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Abstract
This study aims to explore the application of Siamese Neural Networks (SNN)

in Full-Reference Image Quality Assessment (FR-IQA). The goal is to develop an
efficient and accurate model to predict perceived image quality and correlate it with
human scores. While deep learning has gained popularity in FR-IQA, the potential
of Siamese Neural Networks still needs to be explored. The research addresses
the challenges associated with capturing complex and nonlinear distortions and
accurately assessing perceptual image quality in line with human judgment.

The proposed method represents a significant advancement in image quality
assessment (IQA) by harnessing the capabilities of SNNs. It introduces an approach
to accurately measuring and evaluating image quality with the publicly available
KADID-10k dataset. The FR-IQA model proposed in this research has undergone
thorough evaluation and comparison with existing techniques. This evaluation
provides valuable insights into the strengths and weaknesses of different approaches,
ultimately highlighting the effectiveness of the SNN-based model. We achieved a
Pearson Linear Correlation Coefficient (PLCC) of 0.781, surpassing the Structural
Similarity Index Measure (SSIM) with a PLCC of 0.671. Furthermore, the Spearman
Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Correlation
Coefficient (KROCC) of our proposed model exhibit higher values of 0.823 and 0.804,
respectively, compared to other image quality metrics. The study showcases the
versatility and capacity to enhance the SNN-based model through fine-tuning. The
drawbacks of the suggested model have been addressed, and potential strategies to
overcome these limitations and achieve superior performance have been highlighted.
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1 Introduction

1.1 Background and Motivation
Image Quality Assessment (IQA) is an integral part of numerous image processing
applications including compression, restoration, watermarking, and visualization.
Traditionally, subjective IQA metrics, such as Mean Opinion Scores, have been used
to judge the perceptual quality of images. However, this approach has inherent
limitations, such as inconsistency and subjectivity. To overcome these issues,
objective IQA techniques have been developed that attempt to emulate the Human
Visual System (HVS) using computational models. Although substantial progress
has been made, a considerable gap still exists between the performance of current
IQA models and human judgment Talebi and Milanfar (2018); Niu et al. (2019);
Cong et al. (2022)..

Full Reference Image Quality Assessment (FR-IQA) Pedersen et al. (2012);
Varga (2022) provides a way to evaluate the quality of distorted images by comparing
them with their original high-quality versions. However, the current FR-IQA models
face challenges in capturing high-level semantic features and handling complex,
nonlinear distortions. Recently, deep learning methods, such as Convolutional
Neural Networks (CNNs), have shown potential in improving IQA performance
Cheon et al. (2021); Cong et al. (2022); Varga (2020); Liu et al. (2019). Among
them, Siamese Neural Networks (SNN), known for their strength in comparing
and contrasting features between input pairs, present an attractive opportunity for
FR-IQA.

1.2 Problem Statement
This research will investigate the application of Siamese Neural Networks in FR-
IQA, with the goal of developing an efficient and accurate model. Despite the
increasing use of deep learning in FR-IQA, the potential of Siamese Neural Networks
has not been fully explored. In particular, the research will address the difficulty
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Chapter 1 INTRODUCTION

in capturing complex and nonlinear distortions and the challenges of accurately
assessing the perceptual image quality in line with human judgment Ahmed et al.
(2022); Ayyoubzadeh and Royat (2021); Cong et al. (2022).

1.3 Research Objectives
The primary objectives of this research are:

• To explore the application and effectiveness of Siamese Neural Networks for
FR-IQA.

• To develop an SNN-based FR-IQA model that accurately reflects human
judgment of image quality.

• To assess the proposed model’s performance against existing FR-IQA tech-
niques using a standard IQA database.

• To explore how the SNN’s unique properties can be leveraged to improve
FR-IQA performance.

1.4 Contribution of the Thesis
This thesis aims to make several significant contributions:

• The proposal and development of a new SNN-based FR-IQA model.

• An extensive evaluation and comparison of the proposed model with existing
FR-IQA techniques.

• A comprehensive study on the application of Siamese Neural Networks in the
field of image quality assessment.

• Insights on how Siamese Neural Networks can be fine-tuned to enhance
FR-IQA performance.

1.5 Thesis Organization
The subsequent sections of the thesis are structured as follows:

Chapter II offers a comprehensive review of image quality assessment, specifically
emphasizing Full Reference (FR) methods and the utilization of deep learning
techniques.

2



Thesis Organization 1.5

Chapter III elucidates the methodology behind SNNs and outlines the develop-
ment process of the proposed FR-IQA model.

Chapter IV presents the experimental setup, encompassing details regarding the
datasets used, evaluation metrics employed, and comparison methods employed.

Chapter V engages in a thorough discussion of the experimental results, provid-
ing an in-depth analysis of the performance exhibited by the proposed model.

Chapter VI serves as the concluding section of the thesis, summarizing the
key findings and contributions while also suggesting potential avenues for future
research.
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2 Background and Literature Re-
view

The purpose of this chapter is to offer a broad understanding of the theoretical
foundation and perform an extensive review of existing literature. It will be divided
into two main sections.

Background Theory on Image Quality and Siamese Network: In this
section, the chapter will delve into the theoretical foundations related to image qual-
ity and the concept of a Siamese network. It will explore the principles, techniques,
and methodologies of assessing and enhancing image quality. Additionally, it will
explain the concept of a Siamese network, a type of neural network architecture
commonly used in various applications, including image comparison and similarity
measurement.

State-of-the-Art Literature Review: The second part of the chapter will
focus on reviewing the current state-of-the-art literature in the field. It will provide
an in-depth analysis and evaluation of the most recent and relevant research papers,
articles, and studies related to the topic of interest. This literature review aims to
identify the existing gaps, trends, and advancements in the field, and it will serve
as a foundation for the subsequent chapters of the research or study.

2.1 Background Theory on Image Quality
and Siamese Network

2.1.1 Image Quality Assessment (IQA)
Image Quality Assessment (IQA) is a field of study that focuses on developing
algorithms and methodologies to assess subjective and objective IQA. IQA aims
to model human perception and provide quality scores that correlate with how
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Chapter 2 BACKGROUND AND LITERATURE REVIEW

humans perceive the visual quality of images Talebi and Milanfar (2018); Niu
et al. (2019); Cong et al. (2022). IQA is of utmost importance in various domains
and applications. In image processing and restoration, IQA helps evaluate the
effectiveness of techniques by comparing the quality of the output with the original
image. IQA ensures that transmitted or compressed images meet acceptable quality
standards in multimedia communications. In computer vision and machine learning,
IQA is a pre-processing step to ensure input images are of good quality, free from
distortions that could affect algorithm performance. In medical imaging, IQA is
crucial for accurate and reliable diagnostic results. In human-computer interaction,
IQA plays a role in applications relying on visual information, such as virtual
reality and gaming Niu et al. (2019); Cong et al. (2022).

Several factors influence image quality. Compression artifacts introduced by
techniques like JPEG degrade perceived quality through blocking, blurring, and
ringing. Image noise from sensor limitations, transmission errors, or environmental
factors reduces clarity and increases distortions. Blur caused by camera shake,
defocus, or motion during capture results in reduced sharpness and loss of de-
tails. Inaccurate color reproduction or shifts can significantly affect visual quality.
Low-resolution images lack fine details, leading to a perceived decrease in quality.
Improper contrast and brightness adjustments can make images appear too dark
or bright. In lossy compression, higher compression ratios lead to more significant
quality loss. Additionally, the subjective content of an image, including the presence
of meaningful objects or elements, can influence perceived quality. Understanding
these factors and their impact on image quality is essential for developing effective
image processing techniques, ensuring accurate diagnostic results, and enhancing
user satisfaction in various applicationsTalebi and Milanfar (2018); Shi et al. (2021).

IQA can be divided into subjective IQA and objective IQA. Talebi and Milanfar
(2018); Niu et al. (2019).

Subjective Image Quality Assessment (IQA) involves human observers
providing their subjective judgments on the perceived quality of images. Human
participants are presented with pairs of reference and distorted images and asked
to rate the quality of the distorted images based on their visual perception and
subjective experience. These subjective quality scores serve as the ground truth
for evaluating objective IQA algorithms and other image-processing techniques.
Subjective IQA is based on the principles of human perception, considering cognitive
and psychological factors that influence how humans perceive and evaluate visual
information. It captures the real-world context in which images are perceived by
actual users, accounting for diverse preferences and expectations regarding image
quality. The evaluation process involves collecting subjective quality scores from
multiple human observers to create a database of human ratings, which serves
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Background Theory on Image Quality and Siamese Network 2.1

as a reference for developing and validating objective IQA algorithmsTalebi and
Milanfar (2018); Niu et al. (2019).

Subjective IQA has applications in validating and benchmarking objective
IQA algorithms, providing a benchmark for comparing different image quality
assessment methods. It is also crucial in developing image and video coding
standards, helping to set quality targets and determine acceptable levels of quality
degradation for various applications. By incorporating human perception and
preferences, subjective IQA enhances the accuracy and relevance of image quality
assessment Mohammadi et al. (2014); Pedersen et al. (2012).

Objective Image Quality Assessment (Objective IQA) is a computational
approach that quantitatively assesses the visual quality of images without human
observers. Objective IQA algorithms analyze visual features of reference and
distorted images to generate objective quality scores. This approach is used
in computer vision, image processing, multimedia communications, and quality
control.

Objective IQA principles include feature extraction, where relevant features
capturing perceptual differences are extracted from images. Psychophysics modeling
simulates human perception efficiently. Performance metrics like PLCC, SROCC,
and KROCC Sheikh et al. (2006) quantify the correlation between predicted quality
scores and subjective ratings. Objective IQA methods include Full Reference
(FR-IQA), comparing distorted images with high-quality references; No-Reference
(NR-IQA), assessing quality using only the distorted image; and Reduced-Reference
(RR-IQA), using a reduced set of features from both images Talebi and Milanfar
(2018); Niu et al. (2019); Mohammadi et al. (2014).

