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Abstract
HyperSpectral Imaging (HSI) is a vital tool to many industries and fields. It is

however financially expensive, time consuming, and in need of dedicated hardware.
Lots of research was dedicated to find alternatives to traditional HSI systems. One
of the most promising ones is RGB to Hyperspectral reconstruction. These models
are usually CNNs that take in a single RGB image and estimate the hyperspectral
image for the same scene (in the visible range). Such models can dramatically cut
on costs and time needed to acquire a hyperspectral image given the availability
and ease of acquiring RGB images.

However, to fully adopt such models, we need to establish trust in them (or
distrust). To do that, we need to understand and explain how these models work on
a fundamental level at least. This is especially the case because these models deal
with a highly ill-posed problem of mapping only 3 RGB bands into a much larger
number of bands (typically 31) to perform this estimation. Users do not have any
evidence of how these models actually do that and how they are able to estimate
the illuminant of the scene to avoid metameric effects and how they perform the
’one-to-many’ mapping involved. In this thesis, we work on filling this major gap.
We take 7 of the most prominent RGB to hyperspectral reconstruction models and
apply many explainable AI (XAI) methods to try to understand how they work. We
classify these models based on the different ways they perform the reconstruction.
We establish points of failure where some or all models cannot perform as expected.
We establish their spatial feature area in the input image. We try to find what
kind of parameters and features they use and where in the network they use them.
We present a theory on how they do illuminant estimation and present supporting
evidences for that theory. Finally, we bring all tests together and try to break
down these models into more simple sub-models that could be replicated by simpler
explainable equivalents. We also introduce novel modifications to existing XAI
methods that allows them to be used in any hyperspectral model explainability
project in the future.

The outcomes of this work support that these models work in an intelligible
manner. Meaning that they could be understood and equated by other explainable
models. However, these models cannot be trusted all the time, since the work
shows that they fail consistently under certain conditions. This work does not fully
explain these models since some aspects are still unclear, but it does explain many
important parts and paves the way for a clearer understanding of these networks.
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1 Introduction

HyperSpectral imaging (HSI) is a widely used technology in most applications
and industries today. It proved to be highly effective in distinguishing various
materials and components in a scene. Those components would have otherwise
been very difficult to distinguish in a regular RGB image since the hyperspectral
image provides a larger number of bands each with certain characteristics and at
which only certain elements and compositions are absorbed. Applications of HSI
spread to a large variety of fields including earth observation Patro et al. (2021);
Mücke et al. (2019), food and agriculture Elmasry et al. (2012); Dale et al. (2013),
medical applications Lu and Fei (2014); Calin et al. (2014); Fei (2019), anomaly
detection Kang et al. (2017), tracking Van Nguyen et al. (2010), cultural heritage
Picollo et al. (2020); Cucci et al. (2016), and many more.

All of these applications rely on HSI to produce accurate images of specific
bands. When it comes to medical applications for example, having accurate images
is vital to avoid mistakes in diagnosis or surgery planning. Accuracy here means
having as close a representation of the spectra of imaged materials as possible, with
as fine spectral and spatial resolution as possible. The same applies to all other
fields with multiple levels of accuracy requirements.

Sometimes authors are not clear about their definition of HSI and the difference
between it and multi-spectral imaging for example. So, for us to be clear from the
start we adopt the definition provided by Christophe et al. (2005) who defined a
benchmark for HSI. So, what characterizes an HSI system here is that it has a large
number of bands (typically in the range from tens to hundreds of bands and larger
than multi-spectral). Also, the width of these bands is narrow (between 10 to 20
nm) and that these bands have to be contiguous (touching or overlapping). These
are the main distinctions between it and multi-spectral imaging. Figure 1.1 shows
that difference visually. We also clarify here that the bands are within the visible
range (400 - 700 nm) with a typical number of bands mostly used in literature =
31 bands. We will discuss this further in a later section.

However, a severe limitation of HSI is the expensive and time consuming
requirements of its cameras. HSI cameras use diffracting elements and many other
optical instrumentation that raise the price of a typical HSI camera to a level
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Figure 1.1: Difference between RGB, multi-spectral imaging, and hyperspectral
imaging Ozbulak (2019).

where only professional industries can afford it. The price of an HSI camera varies
significantly depending on the specification, but it is usually in the range of tens
of thousands (USD) Salazar-Vazquez and Mendez-Vazquez (2020) which makes it
expensive to applications with low cost requirements. Also, most available cameras
require a high level of expertise or training to use them. All of that limits the
availability of HSI and consequently limits the applications HSI can be used for.

Many works were dedicated to tackle this issue. Some would introduce low cost
HSI systems that include certain compromises where performance is reduced in
favor of the lower cost Stuart et al. (2021); Salazar-Vazquez and Mendez-Vazquez
(2020). Other systems use alternative technologies that have a reduced price like
snapshot compressive imaging (SCI) Wagadarikar et al. (2008). We will discuss
this technology further in the literature review.

Of the most important and effective ways to deal with this issue is hyperspectral
reconstruction from RGB images Chakrabarti and Zickler (2011). This is because
RGB images are readily available and easy to acquire since they can be captured
by virtually anyone with an RGB camera. If this method can be properly validated
and accepted, it could even let go of the need of expensive HSI cameras and open
the door for many more industries to use the full potential of this technology.

However, the problem of building a spectra (of typically 31 bands) from the
3 RGB bands is severely ill-posed. A large amount of information is lost when
the full spectrum is sampled at only 3 bands, and that information is needed to
reconstruct the spectra back again in this process. So, there is a need for learning
an inverse function which might require extra information that would help the
algorithm to do the main tasks of reconstruction. To perform reconstruction from
RGB, the model needs to perform at least 2 main tasks Zhang et al. (2022):

The first is removing the effect of the illuminant, or equivalently, learning the
illuminant. This is because RGB images naturally include the illuminant in their
data, which heavily effects the RGB value. This illuminant has to be estimated so
it can be discarded if we need to gain a true reflectance spectra of the material we
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are imaging. Even if we only require the radiance spectra, the illuminant still has
to be estimated to differentiate its effect from the effect of materials in the image
and to be able to reconstruct these materials’ spectra.

The second is up-sampling, or more precisely, the process of shaping the material
spectra (distributed over 31 bands) from the 3 RGB bands. This involves a highly
ill-posed interpolation where the shape of the spectra needs to be deduced from
the 3 RGB values.

There are currently a significant number of models that achieve the RGB to
hyperspectral reconstruction task. Most of these (and the best performing ones) are
convolutional neural networks Arad et al. (2022). So, the natural question is can
we trust these models to actually replace current HSI systems and hardware? This
question is especially difficult since CNNs are black boxes. We do not understand
how these models work, except for some minor details and features Li et al. (2020).
As for the main tasks mentioned above, we do not know what is the ’workflow’
within the network that performs these tasks. We do not even know what kind of
parameters and features from the RGB image the networks use in the reconstruction.

This prevents us from trusting these models and from fully depending on them,
since we cannot be sure they would work in all applications. We cannot know
if they would work on another dataset or in other circumstances. We only have
performance metrics (will be discussed later) to evaluate them. These metrics
however do not provide any reliability evaluation that guarantees they would work
on other conditions. To do that, we need to explain/understand these models and
rationalize their workflow and the features they depend on. Then we can be closer
to establishing trust in these models.

As we will see in the next chapter, there was never any work that explains
CNN hyperspectral reconstruction models in general, and RGB to hyperspectral
models specifically. In fact, there is barely any work on explaining CNNs that are
not specialized in classification. This thesis is the first to work on this important
issue and the first to address this large research gap. To do that, we use multiple
explainable AI (XAI) methods and present new ones to study and explain these
models. We also try to classify them based on the results we achieve and break
them down into more explainable workflows.

This report will first give an overview of both RGB to hyperspectral models as
well as explainable AI and how it can be used for our purpose in the ’Literature
Review and Background’ chapter. During that chapter we also establish the research
question further since we first need to understand the concept of explainability in
deeper detail and find where our research fits exactly. After that we go through our
explainability methods and tests in the ’Methodology and Results’ chapter. We
combine both methodology and results for each test or method since we need the
results of each test to justify using the other and keep track of the context since
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Chapter 1 INTRODUCTION

this is mostly an investigative research. Finally, in the ’Discussion’ chapter, we
discuss the results in a general perspective and combine them together to have a
bigger picture. We also present there our conclusion and possible future work.

Disclaimer : No software tool (like ChatGPT or Grammarly) was used in writing
this report (even grammatical correction tools were not used). The use of ChatGPT
was restricted to only making very limited miscellaneous programming functions
(not the main parts of the code).

1.1 Contributions
The main contributions of this thesis can be summarized as follows:

• Establishing the details of the spatial area used by the RGB to hyperspectral
reconstruction models and how it differs from one model to another while
showing its impact on the model’s workflow and performance.

• Classifying the models based on their spatial observed area into local, partially-
local, and global models.

• Establishing points of failure for the majority of these models and where
users cannot trust them to perform reconstruction.

• Presenting a theory on how these models perform illuminant estimation and
correction within the network and providing multiple evidences for it (albeit
non-conclusive).

• Examining the models’ reaction to multiple important parameters and estab-
lishing where within each network these parameters are processed and how
this is connected to each model’s structure.

• Presenting a general workflow to a type of reconstruction models (local
models) and breaking them down into more explainable equivalents.

• Presenting multiple novel modifications to explainability methods that can be
used on these models as well as any regression based or reconstruction based
model. These include a modification to the existing Guided Back-propagation
approach Springenberg et al. (2014), a new feature visualization approach
called Activation Maximizers, and a parameters sensitivity approach.

• Analysing illuminant and color sensitivity for these models and presenting
ways on how to further study them.
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2 Literature Review and Background

Our research is concerned with the interaction of 2 main fields of literature: the
first is RGB to hyperspectral CNN models, which falls under more general super-
resolution models (we will discuss where it fits in literature exactly). And the
second is the field of explainable AI (XAI), more specifically, XAI concerned with
the explainability of neural networks. In the following sections we will introduce
the most prominent works done in these fields and see how our research topic is
the result of an intersection of 2 branches of research representing each of these
fields. We will discuss the general frameworks and their more specific cases until
we find how the need for our research topic arises naturally from both the lack of
research in that area and its vital role in the studies related to it.

2.1 Spectral Reconstruction from RGB
To address the issue of affordability and time constraints of conventional hyper-
spectral image acquisition, many efforts were directed to finding alternatives for
using a fully-pledged hyperspectral camera. Of these alternatives was snapshot
compressive imaging (SCI), where the hyperspectral information is compressed
into a single 2D snapshot that includes both spatial and hyperspectral dimensions
using different methods Cao et al. (2016); Du et al. (2009); Llull et al. (2013);
Wagadarikar et al. (2008, 2009); Lin et al. (2014).

A type of SCI systems that uses coded apertures was especially popular Wa-
gadarikar et al. (2008); Meng et al. (2020); Cai et al. (2022a). An example of such
system is the Coded Aperture Snapshot Spectral Imaging (CASSI) shown in figure
2.1. As can be seen in the figure, the HSI block with width W and height H and
number of wavelengths Nλ is first modulated (with an element-wise multiplication)
by the coded aperture which corresponds to a physical mask M∗. The result F ′ is
then passed through a disperser (prism-like) which has the effect of shearing the
cube along the y-axis where d is the shifting step making F

′′ . Finally, we have the
2D compressed measurement snapshot captured at the detector array Y with size
H ×W + d(Nλ − 1)). We will not go into detail here since this type of acquisition
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Chapter 2 LITERATURE REVIEW AND BACKGROUND

Figure 2.1: Coded aperture snapshot spectral imaging (CASSI) Cai et al.
(2022a).

is not our target but more details can be found in the cited works.
Although SCI systems are considerably more affordable than conventional

hyperspectral acquisition, they are still quite expensive for normal consumers since
even SCI acquisition systems that are considered affordable, range in cost between
10K and 100K USD Cai et al. (2022b). That makes them less than optimal in
tackling the time and cost issue of HSI.

Also, there is a category of models that depend on designing a specific system to
be able to acquire the spectral image, and these systems are often complicated and
hard to build Goel et al. (2015); Oh et al. (2016); Takatani et al. (2017). Although
it is still using an RGB camera, these models require multiple cameras and/or
multiple time-multiplexed illumination sources, and tube reflectors. All of them
used to acquire the images under a large range of possible conditions that make
up for the lost information inherent to the RGB capturing scheme compared to
hyperspectral acquisition. Clearly, this requires a lot of preparation, knowledge,
and instrumentation not readily available for consumers.

These limitations have given rise to models that directly reconstruct hyperspec-
tral images from RGB ones based on the idea that hyperspectral images posses a
much smaller intrinsic dimensionality than their number of bands, which means that
they can be further compressed while maintaining the same information. So, with
the right prior, the information gap between hyperspectral and RGB can be bridged
Chakrabarti and Zickler (2011). Although this problem is highly ill-posed, since
there is an inevitable loss of data expected with the RGB projection, many models
are still able to perform reconstruction using learning based approaches since the
mapping of such projections is highly non-linear. There are many conventional
models that reconstruct hyperspectral images from RGB images depending on
special priors and features in the hyperspectral domain Aeschbacher et al. (2017);
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Spectral Reconstruction from RGB 2.1

Arad and Ben-Shahar (2016); Jia et al. (2017); Parmar et al. (2008); Robles-Kelly
(2015). These data-driven models use a variety of features that include sparsity of
information between bands (high similarity between different bands) in hyperspec-
tral images, dictionaries to correspond spectra and RGB components, or shallow
learning models. However, these models are always restricted to certain types of
data and do not generalize well to more representative datasets Cai et al. (2022b).

So, using the success of deep learning approaches in many image editing,
restoration and reconstruction applications like in Cai et al. (2021); Deng et al.
(2022); Hu et al. (2021a,b) and many others, research is going toward exploiting
Convolutional Neural Networks CNNs for that task and to learn the underlying
projection and mapping functions involved in the RGB to hyperspectral conversion
problem.

One of the first breakthroughs in that regard was in developing end to end
models specific for that task Galliani et al. (2017) along with Xiong et al. (2017) who
developed a unified deep learning model HSCNN that can reconstruct hyperspectral
images from RGB images as well as other compressive methods we mentioned
before like SCI. This model achieved state of the art performance at the time in
2017 on the ICVL dataset Arad and Ben-Shahar (2016) and paved the way to other
advancements in that field that modified it further. A problem with HSCNN was
that it contained an explicit spectral up-sampling operation at the beginning of the
network. This up-sampling is dependent on the existence of a spectral response
function defined before hand that maps the integration of hyperspectral data into
RGB images and has to be known in addition to the RGB images. This requirement
combined with HSCNN’s failure to improve its performance with increased growth
and depth (it does not gain better performance with more data and more depth)
limited the applications of HSCNN, until HSCNN+ was introduced Shi et al. (2018).

HSCNN+ along with a mid-way network HSCNN-R (R for residual) were intro-
duced by the authors of HSCNN and provided multiple models as modifications
to HSCNN. The authors replace the up-sampling stage with a convolutional layer
relieving the model from the spectral response function requirement, then replacing
regular convolutional layers with residual blocks forming HSCNN-R (Residual).
Then, they modify the neural network further to include a fusion scheme and a
densely connected structure with a network called HSCNN-D (Dense). The con-
catenation included in this new architecture is claimed to explicitly add information
from the channels making it more suitable for reconstruction. That modification
improved on the performance and achieved state of the art on the NTIRE dataset
for the year 2018 Timofte et al. (2018). The architectures of HSCNN, HSCNN-R,
and HSCNN-D are shown in figure 2.2.

These models defined a common practice for many other models after them that
used the same idea of having convolutional layers with local and global residual
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Chapter 2 LITERATURE REVIEW AND BACKGROUND

Figure 2.2: Architectures of the baseline HSCNN (a), HSCNN-R (b), and
HSCNN-D (c). Quoting from Xiong et al. (2017): The “C” with a rectangular
block denotes a convolution, and the following “1” and “3” denote the kernel
size (i.e., 1 × 1 and 3 × 3 respectively). The “R” represents a ReLU activation
function. And the “C” with a circular block denotes a concatenation Xiong et al.
(2017).

connections to perform reconstruction.
Further advancements were done in Stiebel et al. (2018) where a U-Net archi-

tecture with some modifications was first introduced in this application. U-Nets
are particularly interesting to our task because they have no specific pipeline for
reconstruction. Unlike HSCNN+ models previously discussed (which had parts
for each task like feature extraction, mapping, and reconstruction) the authors
of the U-Net models made no effort to assign specific tasks to specific parts of
the architecture which makes it a fully closed black box that depends solely on
the learning of convolutional layers and generic capabilities of CNNs. This makes
them in great need of some level of interpretation and shows that even generic
unperturbed CNN models can learn the reconstruction task.

Another U-Net we refer to in this work as MultiScale was also used by Yan et al.
(2018) where the U-Net was scaled and residual connections were taken at each
scale until the bottleneck. These residual connections help maintain features from
fading when the flow of the image goes near the bottleneck of the U. In other words,
some features might be lost due to the strong compression near the bottleneck, so
these residuals maintain these features and feed it to the upper-going part of the
U. Figure 2.3 shows that architectures and the residuals connecting both arms of
the U shape.

These two networks proved the applicability of U-Nets and auto-encoder blocks
in the reconstruction task, but they had lower performance compared to other
dedicated networks like HSCNN+. Also, Zhang et al. (2020) built a neural network
that depends on learning pixel-wise mapping using function-mixture blocks that
increase the flexibility of the network. This is important since this was the first
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Spectral Reconstruction from RGB 2.1

Figure 2.3: The U-Net architecture used in Yan et al. (2018).

network to have a variable receptive field that changes depending on context and
spatial location. This is done by including multiple sub-nets in the architecture,
where each sub-net has a different receptive field from the others, and then there is a
mixing function block that chooses the combination of sub-nets and a corresponding
receptive field for each pixel. That allows each pixel to have a specific receptive field
based on the features around that pixel. Figure 2.4 shows the difference between
typical fixed receptive fields (left) and adaptive receptive fields used in Zhang et al.
(2020) (right) and how the chosen sub-nets differ depending on the pixel’s features
and surroundings, which correspond to a specific receptive field. All previous
models had a fixed receptive field and learned a single mapping function for all
pixels, while this one learns a specific mapping for each spatial pixel achieving
better results. It is worth noting that this way of changing the receptive field is
quite explained in the architecture. So, although this model is not explainable (like
all the others) this added feature does not ’decrease’ the level of explainability of
this model compared to the others.

