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Abstract
Chlorophyll can be used as a convenient way to study and monitor water

quality in coastal regions. Traditional techniques to measure chlorophyll, such as
fluorescence analysis, are expensive and time-consuming, as they require in situ
long lasting campaigns. The use of high-frequency spectral images taken from
space-borne imagers, such as the one in the HYPSO-1 mission, has become a more
feasible alternative around the world. Although it is challenging, it is possible
to retrieve surface reflectance from a hyperspectral imager after removing the
atmospheric effects by aerosols and molecules.

This work addresses the problem of chlorophyll estimation with the surface
reflectance of HYPSO-1 spectral images. First, a radiative transfer model of the
6SV1 algorithm was implemented for the first time on this small satellite so that the
reflectance could be obtained from a spectral image. Second, pixels were classified
to uniquely study those corresponding to ocean regions. Third, reflectance features
that were highly correlated with measured chlorophyll concentrations were selected
to improve the estimation process. Finally, fine-tuned features were combined with
linear and polynomial regression, as well as ensemble machine learning techniques
to identify the best performance of different approaches.

After atmospheric correction, it was possible to classify water pixels based
on reflectance with a 98.3% accuracy, which is a useful method to overcome the
problem of inconsistent telemetry data. Selecting the most appropriate features
enhanced the performance of the model. The proposed "voting" ensemble machine
learning approach performed better than traditional empirical methods, which
was validated by using BOA reflectance measurements from the GLORIA dataset.
Therefore, we can conclude that the concentration of ocean chlorophyll can be
reliably estimated using hyperspectral images from the HYPSO-1 satellite.
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1 Introduction

The oceans cover approximately 71% of the Earth’s surface (Spellman, 2019), which
corresponds to 96. 5% of all global water reserves that perform important functions
such as the regulation of the temperature of the planet (Barry, 2013; Gleick et al.,
1993). Phytoplankton, also known as microalgae, is an important part of the marine
food chain that is responsible for most of the oxygen produced by the ocean, which
represents approximately half of the oxygen that humans breathe (Gualtieri and
Barsanti, 2006; Barry, 2013).

Rapid growth of the algae population is known as a "bloom" and, although
they are natural occurring phenomena, they can also have specific characteristics
to cause negative impacts on economic activities and human health (UNESCO
and Hallegraeff, Gustaaf M., 2003). When the bloom has conditions to harm
animals and people, they are called "Harmful Algal Blooms (HABs)." These
become dangerous when they produce toxins that can kill the consuming organisms
and predators of such, having the potential to kill marine organisms and also affect
human health. An early example of this impact occurred in May 1998 when a
bloom severely damaged the sea farming industry on the western Norwegian coast;
however, the most harmful bloom recorded in this region happened recently in
June 2019 (Johannessen et al., 1989; John et al., 2022).

Phytoplankton has a photosynthetic pigment called chlorophyll that allows the
absorption of sunlight that reaches the ocean through the atmosphere (Kirk, 2011).
These conditions enable a biochemical process called photosynthesis in which the
algae generate energy to exist while converting CO2 and water into oxygen and
carbohydrates (Hall and Rao, 1999). Due to the presence of this pigment in all
algae, the chlorophyll-a concentration can be used as an index of the total biomass
of algae in a specific area (Karlson et al., 2021; Pandey, 2014).

Being able to estimate the chlorophyll concentration in large ocean bodies
quickly is key when constant monitoring is required for water quality. For these
reasons, remote sensing (satellite, UAV, aircraft) solves accessibility, frequency,
and coverage problems, making it a great alternative to monitoring blooms as they
cover large areas in the water bodies, making them visible with satellite imaging
sensors.
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Chapter 1 INTRODUCTION

Multiple countries on every continent rely on seafood and water quality for
the success of aquaculture (Trottet et al., 2022). In 2020, global production of
this sector reached 122.6 million tonnes of live weight with an approximate value
of 281.5 billion dollars (see Figure 1.1). According to United Nations (2022), the
population is expected to grow to 8.5 billion in the next 7 years and, at the same
time, UNDESA (2012) estimates that by 2050, the number of lakes with HAB will
increase by 20%. These predictions show the importance of monitoring water bodies,
as aquaculture is the fastest growing food production sector and fish mortalities
can have a significant impact on the industry (Karlson et al., 2021; Tacon, 2020).
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Figure 1.1: Global aquaculture production (Value and Quantity) showing an
increasing monetary importance in the last 40 years. (FAO, 2022)

In recent years, there has been an increase in the number of publications that
coincides with the growing trend of aquaculture revenue. This is observed primarily
by the relative percentage of available publications related to the keywords "ocean
color", "remote sensing", and "chlorophyll estimation". Figure 1.2 shows the
number of publications only in the Google Scholar database classified with the
keywords already mentioned, as well as the total number of yearly publications.
Although the underlying assumption is that old material is either not included or
not correctly labeled, there has been a clear increase over the past 15 years.
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Motivation and Research Gap 1.1
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Figure 1.2: Percentage of relative yearly publications tagged in the Google
Scholar database with the indicated keyword for each curve.

For the reasons described above, it is imperative to focus on improving and
generalizing the methods that help obtain water quality ranking indicators. Re-
mote sensing allows a convenient, non-invasive way to achieve this by retrieving
chlorophyll concentration as an index of biomass as one of the study parameters.
As a consequence, it is expected that the refinement through further study of this
technique will provide enough information for multiple economic areas that rely on
water bodies.

1.1 Motivation and Research Gap
HYPSO-1 is a SmallSat hyperspectral remote sensing mission operated by the
Norwegian University of Science and Technology (NTNU) in which the current
operational pipeline does not envisage a chlorophyll estimation stage (Grøtte et al.,
2022). Due to the lack of a robust atmospheric correction process, recovery of
BOA reflectance is not yet possible. As most of the reliable existing methods for
chlorophyll inversion make use of reflectance, it is imperative to use a method that
can recover the upward spectra from the surface of the Earth.

Chlorophyll estimation can be approached in different ways, but it requires

3



Chapter 1 INTRODUCTION

diverse and representative matches of reflectance (as seen by HYPSO-1) and
chlorophyll ground truth. The quality of the estimation is dependent on the available
information and the model used for the radiative transfer equation approximation.

This thesis will propose a solution to the following limitations:

1. Estimation of biomass concentration using surface reflectance Rrs obtained
from the radiance observed by the HYPSO-1 satellite. Previous strategies
have been designed for individual sensors using the information of custom
spectral bands, but a solution for HYPSO-1 has not yet been implemented.

2. The atmospheric correction for HYPSO-1 has not been developed. Currently,
only the radiometric correction by Henriksen et al. (2022) is used so that an
L1B radiance spectral image can be obtained for all images.

3. At the moment of writing this work, there are no surface reflectance Rrs and
ground truth chlorophyll matches that allow the study of estimation methods
such as polynomial regression, ensemble machine learning, or artificial neural
networks (ANN).

1.2 Scope
There are multiple parameters of water quality such as chlorophyll-a, harmful
algae, turbidity, pollution sediment, submerged habitat, and temperature that can
be derived from multispectral and hyperspectral satellite sensors (Lubac et al.,
2008; Pahlevan et al., 2021; O’Shea et al., 2021). This work focuses on estimating
chlorophyll, as it is a relevant parameter for the aquaculture industry (Muller-
Karger, 1992, as cited in IOCCG, 2018).

The estimation of chlorophyll will be approached by using surface reflectance
Rrs obtained from spectral images of HYPSO-1 small-sat ; built and operated
by the Norwegian University of Science and Technology (NTNU) (Prentice et al.,
2021). The required reflectance Rrs can be obtained from the measured radiance
detected by the hyperspectral camera after correcting for atmospheric influence
using the 6SV1 model. To validate the generalization of the proposed method,
in situ chlorophyll and reflectance measurements taken at sea level will be used;
however, the main focus of this work continues to be the estimation of chlorophyll
from hyperspectral images captured by the NTNU small satellite currently orbiting
Earth.

To achieve a similar precision as that found in the ESA and NASA missions, the
chlorophyll ground truth will be taken from the MODIS Aqua and Sentinel-3 OLCI
satellites. For this study, the HYPSO-1 pixels will be matched by coordinates and
time. The conditions for this process are described later in this work.

4



Contribution 1.3

1.3 Contribution
In this work, both atmospheric correction and chlorophyll estimation are addressed
for the HYPSO-1 satellite, introducing an atmospheric correction procedure, a
satellite-matched dataset of hyperspectral measurements, and a prediction model.
Chlorophyll values from NASA and ESA satellites were matched in the +/- 3-
hour range to validate the estimation techniques proposed. The usage of multiple
traditional ensemble machine learning methods allows to reduce external noise.
The latter can compensate for the different characteristics of the satellites used,
which, when paired, can generate in-process noise.

In summary the contributions are:

1. Chlorophyll inversion from BOA reflectance was implemented on HYPSO-1
hyperspectral images through the use of ensemble machine learning methods
which result in a better prediction versus traditional polynomial approaches.

2. Implemented 6SV1 atmospheric correction for HYPSO-1 allowing to obtain
surface reflectance from TOA radiance

3. Created the first HYPSO-1 dataset of more than 1×106 points with matching
ESA chlorophyll values by coordinates, enabling for further study of chloro-
phyll estimation through the signal measured by the hyperspectral sensor
onboard the NTNU satellite.

1.4 Structure of the Thesis
In Chapter 2 the technical history and background are given, providing an overview
of the theoretic aspects of hyperspectral images and their use in chlorophyll in-
version. Chapter 3 discusses the methodology chosen as the core of this research
study, as well as the considerations regarding chlorophyll estimation, atmospheric
correction, water detection, and model evaluation criteria. The results of all the
chlorophyll estimation methods selected for this thesis are presented in Chapter 4,
with the discussion of the results being presented in Chapter 5. Finally, the thesis
is concluded in Chapter 6.

"Writefull" AI Grammatical Proof Reading Tools were used in the creation of
this work to ensure the clarity of ideas.
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2 Background

In the following sections, the technical background and the relevant historical
context will be presented and discussed along with the best current approach for
chlorophyll estimation from remote sensing hyperspectral images.

2.1 Technical Relevant History

In the early 1960s, the TIROS program was used to assess the potential for
information extraction from orbiting sensors. Meteorological satellites (whose
only purpose at the time was to track hurricanes) were able to take low-definition
thermal IR images and identify differences in ocean temperature (Wilson et al.,
2001). With these early approaches, it was clear that there was the possibility
of extracting information from aerial devices; further attempts were made, such
as in the work (Clarke et al., 1970, as cited in Gordon, 2010), where different
chlorophyll concentrations were found to have different upward spectra. Although
the experiment was done with a spectroradiometer mounted on a plane, the essence
was later translated to satellite imagery missions.

Skylab was NASA’s first space station, designed to be used by a team of
astronauts to take different measurements that would allow studying various
regions, including the ocean (Wilson et al., 2001). The availability of instruments
such as multispectral, color, and grayscale cameras (S190A/B), multipsectral
scanners (S192), IR spectrometer (S191), radiowave scatterometer (S193), and
L/band radiometer (S194) was of great importance for collecting information to
help us understand how the earth is perceived quantitatively from space (Eason
and NASA, 1978). Figure 2.1 shows the spectral range in which the instruments
of Skylab operated. Even though some damages occurred to some instruments
during operation and that the duration of the mission was a little less than a year
(from May 1973 to February 1974), the learnings set the foundations for the next
generations of satellite sensing and imagery.

7



Chapter 2 BACKGROUND

Figure 2.1: Spectral range of instruments used in the Skylab mission. Image
from (Eason and NASA, 1978).

Nimbus-7, SeaSat, and Tiros-N are a triad of satellites focused on ocean mon-
itoring (Wilson et al., 2001). OCR (Ocean Color Radiometry) is considered to
start with NASA’s Coastal Zone Color Scanner (CZCS), a sensor mounted on the
Nimbus-7 as the parameters and design considerations were optimized for water
sensing (NASA, nd). After the launch of this mission in 1978, it was possible for the
first time to create maps of phytoplankton biomass (chlorophyll) using a satellite
imaging sensor (National Research Council, 2011). This sensor can be considered
as the beginning of passive remote sensing built on all previous experiments and
missions to understand the Earth with space-borne and air-borne sensors.

The US led most of the early remote sensing attempts, but by the late 1980s and
early 1990s other countries began satellite projects destined for earth monitoring
on their own and in collaboration with other agencies. Some of the missions include
the ERS-1 and ENVISAT (early 2000’s EU satellite). (Wilson et al., 2001)

All of the previous experiments, studies, and satellite missions have allowed
researchers to develop remote sensing to the current practices for sensor protection,
measurement bias over time, and calibration and correction techniques which have
led to more robust data processing. The increase in availability of hyperspec-
tral measurements from space agencies (e.g. ESA, NASA) will continue to help
researchers improve remote sensing observation.

Although the focus of this work has been on estimating chlorophyll using surface
reflectance, other important information can also be retrieved from optical remote
sensing, such as temperature profiles, altimetry, and meteorological profiles, which
are useful for other disciplines. Regardless of the property to be estimated or studied,
the complex interaction of the solar radiation that goes through the atmosphere of

8



Solar Radiation 2.2

the Earth and how it interacts with the surface needs to be understood.

2.2 Solar Radiation
When the electromagnetic radiation (EM) from the Sun reaches our atmosphere,
a complex interaction begins between the emitted waves and the ionospheric con-
stituents that are freely floating around the Earth (Elachi and Van Zyl, 2006).
During this interaction, particles and aerosols in the atmosphere scatter the incom-
ing sunlight in all directions, and some specific molecules absorb very efficiently at
specific wavelengths (Randall B. Smith, 2012). The resulting radiation is trans-
mitted through the atmosphere and reaches the surface where the scattering and
absorption process may continue.

Areas with very low absorption and high transmission are usually referred to as
"windows" and are used when designing measurement instruments, as sunlight can
only reach the surface of the Earth through these areas throughout the spectrum
(Wilson et al., 2001). According to Elachi and Van Zyl (2006), the molecules and
particles that cause the different absorption regions are the ones in Table 2.1.

Table 2.1: Absorption regions in the atmosphere for different wavelengths.

Wavelength Name Property

λ ≥ 29m

Radio Wave
All signals blocked
by the ionosphere

2.98cm ≤ λ < 29m Transparent
1.0mm ≤ λ < 2.98cm Microwaves Strong absorption from water

vapour and oxygen
15.0µm ≤ λ < 1.0mm Far-IR High absorption due to

atmospheric constituents
0.8µm ≤ λ < 1.1µm NIR High Absorption due to

molecular vibration of water
vapour and carbon dioxide0.4µm ≤ λ < 0.8µm Visible

0.1µm ≤ λ < 0.4µm UV High absorption
due to Ozone

This is visible in Figure 2.2, where the intensity per wavelength of solar radiation
is shown at the top of the atmosphere (TOA) and at the bottom of the atmosphere
(BOA). The simulated behavior generated by radiative transfer models perfectly
shows the overall decrease in energy reaching the surface and specific regions that
are filtered out by the atmosphere.
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Figure 2.2: Solar radiation at TOA comparing the sunlight without atmospheric
absorption (ASTM) and the ideal black body radiation model from "Planck’s
Equation". The sunlight at BOA is given by the 6SV1 radiative transfer model
showing the atmospheric absorption bands. The ASTM G173-03(2020) standard
is derived from the SMARTS: Simple Model of the Atmospheric Radiative Transfer
of Sunshine (ASTM, 2020).

The black body intensity I(λ, T ) in terms of wavelength λ in meters can
be expressed using Planck’s equation 2.1. With the Boltzmann constant k =
1.381×10−23 JK−1, the speed of light in vacuum c = 2.998×108 ms−1 and Planck’s
constant h = 6.626× 10−34 J s, it is possible to obtain the distribution of a diffuse
black body emitter at a given temperature T in Kelvin degrees, also known as
thermal radiation (Incropera, 2007). Such an equation was used to display the
"Black Body" energy signature at 5350K from the previous figure.