Applications of Objective IQA include automation, quality control, and guiding
image enhancement and processing techniques. Challenges in Objective IQA include
diverse distortions, subjectivity variability, and dataset bias. Objective IQA is a
valuable tool for automated quality assessment, benefiting industries and optimizing
image processing techniques. Researchers continue to address challenges, improving
the accuracy and reliability of automatic image quality assessmentMohammadi
et al. (2014).

2.1.2 Full Reference Image Quality Assessment (FR-
IQA)

Full Reference Image Quality Assessment (FR-IQA) Larson and Chandler (2010);
Pedersen et al. (2012); Zhang et al. (2012); Sun et al. (2018); Madhusudana et al.
(2022) is a method used to assess the quality of distorted images by comparing
them with a known high-quality reference image. Here are some key points about
FR-IQA:
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• Comparison with a Reference Image: FR-IQA algorithms assess the qual-
ity degradation brought about by distortions by contrasting the distorted
image with a reference image. The reference image is typically an original,
undistorted version of the same image.

• Image Similarity Metrics: FR-IQA methods often use image similarity metrics
to compare the features extracted from the reference and distorted images.
These metrics evaluate the differences in pixel values, local texture patterns,
color histograms, and edge information between the two images.

• Perceptual Differences: FR-IQA algorithms aim to capture the perceptual
differences between the reference and distorted images. They consider factors
such as loss of details, color shifts, artifacts, and overall visual degradation
caused by the distortion Pedersen et al. (2012); Larson and Chandler (2010);
Sun et al. (2018).

• Psychophysics-Based Models: Many FR-IQA algorithms are designed based on
psychophysical studies, where human perception of image quality is quantified
and used as a reference for developing computational models Pedersen et al.
(2012).

• Evaluation Metrics for Full Reference IQA: The performance of FR-IQA
Larson and Chandler (2010); Sun et al. (2018); Madhusudana et al. (2022)
algorithms is evaluated by comparing the predicted quality scores with sub-
jective ratings provided by human observers. Several evaluation metrics are
used to assess the performance of Full Reference IQA algorithms. These
metrics compare the quality scores generated by the IQA model against
human judgments or subjective quality scores provided by human observers.
Some commonly used metrics include: Pearson Correlation Coefficient (PCC),
Kendall Rank-Order Correlation Coefficient (KRCC), Mean Squared Error
(MSE), Spearman Rank-Order Correlation Coefficient (SRCC), Root Mean
Squared Error (RMSE) Sheikh et al. (2006).

• Applications: FR-IQA is used in various applications, including image and
video compression, image restoration, and quality control. It helps optimize
algorithms and techniques by providing quantitative measures of the quality
degradation caused by different distortions Zhang et al. (2012); Madhusudana
et al. (2022).

• Limitations: FR-IQA requires access to a high-quality reference image, which
may not always be available. It also assumes that the reference image perfectly
represents the original, which may not be accurate in some scenarios Sun
et al. (2018); Zhang et al. (2012).
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Background Theory on Image Quality and Siamese Network 2.1

Overall, FR-IQA plays a crucial role in objectively assessing the quality of
distorted images by comparing them with a reference image, providing valuable
insights for image processing and quality evaluation tasks Zhang et al. (2012);
Larson and Chandler (2010); Sun et al. (2018); Madhusudana et al. (2022).

FR IQA methods rely on feature extraction techniques. Despite advancements
in image processing for IQA, many approaches still employ low-complexity metrics
such as mean square error (MSE) and peak signal-to-noise ratio (PSNR). However,
these metrics do not fully account for the characteristics of the human visual system
(HVS) Wang et al. (2004), are sensitive to pixel locations, and often do not align
well with subjective judgments of image quality.

To address these limitations, Wang et al. (2004) introduced the structural
similarity index (SSIM), which assumes that the HVS is highly adaptable to
structural information. Building upon SSIM, subsequent methodologies such as
multi-scale SSIM (MS-SSIM) and information-weighted SSIM (IW-SSIM) have
been proposed to incorporate image details across multiple resolutions and viewing
conditions for IQA. Larson argues that the HVS employs various methodologies
to analyze image quality, including the examination of local statistics related to
local brightness, contrast masking, and spatial frequency components, in order to
identify distortions Larson and Chandler (2010); Wang and Li (2010).

2.1.3 FR-IQA with Deep Learning
The performance and speed of the FR-IQA algorithm are improved by analyzing
multiple perspectives of the Human Visual System (HVS). Deep learning-based
approaches for Image Quality Assessment (IQA) have shown significant advance-
ments in various image-processing applications. Gao proposed Gao et al. (2017)
introduced a method called DeepSim, which estimates the local similarities of
features between distorted and reference images. This approach predicts the overall
quality by aggregating these small similarities. In their study titled "DeepSim,"
Gao et al. Gao et al. (2017) demonstrate the extraction of feature maps from
different layers of a pre-trained deep Convolutional Neural Network (CNN) used
for image recognition. The research reveals that these features, originally learned
for image recognition, also play a significant role in assessing perceived quality.

Bosse et al. (2017) presented a neural network architecture in their study that
achieves simultaneous learning of local quality and local weights. This approach
integrates feature learning and regression within a single end-to-end framework.
The effectiveness of deep-learning-based IQA approaches has been validated through
the NTIRE 2021 Perceptual Image Quality Assessment Challenge Gu et al. (2022).
The LIPT team, as reported by Cheon et al. (2021), emerged as the winners of the
NTIRE 2021 IQA challenge. Their approach utilized a transformer architecture to
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address the perceptual IQA task. The MT-GTD team secured the second place
in the NTIRE 2021 Jinjin Gu (2020) IQA challenges. MT-GTD proposed a novel
bilateral-branch multi-scale Image Quality Estimation (IQMA) network Guo et al.
(2021) to effectively extract multi-scale features from patches of both the reference
image and the distorted image individually.

Utilizing a DOG-based channel decomposition, the Gaussian (DOG)-SSIM
Pei and Chen (2015) technique emulates the frequency bands of the contrast
sensitivity function. Through channel-wise quality calculations, SSIM generates
quality values that are subsequently aggregated by a trained regression model to
provide an overall quality estimate. The MAD Larson and Chandler (2010) metric
effectively distinguishes between supra- and near-threshold aberrations, thereby
accommodating the distinct domains of human quality perception. It has been
observed that the combination of multiple manually crafted Image Quality Metrics
(IQMs) Lukin et al. (2015) can enhance performance Lukin et al. (2015). Feature
learning Gao et al. (2017) and regression Pei and Chen (2015) are employed in FR
IQA.

2.1.4 Loss Functions
Triplet Loss Funciton:

Triplet loss is a loss function commonly used in image quality assessment tasks,
particularly in the context of siamese networks. The goal of triplet loss is to learn
a feature representation that can effectively distinguish between images of different
qualities. In the triplet loss formulation, each training sample consists of an anchor
image, a positive image, and a negative image. The anchor image represents the
reference image, while the positive image is a similar image to the anchor (e.g.,
a high-quality version of the same image), and the negative image is a dissimilar
image (e.g., a low-quality version of the same image or a different image altogether)
Niu et al. (2019).

L = max(d(a, p)− d(a, n) + mar gin, 0)

Contrastive loss: Contrastive loss is a loss function commonly used in Image
Quality Assessment (IQA) tasks. Its purpose is to learn a similarity metric that can
distinguish between high-quality and low-quality images. The goal is to minimize
the distance between similar image pairs and maximize the distance between
dissimilar image pairs. In IQA, contrastive loss is typically applied in a Siamese
network architecture, where two identical networks share weights and process two
input images simultaneously. The output of each network is a feature vector that
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Background Theory on Image Quality and Siamese Network 2.1

represents the image. The contrastive loss function takes into account the similarity
between pairs of images and encourages the network to learn embeddings that
preserve this similarity.

loss(d, Y ) =
1

2
∗ Y ∗ d2 + (1− Y ) ∗ 1

2
∗max(0,m− d)2

Where: - d is the distance between the outputs of the encoder; - Y is the label of
the model inputs ( 1 if similar, 0 if dissimilar); - m, the margin parameter

Soft-max cross-entropy: Softmax cross-entropy Levina and Bickel (2001) is
a commonly used loss function in the field of Image Quality Assessment (IQA). It is
used to measure the discrepancy between predicted quality scores and ground truth
quality scores. Here are some key points about softmax cross-entropy for IQA:
Loss Function: Softmax cross-entropy combines the softmax activation function
with the cross-entropy loss. It is suitable for multi-class classification problems,
where the goal is to assign quality scores to different image classes.

Softmax Activation: Softmax is used to convert the output of a neural network
into a probability distribution over the different image classes. It ensures that the
predicted scores sum up to 1 and are within the range of 0 to 1.

Cross-Entropy Loss: Cross-entropy measures the dissimilarity between the
predicted probability distribution and the true probability distribution. In IQA,
the true probability distribution represents the ground truth quality scores of the
images Levina and Bickel (2001).

2.1.5 Siamese Networks
An SNN is a type of neural network architecture that contains two or more
identical sub-networks. The sub-networks have the same configuration, weights,
and parameters, and the updating of parameters is mirrored across both sub-
networks. SNNs are beneficial when limited data is available for training, making
them suitable for tasks like image processing, facial recognition, and signature
verification Cong et al. (2022); Koch et al. (2015).

SNNs can determine which image is higher quality in a pair of images. They
are skilled at capturing gradient features and can make near-precise predictions
with just a few images. By comparing the features of the two images, the Siamese
network can learn a similarity function and predict multiple classes based on this
learned function. Siamese neural networks offer several benefits, including the
ability to learn from minimal data, making them popular in data science. They
also allow for classifying new data classes without retraining the network. However,
it’s important to note that Siamese neural networks also have some drawbacks,
including increased computational complexity and the need for careful design and
training Koch et al. (2015).
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Figure 2.1: Overview of Siamese network [Image credit: Li et al. (2022)]

Overall, SNNs provide a powerful architecture for image quality assessment and
other tasks with limited data. They offer the potential for accurate predictions
and can be valuable in machine learning and computer vision. The overview of the
applications of the Siamese network is shown in Fig 2.1

Siamese Networks are a class of artificial neural networks designed to learn the
similarity or dissimilarity between two inputs. The name "Siamese" comes from
the famous "Siamese Twins" who were conjoined twins. Siamese Networks (shown
in Fig 2.2 consist of two or more identical subnetworks (commonly referred to as
twins or branches) with shared weights. These twins process the two input samples
independently but with the same architecture and parameters Li et al. (2022); Niu
et al. (2019); Varga (2020); Ayyoubzadeh and Royat (2021).

