a perceivable difference from
the ground-truth. For the dual-RGB and dual-RGB-PSO, generally there is no
perceivable difference. This can be attributed to the fact that the errors for both
the dual-RGB and dual-RGB-PSO are below the just noticeable difference. So the
visualizations for both of the system would generally appear the same.

The Fig.6.9 and Fig.6.12 showed the CIELAB a∗ vs. b∗ and Lightness vs.
Chroma plots for the training and testing data. For dual-RGB-PSO, we observe
similar trends of decreasing error with increasing Lightness and decreasing Chroma
as was found for three-channels and dual-RGB in Chapter 5. For testing data,
these trends are not visible by inspection which, again, can be attributed to low
number of sample points.

In order to check the robustness of the optimal solution provided by PSO,
Genetic algorithm was used to optimize the LEDs intensities similar to what PSO
had done. It was shown in Fig.6.13 and Fig.6.14, that the genetic algorithm not only
selects the same LEDs as optimal light sources, but also a very similar corresponding
intensities. This gives more confidence in the optimal solution provided by the
PSO for the best light sources and their LED intensities.

Going through the comparative errors and plots for dual-RGB-PSO, it can be
seen that exploring intensities for defining light sources for dual-RGB the solutions
can be further improved in comparison to the three-channel imaging. And for the
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purpose of optimization of the LEDs intensities, both PSO and genetic algorithm
can be utilized to give optimal solution.

79



Chapter 6 EXPLORING CHANGE OF INTENSITIES

80



7 Real captures

The unexpected always happens when you least expect it.

Lola Perkins

This chapter discusses the real captures that are taken for the optimized dual-
RGB, dual-RGB-PSO, and three-channel imaging setup simulated in previous
chapters. The Fig.7.1 shows the setup while taking a dual-RGB capture. Each
of the image captured is corrected for dark noise and non-uniform illumination
is handled through flat-fielding. The Eq.7.1 is used for dark noise correction and
flatfielding.

imgf =
imgr − imgd
imgw − imgd

(7.1)

where imgr is the raw image, imgd is the dark noise image, and imgw is the
white image.

Dark noise image, imgd, is taken as the average of the 10 captures taken with
lens cap on the camera. The white image, imgw, is taken as the open-gate image
of the light source.

The white, train, and test colorchecker captures for light sources optimized
dual-RGB and dual-RGB-PSO are shown in Figs.7.2 and 7.3. For all the captures
the ISO was set to 50 (minimum possible in the camera). The integration time
was set using the open-gate images of both light sources i.e. one integration time
for each light sources. The details of the captures are mentioned in Table.7.1:
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Figure 7.1: Capturing the dual-RGB image

Table 7.1: Table showing the integration times for the captures.

Light source Integration time (s)
Full intensity Light source 1 1/60
Full intensity Light source 2 1/500
PSO intensity Light source 1 1/2
PSO intensity Light source 2 1/40

7.1 Real captures Vs. simulated captures
validation

In order to compare the real captures and the simulated captures calculated in
previous sections, the intensity values of the simulated pixel intensities against the
real intensities are plotted in Fig.7.4. Each point corresponds to the simulated and
real capture values of each patch in the training data. The black line is the line
found through linear regression on all the points. The camera response are shown
for each of the individual channels of the dual-RGB system separately. The R2

error for the regressed line is shown above each plot. It can be clearly seen that the
real and simulated captures lie well on the regressed line for each of the channel.
All of the R2 errors are also above 0.98 which makes the fit very well. There are
two outliers found for the training data which are marked with red colours. The
results of the comparison after removing the outliers are shown in Fig.7.5. From
the improvement in R2, it can be seen the regressed line better fits the data proving
a linear relationship between both actual and simulated captures.
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Results 7.2

(a) light source 1 (b) light source 2 (c) Train light source 1

(d) Train light source 2 (e) Test light source 1 (f) Test light source 2

Figure 7.2: Real captures of open-gate, train, and test for full intensity light
sources.

(a) Light source 1 (b) Light source 2 (c) Train light source 1

(d) Train light source 2 (e) Test light source 1 (f) Test light source 2

Figure 7.3: Real captures of open-gate, train, and test for PSO intensity light
sources.

7.2 Results
In this section, the errors for the predictions using dual-RGB, dual-RGB-PSO, and
three-channel imaging are discussed. The Table 7.2, Fig.7.6, and Fig.7.9 shows the
overall and patch-wise ∆E00 error. The mean calculation is done after removing
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(a)

(b)

Figure 7.4: Correlation plots for real and simulated digital numbers. (a) shows
the plot for dual-RGB and (b) shows the plot for dual-RGB-PSO. Notice that
there are two patches which are outliers.

the outliers mentioned before. The mean error in the three-channel imaging is 1.89
which is reduced to 1.06 in dual-RGB and 1.11 in dual-RGB-PSO. These represent
a reduction of 43% and 41% for dual-RGB and dual-RGB-PSO respectively. For
testing, the errors reduced from 2.52 in for three-channels to 1.61 for dual-RGB
and to 1.87 for dual-RGB-PSO. These represent a reduction of 36% and 26% for
dual-RGB and dual-RGB-PSO respectively. Unlike in the simulations, where the
dual-RGB-PSO performed better than dual-RGB, in real captures the performance
of dual-RGB and dual-RGB-PSO are comparable.

The Fig.7.7 and Fig.7.10 shows the colour reproduction of ground-truth and
predicted patches similar to Fig.6.8. each block has four sub-blocks in the form
( GT TC
DRP DR ), where GT is for ground truth, TC for three-channel, DR for dual-RGB,

and DRP for dual-RGB-PSO sub-block. This time another set of patches are
highlighted as red which are the outliers detected previously.

The Fig.7.8 shows the plot for Lightness vs. Chroma and a∗ vs. b∗ in CIELAB
for training data. For Lightness and Chroma, as expected, the trend of decrease
in error with increasing Lightness and decreasing Chroma is observed. For a∗ vs.
b∗, it can be seen that, unlike the simulations, no clear trend of higher errors are
observed along any specific direction. No particular trend also extends to Fig.7.11
which shows the Lightness vs. Chroma and a∗ vs. b∗ plots for testing data.
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(a)

(b)

Figure 7.5: Correlation plots for real and simulated digital numbers. (a) shows
the plot for dual-RGB and (b) shows the plot for dual-RGB-PSO. The outliers
are removed from the calculations and plots

Table 7.2: Table showing the errors for the real captures

Metric 3-channel Full intensity PSO intensity
Mean train Error 1.89 1.06 1.11

Median train Error 1.36 0.62 0.72
Mean test Error 2.52 1.61 1.87

Median test Error 2.64 1.72 1.83

7.3 Discussion
This chapter described the processing and results for real captures corresponding to
the optimal light sources described in simulations in Chapter 5 and 6. For the real
captures, RAW images are used which are linear to the irradiance on the sensor. In
order to validate the real captures, a comparison with the simulations was discussed.
In Fig.7.4 a plot was shown of the digital counts of real captures against simulated
captures. In order to validate the linear relationship between these two quantities,
linear regression is performed to fit all the data points. It can be seen that the
line fits the data quite well with all the R2 errors above 0.98. In these plots, two
outliers are detected which correspond to the same patch in training. The Fig.7.5

85



Chapter 7 REAL CAPTURES

(a)
T
rain

colorchecker
(b

)
T
rain

error
3-channel

(c)
T
rain

error
dual-R

G
B

(d
)

T
rain

error
dual-R

G
B
-P

SO

F
igu

re
7.6:

C
om

paring
errors

for
each

patch
in

training
for

3-channel,
dual-R

G
B
,
and

dual-R
G

B
-P

SO
.

86



Discussion 7.3

F
ig

u
re

7.
7:

T
ra

in
da

ta
re

pr
od

uc
ti
on

fr
om

gr
ou

nd
-t
ru

th
da

ta
an

d
pr

ed
ic

ti
on

s
fr
om

du
al

-R
G

B
-P

SO
,
du

al
-R

G
B

an
d

th
re

e-
ch

an
ne

ls
im

ag
in

g.
E
ac

h
pa

tc
h

co
ns

is
ts

of
fo

ur
bl

oc
ks

in
th

e
fo

rm
( GT

T
C

D
R
P

D
R

) ,
w
he

re
G
T

is
fo

r
gr

ou
nd

tr
ut

h,
T
C

fo
r

th
re

e-
ch

an
ne

l,
D
R

fo
r

du
al

-R
G

B
,
an

d
D
R
P

fo
r

du
al

-R
G

B
-P

SO
bl

oc
k.

T
he

tr
is

ti
m

ul
us

da
ta

is
pr

od
uc

ed
by

co
nv

er
ti
ng

to
sR

G
B

co
lo

ur
sp

ac
e,

sc
al

in
g

an
d

qu
an

ti
zi

ng
th

e
da

ta
to

8-
bi

ts
.

P
at

ch
es

w
it
h

ye
llo

w
bo

un
da

ri
es

ar
e

ou
t-
of

-g
am

ut
ch

ro
m

at
ic

iti
es

fo
r

sR
G

B
co

lo
ur

sp
ac

e
lim

iti
ng

th
e

ac
tu

al
de

m
on

st
ra

tio
n.

P
at

ch
es

w
ith

re
d

bo
un

da
ri

es
ar

e
ou

tli
er

s
w
hi

ch
ar

e
di

sc
ar

de
d

fr
om

th
e

m
ea

n
ca

lc
ul

at
io

ns
.

87



Chapter 7 REAL CAPTURES

(a)

(b)

(c)

(d)

Figure 7.8: Real captures plots for dual-RGB-PSO, dual-RGB and three-channel
training patches. (a) shows a∗ vs. b∗ and Lightness vs. Chroma plots for
dual-RGB-PSO.(b) and (c) represent the same set of plots for dual-RGB and
three-channel captures. The dots represent the ground-truth data and the color
code represents the mean ∆E00 error. For (d) the colour codes are the sRGB
representation of patches

88



Discussion 7.3

(a
)

T
es

t
co

lo
rc

he
ck

er
(b

)
T
es

t
er

ro
r

3-
ch

an
ne

l
(c

)
T
es

t
er

ro
r

du
al

-R
G

B
(d

)
T
es

t
er

ro
r

du
al

-R
G

B
-

P
SO

F
ig

u
re

7.
9:

C
om

pa
ri

ng
er

ro
rs

fo
r

ea
ch

pa
tc

h
in

te
st

in
g

fo
r

3-
ch

an
ne

l,
du

al
-R

G
B
,
an

d
du

al
-R

G
B
-P

SO
.