I(λ, T ) =
2hc2

λ5
[
exp( hc

λKT
)− 1

] (2.1)

From the solar radiation that reaches the ocean (the one that is not scattered
or absorbed by atmospheric particles), only ≈ 50% can be used for photosynthesis
as it falls in the photosynthetically active region between 400 and 700 nm, while
the rest is weak energy that is not useful, as in the IR region (Hall and Rao, 1999).
Similarly to the atmosphere, phytoplankton in the ocean (or any water body) will
both absorb and scatter the incoming radiance from the Sun.
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2.3 Ocean Color Radiometry
Ocean color radiometry (OCR) uses the intensity and measured upward flux through
sensors mounted on UAVs, aircraft, or satellites to obtain information about the
constituents of waterbodies and the corresponding Inherited Optical Properties
(IOPs) (Mobley, 2021). The color of the ocean changes based on the materials or
sediments in the water column, which can be defined as all the multiple depths
of water at the geographical coordinate that is being monitored. In the case of a
"standard" water body, photons in the red and green wavelengths are absorbed by
water molecules, which results in the "blue" ocean color by the scattered photons
from the blue wavelength region (Braun and Smirnov, 1993).

Organic matter and minerals can be transported from the land to the seas or
lakes due to natural events and industrial activities. This results in changes in
water clarity that are also measurable through reflectance, as variations in water
constituents can be detected from a satellite (IOCCG, 2018). Figure 2.3 shows the
difference of the same region with a 10-week difference between the captures. From
the false images reconstructed from the HSI taken by HYPSO-1, the sediment
distribution can be visualized and how it changes the color of the water.

(a) 2022-Dec-02 13:57

(b) 2023-Feb-13 13:43

Figure 2.3: False color images from the "Bahia Blanca" region in Argentina
(Lat: -38.8 Lon: -61.89) taken with HYPSO-1.
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Chapter 2 BACKGROUND

According to Mobley (2021), the optical properties allow us to describe the
water through which light passes. Due to the constant change in the waterbodies,
a similar change can be observed in the vertical upward flux across the mean water
surface covered by every pixel of an instrument sensor (IOCCG, 2008).

The improvement of ocean-color measuring instruments has allowed us to
improve the study of IOPs and the relation with absorption and scattering (Dierssen
and Randolph, 2012). It is now also possible to use passive remote sensing to
monitor more ocean constituents other than chlorophyll, such as mineral particles,
total suspended sediment, and color-dissolved organic matter (CDOM), type of
water, and bottom depth (Dierssen and Randolph, 2012; Mobley, 2021). The
influence of these water properties on the color of the water must still be studied,
as well as the impact on the measured reflectance (IOCCG, 2018).

2.4 Chlorophyll Spectrum

One of the most important properties that can be monitored with OCR is the
chlorophyll concentration, as this is an index of the biomass of phytoplankton
(IOCCG, 2008). Any change in the biomass of the water column would modify
the surface reflected upward flux that reaches the satellite, allowing us to correlate
these two changes in a specific area. An increase in the total chlorophyll-a (chl-a)
concentration can be used as an index of the total biomass of algae in a specific
area (Karlson et al., 2021; Pandey, 2014; IOCCG, 2021).

Different materials with different properties on the surface can be identified
due to the spectral signature, as the reflectance coming from a particular region
(based on what is absorbed and what is not) will provide a wavelength-dependent
characteristic curve (Randall B. Smith, 2012). In photosynthetic organisms that
have chlorophyll-a and chlorophyll-b, the spectral signature is very characteristic
with two peaks in the visible spectrum, as shown in Figure 2.4. These photosynthetic
pigments have a considerable influence on the upward flux from the water surface
because some of the incoming light is absorbed by biochemical processes (IOCCG,
2008). This process is not exclusively for aquatic organisms as it is also found in
plants and trees on the ground, making the study of coastal regions particularly
hard for low spatial resolution devices, as the influence of land and water areas
may be combined in a single pixel.
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Figure 2.4: Chlorophyll absorption spectrum for both Chlorophyll-a and
Chlorophyll-b. Data from (Niedzwiedzki and Blankenship, 2010, as cited in
Taniguchi and Lindsey, 2021).

Knowing the characteristics of the type of surface or the material we want to
study, we can monitor changes in the absorption and reflection of sunlight through
remote sensing. In the case of Chl-a, the variation can be correlated with a higher
phytoplankton count that will absorb more energy from the "blue" region and
reflect photons in the "green". (O’Reilly et al., 1998, as cited in Dierssen and
Randolph, 2012) This scattering effect creates a green color on the surface of the
ocean.

2.5 Hyperspectral Imaging
According to Wilson et al. (2001) there are 4 ways in which ocean observations can
be made in OCR but, for convenience, they have been grouped into 3 groups in this
work: 1) radiometry (visible, IR, and microwave), 2) altimetry and 3) scatterometry.
Passive sensors such as cameras can only provide radiometry data, since the others
require an emitted signal, whose properties are known. Image acquisition from
satellites captures the upwelling energy after it has interacted with the atmosphere
and the surface of the earth collecting the photons reaching the sensor.

Traditional color RGB images are obtained with a single shot, and through
interpolation, the 3 different bands (from the 3 different filters) are extracted in a
process called "demosaicing" (see Figure 2.5). In modern cameras, the pixel density
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of the sensors is very high, making it possible to diminish the potential artifacts
caused by the demosaicing process. State-of-the-art methods have been designed
to improve the band extraction, but they will not be covered in this work as they
are not relevant for the objective of the thesis.

Demosaicing

Figure 2.5: "Demosaicing" process to go from a standard consumer camera to
3 bands through an interpolation process.

When the photons from a scene are separated on the basis of their wavelength
and captured (based on the property of the filter or grating used), different images
of the same area can be obtained, which contain different information. Each of
these images is called a band, and usually a higher number can reveal additional
details about the captured scene. Most of the time, the term multispectral image
(MSI) is attributed to images with ≈ 10 bands, while the term hyperspectral is
used if there are hundreds of bands. This superlative convention is described by
Polder and Gowen (2020) as inappropriate and thus suggests the use of "spectral
imaging" for all cases. In any case, there is a fuzzy subjective distinction as to
when an image is multispectral and hyperspectral, which is mostly based on the
author’s perception and field of expertise. Figure 2.6 shows an example composite
of standard color RGB images versus a multispectral simulated composite to clarify
the concept of multiple channels.
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(a) RGB (b) MSI

Figure 2.6: RGB vs MSI composites. Original image from (Flores-Romero,
2021) based on the "Indian Pines" dataset. (Baumgardner et al., 2015)

Several attempts have been made to capture MSI with a single shot, an approach
that is often referred to as "snapshot". This method proves rather difficult, as the
more bands are added, the more artifacts are introduced during the demosaicing
process due to the larger distance between pixels of the same wavelength. This
can be seen in Figure 2.7, where each color represents a filter of the same spectral
characteristics. Data inference in the "demosaicing" process is higher in the MSI
snapshot filter array versus a classical Bayer filter pattern.

(a) (Hemant Ku-
mar Aggarwal and
Majumdar, 2013)

v

(b) (Kiku et al.,
2014)

(c) (Brauers and
Aach, 2006)

Figure 2.7: MSI Snapshot Patterns using multispectral filter arrays (Lapray
et al., 2014).

To overcome the limitations of the filter array approach such as the reduction of
spatial resolution leading to artifacts, the usage of a more complex setup using an
optical element is preferred for remote sensing. Figure 2.8 shows the hyperspectral
imager diagram used in the HYPSO-1 satellite. This setup allows us to decompose
the incident light on the sensor that is reflected from the surface into different
wavelengths (similar to Newton’s prism experiment). This process is equivalent in
purpose to having multiple filters on top of a camera sensor.

15



Chapter 2 BACKGROUND
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Figure 2.8: Diagram of the HYPSO-1 optical pushbroom hyperspectral optical
system based on (Prentice et al., 2021).

The wavelength "separation" of such a system occurs in the diffraction grating
element and is then focused on different parts of the sensor with a focusing lens.
Photons from the physical EM signal can then be converted to digital values
(counts) through the photodetectors on the sensor. The digital resolution in the
NTNU satellite is 12 bits, which allows us to detect smaller signal variations in
contrast to the traditional 8-bit depth of an RGB camera. (Henriksen et al., 2022)

The arrangement of optical elements such as the collimating lenses and gratings
can be implemented in different ways so that the imager design can change depending
on the requirements. There are two popular scanning styles, called whiskbroom and
pushbroom (named after the way data is captured). The snapshot technique has
been attempted using beam splitters, but there are still no viable techniques that
do not sacrifice image quality.

HYPSO-1 uses the "pushbroom" capture method that captures the swath in
the satellite FOV ω. The swath is a function of the design considerations of the
optical system and the altitude at which the satellite orbits the Earth. The use of
gratings requires an extra dimension of capture of what is being observed. This
means that for a spatial point, a 1D array is needed; in the same way, measuring a
1D spatial area (observable swath) requires a 2D sensor. Each spatial pixel will be
translated into a sensor row. Due to this limitation, pushbroom satellites must
capture continuously while moving along its track. Figure 2.9 shows the hypercube
as a function of wavelength based on the displacement of the satellite along the
capture track.

16



Hyperspectral Imaging 2.5
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Figure 2.9: Pushbroom

The main benefit of extracting information from different wavelengths is that,
contrary to the traditional RGB image where the wavelengths are chosen to mimic
the color perception of a "standard" human being, spectral resolution is higher,
allowing to extract more information of the same scene (see Figure 2.6). The
selection of the spectral bands and ranges has to be defined in the design stage
on the basis of the objectives, as different information can be obtained or derived
depending on the region in the spectrum. Table 2.2 shows the potential use for
each region based on previous satellites. From the perspective of using an HSI
sensor for ocean studies (also applicable to multispectral devices), the important
information to estimate chlorophyll is in the red-edge band (Lazzeri et al., 2021, as
cited in Ruszczak et al., 2022).
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Table 2.2: Potential uses for specific regions of the spectrum. Wilson et al.
(2001)

Spectrum Region Applications

Visible
Ocean Color

Chlorophyll

IR
Surface Temperature

Ice Detection

Microwave
Surface Temperature

Wind Speed

2.6 Atmospheric Correction
An inherent problem of taking spectral measurements with satellites is that the
EM radiation coming from the Sun goes through a complex interaction of solar
irradiance, the optical path through the atmosphere (molecules and aerosols),
and the ocean properties itself (IOCCG, 2021). A simplified version of these
interactions is shown in Figure 2.10 for clarity. The ideal scenario would be to
have no atmosphere so that the variation of the signal would only be caused by
the properties of the surface from which it is reflected. In reality, not only is the
atmosphere complex, but also is constantly changing.

Scattering, absorption, and emission occur at different stages, which can seriously
affect the measured signal both at the surface and at the top of the atmosphere.
Reliable quantitative analysis requires one to remove the effects caused by the
atmosphere through a process called "atmospheric correction" (IOCCG, 2010).

In contrast, UAVs do not require a full atmospheric correction as the atmosphere
has less influence on the measurements ("less atmosphere" between the surface and
the sensor). The water vapor column and the aerosol scattering could be taken
into account for a more robust correction using a physical model, but the use of
calibration reference panels on the ground is a more common and simpler approach
(Schläpfer et al., 2020; Guo et al., 2019).

As mentioned earlier in this work, Clarke et al. (1970) pioneered the early
experiments on atmospheric measurement and understanding to acknowledge the
high perturbation of EM signals entering and leaving Earth. One of the early
atmospheric corrections on a satellite can be traced back to the CZCS sensor, which
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used a simplified "single-scaterring" atmospheric correction. To have enough data
to study the atmospheric effects on a measured signal at BOA and TOA, spectral
images of Nimbus-7 and ground measurements had to be taken at the same time
(Gordon, 2010).

Water

Soil

Scattered 
Light from Atmosphere

Reflected Light 
from Soil 

Absorption and 
Scattering of Water Particles 

Absorption and 
Scattering of Atomosphere 

Scattered Light 
from Water 

Reflected Light 
from Water Surface 

Atmosphere 

Figure 2.10: Atmospheric scattering. Image from Flores-Romero (2021)

The molecules corresponding to CO2, H2O, and O3 dictate mainly the radiative
characteristics of the atmosphere, as they are responsible for blocking sunlight from
passing at specific wavelengths (Rao and Mahulikar, 2012). When considering the
range from 400 to 800nm (see Figure 2.2), there is a loss of about 20% of the total
energy before reaching the satellite (Gordon, 2019).

It is important to know the position of the Sun and the coordinates on the
observed ground points since they describe the geometry of the incoming radiation.
When utilizing a radiative transfer model, these parameters are used to describe
the changing properties of the optical path, which is the area in which the sunlight
goes through.
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The optical path is generally described with two parameters: the water vapor
column and the air mass. The former can be described as the integrated mass of
gaseous water in the atmospheric column over a 1m2 area (Preusker, R. and El
Kassar, R., 2022). The air mass can be approximated with equation 2.2, which
defines the optical path length through the atmosphere with the angle between the
zenith (vertical) and the solar beam z (Riordan and Hulstron, 1990). The higher
the angle, the larger the AM index will be.

AM ≈ 1

cos z
(2.2)

The optical path can change depending on these two parameters, resulting
in a reduction in solar intensity. According to Riordan and Hulstron (1990), the
longer the path due to a higher AM, the larger the scattering and solar absorption,
causing an attenuated signal. The solar irradiance at BOA after it has been affected
by the atmosphere is shown in Figure 2.11. Two different sources were used as
comparisons, the standard ASTM G173-03 and the result of the 6SV1 radiative
transfer model. It can be observed that most of the energy falls in the visible and
NIR regions of the spectrum (≈ 400 − 800nm) where photosynthetic organisms
can use it. Compared to TOA radiation in Figure 2.2, we can see attenuation of
the signal in specific regions due to atmospheric effects.
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Figure 2.11: Solar irradiance on the surface of the earth from ASTM G173-
03(2020) direct and circumsolar measured standard and the output of the 6SV1
radiative transfer model used on this work (ASTM, 2020).

The atmospheric correction problem can be simply expressed by the total
radiance reaching the satellite (TOA) by the contribution of atmospheric scattering,
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Latm; the radiance reaching TOA reflected upward by the surface, LTOA
surf ; and the

water-leaving radiance reaching TOA, LTOA
w as described by the following equation

(Mobley, 2021).
Lt = Latm + LTOA

surf + LTOA
w (2.3)

Gordon (2019) rewrites the radiance reaching TOA in an expanded way as seen
in Equation 2.4. Table 2.3 contains the description of each parameter.

Lt(λi) = Lpath(λi) + tg(λi)Lg(λi) + twc(λi)Lwc(λi) + tw(λi)Lw(λi) (2.4)

Table 2.3: Parameter notation from Equation 2.4 (Gordon, 2019; Mobley, 2021)

Parameter Definition
Lpath(λi) is the radiance in the optical path from the measured point to the

sensor which accounts for scattering by air molecules, scattering
by aerosols and the interaction between air molecules and aerosols
(usually represented by Lr(λi), La(λi) and Lra(λi) respectively)
(IOCCG, 2010). This term also accounts for skylight scattered by
the atmosphere and reflected by the sea surface

tg(λi)Lg(λi) describes the direct specular reflection "Sun Glitter" from the
surface to the sensor with the transmittance tg(λi) and the radiance
Lg(λi).

twc(λi)Lwc(λi) describes the whitecap sea-surface regions with transmittance
twc(λi) and the radiance Lwc(λi)

tw(λi)Lw(λi) describes the whitecap free sea-surface regions with transmittance
tw(λi) and the water-leaving radiance Lw(λi)

The problem of atmospheric correction can then be defined as obtaining approx-
imations of the unknown parameters Lpath(λi), tg(λi)Lg(λi), twc(λi)Lwc(λi) and
tw(λi). All these terms that make up the radiative transfer equation are usually
obtained through algorithms developed for specific instruments or by ignoring
contributions such as the "sun glitter" (achieved by moving the sensor away from
the glitter pattern) (Gordon, 2019). If the radiance Lt(λi) measured on the satellite
sensor is known, the water-leaving radiance (or reflectance) Lw(λi) can be obtained
using Equation 2.4.