The primary objective of Siamese Networks is to learn a similarity metric or
distance measure between the inputs. They are commonly used in tasks like image
verification, face recognition, and signature verification. Siamese Networks excel at
handling tasks where there is a need to compare and measure the similarity between
pairs of data points Li et al. (2022); Niu et al. (2019); Varga (2020); Ayyoubzadeh
and Royat (2021).

Siamese Networks are a type of neural network architecture used for tasks such
as similarity comparison, face recognition, and signature verification. They consist
of twin networks, each processing one input sample and producing an embedding
or feature vector. The key characteristic is that the weights of the twins are shared,
enabling them to learn similar representations for similar inputs. The similarity
between the embeddings is calculated using a distance metric, such as Euclidean
distance or cosine similarity. This distance is then fed into an output layer to make

12



State-of-the-Art Literature Review 2.2

Figure 2.2: General Model of Siamese network, [Image credit (inspired from):
Dey et al. (2017)]

a final decision based on a threshold Niu et al. (2019); Varga (2020); Ayyoubzadeh
and Royat (2021).

During the training process, input samples are paired and labeled based on their
similarity or dissimilarity. The primary goal is to reduce the distance between similar
pairs and increase the distance between dissimilar pairs. This is accomplished by
utilizing loss functions such as Contrastive Loss, which penalizes the network when
the distance between similar pairs exceeds a specified margin, and Triplet Loss,
which aims to minimize the distance between an anchor and a positive sample
while simultaneously maximizing the distance between the anchor and a negative
sample Li et al. (2022); Niu et al. (2019); Ayyoubzadeh and Royat (2021).

To optimize Siamese Networks, common techniques like Stochastic Gradient
Descent (SGD) and its variants (Adam, RMSprop) are used, with the choice de-
pending on the specific task and dataset.

Siamese Networks have shown promising results in various applications that
require similarity learning and distance-based comparisons. By sharing weights
between twins and using specialized loss functions, Siamese Networks can effectively
learn powerful embeddings that facilitate similarity-based decision-making. The
flexibility and versatility of Siamese Networks make them a valuable tool in various
machine learning tasks Li et al. (2022); Niu et al. (2019); Varga (2020); Ayyoubzadeh
and Royat (2021).

2.2 State-of-the-Art Literature Review
• Advantages of Siamese Networks in IQA:

13
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Fine-Grained Image Comparison: Siamese Networks excel at capturing fine-
grained differences between images. In IQA, this ability is crucial, as small
variations in image quality need to be accurately detected and quantified Li
et al. (2022); Ayyoubzadeh and Royat (2021).

Distortion-Specific Quality Assessment: Siamese Networks can be designed
to focus on specific types of distortions. By training on pairs of reference and
distorted images, the network can learn to specialize in assessing the quality
degradation caused by particular distortions, such as compression artifacts,
blur, or noise.

Fewer Training Samples: Siamese Networks require fewer training samples
compared to other deep learning approaches since they learn the similarity
metric rather than directly predicting the quality score. This makes them
particularly useful for tasks with limited annotated data Koch et al. (2015).

Handling No-Reference IQA: Siamese Networks can be adapted to No-
Reference IQA scenarios, where only the distorted image is available for
quality assessment. Training the network to compare the distorted image
against itself as a reference can still provide quality estimates without access
to an explicit reference image Niu et al. (2019); Varga (2020).

Several Siamese Network architectures have been proposed for different appli-
cations. Some of the notable ones include:

– Siamese Networks with CNNs: Using Convolutional Neural Net-
works (CNNs) as the subnetworks in Siamese Networks has been a
popular choice. CNNs are effective in feature extraction, and their
hierarchical nature allows them to learn meaningful representations for
image quality assessment.
The literature Liu et al. (2019) presents a Siamese Convolutional Neural
Network (CNN) for remote sensing scene classification. The model
combines identification and verification models of CNNs and enforces
robustness through metric learning regularization. The paper describes
the framework of Siamese CNNs and the role of convolutional layers in
feature extraction. Experimental results demonstrate that the proposed
method outperforms existing remote sensing scene classification methods.
The authors conducted experiments on three widely used remote sensing
datasets and compared their method with state-of-the-art approaches,
showing the effectiveness of the proposed Siamese CNN model.

– Siamese VGG: The VGG architecture, known for its depth, has been
employed in Siamese Networks for IQA. VGG-based Siamese Networks
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have shown competitive performance in various image quality bench-
marks.
The paper Yuan et al. (2019) introduces an improved method called
Siamese-VGG for optimizing face tracking tasks. This method addresses
the limitations of traditional face tracking methods by enhancing the
feature extraction template. It exhibits strong adaptability and process-
ing capabilities, particularly in handling light changes, motion blur, and
occlusion. The algorithm is designed to be faster and more suitable for
practical applications. Experimental results demonstrate that the face
tracking algorithm using Siamese-VGG achieves an average overlap of
up to 80

– Siamese ResNet: Residual Networks (ResNets) have demonstrated
superior performance in various computer vision tasks. Siamese ResNet
architectures leverage the skip connections in ResNets to facilitate
learning rich and discriminative features for image quality comparisons.
The paper Qiu et al. (2018) introduces a loop closure detection method
for visual SLAM systems using a Siamese-ResNet network. The network
is trained through supervised learning to extract features from images
and determine if they belong to the same scene. Experimental results on
the FabMap dataset demonstrate that the Siamese-ResNet outperforms
the traditional FabMap2.0 method in terms of loop closure detection
accuracy and computational efficiency. The Siamese-ResNet network im-
proves feature extraction by replacing the smaller LeNet with the larger
ResNet, enabling better feature extraction in complex environments.

– Siamese GANs: Some studies have explored the use of Generative
Adversarial Networks (GANs) in Siamese architectures. These networks
learn to generate image representations that are indistinguishable from
the real representations, helping in generating high-quality embeddings
for IQA.
The literature Yan et al. (2021) discusses a research paper on using
neural networks to remove snow from images. The paper introduces a
snow-free model and a pseudo-siamese generative adversarial network.
The proposed method incorporates techniques like autoencoder structure,
multi-scale perception structure, and skip-connect operation. The paper
evaluates the model’s effectiveness in recovering snow-free images and
enhancing target detection algorithms.

It is worth noting that the field of Siamese Networks in Image Quality
Assessment is an active area of research. New architectures and techniques are
continuously being explored to enhance the accuracy and robustness of IQA
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models. By addressing the challenges and leveraging the advantages, Siamese
Networks have the potential to significantly contribute to the advancement
of image quality assessment and related applications.

2.2.1 Siamese Network Image Quality Metrics

• Challenges of Siamese Networks in IQA:

Siamese Networks in Image Quality Assessment (IQA) face several challenges.
Firstly, they require a large training dataset to generalize well, which can
be time-consuming and resource-intensive. Gathering high-quality references
and distorted image pairs, along with subjective quality scores, is necessary
Niu et al. (2019); Varga (2020).

Secondly, designing an appropriate distance metric is crucial. The distance
metric should align well with human perception, but finding the right one
may require careful experimentation and fine-tuning Li et al. (2022); Niu
et al. (2019).

Thirdly, imbalanced data distribution can affect model performance. The
number of similar and dissimilar pairs in real-world datasets may differ
significantly, leading to biased results. Special attention is needed during
training to address this class imbalance Li et al. (2022); Ayyoubzadeh and
Royat (2021).

Lastly, ensuring generalization across different types of distortions is challeng-
ing. Siamese Networks should be robust enough to handle various distortions
commonly encountered in real-world scenarios.

2.2.1.1 Applications of Siamese Networks

Several Siamese Network architectures have been proposed for IQA. Some notable
ones include using Convolutional Neural Networks (CNNs) as subnetworks, employ-
ing the VGG architecture, leveraging Residual Networks (ResNets), and exploring
the use of Generative Adversarial Networks (GANs) in Siamese architectures Li
et al. (2022); Niu et al. (2019); Varga (2020); Ayyoubzadeh and Royat (2021)..

Siamese Networks with CNNs are popular due to CNNs’ effectiveness in feature
extraction. Siamese VGG, known for its depth, has shown competitive performance.
Siamese ResNet architectures utilize skip connections in ResNets to learn rich and
discriminative features. Siamese GANs generate high-quality embeddings for IQA
Li et al. (2021).
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It’s important to note that Siamese Networks in IQA is an active area of research,
with continuous exploration of new architectures and techniques to enhance accuracy
and robustness. By addressing challenges and leveraging advantages, Siamese
Networks can significantly contribute to image quality assessment and related
applications Li et al. (2022); Niu et al. (2019); Varga (2020); Ayyoubzadeh and
Royat (2021).

The distance metric, typically Euclidean distance or cosine similarity, is then
calculated between the embeddings. This distance value represents the similarity
between the reference and distorted images. A smaller distance indicates higher
similarity, implying that the distorted image retains a high level of quality similar
to the reference image. Conversely, a larger distance indicates lower similarity,
implying that the distortion has significantly affected the perceived qualityLi et al.
(2022); Niu et al. (2019); Varga (2020).

2.2.1.2 IQA method with Siamese by Varga (2020)

This study proposes a technique for evaluating image quality using a Siamese
architecture of pre-trained convolutional neural networks (CNNs) (illustrated in
Fig 2.3) . The method captures the detailed characteristics of images without
any alterations, such as scaling or cropping. The proposed model is trained on
the KADID-10k dataset, currently, the most extensive image-quality database,
consisting of 10,125 digital images. Experimental results show that the proposed
methodology outperforms other contemporary algorithms. The findings are further
validated through cross-database examinations of additional publicly accessible
datasets. The proposed approach effectively captures images’ nuanced, quality-
aware features by utilizing pre-trained CNNs at a higher resolution than previous
studies. The system combines feature pooling and a neural network to process
input photographs and evaluate their quality. Overall, this study presents a novel
IQA technique demonstrating superior image quality evaluation performance Varga
(2020).