89



Chapter 7 REAL CAPTURES

F
igu

re
7.10:

T
est

data
reproduction

from
ground-truth

data
and

predictions
from

dual-R
G

B
and

three-channels
im

aging.
E
ach

patch
consists

offour
blocks

in
the

form (
G
T

T
C

G
T

D
R ),w

here
G
T

is
for

ground
truth,

T
C

for
three-channel,

and
D
R

for
dual-R

G
B

block.
T
he

tristim
ulus

data
is

produced
by

converting
to

sR
G

B
colourspace,

scaling
and

quantizing
the

data
to

8-bits.
P
atches

w
ith

yellow
boundaries

are
out-of-gam

ut
chrom

aticities
for

sR
G

B
colour

space
lim

iting
the

actualdem
onstration.

T
he

patches
w
ith

red
boundaries

are
the

outliers
w
hich

are
detected

in
the

realand
sim

ulated
digitalnum

bers
correlation

plot.

90



Discussion 7.3

(a)

(b)

(c)

(d)

Figure 7.11: Real capture plots for dual-RGB-PSO, dual-RGB and three-channel
testing patches. (a) shows a∗ vs. b∗ and Lightness vs. Chroma plots for dual-RGB-
PSO.(b) and (c) represent the same set of plots for dual-RGB and three-channel
captures. The dots represent the ground-truth data and the color code represents
the mean ∆E00 error. For (d) the colour codes are the sRGB representation of
patches.
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shows the same plots with outliers removed. A further improvement is observed
in the R2 error. The two outliers might be attributed to some inaccuracy while
measuring the transmittances through the overhead projector setup as discussed in
Chapter 4. In further calculations, these outliers were removed.

Fig.7.6 and Fig.7.9 showed the three-channel, dual-RGB, and dual-RGB-PSO
imaging mean ∆E00 error. For three-channel imaging, the mean error was 1.89
for training and 2.52 for testing. dual-RGB reduces the training error to 1.06
and testing error to 1.11. This was a 43% and 41% reduction from three-channel
imaging error. For dual-RGB-PSO, the errors reduced to 1.11 for training and 1.87
for testing. This was a 41% reduction in error for training and 26% reduction in
testing.

Similar to what was shown earlier in Chapters 5 and 6 in simulations, real
captures also prove that having extra channels in the dual-RGB and dual-RGB-PSO
provide a better colour accuracy in comparison to three-channel imaging both for
training and testing data.

One apparent misalignment is between the errors of dual-RGB and dual-RGB-
PSO. In simulations, dual-RGB-PSO clearly outperformed the dual-RGB training
and testing by having approximately half the errors as dual-RGB. In real captures,
both perform equally well in comparison to three-channel image. One possible
explanation for it might be the usage of percentage while seeing the improvements
between dual-RGB and dual-RGB-PSO. For example, in the simulations the training
errors for dual-RGB and dual-RGB-PSO were 0.31 and 0.17. If the errors are
computed between the predicted patches of dual-RGB and dual-RGB-PSO (instead
of calculating errors of dual-RGB vs. three-channel and dual-RGB-PSO vs. three-
channel), the mean error is 0.28 which would be imperceivable by HVS. In other
words, the difference between predicted dual-RGB and dual-RGB-PSO colours
are imperceivable. If the same errors between dual-RGB and dual-RGB-PSO
are calculated for the real captures, the mean error is 0.52 which also would be
imperceivable to HVS. In this regard, both the simulations and real captures agree
on the imperceivability of the difference between dual-RGB and dual-RGB-PSO.
One possible solution for exploring the effectiveness of intensity optimizations in
dual-RGB workflow would be to use a different training and testing data which
offer a larger variety of colour patches to be trained on and to be predicted. This
would allow both dual-RGB and dual-RGB-PSO to work on larger scales of colour
differences and possibly giving optimized solutions which are much different from
each other.

The sRGB colour reproductions of ground-truth, three-channels, dual-rgb, and
dual-RGB-PSO colour patches for training and testing data were shown in Fig.7.7
and Fig.7.10. The reproductions highlight a generally better colour accuracy
of the dual-RGB and dual-RGB-PSO over the three-channel predictions. Also
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the previously discussed observation can be seen here about the imperceivability
between the dual-RGB and dual-RGB-PSO predictions.

The Fig.7.8 and Fig.7.11 showed the CIELAB a∗ vs. b∗ and Lightness vs.
Chroma plots for the training and testing data. Similar trends as found in sim-
ulations in Chapters 5 and 6 are found in real captures too. For training data,
a decrease in errors are observed with the increasing Lightness and decreasing
Chroma. For testing, no obvious trends can be deduced by inspection.

Exploring and analyzing the results from all the different plots and visualizations,
it can be easily seen that having more channels not only give better performance
in simulations but also in real capturing workflow too. For the dual-RGB and
dual-RGB-PSO solutions, no perceivable difference is found for the real captures.
One reason could be the scale of differences between dual-RGB and dual-RGB-PSO,
giving a hint to possible future directions one of which is to use different set of
training and testing data having a larger variety of samples.
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8 High Dynamic Range Imaging

Nature always wears the colors of the spirit.

Ralph Waldo Emerson

Uptill now, the workflow on dual-RGB imaging has been implemented both
in simulation and in real captures. It was also seen how changing the intensities
of the LEDs involved in the light source has the potential to improve the colour
accuracy. In this chapter, a workflow is explored on how high dynamic range (HDR)
imaging techniques can be utilized to potentially improve the results of dual-RGB
and dual-RGB-PSO imaging.

8.1 Background
One of the ways to define dynamic range is the ratio of the maximum and minimum
input signal which is in the range that a change in signal is detectable. It is also
useful to define a quantity called dynamage range as ratio of the maximum input
signal which does not damage the sensor/device and minimum input signal which
is in the range that a change in signal is detectable (Mann et al., 2010)(Mann
et al., 2012). HDR imaging can be done either by the combination of several low
dynamic range images or by the acquisition of HDR sensors. First known form of
combining images to improve dynamic range has been by Mann (1993) (Robertson
et al., 2003).

During a camera capture, the light falling on the sensor, q, can not be called as
radiometric because the sensor sensitivity is different for different wavelengths. It
can also not be called as photometric because the sensor sensitivity also does not
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follow the spectral response of the human eye or the color matching function and
luminous efficiency function defined by CIE (Reinhard et al., 2010)(Debevec and
Malik, 1997).

If the quantity q is considered as a spatially varying quantity across the sensor
array q(x, y) then two classes of improvements can be defined that can be done
in recording this quantity. The first class acting on the domain of (x, y) and the
second class acting on the range of q. Then define the improvements can be defined
as either increasing the resolution or extent of these quantities as

1. Increasing pixel density (domain resolution)

2. Increasing number of pixels (domain extent)

3. Increasing bit-depth (range resolution)

4. Increasing dynamic range (range extent)

Multiple images can be taken with shifts to increase the spatial resolution of
images to subpixel accuracy (domain resolution) (Irani and Peleg, 1991)(Mann and
Picard, 1994b). Image stitching methods mainly work by having multiple images
captured by rotating the camera along the same point. Image stitching increases
the number of pixels in an image extending its domain (Mann, 1993)(Mann and
Picard, 1997)(Szeliski, 1996).

Mann and Ali (2016) models q(x, y) as:

q(x, y) =

∫ ∞

0

qss(x, y, λ)s(λ)dλ (8.1)

where qss is light falling on the sensor at continuous position (x, y) on the sensor
plane consisting of wavelength λ, and s(λ) is the spectral sensitivity of the sensor
assumed to be same for each sensor across the sensor array. As can be seen from
Eq.8.1, at a single location (x, y) the spectral information of qss(x, y, λ) is lost.
Thus under different noises such as sampling, aliasing and blurring which act on
the domain (x, y) and other noises such as quantization and non-linear response
acting on the range q, only the quantity qs(x, y) can be estimated.

There is a difference between what a sensor reads through the photo-electric
conversion at the very beginning and what quantity is finally accessible for reading.
The historical context for this is quite interesting where it was found that the
television displays did not have a linear relationship between the voltage supplied
to the cathode ray tube screens and the output luminance. The relationship was
approximately modelled as a gamma function as

L = V 2.5 (8.2)
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where L is the screen luminance and V is the voltage supplied. One solution was
to cater for this non-linearity at the television level which would be cumbersome as
it was already a commercialized product with many users. The other solution was
to compensate for this non-linearity at the camera level which not many people
had yet. The later solution was used and an ‘opposite’ non-linearity was applied to
the captured images or videos. This is shown in Fig.8.1.

Figure 8.1: Encoding and decoding at capturing and display side (Mann and
Ali, 2016).

The ‘opposite‘ non-linearity came to be called as encoding defined as:

V = L
1
2.5 (8.3)

Now with the help of this encoding, the display could decode this through Eq.8.2.
During capturing side, this not only allowed for linearizing the capture-display
workflow but it also provided a way to encode the tones of the images with more
perceptual uniformity. This happened because, it turned out later on, that HVS
also perceive brightness in a non-linear logarithmic fashion which closely aligns
with gamma encoding done during capturing.

In practice, the full gamma factor is not compensated for during encoding.
Say a gamma of 1

2.2
is encoded while decoding happens for 2.5 giving rise to an

overall gamma of 2.5
2.2

or 1.14. This is done in order to compensate for the reduction
in contrast caused due to the dim surround in which the television screens were
normally viewed (Bartleson and Breneman, 1967)(Pitt and Winter, 1974). This also
results in the increase in purity of colors and shift in their dominant wavelength.
Increase in purity helps for compensating the lost saturation but the shift in
dominant wavelength shifts hue.

The digital sensor in cameras are very much limited in capturing the full
dynamic range of the scenes commonly occuring in nature. So in order to estimate
q(x, y), the method to combine several exposure images to a single HDR image
becomes the definition of HDR reconstruction.

It can be formulated as:

97



Chapter 8 HIGH DYNAMIC RANGE IMAGING

fi(x, y) = f (ciq(x, y)) (8.4)

where ci controls the exposure of the image and f is the function which maps
incoming light on the sensor to the final accessible reading from the sensor which
can be both linear or non-linear or just an identity mapping. In order to estimate
q(x, y) from fi(x, y):

q(x, y) =
1

ci
f−1 (fi(x, y)) (8.5)

A more sophisticated formulation and much closer to reality will be to include
the noise terms as:

fi(x, y) = f (ciq(x, y)+) + nfi (8.6)

In the presence of noise, getting images with different exposure helps us because
in the underexposed images, those regions of the image are under the noise levels
which would have been covered up by saturation noise at the regular exposure.
Also in the overexposed images, those regions of the image are above the noise
levels which would have been flooded by dark level noise.