There are multiple atmospheric correction algorithms that rely on specific
sensors mounted on existing satellites and use data collected over the years. The
Sen2Cor algorithm is the ESA approach that only works with Sentinel-2 satellites,
as it is designed to use the SWIR and visible bands, taking into account the
existence of a black pixel for the selection of aerosol optical depth (AOD) selection;
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which accounts for the extinction effect of aerosols in the atmosphere (Gitahi
and Hahn, 2020; Li et al., 2021). Another correction method designed to be
used with the MODIS satellite is the Simplified High-Resolution MODIS Aerosol
Retrieval Algorithm (SARA). This algorithm requires optical path measurements
from AERONET stations to recover the reflected signal (Gitahi and Hahn, 2020).

ACOLITE is another method originally developed for Landsat and Sentinel-2
imagery, but has also been successfully implemented on other platforms like Sentinel-
3 and hyperspectral satellites such as PRISMA (Braga et al., 2022; Vanhellemont
and Ruddick, 2021, 2018). There are simpler implementations, such as the single
scattering approximation (SSA), which was successfully used in the CZCS sensor
(using bands in the NIR region). This method estimates a solution to the radiative
transfer equation and obtains the BOA reflectance by assuming that the scattering
between air molecules and aerosols Lra(λi) is zero (Gordon, 2019).

The 6SV1 algorithm proposed by Vermote et al. (2006) approaches the problem
with the geometric considerations shown in Figure 2.12. The zenith θ and azimuth
ϕ angles must be known for both the Sun and the satellite (subindices s and v
respectively) in relation to the observed point.

Surface
Normal

Φ
s  - Φ

v

θs

θv

Figure 2.12: Solar and viewing angles convention used in remote sensing
(Vermote et al., 2006).
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The scattering on the surface (without considering any absorption)were de-
scribed in the method by three main interactions shown in Figure 2.13.

GIFOV

(a)

GIFOV

(b)

GIFOV

(c)

Figure 2.13: Surface Contribution. Reconstructed images from (Vermote et al.,
2006)

The direct solar flux in Figure 2.13a that becomes attenuated by AOT τ , a
solar flux at TOA Es and the solar zenith angle contribution µs = cos(θs) can be
expressed as:

EDir
Sol = µsEse

−τ/µs (2.5)

td(θs), a diffuse transmittance factor can be used to express the diffuse solar
irradiance EDiff

Sol that is completely independent of the surface properties as seen
in Figure 2.13b.

td(θs) =
EDiff

Sol (θs)

µsEs

(2.6)

Lastly, the scattering that occurs due to "trapping" of the irradiance is generated
by successive scatterings and reflections in both the surface and the immediate
atmosphere of the studied area (see Figure 2.13c). This successive behavior can
expressed in a series such that for a spherical albedo of the atmosphere S and a
reflection ρt the series would be defined as:

∞∑
n=1

ρnt S
n = [ρtS + ρ2tS

2 + · · · ρnt Sn] =
1

1− ρtS
(2.7)

With the series solution the total normalized surface level illumination can be
expressed in terms of total the total transmittance T (θs) as:

ENorm
Surf =

T (θs)

1− ρtS
where T (θs) = e−τ/µs + td(θs) (2.8)

Radiance, as perceived by the satellite from the scattering alone, can be described
as seen in Figure 2.14. Vermote et al. (2006) The total contribution of direct and
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diffuse components reflected by the surface is shown in Figure 2.14a and can be
expressed by the following equation:

e−τ/µv where µv = cos(θv) (2.9)

Figure 2.14b shows the intrinsic radiance of the atmosphere that Vermote
et al. (2006) named ρa(θs, θv, ϕs, ϕv). On the other hand, the contribution of the
environment from direct and diffuse sources on external surfaces (see Figure 2.14c)
is denoted as the diffuse transmittance td(θv).

GIFOV

(a)

GIFOV

(b)

GIFOV

(c)

Figure 2.14: Satellite Contribution. Reconstructed images from (Vermote et al.,
2006)

Considering that td(θs) = td(θv) due to the reciprocity principle and by consid-
ering the previous scattering interactions based on the incident angles, the apparent
reflectance ρ∗ can be expressed as:

ρ∗(θs, θv, ϕs − ϕv) = ρa(θs, θv, ϕs − ϕv) +
ρt

1− ρtS
T (θs)T (θv) (2.10)

where,

T (θv) = e−τ/µv + td(θv) (2.11)

The approach taken by Vermote et al. (2006) to the scattering problem has
been described above, however, there are multiple interactions and conditions for
which the 6SV1 radiative transfer model finds approximate solutions. Some of
these are listed below:

• Non-uniform surface reflectance is considered based on the weighted spatial
average taking into account the efficiency of different points based on the
geometry.
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• Non-uniform altitude can be solved using variations of the Rayleigh Optical
Thickness

• Intrinsic atmosphere reflectance over a black target (dark pixel) to account
for ρr + ρa (Rayleigh + aerosol contributions)

• Scattering and absorption interaction is computed through the different
molecules absorption for each scattering path. The approximations are made
on the basis of the previous knowledge of the affected bands by each molecule.

Multiple correction methods exist, which main purpose is to estimate the
reflectance of the surface by eliminating atmospheric effects on a measured radiance
signal by a space-borne or air-borne sensor. As the reflectance changes based on
the properties of the surface, a high-quality correction capable of retrieving this
signal becomes of high importance for the study of the Earth’s surface.

2.7 Water Detection

Being able to create a water mask to focus on specific regions can result in
a beneficial reduction of the computational complexity of the analysis, as well
as avoiding outliers with different characteristics (e.g., the signature of a forest
is different from an ocean). This is particularly important when dealing with
hyperspectral images with millions of pixels and tenths or even hundreds of spectral
bands.

For water detection to be possible, the contrast between water and non-water
pixels needs to be increased. Zhai et al. (2015) found that the differences for vegeta-
tion, water, land and shadow can be greatly improved based on the characteristics
of the instrument. During the design phase of a satellite, the selection of bands
plays an important role to facilitate the detection of specific regions based on the
mission objectives.

To create a water mask, usually the difference between pixels is increased by
extracting the main features that can describe each of them. There is no predefined
number of features to obtain per pixel, depending entirely on the technique used.
Figure 2.15a contains an example of a RGB image (3 channels), from which two
features corresponding to the green and blue values are extracted (see Figure 2.15b).
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(a) 3x3 Image to Classify
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Figure 2.15: 3x3 image and the corresponding Green and Blue values (randomly
selected).

For the particular image used, there are only two features, green and blue values,
making the 2D plot easier to visualize in Figure 2.16.
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Figure 2.16: Scatter plot of the Green-Blue values from Figure 2.15

To enhance the pixel difference in a spectral image by means of features,
techniques such as single-band analysis or water detection indices have been
developed. These methods are popular as they enhance the difference by applying
band subtraction or the ratio of the bands from a spectral image. Simple methods
were used in early remote sensing studies, where the detection of regions of interest
using a single band was preferred. To detect wet and non-wet regions Wang
et al. (2002) used the SWIR spectrum of Landsat 7 Thematic Mapper (TM) from
2.08-2.35 µm. As stated by Ji et al. (2015), hyperspectral mixing due to low
spatial resolution can have an impact on the detection of water bodies correctly;
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therefore, a single band method makes the classification process more sensitive and
error-prone.

Using water detection indices has the advantage of considering information from
multiple bands and taking into account the particular variations that characterize
specific substances (Xu, 2006). Since indices are easy to compute and explain, they
have become quite popular. The most common indices used in the literature can
be found in Table 2.4, and although this list is not exhaustive, many of the new
approaches are variations of those presented.

Table 2.4: Classic indices used for water detection

Name Formulation Reference

NDWI
Green−NIR

Green+NIR
(McFEETERS, 1996)

MNDWI
Green−MIR

Green+MIR
(Xu, 2006)

NDVI
NIR−Red

NIR +Red
(JUSTICE et al., 1985; Jiang et al., 2006)

To improve pixel classification, multiple attempts have been made to increase
the pixel difference, but the proposals are most of the time satellite-dependent, as
the spectral response functions (SRFs) for each one are different. The works of
Jiang et al. (2020) and Milczarek et al. (2017) are approaches that focus mainly
on Sentinel-2 data due to the available bands. Similarly, the "Automatic Water
Extraction Index" of Feyisa et al. (2014) aims to improve the classification of
Landsat water pixels by empirical determination of the polynomial coefficients for
each satellite band.

Newer missions such as Sentinel-3 with instruments such as the Ocean and
Land Color Instrument (OLCI) have been used to describe workflows that use
recovered surface reflectance (Santer, 2010). For a pixel to be classified as a water
body, it must pass all the tests specified in Table 2.5 for the NIR band (band 12 at
753.75nm), the red band (band 10 at 681.25nm), and the blue band (band 2 at
412.5nm) (L. Bourg et al., 2023). Even though these tests have been determined
empirically and applied only to this specific satellite, they have been proven reliable.

Table 2.5: Water Body detection spectral tests for Sentinel-3 OLCI (L. Bourg
et al., 2023).

0 < ρblue < 0.3 0 < ρred < 0.5 0 < ρnir < 0.7 ρblue > ρnir

Surprisingly, vegetation indices can be used to detect water surfaces, such is the
case with the NDVI index for negative values (Zhai et al., 2015). A drawback is that
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for water pixels with a high phytoplankton concentration (similar to that observed
in algal blooms), the chlorophyll can create variations on the spectrum, making
this particular index unreliable in some situations. Every method may have its
drawbacks, emphasizing the need of using a combination of information-highlighting
techniques to handle different areas in a scene such as forests, urban, and water. In
different studies, the use of NDWI (alone or in combination with other indices such
as NDVI) has been found to enhance the contrast between water and non-water
regions, making the classification task easier (Acharya et al., 2018). Depending on
the existing elements, some indices might work better as different spectrum regions
emphasize particular features.

Applying the same indices to different satellites can yield different results.
Regions in the spectrum are not clearly defined, making their limits fuzzy. This
variation mixed with different satellite bands properties like center wavelength and
bandwidth makes not every single band the same, even if, for example, they are
both considered NIR.

Once the difference has been increased, the water pixels can be selected on
the basis of an optimal threshold, which can be found with different statistical
and mathematical formulations that account for local, global, and sometimes time
variations (Sekertekin, 2019). Thresholds can be defined empirically for specific
sensors and remote sensing scenes, so that the classification of specific scenes is
reliable and repeatable. To generalize this process, several methods have been
defined to automatically find the threshold using information from a grayscale
"feature map".

A very popular option for automatic threshold selection is the Otsu algorithm of
Otsu (1979) that uses the histogram variance of the feature map or entropy-based
methods such as the one proposed by Kapur et al. (1985). Geometric approaches
such as the one from (Zack et al., 1977, as cited in Sekertekin, 2019) have been
widely used, while other techniques try to account for fuzziness in the threshold
selection process (Huang and Wang, 1995). Regardless of the method used, pixels
can be grouped using clustering techniques based on the similarity of features. If
the number of features n is plotted in the n-dimensional space, we can visualize it
similarly to Figure 2.16.

With iterative methods such as agglomerative clustering (which initially assume
that each point is a subgroup), it is possible to create groups from individual
points based on how far they are from each other in the feature space, reducing
them until the desired number of clusters k is reached. Euclidean distance is a
common approach to measuring the distance between two points a and b based
on the number of features n using equation 2.12. The "Average Linkage" distance
between two clusters A and B is given by the distance between the points of both
groups and the total number of points |A| and |B| within the cluster A and B,
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respectively (see Equation 2.13).

dab =

√√√√ n∑
i=1

(ai − b1)2 (2.12)

AL =
1

|A||B|
∑
a∈A

∑
b∈B

dab (2.13)

At the end of this iterative optimization approach, a desired number of clusters
are found that have the smallest distance between the points. Each cluster can
be assigned a "centroid", which would represent the point that has the smallest
distance to all the points of the group. Figure 2.17 visually shows the distance
from each point in each cluster to the center.
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Figure 2.17: Distance from each of the points in each cluster to the centroid of
each group.
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Figure 2.18: Scatter plot of the groups made with agglomerative clustering using
the Green-Blue as input parameters. The centroid of each of the convex-hulls is
shown for visualisation.

Geometric boundaries can be defined with methods like "convex Hull" to define
the are at which the boundary conditions are met, as shown in Figure 2.18. It can
be said that inside these boundaries all points belong to the same group. If more
points are to be added, the best approach would be to repeat the iterative process
to determine new centroids and new boundaries.

It has been proven useful to use a combination of water indices with feature
clustering through machine learning to enhance the water pixels classification.
Cordeiro et al. (2021) proposed the extraction of spectral features through the use
of NIR and SWIR bands using the indices NDWI and MNDWI on random pixel
sampling. Agglomerative clustering was implemented, defining the number of target
groups k with the Calinsk-Harabasz index (based on the spread and density of the
data). The resulting groups could then be classified as water or non-water using
a custom implementation of the MBWI index (originally developed for Landsat),
generalizing classification to the remaining pixels using Naive Bayes. Machine
learning approaches such as the maximum likelihood classifier (MLC) are another
useful alternative to classify water pixels in an image as done by Gong et al. (2013).
To avoid overfitting a method to a particular set of points, we must provide good
generalization, which is generally achieved by using data that cover different types
of ocean, seasons, and scenes.

Currently, there are multiple data sets on water masks, such as the Global
Lakes and Wetland Database (GLWD) (Lehner and Doell, 2004), to more modern
ones like MODLAND (for use in MODIS raster images) (Carroll et al., 2009) and
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the FROM-GLC which was generated from four machine learning classifiers (Gong
et al., 2013, as cited in Ji et al., 2015). Probably the one that stands out the most
is GLOBELAND30, which has masks with a resolution of 30m obtained from data
from Landat TM and China’s HJ-1 satellite with revision in 2000, 2010 and 2020
(Jun et al., 2014).

Satellites such as AQUA-MODIS utilize data sets publicly available from (JPL,
2013), such as SRTM-SWBD (Shuttle Radar Topography Mission Water Body
Data). This is a 30m coordinate grid that has flagged which positions belong to a
waterbody. Although interpolation can allow us to obtain information in-between
pixels, telemetry variations and inconsistent data (sometimes caused by sensor
aging) can make the use of geolocation water masks unreliable.

Different descriptors can be used to improve water detection; however, the
task becomes more complicated when more classes are introduced, such as urban
regions and different types of water. As the SRF of each sensor is different, different
approaches that involve multiple features may be used to enhance the contrast
of the pixels and improve the classification and generalization of the pixels in a
spectral image.

2.8 Chlorophyll Estimation
Estimating chlorophyll concentration from satellite imagery is a complex problem
that has yet to be reduced to a simple answer that fits all approaches. At the
laboratory level, a fluorometer is commonly used to get accurate results of the
chlorophyll concentration, and the spectrum is often measured with a spectrometer.
To estimate chlorophyll from a satellite, physical formulations based on the ocean
and atmosphere are deemed to be the most accurate; the difficulty of acquiring
input parameters and the inherit complexity have also led to semiphysical methods
as a less complex alternative.