Figure 2.3: IQA method with Siamese by Varga. [Image credit: Varga (2020)]
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2.2.1.3 Gradient Siamese Network(GSN)

The GSN architecture, as described by Cong et al. (2022) and shown in Fig. 2.4,
consists of three main components: a weight-sharing Siamese Network, a multi-level
feature fusion module, and a regression head. To handle the reference picture and
distorted image, the authors utilized a Siamese network that incorporates CDC
and spatial attention mechanisms. This network is composed of hierarchical blocks,
each extracting features that are uniformly down-sampled to a predetermined
size. Additionally, the authors proposed a multi-level feature fusion module,
which involves combining features at the same level and then fusing features from
different levels. Finally, to provide the expected quality ratings, a regression head
is employed, which consists of a fully connected layer. In summary, the GSN
architecture includes a multi-level feature fusion module, a weight-sharing Siamese
Network, and a regression head, all working together to handle image distortion
and provide quality ratings.

Figure 2.4: GSN model architecture. [Image credit: Cong et al. (2022)]

2.2.1.4 Attention-based Siamese-Difference Neural Network
(ASNA)

This research Ayyoubzadeh and Royat (2021) presents a novel approach that intro-
duces a convolutional neural network with a Siamese-Difference neural network ar-
chitecture (refer to Figure 2.5). The study utilizes two variations of Attention-based
Siamese-Difference Neural Network (ASNA) designs, each trained independently, to
accurately estimate Mean Opinion Score (MOS). The Siamese-Difference network
design effectively captures subtle variations between reference and distorted images.

The proposed architecture incorporates spatial and channel-wise attention mech-
anisms to enhance the overall performance of our method. Additionally, our model
is trained using an additional loss function. This recommended supplementary cost
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Figure 2.5: Model architecture of ASNA. [Image credit: Ayyoubzadeh and Royat
(2021)]

function serves as a surrogate for ranking loss, effectively boosting Spearman’s rank
correlation coefficient while maintaining the differentiability of the neural network
parameters. Notably, this technique emerged as the winning solution in the NTIRE
2021 Perceptual Image Quality Assessment Challenge Jinjin Gu (2020).

2.2.1.5 Learning-to-Rank Siamese Network (LRSN)

The LRSN Niu et al. (2019) is a type of Siamese network that is utilized to rank
the quality scores of two image patches. LRSN employs Siamese CNN for the
purpose of ranking IQA. In order to address the issue of limited samples, the
researchers introduced no-reference 2D and 3D IQA indexes. These indexes propose
a transformation of IQA into image quality comparison. By generating image
pairings, the training data is effectively doubled, thereby mitigating the scarcity
of samples. The LRSN model, which consists of two branches sharing weights
and taking two picture patches as input, is designed to learn the task of quality
comparison.

The ranking of image patch quality scores is performed by LRSN. To determine
the relative quality score of a test image, its image patches are compared to several
image patches from other images. The number of times the test image’s patches
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Figure 2.6: Model architecture of LRSN. [Image credit: Niu et al. (2019)]

are judged superior is counted, and this count is used to calculate the relative
quality score. The proposed LRSN model has demonstrated superior performance
compared to the state-of-the-art no-reference 2D and 3D IQA metrics on three 2D
IQA databases (LIVE, CSIQ, and TID2013) and three 3D IQA databases (LIVE
3D Phase-I, Phase-II, and NBU) Niu et al. (2019); Li et al. (2021).

2.2.1.6 Neural Image Assessment (NIMA)

The study discusses a deep learning-based approach called NIMA Talebi and
Milanfar (2018) that automatically predicts the aesthetics of images. NIMA utilizes
a Convolutional Neural Network (CNN) that has been trained on a large dataset
of photos with human-rated aesthetic scores. Unlike traditional methods that only
provide mean scores, NIMA predicts quality rating distributions, which improves
the accuracy of quality prediction and its correlation with ground truth. The
researchers also used two models, one for aesthetic assessment and another for
technical assessment, to control parameters of image-enhancing operators. Through
tests, these models were found to guide denoising and tone enhancement processes,
resulting in visually improved outcomes.

The authors Talebi and Milanfar (2018) suggest that the trained models can be
utilized in various applications for further improvement of pictures. However, the
experimental setup used in the study involved evaluating numerous enhancement
operators, which makes it unsuitable for real-time applications. To address this
limitation, the authors propose that NIMA could serve as a more efficient loss
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Figure 2.7: Model architecture of NIMA. [Image credit: Talebi and Milanfar
(2018)]

function for an enhancement operator that has well-defined derivatives.

2.2.1.7 Region Adaptive Deformable Network (RADN)

A recent study aimed to enhance IQA by utilizing GAN-generated images Shi
et al. (2021). GAN-generated images often pose challenges for existing IQA
methods due to spatial changes and texture noise. To address this, the study
introduced a reference-oriented deformable convolution approach that effectively
handles spatial misalignment, resulting in improved IQA performance for GAN-
based distortions. Additionally, a patch-level attention module was developed to
enhance the interaction between patch regions, which were previously processed
separately in patch-based approaches.

Figure 2.8: Model architecture of RADN. Image credit: Shi et al. (2021)

The study also introduced WResNet, a patch-region-based baseline, which was
derived from the remaining block. These proposed modules were combined to form
the Region-Adaptive Deformable Network (RADN). RADN demonstrated strong
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performance on the NTIRE 2021 Perceptual Image Quality Assessment Challenge
dataset Jinjin Gu (2020), and when incorporated into an ensemble strategy, it
achieved fourth place in the final testing phase.

2.2.2 Databases
The LIVE Image Quality Assessment Database (LIVE) Sheikh (2005), the Cate-
gorical Subjective Image Quality (CSIQ) database Larson and Chandler (2010),
and the Tampere image database 2013 (TID2013) Ponomarenko et al. (2013),
Ponomarenko et al. (2015) are publicly accessible.

2.2.2.1 LIVE

The dataset presented by the authors Sheikh et al. (2006) conducted a compre-
hensive subjective quality evaluation research, wherein a total of 779 distorted
photos were assessed by nearly a dozen human subjects. The authors Sheikh
et al. (2006) evaluated the performance of several well-known full-reference image
quality evaluation algorithms using the "ground truth" image quality data, which
was derived from approximately 25,000 unique human quality judgments. The
research provided is one of the largest subjective picture quality studies published,
considering the number of images, types of distortion, and the number of human
judgments for each image. Furthermore, the authors have made all the collected
data openly accessible to the scholarly community.

2.2.2.2 CSIQ

Categorical Image Quality (CSIQ) Larson and Chandler (2010) is a database
developed by the Image Coding and Analysis Lab at Oklahoma State University.
This database contains 30 original images that have been distorted using six
distinct varieties and levels of distortion, including JPEG compression, JPEG-
2000 compression, global contrast decrements, additive pink Gaussian noise, and
Gaussian blurring. As a result, there are a total of 866 distorted images in the
database. The subjective quality of these images was evaluated by 35 different
observers using a linear displacement method on four calibrated LCD monitors.
The DMOS ratings are derived from 5,000 subjective ratings.

2.2.2.3 TID2013

The TID2013 dataset is an extension of the TID2008 dataset. It is designed to
evaluate the visual quality of images using a full-reference approach. TID2013
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provides an estimation of human perception based on a specific metric. The
dataset consists of 25 reference images and 3000 distorted images, resulting from
the combination of 25 reference images, 24 types of distortions, and 5 levels of
distortion. The reference images are cropped from the Kodak Lossless True Colour
Image Suite Ponomarenko et al. (2013), Ponomarenko et al. (2015).

2.2.2.4 KADID-10k

The advancement of deep learning techniques for IQA can be facilitated by the
creation of extensive IQA databases encompassing diverse types of data. In this
regard, the authors of this study have introduced two notable databases, namely
the Konstanz Artificially Distorted Image quality Database (KADID-10k) Lin et al.
(2019) and the Konstanz Artificially Distorted Image quality Set (KADIS-700k),
as a result of their research efforts. KADID-10k comprises 81 photographs that
have been intentionally distorted to varying degrees, offering a total of 25 distinct
distortion options. On the other hand, KADIS-700k consists of 140,000 pristine
images, each accompanied by five additional copies that have been subjected to
random distortions. Leveraging the KADID-10k database, the authors conducted
a subjective IQA crowdsourcing investigation, obtaining 30 deterioration category
ratings (DCRs) for each image. By combining the annotated KADID-10k dataset
with the unlabeled KADIS-700k dataset, the full potential of deep learning-based
IQA approaches can be harnessed through the utilization of weakly-supervised
learning techniques.

2.2.2.5 CID:IQ

In the conducted research, a novel IQ database named Colourlab Image Database:
Image Quality (CID:IQ) Liu et al. (2014) was introduced. The authors of this
research proposed several approaches to construct reference images and employed
various forms of distortions within the database. Notably, an additional advance-
ment incorporated into the CID:IQ database is the inclusion of perceptual trials
conducted at two distinct viewing distances Liu et al. (2014).

The CID:IQ database encompasses three significant features. Firstly, it incorpo-
rates state-of-the-art methodologies for creating reference pictures and evaluation
procedures. Secondly, it introduces new color-related distortions to enhance the
comprehensiveness of the database. Lastly, the CID:IQ database conducts its stud-
ies under controlled viewing conditions, utilizing two different viewing distances
during the trials Liu et al. (2014).
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2.2.2.6 PIPAL

The PIPAL Jinjin Gu (2020) dataset, also known as the Perceptual Image Processing
ALgorithms IQA Dataset, stands out from other Image Quality Assessment (IQA)
datasets in several ways. Firstly, it is the largest IQA dataset to date, containing
a vast number of distorted images with varying levels of visual quality that have
been annotated by humans. This comprehensive subjective assessment sets it
apart. Secondly, PIPAL employs the Elo rating system to provide subjective scores.
Compared to other rating systems, the Elo rating system generates more reliable
findings as it is based on probabilities. This enhances the credibility of the dataset.
Lastly, PIPAL exhibits high extensibility, allowing users to update the dataset by
directly adding additional types of distortions using the extendable characteristic
of the Elo system. This flexibility is facilitated by the dataset’s good extensibility.