Now by reversing the Eq.8.6:

q(x, y) =
1

ci
f−1 (fi(x, y)− nfi) (8.7)

The estimation of q(x, y), q̂i(x, y), can be written as:

q̂i(x, y) =
1

ĉi
f̂−1 (fi(x, y)) (8.8)

where the estimations of f−1 has been introduced as f̂−1 but also for ci as ĉi
because in some scenarios no information related to exposure is known.

In Fig.8.2, the overall process for the estimation of q(x, y) is shown. Three
captures of the same scene are taken with different exposures manifested by ci.
The function f is applied which can be linear or non-linear. Different instances of
the same image noise is added nfi . In each of the images, inverse function f−1 is
estimated as f̂−1 and apply it to get the linearized version of the same scene. The
exposure difference can be undone by dividing by the estimated exposure constant
ĉi, if estimated, or ci if known. This step would bring back the differently exposed
pixel values of the same scene to the same scale. Since there will be different noises
and estimations, the pixel values can be combined with a weighting function wi to
get the estimated q̂i(x, y). And then for illustration, estimated ĉi capture can be
simulated by multiplication with exposure. This highlights one of main benefits
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of HDR, that since the HDR image tries to approximates the scene radiance, any
given exposure that is required by the application can be simulated.

Figure 8.2: Process of multi-exposure captures

8.2 HDR imaging and dual-RGB
This section discusses the utilization of HDR imaging techniques into the workflow
of dual-RGB. The final HDR images are termed as HDR-Dual-RGB and HDR-dual-
RGB-PSO (when using PSO optimized light sources). The subsequent procedure
is mentioned for HDR-Dual-RGB, but the same procedure can be carried out for
HDR-Dual-RGB-PSO too just by utilizing the PSO optimized light sources.
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Table 8.1: Table showing the integration times for the captures of HDR-Dual-
RGB setup

Setup Integration time (s)
Light source 1 exposure 1 1/1250
Light source 1 exposure 2 1/8
Light source 2 exposure 1 1/2500
Light source 2 exposure 2 1/20

Table 8.2: Table showing the integration times for the captures of HDR-Dual-
RGB-PSO setup

Setup Integration time (s)
Light source 1 exposure 1 1/60
Light source 1 exposure 2 2
Light source 2 exposure 1 1/250
Light source 2 exposure 2 1/1.6

8.2.1 Dark noise correction
For dark noise correction, 10 captures are taken with lens cap on at each of the
exposure time that is being used. And then an average is taken at each of the pixel
to create an average dark noise image for each capture. This is shown in Fig.8.3.

Figure 8.3: Dark noise correction for HDR-Dual-RGB imaging. 10 dark
captures are taken for each of the exposure times involved and are averaged.
Same workflow is carried out for HDR-Dual-RGB-PSO with PSO optimized light
sources.
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8.2.2 White flat-fielding image calculation
The procedure for calculating the white image for flat-fielding is shown in Fig.8.4.
Two white images are needed to be calculated for two of the light sources involved.
For each of the light sources, two captures are taken with different exposure times
which covers the scene dynamic range (that will be captured next) well. Each of the
images is corrected for dark noise with their respective average dark noise images.
From both of these images, a weighting function shown in Fig.8.5 is applied. This
function gives weights in the range of 0 to 16383 (which also could have been from
0 to 1 equivalently) according to the following equation:

f(x) =

{
x, for x < 8192

16383− x, for x ≥ 8192
(8.9)

where x is the dark noise corrected white low-dynamic range image pixel value.
This function is used to get a weighting image.

The weighting image is kept aside the low dynamic range white images are
divided by their respective exposure time. This allows both of these images to
remove the difference in exposure and come on the same scale of irradiance. Then a
weighted average of both of these images are taken according to the weighting image
that was created previously. This is done by multiplying pixel-wise the images with
their respective weighting images and dividing by the sum of the weighting images
pixel-wise. After doing this for both of the light sources images, two HDR white
images are generated.

8.2.3 HDR dual-RGB image calculation
Once the dark noise is corrected and white images are calculated for each of the
light sources, the HDR images of the scene can be calculated as shown in Fig.8.6.
A similar procedure is followed as was followed for the calculation of the white
image. For each of the light sources low dynamic range scene images, dark noise is
corrected by the average dark noise captures at their corresponding exposure times.
The weighting images are calculated similar to the white image calculation and kept
aside.The low dynamic range images are converted to a common scale of irradiance
by dividing them by their corresponding exposure time. The white images calculated
in the previous step is divided by the images to flat-field them. Then the images
are combined with a weighted average according to their corresponding weighting
images. These two images then serve as the two images for our HDR-Dual-RGB
pipeline. The same procedure as mentioned for the two images in Chapter 7 for
dual-RGB and dual-RGB-PSO can be carried out for these two HDR-Dual-RGB
images.

101



Chapter 8 HIGH DYNAMIC RANGE IMAGING

(a) White calculation for light source 1

(b) White calculation for light source 2

Figure 8.4: White calculation for HDR-Dual-RGB imaging. Two open-gate
white images are taken for each of the light sources. Afterwards, dark noise is
subtracted. Weighting image is calculated according to the weighting function and
the input pixel value. The images are divided by their corresponding exposure
times. The images are combined together by taking a weighted mean for each
pixel according to the weighting image calculated. Same workflow is carried out
for HDR-Dual-RGB-PSO with PSO optimized light sources.

8.3 Results
For increasing the dynamic range of the colourcheckers that have been used till
now, a neutral density (ND) filter of optical density 2 is used covering half the
amount of patches on both training and testing colourcheckers. The Fig.8.7 shows
the chromaticities of the training and testing data as well as the gamut of sRGB
colour space. There are 42 patches which lie outside the gamut of sRGB hence
limiting its reproduction visualization for this report. The Fig.8.8 and Fig.8.12
show the patch-wise ∆E00 error for training and testing data similar to previous
chapter. For dual-RGB, the training mean error comes out to be 2.30 and testing
error of 2.87. For dual-RGB-PSO, the training mean error is 2.35 and testing error
of 3.09.
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Figure 8.5: Weighting function used for HDR-Dual-RGB and HDR-Dual-RGB-
PSO imaging.

The Fig.8.9 and Fig.8.13 shows a reproduction of ground-truth, dual-RGB
predicted, and dual-RGB-PSO predicted colours in sRGB colour space for training
and testing data. Each patch consists of four sub-blocks in the form ( GT DRP

GT DR ),
where GT is for ground truth, DRP for dual-RGB-PSO, and DR for dual-RGB
sub-block. Since the visualizations are done in sRGB colour space, visualizing the
side with ND filter is difficult.

The Fig.8.10 shows the plot for Lightness vs. Chroma and a∗ vs. b∗ in CIELAB
for training data for both dual-RGB and dual-RGB-PSO. Notice the clustering
of points near low Lightness region. These are the points towards the side of ND
filter. All the points in this cluster have very low errors. A trend of having reduced
errors for higher Lightness values is observed on the side without ND filter for both
dual-RGB and dual-RGB-PSO. For the plots of a∗ vs. b∗, as the points move away
from the center, a trend of increasing error is observed. In order to have a better
look at these points, Fig.8.11 shows a zoomed in version for these same plots. In
these plots, a similar trend of increasing error is observed as the point moves away
from the center of the a∗ vs. b∗ plot. However in this region, as the Lightness
increases, the errors are gradually increasing. The Fig.8.14 and Fig.8.15 shows
the plot for Lightness vs. Chroma, a∗ vs. b∗ for testing data, and their zoomed in
version. The same trend of low errors for the ND-filters side are observed as well
as a higher errors for higher chromatic values are seen.

8.4 Discussion
This chapter discussed the background on HDR imaging and how it allows to extend
the limitation of the dynamic range of the sensor. One method for HDR imaging
discussed was through the capture of multiple LDR images and by combining
them according to some weighting function. This is done after removing any
embedded non-linearity in sensor and by dividing the images by their exposure
time. A workflow on embedding the HDR techniques in to the dual-RGB working
was discussed. For this purpose, several LDR images were captured under both
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(a) HDR creation for light source 1

(b) HDR creation for light source 2

Figure 8.6: Final HDR image creation for HDR-Dual-RGB imaging. Two
images are taken with different exposures for each of the light sources. They
are corrected for dark noise. A weighting image is calculated according to the
weighting function and the pixel values. The images are divided both by the
exposure time and the white image. A weighted mean is calculated according to
the weighting image. Same workflow is carried out for HDR-Dual-RGB-PSO
with PSO optimized light sources.

dual-RGB and dual-RGB-PSO optimized light sources. The capturing scene was
created by using an ND filter on half of the patches on the colourcheckers used.
Since the images were in RAW format, there was no gamma function needed to
estimated. The workflow was described through the help of Fig.8.3 - 8.6. The
subsequent HDR images were called as HDR-Dual-RGB and HDR-Dual-RGB-PSO
images.

The Fig.8.8 and Fig.8.12 showed the patch-wise error for training and testing
data. It can easily be seen that the patches under the ND-filter give the least
errors. This was also highlighted in Fig.8.10 and Fig.8.14 where the ND filter data
was clustered towards the low Lightness region. Compare this with Fig.7.8, where
the low Lightness values had the maximum error. The HDR gets an upper edge
because it takes separate captures, targeting different regions of luminance levels.
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(a) (b)

Figure 8.7: HDR data points on chromaticity diagram with a comparison to
sRGB colour space. (a) shows the chromaticity points for training data and (b)
shows the chromaticity points for testing data. The black points correspond to
in-gamut and red points correspond to out-of-gamut chromaticities.

This allows the low Lightness patches to send as much signal to the capturing
device as a high Lightness patch can send.

The results for both HDR-Dual-RGB and HDR-Dual-RGB-PSO are comparable,
which is consistent with the results of Chapter 7 for dual-RGB and dual-RGB-PSO
captures.