A well-known empirical approach to chlorophyll estimation is the OCx band
ratio algorithm developed by O’Reilly and Werdell (2019) in combination with the
Color Index (CI) of Hu et al. (2019). The former method was developed on the
basis of empirical data regression, and it has been fine-tuned to account for different
water types. Using this polynomial approach, sensor-specific implementations have
been designed so that the SRFs are taken into account. Equation 2.14 shows the
4th degree polynomial formulation used for all implementations of this method.

log10(chla) = a0 +
4∑

i=1

ai

(
log10

(
Rrs(λblue

Rrs(λgreen

))i

(2.14)

The second version of the CI algorithm works well in tandem with OCx as it
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can improve chlorophyll detection (smaller error and higher R2) in the range of
0.25-0.40mg/m3. Equations 2.15 and 2.16 show the formulation of this method.

CI = Rrs(λgreen)−
[
Rrs(λblue) +

λgreen − λblue

λred − λblue

(Rrs(λred)−Rrs(λblue))

]
(2.15)

log10(chla) = a+ CI ∗ b (2.16)

Each satellite has different spectral bands with specific SRF, so the application
of this empirical formulation needs to be recalculated for every sensor to obtain
the applicable coefficients.

To aid in the creation of more general methods, multiple publicly available
datasets have been created for ocean color measurements that combine in situ
chlorophyll analysis with BOA (Bottom of Atmosphere) reflectance. Perhaps the
most popular one is the dataset by Valente et al. (2022) which has two older versions
released in 2019 and 2016 and contains BOA reflectance matches from a spectrometer
with satellite estimated Rrs and the corresponding chlorophyll measured in the
lab. Ruszczak et al. (2022) went as far as introducing a new dataset that includes
more complex parameters such as the SPAD (Soil-Plant Analysis Development)
parameter and the maximum quantum yield of PSII photochemistry (Fv/Fm).

Most recently Lehmann et al. (2023) released a dataset that aims to have
multiple water-type representations with the proper methodology documented for
the more than 7,000 measurements. Total suspended solids and absorption are also
documented, making it a very good alternative to the other datasets mentioned to
analyze the water quality of ocean and inland water bodies.

As the quality of chlorophyll estimation depends highly on the quality of the
atmospheric correction (better correction translates to better recovered Rrs), it
is valuable to retrieve the surface reflectance from the ground as the problem of
atmospheric correction has not yet had a definitive solution.

Although the polynomial approach of O’Reilly and Werdell (2019) is one of
the most widely used approaches due to its simplicity (currently used by NASA
in the AQUA-MODIS mission), there are other approaches that have yielded
good results with different techniques. In the following sections, two strategies to
estimate chlorophyll from surface reflectance Rrs will be presented. The spectral
indices method will be covered first, leaving the machine learning approach for last.
Although there are many other methods, they will not be discussed in this work to
maintain the scope of the thesis.
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2.8.1 Spectral Indices
As with water detection indices, the spectral indices for chlorophyll estimation are
calculated with band subtraction and ratio, making this a quick and easy method
to obtain the chlorophyll concentration based on the type of characteristics of a
hyperspectral image. Since both ground and aquatic photosynthetic organisms
contain chlorophyll, most of the spectral indices can be reused, as there is absorption
in the blue and red spectral regions (see the chlorophyll signature in Figure 2.4).

Indices based on two bands, such as band ratio and band subtraction, may be
heavily affected if the atmospheric correction process fails to accurately estimate
Rrs. Viewing conditions and moisture may be the main contributors to a low-quality
correction process, and consequently, the index would not accurately represent the
chlorophyll concentration (Abderrazak et al., 1996).

Jiang Hai-ling et al. (2014) compared the precision of multiple indices to estimate
the chemical parameters of vegetation, finding that precision is a trade-off with the
complexity of the method. Depending on the photosynthetic organism, different
chlorophyll indices have shown to have a better correlation between the spectrum
change and biomass concentration, such as the Optimized Soil Adjusted Vegetation
Index (OSAVI) or the Vegetation Index Based on Universal Pattern Decomposition
Method (VIUPD).

Spectral indices have also been mixed with polynomial models to improve
biomass estimation using multispectral imaging (Che et al., 2021). Although this
approach is pretty simple, it works better when fitted to a particular type of algae
or particle. Although this approach is as straightforward, it is usually affected
by many parameters and, as has been seen before, can have questionable results
(Bannari et al., 2007, as cited in Ruszczak et al., 2022).

2.8.2 Machine Learning
Deep learning supervised techniques have been used with remote sensing hyper-
spectral images to extract low-level features and perform a pixel-wise data analysis
(Zhang et al., 2016). Although deep learning approaches generally perform better
than other methods, they lack explainability and require very large datasets to
avoid overfitting and underrepresentation (Barbedo, 2018).

Ye et al. (2021) retrieved chlorophyll-a concentration values using MODIS-
AQUA multispectral images (particularly focused in the visible bands) to train
a two-stage CNN but faced the dataset size restrictions, thus using synthetic
oversampled in situ data to compensate. Representation of different types of water
bodies at different concentrations also presented a challenge for reproducibility, as
samples need to be coordinated worldwide.
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Multiple branch CNNs for satellite imagery have also been used by Tulczyjew
et al. (2022), where spectral, spatial, and spectral-spatial characteristics were
separated to aid in the unmixing of hyperspectral signals. By separating the signal
composition, it is thought that the estimation of chlorophyll could be enhanced,
but the problem of complex absorption and scattering on the surface remains.

Pyo et al. (2019) implemented a point-centered regression CNN (PRCNN) in
which windows of varying size were defined in which the center pixel would contain
the chlorophyll measurement. By this the surrounding pixels were considered in
the estimation of chlorophyll by using physical measurements as total flux and path
radiance as part of the input spectral cube. Although the approach to this complex
problem used CNN, the solution can be considered an analytical approximation due
to the physical measurements included in the process. The results presented in this
work seemed to have a better performance than the chlorophyll estimation methods
based on Inherit Optical Properties from Gons et al. (2002); Li et al. (2015). The
results were presented for a specific area and rely on physical measurements for
each spectral image, making it not a viable option for wide area coverage.

Bakken et al. (2021) utilized linear models such as the "Partial Least Squares
Regression" (PLSR) and the "Least Absolute Shrinkage and Selection Operator"
(LASSO) to estimate chlorophyll-a based on the TOA reflectance from HICO
satellite spectral images. While this helps in reducing the complexity with good
accuracy, it does not account for scattering and absorption on the optical path.

Many strategies have been proposed to estimate chlorophyll from Rrs, ranging
from empirical methods to artificial neural networks (ANN). Each of the imple-
mentations has been useful in overcoming specific challenges such as the sensitivity
to non-optimal atmospheric corrections as well as small datasets. Most of the
approaches seem to focus on a specific sensor; using the available bands to extract
features with spectral indices and principal component techniques. Generalization
is still important to consider, as environmental and atmospheric conditions change
constantly.
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3.1 Overview
To begin to address the problem of chlorophyll inversion, HYPSO-1 hyperspectral
images had to be manually georeferenced to match a standard coordinate reference
system using known ground points and their equivalents in the hypercube. This
became an essential step as the coordinate grid of some captures did not accurately
represent the scene.

After completion of this process, the radiance cube was atmospherically corrected
to eliminate the effects of the atmosphere as perceived by the sensor. This process
allows one to obtain the BOA reflectance, which describes the properties of the
surface. To achieve this, in this work, the radiative transfer model of the 6SV1
algorithm was implemented for the first time for HYPSO-1 spectral images.

Knowing the reflectance values of scene pixels, it was possible to classify each
one of them as water or non-water. The former is of interest, as the purpose of this
work is to estimate ocean chlorophyll. To create a working dataset, the spectral
images of Sentinel-3 and MODIS-AQUA were matched with the coordinates of the
HYPSO-1 captures in a ± 3 hour window (Seegers et al., 2018). This was done to
extract chlorophyll estimates from ESA / NASA due to the lack of in situ ground
truth. Linear interpolation was used to retrieve the Chl-a value at the HYPSO-1
coordinates from the matching satellite images.

Having both the HYPSO-1 and the GLORIA dataset, a data analysis stage
was introduced to create and select relevant features to improve the estimation
process. The problem of estimating chlorophyll with the surface reflectance of
spectral images was then approached as follows:

1. Multiple features were created from the reflectance spectrum using existing
chlorophyll descriptor models. Simpler descriptors, such as band ratios
and band difference, were also considered, along with the corresponding
logarithmic transformations. For each descriptor X that requires r different
wavelengths, all permutations nPr were tested using all n bands of HYPSO-
1/GLORIA, selecting the five with the highest correlation with chlorophyll
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prediction. The selected r bands in each of the five selected permutations
were ensured to correspond to a different region (see Table 3.4) and that set
was unique with respect to the remaining four (irrespective of order).

2. Polynomial combinations for the models with the highest correlation were
created up to 3rd degree. The process was to account for more complex
relationships than the contribution of a single feature to chlorophyll regression.

3. Five features were selected by cross-validation using recursive feature elimina-
tion (RFE), sequential feature selector (SFS), and stepwise forward-backward
regression. Both RFE and SFS were implemented with random forest re-
gression as used by Adam et al. (2014) to reduce overfitting in the subset
selection process.

4. The features in the optimal subset were combined with both linear regression
and ensemble machine learning voting and weighting techniques. The multi-
variate regression approach is similar to the one used by Cao et al. (2020),
but the technique is improved by using multiple models.

The workflow of the entire process is shown in Figure 3.1, where each of the
colored elements of this diagram will be detailed later in this chapter.

Ensemble Machine
Learning Regression

Polynomial
Regression

Sentinel-3 OLCI

MODIS AQUA

HYPSO-1 Spectral
Image

Water Mask Pixels
Classification

Atmospheric
Correction

Pixel
Matching Data Analysis

Geo-reference
correction

GLORIA dataset

Regression
Evaluation

HYPSO-1 Rrs and
Chl Matches

HYPSO-1 featuresGLORIA features

Chlorophyll Estimation

Figure 3.1: Methodology overview workflow diagram of the current work. Colored
regions are carefully described in the sections of this chapter.
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3.2 Geo-reference Correction

Due to the inconsistency in the telemetry data coming from the HYPSO-1 captures,
manual correction of the geolocation coordinates had to be performed. An example
of the coordinate mismatch to ground points can be seen in Figure 3.2 where the
coast of Florida does not correspond to the Open Street Maps (OSM) reference
used.

Figure 3.2: Overlap of the HYPSO-1 capture wrong coordinates and the OSM
reference. Through visual inspection and the change in opacity of the spectral
image, it is possible to see a mismatch along the coast line.

To correct each image, characteristic areas have to be selected in both the map
and the HYPSO-1 capture. At least 8 points (4 in the spectral image, plus 4 on
the map) are required to perform this correction. To make the process easier, the
matches were put together by loading the GeoTIFF of each spectral image into
the software "QGIS Desktop" version 3.28.3 and using the "Georeferencer" tool.
Figure 3.3 shows the manually selected points so that a geometric transformation
can be implemented.If the nature of the image allowed, the selected points were as
far apart as possible from each other.
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Figure 3.3: Ground control points (GCP) are shown in red which were manually
matched between the source points of the spectral image and the desired destination
on the reference map using the same reference system. The X and Y coordinates
from source to destination can be seen in the Coordinate Reference System (CRS)
units for both latitude and longitude.

Initially, the exported coordinates from the "Georeferencer" tool were used to
estimate a transformation from the source (HYPSO-1) to the destination (OSM
map). The Python OpenCV library was used to approximate the homography
matrix 3× 3 of Equation 3.1 as well as a second-degree polynomial, but the results
were far from optimal for both of these methods.x′

y′

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xy
1

 (3.1)

Using the "linalg.lstsq" function in the numpy library, the approximation to x in
equation 3.2 was derived. This linear transform created the most visually accurate
correction of all the alternatives tested. Source coordinates were placed in matrix A
and destination points in matrix b. This process was carried out independently for
both latitude and longitude, since each parameter has its own source-destination
pairs (see the bottom right area of Figure 3.3). The estimation had to be repeated
for each image as the mismatch was not constant between captures.

Ax = b (3.2)
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Figure 3.4 shows the result of the HYPSO-1 image after a proper transformation
was implemented.

Figure 3.4: RGB image of the HYPSO-1 capture after correcting the coordinates
using a the least-squares solution from Equation 3.2. Image was fitted to another
CRS using "Cartopy".

3.3 Atmospheric Correction
The 6SV1 algorithm for atmospheric correction was selected for this work, being the
first implementation available on the HYPSO-1 satellite (Vermote et al., 2006). All
modifications and considerations made to the algorithm are discussed in this section.
Parameters from the HYPSO-1 spectral image metadata were used to define the
geometry of the scene, which is fundamental to implement a correct atmospheric
correction. To avoid confusion with other authors, the naming conventions of
Jensen (2014) for the atmospheric parameters were used in this section.

• INPUT PARAMETERS:

1. Radiance: From the HYPSO-1 process pipeline, the L1B radiance hyper-
cube can be obtained after it has been radiometrically corrected using
the coefficients defined in previous calibration studies (Henriksen et al.,
2022). Radiance per band was the input of the model, which means that
for n bands, atmospheric correction had to be performed n times. The
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correction performed for each band is considered to apply to every pixel
it contains.

2. Month and day: The ISO time in the HYPSO-1 metadata was parsed in
a Python-friendly format so that the month and day could be extracted
and fed to the model.

3. Latitude and Longitude: The boundaries surrounding the capture were
obtained with the 2D latitude and longitude grid of the spectral image.
At the same time, the approximate center of the captured region was
estimated with Equation 3.3.

lonc =
max(lon) +min(lon)

2
latc =

max(lat) +min(lat)

2
(3.3)

4. Surface altitude: A Digital Elevation Model (DEM) with a resolution
of 2 km was used; the mean altitude value in m was obtained from all
values within the region described by the upper left (UL) and lower right
(LR) points (see Table 3.1).

Table 3.1: UL and LR considerations for obtaining the mean altitude through a
DEM.

Upper Left
Corner

Lat max(lat)
Lon min(lon)

Lower Right
Corner

Lat min(lat)
Lon max(lon)

5. Ground Reflectance: An uniform parameterized BRDF (lambertian)
was used to describe aquatic regions as only water pixels will be used
and continental areas will be ignored. From all the built-in options in
the 6SV1 model, the "Lake Water" reflectance profile was selected as
it better describes the oceanic regions studied in this work compared
to the other profiles. To avoid unnecessary assumptions, it was decided
to select a standard profile rather than choosing an arbitrary constant
reflectance value for the BRDF model.

6. Atmospheric Profile: The latitude at the center of the spectral image
was used to select the atmospheric profile for the correction. The region,
in combination with the month, allows one to follow the criteria of Table
3.2 to define the atmospheric profile between tropical (T), mid-latitude
summer (MLS), mid-latitude winter (MLW), subarctic summer (SAS),
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and subarctic winter (SAW). A simplified criterion as defined early by
NASA (1966) can also be used (see Table A.1 in the Appendix).

Table 3.2: Atmospheric profile conditions based on the month of the capture and
the center latitude of the spectral image. Values defined for the 6SV1 algorithm
and adapted from the FLAASH atmospheric correction documentation (Felde
et al., 2003). A more accurate selection would require vapor information in the
optical path or surface air temperature .