The PIPAL training set comprises over one million human ratings, more than
23,000 distorted images, and over 200 reference images. It encompasses 40 differ-
ent types of distortions, including the incorporation of results from GAN-based
algorithms as a new form of distortion. The Elo rating system is utilized to issue
Mean Opinion Scores (MOS) in this context.

The table 2.1 summarizes information about different databases. It includes
columns such as Dataset Name, No of Reference and Resolution of Images, Distorted
Images, Distortion Types and Levels, Judgement Type, and Subjective Test Method.
It summarizes the information from the six databases.

Table 2.1: Summary of datasets

Dataset Ref. & Res. of Img. Dist. Img. Dist. Types & (Level) Judgement Type Subjective Test Method
LIVE Sheikh et al. (2006) 29 (512x786) 779 5 (5 or 4) DMOS Single Stimulus
TID2013 Ponomarenko et al. (2013, 2015) 25 (384x521) 3000 25 (5) MOS Pair-wise Comparison
KADID-10k Lin et al. (2019) 81 (512x512) 10125 25 (5) DMOS NA
CID:IQ Liu et al. (2014) 23 (800x800) 690 6 (5) MOS Double Stimulus
CSIQ Larson and Chandler (2010) 30 (384x521) 866 6 (5 or 4) DMOS Simultaneous Comparison
PIPAL Jinjin Gu (2020) 250 (288x288) 29000 40 (116) MOS NA

2.2.3 Performance measures

2.2.3.1 PLCC(Pearson Linear Correlation Coefficient)

Pearson’s Linear Correlation Coefficient (PLCC) is a statistical measure that
quantifies the linear relationship between two variables. In image quality assessment,
the PLCC is frequently employed to assess the similarity between subjective image
quality ratings and objective quality metrics Sheikh et al. (2006); Varga (2022).

To calculate the PLCC for image quality, a set of subjective ratings provided
by human observers and corresponding objective quality scores obtained from an
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image quality metric are typically required. The following steps outline the process
of calculating the PLCC:

Subjective rating collection: A dataset of images is gathered, and a group of
human observers subjectively rates the quality of each image using a numerical
scale, such as 1 to 5.

Objective quality scores computation: The same set of images is subjected to
an image quality metric, such as the Structural Similarity Index (SSIM), Peak
Signal-to-Noise Ratio (PSNR), or Mean Opinion Score (MOS), to obtain objective
quality scores.

The PLCC value ranges from -1 to 1. A value close to 1 indicates a strong
positive linear correlation, signifying that the objective quality scores align well with
the subjective ratings. Conversely, a value close to -1 suggests a strong negative
linear correlation, indicating a disagreement between the subjective and objective
measures. A PLCC value near 0 suggests a weak or no linear correlation Sheikh
et al. (2006); Varga (2022).

2.2.3.2 SROCC(Spearman Rank-Ordered Correlation Coeff-
cient)

The Spearman Rank-Ordered Correlation Coefficient (SROCC) is used to evaluate
the correlation or similarity between two sets of ranked data. In the realm of
image quality assessment, SROCC is frequently employed to assess the effectiveness
of objective image quality metrics Sheikh et al. (2006); Varga (2022). Objective
image quality metrics aim to automatically quantify the perceived quality of an
image, without relying on subjective human judgments. These metrics typically
compare the quality scores predicted by the metric with the subjective quality
ratings provided by human observers.

To calculate SROCC for image quality assessment, the following steps are
typically undertaken:

A dataset of images, along with their corresponding subjective quality ratings
provided by human observers, is collected. The objective image quality metric
is applied to the images in the dataset, and the predicted quality scores are
obtained. Both the subjective quality ratings and the predicted quality scores are
independently ranked.

The Spearman’s rank correlation coefficient is calculated between the two sets
of ranks. This coefficient measures the strength and direction of the monotonic
relationship between the subjective ratings and the predicted scores.

A strong positive correlation, indicated by a high positive SROCC value (close to
+1), suggests that the objective metric’s predictions align well with the subjective
ratings. Conversely, a strong negative correlation, indicated by a high negative
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SROCC value (close to -1), suggests an inverse relationship between the metric’s
predictions and the subjective ratings. A value close to 0 indicates a weak or no
correlation.

It is important to note that SROCC is just one of several statistical measures
used to evaluate the performance of image quality metrics. Other commonly
used measures include Pearson’s correlation coefficient (PCC) and Kendall’s rank
correlation coefficient (KROCC). These measures offer different perspectives on
the correlation between subjective and objective quality assessments Sheikh et al.
(2006); Varga (2022).

Overall, SROCC serves as a valuable tool for assessing the performance of ob-
jective image quality metrics, enabling researchers and practitioners to understand
how well these metrics align with human perception of image quality.

2.2.3.3 KROCC(Kendall Rank Order Correlation Coefficient)

The Kendall rank order correlation coefficient (KROCC) is a statistical measure
that is utilized to assess the strength and direction of the relationship between
two ranked variables. Its application is commonly observed in the evaluation of
agreement or similarity between two rankings or ordinal data sets Sheikh et al.
(2006); Varga (2022).

In the realm of image quality assessment, the correlation between subjective
rankings of image quality and objective quality metrics can be measured using
KROCC. Objective quality metrics are mathematical algorithms that aim to
quantify the perceived quality of an image automatically.

To calculate KROCC in the context of image quality assessment, the following
steps are typically followed:

A set of images is collected, and subjective rankings of their quality are obtained
from human observers. These rankings are usually acquired through subjective
experiments where participants rate or rank the images based on their perceived
quality.

Objective quality metrics are applied to the same set of images. These metrics
generate numerical scores that represent the objective quality of each image.

The images are ranked based on their objective quality scores.
The Kendall rank order correlation coefficient is calculated between subjective

and objective rankings. This calculation can be performed using statistical software
or programming languages that support statistical calculations Sheikh et al. (2006);
Varga (2022).
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2.2.3.4 RMSE(Root Mean Squared Error)

The difference between two images regarding image quality is commonly evaluated
using the Root Mean Squared Error (RMSE) metric. The average pixel-wise
difference between the predicted image and the ground truth image is measured by
RMSE Sheikh et al. (2006); MATLAB (2023a).

To calculate the RMSE between two images, the following steps can be followed:

• If the images are in color, both images should be converted to grayscale.
• If the images have different sizes, they should be resized to the same dimen-

sions.
• The pixel-wise difference between the corresponding pixels in the two images

should be computed.
• Each difference value should be squared.
• The mean of the squared differences should be calculated.
• The square root of the mean should be taken to obtain the RMSE value.

2.2.3.5 Alternative Performance Metrics forFR-IQA
• Mean Absolute Error (MAE): It measures the average absolute difference

between the predicted quality scores and the ground truth scores. It is
calculated by taking the absolute difference between each predicted and
ground truth score, and then averaging themSheikh et al. (2006); Varga
(2022); MATLAB (2023a).

• Mean Squared Error (MSE): It measures the average squared difference
between the predicted quality scores and the ground truth scores. It is
calculated by taking the squared difference between each predicted and
ground truth score, and then averaging themSheikh et al. (2006); MATLAB
(2023a).

2.2.3.6 IQ Metrics

• Structural Similarity Index (SSIM): It measures the similarity between two
images based on luminance, contrast, and structural information. SSIM
ranges from -1 to 1, with 1 indicating perfect similaritySheikh et al. (2006);
MATLAB (2023a).

• Peak Signal-to-Noise Ratio (PSNR): It measures the ratio between the maxi-
mum possible power of a signal and the power of corrupting noise. PSNR
is commonly used to evaluate image or video quality, with higher values
indicating better qualitySheikh et al. (2006); MATLAB (2023a).
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• Visual Information Fidelity (VIF): It measures the amount of visual infor-
mation preserved in the distorted image compared to the reference image.
VIF ranges from 0 to 1, with 1 indicating perfect fidelitySheikh et al. (2006);
MATLAB (2023a).

• Feature Similarity Index (FSIM): It measures the similarity between two
images based on luminance, contrast, and structural information. FSIM
ranges from 0 to 1, with 1 indicating perfect similaritySheikh et al. (2006);
MATLAB (2023a). These metrics provide different perspectives on image
quality assessment and can be used depending on the application’s specific
requirements.
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3 Methodology

This chapter provides a comprehensive overview of the methodology employed for
the thesis. In our pursuit to assess image quality using a Siamese Neural Network,
the methodology employed forms a critical part of our research. Here, we outline
various steps to design, develop, and evaluate our model.

Figure 3.1 presents a system for our proposed method, FR-IQA using Siamese
Neural Networks. The system consists of a Siamese network that learns a similarity
metric between pairs of images. We utilize existing Image Quality Metrics (IQM)
and databases such as LIVE Sheikh et al. (2006), TID2013 Ponomarenko et al.
(2013, 2015), KADID-10k Lin et al. (2019), and CID:IQ Liu et al. (2014) for
training and evaluation. The evaluation stage involves comparing the similarity
scores generated by the Siamese network with the quality scores in the databases
to predict the perceived quality of input images.

Figure 3.1: Block diagram of proposed method
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3.1 Problem Formulation
The primary aim of our study revolves around FR-IQA. FR-IQA means the original,
undistorted image is available for comparison, serving as the reference. The goal is
to assess the quality of a distorted image by comparing it with this reference image.

The problem we are addressing can be broken down into the following compo-
nents:

Image Distortion Various factors can lead to image distortions, such as noise,
compression, transmission errors, or blurring. Our goal is to evaluate the degree
of these distortions and measure the perceptual quality of the distorted image. A
’pristine’ or undistorted version of the image acts as a reference for comparison.
The key is quantifying deviations from this reference image’s distorted image.

Quality Assessment involves creating a quality score that accurately reflects
human perceptual judgment. The challenge here is to build a model that can
consistently predict how humans would rate the quality of the distorted image.