We need to clarify here that the U-Net we mean is not the typical classification
network but the encoder-decoder architecture that compresses the input into the
latent space (encoder part) then decompresses it in the decoder part (making
the full U shape) to make either a similar result as the input (what is known as
auto-encoder) or -like in our case- another version with modified features which
is here the larger number of bands. There is an issue with models based on the
encoder-decoder architecture which is the loss of information inherent to the deeper
latent space when the network gets closer to the bottleneck especially with max
pooling used as the down-scaling block for the size of the feature map. Although
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Figure 2.4: Regular receptive fields (left) and adaptive receptive fields used in
Zhang et al. (2020) (right).

most of these models use residuals connecting the encoder to the decoder to tackle
that, the encoder path still loses a lot of information until it reaches the bottleneck
where most of the convolutions are done (because of the compact features and
efficient computation). This means that lots of the original pixel information could
be lost in such architectures Zhao et al. (2020).

Further modifications mainly included adding architecture modifications along
with specific blocks for tackling problems with previous models. One of these
issues was the difference in importance between each of the spectral bands and that
models treated all of the bands as the same regardless of the amount of information
in them. This is tackled in the Adaptive Weighted Attention Network (AWAN) Li
et al. (2020) where dual residual attention blocks were added along with a trainable
adaptive weighted channel attention that learned weights for each channel and
multiplied them by the original channels giving them different importance scores,
making the network work better with channel wise dependencies. Also, this was
the first work that tried tackling the limitation of long range dependencies, since all
networks so far were spatially local and constricted to a local receptive field around
the pixel being reconstructed. This was suspected by the authors to be limiting the
capability of the network since it limits the amount of information the network can
access. Although models might not specifically need long range dependencies for
reconstruction, the authors proved that employing them can improve performance,
which makes sense since the model will have access to more spatial information
while reconstructing a given pixel.

This was addressed using a patch level second order non-local module. Although
it did improve the performance, that solution did not achieve full spatial globality
since the receptive field was increased but to a certain extent. Also, second order
modules require large amounts of memory Cai et al. (2022b).

Other similar ideas were introduced in the Hierarchical Regression Network
(HRNET) Zhao et al. (2020). This neural network also uses a global attention block
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Figure 2.5: HRNET Architecture with its 4-level hierarchy Zhao et al. (2020).

that can increase the receptive field. It also has dense residual blocks for artifact
removal in real world images. This network -shown in figure 2.5- consists of a 4-level
hierarchy where each level is a division by 2 on the spatial dimension of the input
done by a pixel shuffle block. This block was introduced to replace max pooling or
convolution by stride blocks commonly used to do the downsizing. More specifically,
it was made to address the problems with information loss common in U-Net
architectures mentioned before. The pixel shuffle block interleaves neighbouring
pixels into different (smaller in spatial size) feature maps, conserving the information
of all pixels. For the reverse operation, the pixel un-shuffle block does the opposite,
merging small feature maps into a large one. With these improvements, the HRNET
won the first place in the NTIRE challenge 2020 for the real-world images track
and ranked 3rd place for the clean images track Lugmayr et al. (2020). The clean
image track has images with clear camera function applied to their reflectance
spectra, without any camera noise models or real-life considerations. That relieves
the images from the noise, jitter, and lens problems that accompany real world
images. In later issues of the NTIRE dataset like that of 2022 Arad et al. (2022),
that track was removed since most models started performing far better on it than
on real images as it became not much of a challenge for advanced models. Also
because the real world track is much more realistic and useful.

An important advancement was made in Cai et al. (2022a) with the Mask-guided
Spectral-wise Transformer (MST), which is a model used for reconstruction from
snapshot compressive imaging (SCI) images (discussed before), then the same
model was adapted to direct hyperspectral reconstruction from RGB images which
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Figure 2.6: (a) Global Multi-headed Self Attention (G-MSA). (b) Window MSA
(W-MSA). (c) Spectral MSA (S-MSA) Cai et al. (2022b).

was called Multi-stage Spectral-wise Transformer MST++ Cai et al. (2022b) where
2 problems in existing models were discussed: the first is that these models do
not capture long range dependencies, since as we discussed, most models have a
local spatial receptive field. While the second is their inability to exploit the self
similarity or correlation evident between hyperspectral channels since although
HSIs are spatially sparse, they are highly self similar in the spectral dimension.
Of course, not all bands are correlating to all others, but some bands have high
correlation with each other. Although this feature was exploited in works like
Arad and Ben-Shahar (2016), it was not used in deep CNNs since most CNNs
that use attention blocks have spatial attention blocks. This neural network uses
transformers and spectral wise multi-headed self attention blocks.

Figure 2.6 taken from Cai et al. (2022b) shows 3 types of Multi-headed Self
Attention (MSA). The first one (a) is Global MSA (G-MSA) where all pixels are
sampled as both query and key elements. The second (b) is Window MSA (W-MSA)
where self attention is only calculated inside spatial windows. The third (c), -which
is the one used by the authors- is Spectral MSA (S-MSA) where the attention is
calculated along the spectral dimension (each channel/band is treated as a token).

To put it simply, the same idea of attention blocks was used, but instead
of having the attention applied to the image in the spatial dimension, it was
applied in the spectral dimension (spectral wise), while also keeping the residual
connections similar to the ones used in previous models. This produces a spectral
wise calculation and a global receptive field reaching long range spatial dependencies,
with a linear complexity requirement. This achieved much higher accuracy with
less parameters required in the network, achieving state of the art for the year 2022
on the NTIRE challenge. It is also the current state of the art as of writing this
text.

Also, some models were adapted from other tasks like reconstruction from SCI
to reconstruction from RGB since the output is the same (reconstructed spectra).
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One of the most successful adaptations is High-resolution Dual-domain Learning
(HDNET) Hu et al. (2022). This network employed both spectral and spatial
attention blocks which also theoretically allows it to get long range dependencies.
However, these spectral attention blocks are different from the ones used in MST
and MST++ in the sense that they only contribute half the attention (the other
half is spatial attention). This model focuses on obtaining high spatial resolution
spectral images.

Another model worth mentioning is Half Instance Normalization Network
(HINET) Chen et al. (2021) which was adapted from an image restoration model
by the same name. This model also employs an encoder decoder architecture,
but it has special half instance normalization blocks in 5 levels of encoder scales.
Instance normalization is similar to batch normalization but applied for each
instance individually, instead of a whole batch. The authors argue it gives better
performance with low level tasks (tasks where the value of each pixel in the image
matters significantly). This is because there is a high variance between small
patches in input images. This is the case for both image restoration and RGB to
hyperspectral reconstruction.

Instance normalization in this case can maintain the same normalization pro-
cedure in both training and testing. It can also adjust the mean and variance
of features without being affected by the batch dimensions (which is the case in
batch normalization). They introduce half instance normalization blocks where
half the input is normalized and half is kept. The reason it is cut in half is because
the authors find with experimentation that this keeps features in shallow layers
intact. As for the decoder part, they use a residual block that simply has a residual
connection. Figure 2.7 shows the half instance normalization block (HIN block) and
the residual block (Res block). Five of each are used in the encoder and decoder
respectively.

To sum up this section, there are many works that try to tackle the issue of cost
and time requirements of HSI, and many of those apply HSI reconstruction from
RGB images which is the most promising way since it has little to no cost on the
end user. However, these models seem to vary in their architectures, dependencies,
and performance. Most models though have similar concepts that include either
having an encoder-decoder structure, having residual connections in an otherwise
sequential model, or having extra blocks and connections that do a specific task.
To try to explain these models, we need to take care of their architecture and their
context. Because although some parts of some models are dedicated for a specific
task which is explainable, non of these explainable parts actually does the main
reconstruction task. In the following section we define our concept of explainability
and go through works of literature that tried to explain other models from other
applications and see how we can use them to our application.

13



Chapter 2 LITERATURE REVIEW AND BACKGROUND

Figure 2.7: (a) Half Instance Normalization Block (HIN). (b) Residual Block
(Res). Chen et al. (2021).

2.2 Explainable AI

2.2.1 Explainability as a concept
When it comes to explaining how a certain AI works, or in our case how a neural
network works, many studies have been done to achieve that task. However, the
idea of "explainability" is an elusive one, since these works do not all agree on what
must be "explained" for a certain AI system. They do not even agree on what
explainability or interpretability is (as discussed by Lipton (2016)). Most works
proceed to try to explain or interpret a model without defining what it means to
explain the model and what is required to do to say that the model is "explainable".
That means we have to approach this topic carefully and move step by step from
defining what we mean by explainability in this scope to how it could be applied
safely for our purposes.

Lipton (2016) focuses on this problem in the general sense (for models of any
kind) and shows the different types of what researchers call interpretability. Some
works define it or use it as any type of information that is useful to show how a model
works like Lou et al. (2013) where explainability is a property of the model which
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can be called "transparent" in the sense that the model’s workings are visible and
can be comprehended while other models that can not be comprehended are called
"black-boxes". However, it is pointed out that this division lacks accuracy since
the level of how "visible" a model must be in order to be considered transparent is
not defined. For example, a model can be visible, but too complex to comprehend
even if it was fully visualized. Other papers define explainability as anything useful
about the model (regardless if it explains it fully or not) like Kim (2015) and
Huysmans et al. (2011). So in that case, any sort of information extracted about
the inner workings of the model is considered explainability. Other papers work on
explaining the output or the predictions of the model without explaining the model
itself like Krening et al. (2016); McAuley and Leskovec (2013); Van der Maaten
and Hinton (2008); Wang et al. (2016). These are sometimes called "post-hoc"
interpretations, but not always, as we will discuss in the next section where we
present some post-hoc interpretations and how it is inaccurate to define this type of
interpretability as post-hoc. Also, some works consider a model to be interpretable
if it was interpretable to humans Caruana et al. (2015a), which is also not always
true since the human brain is also considered a black box. That is because although
we can provide reasoning on why we made a certain decision or a prediction, we
still know very little about the exact mechanism our brains followed to achieve
that decision (the neuron connections in the brain) Kim et al. (2015).

All that portrays the different aspects to what an explainable model could
be. It also shows the different levels of explainability one could have for a certain
model. These levels depend on the need for interpretability, which could be a type
of information, or establishing trust, or understanding the model, etc. The least of
which would be to gain any information about the model, and the most would be to
have a fully transparent and explainable model with all its under-workings visible
and comprehensible. Another aspect that is very important in XAI is establishing
trust with the model by the user, which is in many cases a satisfactory level of
interpretability.

Here we also point out the trade-off between performance which correlates
with complexity, and explainability. This trade-off was established by many works
Simonyan et al. (2014); Eberle et al. (2020); Schnake et al. (2021); Gupta et al.
(2023). This can be seen in figure 2.8, where CNNs are considered the most complex
and the least interpretable.

2.2.2 Different Types of Explainability
Letzgus et al. (2021) performed a comprehensive study on the various types of
interpretability for models which can be divided based on multiple categories. These
include explainability for an overall dataset (global explainability) Nguyen et al.
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Figure 2.8: Trade-off between complexity and explainability in machine learning
Gupta et al. (2023).

(2016c); Lapuschkin et al. (2019); Simonyan et al. (2014) and explainability for
a specific sample (local) Bach et al. (2015); Baehrens et al. (2010); Ribeiro et al.
(2016b). These refer to finding an explanation for why the model performed in such
a way for that specific sample by relating specific features in that sample to the
model’s decision. Or, for global explainability, why the model performed in such a
way for an entire dataset, by looking at the features of the dataset as a whole and
trying to connect it to the model’s architecture. We will see how both ways are
valid and usable in different cases. For example, global explainability gives insight
on the main workflow of the model, and how it processes inputs in general. On
the other hand, local explainability tells us about where the model fails and gives
more details on how the model reacts to specific inputs.

On the other hand, some methods perform the explanation based on individual
input features, meaning that the explainability method reacts to only one feature
(like a change in hue in the RGB image in our case), which is clearly limited.
Of these works are Baehrens et al. (2010); Bach et al. (2015); Strumbelj and
Kononenko (2010); Sundararajan et al. (2017a). Others perform it based on various
combinations of these features which gives more insight on the model’s workflow
like Caruana et al. (2015b); Eberle et al. (2020); Schnake et al. (2021).

Finally, perhaps the most important distinction is based on whether the methods
require some modifications to the model (also known as ant-hoc methods). These
methods cannot interpret a model without first making some modifications to it,
either in its structure or input Brendel and Bethge (2019); Sundararajan et al.
(2017b). These methods also require retraining the model if they perform changes to
it which would add to its complication and might -if not done carefully- change the
model in a fundamental way which will make the model we are actually explaining
different from the one we tried to explain in the first place and that could yield
misleading results Letzgus et al. (2021).

Other methods are called post-hoc which means they perform an explainability
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study on an already existing model and do not require any changes to the model
but perform some sort of explanation to it after it was built and trained. Although
these methods usually work on the predictions or the output of the model, they
can still provide information on the inner-workings of the model Došilović et al.
(2018); Samek et al. (2017); Zhang and Zhu (2018).

Some works found that a more practical approach to find a fitting definition
depending on the model would be to classify interpretability -and more specifically
transparency- into 3 different classes based on how the model performs in comparison
to a human brain Selvaraju et al. (2017).

The first class is composed of models that are still not efficient enough at their
tasks that humans are still doing a much better job at that task, in which case we
cannot deploy such models reliably. Examples of such models are visual question
answering Antol et al. (2015); Zitnick et al. (2016) and visual storytelling Huang
et al. (2016). In that case, the aim of interpretability would be to asses where and
why the model fails, and to try to find a solution to improve the performance of
the model.

The second class is when the model is comparable to human performance like
models concerned with the popular task of image classification (when there are
enough training examples) Karpathy (2014); Horak and Sablatnig (2019); Maier
et al. (2019). In that case the aim would be to establish trust and make sure that
the model is not basing its success on false assumptions that might break later if
deployed to real life situations. This is the case for most models that interpretability
was applied to Zhang and Zhu (2018).

The third class is when the model is exceeding human performance significantly,
like game models such as Go and chess Silver et al. (2016); Hölldobler et al. (2017),
in which case the aim is to find ways for the model to help humans learn more about
the task. This is referred to as machine teaching Johns et al. (2015); Selvaraju
et al. (2017).

In the case of spectral reconstruction, we are well in the second class. The
models are performing well, not as well as a human, but they are comparable, as
will be shown in later sections. It is important to note here that what we mean by
a human doing the task of spectral reconstruction well, we mean that humans can
easily figure out which material every object is just by looking at it (in RGB). And
although humans cannot draw the exact spectra of that material, this is not due to
the human’s incapability of doing so, but due to the human not having the time to
memorize all the spectra of all materials. But, if a human theoretically took the
time to do so, they would perform reconstruction better than current CNN models.

So, the main aim of interpretability in our case would be to establish trust in
the model and see if we can safely depend on it and deploy it. In a more specific
sense, we need to know if we can trust it enough to use it instead of using a

17



Chapter 2 LITERATURE REVIEW AND BACKGROUND

spectrometer to measure the spectra of a certain scene. That is especially the case
if the application is very sensitive and the model needs to be trustworthy like in
order to avoid consequential wrong decisions (eg: medicine Lu and Fei (2014)) or
avoid economic and intellectual losses (eg: agricultural and earth observation Dale
et al. (2013); Elmasry et al. (2012); Patro et al. (2021); Mücke et al. (2019))

2.2.3 The Main Focus of This Work
Here we try to use the previous sections to draw a more clear picture of what we
are trying to do in this thesis in more precise form. We mentioned that we are
trying to explain RGB to Hyperspectral reconstruction models, but as we can see
from the previous section, this is not yet a well founded question since it leaves a
lot of uncertainty.

We use the works of Lipton (2016) and Millan and Achard (2020) to divide
models in the following classes in terms of their need for explainability:

2.2.3.1 Class A: Transparent and Simple

These are models that are fully transparent and completely explained and com-
prehensible to a human being. Examples of that is simple linear models like say
y = 2x + 3. All the parameters of these models are clear and the functionality
of how it works is also clear. These are usually very simple but could also be
more complicated to a certain degree. These models do not need us to apply any
explainability methods since they are already explainable.

2.2.3.2 Class B: Transparent but Complex

These models are more complicated, but they are not complete black boxes. Ex-
amples of these models are non-linear separators and Support Vector Machines
(SVMs), or even simple CNNs. In such models, we know how they work and
their general principles, but we do not necessarily understand the full depth of
parameters they use. The parameters they use could be too many for a human to
comprehend.

However, that does not mean they are in need of explaining. For example, we
know that if we train a simple NN on data that relates personal income to the
number of cars used for single person (given that the data is enough and valid),
that NN will learn the correlation between both parameters and work as expected.
If the network does not work as expected however, then we immediately question
the network structure, the validity of the dataset, or training, etc. The important
part here is that we do not question that the network might not inherently work
(we know it should, given the right data and network/training parameters).
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That is because: first we know that there is a correlation function between
the input and the output. Second, The task is simple enough that the workflow
of the model should be clear and understandable. Like a separation line between
2 classes, the function (shape) of that line could be complex, but we understand
that it is simply a line found that separates these 2 classes. So, these models have
their inherent level of explainability (if they are applied and/or trained correctly).
This is a level of explainability that most works mentioned in this section agree
that it is satisfactory in most applications since the workflow is clear enough to
understand how it works even if not all parameters are accounted for Millan and
Achard (2020); Lipton (2016).