Lat (◦N) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

80 SAW SAW SAW SAW SAW SAW MLW MLW MLW MLW SAW SAW
70 SAW SAW SAW SAW MLW MLW MLW MLW MLW MLW SAW SAW
60 MLW MLW MLW MLW MLW MLW SAS SAS SAS SAS MLW MLW
50 MLW MLW MLW MLW SAS SAS SAS SAS SAS SAS SAS SAS
40 SAS SAS SAS SAS SAS SAS MLS MLS MLS MLS SAS SAS
30 MLS MLS MLS MLS MLS MLS T T T T MLS MLS
20 T T T T T T T T T T T T
10 T T T T T T T T T T T T
0 T T T T T T T T T T T T

-10 T T T T T T T T T T T T
-20 T T T T T T MLS MLS MLS MLS T T
-30 MLS MLS MLS MLS MLS MLS MLS MLS MLS MLS MLS MLS
-40 SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS
-50 SAS SAS SAS SAS SAS SAS MLW MLW MLW MLW SAS SAS
-60 MLW MLW MLW MLW MLW MLW MLW MLW MLW MLW MLW MLW
-70 MLW MLW MLW MLW MLW MLW MLW MLW MLW MLW MLW MLW
-80 MLW MLW MLW MLW MLW MLW SAW SAW MLW MLW MLW MLW

7. Aerosol Optical Thickness at 550nm: The value of the parameter was
manually retrieved using information provided by the NASA Earth
Observation (NEO) website. The aerosol optical thickness (AOT) can
be recovered by defining a geographic region of interest (ROI). The AOT
value closest to the center of the HYPSO-1 spectral image was chosen
because the spatial resolution of MODIS-AQUA is lower than that of
the NTNU satellite. As an alternative, it is possible to use AERONET
profiles from an available station, but since no images were captured on
top of these areas, this option was not used.

8. SRF and wavelength: A Gaussian distribution for the spectral sensitivity
of each band of the hyperspectral imager was assumed to describe the
sensitivity in a defined wavelength range. The hyperspectral nature of
the device allows this to be an educated approach, although the actual
SRF would be desired. Using the calculation of FWHM by Henriksen
et al. (2022), Equation 3.4 can be established using w = 50µm as the
width of the slit, a = 3.33µm for the spacing of the groove of the grating,
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the incident angle of light as α = 0deg, the order of the grating k = 0
and the focal length fixed at f = 50mm.

FWHM =
wacos(α)

kf
= 3.33nm (3.4)

With a constant FWHM value defined, σ can be calculated with Equation
3.5.

σ =
FWHM

2
√

2 · log(2)
= 1.40138nm (3.5)

Equation 3.6 is used to establish the SRF that will be used for every
band of HYPSO-1. The set gx is given by Equation 3.7, and is defined
according to the 6SV1 algorithm requirement of a fixed step of 2.5nm
in the device response function.

SRF = exp

(
−1

2

g2x
σ2

)
(3.6)

gx = {r : ∃n ∈ N, such that r = −3σ+2.5n, and r ∈ [−3σ, 3σ)} (3.7)

For the central wavelength λo of each band, the spectral range in which
the SRF corresponds can be easily obtained using the set gx from
[−3σ, 3σ). Equation 3.8 is used to center the SRF around the central
wavelength λo. For each band, the first and last values of wlx are inputs
to the 6SV1 model along with the SRF.

wlx = gx + λo (3.8)

9. Solar and viewing angles: As previously shown in Figure 2.12, the zenith
angles θ and azimuth angles ϕ are used to describe the locations of the
capture surface with respect to the satellite and the Sun. Both solar
angles θs and ϕs are floating point values obtained from the metadata
in the HYPSO-1 GeoTIFF file. For the satellite (viewing) angles θv and
ϕv, the 6SV1 implementation requires a zenith-azimuth pair for each
spectral band. Ideally, the mean value per band is desired, but because
the HYPSO-1 metadata contains only two values per capture, the same
value was repeated for each of the 120 bands.

10. Aerosol Profile: The aerosol profile is used to describe the behavior of the
particles and aerosols in the capture area. The maritime aerosol model
was selected based on the description given by F.X. Kneizys et al. (1996)
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which corresponds to areas with mainly sea salt particles and conditions
of high relative humidity. All the spectral images chosen for this study
were from coastal regions, which perfectly fits the characteristics of a
maritime model.

• OUTPUT:

1. EDIR: Direct Solar Irradiance
2. EDIFF : Diffuse Solar Irradiance
3. Lp: Path radiance from scattering
4. Tabs↑: Transmittance coefficient of upward absorption
5. Tscat↑: Transmittance coefficient of upward scattering

The output had to be recalculated per band, updating the zenith and azimuth
angles, as well as the SRF with its corresponding spectral range. To retrieve the
L2A spectral image (also known as reflectance hypercube), additional steps had to
be taken.

The total radiance LS reaching the sensor can be defined in terms of LT and
LP , which represent the total radiance coming from the target on the surface and
the path radiance from scattering, respectively (Mobley, 1999). From Equation 3.9
only LS is available with the spectral image, the rest is unknown.

LS = LT + LP [Wm−2 sr−1] (3.9)

The global spectral irradiance on the surface Egλ is given by the integration of
two components. The first component is the solar spectral irradiance at TOA Esλ,
which is affected when entering the atmosphere by the downward transmittance
Tθs in the direction of the solar zenith angle with the cosine of the same angle. The
second component is the diffuse spectral sky irradiance Edλ) that comes from all
directions. The integral in a defined wavelength range results in irradiance that
reaches the surface. The sum rule of integration allows one to separate an integral
of the sum of functions into the sum or their integrals, as shown in Equation 3.10.

Egλ =

∫ λ2

λ1

(EsλTθscos(θs) + Edλ)dλ

=

∫ λ2

λ1

EsλTθscos(θs)dλ+

∫ λ2

λ1

Edλdλ

(3.10)

For simplicity, the previous equation can be separated into two simplified values:

EDIR =

∫ λ2

λ1

EoλTθscos(θs)dλ EDIFF =

∫ λ2

λ1

Edλdλ (3.11)
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A simplified version of equation 3.10 can be written as follows:

Egλ = EDIR + EDIFF (3.12)

LT , the radiance directly from the target can be defined by knowing Egλ.
Equation 3.13 considers the reflectance properties of the surface as ρλ in a specific
wavelength range and also the total transmittance Tθv in the viewing direction.
Based on the Lambertian assumption for the surface reflectance selected for the
6SV1 parameters, a factor of 1/π is added in equation 3.13 to take into account
that radiation gets reflected evenly in the upper hemisphere.

LT =
1

π

∫ λ2

λ1

ρλTθv(EsλTθscos(θs) + Edλ)dλ

=
1

π
ρλTθvEgλ

=
1

π
ρλTθv(EDIR + EDIFF )

(3.13)

Using Equation 3.9 it can be established that LT = LS − LP , which when
combined with Equation 3.13 produces the following equality.

LS − LP =
1

π
ρλTθv(EDIR + EDIFF ) (3.14)

Rearranging Equation 3.14 into Equation 3.15 leads to the same model that
Moran et al. (1992) has used before to retrieve surface reflectance from satellites.
This final equation makes it possible to use all the outputs of the 6SV1 model,
which are floating-point scalars. The parameter Tθv accounts for both absorption
and upward scattering transmittance such that Tθv = Tabs↑ · Tscat↑. With this
model, ρλ per satellite band can be obtained, which represents the surface target
reflectance at the central wavelength λo for the integration range defined by the
first and last element of wlx as λ1 and λ2. The parameter LS is the only input,
which corresponds to the corrected radiance per channel that comes directly from
the HYPSO-1 GeoTIFF spectral image.

ρλ =
π(LS − LP )

Tθv(EDIR + EDIFF )
(3.15)

The Python implementation of the 6SV1 algorithm offers the option of using
the TOA reflectance instead of the radiance LS perceived by HYPSO-1. To do the
conversion, the formulation included in the documentation by USGS (2019) can be
used (see Equation 3.16). Where LSλ is the spectral radiance at the sensor after
radiometric correction, θs is the solar zenith angle and ESUN is the mean solar
exo-atmospheric irradiance.

44



Atmospheric Correction 3.3

ρλ =
π · LSλ · d2

ESUNλ · cos(θs)
(3.16)

For each spectral band b the ESUN can be calculated by numeric integration
using the extraterrestrial solar spectral irradiance at the top of the atmosphere Esλ.
In the case of HYPSO-1, the SRF for every band is the same as per the Gaussian
assumption stated earlier in this work. Initially the SRF needs to be normalized
by using equation 3.17 and then the integration in the entire spectrum of equation
3.18 will return the ESUN value for band b.

SRF ′
b =

SRFb∫ λ
SRFb

(3.17)

ESUNb =

∫ λ

SRF ′
b · Esλ [mWm−2 nm−1] (3.18)

The distance to the Sun d in astronomical units (AU) can be approximated
by Kepler’s first law to describe the orbital ellipses, knowing the eccentricity
e = 0.01672 that describes the orbit of the Earth. Equation 3.19 shows this law
where for simplification x = e · cos(θ).

r = a
1− e2

1 + e · cos(θ)
⇒ a

1− e2

1 + x
(3.19)

The Taylor series expansion around very small values of x (mainly due to e),

allows one to approximate the function
1

1 + x
to (1− x), resulting in equation 3.20.

r = a(1− e2)(1− x) ⇒ a(1− e2)(1− e · cos(θ)) (3.20)

360◦ can be divided by 365.2422, the number of true days in a year to get the
angle equivalence per day 360◦/365.2422 = 0.9856◦/day. Four days need to be
subtracted from the used Julian day for this equation to be valid, as the periphelion
(closest point to the Sun) occurs approximately on January 4th.

a(1− e2)(1− e · cos(0.9856(jday − 4))) (3.21)

If instead of meters, the calculation is performed with AU, the term a(1−e2) ≈ 1.
The distance in AU to the Sun can be approximated with Equation 3.22. This
approximation starts from the periphelion and thus has higher variations the more
we diverge from it. An alternative is to use the lookup tables by USGS (2019),
which change annually, and interpolate the AU based on the month and day.

d = 1− 0.0167 · cos(0.9856(jday − 4)) (3.22)
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3.4 Water Mask Pixels Classification
Having a spectral range in HYPSO-1 of approximately 390 to 804nm limits the
options of water detection indices that use SWIR and NIR ranges. Based on this
limitation, the approach by Cordeiro et al. (2021) was selected because it builds a
robust strategy for water detection regardless of the index used. Figure 3.5 shows
the overall implementation of HYPSO.

HYPSO-1 L2A 
Spectral Image

Feature
Extraction Random Subset Agglomerative

Clustering

Clustering
Validation

Iterative Process

Water Cluster
Identification

Naive-Bayes
ClassifierWater Mask

Figure 3.5: Water detection process overflow based on Cordeiro et al. (2021) as
implemented on HYPSO-1.

The Python implementation of this method was used on the HYPSO-1 spectral
image after atmospheric correction was performed. Some parameters were tuned
to improve the water detection as explained below.

1. Feature extraction: Although this method is capable of using complex indices
such as the Modified Normalized Difference Water Index (MNDWI) and
the Multi-Band Water Index (MBWI), because of the lack of SWIR bands,
only the NDWI index and the NIR bands were used. The HYPSO-1 bands
closest to those used in the original work were selected. Table 3.3 shows the
equivalent Sentinel-2 bands for each HYPSO-1 band used. In addition to
these two features, the Otsu thresholding algorithm was also applied on the
NDWI index to create a third characteristic for the classification.

Table 3.3: Equivalent HYPSO-1 bands to the ones of Sentinel-2 used in the
original work of Cordeiro et al. (2021). Band 3 in Sentinel-2 has an FWHM of
≈ 34.798nm while band 8 is ≈ 104.784nm. Although the band 120 on HYPSO-1
is closer in wavelength to the band 8 of Sentinel-2 at ≈ 803nm, it was not used
as the last band tends to be noisy on hyperspectral systems.

Band Sentinel-2 HYPSO-1

Green B3 (560nm) B49 (560nm)
NIR B8 (835nm) B119 (801nm)
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2. Random Subset: Having calculated the three selected features for each pixel
in the spectral image, 20% of them were randomly selected as the training
subset.

3. Iterative Process:

• Agglomerative Clustering: Although agglomerative clustering occupies
more memory than K-means on a high pixel count (O(n3) vs. O(n2)),
it was used because it was the selected choice of the original work.

• Clustering Validation: The Calisnk-Harabasz index is used to identify
the best number of clusters K through the intercluster and intracluster
variance (Cordeiro et al., 2021). This process is repeated testing multiple
values for the K number of clusters from 2 to 7 (default values in the
Python implementation). A higher Calisnk-Harabasz index is better as
it denotes a higher density which is desired for data clustering, selecting
it as the target number of clusters.

4. Water Cluster Identification: In the original work, the MBWI index was
calculated for the centroid of each of the K clusters found to classify as a
water cluster the one with the maximum MBWI value. For HYPSO-1 images,
the water cluster was selected using the max NDWI value.

5. Naive-Bayes Classifier: The generalization of the previous training is imple-
mented for the rest of the pixels using the Naive-Bayes classifier, although
SVM also gives good results at the cost of a longer computation time.

The water mask was used in the later stages to identify with pixels to work
with, discarding nonwater regions for this work.

3.5 Pixel Matching
Two conditions were established to select matches of HYPSO-1 with Sentinel-3
and MODIS-AQUA spectral images, one for the entire capture and the second for
individual pixels. A HYPSO-1 pixel is considered "matched" if both conditions are
met, and although matching with one satellite is enough, having both matches is
the desired case.

1. Time match: The condition was met if the HYPSO-1 capture time was
within a ± 3 hours window with respect to the time at which Sentinel-3 or
MODIS-AQUA captured the same region with at least a 20% overlap (Seegers
et al., 2018).
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2. Coordinate match: The condition was met if the HYPSO-1 pixel is within
the capture region of the Sentinel-3 satellite or the MODIS-AQUA satellite.

For each of the HYPSO-1 pixels marked as "matched", the chlorophyll value
was obtained via 2D linear interpolation from the coordinate and chlorophyll grid of
Sentinel-3 and MODIS-AQUA independently (one or both). The coordinates for all
three satellites are given at the center of the pixel, so no additional considerations
were implemented regarding this.

Once the two-dimensional chlorophyll map was obtained for each HYPSO
spectral image, a 2D normalized Gaussian convolution was applied so that the
values would be smoothed. The 3x3 discrete Gaussian kernel in Equation 3.23 was
used considering a symmetrical padding for the edge pixels.

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

 (3.23)

The HYPSO-1 data set is then formed by combining reflectance and interpolated
chlorophyll values on a single data frame.

3.6 Data Analysis
In addition to the HYPSO dataset, the in situ surface reflectances and laboratory-
measured chlorophyll of the GLORIA dataset by Lehmann et al. (2023) was also
considered. This was done to confirm the generalization of the chlorophyll inversion
process on other high-spectral-resolution measurements as a means to verify the
used methodology.

The GLORIA and HYPSO data points were divided into independent training,
testing and validation splits by 33.5%, 50% and 16.5%, respectively. Only the
training and validation splits were used during this stage, leaving the test split for
the estimation and evaluation at the end.

Currently, there is no consensus on the limits of each region in the spectrum.
Different authors may use different ranges mostly based on the available bands in
the satellite they are studying. Because HYPSO-1 and the GLORIA dataset have
reflectances with high spectral resolution, boundary selection is not obvious. To
eliminate the risk of potential confusion when comparing the approach of this work
with others, the ranges in Table 3.4 will be used for the remainder of this study.
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Table 3.4: Spectral ranges used for this work. The values may change in name
and values between different literature sources.

Spectral Region Range (nm)

Blue [400, 500)

Green [500, 600)

Red [600, 700)

Far-Red [700, 750)

NIR [750, 1000)

From the Quantile-Quantile plots in Figure 3.6, it can be seen that the inter-
polated chlorophyll does not fall on the red line, which means that it does not
follow a Gaussian distribution. Many developed chlorophyll models use the log
transformation of chlorophyll because it has been shown before that a normal
distribution is followed by this correction (Campbell, 1995, as cited in Seegers et al.,
2018).

Figure 3.6: Quantile-Quantile Plot for matching chlorophyll values on HYPSO-1
pixels. Normal distribution can be verified by following the straight line pattern.
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Considering the non-normality of the values, a log transformation was im-
plemented on the training and validation splits attempting to achieve a more
normal-distributed behavior. This will, of course, have to be considered for the
final estimates, where unlogging would be required to compare with the test
split. Figure 3.7 shows the distributions after implementing this change. After
transformation, a tendency towards normality can be seen for all the distributions
in the Q-Q plot, as they have moved closer to the red line. Due to these results,
the log transformation will be used as a regression target in this work.