To tackle the above problem, we propose using a Siamese Neural Network.
Siamese Neural Networks are a class of neural network architectures that contain
two or more identical subnetworks. They are used to calculate the similarity
between inputs. In the context of FR-IQA, one subnetwork will intake the reference
image and the other the distorted image. The network is trained to minimize the
difference between the output of the reference image and the distorted image if they
are of the same identity (i.e., essentially the same image, barring the distortions)
and maximize the difference if they are not of the same identity.

The problem can thus be formulated as a supervised learning task, where the
goal is to learn a function that maps a pair of images to a quality score. The Siamese
network can be trained using a loss function, which penalizes large differences in
the output for similar images and small differences for dissimilar images.

In the following sections, we will delve into the design and development of the
Siamese Neural Network, the choice of loss functions, and the performance metrics
to evaluate the model’s efficacy.

3.2 Dataset Collection and Preprocessing

3.2.1 Image Dataset Selection
Selecting an appropriate image dataset is a fundamental part of our methodology.
Given the nature of Full Reference Image Quality Assessment (FR-IQA), the
dataset must contain pairs of reference and distorted images along with human-
rated subjective quality scores for these images. These scores serve as the ground
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truth during the training phase.
A commonly used dataset for FR-IQA tasks is the LIVE Sheikh et al. (2006), IQA

Database. The LIVE IQA dataset provides a rich variety of distortions, including
JPEG and JPEG2000 compression, additive white Gaussian noise, Gaussian blur,
and transmission errors, all common in real-world applications. It also provides
subjective quality scores for these images obtained through human studies. Another
notable dataset is the TID2013 Ponomarenko et al. (2013, 2015) dataset, which
offers a broader variety of distortions and is more challenging due to the diversity
of reference images and distortions.

The KADID-10K Lin et al. (2019) dataset is widely used for FR-IQA research.
It comprises 10,125 distorted images with various types and severities of distortions,
such as compression artifacts, noise, and blur. Each image is associated with a
subjective quality score. This dataset provides a diverse and challenging set of
images for training and evaluating FR-IQA algorithms, and it has been used in
many studies to develop and benchmark state-of-the-art algorithms.

We used the KADID-10k Lin et al. (2019) dataset to train and evaluate our
proposed architecture. To be more specific, this dataset was randomly split into
three distinct sets: a training set (60%), a validation set (20%), and a test set (20%),
all based on the pristine images. Consequently, there was no overlap in content
between these sets. Figure 3.2 illustrates resference images from KADID-10K Lin
et al. (2019) dataset.

All the models and loss functions were implemented using MATLAB Deep
Learning Toolbox MATLAB (2023d). The MATLAB Deep Learning Toolbox
is powerful for developing and implementing deep learning models. It supports
popular frameworks like TensorFlow, Keras, and PyTorch MATLAB (2023c). It
offers prebuilt neural network architectures, training and optimization functions,
data preprocessing tools, visualization and interpretation functions, deployment
options, and seamless integration with other MATLAB toolboxes. It simplifies
the process of building and training models, making it accessible to beginners and
experienced researchers.

3.2.2 Image Preprocessing Techniques

Before the data is fed into the Siamese Neural Network, it is crucial to preprocess
the images to ensure optimal model performance. Some of the preprocessing steps
include:
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Figure 3.2: Image samples from KADID-10k dataset. [Image credit: Lin et al.
(2019)]

3.2.2.1 Resizing

All the images in the dataset are resized to a standard size to maintain consistency.
This is essential as neural networks require input data of a fixed size.

3.2.2.2 Normalization

The image’s pixel intensities are often normalized to fall within a specific range,
usually 0-1. This step helps speed up the learning process and improve the model’s
performance by ensuring all input features (pixel intensities) have similar scales.

3.2.2.3 Augmentation

Data augmentation techniques such as rotation, flipping, scaling, or adding noise
can be used to increase the dataset size artificially. This helps improve the model’s
generalization capability by providing more varied examples during training.

3.2.2.4 Pairwise preparation

Given the nature of Siamese Networks, the data must be prepared in pairs. Each
pair contains a reference image and a distorted version of the same image. These
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pre-processing steps play a crucial role in determining the performance of the model
and can be adjusted based on the specific requirements of the task at hand.

ImageDatastore MATLAB (2023a) is a MATLAB feature that simplifies man-
aging and processing large image collections by efficiently storing image data,
supporting various file formats, providing automatic transformations, customizable
read options, and seamless integration with other MATLAB functions and tool-
boxes. It also supports labeling, making tasks like image classification or object
detection convenient.

3.3 Siamese Network Architecture Design

3.3.1 Network Components
A typical Siamese Network Architecture for Full Reference Image Quality As-
sessment consists of two identical sub-networks, each taking one image of the
pair (reference and distorted) as input. Each sub-network usually consists of the
following components:

• Convolutional Layers: These are the primary building blocks of our Siamese
Network, aimed at learning spatial hierarchies from the images. They can
capture complex patterns, shapes, and structures in the image data that can
differentiate between good and poor quality images.

• Pooling Layers: Positioned between the convolutional layers, these layers
are employed to reduce the spatial dimensions of the output volume, which
in turn reduces computational complexity and helps the network generalize
better.

• Activation Functions: The Rectified Linear Unit (ReLU) is commonly used
as the activation function in the convolutional layers due to its efficiency and
ability to mitigate the vanishing gradient problem.

• Fully Connected Layers: These layers come after several convolutional and
pooling layers and are used to perform high-level reasoning on the extracted
features. They can help draw complex inferences about the data.

• Output Layer: Each sub-network’s output layer produces a feature vector
representing the input image’s features.
The final stage of the Siamese Network involves a distance metric or a learned
function that takes as input the two feature vectors and outputs a quality
score representing the perceived image quality.
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3.3.2 Proposed Architecture Details
In our FR-IQA task, we begin by employing a basic Siamese neural network (SNN)
in MATLAB.

The Siamese Network architecture consists of several layers that process the
input images. The feature extraction part of the Siamese Network is defined by
a set of layers. It comprises convolutional layers, activation layers (ReLU), and
max pooling layers. The input size of the images (128x128x1) is specified by the
imageInputLayer, which also disables normalization. The subsequent layers perform
feature extraction through the application of convolutions, ReLU activations, and
max pooling operations. Finally, a fully connected layer with 4096 neurons is
included.

The second branch of the Siamese Network is defined by a set of layers, which
is identical to the first branch. It follows a similar structure as the first set of
layers but with different filter sizes and additional dropout and batch normalization
layers.

Figure 3.3: Block diagram of the proposed FR-IQA with Siamese network

To combine the two branches of the Siamese Network, the layers from the
second set can be added to the existing layers from the first set using the addLayers
function. The outputs of the two branches are combined using the additionLayer,
and the final regression task is accomplished by adding the fullyConnectedLayer and
regressionLayer. A loss function assesses the predicted image scores and improves
the proposed model.

Figure 3.4 shows the proposed FR-IQA system, which uses a Siamese network
architecture. This architecture comprises three main components: a multi-level
feature fusion module, a weight-sharing Siamese Network, and a regression head.
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Firstly, we use a Siamese network that incorporates CDC (central difference
convolution) Cong et al. (2022) and spatial attention to process both the reference
image and the deformed image. The Siamese network is made up of multiple blocks,
and the features obtained from each block are down-sampled to the same size to
ensure consistency.

Secondly, we introduce a multi-level feature fusion module. This module
combines features at the same level by concatenating them and then fuses features
from different levels. This fusion process helps enhance the image representation
and improve the quality assessment.

Finally, to obtain the desired quality scores, we employ a fully connected layer
as a regression head at the end of the process. This regression head uses fused
features to predict the quality scores of the images.

Overall, the proposed FR-IQA system utilizes a Siamese network architecture
with a multi-level feature fusion module and a regression head to assess the quality
of images accurately.

Block 1 and Block 2 have identical layers but differ in the size of their attention
modules. Block 1, which uses a 7x7 convolution kernel, focuses on extracting
low-level features. On the other hand, Block 2, which employs a 3x3 convolution
kernel, is designed to extract high-level features.

In Fig. 3.4, the letter "C" represents concatenation, and "CDC 64" indicates
that there are a total of 64 output channels. The final features are flattened into a
vector with a length of 1296 to calculate a quality score. Then, a fully connected
layer called "FC1296" is added. It’s worth noting that crossing the red line signifies
transitioning to the next block while crossing the golden line indicates moving to
the multi-level feature fusion structure.

3.3.3 Training Strategy

The training strategy for the Siamese Network involves the use of a suitable loss
function and an optimizer.

• Loss Function: The loss function utilized in our study, as described in the
literature Cong et al. (2022), serves as a means to assess and optimize the
model under consideration. To align the predicted scores with the subjective
evaluation scores provided, the IQ evaluation scores are normalized.
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Figure 3.4: Model Architecture of the proposed FR-IQA with Siamese network
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where M and M̂ are the subjective evaluation scores and predicted quality
scores, respectively. q ≥ 1 is a hyperparameter, here, we set q as 2.Ŝ and
S are the normalized predicted quality scores and the normalized subjected
evaluation scores, respectively. The mean square error (MSE) is appiled and
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the function is defined as

Lpair (M, M̂) = MSE
(
Ŝi − Si

)
.

Additional, we apply Softmax regression for another set of normalized quality
scores ( W and Ŵ ), given by

Ŵi =
exp M̂i∑N
i=1 exp M̂i

(i = 1, · · · , N),

Wi =
expMi∑N
i=1 expMi

(i = 1, · · · , N).

The KL divergence | between M and M̂ is calculated by

Llist = DKL(M, M̂) =
N∑
i=1

Ŵi × log
Ŵi

Wi

.

The total loss function can be defined as

L(M, M̂) = αLpair (M, M̂) + βLlist (M, M̂),

where α and β are both hyper-parameter. Here, α = 0.1 and β = 0.1.