Considering the above discussions and visualizations, it can be seen that em-
bedding HDR workflow in dual-RGB technique can have significant advantage for
capturing scenes having a high dynamic range.
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(a)

(b)

(c)

Figure 8.10: Plots for HDR-Dual-RGB and HDR-Dual-RGB-PSO training
patches. (a) shows a∗ vs. b∗ and Lightness vs. Chroma plots for HDR-Dual-
RGB-PSO.(b) represents the same set of plots for HDR-Dual-RGB captures. The
dots represent the ground-truth data and the color code represents the mean ∆E00

error. (c) shows similar a∗ vs. b∗ and Lightness vs. Chroma plots but the colours
represent the sRGB colours of the ground-truth patches.
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(a)

(b)

(c)

Figure 8.11: Plots for HDR-Dual-RGB and HDR-Dual-RGB-PSO training
patches zoomed in. (a) shows a∗ vs. b∗ and Lightness vs. Chroma plots for
HDR-Dual-RGB-PSO.(b) represents the same set of plots for HDR-Dual-RGB
captures. The dots represent the ground-truth data and the color code represents
the mean ∆E00 error. (c) shows similar a∗ vs. b∗ and Lightness vs. Chroma
plots but the colours represent the sRGB colours of the ground-truth patches.
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(a)

(b)

(c)

Figure 8.14: Plots for HDR-Dual-RGB and HDR-Dual-RGB-PSO testing
patches. (a) shows a∗ vs. b∗ and Lightness vs. Chroma plots for HDR-Dual-
RGB.(b) represents the same set of plots for HDR captures. The dots represent
the ground-truth data and the color code represents the mean ∆E00 error. (c)
shows similar a∗ vs. b∗ and Lightness vs. Chroma plots but the colours represent
the sRGB colours of the ground-truth patches.
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(a)

(b)

(c)

Figure 8.15: Plots for HDR-Dual-RGB and HDR-Dual-RGB-PSO testing
patches zoomed in. (a) shows a∗ vs. b∗ and Lightness vs. Chroma plots for
HDR-Dual-RGB.(b) represents the same set of plots for HDR captures. The dots
represent the ground-truth data and the color code represents the mean ∆E00

error. (c) shows similar a∗ vs. b∗ and Lightness vs. Chroma plots but the colours
represent the sRGB colours of the ground-truth patches.
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9 Reflective setup

You are never too old to set another goal or to dream a new dream.

C.S. Lewis

Since the work discussed till now have been related to photographic films, the
dual-RGB multispectral imaging setup is extended to reflective objects with the
following objectives:

• To check whether similar results are obtained for reflective objects as were
obtained for transmissive objects.

• To extend the setup to reflective objects such that it can easily be converted
back and forth between transmissive and reflective mode.

The easiest way to convert the LED setup for reflective object should have been
to rotate the integrating sphere. Since the LED system was originally meant for only
photographic films, rotating the integrating sphere was not in the original use-case
of the LEDs setup. Movement of integrating sphere posed a high probability of
changing the LEDs input power and hence the LEDs spectra. This lead to the
constraint that for the extension to reflective objects, nothing could be moved on
the LEDs device.

This lead to a setup as shown in Fig.9.1. The reflecting mirror from the overhead
projector is placed at the location of where the films were used to be placed. This
mirror then can be used to project the light outwards towards a reflective objective.
The use of mirror allows a very easy way to change the mode of imaging between
reflective and transmissive.
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Chapter 9 REFLECTIVE SETUP

Figure 9.1: The converted setup of the LEDs light source to be used for reflective
objects. This particular image shows an example of the reading of LED spectra
impinged on a gray patterned tile with the help of a telespectroradiometer.
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Simulation 9.1

9.1 Simulation
The simulations are run for the reflective setup similar to what was done in Chapters
5 and 6, running the optimizations of LEDs at full intensities and then running
PSO for exploring change of intensities.

9.1.1 Data
For training the Colorchecker Digital SG and for testing the Colorchecker Classic
are used. These are shown in Fig.9.2. For reflectance, the data from BabelColor
(2023) is used.

(a) Colourchecker Digital SG (training) (b) Colourchecker Digital SG reflectances

(c) Colourchecker Classic (testing) (d) Colourchecker Classic reflectances.

Figure 9.2: Training and testing data for reflectance setup.
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9.1.2 Full intensities of light sources
The simulations are run for all the 630 different combinations of light source pairs
and mention the top three giving the least errors in Table.9.1 and plotted in Fig.9.3.
The best light source pair is exactly the same that was obtained earlier for the
transmissive photographic films. The resulting dual-RGB channel sensitivies are
plotted in Fig.9.4.

Table 9.1: Best three combination of light source pairs for dual-RGB

Light source 1 Light source 2 Training error
(1, 6, 8) (3, 5, 9) 0.37
(2, 6, 8) (3, 5, 9) 0.39
(1, 6, 8) (2, 5, 9) 0.46

(a) First (Best error)

(b) Second

(c) Third

Figure 9.3: Top three pair of light sources
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(a) Camera response from light source 1 (b) Camera response from light source 2

Figure 9.4: Camera spectral response at full intensity of light sources

9.1.3 Optimization through PSO
Now similar to what was done in Chapter 6, the intensities of LEDs are optimized
in the light source pairs through PSO to find the pair of LED combinations and
their corresponding intensities which minimizes the error. The resulting optimized
light sources and their corresponding multispectral channels are shown in Fig.9.5.

Table 9.2: Simulation details and comparison of PSO optimized intensity with
full intensities and 3-channel system

Condition 3-channel Full intensity PSO intensity
Source 1 LEDs D65 (1, 6, 8) (1, 6, 7)
Source 2 LEDs N/A (3, 5, 9) (2, 4, 9)

Source 1 intensities N/A (1.0, 1.0, 1.0) (0.07, 0.58, 1.0)
Source 2 intensities N/A (1.0, 1.0, 1.0) (0.12, 0.56, 1.0)

∆TrainE00 1.23 0.37 0.25
∆TestE00 1.29 0.44 0.28

9.1.4 Reflective vs. transmissive optimized channels
The light sources and the resulting channels for full intensities are exactly the
same for both reflective and transmissive. The PSO optimized light sources are
compared in Fig.9.6 and the channels are compared in Fig.9.7.
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(a) PSO light source 1 (b) PSO light source 2

(c) Channels from light source 1 (d) Channels from light source 2

Figure 9.5: PSO light sources and the corresponding multispectral channels

(a) PSO light source 1 (b) PSO light source 2

Figure 9.6: Reflective vs. transmissive light sources comparison

9.2 Results for real captures
Real captures were conducted for the light sources optimized for dual-RGB and
dual-RGB-PSO for the reflective colourcheckers. The light sources optimized for
dual-RGB-PSO for films was also utilized to take another set of captures in order
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Figure 9.7: Reflective vs. transmissive PSO optimized channels comparison

to see whether the same optimized light can be used for both transmissive and
reflective objects.

The Fig.9.8 shows the chromaticities of both training and testing data as well
as the gamut of sRGB. The figure shows that there are 21 data points in training
and one in testing which are out of gamut for this sRGB visualization. The Fig.9.9
and Fig.9.12 shows the ∆E00 for each of the training and testing patches as well
as mean ∆E00 values. The mean training errors are 2.08, 1.84, and 2.18 and the
mean testing errors are 2.25, 1.72, and 2.14 for dual-RGB-PSO, dual-RGB, and
dual-RGB-PSO (for films).

The Fig.9.10 and Fig.9.13, shows the colour reproduction of ground-truth and
predicted patches. Each block has four sub-blocks in the form ( GT DRPT

DRP DR ), where
GT is for ground truth, DRPT for dual-RGB-PSO (light sources optimized for
films), DR, and DR for dual-RGB-PSO block.

The Fig.9.11 shows the plot for Lightness vs. Chroma and a∗ vs. b∗ in CIELAB
for training data. For Lightness vs. Chroma plots, common observation of having
least errors at bottom right is found across all the three setups. In a∗ vs. b∗ plots,
the errors are observed to be equally distributed across all the directions from
center. This is same for the test plots in Fig.9.14.

9.3 Discussion
This chapter discussed conversion of the existing dual-RGB imaging setup for pho-
tographic films to capture reflective objects. This was motivated by the exploration
of whether the workflows undertaken for photographic films can be utilized for
reflective objects. Moreover, the easy convertibility of the LEDs light source from
photographic mode to reflective mode pave a way for its utilization for future
research on reflective objects.
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(a) (b)

Figure 9.8: Data points of reflective data on chromaticity diagram with a
comparison to sRGB colour space. (a) shows the chromaticity points for training
data and (b) shows the chromaticity points for testing data. The black points
correspond to in-gamut and red points correspond to out-of-gamut chromaticities.

Simulations were conducted similar to Chapter 5 and 6 for the reflective
colourcheckers. The simulation of dual-RGB at full intensities converged to the
exact same solution as in Chapter 5 for photographic films. For dual-RGB-PSO
simulation, the final multispectral channels also converged to, more or less, the
same shapes. The setup of dual-RGB and dual-RGB-PSO gave a training error of
0.37 and 0.44 and testing error of 0.25 and 0.28 respectively. This is in comparison
to the three-channel imaging simulated for CIE D65 whose training error was 1.23
and testing error was 1.29. This was summarized in Table 9.2. This shows a clear
advantage of dual-RGB and dual-RGB-PSO over three-channel imaging.

For the real captures, the three-channel images were not compared due to
limitation of time. The captures were conducted for dual-RGB, dual-RGB-PSO
light sources optimized for reflective colourcheckers and dual-RGB-PSO light sources
optimized for photographic films. The setup of dual-RGB-PSO and dual-RGB
optimized on reflective colourcheckers gave a training error of 2.08 and 1.84 and
testing error of 2.25 and 1.72 respectively. The dual-RGB-PSO optimized for
photographic films gave a training error of 2.18 and testing error of 2.14. Notice
that the testing error for dual-RGB has reduced than the training error. This might
highlight a limitation in this experimental session that the training colourchecker
contains a semi-gloss version of the testing data. Though, due to the semi-gloss,
the chromaticity would be impacted but the trained model can still be biased.

Through the visualizations, similar trends were shown as were found in Chapters
5 and 6. Errors were found to be decreasing as Lightness of the patch increased.
Increasing the Chroma also tended to increase the error.

With the above discussion and the visualizations in this chapter, it is seen that
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(a)

(b)

(c)

(d)

Figure 9.11: Real captures plots for dual-RGB-PSO, dual-RGB and dual-RGB-
PSO (light source optimized for films) training patches. (a) shows a∗ vs. b∗ and
Lightness vs. Chroma plots for dual-RGB-PSO.(b) and (c) represent the same
set of plots for dual-RGB and three-channel captures. The dots represent the
ground-truth data and the color code represents the mean ∆E00 error. For (d)
the colour codes are the sRGB representation of patches
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(a)

(b)

(c)

(d)

Figure 9.14: Real capture plots for dual-RGB-PSO, dual-RGB and dual-RGB-
PSO (optimized for light sources) testing patches. (a) shows a∗ vs. b∗ and
Lightness vs. Chroma plots for dual-RGB-PSO.(b) and (c) represent the same
set of plots for dual-RGB and three-channel captures. The dots represent the
ground-truth data and the color code represents the mean ∆E00 error. For (d)
the colour codes are the sRGB representation of patches.
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the simulation workflow conducted for the photographic films can be extended
towards reflective objects. Also the light sources optimized for photographic films,
gave an error on training and testing which can be called similar, depending on
the application, to the ones optimized specifically for reflective colourcheckers.
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10 Conclusion

Every end is a new beginning.