We have to point out that such models could use explaining if they are not
working, as a tool for debugging and finding what is going wrong and why the model
fails. Although in that case the models need explaining, this kind of explaining is
only to find the right hyper-parameters for the model or find problems with the
dataset/input. It does not try to uncover the workflow of the model since that
workflow is clear.

Now, we will discuss 2 other classes (C & D) of models that are even more
complex and need more explaining. but we mention here that in most cases of
explaining, we consider classes A & B to be explained and satisfactory. So, in our
quest to explain more complex models (C & D), what we do is to try to break
them down into a series of smaller (A and/or B) models that is equivalent to the
full workflow of the complex model.

2.2.3.3 Class C: Black Boxes

These models are much more complex that previously mentioned ones in the way
that their workflow is obscure. For example, a CNN that classifies cats from dogs
in image inputs falls under that class. This is because we do not really know how
the network makes its decision. We only know how we expect the the network to
make its decision (using distinguishing features of cats and dogs). However, the
model is a black box and we cannot tell if it is actually doing that or using other
-possibly irrelevant- features.

Most neural networks currently in literature including the vast majority of
classification and segmentation CNNs fall under that class Becker et al. (2018);
Robnik-Šikonja et al. (2011); Robnik-Šikonja and Kononenko (2008); Montavon
et al. (2017). Of course, this class of models need explaining since their workflow is
completely obscure and we only know how we expect them to work, not how they
actually work. For that, most explainability methods mentioned in this work are
directed towards that kind of networks, especially image classification networks
Egmont-Petersen et al. (2002); Wiley and Lucas (2018); Montavon et al. (2018).

As we mentioned, most works employ methods in the aim of breaking down such
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complex black boxes into a series of more explainable parts (of classes A and B).
And since reaching class A is very difficult (because class A needs the model to be
fully comprehensible), we usually try to break down class C into a series of simpler
class B models. In fact, we see many works including that in their architecture,
like models that have a feature extraction block in their architecture. We can think
of that feature extraction block as a class B model within the larger class C model
Robnik-Šikonja and Kononenko (2008). Of course, whether that block actually
does what the authors claim it does (feature extraction) is another problem.

In the case of cat and dog classifiers for example (a class C model), we can
break it down to parts of the network that detect the ears, and parts that detect
the eyes, and mouth and so on. Each of these detectors can be thought of as a
class B model, since we know what it does and how it does it (training) but we do
not know the exact parameters for it. So, breaking down that classifier into these
class B sub-models helps us understand its general workflow and provides more
trust in the model.

2.2.3.4 Class D

These models take it a step further than class C. That is because we do not even
have any expectation for how they work. In the previous example of cat/dog
classifiers, we expect the model to distinguish each class by its defining features
(ears, eyes, etc), so if it is doing that then the model is on the right track. However,
for class D models, we do not even know what these features are. We as humans
are not entirely sure how the task is done (even if our brains are able to do it).

The most important example here for such models is our case: RGB to hyper-
spectral reconstruction models. We as humans can distinguish different materials
under a variety of lighting conditions, so we can perform (theoretically) that re-
construction task. However, what features did we really use in that task, how did
our brains manage to distinguish different illuminants for example? This is unclear
in most cases, especially that we mostly use our memory, and senses like touch,
and context to perform that task. Such inputs are not available to the network.
Another similar example of class D models are spatial super-resolution models
Dong et al. (2014b,a).

Also as we will see in the next chapter, the network only looks at a limited
spatial area in the input image. So, the context provided is very limited and yet it
still does the reconstruction task. All of this begs the question of how do we expect
the network to be working in the first place.

This emphasizes the importance of our task, and the need for explaining such
models. Again, explaining class D models could be thought of as breaking them
down into a sequence of class B models. This is especially difficult for class D
since we do not have a clear picture of what these sub-models could be. All classes
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Class A

Simple
Explainable

All parameters clear
ex: Y = x

Does it need explainability?
No

Class B

More complex
Parameters not always clear

Ex: Simple classifier

Does it need explainability?
Only for fault detection

Class C
Black Box

Parameters not clear
Workflow can be expected

Ex: Classification CNN

Does it need explainability?
Yes

Class C

Class B Class B Class B

Class D
Black Box

Parameters not clear
Workflow cannot be expected

Ex: RGB to HS

Does it need explainability?
Yes

Class D

Class B Class B Class B

Figure 2.9: Different classes of models in terms of explainability need.

mentioned are shown in figure 2.9.

2.2.3.5 Important Detail

Now, we have to note here that what we mentioned about breaking down classes
(C & D) into a ’series’ of class B sub-nets is not a realistic description. In reality,
these sub-models are almost never a ’series’ but an overlapped parts of the network,
each doing a task, or many tasks. This is inherent in the way CNNs work and how
they are optimized Hou et al. (2022); Wang et al. (2022); Olah et al. (2017); Carter
et al. (2019).

Because of that, when we break a class (C or D) into class B sub-nets, these
sub-nets are usually the ’explainable equivalent’ of the real sub-net. This means
that this equivalent will not be exactly as the original sub-net (since that cannot
be separated from the original network) but will serve as an equivalent that helps
us understand how it works and even try to replicate it with an explainable model.
The sequential and overlapping sub-net distinction is shown in figure 2.10.

2.2.3.6 The Aim in Conclusion

So, our aim in this work is to try to break down the main functionality of the RGB
to hyperspectral models (which are class D models) into sub-models of type B. We
cannot for sure know that we can interpret all the workflow of these models, but we
will extract as much information as possible (as many class B sub-nets as possible).
That will give a better look at how these models work and perhaps provide a level
of user trust, or awareness.

The way we do that is by using explainability methods and conducting tests
that will shed light on how some parts of the models work. As mentioned, these
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(a) Sequential (unrealistic). (b) Overlapping parts (more realistic).

Figure 2.10: Breaking down a black box (Class C or D) into smaller task specific
sub-nets (class A or B). The sequential case being unrealistic but equivalent
representation of the more realistic overlapping nature of sub-nets doing specific
tasks.

sub-nets will be intertwined, and will be an explainable equivalent of the real
sub-nets, and not necessarily how the original sub-net is.

In the next subsections, we will dive deeper into these methods, especially post-
hoc methods because they are the most useful. We will see what they provide exactly
and how they compare to each other in more detail. Of these post-hoc methods,
some of the most useful are visual methods that provide a visual representation
that helps with explaining the model, the output, or both. This will be the focus
of the upcoming subsection.

2.2.4 Visual Explainability in Neural Networks
Now we turn to the more specific case of explainability for neural network models.
Ant-hoc operations would require us to either build a new explainable model (which
would defy our purpose to explain current operational models), or to change the
model to be explainable (which would have a similar effect). Because of that, and
since our main goal is to establish trust and explainability in current used models,
we need to use post-hoc methods. They are also proven to be the most used and
the most practical in that field because they are first the easiest to interpret by
humans, and second they can provide implicit and unexpected information on the
model, unlike other methods that only provide the specific information we expect
from them Zhang and Zhu (2018). This will become more clear once we show
examples of these methods.

For neural networks, and more specifically for convolutional neural networks
used on image data (which is our main interest) these methods usually try to relate
the output or the prediction of the model to the input in a way that highlights
visually which parts of the input the network found most useful in its prediction.
The result of that is a heat-map for the importance of the pixel called Saliency
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Maps, or Attribution Maps Selvaraju et al. (2017); Chen et al. (2020); Kolekar et al.
(2022); Mundhenk et al. (2019); Millan and Achard (2020); Simonyan et al. (2013);
Mahapatra et al. (2017); Mahendran and Vedaldi (2016); O’Shea et al. (2022);
Shrikumar et al. (2017); Springenberg et al. (2014); Bach et al. (2015); Letzgus
et al. (2021).

Another way to visualize how the model perceived the input is to generate
reference maps (atlases) that show how different parts of the network are more
concerned with a specific type of inputs (they are activated when a certain shape
or color is entered to that network). These are called "Activation Atlases" Carter
et al. (2019); Buhrmester et al. (2021) and they provide an effective way to visualize
entire layers in the network as an atlas of small images each shows what kind of
features that particular "area" in the network is activated from. These methods
can also be applied to more than one input since sometimes the method can be
pooled over a whole dataset as we mentioned about global and local explainability
Nguyen et al. (2016c); Simonyan et al. (2014).

Both saliency maps and activation atlases provide representations that help
explain where the network is looking and how the input is treated. This can greatly
help in explaining which features the network is looking at. More importantly, it
helps explain why a network would yield a false output or prediction. For example,
in simple terms, looking at the saliency map of a classification network that classifies
cats from dogs, one would expect the network to focus on features that relate to
the cat or a dog in the input image, such as eyes, nose, ears, whiskers, and so
on. If the network focuses on these features, then we can establish some level
of trust that it is doing the job as we expect it to do Millan and Achard (2020).
However, if the network is focusing on unrelated features like unrelated features in
the background or the color of the animal, then we cannot trust such a network
even if it had high accuracy on a particular dataset since its success would probably
be due to the limitation of the dataset, and it will probably fail on another dataset.
That shows the flaws either in the dataset, which could have biased or unbalanced
data (for example the cats are all orange and the dogs are all gray so the network
would learn the color as the defining feature) or that there is a fault in the training
like over-fitting to some particular set of attributes, or a problem in the network
itself, like the architecture being unable to capture the more representative features
Carter et al. (2019).

If a saliency map is provided given a particular input (an image in this case) of
a network, that saliency map only serves to localize (spatially) where the network
was looking. Further analysis is needed to find which exact features of the network
the saliency map is actually capturing. So, in some applications, spatial localization
of the activation saliency could be an important first step, but not enough to
find what the network is actually "focusing on" since that could be undefined in
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the spatial space but in another feature space like color space or frequency space
Baehrens et al. (2010); Selvaraju et al. (2017). It could also be that the model is
focusing on many things and that makes it difficult to interpret even if a saliency
map is given.

Since we have RGB images as input, one could wonder if we can apply a saliency
map to each of these color channels. Although we can create an RGB saliency map,
the RGB channels of that saliency map will not correspond to the RGB channels
of the input, since the saliency information will get mixed up in the process of
creating the saliency map. This will become clear once we introduce how saliency
maps are created and the many ways to create them.

So far we established the general idea of how some methods could explain how
a CNN looks at the input (how it was activated based on that input), but that
could be done in a number of ways. We now go through the many methods used to
generate these saliency maps. As for activation atlases, they are quite exclusively
used in the main paper describing them Carter et al. (2019).

Methods to generate saliency (or attribution) maps can be divided into 3
categories: Perturbation-based, Class activation based, and Gradient-based. We will
review the literature of each of them in detail and find which ones would be most
suitable to our purposes and how they still need to be modified to match our exact
focus.

2.2.4.1 Perturbation based

Perturbation (or sometimes referred to as attack based) methods aim to explain the
most important part of an input to the decision made by the network by perturbing
that input in some way that should make it harder for the network to do the
prediction (attacking the network, by altering the input) and monitoring how the
network deals with that perturbation Zeiler and Fergus (2014); Millan and Achard
(2020). So, basically we disturb the input in a known manner, then look at the
output to see how it was affected. If the input was an image that was disturbed
by occluding or adding noise to some of its parts, then if the occluded parts were
important to the prediction, the output will change accordingly. However, if the
output remains the same, then we can deduce -arguably- that the network does not
depend on that part of the image in making its predictions. The opposite could
also be true if the prediction changed in response to the perturbation introduced
in the input. An example of perturbation can be seen in figure 2.11

This is what is done in Zeiler and Fergus (2014) where parts of the image are
occluded with a gray area and then that area is increased until the accuracy of
the classification decreases significantly. The portions of the image that are kept
right before this dramatic drop in accuracy can be said to be the most salient parts
of the image for that model. In object detection networks, they are expected to
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Figure 2.11: Perturbation based approaches: (a) Original image. (b) Perturbed
dataset. (c) Attribution map based on the most sensitive parts of the image.
Gupta et al. (2023)

be the objects themselves, while in classification networks, they are expected to
be defining features of the the designated class. A sub-modular optimization is
performed to produce the linear local model approximation.

Another method worth mentioning is called Local Interpretable Model Agnostic
Explanation (LIME) Ribeiro et al. (2016a). This method is based on perturbation
of the input, but merely uses it to construct an approximation for a linear model
local around the prediction that could be explained. It is also demonstrated to
work on any classifier (not just neural networks). This is known as ’model agnostic’.
The advantage of LIME is mainly that it provides a very simple and intuitive
approximation to any model. Also, it assigns weights to features based on their
contribution to the prediction. That way, we can tell which features are more
important easily. An example of what LIME can do is shown in figure 2.12, where
the Inception model is tested on the original input image (left) and 3 top predicted
classes for that image. It can be seen that the results are very descriptive and show
the reasoning behind the model’s choice in the input image.

However, LIME has a local scope, meaning that it can only provide explanations
to specific predictions, not for an entire model. Also, since it changes the model, it
affects its performance in exchange for explainability (ant-hoc). Although this is a
useful trade off in many cases, we try to only use post-hoc models in this work to
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Figure 2.12: LIME applied on Google Inception model showing the original
image (left) and saliency maps for the top 3 classes (electric guitar, acoustic
guitar, Labrador) respectively Ribeiro et al. (2016a).

keep the models intact and try to explain how they work without changing them.
It is important to note here that sometimes these methods cannot work properly

if the task the network is trying to solve requires it to find global features (spatially
global) all around the input image. In which case the localization for this kind of
methods will not be flexible enough to capture the global or scattered nature of
the features. Also, they require a lot of time and computational costs since they
require to re run the inference on orders of magnitude the size of the dataset to be
tested, depending on how accurate the saliency maps are required to be Arrieta
et al. (2020); Došilović et al. (2018). Here, by ’accurate’ saliency maps, we mean
that they have a fine spatial resolution that shows clearly where the spatial area
of interest for the model starts and where it ends along with any change in its
saliency in the input image.

2.2.4.2 Class Activation Based

In the context of classification networks, class activation methods produce saliency
maps called Class Activation Maps (CAM) Zhou et al. (2016). These maps highlight
the spatial pixels used in making the classification choice. These methods were
introduced with Zhou et al. (2016) and updated by many later works like Grad-
CAM Selvaraju et al. (2017), U-CAM Patro et al. (2019), Smooth Grad-CAM
Omeiza et al. (2019), and many other related works Kwaśniewska et al. (2017);
Zhou et al. (2018); Pinciroli Vago et al. (2021); Morbidelli et al. (2020); Fu et al.
(2020); Wang et al. (2020a); Sattarzadeh et al. (2021); Song et al. (2021); Naidu
et al. (2020); Byun and Lee (2022); Wang et al. (2020b).

Class activation methods started with the basic CAM model Zhou et al. (2016)
which first chooses the class to be activated, say class 3 out of 10 classes. Then it
would zero all other classes and keep the target class (3 in our example) as one. If
the model has a fully connected layer in the end, it is replaced with a convolutional
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Figure 2.13: CAM workflow and example Zhou et al. (2016).

layer and a global average pooling layer. This is because fully connected layers
-unlike convolutional layers- destroy valuable spatial information needed by CAM
to keep track of the spatial saliency.

Then, it uses the global average pooling layer to back propagate the output
class into activations in the layers in a backward pass. These activations are then
averaged and sent into a Relu activation function to remove negatives. This results
in a spatial heatmap resembling the activations the model did when choosing a
specific class for that specific input. Figure 2.13 shows the workflow of CAM, and
how the chosen class is mapped back to the input through convolutional layers.

That does not work however if the model has fully connected layers (since they
need to be replaced) which is very common in many state of the art models, and
replacing them will greatly hinder the performance. That makes an unwanted
trade-off between performance and explainability.

To address this, Selvaraju et al. (2017) introduced Grad-CAM which updates on
the previous CAM method by using gradients of the target class (passing through
the last convolutional layer in the model) as weights applied to the activations
of the convolutional layers in the backward pass. This makes the CAM method
applicable to a larger number of models. Examples of Grad-CAM can be seen in
figure 2.14 for the VGG-16 model. The heatmap-like saliency map is here added
on top of the original image to give better representation. We note here that we
will use the same input image (original images in figure 2.14) and the same model
(VGG-16) in the next examples showcasing other methods.

Later methods updated on it with some modifications, but they all have the
same characteristics: First, the saliency map produced (as an activation heatmap)
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Figure 2.14: Grad-CAM saliency maps examples (bottom) on top of original
image (top) for classes (King Snake, Mastiff, Spider) left to right respectively
Selvaraju et al. (2017); Ozbulak (2019). Most salient areas are red, then blue,
then yellow, then green.

is very coarse and displays the general attention points in the input image. Second,
they all depend on the class as a starting point to the activation backward flow
which make their result class-dependent and class-discriminative.

These models were very favourable over the perturbation based models since
they are much less computationally costly. In principle and in most of these
methods, only one forward pass and one backward pass is enough to generate the
saliency map. Also, the class-discriminative feature is sometimes desirable when
the user is interested in finding the explanation for a specific class Millan and
Achard (2020); Selvaraju et al. (2017).

2.2.4.3 Gradient based

These methods started mainly with Simonyan et al. (2013) where the gradient of
the output score function (not of the class, but of the last convolutional activation)
was proposed as the main drive for the backward propagation (the method is called
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Figure 2.15: Gradient Based methods: (a) Forward pass. (b) Backward pass.
Gupta et al. (2023)

back-propagation). This propagation would follow the gradients from the output
backwards in the model until the first convolutional layer making an activation
map on the input stage. The forward and backward passes of a generic gradient
based approach are illustrated in figure 2.15.

These maps were much finer than the class activation ones, but they were very
noisy. Examples of back-propagation saliency maps are shown in the top part of
figure 2.16. It can be seen that the maps are more detailed than the CAM based
heat-maps, but they are extremely noisy.