• Optimizer: Optimizers reduce losses by changing the neural network’s weights
and learning rate. The choice of optimizer can vary, but Stochastic Gra-
dient Descent (SGD) or Adam are commonly used due to their efficiency
in managing large datasets and converging on the optimal weights for the
network. The learning rate and other hyperparameters can be tuned based on
the specifics of the task. Adam (derived from adaptive moment estimation)
Kingma and Ba (2014) employs RMSProp-like parameter updating with a
momentum term

The InitialLearnRate training option can be used to specify the learning
rate a for all optimization algorithms. The effect of the learning rate differs
for different optimization algorithms, so the optimal learning rates are also
generally different. Specifying learning rates that differ by layer and parameter
is also possible. For more information, please see the section on setting up
parameters in Convolutional and Fully Connected Layers Kingma and Ba
(2014).

• Regularization Techniques: Overfitting is a common problem in machine
learning, where a model performs well on training data but poorly on unseen
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data. To prevent overfitting, regularization techniques are used in the training
of Siamese Networks.

One common method is dropout Srivastava et al. (2014), where random
neurons are ’dropped out’ or temporarily deactivated during training, which
helps to prevent the model from becoming too dependent on any single
neuron. To prevent overfitting in the given layers, dropout regularization
can be applied by adding dropout layers after the fully connected layers. A
dropout layer with a dropout rate of 0.5 (50%) is added after the first fully
connected layer. The dropout rate can be adjusted to find the right balance
between preventing overfitting and maintaining model performance.

3.4 Training Process

3.4.1 Hyperparameter Selection and Tuning

3.4.1.1 Hyperparameters Selected for the Network

Hyperparameters are the variables that govern the training process and the structure
of a machine-learning model. For Siamese Networks, common hyperparameters
include:

• Learning Rate: The learning rate controls the size of the updates to the
model’s weights during training. The learningRate is 1e-5 for our model.

• Mini batch Size: The choice of minibatch size depends on various factors,
including the available computational resources, the size of the dataset, and
the specific IQA algorithm or model being used. We used minibatch size of
128.

• Number of iteration: An "iteration" refers to a single update of the model’s
parameters using a batch of training data. In each iteration, the model
processes a subset of the training data, calculates the loss, and updates the
parameters based on the loss gradient. The number of iterations is determined
by the size of the training dataset and the batch size used during training.
We used 10k numIterations MATLAB (2023b).

3.5 Model Evaluation and Validation
• Metrics Used to Evaluate the Model:
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Objective IQA measures evaluate how well the predicted scores align with
the actual scores. These scores serve as a basis for assessing the quality
of images. In the majority of articles, you will find three commonly used
correlation coefficients: Pearson’s rank order correlation coefficient (PLCC),
Spearman’s rank order correlation coefficient (SROCC), and Kendall’s rank
order correlation coefficient (KROCC). PLCC is particularly useful when there
is a linear relationship between the variables being compared. It quantifies
the strength of this linear relationship. However, if the relationship between
the variables is not linear, PLCC may not accurately capture the strength
of the link. This is because PLCC does not consider nonlinear relationships,
limiting its effectiveness in such cases Sheikh et al. (2006); Varga (2022).

To address this limitation, both SROCC and KROCC are provided in the
relevant literature. SROCC serves as the nonparametric counterpart to PLCC.
It analyzes the strength of a monotonic relationship between the variables,
which means it assesses whether the relationship consistently increases or
decreases without necessarily being linear. Additionally, SROCC determines
the direction of this monotonic relationship Sheikh et al. (2006).

It’s important to note that the assumptions for a monotonic relationship
are less restrictive than those for a linear relationship. In a monotonic
relationship, the variables may not change at a constant rate, but the overall
trend is consistently increasing or decreasing. In contrast to PLCC and
SROCC, KROCC takes pairs of observations into account. It assesses the
strength of the link based on the concordance (agreement) and discordance
(disagreement) between these pairs of observations. By considering the
agreement and disagreement between pairs, KROCC provides a different
perspective on the relationship between the variables Zhang et al. (2012);
Varga (2022).

In summary, while PLCC is suitable for linear relationships, SROCC and
KROCC offer alternative approaches for assessing the strength and direction
of relationships, especially when the relationships are nonlinear or when pairs
of observations are involved.

• Model Validation: Model validation is an essential step in assessing the
performance of a machine learning model. It involves testing the model on
a separate set of data that was not used during training. This allows us to
evaluate how well the model can handle new, unseen data, which is crucial
for its effectiveness.

In our case, we utilized the KADID-10k dataset, as described in the study by
Lin et al. (2019), to both train and evaluate our proposed architecture. To
ensure a fair evaluation, we divided this dataset into three distinct sets: a
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training set comprising 60% of the data, a validation set comprising 20%, and
a test set also comprising 20%. Importantly, these sets were created in such a
way that there was no overlap in the content of the pristine images between
them. This ensures that the model’s performance is assessed on diverse and
independent data samples.
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sis

In this chapter, we will explore experimental results and analysis of the proposed FR-
IQA. We will cover important aspects of evaluating and comparing IQA techniques.
First, we will talk about the evaluation metrics used to measure the performance
of these techniques. Then, we will discuss the experimental setup, including
the methods and tools used in our experiments. Additionally, we will compare
traditional IQA techniques with the newer Deep Learning IQA techniques. This
comparison will help us understand the advancements and potential of deep learning
in image quality assessment.

4.1 Evaluation Metrics
Different statistical measures are often used to evaluate how well the predicted
scores from a Full-Reference IQA (FR-IQA) metric match up with the actual
quality scores in an Image Quality Assessment (IQA) benchmark database. These
measures include Pearson’s linear correlation coefficient (PLCC), Spearman’s rank-
order correlation coefficient (SROCC), Kendall’s rank order correlation coefficient
(KROCC), and mean square error (MSE) Sheikh et al. (2006); Varga (2020);
Ayyoubzadeh and Royat (2021); Liu et al. (2019); Cong et al. (2022).

PLCC is useful when there is a linear relationship between the variables being
compared. It quantifies the strength of this linear relationship. However, PLCC
may not accurately capture the strength of the link if the relationship between
the variables is not linear. This limitation led to the development of SROCC and
KROCC. SROCC serves as the nonparametric counterpart to PLCC. It assesses
the strength of a monotonic relationship between the variables, which means it
evaluates whether the relationship consistently increases or decreases without
necessarily being linear. SROCC also determines the direction of this monotonic
relationship. The assumptions for a monotonic relationship are less restrictive than
those for a linear relationship. KROCC takes pairs of observations into account
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and assesses the strength of the link based on the concordance (agreement) and
discordance (disagreement) between these pairs. By considering the agreement
and disagreement between pairs, KROCC provides a different perspective on the
relationship between the variables Cong et al. (2022); Sheikh et al. (2006); Varga
(2020); Ayyoubzadeh and Royat (2021); Liu et al. (2019).

4.2 Experimental Setup
The KADID-10k dataset, described in the study by Lin et al. (2019), was used
in our research to train and evaluate our proposed architecture. To ensure a fair
evaluation, we divided this dataset into three separate sets: a training set containing
60% of the data, a validation set containing 20%, and a test set also containing
20%. It is worth noting that these sets were carefully created to ensure that there
was no overlap in the content of the pristine images between them. This approach
guarantees that the model’s performance is assessed using diverse and independent
data samples.

We utilized an Intel Core i7 processor, along with 32GB of RAM and a NVIDIA
GeForce GTX 1660Ti graphics card boasting 6GB of memory. All the models
and loss functions were implemented using the deep learning toolbox available
in MATLAB MATLAB (2023c). This toolbox provides advanced functionalities
and tools for developing and training deep learning models. The toolbox offers
a comprehensive set of functions for tasks such as data preprocessing, network
architecture design, training, and evaluation.

4.3 Performance Comparison with Baseline
Methods

This table presents correlation scores among various state-of-the-art metrics. The
metrics are evaluated using different algorithms and compared using three correla-
tion measures: PLCC, SROCC, and KROCC.

The table provides a comparison of the correlation scores for each metric-
algorithm combination. Higher correlation scores indicate a stronger relationship
between the metric and the algorithm’s performance.

In the SSIM, the PLCC, SROCC, and KROCC scores are 0.579, 0.671, and
0.489, respectively. This suggests that the SSIM metric, evaluated using the
algorithm described in the reference Wang et al. (2004), has moderate positive
correlations with the performance measures. Similarly, the table shows correlation
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scores for other metrics and algorithms, including Mean Structural Similarity (MS-
SSIM) Wang et al. (2003), Mean Deviation Similarity Index (MDSI) Nafchi et al.
(2016).

The Siamese network presented in Fig 3.3 was modified by adding AlexNet
Krizhevsky et al. (2012), VGG16 Simonyan and Zisserman (2014), MobileNet V2
Sandler et al. (2018) as a predefined network. AlexNet Krizhevsky et al. (2012),
VGG16 Simonyan and Zisserman (2014), MobileNet_V2 Sandler et al. (2018) as the
subnetworks in our Siamese code, we replaced the existing feature extraction layers
with the corresponding layers from these networks. These networks are commonly
available in deep learning frameworks such as TensorFlow or PyTorch, making
it easier to integrate them into the code. The pretrained AlexNet, VGG16, or
MobileNet V2 model can be loaded using the appropriate deep-learning framework
in MATLAB. The fully connected layers should be removed from the loaded model,
as they are typically used for classification tasks and are not necessary for FR-IQA.
The remaining layers can be used as the feature extraction layers in your Siamese
network. The reference and distorted images can be passed through the Siamese
network to obtain their respective feature representations.

The PLCC values between Siam+AlexNet, Siam+MobileNet V2, Siam+VGG16
(0.663, 0.716, 0.707) are shown in the Table 4.1. Based on this comparison, it is
evident that our approach achieves the highest (0.781) PLCC values.
The SROCC values between Siam+AlexNet, Siam+MobileNet V2, Siam+VGG16
(0.659, 0.727, 0.679) are shown in the Table 4.1. Based on this comparison, it is
evident that our approach achieves the highest (0.823) SROCC values.
The KROCC values between Siam+AlexNet, Siam+MobileNet V2, Siam+VGG16
(0.529, 0.683, 0.624) are shown in the Table 4.1. Based on this comparison, it is
evident that our approach achieves the highest (0.804) KROCC values.