Unknown

This thesis explored the usage of an LEDs-based multispectral imaging system
called as dual-RGB. In dual-RGB multispectral imaging, two images are captured
from a trichromatic camera either using two external filters or two different light
sources. The combination of trichromatic camera with two external filters or
light sources give rise to a six-channels multispectral imaging system. One of the
applications for such a system is in cultural heritage for digitally preserving the
appearance of artworks.

This thesis work was mainly divided into six different parts. The work on these
parts were not done strictly in order. The first part dealt with characterizing differ-
ent devices that were required for simulations. This included the characterization
of the Nikon D610 camera for its response function and spectral response function.
Also the 10-LEDs light source that was used for illumination was characterized
for its spectra and and its thermal stability. The transmittances of the training
and testing colourcheckers were measured by creating a setup utilizing an overhead
projector for enlarging the colourchecker image.

The second part dealt with the simulation of the dual-RGB imaging setup
utilizing the data characterized in the first part. The LEDs were defined in different
bins in order to reduce the combinations of light source pairs. This reduced
the number of different combinations from approximately a million to only 630.
All of the 630 combinations of light sources combinations were traversed to find
the optimal light source pair giving the least mean ∆E00 error on the training
colourchecker data. The mean error provided by the optimal light source was 0.31
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for training and 0.66 for testing. The finalized light source pair was compared
against the simulation of a three-channel light source under CIE D65. This showed
that for three-channel imaging the training error was 1.25 and testing error was 1.53.
This showed a significant improvement of dual-RGB over three-channel imaging.

The third part of the thesis was related to the exploration of how changing the
intensities of the LEDs defined in a dual-RGB imaging setup could further improve
the colour accuracy of the imaging system. For the purpose of optimization, Particle
Swarm Optimization (PSO) was adapted and implemented for the LEDs intensity
optimization. The optimizations were done for all the possible 630 combinations of
light sources that the dual-RGB was optimized on. PSO explored all the different
variations of LEDs intensities giving the least mean ∆E00 error on the training
data. The final pair of light sources and their intensities were different than
what was optimized in dual-RGB optimizations. This new PSO optimized light
sources gave a training error of 0.17 and a testing error of 0.28 which was an
improvement over dual-RGB light source. This new PSO optimized light source
and the method was subsequently referred as dual-RGB-PSO. In this same part,
for the purpose of giving more confidence on the optimality of the dual-RGB-PSO
solution, genetic algorithm was used to optimize the same LEDs intensity problem.
Genetic algorithm converged on the same pair of LEDs as dual-RGB-PSO, as well
as approximated the same intensities too. This gave more probability that the
dual-RGB-PSO light source was not a local minimum or a side-effect of algorithm
specific details.

The fourth part of the thesis concerned with validating the simulated imaging
model and conducting the actual captures for dual-RGB and dual-RGB-PSO
optimized light sources. The camera simulation was validated through correlation
plots of simulated and real captures pixel values. Other than the two outliers
found in training data, the rest of the points showed very good linearity. The real
captures of dual-RGB gave a training error of 1.06 and testing error of 1.61. The
dual-RGB-PSO showed a training error of 1.11 and testing error of 1.87. This
was compared with the three-channel captures which gave training error of 1.89
and testing error of 2.52. This data further proved that having more channels
in the dual-RGB and dual-RGB-PSO imaging provides a better colour accurate
image. One apparent dissimilarity between simulation and real captures were in the
comparison of the dual-RGB and dual-RGB-PSO errors. In simulations, dual-RGB-
PSO performed better than dual-RGB for both training and testing, reducing the
errors approximately by half of dual-RGB errors. One possible explanation for this
apparent misalignment is that the scale at which the errors are being optimized in
simulation for dual-RGB and dual-RGB-PSO is much less than the perceivability
of human visual system. One possible solution for this misalignment can be to use
training and testing data which is more difficult to optimize even in simulations.
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The fifth part of the thesis was related with high dynamic range (HDR) imaging
in the context of dual-RGB and dual-RGB-PSO, subsequently called HDR-Dual-
RGB and HDR-Dual-RGB-PSO. Due to limited dynamic range of the colourchecker
films being used, a neutral density (ND) filter was used to cover half the number
of patches of both training and testing colourcheckers. Several low dynamic range
(LDR) images were captured where within both dual-RGB and dual-RGB-PSO, a
pair of LDR images were captured for each light source. After dark noise correction
and flatfielding, the LDR images were combined with a weighting function to form
an HDR image. The HDR-Dual-RGB mean training error was 2.30 and testing error
was of 2.87. For HDR-Dual-RGB-PSO the training error came out to be 2.35 and
testing error to 3.09. HDR captures also showed similar colour accuracy between
the HDR-Dual-RGB and HDR-Dual-RGB-PSO. This also gives more ground to
the previous explanation that the errors that the simulations for dual-RGB and
dual-RGB-PSO were operating on might be of insignificant magnitude.

The sixth part of the thesis related to the application of the existing dual-RGB
and dual-RGB-PSO workflow for reflective objects. The existing LED light source
was originally built only for photographic films. The setup for this light source
was adapted to be operable for reflective objects with minimal changes and easy
to move back and forth between film and reflective mode. Similar procedure was
employed for reflective objects as was applied as in the second, third, and fourth
parts previously discussed. When the dual-RGB simulation was employed on
reflective objects, it optimized to exactly the same light source pair. Applying
the dual-RGB-PSO simulation, it ended up with approximately similar imaging
channels. Real captures of the reflective colourcheckers were taken with the dual-
RGB and dual-RGB-PSO light sources optimized for reflective objects as well as
for the light sources of dual-RGB-PSO optimized for the films in the third part of
the thesis. The mean training errors were 2.08, 1.84, and 2.18 and the mean testing
errors were 2.25, 1.72, and 2.14 for dual-RGB-PSO, dual-RGB, and dual-RGB-PSO
(optimized for films). The light sources optimized for the films can be said to be
performing comparably, depending on applications, with the reflective optimized
light sources on reflective objects. This hints at the interoperability of the film and
reflective mode of the dual-RGB and dual-RGB-PSO workflows.

The results of the simulations and real captures done in the thesis work, hints
at a very fruitful research direction to explore not just dual-RGB itself but also its
extensions toward LEDs intensities optimizations and embedding HDR imaging
techniques. The interoperability of the films and reflective mode of the imaging
setup, and the similar results of light sources optimized for films when used on
reflective objects, point towards a combined multispectral imaging setup operable
both on films and reflective objects.
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Limitations
There are several improvements and directions that can be explored in future
research, some of which are mentioned list below:

• The testing of the implemented methods such as dual-RGB and dual-RGB-
PSO can be performed on real scene photographic films.

• Since the accuracy of a dual-RGB workflow is tied with its training data, it is
important to consider new set of training data, depending on the application
context. One example of it is Artist Paint Target (APT) (Berns, 1976)
proposed for the application in cultural heritage. This would allow for a
better colour accuracy in the application.

• For dual-RGB-PSO, the parameters utilized in this thesis work had been
taken from literature. A hyperparameter tuning can be performed on PSO
for getting a set of parameters which work well.

• The interoperability of the light sources optimized for photographic films
and reflective objects can be checked more rigorously with more variety of
colourcheckers involved in both films and reflective objects.

• The current work captured the reflective objects with the light sources
optimized on films. It should be checked whether this observation is also
valid for the other way around i.e. whether film captures produce good colour
accuracy when the light source optimized for reflective objects are used.

• The advantage of the HDR capturing workflow can be more highlighted if it
is compared with an LDR capture of the same HDR scene.

Context of thesis work
The thesis work and directions were impacted due to the delay in visa processing,
because of which the author was not able to conduct his research at Munsell Colour
Science Laboratory (MCSL) at RIT, USA. The original thesis direction was to
improve the dual-RGB using the methods of high dynamic range (HDR) imaging
for reflective objects, for which the equipments were in place at MCSL. As an
alternative approach of working at the Colourlab at NTNU, the LED imaging
system developed for photographic films were utilized to implement the dual-RGB
for photographic films from scratch and improving it using the proposed intensities
optimizations. Still the direction of HDR workflow and reflective objects were
explored to a degree.
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A Exposure time linearity charac-
terization

The CRF that we showed in earlier chapter in Fig.4.2 is not the first and only CRF
that we extracted for Nikon D610. The first CRF is shown in Fig.A.1. Notice the
unusual bumps in the supposedly linear region of the camera. We repeated the
experiment for the CRF measurement in a separate light booth to make sure it was
not a problem related to unstable light booth, we still found the bumps at the exact
same exposure times. This motivated us to investigate this unexpected behavior
of the camera rigorously. Our initial impression about these unusual bumps are
that these occur because of the defect in mechancial shutter in DSLR cameras.
This hypothesis can get further grounds, if we compare mechanical shutter and
electronic shutter cameras linearities. In this chapter, we will explain the method
that we used to investigate this issue and also compare the results across a wide
range of different cameras.

Figure A.1: The first CRF measured for Nikon D610. The exposure time is in
seconds and the digital numbers are in 14-bits
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Appendix A EXPOSURE TIME LINEARITY CHARACTERIZATION

A.1 Exposure time linearity characterization
In order to investigate the unusual bumps in CRF, we define a type of camera
characterization which we propose to call as exposure time linearity characterization.

Exposure time linearity characterization: Measurements of linear CRF
samples across all the possible exposure times for the camera.

In this characterization we measure samples of CRF of cameras across all the
possible exposure time that the camera have. This will allow us to detect unusal
deviations from linearity at particular exposure times for the camera. By linear
CRF samples we mean points of the CRF where it supposedly should be in linear
region.

A.2 Steps to characterize exposure time lin-
earity

A.2.1 Illumination setup
Note that even in regular laboratory conditions, it is not generally easy to have a
robust single setup to generate a wide range of illumination conditions to get the
CRF points for a camera so that the points lie in the linear region of the sensor.
Because of this we loosen up the definition so that the measurements can be taken
across different setups for illumination just with the condition that there should
be at least three points measured for CRF in the linear region for each of the
different illumination. The condition for three points comes from the requirement
that we need at least three points in order to detect deviation or bumps from the
ideal linear behaviour of the sensor. The illumination setups that we used allowed
us to have CRFs with overlapping exposure times which implied that we could
observe any unusual deviations across different set of captures. This gave us more
confidence that these bumps are not related to sensor linearity but to mechanical
shutter.