Figure 3.7: Q-Q Plot matching chlorophyll values on HYPSO-1 pixels after
applying log transformation.

3.6.1 Feature Creation

The feature creation process is shown in the diagram in Figure 3.8, which will be
described in this section.
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Surface Reflectance
Rrs

Rrs''
Second Derivative

1D Gaussian
Smoothing

f-regression

Spectrum Permutations

W = P(n,r)
 

n = 5 (Regions)
r = Different λ
in Chl Descriptor Mutual

Information
Regression

Select Max Top 5
per Chl Descriptor

For each valid
spectrum permutation

W

Use
Spearson > 0.5

Select Top
Performer with

f-regression

C(n,r)
 

n = # Bands HYPSO/GLORIA
r = Different λ
in Chl Descriptor

AND

W Features for
Chl Descriptor

Figure 3.8: Workflow of the feature creation process that was followed for the
training split of the HYPSO and GLORIA dataset independently.

Lubac et al. (2008) found that the chlorophyll variation can be studied by the
maximum variation in the second derivative of the reflectance, being particularly
sensible in the blue and green regions of the spectrum. Taking this into account, the
second derivative of Rrs used in this work was obtained by the method of central
difference on the interior points. On the edges, a one-sided difference is applied
to not reduce the size of each set. Before calculating the derivative, a normalized
Gaussian filter was convoluted on every reflectance. The Gaussian filter was based
on the sigma value previously defined in Equation 3.5 of σ = 1.4013nm. The
Gaussian 1D filter is defined by Equation 3.24 where dx is given by Equation 3.25
where z is the defined size of the filter (5 chosen for this case) . The normalization of
this filter is given as |w| = w/sum(w) which was used to convolute each reflectance
before the second derivative calculation.

w = exp
(
−1

2

d2x
σ2

)
(3.24)

dx = {r : r = −3σ + n · (3σ −min 3σ)/(z − 1), n ∈ {0, 1, ...4}} (3.25)

The second order derivative was included in this work as it has been shown to
be less sensitive to sunlight and skylight contributions, making it easier to detect
small variations and to find patterns through the surface reflectance (Tsai and
Philpot, 1996, as cited in Lubac et al., 2008).
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To be able to estimate chlorophyll, it is imperative to have sufficient and high-
quality descriptors derived from the surface reflectance. Using Rrs and the second

derivative
d2Rrs

dλ
, the chlorophyll descriptors in Table 3.5 were selected based on

their importance in the literature. Each one of these was fine-tuned, which, in
the scope of this work, refers to testing all permutations so that the correlation
with log(chl) increases. Due to the hyperspectral nature of HYPSO, there is more
freedom in selecting which band to use for different indices; therefore, this approach
was taken.

The relevant indices chosen for this study are the following (see Table 3.5 for
the mathematical formulation):

• Two-Band Vegetation Index (TBVI): This index (also known as the normalized
difference vegetation index NDVI) in 3.5-A has been used in different works,
with many combinations used to achieve different degrees of precision (Adam
et al., 2014; Marshall and Thenkabail, 2015). In the work of Pérez et al. (2000)
the wavelengths for λ1 and λ2 were most likely 550nm and 600nm for the
green and red bands, respectively, since consumer grade RGB cameras were
used. This index is usually combined with a NIR band but is mostly replaced
by a far-red one. In the case of Wang et al. (2019), λ1 was established in the
NIR range from 848 to 881 nm while λ2 was fixed in the red region from 646
to 684 nm. In general, the ranges used with this index change relative to the
sensor used.

• Three-wavelength model: The equation shown in Table 3.5-B proposed by
Gitelson et al. (2008) will be used, as it has had good results when combined
in multivariate approaches (Matthews, 2011). Different MSI sensors have
been used for this method, but a hyperspectral approach is possible.

• OCVI: The canopy-optimized OCVI index by Vincini et al. (2008) increases
the relationship between the red and green bands with an empirical parameter
c that has been found to have values between 0.64 and 1.31. In the original
work, λ1 was placed in the NIR range, while λ2 was located in green and λ3

in the red region.

Indices that go beyond the spectral range of the sensors in this work were not
considered, such as the Green-Brown Vegetation Index GBVI, which reaches 2,000
nm (Cui and Kerekes, 2018).
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Table 3.5: Chlorophyll descriptors from the literature used to build the dataset.
The subindex on each parameter shows the wavelength in nm used based on
the original methods. Due to hyperspectral information from HYPSO-1 and the
GLORIA dataset, the closest band in wavelength value was used for the marked
sensor without interpolation.

ID Descriptor Source

A TBV I =
(λ1 − λ2)

λ1 + λ2

(Rouse et al.,
1974)

B TBM =

(
1

λ1

− 1

λ2

)
λ3 (Gitelson

et al., 2008)

C OCV I =
λ1

λ2

(
λ3

λ2

)c
(Vincini
et al., 2008)

Chlorophyll descriptor approaches will be considered in their simplest form, as
shown in Table 3.6 where the band difference and the ratio are used to emphasize
reflectance features.

Table 3.6: Fundamental features computed as chlorophyll descriptors.

BD = (λ1 − λ2) LBD = log (λ1 − λ2)

BR =

(
λ1

λ2

)
LBR = log

(
λ1

λ2

)

Each descriptor in Tables 3.5 and 3.6 requires r different wavelengths λ identified
by their unique subindex. For example, in the case of the TBM index in Table
3.5-B, λ1 ̸= λ2 ≠ λ3 making r = 3. All valid spectrum subgroups are obtained with
nPr, where n = 5 for the spectrum regions (see Table 3.4) and r is the number of
bands on a given descriptor. In Table 3.7 the valid subgroups w = 20 for when
r = 2 are observed, showing that the number of valid spectrum combinations can
then be established as 20, 60, 120 for 2, 3 and 4 different numbers of bands in a
descriptor.
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Table 3.7: Valid spectrum combinations based on the 5 band ranges from Table
3.4. For a descriptor that uses two distinct λ

blue-farred green-blue red-blue farred-blue nir-blue
blue-green green-farred red-farred farred-green nir-farred
blue-nir green-nir red-green farred-nir nir-green
blue-red green-red red-nir farred-red nir-red

For each descriptor, the permutations of all Rrs bands were tested and separated
into its corresponding subgroup. A permutation for band ratio (BR) using 535-643
would fall in the "green-red" subgroup, while the same descriptor with bands
643-535 would be part of the "red-green" one. An invalid permutation which would
not be part of any group could be one with bands 643-643 as both fall in the red
region and "red-red" is not valid. For a λ selection to be valid, each must belong
to a different region of the spectrum.

For each valid spectrum combination of each descriptor, the Spearman correla-
tion coefficient between the descriptor with the valid wavelengths and log(chl) was
calculated. Only those tested cases with coefficients greater than 0.5 were kept. Of
all the selected descriptors in each subgroup, the one with the highest f-regression
score was selected as a means to use F statistics to select the best combination. A
total of W fine-tuned combinations are selected.

To reduce the colinearity of the combinations, a final refinement is implemented
to choose a maximum of five features from the fine-tuned W per descriptor. Mutual
Information Regression and F-Regression were implemented, and only the features
selected by both were designated as the optimal combinations for that descriptor.
A maximum of five combinations per chlorophyll descriptor can be selected with
this process that was repeated independently for HYPSO, HYPSO”, GLORIA, and
GLORIA”, where the double quote indicates the second derivative.

To the extent of the research done, polynomial features have not been used in
combination with chlorophyll descriptors as a means to account for nonlinearity and
improve the performance of a model. The number of new features can be described
as a combination with replacement nCr = (n+ r − 1)!/(r!(n− 1))!, where n is the
total number of fine-tuned features and r is the degree of selected polynomial. A
self-imposed limit of second-degree polynomial features has been defined since, as
stated by Sohil et al. (2022), high degrees create overly complicated shapes at the
boundary of the variables.

Standardization was performed for each of the created features such that the
median and standard deviation were subtracted from the values using the equation
3.26. Parameters µ and σ were obtained from the training split to avoid data
leakage. According to Zheng and Casari (2018), this occurs when the information
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from the test split reaches the training stage. This can be achieved indirectly by
applying normalization or any other data-preparation technique with statistical
features from the entire dataset to each of the individual splits.

To improve the performance of models that rely on the weight and the n-
dimensional distance, input parameters have to be scaled. Input variables were
standardized, as not a single one follows a normal distribution. Normalization
between 0 and 1 was not selected as the band ratios may change depending on the
sensor SRF, thus making the minimum and maximum values potentially capable
of fluctuating more.

x′ =
x− µ

σ
(3.26)

3.7 Chlorophyll Estimation
Chlorophyll regression was performed using fine-tuned descriptors found in the
previous section, including those created by polynomial combination. The three
approaches used are described in the following subsections.

3.7.1 Multivariate Linear Regression
Multivariate linear regression was implemented to study the relationship of all the
features created and their impact on chlorophyll prediction. In favor of explainability,
only optimized combinations and polynomial characteristics of Table 3.6 were used
for this type of regression due to the simple nature of the descriptors.

The desired number of selected features for this linear regression was set at
four. With the Lasso algorithm, the optimal features were evaluated to optimize a
regularized L1 multivariate linear regression (Muthukrishnan and Rohini, 2016).
Further elimination or features occurred as this method can define the coefficient
of specific features as 0. With the remaining features, the "ElasticNet" method,
which uses L1 and L2 as regularizers, is computed to obtain the coefficients a for
the features x such that Equation 3.27 is satisfied for n = 4.

log(chl) = a0 +
n∑

i=0

aixi (3.27)

3.7.2 OCx Polynomial
Without further modification, the MBR algorithm of O’Reilly and Werdell (2019)
for the HICO sensor in Equation 3.28 was used with both the HYPSO-1 and the
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GLORIA datasets, as it shares a similar spectral resolution. The coefficients for
the 4th degree polynomial are [0.26869, 0.96178,−3.43787, 2.80047,−1.59267].

MBROC6 = max

[
(416, 444, 490, 513)

mean(553, 668)

]
(3.28)

3.7.3 Ensemble Machine Learning
To avoid relying on a single estimator, the prediction was combined by regression
of different independent methods. This ensemble technique allowed for refinement
estimation based on the best performance of different approaches.

The ensemble techniques used with their respective regressors are the following:

1. Weighted Average Voting: For each regressor, an MAE is calculated to rank
them in terms of performance, allowing their individual predictions to be
weighted according to their score. After ordering them, their individual
prediction can be weighted against their score. If the output is independent,
the voting mechanism can work as an optimal combination model (Zhang
and Ma, 2012).

• K-Neighbors Regressor

• Decision Tree Regressor

• Histogram Gradient Regressor

• XGBoost Regressor

2. Stacking: A regressor is used to calculate chlorophyll concentrations, learning
from the estimations of multiple different regressors that are used as input
features (Witten and Witten, 2017).

• K-Neighbors Regressor

• Decision Tree Regressor

• Histogram Gradient Regressor

• Final Estimator: Gradient Boosting Regressor

3. Extreme Trees: Random samples are chosen when spawning new internal
trees, which makes it different from the random forest method as it does not
follow a greedy algorithm (which causes fewer trees correlated) (Geurts et al.,
2006). 30 decision trees with a depth from 1 to 30 where the prediction of all
is averaged.

4. Gradient Boost: 100 estimators for a combined gradient prediction
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5. Bagging:

• K-Neighbors Regressor

• Decision Tree Regressor

• Histogram Gradient Regressor

• XGBoost Regressor

6. Data Transformation Voting: Data is transformed with linear and non-linear
approaches to the equivalent chlorophyll value in the training set. A voting
approach is selected to merge the different mappings used.

• Min-Max Scaler

• Standard Scaler

• Robust Scaler

• Power Transformer

• Quantile Transformer (100 quantiles)

• K-bins Discretizer (20 bins)

To avoid data leakage on all the methods mentioned above, during training
cross-validation, normalization was performed for every smaller split of the k-fold
subset independently of the large training set.

3.8 Evaluation

3.8.1 Atmospheric Correction
To compare the atmospheric correction surface reflectance Rrs of the method
implemented in this work to that of the ACOLITE implementation, the root mean
square difference (RMSD) and the average unbiased absolute relative difference ϵ
were used as suggested by Li et al. (2022). Equations 3.8.1 and 3.8.1 corresponding
to the symmetric signed percentage bias (β) and the median symmetric accuracy
(MdSA), respectively, were also considered as proposed by Pahlevan et al. (2021)
due to their resistance to outliers when used as percentages.

RMSD =

√√√√ 1

n

n∑
i=1

(
Rrrs − R̂rrs

)2
(3.29)
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ϵ =

[
1

n

n∑
i=1

|Rrrs − R̂rrs|
Rrrs + R̂rrs

]
× 200 (3.30)

SSPB = β = 100× sign(z) · (10|Z| − 1)[%]

where Z = Median

(
log10

(
R̂rs(λi)

Rrs(λi)

))

MdSA = 100× (10Y − 1)[%]

where Y = Median

∣∣∣∣∣log10
(
R̂rs(λi)

Rrs(λi)

)∣∣∣∣∣
3.8.2 Chlorophyll Regression Evaluation
Common evaluation metrics for regression are the coefficient of determination R2

and the root mean square error (RMSE). As stated by Seegers et al. (2018), these
alternatives are sensitive to outliers and therefore must be interpreted adequately.

O’Shea et al. (2021) considers that for biomass estimation, linear metrics
such as room mean squared difference (RMSD) and median absolute percentage
difference (MAPD) should be avoided, favoring alternatives such as root mean square
logarithmic difference (RMSLD) and mean absolute difference (MAD). Similarly,
Pahlevan et al. (2021) cautions against using the mean average percentage error
(MAPE) and the root mean square error (RMSE) as the description of logarithmic
models may not be reliable. Finally, Seegers et al. (2018) advises us to focus on the
mean average error (MAE) and bias as a means to compare chlorophyll estimates
between works.

Under these considerations, the following metrics will be used, including R2

and RMSE for traceability with the rest of the literature.

BIAS = 10

 1

n
∑n

i=1(ŷi−yi)


(3.31)

RMSLE =

√√√√ 1

n

n∑
i=1

(log(ŷi + 1)− log(yi + 1))2 (3.32)

MAE =
1

n

n∑
i=1

| ŷi − yi | (3.33)
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where:

• ŷ - Predicted value of y

• yi - Ground truth value of y

• n - number of samples
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4 Results

4.1 Pre-Processing
To visually compare the performance of the atmospheric correction of the 6SV1
method (implemented in this work) with the ACOLITE algorithm by Vanhellemont
and Ruddick (2021), the reflectance of four random pixels was included in Figure
4.1. This plot shows the similarity of both reconstructions having a slight divergence
in the green region of the spectrum.
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Figure 4.1: Comparison of Rrs recovered from the "florida_2023-01-12_1553Z"
HYPSO capture using the 6SV1 algorithm and the ACOLITE method by Van-
hellemont and Ruddick (2021).
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The regression plot for the same pixels is plotted in Figure 4.2. The difference
per region is visible when comparing the one-to-one equivalence. A high correlation
of both estimations can be seen in the blue regions, the same one that decreases
towards the NIR area.
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Figure 4.2: Regression plots per region of the spectrum where each row represents
a pixel. The X-axis is for the 6SV1 reflectance and the Y-axis for the ACOLITE
reflectance for the same pixel.

The performance of all Rrs in the training subset is shown in Table 4.1. Contrary
to different works in which the estimated reflectance is compared with the one
measured at the surface, these metrics help to note how different the ACOLITE
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and the 6SV1 approach are. An increase in variance σ is evident in the MdSA
for the further regions of the spectrum, as well as for the maximum differences
from the RMSD. Based on the data for the SSPB (bias), the reflectance of HYPSO
seems to be overestimated compared to the ACOLITE method (which is visually
shown in Figure 4.1).