Later updates like deconvolution Zeiler and Fergus (2014) proposes a change in
how Relu non-linearity is handled in classic back-propagation by discarding negative
activations in the backward pass which makes the activation maps more focused on
positive activations and have better resolution and less noise. Deconvolution uses
"switches" in the forward pass to record the maximum values in the max-pooling
layers. That way, these switches hold the locations of the pixels chosen by the
max pooling layers and allow to retrieve them once we need to go backward in the
network. Figure 2.17 shows how the maximum locations of the pixels are stored in
the switches.
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Figure 2.16: (Top) Back-propagation examples, (bottom) Guided Back-
propagation examples. Original images are shown in figure 2.14. Simonyan
et al. (2013); Springenberg et al. (2014); Ozbulak (2019).

Then, we use these values while going through the network in reverse to allow
un-pooling (pooling in reverse that expands the spatial dimensionality). That
way we can go through the whole network including pooling layers and finally
reconstruct the activation map on the input. This update allows us to perform
saliency maps explainability on networks that have pooling layers which was not
possible before in previous methods.

A further key update was made by Springenberg et al. (2014) who argued that
CNN models do not really need pooling layers and fully connected layers. The
authors prove mathematically that these layers can be replaced by convolution
layers with stride (as used by many models that do not have pooling). It also gets
state of the art performance by replacing the fully connected and the pooling layers
of existing architectures by convolutional layers. Of course, the network needs to
be retrained in that case which was the downside of this method.

Once that was established, they showed how that replacement could make
networks much more visualizable and explainable with back-propagation which
only worked on convolutional layers at the time. Then they introduce an update

30



Explainable AI 2.2

Figure 2.17: The concept of switches and unpooling in Deconvolution Zeiler
and Fergus (2014).

to deconvolution and classic back-propagation where negative activations were
removed on both the backward and the forward pass making the activation map
much more fine and accurate, and at the same time it will not need switches since
there are no pooling layers to begin with.

This method was called Guided back-propagation and was later used as a
benchmark for how back-propagation was applied because of its high fidelity
maps. The bottom part of figure 2.16 shows the great improvement of guided
back-propagation over classical back-propagation (top part).

After that, guided back-propagation was used in combination with other meth-
ods, and was adapted to work with pooling layers without replacing them. This is
because the main idea works even with the existence of pooling and fully connected
layers in principleMundhenk et al. (2019).

A work done by Mahendran and Vedaldi (2016) introduces a general architecture
for deconvolution networks designed for reversal and visualization, and shows how
back-propagation can be considered as a special instance of that architecture. It also
shows how the structure of deconvolution and the localization of back-propagation
can be mixed to produce a more local structured visualization architecture called
DeSaliNet, and shows how such a network can further be used (in its reversed form)
as a semantic segmentation network.

It is important to note that unlike class activation maps, gradient based methods
do not provide local importance. That means that the activation maps do not have
specific areas on the input image where the pixels that contributed to the output
are highlighted. Instead, they have a global activation map of the input where the
intensity of the pixel in that activation map represents the importance of that pixel
in making the decision of the output (chosen class in classification networks for
example). So, where the class activation map looks like a coarse heatmap locally
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locating the important parts of the image, gradient based activation maps provide
a full map of the whole input (non-local) but with finer resolution.

One problem that sometimes occurs is that the output score function does not
always represent the importance of the pixels. This is because the score function
could get saturated around some pixels and then it would have a small gradient
Sundararajan et al. (2016). This was fixed by taking each input pixel at a time
and calculating the global saliency of that pixel by performing back propagation
from all the output back to each input each pixel at a time. This was done in
Shrikumar et al. (2017) and the method was called Deep Learning Important
features (DeepLIFt).

A similar approach was used by Bach et al. (2015) with a method called Layer-
wise Relevance Propagation (LRP) which decomposes the input into pixels to
separate the contribution of each input pixel in the decision class. Using a specific
back propagation rule, the output’s "relevance" is reflected backwards for each
layer separately, eventually building the activation map which focuses on the pixels
most responsible for the target class. This method (as well as DeepLIFt) depend
on the target class, but it should not be confused with class-discriminative methods
since it only depends on the target class, but we cannot separate the contributions
made by the input to other classes completely. The top part of figure 2.18 shows
the results of applying LRP to the same images on layer 7 of the VGG-16 model.

Another proposal was made to simply multiply the gradient activation map
with the input to improve their quality (Gradient x input methods) Shrikumar
et al. (2016). The bottom part of figure 2.18 shows the results of this method to
the same examples. This method was later adapted as a common practice with all
methods.

Also, in Sundararajan et al. (2017a), the authors started the idea of integrated
gradients, where the gradient is not calculated from the output directly, but
calculated from the integration along a path between the input and a chosen baseline.
That integration (approximated as a summation) is done for each dimension in the
input. Figure 2.19 shows the results of this method on the same examples.

Also, Smilkov et al. (2017) proposed to smooth the gradient with a Gaussian
kernel to improve the quality of the activation maps. This is done to address the
issue that the gradient is sometimes very noisy because the input changes rapidly
in local areas. It essentially removes the noise in the activation maps by adding
noise to the output gradient.

Some methods combined class activation based with gradient based methods to
get the fine activation maps that gradient based methods provide and adding to
that the class-discriminative and locality features that class activation methods
provide. This was done in Guided Grad-CAM Selvaraju et al. (2017) where
grad-CAM was used to produce a class-discriminative coarse map, then guided
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Figure 2.18: (Top) LRP applied to layer 7 examples, (bottom) (Grad x input)
examples. Original images and target classes are shown and mentioned in figure
2.14. Bach et al. (2015); Shrikumar et al. (2016); Ozbulak (2019).

Figure 2.19: Integrated Gradients example. Original images and target classes
are shown and mentioned in figure 2.14. Sundararajan et al. (2017a); Ozbulak
(2019).

back-propagation was used to increase the accuracy and produce a fine resolution,
local, and class-discriminative activation map at the same time with a slightly more
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computationally expensive process.
Finally, in Mundhenk et al. (2019), a more efficient way of making the same

kind of fine resolution maps was proposed by applying a statistical calculation of
gradient-related information using a specific simplification called Saliency Map
Order Equivalent (SMOE scale) to replace the guided back-propagation operation.
That calculation is only applied to layers where the spatial scale of the feature map
is changed (with a convolutional stride or with a pooling layer). That combined
with Grad-CAM yielded very good results with much less computational cost.

To summarize, we described a wide range of saliency map methods. Each with
its advantages and issues. In our case however, we need a method that does not
depend on having a class. This already excludes many methods like CAM based
methods. Of the best performing methods mentioned that does not depend on a
class is Guided Back-propagation. It can be seen in the figures that it provides
fine resolution saliency maps (arguably the finest) and has lots of developments
and updates that make it work with most models. For that, we will use Guided
Back-propagation in our work, but with some modifications that will be mentioned
later. Now, we turn to a different type of explainability methods that give more
insight on the inner parts of models.

2.2.5 Feature Visualization
All the methods described so far use some way to extract information from the
black box of the CNN without actually peeking inside it. The main result out of all
the methods described so far is a saliency map (even perturbation based methods
end up giving us a map that depicts which parts of the input the network is mostly
interested in, which is still under the definition of a saliency map).

There are significant limitations in saliency maps however. Most importantly,
they depend on the single spatial pixel as the primary unit of attribution Olah
et al. (2018). This is not true in the default case since pixel information in CNN is
always intertwined and used in groups, and they are not resilient to visual shifts or
transformations. Also, with the exception of methods including the output class
like Grad-CAM, most of these methods have no connection to the prediction of the
network, meaning that they do not provide any information about why the model
made a specific prediction (output) and not another. Finally, saliency maps only
allow to see the attribution on one end of the network (attribution on the input
image). Although some works like Mundhenk et al. (2019) did develop a way to
extract saliency maps at different stages of the network, they are still limited to
places in the architecture where a scale change occurs, because they depend on the
change to calculate the scale (SMOE scale mentioned in the previous subsection).
Also, they will be found to create highly similar and uninformative saliency maps
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for different layers but with only more low frequency images the closer we go
towards the output of the network (which is to be expected).

So, they do not allow a deeper look into the hidden layers of the network, and
they do not allow any visualization of the intertwined neurons and feature maps
deep inside the network. That is because they only visualize a very limited aspect
of the overall functionality of the network Olah et al. (2017).

This does not mean that saliency maps are not good visualization tools, they are
proven to provide invaluable insight on the network’s behaviour and even identify
faults with the network as all the previous works we discussed so far have proven.
This only points out that CNNs are still too complicated to be explained based on
their input. Saliency maps allow us to easily find problems with how the network
provides its predictions (if the network is focusing on features unrelated to the
actual representative features of the class it gives). So, they work well to find where
the network fails, but if the network does not show any obvious failure, or if we
need to really understand how it works inside the black box, then we need to dig
deeper Olah et al. (2018).

This is where feature visualization comes in. The basic idea outlined in Erhan
et al. (2009) is to provide a visualization of a feature vector somewhere inside the
CNN by trying to generate a stimuli that is optimized to activate that specific
feature using an iterative optimization method. Let’s say that we would like to
visualize a feature somewhere in a neuron in a hidden convolutional layer in the
trained network. We extract that feature vector, then we try to maximize it by
running a gray image or an image of random noise as input. Then, we tweak that
input iteratively while observing the output to optimize the input image until
the output (the feature we are trying to visualize) is maximally activated. The
tweaking is usually done by gradient ascent or any custom optimizer.

This is done by using the derivative nature of convolutional layers that connect
the input to the the neuron we are trying to visualize. This allows us to optimize
a loss function, which is the difference between the output of the input image we
provide and the activation of the neuron we are visualizing.

When the optimization is complete, the image we generate represents features
which that neuron is trained to process. It is what the neuron maximally activates
in response to. Figure 2.20 shows this process as applied by Olah et al. (2017)
on the 11th channel in the mixed4a layer of the GoogleNet Szegedy et al. (2015)
model. We can see that we start from a random noise image that is then iteratively
tweaked until we reach a feature visualization after a number of iterations. In the
figure, that visualization seems to resemble a pattern of connected nodes, which
suggests the layer is specialized in recognizing patterns similar to it.

Of course, this can be done on any combination of neurons rather than a single
neuron for which it would be very hard for a human to observe the interactions of
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Figure 2.20: Feature visualization for the 11th channel in the mixed4a layer of
GoogleNet done by Olah et al. (2017).

(a) Neuron. (b) Channel. (c) Layer.

Figure 2.21: Different possible objectives (top) and their respective feature
visualization (bottom) Olah et al. (2017).

the large number of neurons in the network. So, the optimization is usually done
on the feature activation to an "objective" which is a number of neurons grouped
together according to a certain criteria. This criteria could be to visualize a patch in
a channel (2D section of a layer), or certain channels within a layer, or to visualize
a layer as a whole. Class logits and class probabilities (for classification networks
before and after the softmax respectively) could be used to create examples of the
output class Olah et al. (2017). This is illustrated in figure 2.21 where visualizations
are made for multiple objectives in the GoogleNet model.
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Of course, these objectives are just ways to group visualizations into some form
that makes it easy for humans to understand, but do not necessarily reflect the
real way neurons interact in a network. For example, neurons in channel A could
be more connected semantically (highly correlated) to neurons in channel B than
other neurons in channel A. In that case, channel based objectives would not be
the best to visualize different groups of neurons. Even the idea of using groups
of neurons as basis activation vectors is not necessarily the best to define more
interpretable vectors rather than other vectors with other directions in this space.
Some works found that random directions could be just as interpretable Szegedy
et al. (2013) while other more recent works found that in the usual case, it could
be more interpretable to visualize in the direction of the basis vectors rather than
random directions Bau et al. (2017).

Either way, it seems there are many options for grouping that could be explored,
which resulted in dedicated algorithms for finding and clustering such groups into
optimal blocks where each one represents a feature visualization objective. These
algorithms are mostly based on matrix factorization Lee and Seung (2000); Mnih
and Salakhutdinov (2007); Olah et al. (2018) and they are not in the scope of
this study, but they are sometimes used by researchers to achieve valid objects for
feature visualization. What is important to know is that groups resulting from
matrix factorization are not aligned naturally with spatial dimensions of layers.
Instead, they are a combination of multiple channels and multiple spatial locations.
To understand this better, we refer to figure 2.10 which shows the same concept
but from the perspective of tasks in the CNN.

However, simply perturbing the input until the activation is maximized is a
naive approach that leads to an image full of high frequency edges and patterns that
merely activate the targeted objective severely but without actually providing any
helpful visualization Olah et al. (2017). For that reason, such optimization needs
to be regularized using one of many regularization methods used by researchers on
this topic. These include frequency penalization which directly tries to reduce high
frequencies in the generated image Nguyen et al. (2015); Mahendran and Vedaldi
(2015) and transformation robustness which tries to generate images immune to
visual transformations like rotation, scaling and translation Mordvintsev et al.
(2015); Montavon et al. (2018).

Learned priors can also be used for regularization, in which case we learn a model
on the real data to extract these visualizations, which is equivalent to searching
through the datasets for images that activate the targeted objective. These produce
the most realistic results and sometimes used as dedicated generative models rather
than an explainability method Mordvintsev et al. (2015); Nguyen et al. (2016a,
2017).

Although the abstraction provided by matrix factorization helped gain insight
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on the network as a whole, these visualizations are for one input image only. So,
to gain a visualization over an entire dataset, further works were done to find a
generalization form using multiple dimensionality reduction techniques like t-SNE
Van der Maaten and Hinton (2008) and UMAP McInnes et al. (2018). One of the
uses of t-SNE in that regard was in Nguyen et al. (2016b) where the generated
images where clustered in a t-SNE map. Another great way of visualizing entire
datasets was done with activation atlases Carter et al. (2019) which maps whole
datasets into an atlas for each layer in the CNN where each part of the map
corresponds to similar feature visualizations and the size of each generated image
corresponds to the activation intensity.

These methods have been proven to give insightful visualizations that can
explain what each part of the network was working on, what features it was
supposed to detect, and how these features progress throughout the network from
general edges and patterns in the beginning of the network to more whole parts
and features of known objects in the middle of most classification networks and
ultimately to full objects and creatures towards the output.

They helped researchers gain a deeper understanding about the capabilities
and limitations of many classification networks. But that is exactly the catch in
this discussion. They are only made for classification convolutional networks since
those depend on known features in the input to classify a certain output as one
object or another. It is clear that merely applying such methods out of the box to
spectral reconstruction models would be naive at best, and meaningless at worst.
This is what we will be discussing in the next 2 sections.

2.2.6 On Explainability for Regression Models
All the methods explained so far are designed for classification networks only. Their
developers did not have any other kind of models in mind. That clearly presents a
challenge since our task in this thesis is not a classification task, and the models
we have to explain are reconstruction models in various forms and their output is
not even discrete or limited by a small number of possible outputs. It is in fact
closer to being a regression model than a classification one.

The work done in Letzgus et al. (2021) addresses this issue in the general sense
of explainable AI (not just CNNs). It first shows how most explainability work
was done towards classification and only very few were done for regression, and
even those done for regression were developed for very specific tasks and no generic
framework was introduced. However, it shows mathematically and by examples that
some explainability methods could be adapted and applied correctly to regression
problems if a number of considerations were taken care of:

1. The measurement unit used by the model should be preserved throughout
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the explanation system. The unit here is simply the unit of the output. For
example, if we have a model that inputs the years of experience and outputs
the salary, the input unit is in years and the output is in euro (for example).
These units have to be preserved throughout the explaining process.

Since in regression problems, units are important in quantifying the output,
and so when an explanation model is applied, it has to preserve the units to
retain a meaningful outcome. This is done when the explainability method is
deemed "conservative" which means that it does not tamper with the unit of
the original model. In the case of spectral reconstruction, this can be done
with strictly visual methods since they retain the closest equivalent of a unit
in that scope which is the intensity of a visual pixel.

2. In some models like temperature prediction models, the output could be
more meaningful if we have a reference value (say 20 degrees). That way the
output can be measured relative to that reference value (5 degrees above the
reference 20 degrees for example). The paper argues that this adds more
context to the explainability prediction. However, this only applies for models
that output a measurement quantity (like temperature prediction or sales
estimation) and does not apply to models like spectral reconstruction since
these produce a spectral image that does not need a reference value to ground
it.

3. If retraining is applied, like in Ant-Hoc methods, then some considerations
need to be taken care of with both the data and the model. These consid-
erations are mentioned in the paper. There are many details to that point,
but we will not go through it in detail since the methods we are using are
Post-Hoc and require no retraining or modifications to the original model,
which is the desired case in the first place.

Many methods from the previously mentioned visual explanation methods
conform to these considerations, so in principle, they could be used for spectral
reconstruction. However, some methods that depend on having a target class like
class-discriminative methods such as class activation maps would not be the first
choice since they are built on a principle that does not exist in the scope of spectral
reconstruction. Adapting them not to depend on a target class would simply reduce
them to methods very similar to gradient or perturbation based methods Millan
and Achard (2020).

Perturbation based methods are computationally intensive and, as we will de-
scribe later, could sometimes be made redundant with using gradient based methods
in the particular case of spectral reconstruction models. However, perturbation
methods could be a very good way to validate what other explainability methods
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theorize. For example, if a gradient method showed visually that the network
focuses on pixels with a certain attribute, we can test that theory by employing an
adversarial attack (perturbation) by modifying the dataset to have that attribute
in a controlled manner and test if the theory gradient methods provided us can
be generalized or even quantified. So, although perturbation methods can be very
time consuming and inefficient at finding meaningful correlations in the network,
they can be invaluable at verifying them.

Therefore, gradient based methods as well as feature visualization seem to be
the first candidates to use for our purpose, but we still need to narrow down and
adapt these methods to our specific case as will be explained in later sections.

2.2.6.1 Final Note

It is clear at this point that no previous published work was directed towards
explicitly interpreting or establishing trust for hyperspectral reconstruction CNN
models, or any spectral reconstruction models for that matter to the best of our
knowledge, which makes this work the first to touch on that area.
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3 Methodology and Results

In this chapter, we will discuss the various methods used to explain multiple CNN
hyperspectral reconstruction models. Each method, or test, focuses on acquiring a
certain type of information that reveals specific attributes about the model. We
will examine how the models differ from each other on a fundamental level and
how we can classify them into different types based on the most prominent varying
attributes.