A.2.2 Dealing with dark noise
For considering signals in which dark noise does not play a significant part we can
apply different approaches that we list below:

Dark noise correction: We can apply dark noise correction for each of the
captures that we take. For this we would need to take several dark captures
with lens cap on for each of the exposure time that we intend to work. We then
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average the dark captures for each of the exposure times and subtract it from the
linearity captures at corresponding exposure time. This is the most accurate but
time-consuming approach.

Maximum exposure dark noise: Another approach would be to take average
dark noise capture for the longest exposure time (similar to previous step) only and
then take the mean value across all the pixels for this average dark noise capture.
Once we have this value, we consider signals from the linearity captures which are
well above this dark noise mean value.

Estimating maximum exposure mean dark noise: Instead of taking the
dark noise capture at the maximum exposure time, we can also take some estimated
value for mean dark noise.

A.2.3 Finding a linear region of sensor
In order to find deviations from linearity in CRF we need to decide upon a linear
range for the camera. Otherwise we would not be able to attribute a deviation to
either unusual ‘bumps’ at particular exposure times or to the sensor non-linear
behavior itself. There can be two approaches to do this which we list below:

Doing it after the measurements: In this approach we can do the measure-
ments for the CRFs at all the possible exposure times such that we start from the
very lowest signal from the sensor (above dark noise) and go to complete saturation.
Once we have this data, we can explore the different CRFs that we have measured
and select the ones that does not show the bumps in linear region. It might be the
case that we end up with no CRFs without bumps but in our experience with the
different cameras that we have worked on there was always such a CRF. Note that
in this approach we have to take more measurements since in each of the CRFs we
need to go from minimum signal to complete saturation.

Estimating the linear region: In this approach we can estimate the linear
region to be two-thirds of the total range of digital numbers for the captures. For a
camera captures of 14-bits, this would be 10,922. In our experiments with different
cameras, this range has turned out to be very good approximation of linear region
and also a bit on the safe side i.e. this gives a smaller range than the actual
bigger linear range for the cameras. For example, for Nikon D610 through our
measurements by the first method, we estimated the linear range to be 11,000
which is higher than the estimated by two-thirds range i.e. 10,922. Note that in
this approach we do not need to take the measurments till full saturation of the
camera because we have already decided upon the linear part of the sensor. This
makes this method faster than the previous one.
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A.2.4 Method for describing a deviation:
Once we have CRF samples in linear region across different exposure time ranges,
we need to define some way that we mark a CRF point in the linear region as a
deviation. There can be two methods for doing this which we list below:

Changepoint detection: The deviations can be calculated through some
automated manner. Changepoint detection algorithms like proposed by Bai (1997)
and Fryzlewicz (2014) can be used for this.

Manual: We can observe the deviation from linearity by observing the CRFs
too. This detection may become subjective.

A.3 Exposure time linearity characterization
In order to study the deviations from linearity and to check our hypothesis that this
is caused due to mechanical shutter, we characterize the exposure time linearity of
both mechanical shutter and electronic shutter cameras. We have characterized
the following cameras:

• Nikon D610 (Mechanical shutter)

• Nikon D850 (Mechanical shutter)

• Nikon D200 (Mechanical shutter)

• Silios CMS-S multispectral camera (Electronic shutter)

• Spectrocam multispectral camera (Electronic shutter)

In this section we discuss how we do the exposure time linearity characterization
of Nikon D610. We expand upon the setup for Nikon D610, and then provide the
results for the other cameras directly in the later section.

A.3.1 Setup for characterization
We show the setup that we used in Fig.A.2. We have set up the camera on a tripod
pointing towards a white projector screen. In order to create different levels of
illumination we use three halogen lamps, the tunable pair of room lights, and an
LCD screen with white background.

With these sources of lights in hand, we create six different illumination levels
as described in Table.A.1. In addition to these six illumination conditions we also
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Exposure time linearity characterization A.3

(a) Camera pointing at the white projector
screen

(b) Projector screen illuminated with three halo-
gen lamps

(c) The three halogen lamps

Figure A.2: Setup for exposure time linearity characterization for Nikon D610.

have the data for the light booth for this camera that we had collected earlier. So
in total we have seven different illumination conditions for this camera.

For dark noise we go with the approach discussed in Estimating maximum
exposure mean dark noise and take the values of linearity captures which are above
500 digital counts for 14-bits data (0 to 16383 range). For finding linear region we
do what we explained in Doing it after the measurements and measure the linear
region till 11,000 digital counts, and for changepoint detection we do it manually.

A.3.2 Measurements
In Fig.A.3, we show the range of exposure times which was in the linear range of
the camera for each of the illumination setup we mentioned above. The triplets of
each color represent the blue, green, and red channel response of the camera. The
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Table A.1: Table detailing the different illumination setup used for exposure
time linearity characterization for Nikon D610.

Illumination setup Light
1 LCD screen with white background
2 One room light at minimum
3 One room light at medium
4 One room light at full and other at minimum
5 Two room lights at full
6 Two room lights at full and 3 halogen lamps

different colors represent the different illumination setup. So for example, at the
bottom right we have the blue channel capture when only LCD screen was on in
the room. The blue channel had the measurements from 2.5s to 30s exposure time
in the linear range of the camera. The green channel for the same setup was linear
in the exposure time from 1.6s to 20s and so on. We show the same thing for all
the different illumination setups. The highlighted yellow exposure times are the
ones where we found the bumps consistently across the different setups.

For studying the curves, we select the individual channels in different setups to
cover the whole exposure time range of Nikon D610 and also to have some overlaps
of detected bumps in different illumination setups to be more certain about their
existence. We show the selected channels in bold outlines of cells. So for example
we should observe bump at 1/60 exposure time in setup 4, 5, and 7 (L, O, and V
rows).

In Fig.A.4, we show all the CRFs measured across the different illumination
setups across the possible exposure times. We see in the plots, that there are
particular exposure times across which the bumps are detected across the different
setups.

A.3.3 Exposure time linearity characterization: Nikon
D850

We wanted to explore more mechanical shutter cameras available in our laboratory.
The next camera that we tested after Nikon D610 was Nikon D850. We show the
exposure times used and CRFs in Fig.A.5 and Fig.A.6.
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Figure A.3: Showing which channels were in linear range across the different
integration times for Nikon D610

A.3.4 Exposure time linearity characterization: Nikon
D200

The next in line Nikon D200 which is quite old camera. We show the exposure
times used and CRFs in Fig.A.7 and Fig.A.8.

A.4 Exposure time linearity characterization:
Silios CMS-S

For testing the electronic shutters, we explored multispectral cameras. The first
one was Silios CMS-S which has 9-channels Bayer-patterned filters. Since in this
camera the exposure time could be set across a wide range of exposure times with
a precision of milliseconds. We decided to test a two different randomly selected
regions for exposure time. We did not find any unusual bumps in these CRFs. We
show the CRFs in Fig.A.8.
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Figure A.4: Linearity curves showing bumps across different integration times

A.5 Exposure time linearity characterization:
Spectrocam

The next in line for electronic shutter was Spectrocam multispectral camera. The
CRFs are shown in Fig.A.10. Similar to previous electronic shutter, we do not
find any unusual bumps in these CRFs either. This gives more grounding to our
hypothesis that the unusual bumps are because of the mechanical shutter.
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Exposure time linearity characterization: Spectrocam A.5

Figure A.5: Showing which channels were in linear range across the different
integration times for Nikon D850

Figure A.6: Linearity curves showing bumps across different integration times
for Nikon D850
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Figure A.7: Showing which channels were in linear range across the different
integration times for Nikon D200

Figure A.8: Linearity curves showing bumps across different integration times
for Nikon D200
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Exposure time linearity characterization: Spectrocam A.5

(a) Set 1 (b) Set 2

Figure A.9: Linearity curves for Silios CMS-S

(a) Set 1 (b) Set 2

(c) Set 3

Figure A.10: Linearity curves for Spectrocam
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B Colorimetry

The idea that the range of colours perceivable by humans can be reproduced by the
combination of three colours has been evolving throughout the course of several
centuries. The earliest documented example of the application can be traced back to
the year 1722, when Jakob Christoffel LeBlon employed it in trichromatic printing
Weale (1957)Wall (1925)Birren (1981). The subsequent contributions of Thomas
Young and James Clerk Maxwell have played a significant role in advancing the
understanding of the trichromatic characteristics of the human visual system (HVS)
and their occurrence at the retinal level. Demonstrating the trichromatic nature of
the HVS and how it operates at the retinal level presents a nontrivial challenge.
Dartnall and Lythgoe (1965) observed absorptions in eyes of animals having similar
color vision as humans. Researchers also observed that the pupil’s reflected light
behaved as if red, green, and blue pigments were present and absorbing light
in their respective regions (Rushton, 1958)(Rushton, 1957)(Weale, 1959)(Ripps
and Weale, 1963)(PK and WALD, 1964)(Brown and Wald, 1964). Postmortem
microscopic examinations of the retina have additionally demonstrated the presence
of three distinct pigments within specialised structures known as cones (Marks
et al., 1964)(Brown and Wald, 1964)(Bowmaker and Dartnall, 1980).

It is very important to highlight the difference between the subjective experience
of colour and the external stimuli that trigger such an experience. Color is a
perception or subjective experience which makes it impossible to quantify through
mechanical devices. However, the external stimuli received by the HVS that result
in the formation of such perceptions can be objectively measured and quantified
using engineering instruments. The foundation of colorimetry is rooted in the
establishment of a relationship between the quantifiable stimulus received as input
and the resulting perception it produces.

Colorimetry can be broadly classified into two main categories: basic colorimetry
and advanced colorimetry. Basic colorimetry determines whether or not two colour
stimuli viewed under identical external conditions are equal (peceptually same).
The extent of their differences cannot be determined. Advanced colorimetry goes a
step further by attempting to determine the magnitude and direction of difference.
Advanced colorimetry also aims to describe physical correlates of HVS perception

147



Appendix B COLORIMETRY

such as lightness, chroma, and hue.
Colour stimulus can be produced through the combination of three light sources.