Table 4.1: Results for the spectrum comparison metrics on the points of the
entire training split. m stands for the minimum value and M for the maximum
value of the set tested.

RMSD ↓ ϵ ↓ SSPB MdSA

Blue

m 0.0034 10.7577 9.0952 14.4356
M 0.0176 101.5534 719.9941 719.9941
X̄ 0.0098 56.1188 205.3332 206.9220
σ 0.0037 17.7446 111.6825 111.2835

Green

m 0.0036 7.0548 18.0763 18.0763
M 0.0148 68.7920 414.7315 414.7315
X̄ 0.0088 35.8355 137.8106 137.8106
σ 0.0029 13.4550 73.3239 73.3239

Red

m 0.0022 7.3028 12.3838 17.8375
M 0.0157 119.9313 2342.9951 2342.9951
X̄ 0.0050 55.3348 395.7801 396.8008
σ 0.0018 27.1878 377.5938 376.6646

Far-RED

m 0.0016 10.3459 0.0617 15.6342
M 0.0241 101.5451 2005.4562 2005.4562
X̄ 0.0028 48.0204 269.6985 287.9747
σ 0.0014 23.9327 342.7256 331.4295

NIR

m 0.0156 42.7438 30.8596 113.7177
M 0.0899 139.6188 98.4187 6223.8089
X̄ 0.0180 115.2221 93.7457 2701.2345
σ 0.0039 14.5483 7.3528 926.7569

Visually, the mean of the positive metrics is shown in Figure 4.3 where the
average variations are more obvious.
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Figure 4.3: Mean for each metric of Table 4.1 per spectrum range.

To validate the extraction of the water mask, the OSM Water Layer, a high
resolution surface mapping by Yamazaki et al. (2017) was used in its latest release
in July 2021. The surface of the Earth is divided into 2,160 GeoTiff files of ≈ 1GB
in size. The implementation of Cordeiro et al. (2021) to detect the mask is about
2,000 times lighter by not relying on lookup tables. In satellite processing, the
size difference can be a very important factor depending on where the process is
implemented. Telemetry data must be correct for use of mappings such as the
OSM Water Layer. Every spectral image of this work was verified and, if needed,
manually registered, making it possible to use the lookup tables for verification.

An accuracy of 96.6% was obtained from the matching process, while the preci-
sion, recall, and F1 score were found to be 98.3%, 91.3%, and 94.7%, respectively.
The confusion matrix in Figure 4.4 shows the classification results versus what is
considered in this work the ground truth.
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Figure 4.4: Confusion matrix for pixel classification predicted using the method-
ology by Cordeiro et al. (2021) and using the high-resolution surface mapping by
Yamazaki et al. (2017) as the ground truth.

After estimating the water masks and matching with the ESA and NASA
satellites, a total of 1,362,318 water pixels were found to build the HYPSO-1
dataset, which is small considering that per image there are 956× 684 = 653, 904
pixels. For the points of GLORIA 4,145 measurements were obtained after trimming
the spectral range to match that of HYPSO and by discarding all inputs with
missing values. This process was implemented to have the same spectral coverage
for both devices and to be able to use the same indices. The geographical locations
of the HYPSO-1 images used are shown in Figure 4.5, while in Figure 4.6 is the
location of the GLORIA in situ measurements after selecting the usable ones. In
general, there is agreement on the regions covered by both datasets except for
South Argentina, Japan, Philippines, India, and the Middle East.
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Figure 4.5: Location of the HYPSO-1 points used based on the matching
conditions established previously.

Figure 4.6: Location of the GLORIA dataset points.

4.2 Feature Creation
Following the workflow described previously in Figure 3.8, five of the most important
fine-tuned chlorophyll descriptors were extracted when selected by mutual agreement
of the f-regression and the mutual information regression method. The results for
each of the descriptors used can be found in Tables 4.2 to 4.7 where the bands λ1,
λ2, and λ3 were selected according to the form of each descriptor shown in Tables
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3.5 and 3.6, using the ranges from Table 3.4 so that not two wavelengths would be
in the same range.

Table 4.2: TBVI optimal band selection results.

λ1 λ2 Combination Spearman Score f-reg Score Mutual Reg.

HYPSO
701 460 farred-blue 0.708 218425.619 0.744
569 489 green-blue 0.745 297164.534 0.920

HYPSO”
715 478 farred-blue 0.658 167441.840 0.462
687 481 red-blue 0.673 163633.485 0.483

GLORIA
699 496 red-blue 0.794 2415.769 0.710
699 599 red-green 0.801 2407.804 0.707

GLORIA” 798 575 nir-green 0.617 216.833 0.324

Table 4.3: TBM optimal band selection results.

λ1 λ2 λ3 Combination Spearman f-reg Score Mutual Reg.

HYPSO 503 601 801 green-red-nir 0.728 3860.992 0.897
HYPSO” 481 687 804 blue-red-nir 0.626 2100.371 0.418

GLORIA

599 698 701 green-red-farred 0.773 755.869 0.601
497 533 602 blue-green-red 0.775 409.995 0.605
497 698 704 blue-red-farred 0.782 267.685 0.664

GLORIA”

599 698 701 green-red-farred 0.773 755.869 0.601
497 698 704 blue-red-farred 0.782 267.685 0.664
497 542 698 blue-green-red 0.814 253.047 0.669

Table 4.4: OCVI optimal band selection results.

λ1 λ2 λ3 Combination Spearman f-reg Mutual Reg.

HYPSO
499 503 701 blue-green-farred 0.676 1898.946 0.756
499 503 615 blue-green-red 0.723 2713.703 0.850

HYPSO” - - - - - - -

GLORIA

482 503 761 blue-green-nir 0.715 453.979 0.519
464 500 698 blue-green-red 0.806 1602.926 0.649
461 500 701 blue-green-farred 0.814 1573.953 0.673
599 605 701 green-red-farred 0.822 1217.736 0.613

GLORIA” - - - - - - -
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Table 4.5: Band-Ratio optimal band selection results.

λ1 λ2 Combination Spearman f-reg Mutual Reg.

HYPSO
701 503 farred-green 0.703 125451.700 0.686
555 489 green-blue 0.735 262587.155 0.855

HYPSO” 517 684 green-red 0.670 181451.307 0.439

GLORIA
516 499 green-blue 0.769 1947.723 0.560
700 591 farred-green 0.791 1264.605 0.666

GLORIA” - - - - - -

Table 4.6: log(Band-Ratio) optimal band selection results.

λ1 λ2 Combination Spearman f-reg Mutual Reg.

HYPSO
701 478 farred-blue 0.720 197796.251 0.811
569 489 green-blue 0.745 239131.294 0.926

HYPSO” - - - - - -

GLORIA

699 500 red-green 0.791 1653.306 0.645
709 497 farred-blue 0.802 1826.660 0.687
700 670 farred-red 0.902 2894.991 0.917

GLORIA”
698 750 red-nir 0.517 51.760 0.175
500 600 green-red 0.574 58.115 0.186

Table 4.7: Band Difference optimal band selection results.

λ1 λ2 Combination Spearman f-reg Mutual Reg.

HYPSO
615 766 red-nir 0.617 99225.650 0.716
517 489 green-blue 0.729 245888.184 0.819

HYPSO”

506 687 green-red 0.640 121290.534 0.501
506 715 green-farred 0.664 125275.108 0.508
722 517 farred-green 0.685 149059.233 0.480

GLORIA 705 489 farred-blue 0.704 502.499 0.466

GLORIA”
669 705 red-farred 0.746 743.151 0.478
504 701 green-farred 0.746 660.551 0.540
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4.3 Chlorophyll Estimation

4.3.1 Multivariate Linear Regression
With the optimal features in Tables 4.2 to 4.7, the linear regression was obtained
with a maximum of four terms. The proposed selection method for optimal features
failed to find optimal combinations based on the second derivative of the reflectance,
therefore they were ignored for the rest of the work. The selection of four parameters
through the Lasso model discarded some features, thus the blank spaces in Table
4.8, where the best results from the multivariate regressor "ElasticNet" are shown.

Table 4.8: Linear regression results from the best features generated out of the
fine tuning process (best results marked in gray and with an "*"). Coefficients
correspond to Equation 3.27. G stands for GLORIA and H for HYPSO.

ID Data X1

[a1]
X2

[a2]
X3

[a3]
X4

[a4]
a0 BIAS RMSLE ↓ MAE ↓ RMSE ↓ R2

A

G

TBVI(699,496)
[0.7003]

TBM(497,533,602)
[−0.3417]

LBR(700,670)
[0.8462]

BR(656,562)
[−0.3158]

2.296 0.531 2.439 0.978 1.209 0.517

BR BR(516,499)
[0.961]

BR(700,591)
[0.545]

- - 2.296 34.798 4.366 1.702 2.127 -0.492

BR BR(443,562)
[−1.399]

BR(450,670)
[1.575]

- - 2.296 0.992 4.879 1.587 2.379 -0.866

SO* BR(700,591)
[−0.275]

LBR(699,500)
[0.547]

LBR(700,670)
[1.232]

- 2.296 0.492 2.092 0.780 1.004 0.667

CO TBVI(699,496)
[0.6562]

TBVI(699,599)
[0.6062]

- - 2.296 0.650 2.8289 1.132 1.402 0.351

PSO LBR(700,670)
[1.4738]

LBR(699,500) *
LBR(700,670)

[1.0365]

LBR(700,670) 2

[−0.7933]
- 2.296 1.272 2.303 0.931 1.197 0.527

A

H

TBVI(569,489)
[1.2136]

BD(517,489)
[−0.2907]

- - 0.576 1.055 1.363 0.723 0.809 0.348

SO* BR(701,503)
[−0.2703]

LBR(701,478)
[0.2912]

LBR(569,489)
[1.2498]

BD(517,489)
[−0.2586]

0.576 0.850 1.120 0.536 0.616 0.622

BRO BR(555,489)
[1.0941]

- - - 0.576 14.263 2.280 1.191 1.353 -0.821

LBRO LBR(701,478)
[−0.2887]

LBR(569,489)
[1.2032]

- - 0.576 2.530 1.190 0.673 0.832 0.310

BDO BD(615,766)
[−0.3959]

BD(517,489)
[1.1819]

- - 0.576 0.976 1.707 0.903 0.999 0.006

CO TBVI(701,460)
[−0.2505]

TBVI(569,489)
[1.3515]

- - 0.576 1.315 1.403 0.771 0.866 0.253

PSO BR(555,489)
[0.5261]

LBR(569,489)
[0.3758]

LBR(701,478)*
LBR(569,489)
[−0.7022]

BR(701,503)*
BR(555,489)*
LBR(701,478)

[0.4001]

0.576 1.542 1.061 0.599 0.695 0.519

The best linear regression for HYPSO (marked with an "*" in Table 4.8), based
on a lower error and bias closer to 1.0, is shown in Figure 4.7 to demonstrate the
prediction results in an actual image. The model for GLORIA cannot be used as
the fine-tuned features and regressions are specific for each sensor, and thus for
each dataset.
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Figure 4.7: Best LR Plot for HYPSO using log(BR), BR and BD.

4.3.2 OCx MBR Algorithm
The implementation of the OCx algorithm on the data did not return the expected
results. The regression plots in Figure 4.8 and the corresponding metrics in Table
4.9 show that the model does not translate well to other spectral sensors with
similar resolution. The data distribution seemed similar between the HYPSO and
GLORIA plots, which could be generated by the 4th degree polynomial behavior
applied incorrectly to the data used.
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(a) GLORIA

(b) HYPSO

Figure 4.8: Regression plot of implementing the HICO OC6 MBR algorithm on
the GLORIA and HYPSO dataset.

Table 4.9: HICO MBR 4th degree polynomial regression results on the HYPSO
(H) and GLORIA (G) datasets.

Data BIAS RMSLE ↓ MAE ↓ RMSE ↓ R2

G 0.015 5.464 2.116 2.689 -1.255
H 1.560 1.618 0.896 1.000 -0.022

Due to visually inconsistent results in the regression plot, the fourth-degree
polynomial calculation as described by O’Reilly and Werdell (2019) was estimated
using the data from both datasets. The result is shown in Figures 4.9 and 4.10
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using the same MBR bands from Equation 3.28 but defining the coefficients for
our specific data.

Figure 4.9: MBR 4th Polynomial calculated for the GLORIA dataset.

Figure 4.10: MBR 4th Polynomial calculated for the HYPSO dataset.

The metrics to evaluate this regression are included in Table 4.10, including
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the coefficients for the custom OCX polynomial. When comparing the results of
Table 4.9 and Table 4.10, it can be seen that the custom approach improves bias
and reduces error metrics.

Table 4.10: MBR 4th degree polynomial regression results for HYPSO (H) and
GLORIA (G). The coefficients are included in the table where subindex is the
feature exponent.

Data a0 a1 a2 a3 a4 BIAS RMSLE MAE RMSE R2

G 2.44939 -3.44061 -0.89645 0.82480 -0.04171 1.060 2.496 0.870 1.187 0.560
H 1.44003 1.44035 6.93572 -47.03517 39.88372 0.999 1.054 0.420 0.335 0.884

The equivalent regression plots are shown in Figure 4.11. Both datasets show a
hard estimation limit when predicting values using the polynomial, which could be
improved by a curated selection of points, as done by O’Reilly and Werdell (2019).

(a) GLORIA (b) HYPSO

Figure 4.11: Regression plot of estimation vs. ground truth after implementing
the custom MBR 4th degree polynomial for prediction, giving the results of Table
4.10.

The custom HYPSO MBR polynomial with the coefficients of Table 4.10 was
used to predict chlorophyll on a sample spectral image, as shown in Figure 4.12.
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Figure 4.12: Chlorophyll prediction on a HYPSO spectral image using the MBR
4th degree polynomial with the coefficients of Table 4.10 and the bands of Equation
3.28.

4.3.3 Ensemble Machine Learning

To improve the results obtained so far, the ensemble machine learning approach
was used considering a 10 K-Fold validation and presenting the mean results in this
section. Only the features related to the band ratio, log band ratio, band difference,
and TBVI index were used for the ensemble model, as based on empirical testing
they were the best performing features. Table 4.11 shows the results where, based
on a lower error (MAE and RMSLE) and a bias closer to 1.0, it was determined
that the voting strategy outperformed the rest (see row marked with "*").
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Table 4.11: Ensemble machine learning results both datasets. The best result is
shown in gray and marked with an "*".

Data Type BIAS RMSLE ↓ MAE ↓ RMSE ↓ R2

H

Voting* 1.302 0.972 0.320 0.568 0.696
Stacking 1.317 0.975 0.323 0.571 0.692
n-Trees 1.403 1.018 0.347 0.591 0.670
G-Boost 1.420 1.060 0.374 0.614 0.645

Transform 1.141 1.155 0.369 0.638 0.617
Bagging 1.254 0.997 0.323 0.573 0.690

G

Voting* 1.460 1.510 0.531 0.752 0.785
Stacking 2.836 1.783 0.701 1.022 0.655
n-Trees 3.096 1.987 0.744 1.083 0.613
G-Boost - - - - -

Transform 1.263 1.790 0.585 0.871 0.746
Bagging 1.566 1.677 0.538 0.817 0.778

As the voting ensemble performed the best based on an overall lower error,
the SHAP values (Shapley Additive Explanations) were calculated to study the
contribution of each feature to the prediction of a model. The farther a SHAP value
from zero is, the greater the contribution of a characteristic to the estimation of
chlorophyll. For HYPSO-1, the mean SHAP values are shown in Figure 4.13 while
the individual values for the test set are shown in Figure 4.14. For the GLORIA
dataset, the equivalent graphs are shown in Figures 4.15 and 4.16, respectively.
The inter-feature contribution for the features on HYPSO-1 is not as big as that on
the see in the GLORIA SHAP values. While on average the contribution decreases
by approximately 0.20 on the HYPSO features, GLORIA sees a higher drop from
the top feature of approximately 8.4 points. On the individual plots, it can also be
seen that the features selected for the GLORIA dataset are responsible for higher
SHAP values when compared to those in the HYPSO results.