Furthermore, we will try to find which fundamental information these models
use to perform the reconstruction. We will need to test the most ’basic’ of these
models, so that we find the main building blocks for analyzing more advanced
models. We will describe each interpretability method or test, why is it used, how
it was adapted for this case, what to expect from it, the results it yielded, and their
meaning to the models they were applied to.

Some of these tests are generally used like the ones mentioned in the literature
review and applied to investigate general information about the models (inves-
tigative methods). Others are new and specifically crafted to follow up on leads
provided by the investigative methods. We will start with the investigative general
methods, and move from there following the interpretations they provide to get as
much of a full picture as possible. This is why we decided to put both methods
and results grouped together for each method in one chapter, since we need the
results of one test to justify using the other and understand it better.

All of the methods were applied to a large variety of the most representative,
and highest performing hyperspectral reconstruction models in literature. These
include the following models listed in table 3.1 with their performance metrics
shown. The models are ordered based on their overall performance from lowest
performing (on the top) to highest performing (on the bottom). These metrics
were extracted by testing all the models on the NTIRE 2022 challenge dataset for
spectral recovery from RGB Arad et al. (2022), which is a benchmark for testing
such models. Throughout this work, we will be using that dataset as our main
testing target since most models in literature, and all the models discussed in this
work, were trained on that dataset. Information about the error metrics used in
table 3.1 are discussed in the next section. More information on the dataset is
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Table 3.1: Table depicting the hyperspectral reconstruction models tested and
used throughout this work ordered by their overall performance.

Model/Metric MRAE RMSE PSNR SAM

MultiScaleYan et al. (2018) 1.9465 0.1542 18.37 0.2548
HSCNN+Shi et al. (2018) 0.3814 0.0588 26.36 0.1042
HRNETZhao et al. (2020) 0.3476 0.0550 26.89 0.1014
HDNETHu et al. (2022) 0.2048 0.0317 32.13 0.0973
HINETChen et al. (2021) 0.2032 0.0303 32.51 0.0907
MSTCai et al. (2022b) 0.1772 0.0256 33.90 0.0909

MST++Cai et al. (2022b) 0.1645 0.0248 34.32 0.0835

introduced in the section after that.

3.1 Preparation
Before we begin with the tests, we discuss here some information about the error
metrics used, the dataset, and the models.

3.1.1 Error Metrics
There are many error metrics that can be calculated. We choose those most
common in literature and the most applicable for spectral error calculation. All
models tested (table 3.1) used at least 2 of these metrics in their published work.
These include the following metrics:

3.1.1.1 MRAE

Mean Relative Absolute Error (MRAE) is commonly used in hyperspectral recon-
struction model evaluation. It is simple to calculate and measures the average
distance between prediction values (predicted spectra in this case) and the ground
truth spectra. Then, it is divided by the average of the ground truth values. It
uses the following equation:
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MRAE =

(
1

N

) N∑
i=1

|Yi − Y ′
i |

|Yi|

Where N is the number of data points. In our case, it is the number of bands
in the reconstructed spectra. We choose this value to be 31 corresponding to 31
reconstructed bands. This is because it is the value used in most works in literature
and it is what all tested models have been trained on. Yi is the ground truth
value at band i and Y ′

i is the reconstructed value at band i. MRAE is sensitive to
extreme (outlier) and small values.

Of course, this metric, like all other metrics we will discuss calculates the error
for each spatial pixel (which has a spectra of 31 bands). That error is then averaged
across all pixels to get it for a full image, and then averaged over all images to get
the total error for the whole dataset leading to the final number shown in table 3.1.

3.1.1.2 RMSE

Root Mean Square Error (RMSE) is another popular metric that measures the
average squared difference between the true values and predictions. It is defined by
the following equation:

RMSE =

√√√√ N∑
i=1

(Yi − Y ′
i )

2

N

Where N, Yi, Y
′
i and i are the same as defined previously. RMSE is also sensitive

to outliers since it squares their values, but it is useful to evaluate the overall
magnitude of the error.

3.1.1.3 PSNR

Peak Signal-to-Noise Ratio (PSNR) is a metric commonly used to evaluate signals
in image and video processing applications and it is used as well to evaluate
hyperspectral reconstruction. It measures how much the peak signal amplitude is
higher than the noise signal which gives an idea of the reliability of the reconstructed
spectra compared to noise. It differs from other error metrics in that the high
PSNR value means a better signal (it is a performance metric) and it is quantified
in decibels (dB) since it is a unit-less ratio. It depends on the Mean Square Error
(MSE) to calculate the noise value and is defined by the following equation:

PSNR = 10 log

(
Max2

MSE

)
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MSE =
N∑
i=1

(Yi − Y ′
i )

2

N

Where Max is the largest possible value for the spectra (for normalized spectra
that value is 1). The rest of the symbols are the same as previously defined.

3.1.1.4 SAM

Spectral Angle Mapper (SAM) is one of the most useful metrics in spectral imaging
and remote sensing. This is because it measures the similarity (or more precisely
the dissimilarity) between two spectral signatures by calculating the angle between
them in spectral feature space. It is agnostic to the absolute values (which are
measured by the other error metrics) and is sensitive to the shape and signature of
the generated spectra signal. It is calculated using the following equation:

SAM = arccos

(
Y.Y ′

||Y || ∗ ||Y ′||

)
Where Y, Y ′ are the ground truth spectra and the reconstructed spectra respec-

tively. Their dot product is computed in the nominator to measure the similarity
between them and denominator is for normalization, then the arccos is taken to
compute the angle.

3.1.2 The Dataset
The dataset we will mainly use in this work is the NTIRE 2022 challenge dataset
Arad et al. (2022). This is because most RGB to hyperspectral models (including all
models to be tested in this work) were trained and tested on this dataset. It consists
of 1000 hyperspectral images and their RGB counterparts with 50 validation and 50
test set images. The hyperspectral images were captured using a 204 band Specim
IQ camera. The bands were resampled to 31 bands in the visible range (400 - 700
nm) with a 10 nm difference between each band and the next.

The RGB images were calculated from the hyperspectral ones using a camera
response function. That function implements a realistic noise model. The exposure
settings for the camera are done using an algorithm (defined by the authors and
available online). However, the parameters this algorithm uses are unknown to
the models using the dataset. The camera response function is shown in figure 3.1.
The error metrics used in the challenge evaluation were MRAE and RMSE which
we also use in our work. We mainly use the test set of 50 images since the models
were not trained on these images.
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Figure 3.1: Camera function adopted by the NTIRE 2022 dataset and challenge
Arad et al. (2022).

For some parts of the work we also use the reflectance dataset provided by
Foster et al. (2007). This is because for some parts we need a reflectance images
instead of the radiance images provided by NTIRE.

3.1.3 The Models
All models used were discussed in the literature review. The reason they were
chosen is based on the following criteria:

1. These models include the most distinguishable milestones in performance
in RGB to hyperspectral reconstruction. Meaning that on their release, some of
them provided state of the art performance for that category (benchmarked by
the NTIRE challenge from 2018 until 2022 Timofte et al. (2018), Lugmayr et al.
(2020), Arad et al. (2022)).

2. These models include a variety of the different architectures and structures,
including cascaded convolutions with residuals (like HSCNN+, HRNET, and
HINET). U-Net models (like MultiScale). Spatial and spectral attention blocks
(like HDNET). Full Spectral attention (like MST++).

3. Some of these models were made specifically for this task (like HSCNN+,
HRNET, MST++, and MultiScale). Others were adapted from other similar tasks
like Spatial super resolution (HINET) and SCI (MST and HDNET).

So, these models provide a large variety on different aspects which makes them
a good representation to RGB to hyperspectral reconstruction models in general.
They were also trained and tested on the same dataset and with same metrics we
are using which helps in providing a fair comparison.

45



Chapter 3 METHODOLOGY AND RESULTS

Now, we start with the tests which include: error maps, saliency maps, box
tests, activation maximizers, and parameters sensitivity.

3.2 Error Maps
Error maps are a useful tool that can serve as a starting point for our investigation.
They can show which spatial areas the models perform the best on, and on which
areas they perform the worst. They are spatial heat maps that represent the error
value at each spatial pixel calculated between the output spectra of the model and
the ground truth spectra at each spatial pixel.

We calculated error maps to help us understand where the models have weak-
nesses in the everyday images taken from the NTIRE 2022 dataset. It is important
to note that these are just examples since the whole dataset cannot be presented
here. They do however help establish patterns that can be clearly seen in the error
maps and that show consistency throughout different error metrics and different
models.

The error metrics used in these error maps are the same defined in the Error
Metrics section. All error metrics showed consistency in their resulting maps, so
we only show here the error maps for the SAM metric for abstraction. The issue
with error maps is that they are made for individual images and they need to be
examined as such. That takes a lot of time to examine a large dataset. However,
we show here only a few examples that give some insight on the particular areas
these models fail in particular in the spatial domain in figure 3.2. More error maps
can be found in the appendix.

The maps shown in figure 3.2 show a high intensity (white) at pixels with high
error and low intensity (black) at pixels with low error. The darker the error map,
the better the reconstruction quality. The error shown in these maps is Spectral
Angle Mapper (SAM), but the same behaviour was seen in all other error metrics
discussed before. These maps highlight some of the most prominent areas where
the models work and where they fail. The whole dataset was examined, and since
we cannot display all of it here we show a few examples that are sufficient to display
the main ideas these error maps tell us about the models. They were chosen because
they portray the general representation of looking at the whole dataset. Also, the
error maps were generated for all models, but we show here 3 models that represent
the rest since they are at the lower end of overall performance (HSCNN+), mid
performance (HDNET) and best performance (MST++).

It is perhaps more helpful for us to look at areas of failure first, since these
areas should have features that make it harder for the model to interpret them.
This makes them valuable in understanding how the model works. Looking at the
images, we can conclude the following points of failure:
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(a) Original. (b) HSCNN+. (c) HDNET. (d) MST++.

Figure 3.2: Example error maps for images from NTIRE for some of the
models showcasing a variety of scenes with various characteristics. The bottom
image shows a case of vague setup where errors are high. Some original images’
brightness was adjusted for better visualization. 47
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1. The most clear points of failure are pixels where the camera sensor saturates
like areas of relative high intensity that the dynamic range of the camera cannot
perceive. This can be most seen in the areas of overcast sky in the first and the
fourth image (from the top). These areas clearly have high error in all tested
models even the most well performing ones (like MST++). This is understandable
since the camera simply cannot get the color of these pixels due to saturation.
And if the network does not have context of it being ’saturated sky’ then it will
falsely assume it is some other object and mistake its color for something else. Also,
even if the network managed to figure out it is a saturated pixel, it cannot really
reconstruct its spectra with the little information a saturated pixel provides (and
the surrounding pixels).

2. Then we have edges especially thin edges of objects. This can be seen in all
images especially the second, third, and fifth image. These edges do not have a
lot of surrounding similar pixels around them which makes them very distinctive
and so, very difficult for the network to reconstruct. This is because there is little
information that can be gained from the pixels around them. Although this can be
fixed if the model could look at the image as a whole and find similar pixels at the
same edge. The reason this is not the case will be investigated and shown in the
next section which will provide explanation to that phenomena.

3. Also, clearly seen in the last image, all models struggle with images that
do not have a clear setting (outdoor/indoor) and that have very vague material.
Even to a human, the last image is challenging to interpret where it is. By only
seeing the curves and looking closely, one can see that it is an image printed on
a shirt, but it is very vague which material that is. Even if the material can be
deduced by the model, it will fail in detecting the illuminant since the setting is
very unclear. In the rest of the images the setting is mostly outdoors, which has
a common illuminant that the model is very familiar with (especially that most
NTIRE images are shot outdoors under the sun). So, the models are well trained
on outdoor illuminants, but we find it struggling with indoor images that have
much more varying illuminants and shadows.

More points of failure could be seen in the images but the ones listed above are
the most consistent across all models and all metrics so we will only list those for
now. From these 3 points, the first and the third do not show limitations of the
model as much as they show limitations of the setup. The models cannot perform
well (inherently) with saturated images and images with no clear setup. However,
they are worth pointing out since they give the user some guidelines on where to
use such models. They cannot be used if the image has any saturation and it is
preferred that they are used with outdoor clear set up images (unless the model
was trained on a different dataset that had another dominant setup).

As for the second point, it does show a limitation with the models that can help
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us understand it. Although these edge pixels do not have as much information as
large areas with the same pixels, the model could still be trained to figure out that
it is an edge. In fact, the performance with these edges can be seen to increase
from low end models (like HSCNN+) to high end models (like MST++) as seen in
figure 3.2. So, it is worth investigating how these models look at spatial features in
the image and why they fail especially with edges and especially on low end models.
For that, we have our next section that will use saliency maps to investigate how
these models treat spatial information in the input image.

3.3 Saliency Maps

3.3.1 Concept
As mentioned earlier, saliency maps provide an image depicting which parts of the
input image the model found most interesting (was activated the most by it). It is
a useful tool to establish what kind of features the model looks at when making
a certain decision on the input image, and so provides a good starting point for
investigating hyperspectral reconstruction networks.

From the large variety of saliency maps discussed before, many depend on
having a class (like Class Activation Maps or CAM methods). We cannot use such
methods since spectral reconstruction models are not classifiers, so they do not have
any output class. Other methods like deconvolution and back propagation Zeiler
and Fergus (2014); Simonyan et al. (2013) could be applied in our case since they
do not require a class. They instead back track the convolutions from the output
back to the input regardless what form the output is as along as it has gradients
(an output of a convolution layer). This is the case in hyperspectral reconstruction
models, where usually the last layer is a n-kernel convolutional layer that maps
its input into n feature maps representing the n bands of the hyperspectral image.
In the dominant number of works, n is taken to be 31 bands, but that number is
more of a common practice and not a requirement.

From these methods left, the choice was made for guided back-propagation
Springenberg et al. (2014). This is because it provides the most fine resolution
saliency maps from the methods applicable to use (discussed in the literature review
section). Figure 3.3 shows some examples of applying guided back-propagation
on one of the models (HSCNN+). For other kinds of models like classification
networks, this is what a saliency map would look like. It highlights important parts,
but it would focus on the features that made the network choose a certain output.

However, in this case, we do not have a firm expectation that the reconstruction
CNN will focus on the eyes and ears of a dog for example to classify a dog, or
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Figure 3.3: Examples of Guided back-propagation applied directly to HSCNN+.

same cats because it is not a classifier. Instead, the saliency is highlighting various
parts of the image since what we see is a composite of saliencies taken on each
reconstructed pixel. This means that regular saliency maps (like the ones shown in
figure 3.3) do not portray the intended meaning for reconstruction CNNs (or any
regression or transformer network for that matter). This is because these models
do not just make one decision for each image, but they reconstruct a spectra for
each pixel.

Although some pixels activate the network more than others, as can be seen
by the figure, such maps do not give us the saliency for the decision (in this case
spectra) made for each pixel. Just as saliency maps for classification networks look
at the saliency for each class, in reconstruction networks, we need to look at the
saliency for each reconstructed spectra (each spatial pixel).

Now, each reconstructed spectra consists of a Single Spatial P ixel × n bands
represented by the feature maps of the output. So, to get a meaningful saliency
map, we need to look at the saliency of each single spatial pixel back-propagated
all the way from the output and projected back into the input. This carries a large
resemblance to the concept of the receptive field, but the subtle difference is that
this would yield the salient pixels within the global receptive field of the network.
That tells us which spatial pixels of the input were important in reconstructing the
spectra of that single pixel on the output, which provides more meaningful saliency
maps for this case.

3.3.2 Method
This was applied by zeroing out all spatial pixels in the output feature maps except
for one (the target pixel), leaving only 31 non-zero values (the output spectra of
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the target pixel). Then applying guided back-propagation, and building a saliency
map projected on the input. This was done for each model and each image in
the NTIRE 2022 dataset (resized to 224 x 224). The target pixels were chosen
randomly (10 random pixels for each of the 50 test images), but then centered at
the middle so the total effect of all saliencies of all pixels of all images can be seen.
The saliency maps were then averaged to get one saliency map for each model.
The pixels chosen were random but on the condition that they are no less than 50
pixels away from the edge of the image.

Original Guided Back-propagation was modified by customizing it to each model.
This is because each model had a different structure and non-typical activation
functions (like Gelu in MST++). So, we made sure the flow of back-propagation
followed the right paths to the input by manually examining all layers and activation
functions in each model, then modifying the path accordingly.

3.3.3 Results
The results can be seen in figures 3.4, 3.5, and 3.6 where each saliency map is
displayed as a flat 2D gray image image showing the saliency area for local models
in figures 3.4 and 3.5. However, for global saliency models (3.6), we chose to keep a
hue graded image and keep the full size of the image to notice the saliency spread
around the entire image. It will be clear why that is needed soon. In all images,
the saliency values are normalized to a 0 to 1 range to make it easier to follow and
compare. The x and y axis are in pixels around the target pixel and the saliency
area.

As in the figures, we found that models are best divided into 3 types depending
on the spatial spread of their saliency. There are local, partially local, and global
models:

3.3.4 Local Models
In figure 3.4, the saliency maps for the models HSCNN+ and HRNET are shown.
It can be seen that these maps are highly local. The observed area is specific
around the target pixel (here centered on the middle of the image), which seems
to be simply the receptive field of the network. These models seem to make no
attempt to expand the receptive field (and consequently the saliency) of the model
to a global reach around the image, or to capture long range dependencies.

It can also be seen from the maps that the saliency is uniform across all the
observed area, which means that the model treats all pixels in the observed area as
equally valuable and makes no discrimination based on the location of the observed
pixel or its proximity to the target pixel (as long as it is within the observed area).
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(a) HSCNN+ model random saliency
map.

(b) HRNET model random saliency
map.

Figure 3.4: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed local saliency, for randomly chosen pixels (centered
in the middle for convenience) averaged over all the NTIRE 2022 images.