Using a display as an example, three sources of red, green, and blue light are
positioned so close together that HVS is unable to resolve the gaps between them
and interprets it as a single source of light. This lack of resolution is the result
of the limited contrast sensitivity of HVS, as defined by the contrast sensitivity
function. This method of generating colour stimuli is known as additive mixture.
An alternative method for producing colour stimuli is known as subtractive mixing.
In this process, three distinct colours or dyes, each with the ability to absorb
specific wavelengths of light, are combined in specific proportions. When light is
incident upon this mixture, it results in the perception of a particular colour.

The foundation of colorimetry is rooted in the empirical principles established
by H. G. Grassmann, which are commonly expressed in contemporary literature as
follows (verbatim reproduction): (Hunt, 1998):

1. To specify a color match, three independent variables are necessary and
sufficient

2. For an additive mixture of color stimuli, only their tristimulus values are
relevant, not their spectral compositions.

3. In additive mixtures of color stimuli, if one or more components of the mixture
are gradually changed, the resulting tristimulus values also change gradually.

These laws are valid when the parameters under which the matching is conducted
remain consistent, including factors such as stimulus size, retinal illumination,
observer’s state of adaptation, and the observer himself. While these principles are
applicable to a broad range of colorimetric applications and have thus formed the
foundation for CIE colorimetry standards, it is known that these laws may not hold
under certain circumstances. When exposed to high levels of luminance, the validity
of colour matching between monochromatic yellow and a combination of red and
green is disturbed (Wright, 1934)(Wright, 1936). Additivity in blue-green matches
is also found to break down under a variety of stimuli luminance levels (greater than
15,000 td 1), however only to a minimal percentage of tristimulus values (Blottiau,
1947)(Trezona, 1953)(Trezona, 1954). Colour difference equations such as CIE94
(CIE, 2023) raises questions about the symmetry property (if A=B, then B=A) of
colour match because the errors vary depending on which colour is used as reference
and which as test. Furthermore, when considering a colour match that comes within

1td stands for Troland. This represents a quantity which is proportional to the illumination
on retinal surface. It is calculated as the product of incoming luminance to eye with the area of
the limiting pupil. The luminance is considered in candelas per square metre and the pupil area
is taken in square millimetres (Schanda, 2007).
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the limits of a just-noticeable difference (JND), it is possible for the transitivity
property (if A=B and B=C, then A=C) to be disturbed. This implies that if the
difference between stimuli A and B falls within the just noticeable difference (JND),
and the difference between stimuli B and C also falls within the JND, it does not
necessarily ensure that the difference between stimuli A and C will also fall under
the JND. In other words, the cumulative effect of two sub-threshold differences may
exceed the threshold difference. Thornton (1992) observed a mismatch of colors
when different primaries were used to predict matches. This transformation of
primaries, which is the backbone of color management, is suggested to breakdown
because of the failing of Grassmann’s Laws.

To define a colour match, an experimental setup for trichromatic colour matching
can be implemented, as depicted in Fig.B.1. An observer sees a bipartite field in
which half of the field is illuminated by a monochromatic light while the other
half is illuminated by a combination of three lights designated R, G, and B after
Red, Green, and Blue. The objective of this experiment is to sequentially examine
each monochromatic light within the visible spectrum and determine the respective
luminances of the red (R), green (G), and blue (B) lights necessary to achieve a
perceptual match with the monochromatic light in question.

Figure B.1: Setup for color matching experiment. An observer sees a bipartite
field on a white screen. Half of the field is illuminated by a monochromatic light
while the other half by a combination of red (R), green (G), and blue (B) primary
lights. The objective of the experiment is to match the monochromatic light with
the combination of primaries. This has to be done for each monochromatic light
in the visible range.
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The colour matching phenomenon, which is determined by the interaction of
three light sources, is defined by Grassman’s laws and is made feasible by the
phenomenon of metamerism. Metamerism refers to the phenomenon wherein the
HVS is unable to discern any distinction between two stimuli that generate identical
responses in the retinal cones, regardless of the spectral compositions of those
stimuli. These pairs of stimuli are referred to as metamers. In the colour matching
experiment, some monochromatic colours can be matched in hue and brightness but
not in colorfulness, particularly in the blue-green colour region. This obesrvation
may appear to contradict Grassman’s laws, however it does not. The perception of
colorfulness can be achieved by introducing red (R), green (G), and blue (B) colours
to monochromatic light, which can be considered as the addition of a ‘negative’
color.

If the matching primaries R, G, and B are monochromatic lights at 700, 546.1,
and 435.8nm, then the quantities of these primaries required to match every visible
monochromatic light are defined as shown in Fig.B.2. These three plots are called
as color matching functions (CMFs) and each of these plots are symbolized as r̄(λ),
ḡ(λ), and b̄(λ). It is important to establish the specific quantities of the primaries,
R, G, and B, that the observer will be modifying before starting the colour matching
experiment. This can be specified in units of power, but is typically defined in
arbitrary units so that equal quantities of R, G, and B match the luminance of
a predetermined white. In this particular case, the colour white is chosen as the
equi-energy source Se, which has equal power distribution across all wavelengths.
The luminance values of 1cd/m2 of R, 4.5907cd/m2 of G, and 0.0601cd/m2 of B
matches with Se. Using a different white would result in the same CMF shapes but
with three different ffactors multiplied by the three functions r̄(λ), ḡ(λ), and b̄(λ).

A monochromatic color-match is written as:

1.0[λ] ≡ r̄(λ)[R] + ḡ(λ)[G] + b̄(λ)[B] (B.1)

where the equivalent sign means a color-match, the quantities in square brackets
represent the pre-selected primaries units, the coefficients (e.g. r̄(λ)) represent the
amount of the stimuli used in the units defined, and the addition sign represents
the additive mixture of colors.

According to the Grassmann’s Laws, this equivalency holds for proportional
quantities too such that for a constant k we have:

k[λ] ≡ kr̄(λ)[R] + kḡ(λ)[G] + kb̄(λ)[B] (B.2)
Grassmann’s Laws also dictate the that if we have two stimuli matched as:

k1[λ] ≡ k1r̄1(λ)[R] + k1ḡ1(λ)[G] + k1b̄1(λ)[B]

k2[λ] ≡ k2r̄2(λ)[R] + k2ḡ2(λ)[G] + k2b̄2(λ)[B]
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Figure B.2: Color matching functions (CMFs) r̄, ḡ, and b̄ (Schanda, 2007).
These curves represent the relative amounts of R, G, and B primaries required
for matching a monochromatic light. Read the function values at particular
wavelength to get the corresponding amounts of primaries required to match a
monochromatic light of that wavelength.

then the additive property holds:

k1[λ]+k2[λ] ≡ (k1r̄1+k2r̄2)(λ)[R]+(k1ḡ1+k2ḡ2)(λ)[G]+(k1b̄1+k2b̄2)(λ)[B] (B.3)

This implies that if we have any arbitrary stimulus Q for which we know the
spectral power distribution S(λ), we can calculate the coefficients of primary stimuli
which will match the color in appearance (under identical external settings) as

[Q] ≡ Rq[R] +Gq[G] +Bq[B] (B.4)

where

Rc = S1r̄1 + S2r̄2 + ...

Gc = S1ḡ1 + S2ḡ2 + ...

Bc = S1b̄1 + S2b̄2 + ...

The values Rc, Gc, and Bc are called as tristimulus values of Q. Note that the
luminance of Q can be calculated as

L = 1.0000Rc + 4.5907Gc + 0.0601Bc (B.5)
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which comes from the fact that we had matched the luminances of the primaries
in the same 1.0000 : 4.5907 : 0.0601 proportions beforehand. Most of the time
the units used for R, G, and B are in relative luminances making L a relative
luminance too.

If different primaries and matching white are utilised, it is possible to linearly
transform the CMFs using the proportionality and additive properties stated
previously. We only need to know how the new primaries match with the old
primaries. We call this as a transformation between color spaces. During the process
of standardisation, the presence of negative lobes in the colour matching functions
(CMFs) presented challenges in efficiently computing the tristimulus values. As
a solution, CIE made the decision to convert the primary colours R, G, and B
into a set of imaginary 2 primaries denoted as X, Y , and Z. This transformation
was implemented to ensure that the resulting colour matching functions would not
exhibit any negative quantities. The transformation is defined as:XY

Z

 =

2.768892 1.751748 1.130160
1.000000 4.590700 0.060100
0.000000 0.056508 5.594292

RG
B

 (B.6)

Other requirements for this transformation that one of the tristimulus values
should correspond to luminance (note that Y is calculated same as luminance),
tristimulus values for equi-energy stimulus values should be equal, and the volume
of the tetrahedron set by the new primaries should be as small as possible (Schanda,
2007).

In order to see the importance of CMFs in color reproduction we take an
example of a color stimulus [C] defined as:

[C] ≡ [500nm] + [600nm] (B.7)

From the CMF, we can see that this will be matched to

[C] ≡ (−0.1 + 0.8)[R] + (0.2 + 0.2)[G] + (0.2 + 0.0)[B] (B.8)
≡ 0.7[R] + 0.4[G] + 0.2[B] (B.9)

Note the importance of having negative tristumulus value. Although the
stimulus [500nm] is not realizable because we cannot generate a negative luminance
while reproducing the color. But when this negative stimulus combines with another
stimulus with positive and larger magnitude tristimulus value, this gives rise to a
color with net positive tristimulus value.

2Note that these imaginary primaries have nothing to do with Complex number.
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In Fig.B.3a we assume a uniform patch emitting a combination of 500 and
600nm light. This light falls similarly on the three sensors with filters. Let’s assume
the combined sensitivity of the sensor and filters are exactly as the CMF that
we generated for [R], [G], and [B]. The readings generated in the sensors will be
proportional to [C]:

[C1] ≡ k1(0.7[R] + 0.4[G] + 0.2[B]) (B.10)

The constant k1 depends upon the exposure of the sensors. This means we
have successfully automated the color-matching experiment upto a scaling factor
of luminance.

In Fig.B.3b we assume three LEDs with the same tristimulus values as the [R],
[G], and [B] primaries used for CMF measurments and also have the same relative
luminances. Now if we provide same voltages to these LEDs as the coefficients in
Eq.B.10 then we generate a combined output at the screen which is proportional
to [C]:

[C2] ≡ k2(0.7[R] + 0.4[G] + 0.2[B]) (B.11)

This means that we have successfully reproduced the color which was captured
by the sensors up to a scaling factor of luminance. This is a very simplistic
explanation for color reproduction workflow with many unrealizable parts, one of
those parts being the negative combined sensitivity of the sensor. For more detailed
view on the color reproduction subject refer to Hunt (2005).