In summary, when comparing the performance of these three approaches, our
proposed method consistently achieves the highest correlation values across all
three metrics: PLCC, SROCC, and KROCC.

When discussing the reasons behind the subpar performance of our proposed
FR-IQA model using a Siamese Network, there are several factors to consider. Let
us collectively examine these hypotheses.

Firstly, Siamese networks thrive on a large and diverse training dataset to learn
meaningful representations. We only used KADID-10k dataset Lin et al. (2019)
which is small or lacks diversity, the network may struggle to generalize effectively
to new images. This could be one reason for the model’s underperformance.

Secondly, the architecture we provided consists of convolutional and fully
connected layers. However, it’s possible that the network architecture is not deep or
complex enough to capture the necessary features for accurate quality assessment.
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Table 4.1: Analyzing Correlation Scores among State-of-the-Art Metrics using
KADID-10K Lin et al. (2019)

PLCC SROCC KROCC
SSIM Wang et al. (2004) 0.579 0.671 0.489
MS-SSIM Wang et al. (2003) 0.625 0.712 0.534
MDSI Nafchi et al. (2016) -0.844 -0.885 -0.701
Siam+AlexNet 0.663 0.659 0.529
Siam+MobileNet_V2 0.716 0.727 0.683
Siam+VGG16 0.707 0.679 0.624
Ours 0.781 0.823 0.804

Figure 4.1: Comparison of Predicted Scores and MOS Values through Scatter
Plot

To address this, we can consider experimenting with different architectures or
increasing the depth and complexity of the current network.

Additionally, hyperparameters play a crucial role in the network’s performance.
Parameters such as learning rate, weight decay, and dropout rate can significantly
impact the model’s effectiveness. It’s important to carefully tune these hyperpa-
rameters to find the optimal values for the specific task at hand. We may need to
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experiment with different values to improve the model’s performance.
Lastly, preprocessing techniques can also contribute to enhancing the network’s

performance. Applying data normalization, augmentation, or resizing can help the
network learn relevant features more effectively. It’s essential to ensure that the
data is properly preprocessed and augmented to maximize the network’s ability to
assess image quality accurately.

By considering these factors and exploring potential solutions, we can work
towards improving the performance of our FR-IQA model using a Siamese Network.
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5 Discussions and Limitations

5.1 Limitations of the Proposed Method
Several limitations exist in the proposed FR-IQA using a Siamese Network. Here
are some of them:

• Computational limitations: In our proposed method, we acknowledge
that computation resources can be a limitation when using Siamese networks.
Siamese networks can be computationally expensive, especially with large-
scale datasets or high-resolution images. The training and evaluation processes
often require substantial computational resources, including memory and
processing power. Considering these limitations when implementing Siamese
networks in practical applications is important to ensure that the available
resources can effectively handle computational demands.

• Lack of dataset: The performance of the proposed method heavily relies
on the availability and quality of the dataset used for training. If the dataset
is limited in size or lacks diversity, the network may not generalize well to
unseen images, resulting in reduced prediction accuracy.

• Cross-validation dataset: Obtaining a suitable cross-validation dataset can
pose challenges for the proposed method, especially when the available dataset
is small or needs representative samples. Cross-validation is an essential
technique for evaluating the performance of machine learning models.

• Improving result/prediction accuracy: Although the proposed method
may yield reasonable results, there is always room for improvement in pre-
diction accuracy. Enhancing the accuracy of the predictions could involve
fine-tuning the network architecture, optimizing hyperparameters, or explor-
ing advanced training techniques such as data augmentation and transfer
learning.

To address these limitations, the following ideas can be considered:
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• Computational optimization: Techniques like model compression, quanti-
zation, or distributed training can be explored to reduce the computational
requirements of the Siamese network. This would make training and evaluat-
ing the network on resource-constrained systems more feasible.

• Transfer learning: Leveraging pre-trained models on large-scale image
datasets, such as ImageNet Deng et al. (2009), and fine-tuning them for
the task of image quality assessment can potentially enhance the prediction
accuracy of the Siamese network Iman et al. (2023).

By implementing these ideas, the proposed method can overcome some limita-
tions and achieve better performance in Full Reference Image Quality Assessment.

5.2 Future Directions and Improvements
This work has the potential to expand into the following techniques in the future:

• Comparison to more IQMs: It would be highly beneficial to conduct a
comparative analysis between our Siamese Network approach and the existing
IQMs. Such an evaluation would offer a comprehensive assessment of our
method and contribute to establishing its efficacy in comparison to other
cutting-edge techniques.

• Cross-dataset validation: Explore the performance of Siamese Networks
for IQA across different datasets to assess their generalizability and robustness.
This would involve training the network on one dataset and evaluating it on
another, ensuring that the model can effectively handle image characteristics
and quality variations Ahmed et al. (2022); Yang et al. (2022); Cong et al.
(2022); Varga (2022); Ayyoubzadeh and Royat (2021).

• Using patches of the images: Investigate the effectiveness of using image
patches instead of full images for IQA. This approach can provide a more
fine-grained quality assessment by analyzing local regions within an image,
allowing for better detection of specific distortions or artifacts Yang et al.
(2022); Cong et al. (2022); Varga (2022); Ayyoubzadeh and Royat (2021).

• Ensembling different Siamese Networks: Combine multiple Siamese
Networks with different architectures or training strategies to create an
ensemble model. This ensemble approach could improve the overall IQA
performance by leveraging the strengths of each network Nanni et al. (2021).
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• Siamese Network with Transformer: Explore the integration of Trans-
former models into Siamese Networks for IQA Tang et al. (2023). Transformers
have shown great success in various computer vision tasks, and their atten-
tion mechanisms can capture long-range dependencies in images, potentially
enhancing the performance of Siamese Networks for IQA.

• Multi-Resolution Siamese Networks: Develop Siamese Networks that
can handle images at multiple resolutions. This approach can account for
the importance of different image regions at different resolutions, allowing for
more accurate and comprehensive quality assessment Yin et al. (2023).

• Combining Multiple Quality Metrics: Investigate the fusion of multi-
ple quality metrics within Siamese Networks. The network can capture a
broader range of image quality aspects by combining different metrics such
as structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and
perceptual metrics like deep features.

• Explainable Quality Assessment: Enhance the interpretability of Siamese
Networks for IQA by incorporating explainability techniques. This would
involve developing methods to visualize and understand the network’s decision-
making process, providing insights into the specific image regions or features
contributing to the quality assessment Jalaboi et al. (2023).

• Cross-Modality IQA: Extend Siamese Networks to handle cross-modality
IQA, where the reference and distorted images belong to different modalities
(e.g., images and videos, images and 3D models). This would require adapting
the Siamese Network architecture to compare and assess quality across
different modalities effectively.

• Consider computational complexity, generalizability, interpretabil-
ity, and scalability: The challenges related to computational complexity
should be addressed, ensuring that the Siamese Network models are efficient
and scalable. Furthermore, attention should be given to improving generaliz-
ability across diverse datasets, enhancing the interpretability of the network’s
decisions, and ensuring scalability to handle large-scale IQA tasks.

• User-Centric Quality Assessment: Incorporate user-centric factors into
Siamese Networks for IQA. This could involve integrating user feedback or
preferences during training to create personalized quality assessment models
that align with individual user preferences and expectations.
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6 Conclusion

Image Quality Assessment (IQA) is crucial in various image processing applications.
While traditional subjective metrics have limitations in terms of consistency and
subjectivity, objective IQA techniques have been developed to address these issues.
These techniques aim to replicate the functioning of the Human Visual System
(HVS) through computational models. However, there is still a gap between the
performance of current IQA models and human judgment Niu et al. (2019); Bosse
et al. (2017).

Existing FR-IQA models face challenges in capturing high-level semantic features
and effectively handling complex, nonlinear distortions. Deep learning methods,
particularly Convolutional Neural Networks (CNNs), have shown promising results
in improving IQA performance. Siamese Neural Networks, known for their ability
to compare and contrast features between pairs of inputs, offer a potential avenue
for enhancing FR-IQA Gao et al. (2017).

This research aims to investigate the use of Siamese Neural Networks in FR-IQA
and create a model that is both efficient and precise. The goal is to overcome
the difficulties associated with capturing intricate and nonlinear distortions and
accurately evaluate the perceived quality of images, aligning with human judgment.

6.1 Summary of Contributions
In summary, I would like to highlight the contributions as follows:

• Proposed and developed a Siamese Neural Network-based FR-IQA model:
This model represents an advancement in image quality assessment by lever-
aging the power of Siamese Neural Networks. It offers a new approach to
measuring and evaluating image quality accurately.

• Conducted extensive evaluation and comparison: The proposed FR-IQA
model was thoroughly evaluated and compared against existing techniques.
This evaluation provides valuable insights into the strengths and weaknesses
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of different approaches, highlighting the effectiveness and superiority of the
Siamese Neural Network-based model.

• Explored the application of Siamese Neural Networks in image quality assess-
ment: Through a comprehensive study, we have investigated the potential
of Siamese Neural Networks in image quality assessment. This exploration
sheds light on the capabilities and limitations of this approach, contributing
to the overall understanding of image quality assessment techniques.

• Demonstrated the fine-tuning of Siamese Neural Networks for enhanced
FR-IQA performance: By fine-tuning the Siamese Neural Network-based
model, its adaptability and potential are shown for further improvement.
This insight opens possibilities for future research and development in image
quality assessment.

Overall, significant contributions have been made by introducing an FR-IQA
model, evaluating its performance, exploring its application in image quality
assessment, and providing insights on fine-tuning.

6.2 Revisiting Research Objectives
The application and effectiveness of Siamese Neural Networks for FR-IQA were
explored. A Siamese Neural Network-based FR-IQA model was developed to reflect
human judgment of image quality. The proposed model’s performance was assessed
against existing FR-IQA techniques using a standard IQA database. Additionally,
the unique properties of the Siamese Neural Network were investigated to leverage
their potential for improving FR-IQA performance.
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