This means that these models look at this specific local area around the target
pixel when performing the reconstruction of that target pixel. Of course, this is
quite limiting to the amount of information and features the model actually uses.
This is because looking at such a limited area might hinder the reconstruction
process or at least limit its potential.

However, although these models are of the least performing on our list of tested
models, they still seem to perform relatively well. They outperform all non-CNN
models and even outperform some old CNN models (like Arad and Ben-Shahar
(2016); Galliani et al. (2017)), which was shown by the authors in the papers
introducing these models Shi et al. (2018); Zhao et al. (2020). This means that
although the area observed by the model is limited, it is (in most cases) sufficient
to reconstruct the spectra.

Also, this aligns with the results shown by the error maps. More specifically,
the failure to reconstruct pixels at edges. Since these models can only look at
narrow areas, they cannot have enough information if the pixel is an edge, since
then it will even have less information in that area. That is why edge pixels have
a relatively low reconstruction accuracy especially from these 2 models that have
completely local saliency.

Most importantly, this also means that there are features in this limited area
that the models can utilize to reconstruct that spectra. Even without looking
at the rest of the image, these features seem to provide enough information for
reconstruction. This is counter to the way humans would perform reconstruction
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for example. When we try to figure out the material of an object, we usually do so
by knowing the context and full picture. We do not look at a very narrow area
around the target. So, there are valuable features that the model can detect in
these limited areas. Finding these features, and how these models use them is
important to our task.

3.3.5 Partially Local Models
That said, if we look at figure 3.5, we can see that some models (like the MultiScale
and the HINET models) have different saliencies that reach slightly more into the
image than local models. Also, The saliency of these models is not uniform, since
it can be seen that for HINET especially, the further the observed pixel is from the
target pixel, the less saliency it has in a gradual decrease that starts towards the
edge of the observed area. A similar -but less spread out- behaviour can be seen
for the MultiScale network.

The area (in pixels) of the observed pixels for all the models can be seen in
table 3.2. That area was calculated after thresholding the saliency values above 0.1
after performing the 0 to 1 normalization mentioned before. It can be seen (looking
at the ’Random’ column of the table only for now) that partially local models have
higher saliency area than completely local models. This means including more
features in the reconstruction process.

This also corresponds with the architectures of these models. For example, the
MultiScale network is basically a U-Net with residuals, which theoretically allows it
to have a receptive field larger than the observed area. However, the parts actually
used from that large field are relatively small (see figure 3.5a) which means that the
network is not using its full potential in extracting and using global dependencies.

3.3.6 Global models
In figure 3.6, global models are shown where the saliency is global across most or all
of the image. This means that the model uses all the image in the reconstruction
of each pixel, and uses long range dependencies, allowing it to capture information
across a larger area and collect more features that could be beneficial to the
reconstruction. This is why we chose to keep the image in its full size (224 x 224)
in this figure to show these global saliencies.

However, it is still giving a significantly higher saliency to the area surrounding
the target pixel, although that area is a bit smaller. These models seem to find a
compromise between giving importance to the area around the target pixel and
other areas, while also maintaining a gradual decrease in saliency the further a
pixel is from the target.
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(a) MultiScale model random saliency
map.

(b) HINET model random saliency
map.

Figure 3.5: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed partially local saliency, for randomly chosen pixels
(centered in the middle for convenience) averaged over all the NTIRE 2022
images.

It is however worth discussing each model of this category separately since
although they all possess global saliency, they have very different ways of using it.
For example, although HDNET has saliency reaching to the edges of the image,
that saliency is not at all uniform or even consistent across the image. As can be
seen in 3.6a. It has peaks spread in various locations around the image. We cannot
deduce direct correlation between these locations and specific features here because
this saliency map is an average of all saliency maps of the whole dataset, so it is
not limited to specific features. It could also be that these saliencies spread around
the image are more the result of the network behaviour than a reaction to specific
image features.

Looking back at the performance metrics, MST and MST++ perform the best
relative to all other models. This cannot be directly connected to them having
large saliency since HDNET also has a large saliency but does not perform as well.
However, as we mentioned, HDNET’s saliency is highly random compared to the
more consistent one in MST and MST++.

This aligns with the architecture of HDNET (discussed before) which includes
both spatial and spectral attention blocks. This allows for long range dependencies
but not as much as the full spectral blocks used in MST and MST++ since it only
contributes to half the attention. Also, HDNET has the smallest saliency point
(saliency just around the target pixel) in all tested models. It covers a relatively
small area and decreases almost right after the target pixel. It can also be seen
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(a) HDNET random saliency map. (b) MST random saliency map.

(c) MST++ random saliency map.

Figure 3.6: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed global saliency for randomly chosen pixels (centered
in the middle for convenience) averaged over all the NTIRE 2022 images. Full
size images are displayed to show global saliency.

that MST++ has a significantly stronger global saliency than any other model (it
is also uniform), which correlates also with its high performance. It is a similar
case with MST but on a smaller scale.

3.3.7 Edge saliency
Since error maps provided the insight that all models are significantly limited in
areas of the image with edges, it is worth exploring the saliency at these areas
specifically to check if the models (any of the models) react to the existence of
an edge in the image considering this is where the models mostly fail in the
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Table 3.2: Table depicting the area of saliency (observed area) in pixels with
a threshold of 0.1 (after 0 to 1 normalization) for all tested models on multiple
types of target pixels.

Model/Target Ran-
dom

Edge Flat Image
Edge

MultiScale 1316 1348 1326 993
HSCNN+ 627 654 634 583
HRNET 649 683 671 579
HDNET 733 741 727 555
HINET 2123 2218 2101 1504
MST 2227 2241 2236 1563

MST++ 50081 50127 50097 35733

reconstruction. To test that, we first used a canny edge filter to detect strong edge
pixels in the image as shown in figure 3.7. A high threshold was used to get the
strongest edges only (larger than 0.6 for normalized values between 0 and 1). Then,
we again used the modified guided back-propagation (same as before) to generate
saliency maps but this time only for those edge pixels (randomly chosen from the
set of edge pixels).

Results for that are shown in figures 3.8, 3.9 3.10. As can been in the figures,
there is no real distinct difference between saliency maps for edge pixels and saliency
maps for randomly chosen pixels (previously discussed). None of the networks
seem to recognize edge pixels or treat them differently than any other pixel. As
mentioned before, there is an inherent difficulty in reconstructing spectra for edge
pixels. The aim of this test was to check if any of the networks tackles this by
extending (or compressing) the range of the observed area when met with an edge.

However, this does not seem to be the case for randomly chosen edge pixels.
This does not exclude the possibility that the network can shape its saliency
depending on the texture and features around the target pixel, since these images
are pooled over an entire dataset and do not show individual images and their
detailed textures.

Also, table 3.3 shows the Spearman correlation between saliency maps targeted
at randomly chosen pixels with edge pixels (first column). It can be seen that the
correlation (which has a maximum of 1 and a minimum of 0) is very high between
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(a) Original image. (b) Edges detected.

Figure 3.7: Detected edges using Canny edge filter to isolate them and generate
their saliency maps.

(a) HSCNN+ model edge saliency map. (b) HRNET model edge saliency map.

Figure 3.8: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed local saliency, for edge pixels (centered in the middle
for convenience) averaged over all the NTIRE 2022 images.

the two. This numerically supports and quantifies that these models do not have
any different saliencies for edge pixels. Further numerical support is the area of
these saliencies shown in table 3.2 (under Edge and Flat columns) which show very
similar areas to random pixels, although they are slightly larger.
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(a) MultiScale edge saliency map. (b) HINET model edge saliency map.

Figure 3.9: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed partially local saliency, for edge pixels (centered in
the middle for convenience) averaged over all the NTIRE 2022 images.

Table 3.3: Table depicting Spearman’s correlation between saliency maps targeted
at randomly chosen pixels and edge pixels and pixels falling on the image edge
for all tested models.

Model Random/Edge Random/Image Edge

MultiScale 0.951 0.896
HSCNN+ 0.994 0.986
HRNET 0.998 0.985
HDNET 0.975 0.789
HINET 0.990 0.860
MST 0.976 0.735

MST++ 0.960 0.873

3.3.8 Image Edge saliency
One last possible candidate that could alter the saliency is the edge of the image
itself (rather than the edges of objects in the image like the previous section).
This comes from the suspicion that the networks might (through training) develop
awareness that such pixels have inherently less information since almost half the
typical observed area is not there. Another possibility is that the models behave
differently with pixels falling on the very edge of the image due to architecture
characteristics specific to the model.
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(a) HDNET edge saliency map. (b) MST edge saliency map.

(c) MST++ edge saliency map.

Figure 3.10: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed global saliency, in flat and 3D for edge pixels (full
size images are displayed to show global saliency) averaged over all the NTIRE
2022 images.

Either way, it is worth studying the saliencies at such pixels. We first point
out that all pixels in the previous sub sections (random and object edge pixels)
were chosen on the condition that they are no less than 50 pixels away from the
image edge to make sure they are not part of the image edge category so we can
study those separately here. In this subsection, we present saliency maps for pixels
randomly chosen but with the condition that they fall on the very edge of the
image (for example: pixel 100, 223 for an image of size 224 x 224). Figures 3.11,
3.12, and 3.13 show the results for that.

If the models would have the same saliency for image edge pixels as random or
object edge pixels, we would expect them to have half the saliency on the edges of
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(a) HSCNN+ image edge saliency map. (b) HRNET image edge saliency map.

Figure 3.11: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed local saliency, for image edge pixels (centered in
the middle for convenience) averaged over all the NTIRE 2022 images.

(a) MultiScale image edge saliency. (b) HINET image edge saliency map.

Figure 3.12: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed partially local saliency, for image edge pixels
(centered in the middle for convenience) averaged over all the NTIRE 2022
images.

the image (half the saliency of a normal pixel).
This is the case in 3.11a for the HSCNN+ model. However, this is not the case

for all models, since it can be seen that most other models have more-than-half the
typical saliency observed in random pixels. This is quantified in table 3.2 under
the image edge column where it can be seen that the area is more than half that
of the random or edge or flat pixels. This can also be seen in the images shown
although it is not very clear since the change is subtle.

However, it is clear for the MultiScale and the HINET models in figure 3.12
where the saliency is not merely halved but ’lifted’ further inside the image. Table
3.3 shows also that the Spearman correlation with random pixels is less than that
of edge pixels and with significant difference for some models like HDNET, HINET,
MST, and MST++. This means there is also a difference in the shape of the
saliency when the pixel is on the edge of the image (it gets slightly ’squashed’) and
expands which allows it to get more information from the image than it would with
a typical halved saliency.
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(a) HDNET image edge saliency. (b) MST image edge saliency.

(c) MST++ image edge saliency.

Figure 3.13: Saliency maps generated using modified Guided Back-Propagation
for tested models that showed global saliency, in flat and 3D for image edge
pixels (full size images are displayed to show global saliency) averaged over all
the NTIRE 2022 images.

However, although this change is noticeable and consistent for all models (except
HSCNN+), it is not large especially to some models, but it still suggests the models’
capability to adjust their saliency in some cases. The point of these investigations
is to figure out if these models treat any parts of the image differently, and from
the results, we can see that they do that for the edge of the image but not the
edges of objects within the image. Applying a similar change to object edge pixels
could help the network tackle the issue of bad performance for such pixels and
potentially improve the model’s performance.
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3.3.9 Single Image Analysis
So far, we looked at pooled average saliencies across an entire dataset. This was
important to give validity to the data and show patterns emerging from all the
dataset. However, it does not allow us to observe detailed shapes of these saliencies
and how they work on particular images. This is what this section is about.

We look at figure 3.14, which shows some examples of individual saliency maps
(for single images). The top examples are for HINET and it can be seen how the
saliency is adapting to the texture and information surrounding the target pixel
(here it is x = 100, y = 200). The image with the snake shows how the saliency
follows the body of the snake. The same can be seen for the body of the cat in the
second image. In the spider image, the pixel does not coincide any specific body or
texture (it is on the background) so it seems to have a more uniform round saliency.
The same behaviour for HINET was also noticed in HDNET.

As for HSCNN+ (middle image), the saliency is almost constant regardless
of the features or the object around the target pixel. It is varying very mildly
between the 3 examples (the same applies to all examples). This highlights that
some models can adapt their saliency while others cannot. Similar to HSCNN+,
MultiScale and HRNET also have constant saliencies.

Finally, for MST++ (last row), the saliency is global and seems to also follow
certain objects (like the body of the snake and the spider). That gives the model
the ability to choose collected features from the most prominent objects in the
image. A similar behaviour was also seen in MST (but on a smaller scale).

3.3.10 Test Conclusion
Completely local models depend fully on that area surrounding the target pixel.
Also, all models have the largest saliency in that area. Because of that, it can be
concluded that to at least all the tested models, this area is key to perform the
reconstruction. The size of that area is clearly reflected on the performance of these
models. Furthermore, the shape of that area (uniform or gradually decreasing)
seems to also differ from one model to another while also affecting the performance.

Having global saliency around the entire image in a uniform manner seems to
help the model perform better, making state of the art models like MST++. For
example, the only modification that MST++ has over MST’s architecture, was to
increase the feature extraction in long range dependencies Cai et al. (2022b). This
highlights the importance of extracting global information from the image.

However, it is important to note that to merely perform reconstruction, the
model does not need such long range dependencies. Completely local models can
perform well without it, which means that the fundamental information strictly
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Figure 3.14: Examples of saliency maps on a single pixel (x = 100, y = 200)
for single images for HINET (top), HSCNN+ (mid), and MST++ (bottom).

required for reconstruction lies in that limited local area. Of course, here we are
talking about what is required from the models. Instead, it could be that a model
is using wrong information (or inherently limited information) to do its task, which
would mean that the model cannot be trusted to perform well in all cases. However,
we need to investigate what kind of information that is and how the model uses
it to be able to judge its validity. This is part of what this work will continue to
investigate.

As for edges, there does not seem to be any change in the way models treat
edges of objects in the image. However, the models do expand the saliency if the
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pixel is on the edge of the image. The shape of the saliency also changes in that
case. Looking at saliency maps for individual images shows that some models
follow defined features in the image, while others simply have a box or a circle
highlighting the observed area.

3.4 Box Tests

3.4.1 Concept
Now that it is established that hyperspectral reconstruction models mostly depend
on a local area around the target pixel, we need to identify which parts of that
local area it is using. And what kind of features it is using within that area. For
example, although the saliency map shows that the model uses that area, does that
mean that it depends on all of that area? Or does it only need parts of it and uses
the rest to gain more accuracy (like global models but on a different scale)? Also,
is it actually using the features and information around the target pixel, and if so,
to what extent? To answer these questions we start with what we call the Box
Tests. These tests are of a perturbation and adversarial nature since they limit and
control the amount of information available to the model. Here are the 3 types
of Box tests and how they could help gain a better understanding of what these
models actually use and to what extent:

The first looks at a certain pixel in the image (being reconstructed, target
pixel). And removes the information around that pixel (with a black box). Then
gradually increases the area around it giving the model more information about the
surroundings of the target pixel, meanwhile monitoring the reconstruction error of
that target pixel. Figure 3.15a shows the starting point of that test. Only a small
area of 5 x 5 pixels is provided while the rest of the observed area is a black box.
Then, the area available is increased gradually until we provide full information
(normal image) similar to that in figure 3.15b with a large box.

The second looks at a certain pixel in the image (being reconstructed, target
pixel). And removes the information around that pixel (with a black box). Then
gradually increases the area around it. However, instead of giving it the real image
data, it replicates the same pixel in the surrounding area (painting with the same
value, a box around the pixel), meanwhile monitoring the reconstruction error of
that target pixel. Figure 3.15c shows the starting point of that test. Only a small
area of 5 x 5 pixels is provided while the rest of the observed area is a black box.
Then, the area around the target pixel is replaced with replicas of the target pixel
(in the example it is a reddish color) until we reach a large replicated box similar
to that in figure 3.15d with a large box.

64



Box Tests 3.4

The third looks at a certain pixel in the image (being reconstructed, target
pixel). It does not remove any data, but replicates the same pixel in the surrounding
area (painting with the same value, a box around the pixel). Basically sacrificing
real image data with fake replicas of the target pixel and increasing it gradually,
meanwhile monitoring the reconstruction error of that target pixel. Figure 3.15c
shows the starting point of that test. Only a small area of 5 x 5 pixels has the
replicas so it starts with an image similar to the real image. Then, the area around
the target pixel is replaced with replicas of the target pixel (in the example it is a
reddish color) until we reach a large replicated box similar to that in figure 3.15d
with a large box.

The idea is to compare these tests relative to each other and how the model
performs on each one. If the model uses features in the observed area like shapes
and grain, it needs the real image data to perform well. In that case test 1 should
witness an increase in performance with more area given since it gives more of the
real image data the larger the box is (replaces black pixels with real image data
with increased box size). However, test 3 should witness a decrease in performance
with more area given since it replaces real image data with replicas of the target
pixel. This is the expected and most probable case and we call it Case A.

The reason we chose to replace real image data with replicas of the target pixel
is to test if the models can make use of that color (that of the target pixel) in the
reconstruction and how much does it depend on it compared to other features in
the surroundings of the target pixel.

This is because the target pixel’s RGB data offers the closest estimate on the
real RGB of the target pixel. If the model simply learns a mapping function
between the RGB values (after color correction) and the spectra, then it could use
that RGB value to map it to a spectra. If that was the case, all the model has to
do is estimate the illuminant and discard it, then it will directly map the clean
RGB values of the target pixel to a spectra it learned. So, it could be that there is
heavy dependency on that target pixel RGB value, and we wanted to use these
tests to validate that as well (two birds with one stone).

This is where test 2 comes in play. It replaces black pixels with replicas
of the target pixel, so it would evaluate how well can the model perform with
only that RGB value, and provide insight on whether the model needs a lot of
observed-area-features and shapes or not.

If the model uses shapes and features, but also uses the RGB value of the target
pixel, then one would expect test 2 to witness an increase in performance that is
proportional to how much the model depends on that RGB value. We call this
Case A1 since it adds on Case A and is not mutually exclusive with it.