Figure 4.13: Mean SHAP Values for HYPSO
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Figure 4.14: SHAP Values for HYPSO

Figure 4.15: Mean SHAP Values for GLORIA

Figure 4.16: SHAP Values for GLORIA
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Because the best method is the voting ensemble, an estimation of chlorophyll
on a HYPSO-1 spectral image was done and shown in Figure 4.17.

Figure 4.17: Chlorophyll prediction on a HYPSO spectral image using the
voting ensemble method.
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5 Discussion

5.1 Atmospheric Correction
The performance of the atmospheric correction method to obtain surface reflectance
Rrs was evaluated taking as reference the ACOLITE method, which was developed
almost in parallel for HYPSO-1. The average reflectance difference is higher in the
far red and NIR regions, as shown previously in Table 4.1. Both methods struggle
to estimate the reflectance of λ < 443nm as the values become negative, which in
this context is not a valid response.

Regarding the atmospheric profile, which was selected based on the criteria of
Table 3.2, it should be noted that over the years the relative center of the regions
changes (Chen and Chen, 2013). A more accurate and robust approach would be
to define the atmospheric profile based on surface measurements such as water
vapor, pressure, and temperature in combination with the lookup tables defined by
F.X. Kneizys et al. (1996). The approach used in this work was selected due to the
current inability of HYPSO-1 to measure any of these properties.

For each spectral image from HYPSO-1 it was assumed that the correction
per band was applied equally for all pixels. Although this helps to speed up the
correction process, a more accurate approach would require pixel-level information
such as the solar azimuth and zenith angles as well as the altitude. Due to
information availability, the mean of the previous two parameters was used for
every pixel.

At the time of writing this work, the spectral response function has not been
measured for the HYPSO-1 hyperspectral camera. To account for this, a Gaussian
distribution peak normalized to 1 was used for the 6SV1 atmospheric correction
algorithm. This assumption is an educated approach, as the device spectral
resolution is high at approximately 4nm; however, the measurement of the SRF is
recommendable for future work as the lack of it adds another layer of uncertainty
to the correction process.

It must be recalled that the atmospheric correction process is still a problem
without a definitive answer, but the approximations through radiative transfer
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models are constantly being developed. The quality of the corrections is based on
the characteristics of the on-board sensors and the knowledge of the optical path
from the satellite to the surface.

Enhancing the spectral range of the satellite can be a good way to approach
a better atmospheric correction, although the effect of not having them can be
studied by matching HYPSO-1 passes with stations that measure the optical path
variables. AERONET stations could serve this purpose in understanding the
implications of this process; however, Gordon (2019) established that AERONET
aerosol measurements are sparse and are not really applicable for satellites with
low spatial resolution (>1km). If they were available in HYPSO-1, the spectral
bands in the SWIR region could be used to remove the contribution of water vapor,
as previously done for the HYPERION sensor of the EO-1 mission (Goetz et al.,
2002). NIR bands in ≈ 788nm and ≈ 885nm have also been used for atmospheric
correction in the MERIS sensor, but due to the lack of the latter in HYPSO-1,
a similar approach could not be replicated (Schroeder et al., 2007). The 6SV1
atmospheric correction method used had to be limited to the limited spectral range
of HYPSO-1, but it is evident that to achieve further improvements, an extension
of this range would have to be evaluated for future satellite missions.

Li et al. (2022) found that when analyzing atmospheric correction against
ground truth reflectance, the RMSD and ϵ oscillate in the range of 0.0013 to
0.0049sr−1 and 8% to 47%, respectively. The metrics in Table 4.1 show that the
reflectance signals estimated by the 6SV1 and ACOLITE methods have a smaller
RMSD in the red region, while the average unbiased absolute difference ϵ is smaller
in the green. The metrics of each region fall outside the empirical ranges found by
Li et al. (2022), so further analysis is needed to evaluate both methods against a
known ground truth.

Different types of atmospheric environmental conditions can make the estimation
process of Rrs extremely difficult, as the high number of particles and aerosols
may be challenging for current atmospheric correction models (Gokul et al., 2019,
as cited in IOCCG, 2021). This poses the need to make corrections with the
information available from the onboard sensors to facilitate the study of different
surface conditions and water types.

The quality of the atmospheric correction process can have a direct impact on
the accuracy of chlorophyll estimation, as the features used to predict chlorophyll
are based on the relationship between different bands (see Table 3.5). All conditions
that may result in noise or variations in atmospheric correction should be reduced
so that their influence is minimized in the estimation of surface reflectance Rrs,
resulting in more accurate chlorophyll estimations.
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5.2 Water Mask Pixels Classification

High-resolution surface maps, such as the one of Yamazaki et al. (2017) are excellent
options for classifying pixels on satellite images, as different water bodies are already
identified based on their coordinates. To uniquely rely on this type of surface
mapping, HYPSO-1 would need to have accurate coordinates; which was not the
case for most of the used images. The implementation of a method that could
classify water pixels based on reflectance was necessary to overcome inconsistent
telemetry data.

Regardless of the quality of the atmospheric correction, the clustering technique
of the method by Cordeiro et al. (2021) was shown to be robust enough to achieve
a precision of 98.3% when classifying water pixels of a single type. Different water
types (i.e. lakes and oceans) on the same image could cause higher classification
errors, but it was not tested in this work as the ocean water type was the main
focus. For spectral images with multiple water types, SWIR bands could prove
useful for improving classification by including pixel features from the MNDWI
and MBWI indices in the pipeline described in Figure 3.5.

5.3 Pixel Matching

Synthetic chlorophyll data for HYPSO-1 was generated by interpolation using
matching spectral images from Sentinel-3. To account for the differences in spatial
resolution that could lead to deficient chlorophyll values, a Gaussian filter was
applied to the scene to smooth out the chlorophyll map. Even after this process, it
is possible to find variations due to the time difference of the captures, even after
limiting it with a window of ± 3 hours. The results of the QQ-Plot of Figures 3.6
and 3.7 show that even after applying a logarithmic transformation, normality is not
achieved, which can be attributed to the nature of the defined interpolation process.
The GLORIA dataset was not affected by the previously mentioned variations as
all elements were matched with in situ chlorophyll measurements.

To improve the quality of the HYPSO dataset, spectral images would have
to be paired with in situ samples from permanent ocean stations, as done by
Vanhellemont and Ruddick (2021) on the Belgian coast. Temporal campaigns can
also be deployed to collect local measurements, but it can take more time Binh
et al. (2022); Li et al. (2022).
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5.4 Chlorophyll Estimation
In this section, the contribution of feature tuning and feature selection to the
estimation of chlorophyll is discussed. A summary of the best results for each
model is found in Table 5.1 independently for the HYPSO (H) and GLORIA (G)
datasets, where bold letters indicate the best result per metric.

Table 5.1: Summary of best performing models.

BIAS RMSLE ↓ MAE ↓ RMSE ↓ R2

Multivariate Linear
Regression

H 0.850 1.120 0.536 0.616 0.622
G 0.492 2.092 0.780 1.004 0.667

OCx
Polynomial

H 0.999 1.054 0.420 0.335 0.884

G 1.060 2.496 0.870 1.187 0.560

Ensemble
Voting

H 1.302 0.972 0.320 0.568 0.696
G 1.460 1.510 0.531 0.752 0.785

Feature selection was used to reduce the complexity of the machine learning
models used. Statistical methods were preferred to describe the relationship between
each of the features and the estimation of chlorophyll. F-regression and mutual
information regression were preferred over alternative recursive feature elimination
methods that grow cubic to the number of feature points.

The GLORIA data points were reduced 40% because the spectral range of all
the records was not the same. This caused issues during the analysis stage, as
band ratios could not be calculated in some cases due to missing data. Constant
expansion and maintenance of this dataset as done by others like Valente et al.
(2022) is suggested. Although this process may take multiple years, GLORIA has
potential to aid the study of hyperspectral remote sensing sensors due to its main
focus on high spectral resolution.

Regarding chlorophyll descriptors, the LBD feature was not used because
when the band difference was very small, leading to infinite asymptotically values.
Similarly, the second derivative was discarded as it was shown to not give consistent
results when implementing the feature elimination process (see Tables 4.4 to 4.6).

Previous studies like the one performed by Tan et al. (2017) showed that
multivariate regression through stepwise methods can help to show the relevant
characteristics to improve predictions. From the multivariate linear regression
analysis performed in this work, it was clear that the only "complex" chlorophyll
descriptor selected as the highest contributor was TBVI (see Table 4.8). The Lasso
approach discarded TBM and OCVI as the least contributing features.

According to Matthews (2011), the 700nm and 670nm band ratio has been
used as it is highly correlated with chlorophyll estimation. Different studies have
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explored possible variations close to this range, such as in the work of Sun et al.
(2012). With the feature optimization method of this work, the same ranges were
found for the GLORIA dataset where the logarithm of the same band ratio is
consistently selected, being also used as a feature of the best multivariate model (see
Table 4.8) and the feature with a highest mean SHAP value (see Table 4.15). In the
case of HYPSO, the same ratio was not found. The closest ratio to LBR(700,670) is
BR(701,503), supporting the observations that the atmospheric correction performs
differently on different regions of the spectrum, and thus finding 503nm instead of
670nm.

An interesting behavior was observed for the multivariate linear regressions
when exclusively using the features BR, BD, and LBR features independently (see
rows in Table 4.8 with IDs "BRO", "LBRO" and "BDO" where "O" stands for
"Only"). Figure 5.1 shows how the chlorophyll in a HYPSO image is estimated
with these three regression models. Visually, BD seems to estimate relatively lower
values, LBR estimates values in the medium regions of chlorophyll, and BR goes
to the high end. This might explain why the best regression for HYPSO in Table
4.8 (marked with a *) has the contribution of all three.

(a) BD [0.05, 1.0) mgm−3 (b) LBR [1.0, 5.0] mgm−3 (c) BR >10mgm−3

Figure 5.1: Individual contributions of independent feature groups on a HYPSO
spectral image (same color scale).
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From the summary Table 5.1, it can be seen that the best results of the
multivariate linear regression are similar to those of the OCx polynomial. Bias is
better in the polynomial regression of OCx by being closer to 1.0, establishing that,
on average, the prediction is closer to the ground truth. The MAE is smaller for
the multivariate linear regression on the GLORIA dataset while the same metric is
higher for the HYPSO data.

Visually, the OCx polynomials from Figures 4.9 and 4.10 show very little
similarity to the model defined by O’Reilly and Werdell (2019) which is replicated
in Figure 5.2 for the SeaWiFS sensor. The observed difference may be due to a
curated selection of data points that allowed a good polynomial fit. After comparing
the results, there is place to suspect that the good bias results from the OCX
polynomial in this study are caused by an over-fitted regression.

Figure 5.2: OC6 MBR for SeaWiFS

Of all the ensemble machine learning approaches, the voting strategy performed
the best. K-fold splits and data normalization were performed separately in training
and test splits to avoid data leaks, which could lead to optimistic conclusions based
on the results of Nalepa et al. (2019). The ensemble machine learning voting
regressor outperformed every other strategy in this work (see Table 5.1), making it
the best alternative for chlorophyll prediction using Rrs.

The features selected for the ensemble model of each dataset are shown in
Figures 4.13 and 4.15 where a higher SHAP value represents a greater contribution
of the specific feature. The model for the GLORIA dataset shows that the feature
LBR(700,670) is the most important while for HYPSO it is BR(701,503), which are
the same features observed in the best performing multivariate linear regression.
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The difference between features is greater on the model trained with the GLORIA
dataset, finding a more homogeneous feature contribution when training the model
with the HYPSO data.

Although a super-learner approach was tested using nearly twice the number of
regressors, the performance did not increase with the model complexity. In a visual
comparison of the chlorophyll map shown in Figures 4.7, 4.12, and 4.17, it can
be observed that the voting approach estimates lower chlorophyll concentrations,
which are not visible in the other images (lower values are shown in light blue). The
performance of each machine learning regression used for the "voting" approach
can be further enhanced by tuning individual hyperparameters. A grid or random
search can be used so that multiple combinations of parameters can be tested to
minimize the error. This process can lead to an exhaustive and long search, which
was not implemented in this work.

Comparing the results of this thesis with the current literature is not straight-
forward as most of them use the coefficient of determination R2 as the evaluation
metric. The ensemble model outperforms the empirical OCX regression of this work
and that of Binh et al. (2022); O’Reilly and Werdell (2019) by having a lower error.
A similar bias and a lower MAE are found when comparing the voting ensemble
technique with simpler traditional machine learning models such as those used by
Cao et al. (2020).

More complex models can be used instead of simpler ones to reduce the error
in chlorophyll estimation. The presented models achieve that compromising the
explainability, which is possible with a multivariate linear regression, as the features
and coefficients are clearly defined.

Toxic HAB can have an impact on the environment without being detected
from space due to low biomass concentration (IOCCG, 2021). This characteristic
may require additional properties other than chlorophyll to study and monitor
water quality in coastal regions. Seasonal factors such as temperature, wind, and
currents can change the conditions under which phytoplankton proliferate. This
was not a factor considered in this work, but separating the data used for regression
based on season may be of interest for future work based on the results of this
thesis.
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6 Conclusion

The problem of chlorophyll estimation with surface reflectance is approached by
presenting an ensemble machine learning approach using fine-tuned chlorophyll
descriptors. Permutations of bands were tested according to the requirement of
different features to find the most correlated to chlorophyll estimation. Feature
selection was implemented to reduce the number of descriptors without affecting the
estimation, ensuring a low correlation between the selected ones. The performance
of multivariate linear regression (including polynomial features), OCX maximum
band ration polynomial, and ensemble machine learning was compared. The best
performing model was quantitatively evaluated using prior work using relevant
metrics. As a means to test generalization, the HYPSO approach was replicated
using the GLORIA in situ reflectance dataset to eliminate the contribution of
atmospheric correction to chlorophyll estimation. The proposed voting ensemble
machine learning model is quantitatively evaluated with multiple metrics to better
describe the estimation of the chlorophyll logarithmic pattern. The voting method
achieves better results than its counterparts by using 6 fine-tuned features for
HYPSO and 7 for GLORIA.

6.1 Future Work
Improved atmospheric correction:
In this work the atmospheric correction process was not evaluated against known
ground surface reflectances, because of this, it is not possible to accurately assess the
performance of the method introduced. Differences in surface reflectance between
atmospheric correction and in situ Rrs are visible in the selected bands of the
fine-tuned descriptors of HYPSO and GLORIA, respectively. More studies are
needed for the HYPSO satellite to evaluate this correction process based on known
ground truths.

ANN with Fine Tuned Features:
Ye et al. (2021) used artificial neural networks to reduce the chlorophyll estimation
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error. With the existing radiance dataset of ≈ 1e6 points, it is possible to use the
relevant features of this work to further develop this area of knowledge.

Effective Chlorophyll Ranges:
Hu et al. (2012, 2019) showed that lower concentrations follow a pseudolinear
pattern, thus proposing a chlorophyll index (CI) for values less than 0.25 mgm−3.
In later work, the performance of the models presented in this thesis should be
evaluated in different chlorophyll ranges to potentially improve the chlorophyll
estimation performance.
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A Appendix

Table A.1: Atmospheric model used in NASA (1966) based on the latitude and
month of the year. The altitude in the region has not been considered, as only
the surface model is of interest.

Center Latitude Month
(1 to 12) Atmospheric Profile

-15>Lat<15 Any Tropical
15<Lat<=45

-45<=Lat<-15
5 to 9 MidLatitudeSummer

1 to 4 & 10 to 12 MidLatitudeWinter
45<Lat<=60

-60<=Lat<-45
5 to 9 SubArticSummer

1 to 4 & 10 to 12 SubArticWinter
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