In many cases we are not interested in the absolute values of tristimulus values
but only with the proportions, in which case the representation of the color can be
simplified to just two numbers. We calculate the relative proportions as:

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z

= 1− x− y

since z can be defined in terms of x and y, so we only need to know x and y.
These are called as chromaticity coordinates. The two-dimensional plot showing
the x and y dimensions is shown in Fig.B.4.

Once we have formulated a way to describe whether two stimuli are matching
perceptually or not, the next immediate question is how much different are they in

153



Appendix B COLORIMETRY

(a) (b)

Figure B.3: A very simplistic workflow for color reproduction. (a) represents a
light source emitting a combination of 500nm and 600nm light (yellow). This
light passes through three transmissive filters whose transmittances lie in the red,
green, and blue regions of spectrum. Then the light signal is recorded by a digital
sensor. The combined sensitivity of each of the filter-sensor pair is equal to the
three CMFs r̄, ḡ, and b̄. The digital numbers recorded by each of the sensor
is proportional to the cumulative values of CMFs at 500nm and 600nm. (b)
represents three LEDs whose individual colors are matched by the primaries used
to derive CMFs. The voltages provided to the LEDs are in the same proportion
as the coefficients of the cumulative values of CMFs at 500nm and 600nm. The
light from each LED is additively mixed to produce the yellow light. This results
in a reproduction of color which only differs from the original yellow color by a
single luminance factor.

the case of a mismatch. The simplest way for doing that is the calculation of a
Euclidean distance in the chromaticity diagram as:

∆E =
√
(x2 − x1)2 + (y2 − y1)2 (B.12)

But it turns out that calculating differences in this way for chromaticities is not
suitable for difference measurements because the magnitude of perceived difference
is different across the region of the space. This is famously shown by MacAdam
(1942) as in Fig.B.5 where the ellipses represent 10 times the just noticeable
differences, which means observers do not find any difference in appearance of
stimuli if the chromaticities remain within the ellipse. Notice how the regions are
very small in blue region and very large in green.

To improve on the situation, researchers have worked on two different approaches.
The first approach is to transform the XYZ space to some other space which is
more uniform perceptually. The second approach is to use more sophisticated color
difference equations which takes into consideration the non-uniformities of the color
spaces in which the difference is being taken.
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Figure B.4: Chromaticity diagram showing the chromaticities of the visible
range of colors along with the chromaticities of the three selected primaries used
for the colour matching experiment (Schanda, 2007).

Considering the first approach, one of the mostly used color space is CIELAB
which is defined as:

L∗ = 116f

(
Y

Yn

)
− 16

a∗ = 500

[
f

(
X

Xn

)
− f

(
Y

Yn

)]
b∗ = 200

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]
where

f(x) =

{
x1/3 if x >

(
24
116

)3(
841
108

)
x+ 16

116
if x ≤

(
24
116

)3
where X, Y , and Z are the tristimulus values to be represented in the new
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Figure B.5: MacAdam’s ellipsis (Schanda, 2007). The ellipsis represent 10 times
the region of the just noticeable difference. This highlight the non-uniformity for
the XYZ colour space and why it is unsuitable for taking out the colour differences
in this space.

space and Xn, Yn, and Zn are the tristimulus values of the adapting white.
In this space we can define quantities which are correlated with the perceptual

attributes of lightness, chroma, and hue as:

Lightness: L∗

Chroma: C∗
ab =

(
a∗2 + b∗2

)1/2
Hue angle: hab = arctan (b∗/a∗)

CIELAB’s Euclidean distance, ∆E∗
ab, provides a considerably better approxima-

tion to perceived difference, i.e. a ∆E∗
ab of 1 should result in a similar magnitude of

perceived difference regardless of whether it occurs for chromatic colours or neutral
grey. The CIELAB colour space has improved the approximation of perceived
differences in stimuli to a certain extent. However, it has not completely resolved
the issue, as there still exists non-uniformity inside the CIELAB space as well. This
leads us to the second strategy for dealing with colour space non-uniformity, which
is to increase the sophistication of colour difference formulae. CIEDE2000 has
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emerged as a prominent colour difference equation following numerous iterations
of such equations. For further explanation of different colour spaces and colour
difference equations, it is recommended to consult the work of Fairchild (2013).
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C Transmittances calculation through
HySpex

We used HySpex VNIR1800 hyperspectral camera for calculating the transmittances
of photographics films that we had. The setup is shown in Fig.C.1. The light
source used halogen.

(a) setup picture 1 (b) setup picture 2

Figure C.1: Transmittance calculation

We show the saturation map from the HySpex software in Fig.C.2
Before using the halogen map, we also had used LED backlight as our light

source. The setup is shown in Fig.C.3. The problem that we realized in this setup
is the measurement of transmittance values greater than 100%.

The problem is highlighted when we see the saturation map for LED backlight
in Fig.C.4. We can see that with films, there is no saturation in the image, but
when we take captures with films, we see high saturations around the films. We
hypothesized that this might be because when we cover the LED with film frames,
the light trying to come out of LED is reflected back and forth within LED case
and comes out with more intensity than if there was no film case present. We again
took captures of the film with both LED and halogen, with and without frames, to
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(a) Saturation map with films (b) Saturation map for light

Figure C.2: Saturation maps for the setup

Figure C.3: Saturation map with films

check this phenomenon.
We show the saturation map of the setup with halogen without film frames in

Fig.C.5.
We plot the transmittances measured from the four different setups of halogen
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(a) Saturation map with films for LED backlight (b) Saturation map for light for LED backlight

Figure C.4: Saturation maps for the setup with LED backlight

(a) Saturation map with films for halogen with-
out film frames

(b) Saturation map for light for halogen without
film frames

Figure C.5: Saturation maps for the setup for halogen without film frames

with/without film frames and LED backlight with/without film frames in Fig.C.6.
Due to this difficulty in measurements with the hyperspectral camera. We finally
ended up with the setup of the overhead projector as described in Chapter 4.
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(a) Red (L17) (b) Green (L18) (c) Blue (L19)

(d) White (Top most white) (e) Black (bottom most black)

Figure C.6: Transmittances calculated from different setups.
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3.3 One example of CPSF (Jiang et al., 2018). The graph shows the
respone of the camera for a single point light source. The u- and
v-axis show spatial position of pixels and the vertical axis shows
the response of the pixels. Notice that multiple pixels get activated
against a point light source. . . . . . . . . . . . . . . . . . . . . . . 22
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integration time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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in place of D610. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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4.6 CSRF for three channels of the camera. The color coding represents
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4.7 LED imaging device. The yellow circle highlights the integrating
sphere with 10 LEDs fixed across its radius. At the top of integrating
sphere it has a black covering to stop the unwanted light from the
integrating sphere leaking into the captures. At the center of black
covering it has a collimating lens. In the red circle it has the stage
where the photgraphic films can be fixed. It also has the option to
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pattern tile. The background of the tile is covered with a gray card-
board so the light does not reflect off the metal cabins at the back.
The TSR is placed to take reading perpendicularly from the gray
pattern tile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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4.13 (a) shows how the film is projected by placing it over an overhead
projector. The film is fixed in a black paper cutting fit for the film
size. This stops the redundant light other than the one passing from
the film. A small opening is made beside the film cutting on the
paper. This serves as an opening for light source measurements. The
paper cuttings are made slide-able in order to take measurements of
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on the back cardboard for the sake of demonstration. Also notice
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5.1 3-channel imaging workflow. The light starts its journey from the
light source towards a reflective object. The object reflects light
according to its reflectance. The reflected light enters the camera
through its lens and aperture. The light is filtered into three channels
by the Bayer pattern filter and the transmitted light is recorded by
the imaging sensor. Finally the missing pixel values are demosaicked
which results in final three channels of the image. . . . . . . . . . . 40
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5.2 6-channel imaging workflow. The six channels are achieved by the
introduction of a filter wheel either after the light source or the
reflective object. The filter wheel filters the light either directly
from the light source or the reflected light. After which the light
enters the camera through its lens and aperture upon which it is
filtered into three channels by the Bayer pattern filter and then
recorded by the imaging sensor. Finally the missing pixel values are
demosaicked which results in three channels of the image. When
this process is repeated for the other filter in filter wheel and the
resulting three channels are stacked with the previously got three
channels, a 6-channel image is formed. . . . . . . . . . . . . . . . . 42

5.3 6-channel imaging workflow with LEDs. The light source uses six
LEDs to emit light towards a reflective object. The object reflects
light according to its reflectance. The reflected light enters the
camera through its lens and aperture upon which it is filtered into
three channels by the Bayer pattern filter and then recorded by the
imaging sensor. Finally the missing pixel values are demosaicked
which results in three channels of the image. When this process is
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source and the resulting three channels in camera are stacked with
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5.4 Dual-RGB imaging workflow for transmissive objects. The only
difference between this and Fig.5.3 is the replacement of reflective
object with transmissive film. The light source uses six LEDs to
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sensor. Finally the missing pixel values are demosaicked which results
in three channels of the image. When this process is repeated with
the light source using the other four-LEDs as a light source and the
resulting three channels in camera are stacked with the previously
got three channels, a 6-channel image is formed. . . . . . . . . . . . 44

5.5 Spectra of the 10-LEDs system (see Chapter 4) is shown with LED
6 and 7’s spectra scaled up 50 times. The dotted black vertical lines
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from each of the bin. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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5.6 Dual-rgb imaging workflow. Two light sources are defined from the
10-LEDs light source in such a way that each light source comprises
of three LEDs each of which are taken from each bin. The defined
light sources are mutliplied by the CSRF to get six channels of the
imaging setup. These channels are multiplied with the trasmittances
of each of the patches of the colourchecker and integrated to simulate
the digital numbers captured by the camera. The transformation
matrix is estimated by using the pseudo-inverse. This transformation
matrix is then used to predict the tristimulus values of the patches.
The ∆E00 difference can be calculated for each of the patches using
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mean error. This process is done for all the 630 combinations of light
source pairs. Finally the pair of light source is selected which gives
the least mean error. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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5.12 Plots for dual-RGB and three-channel training patches. (a) shows a∗
vs. b∗ and Lightness vs. Chroma plots for dual-RGB.(b) represents
the same set of plots for three-channel captures. The dots represent
the ground-truth data and the color code represents the mean ∆E00

error. (c) shows similar a∗ vs. b∗ and Lightness vs. Chroma plots but
the colours represent the sRGB colours of the ground-truth patches. 53
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5.13 The figure shows five example patches from Fig.5.11, where each
patch block is made up of four sub-blocks in the form ( GT TCGT DR ),
where GT is for ground truth, TC for three-channel, and DR for
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