If it does not depend on it at all, then it should not have any increase in
performance since that value will be equivalent to a black pixel. We call this Case
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(a) Test 1 small box. (b) Test 1 Large box.

(c) Test 2 small box. (d) Test 2 Large box.

(e) Test 3 small box. (f) Test 3 Large box.

Figure 3.15: Examples showing the images fed to the models in each one of the
box tests and their varying size from small to large.
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(a) Test 1 HRNET. (b) Test 1 HSCNN+.

(c) Test 1 MST++.

Figure 3.16: Results of test 1 for some of the models.

A2. If the model does not depend on features but only depends on the (RGB+color
correction) and then direct mapping, then test 3 would witness and increase in
performance for regular images that have true RGB values. This is Case B which
is a highly improbable case, but excluding it goes a long way to gain some level of
assurance that we are on the right track.

We applied these tests with all error metrics mentioned before and on all models.
We performed the tests on 10 random target pixels for each image and on all the
images of the NTIRE 2022 dataset. Each one of these 10 pixels in each image had
a box drawn around it with size of 5x5 (smallest) to 45x45 (largest) with steps of 5
making a total of 9 boxes each with a different size for each pixel for each image
for each test in each model. Clearly this was a computationally extensive process
which was expected from a perturbation based method.

The reason for choosing size 5 as a minimum is simply because starting with 0
or 1 would give a very high error in tests 1 and 2, and would be redundant in test
3 (because it would be a normal unperturbed image). As for the upper size of 45,
it was chosen from the saliency maps discussed before since that was the average
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(a) Test 2 HRNET. (b) Test 2 HSCNN+.

(c) Test 2 MST++.

Figure 3.17: Results of test 2 for some of the models.

width of the saliency area. Also, it was noticed that all tests saturate after that
width which is natural since the model only uses that area anyway. All models
were tested but we show here 3 of them only for abstraction since the rest had the
same patterns and behaviour just with varying scales depending on the model’s
performance which was already established. All error metrics had similar results so
we only show SAM here as a representative to the rest and for abstraction.

3.4.2 Results
Now, looking at the results for test 1 shown in figure 3.16, we can see the SAM error
decreases with the increase of the box size which is normal because it gets more
information. However, the interesting part is the scale at which that error drops.
The most significant error drop happens between size 0 and 5 (not shown in the
images because it is trivial) but the second most significant drop happens between
sizes 5 and 10 pixels especially in HSCNN+. After that, the error drops gradually.
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(a) Test 3 HRNET. (b) Test 3 HSCNN+.

(c) Test 3 MST++.

Figure 3.18: Results of test 3 for some of the models.

This implies an even smaller area of high importance to the HSCNN’s performance
which is the area of approximately 10x10 around the target pixel. That is where
most of the model’s information comes from even though it is looking at the whole
saliency/observed 45x45 area. However, this only applies to HSCNN+.

Looking at test 3 in figure 3.18, we can exclude case B since the models show
consistent increase in error with more replicas of the RGB value on the cost of
real image data and features. So now it is either case A1 or A2 depending on the
outcome of test 2. Looking at test 2 shown in figure 3.17, we can see there is first
a decrease in error that varies between each model and the other, then the error
increases again.

This preliminary decrease in error shows that the model does use the RGB
value to some extent. The increase in error after acts as further proof that the
model depends on the surrounding features as well (when the features get to the
point where they could be misleading, the error started to increase again). However,
both the increase and the decrease of the error is very slight and cannot be said to
be significant, but the pattern is quite consistent across all models and all images.
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So, it at least shows that the models use the RGB value of the target pixel as well
as the features in the observed area surrounding it, both to some extent in the
reconstruction process (case A1).

3.4.3 Test Conclusion
This is reassuring since it shows that the models use feature information of both
colors as well as textures/shapes in the observed area surrounding the target pixel.
However, it still does not uncover the way these features are used. Also, these tests
quantify how the error changes with increased information given to the models.
Although there is a pattern clear in the results, the significance of that error change
is not established here. This is because the change in that error seems to be highly
gradual and not highly consistent or significant. More work has to be done here on
establishing how significant that change in the error really is.

3.5 Activation Maximizers

3.5.1 Concept
As mentioned in the literature review section, many works used the concept of
feature visualization, which aims to visualize what each part of the model is
looking for in the input. That ’part’ of the model could be a single neuron, or a
group of neurons, or a whole channel, or a full layer, or any combination of those.
That combination is known as objective. That objective is the target of feature
visualization in a sense that the visualization will encompass not only what this
target is doing, but how is that target is being used in the context of the whole
network. For example, if the objective is a kernel, feature visualization tells us how
the network uses that kernel in its place from the start of the network up to that
kernel.

Details regarding how they work were discussed in the literature review. However,
we also discussed that these methods were directed towards classification networks.
With regular classification networks that work on regular images and classify for
example the animal showing in the picture between cat or dog. The network (given
that it is trained well and working properly) would look for features unique for cats
and others unique for dogs and try to classify the image based on these features.
So, if we apply feature visualization in that case, we would expect the results to
be visual features understandable to us humans. This is because the features the
network would be looking for in that case are visually identifiable, like the ears
or eyes of a dog, or a certain visual pattern or texture. This is shown in figure
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3.19. The yellow box shows the workflow of feature visualization introduced in
Olah et al. (2017) being applied to an objective (in this case a kernel in a layer)
in a classification network (GoogleNet, layer mixed4a kernel 143). The input is a
noise image that was optimized iteratively to activate that part of the network.
The output of that optimization provides meaningful results (what seems to be
eyes and dog fur) meaning that this part of the network is specialized in detecting
dog eyes and fur and any patterns that look like it. This is feature visualization.
Now, this was later used as a building block for activation atlases that identify
what each part of the network is specialized in detecting. This is shown in the top
part of figure 3.19.

However, if we apply the same procedure and concept directly to a hyperspectral
reconstruction network, what would we expect the features to be? It cannot be
showing a visual pattern or an identifiable object like the eye of a cat, simply
because the network is agnostic to such features. The process of reconstruction
does not depend on such features as we so far established. It even depends (for local
baseline models) on local features around the reconstructed pixel. To verify that,
the same feature visualization procedure used in Olah et al. (2017) was applied
to the 64 kernels of some of the layers of the hyperspectral models tested. This
is shown in the red box of figure 3.19. It can be seen that the output does not
provide much intelligible information. It changes the colors slightly but the rest
is still very noisy and hard to understand. All other results for other models and
other layers are very similar. Just different random colors like the ones shown in
the mid right part of the figure.

It can be seen that no clear features can be discerned using that method. This
is to be expected since we expect these networks to look for much more subtle and
local features like color, texture, shade. Also, for each pixel reconstruction, only
the observed area around it is processed.

We can see that various colors are already showing in the feature visualization
output, because a feature like color and hue is easily discernible, but not much else
can be seen, and even these colors are very vague and not meaningful since they do
not have any context. A kernel can be looking for the color green for example, but
we cannot know the object or feature that color is for. Is it the color of a particular
object, or the illuminant, or just a general sensitivity to the color green?

To deal with that issue, we propose a modification to the procedure followed
by Olah et al. (2017). First, instead of having the input as a randomly generated
noise image, we propose the input to be an actual image. An RGB image from
the NTIRE 2022 test set. This makes sure that whatever changes the optimization
process applies to the images will have a contextual meaning that can be understood
by us humans. This is because it is not generating a complete feature visualization,
but instead modifying an image to have the most interesting features highlighted

71



Chapter 3 METHODOLOGY AND RESULTS

while maintaining the context of the image.

This is not to be confused with activation atlases which also use a real input
image. However, in activation atlases, that input image is only studied using
generated feature visualization building blocks as seen in the top part of the
diagram. In our case, we use that image as the input to the iterative optimization
process itself.

Second, instead of letting the optimization process reach saturation (finding the
image with the maximum activation), we restrict the optimization with a special
type of regularization. Regularization is generally used in feature visualization
(discussed in the literature review) and a lot of work was done to come up with
good regularisation methods to make sure the image does not turn into pure high
frequency patterns.

However, the proposed regularization is different than the ones mentioned
previously since it is directed towards keeping part of the features of the original
image intact. The idea is to keep the parts of the original image that are already
interesting to the objective (it is activated by them) while modifying the parts that
are not as interesting (the objective was not activated by them).

That way, we can find new features while maintaining the context provided
by the original image. This is seen in the bottom part of figure 3.19 where our
method was applied on the 10th kernel of the 5th and 15th blocks (top and bottom
blue boxes respectively) of the HSCNN+ model. These blocks consist of multiple
convolutional layers, so here we are applying the method to the last convolutional
layer of each block. There is a total of 30 blocks in HSCNN+. We can see how more
information can be gained than with feature visualization since we have context
information maintained from the original image. We can see that backgrounds are
replaced meaning they are not the main objective of these kernels. Also, the dog
and the cat are colored differently than the rest of the image, meaning a sensitivity
to these colors by these kernels. Grass is replaced by a bluish hue by the block 5
kernel (top) but kept intact by the block 15 kernel (bottom). Eventually, most
kernels in a layer (here 64 kernels) are collected together in a collage to showcase
that layer’s features (the collage on the bottom right part of the figure).

Simply put: for each kernel, parts of the image that are ’interesting’ meaning
that they activate that kernel, are kept intact. Meanwhile, parts of the image that
are not ’interesting’ meaning that they do not activate that kernel strongly, are
replaced by a color or a pattern or a shape that does.

Regularization is done by ensuring that the overall ’modification’ to the original
image does not exceed a threshold α. Overall modification is calculated by the
following simple equation:
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Feature Visualization on a
classification model

(GoogleNet, layer mixed4a
kernel 143) (Olah et al. (2017))

Noise input Informative
output Feature

Feature Visualization on a
RGB to HS model (HSCNN+,

block 5 kernel 10)

Noise input Output Feature
is not very
informative

Activation Atlases use feature
visualization as a building block

(Carter et al. (2019))

Not very informative, no
context information

Image input

Image input

Activation Maximizers on a
RGB to HS model (HSCNN+,

block 5 kernel 10)

Activation Maximizers on a
RGB to HS model (HSCNN+,

block 15 kernel 10)

Sensitivity to different
hues for objects and

backgrounds
Background
segmented

Output features have context information,
patterns, colors, background, segmentation

Figure 3.19: Difference between feature visualization Olah et al. (2017), Acti-
vation Atlases Carter et al. (2019), and the proposed method (Activation Maxi-
mizers).
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Where Oi,Mi is the original image and the modified image respectively (both
RGB with normalized values of 0 to 1), flattened into a single dimension array of
length N and α is the threshold for modification. This equation merely calculates
the average difference between the original and the modified image and makes sure
it does not exceed α which was found to produce best results if it was 0.6.

Furthermore, the regularization method used in Montavon et al. (2018) was also
used on the modified pixels. It applies general transformations to the generated
images (rotation, scaling, etc) and makes sure the generated images are robust to
these effects. In this case however, these transformations are not applied to the
full generated image (original + modified) but to the modified parts only since we
would like to keep the original parts visible and not transformed beyond recognition.
This particular method was used because it showed the best results for methods
that do not require priors or training as shown by works that evaluated such
methods Carter et al. (2019); Olah et al. (2018, 2017). This is a new method that
we call Activation Maximizers, since it focuses on maximizing specific activations
for specific objectives under certain regularization rules.

3.5.2 How it was applied
To apply such visualization, feature extraction was used. Feature extractors are
segments of the main network made in a way that the output of a feature extractor
is the activation of a certain layer of the main network. For example, if a network
has 5 convolutional layers, and we need to peek into the output of the 3rd layer,
we construct a feature extractor that has replicas of the first 3 layers and monitor
its output. An example of feature extractors are shown in figure 3.21.

Of course, it is not that simple with complex networks that have many residuals
and skip connections. Choosing the right layer that has complete and meaningful
information is also an important part of the process since many layers in complex
networks depend on concatenation and could only provide the results of other
layers in other parts of the network.

Also, although the concept of feature extractors may sound similar to the
concept of hooks which is available in deep learning platforms like Pytorch, it is not
the same. Hooks merely extract the activation of a layer in a network while that
network is being run. However, that output activation cannot be back-propagated
directly through the sub-network back to the input in multiple iterations. This
is because the activations do not change the architecture and maintains one big
network and the calculation graph is constructed across the whole network.
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Figure 3.20: Hooks applied to a model. The model keeps its original graph.

If we merely want to extract activations, then hooks would be perfect since
they are fast and do not require a lot of memory (we will use hooks in other parts
of this work where we extract activations). However, in this case, we also want
to optimize the input based on the extracted activations of each monitored layer.
So, each feature extractor will have different weights than the others at the same
location because the values will pass through different paths. That means that
we need a separate calculation graph for each feature extractor which holds these
weights and computes the back-propagation back to the input for each iteration.

Figures 3.20 and 3.21 show the difference between hooks and feature extractors
(on an arbitrary example model) and how only feature extractors (acting as sub-
models) are capable of holding a separate computational graph that allows for
optimization of the input based on the output of a particular layer from the main
model.

All models tested were already trained on NTIRE and their weights are preserved
(frozen) throughout the whole process. After defining multiple feature extractors
from the model on the desired locations, and making sure they keep the trained
weights the model had, we run each of the images (also from NTIRE but from the
test set) on each of the feature extractors.

We extract the output of that feature extractor, and we use gradient ascent
to maximize that output. This output is the activation of a certain kernel in a
certain layer averaged over all the pixels in the input. Then, we back-propagate
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Figure 3.21: Feature Extractors as sub-models each with a different graph.

back to the input and use a learning rate of 1 to adjust the input based on the
activation. We repeat the process for 50 iterations while all the time applying the
regularization mentioned before.

This is applied to each of the 64 kernels in each desired layer (the objective) for
each image. The result is 64 variations of each of the NTIRE test set images for
each layer representing what each of the 64 kernels in that layer are dedicated to
detect.

Not all models had 64 kernels at all tested layers, so the number 64 was changed
to 32 sometimes depending on the targeted layer.
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Figure 3.22: Original images for the examples used in figures 3.23 and 3.24.

Of course, it is clear that such computation will take a lot of time especially on
heavy models which is the case for most spectral reconstruction models. for all 50
images of the NTIRE test set, this took a maximum of about 22 hours for 8 layers
on the heaviest tested model (HSCNN+ and HRNET) on a 24 Gb RTX 4090 GPU
running Pytorch with Cuda. If more layers are required, more time will be needed
to run them.

3.5.3 Results

Applying this to some of the layers of the HSCNN+ model for example yields the
results shown in figure 3.23. Original images (from the NTIRE 2022 test dataset)
for the examples used are shown in figure 3.22. In the figure, visualizations for
64 kernels (convolutional filters) that comprise each of 3 layers in different areas
of the network are displayed. The first is the input block of the HSCNN+ model,
representing the beginning of the model. The second, is the convolutional layer at
the end of the 15th block out of 30 total main blocks that make up the HSCNN+
model representing the rough middle of the model. And finally, the near end of the
model is represented with the 29th block. Two examples from the NTIRE dataset
are used to give an idea of the generation. The rest of the dataset was tested and
had similar results but not displayed here to save space.

Each of these images represents what that particular kernel in that particular
layer is optimized to detect. The features appearing in the generated image represent
the features that kernel was trained to detect and activate at. This figure is a
starting point to give an idea of what a network detects at certain areas.
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(a) Input block example 1. (b) Input block example 2.

(c) After block 15/30, example 1. (d) After block 15/30, example 2.

(e) After block 29/30, example 1. (f) After block 29/30, example 2.

Figure 3.23: Activation Maximizers output of 2 examples on 64 kernels for
the HSCNN+ model at 3 stages: input block, after block 15/30, and after block
29/30.
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(a) Mainstream layer 2/8 example 1. (b) Mainstream layer 2/8 example 2.

(c) Mainstream layer 5/8 example 1. (d) Mainstream layer 5/8 example 2.

(e) Mainstream layer 8/8 example 1. (f) Mainstream layer 8/8 example 2.

Figure 3.24: Activation Maximizers output of 2 examples on 64 kernels for
the HRNET model at 3 stages: mainstream layers 2, 5 and 8 (last mainstream
layer).
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Before we go into the details, we should note that these generated images do not
fully encompass all what the network does (even at the layers they are generated)
since they first, do not cover all the aspects of the layer. Second, not all of them are
necessarily used by the model as a main component in the reconstruction process.
Third, as we mentioned in the feature visualization section in the literature review,
the objective used here (which is individual kernels in layers) does not necessarily
portray the main building blocks of the networks (although it probably does). This
is because that objective could be anything from multiple layers to specific parts of
a layer or a mixture of both, so we should expect some mingling in the results we
have here.

Either way, these images still give a strong idea of what the network does at
that location and what kind of priorities it has for each feature. Also, the black
images show kernels where the gradient was zeroed out and they can be ignored.

In the beginning (the input block represented by figures 3.23a and 3.23b), we
can see that most kernels are activated by strong colors and edges. Some are
activated by background objects while others are activated by foreground objects.
Some kernels just detect a certain color or hue while others detect shapes. Also,
objects within the image are segmented or thresholded.

It is important to note that this block is not the very first layer in the model
but comes after a few layers (in this case 3 convolutional layers that make out the
input block). This means that the generated images shown here are not merely
the filter response of each kernel, (this can be concluded simply by observing the
weights of the filter) but they portray a cascade of convolutional layers’ interactions
with each other at the beginning of the model.

Moving towards the middle of the network, specifically after block 15 shown in
figures 3.23c and 3.23d, we can see that the images are much less saturated and
no longer have the strong and sharp features detected in the beginning. Instead,
they show depictions of the original image, but with what seems to be a variety of
general hues and lighting. That lighting still shows seemingly strong and seemingly
unrealistic colors at this point, but there is a general inclination towards colors
similar to that of the original image.

Reaching towards the end of the network, in figures 3.23e and 3.23f, we can
see that these colors are now even more realistic and depict what seems to be the
original image but under a variety of lighting conditions or possible illuminants
similar to the original illuminant portrayed by the global hue of the original image.

These observations are consistent across the whole NTIRE dataset and also the
reflectance dataset provided in Foster et al. (2007). The same observations are also
seen in the HINET network, and HRNET (all the local and some of the semi-local
models).

Also, although we only show 3 layers here to save space, the actual test was
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done to around 8 layers in each model depending on the model’s complexity. With
relatively simple models like the MultiScale model, only 7 layers were monitored
(accounting for each scale variation), while with complex and large ones like
HSCNN+, 10 layers were monitored. And for all tested layers for local models, the
pattern was the same.

Figure 3.24 shows a highly similar behaviour in HRNET for 3 of its mainstream
layers 2, 5, and 8 (the last mainstream layer). As mentioned before, HRNET has a
hierarchy at its beginning using pixel shuffle and unshuffle. The layers chosen here
skip that part since it only applies to this particular model, whereas the rest of it
is typical convolutional layers (layers in the mainstream) and they resemble other
similar reconstruction models.

So we check at the first layer after the hierarchy (layer 2/8), then the mid (5/8),
then the last (8/8) and we notice a striking resemblance in behaviour to what we
observe in the other local models.

Note that this pattern is only observed in local and semi local models, which
have local and semi-local saliencies. These include HSCNN+, HRNET, and HINET.
Unfortunately, other more global networks did not show such behaviour and their
results were highly random and difficult to interpret (an example of that can be
seen in the appendix). Not only that these models are local, but they also have high
similarities in their general architecture, since they all depend on cascaded blocks
of convolutional layers with attention connections both locally and globally across
the architecture, whereas other models tested have a different type of architecture
like U-Net, and spectral attention and so on.

Since this can be seen as a consistent pattern across the local models, we can
theorize that the model tries to generate different illuminants towards the end of
the network, where each part of the network (represented here by the different
kernels) generates a possible illuminant. Then the model settles on which one
activates the most based on its training. This hints on the general direction the
model takes when tackling the problem of illuminants. We can also see that these
’generated illuminants’ are not far from the original image, which means the model
tries to generate them depending on the original with a certain learned distribution.
Of course, this is only an assumption for now.

3.5.4 Testing The Theory
If that assumption is true, we would expect the model to ’pick’ one of these
illuminants towards the end of the network by having strong activations at one of
them, or showing a scarcity of activations for most of them. To test for that, the
following was applied.

Using the same feature extractors, we also extract the activation from the first
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(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 3.25: Generated visualizations of 4 examples on 64 kernels for the
HSCNN+ model all after block 29/30. with the activation added as alpha channel.
In each example, only 1 or 2 kernels are activated significantly.

iteration which was not disturbed by the optimization process. This activation
gives the natural activation of the network at that layer for each kernel to the
original image (as in a regular test setup).

Now, we apply that activation as an alpha channel to the already generated
images we have. The activation is first normalized to have values from 0 to 1 then
an alpha channel was added to the images where the value of that channel was
the values of the normalized activations. This will give a low alpha value (high
transparency) to images that were weakly activated, and high alpha values (low
transparency) to images that were strongly activated. The results for that are
shown in figure 3.25.
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(a) Activations after the 29/30 block for the HSCNN+ model.
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(b) Activations for the last layer of the HRNET model.

Figure 3.26: Normalized activations for 2 local models on their last layers
across the whole NTIRE dataset showing only particular kernels being strongly
activated in each model.

It can be seen in the figure that only 1 or 2 kernels are being strongly activated
in the layer at the end of the network (other layers have more random activations
and not shown here to save space). This behaviour is consistent across all datasets
and all local models tested.
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(a) D65 illuminant example 1. (b) A illuminant example 1.

(c) D65 illuminant example 2. (d) A illuminant example 2.

(e) D65 illuminant example 3. (f) A illuminant example 3.

Figure 3.27: Generated visualizations of 3 examples with 2 different illuminants
(D65 and A) with the activations applied as the alpha channel from the last layer
of the HRNET and the HSCNN+ models
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Also, to pool all the results of the dataset, we show activations averaged over
all images in the dataset (all for the same layer of the same model) in figure 3.26
which further proves the same point for both models (HSCNN+ and HRNET).
The same applies to HINET. The reason we keep these pooled results kernel wise
is to show 2 1. how one or 2 kernels only are activated significantly, and 2. to show
the consistency of that chosen kernel throughout all images and all pixels for the
single model (it only changes by changing the model or the illuminant).

Another thing that could test the theory is to change the illuminant and see if
the chosen activation changes with it to prove its connection to that illuminant. For
that, we used the reflectance Manchester dataset provided by Foster et al. (2007)
since it has reflectances instead of the radiances in NTIRE.

Since this dataset provides us with reflectances, we can simply multiply that
reflectance by various illuminants to get RGB images with different illuminants. So,
we applied that using two illuminants (D65 and A) to see how the activations change
with each illuminant while keeping everything else (in the reflectance spectra) fixed.
That was done to all of the images in the dataset. Again, the same behaviour
was seen in all images, but we only show a couple of examples to save space in
figure 3.27. For a more numerical representation, figures 3.28 and 3.29 show these
activations for all the images for the HRNET and the HSCNN+ models respectively
(also HINET was tested but the results are not shown to save space but it has
similar results). It can be clearly seen that the kernel chosen is different when the
illuminant is different. Also, the kernel activated does not change regardless of
the change of the image which further supports the assumption. This is further
support to the theory that the network ’chooses’ an illuminant from the generated
ones in these end layers based on what it learned.

Also, some images consistently choose a different kernel for any illuminant.
These images that have the same kernel(s) activated usually have similar lighting
or are of similar scenery like outdoor images. To test that, we isolated outdoor
images which have mostly the same illuminant (natural sunlight) from the dataset
and monitored their activations for each model. The results for both models are
shown in figure 3.30 which shows even more discrepancy between a single kernel
and the rest of the kernels. This is because in these images the illuminant is mostly
constant, while the opposite is the case for indoor images which could have various
illuminants. This is shown in figure 3.31 for both models. Notice how the spread of
the activations decreases in outdoor images and increases for indoor images. The
maximum value for the activations is around 0.5 for all images, 0.7 for outdoor
images, and around 0.4 for indoor images (since the activations are more spread
out/ less descriminative).
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(a) Activations for the last layer with D65 illuminant.
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(b) Activations for the last layer with A illuminant.

Figure 3.28: Normalized activations for all images in the Manchester dataset
for both D65 and A illuminant for the HRNET model.

3.5.5 Test Conclusion

These results support the theory that local models try to generate a range of
possible illuminants around the original illuminant ’apparent’ in the original image.
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(a) Activations for the 29/30 block with D65 illuminant.
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(b) Activations for the 29/30 block with A illuminant.

Figure 3.29: Normalized activations for all images in the Manchester dataset
for both D65 and A illuminant for the HSCNN+ model.

Then tries to ’pick’ a certain illuminant out of possible generated ones around the
original one in the image based on the training the model had.

There are 2 important things to note here. The first is that we cannot say
which method the model uses to generate these possible illuminants. It could be as
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(a) Activations after the 29/30 block for the HSCNN+ model.
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(b) Activations for the last layer of the HRNET model.

Figure 3.30: Normalized activations for 2 local models on their last layers across
the outdoor NTIRE images showing even more discrepancy between activated
kernels.

simple as a normal distribution around the apparent illuminant, or it could be a
complex learned distribution. It is more likely to be the later since it is a trained
CNN that learns its own function through training.

However, figuring out the exact method here is not in the scope of this work.
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(a) Activations after the 29/30 block for the HSCNN+ model.
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(b) Activations for the last layer of the HRNET model.

Figure 3.31: Normalized activations for 2 local models on their last layers
across the indoor NTIRE images showing more random activated kernels.

This is because as we discussed before, our job is to break down the model into as
many explainable equivalents as possible (break it down into class B models, see
the model classes discussed in the literature review). Although we do not know the
exact machinations of this particular block of the model’s pipeline, we understand
what it does and in this case we can even produce an explainable equivalent for
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it. For example, we can use a simple normal distribution to generate possible
illuminants, then train a simple network to find the best one based on examples.

The second is that we do not claim with complete evidence that the model
works that way. This is because although we introduced 3 supporting evidences to
the theory, none of these evidences is conclusive enough to fully claim it. We only
say that these observations strongly suggest that theory. Further work could be
done to fully establish a conclusive proof. It still can be that these observations
are behaviours of the network to do something else rather than what we suspect
it to do, but it is probably not a coincidence since it shows in a highly consistent
pattern, so it probably means something. It is just that it could be something
other than what we think.

Either way, these observations and the theory they suggest provide a very
possible way for the network to achieve part of its goal (illuminant estimation)
so even though it might not capture the full depth of the model, it could serve
as a way to apply an explainable model, or provide an equivalent for the existing
models using the same ideas.

Now that we investigated the illuminant part of the reconstruction, we turn to
investigate other features that could help the models perform the up-sampling of
the spectra. There are many parameters that could be included in this process. In
the next section, we try to investigate some of the most important ones and see
their effect on the models.

3.6 Parameters Sensitivity
In this section, we try to test multiple parameters and see if the models react
to them, and if so, how do they perceive them. The goal here is to get as much
clarity about the model’s processing workflow as possible. We try to find how
sensitive these models are for variations of multiple parameters that are suspected
of affecting the reconstruction decision using a perturbation based method.

3.6.1 The Parameters
These parameters are chosen to be hue, saturation, frequency, and noise:

Hue is one of the most important parameters since it has a close connection
to the illuminant which we already noted that the models are highly sensitive to.
Especially that they seem to generate variations of it towards the end layers. Hue
is a main contributor to the illuminant characteristics so it would be interesting to
know about the networks’ reaction to it and we would expect it to be similar to
that of the illuminant.
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Saturation is also interesting here since it also has a contribution to the illumi-
nant and the general RGB value of both the target and the observed area pixels.
Also, looking at the Activation Maximizers discussed before, we can see a clear
difference in saturation between the beginning layers (high saturation) and the
end layers (low saturation) which leads us to suspect it could be a parameter the
models use in their workflow.

Frequency is suspected to have an effect on the model since it can be responsible
for features defining texture and materials. Detecting frequency changes might
suggest that the models use it to define different materials and their characteristics
and eventually their spectra. However, frequency of original images is heavily
reduced in convolutional networks naturally with the convolution process, so the
results will be affected by that.

Noise is an important parameter since it exists in all natural images and in
multiple amounts. High performing models are able to deal with a noisy images
and multiple types of noise. As we discussed before, the NTIRE dataset in previous
issues used to have both clean and real life tracks. However, since models had
similar high performance on the clean track, they authors of NTIRE decided to
remove it and only keep the noisy real world track since it is more realistic and
proves a challenge to some models. This also suggests the importance of processing
noise in such models. Here we introduce a typical white Gaussian noise with
multiple variances.

3.6.2 Concept
We introduced the concept of hooks and feature extractors previously. In this test,
we only use hooks since we simply need the natural activations of the network at
multiple locations. Starting with any parameter we need to test (for example hue),
we generate a variety of images each with a different hue for each image in the
NTIRE test set. So, each image’s hue is split into 50 hues distributed uniformly
around the hue circle. ending with a dataset 50 times larger than the original
which makes the computation very time demanding. Of course, this was done after
converting the image to HSV space. After the variations were done, the image was
turned back to RGB color space.

Now, the model is run on this large dataset while the hooks are monitoring
specific layers. We cannot monitor all layers since that would take a very long time,
but we monitor the same layers we used feature extractors on in the Activation
Maximizers tests to make the tests comparable.

We get the average activations of the monitored layers and their kernels for
each image’s variations. Then, we calculate the variance of these activations across
the variations of each image, then we average that variance across all images in
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the dataset. That would give us how much these activations changed in response
to change in the varied parameter. In other words, how sensitive that part of the
network is to change in this parameter.

For saturation, it was varied by also first converting the RGB images to HSV.
Then, we distribute the saturation value (0 to 255) uniformly across 50 variation
images, and turn it back to RGB.

For frequency, they were varied by first applying a Fast Fourier Transform
(FFT) to transform the image to the frequency domain, then a frequency shift was
applied (both positive and negative from the original) to also make 50 variations
(25 positive and 25 negative shift). Finally, the image is converted back using the
inverse FFT. The frequency shift’s absolute value was calculated by:

FrequencyShift = ±i ∗ factor

Where i is the variation number (1 to 25 for positive and 1 to 25 for negative)
and factor is a scaling parameter that was chosen to be 0.5 to get perceivable
frequency shifts.

For noise, we used white Gaussian noise with a fixed zero mean and a varied
standard deviation (SD). The SD was calculated by also multiplying the variation
number i by a factor. The factor was chosen to be (1/16) or (0.0625). This was
chosen to have realistic noise. Larger values would have too much noise where
the image becomes unrealistic. Figure 3.32 shows examples of these generated
variations for an example image.

Similar to Activation Maximizers, each model had different layers where it was
suitable to monitor, some had 4 monitored layers and some had 3 with the same
reasoning used before.

3.6.3 Results
Again, all models were tested and had similar results so we show here the most
significantly varied ones that are representative of the rest. These are the 4 models
shown in figures 3.33 for HRNET and 3.34 for MST++. While figure 3.35 and
3.36 show the same for HSCNN+ and MultiScale models respectively. These
activations are all normalized relative to the maximum value of All their values (for
all parameters). This is important because it allows the comparison between these
activations across multiple parameters in a meaningfull way. Also, for HRNET and
MST++, 3 layers are observed and each with 30 kernels. This is because the most
important layers at the beginning, middle, and end of these networks have only 32
kernels (unlike the 64 or more in the other models).

For HRNET (figure 3.33), 3 layers are observed. Hue has the strongest variance
in its activations, showing a strong sensitivity for it for the network. Also, it
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Figure 3.32: Examples of the generated variations for an example original
image (top) with variations of hue, frequency, saturation, and noise (respectively
from top to bottom).

shows specific areas being activated strongly in the last layer (layer 3) with 2 main
smoothed peaks. Hue variation intensity seems to be quite consistent throughout
the network. This is unlike saturation which shows variance in the first, mid layers,
but not towards the end, suggesting it is processed at the beginning. That agrees
with what the Activation Maximizers showed especially for first layers. Similar
behaviour is observed for Frequency. As for noise, it seems to be only processed at
the very beginning of the network. This is also to be expected since CNNs usually
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(a) Hue variance. (b) Saturation variance.

(c) Frequency variance. (d) Noise variance.

Figure 3.33: Activation variance for HRNET throughout the network.

process noise at the beginning.
For HSCNN+ (figure 3.35), 4 layers are monitored. Hue also behaves the same

way but with less smooth behaviour and stronger intensity. Saturation is the same
as in HRNET. Frequency is not strongly activated however in this network. Noise
has a similar behaviour and is mostly processed at the beginning, while saturation
processing is spread around the network.

For the MultiScale model, Hue and saturation have a very similar variance and
it shows maximum variance for their activation in the second part of the network
but not at the very end. Since this particular network is a U-Net, this corresponds
to the middle of the upward side of the U shape. Noise is again only processed at
the beginning, but frequency is also mostly processed at the same layer as that of
saturation and hue (number 2 in the figures) which points that this area of the
network seems to be the most important. It is worth noting that this does not
confirm with the illuminant theory we concluded in the Activation Maximizers
tests since this model is not local and that theory was only for local models (local
saliency).
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(a) Hue variance. (b) Saturation variance.

(c) Frequency variance. (d) Noise variance.

Figure 3.34: Activation variance for MST++ throughout the network.

For MST++ (also not a local model), Hue has strong variance throughout the
network and especially at the end, saturation, noise, and frequency are mostly
processed at the end. This test among other tests like Activation Maximizers and
saliency maps show that MST++ (and MST) are very different from other networks
and their behavior is non confirming with the theories of this study. This does not
affect the aim of this study since MST and MST++ are advanced and complicated
models that add a lot of changes to more typical hyperspectral reconstruction
models. Mainly, they do not depend on only the minimum requirement and
fundamental features we are trying to find in this study.

As for the rest of the models (HDNET, HINET, and MST) we did not include
their plots to save space, but each of them is similar to one of the models displayed
in the figures. We can already see that HSCNN+ and HRNET have a very similar
behaviour in the figures. Also, HINET and HDNET share that same behaviour.
As for MST, it is similar to its successor MST++. MultiScale is the only one with
its unique behaviour which makes sense since it is the only one with the simple
U-Net architecture.
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(a) Hue variance. (b) Saturation variance.

(c) Frequency variance. (d) Noise variance.

Figure 3.35: Activation variance for HSCNN+ throughout the network.

3.6.4 Test Conclusion

This test shows that the models have high similarity in treating some parameters
(like noise and frequency) but differ in treating other parameters especially the
ones related to the illuminant (hue and saturation).

Most models treat noise and frequency at the beginning (except for MultiScale,
MST, and MST++). All local models and some semi-local ones (HSCNN+, HINET,
HRNET, HDNET) have high sensitivity towards hue and saturation and have
scarcity in the activation array for these parameters (across kernels) towards the
end layers. This agrees with the results seen in the Activation Maximizers tests.
MST and MST++ have their distinct behaviour which is also sensitive to hue,
saturation, and noise. Finally, MultiScale seems to also have its own distinct
behaviour that have most of its variance towards the mid part of the upward U
path (middle of the decoder).

It is important to point here that this test (like Activation Maximizers) has
the limitations of being specific to certain kernels and does not fully encompass
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(a) Hue variance. (b) Saturation variance.

(c) Frequency variance. (d) Noise variance.

Figure 3.36: Activation variance for the MultiScale model.

the whole network. It is similar to peeking inside the black box but only having
limited view on certain areas within it. So, the results these tests produce should
be treated as pointers and suggestions but not conclusive evidence. However, their
consistency and coherence with other tests gives them more credibility as valid
insights on to the network’s general workflow.

3.7 Illuminant and Color Tests
Now we extend the investigation of illuminants to test how the models behave
under specific illuminants. This test focuses on specific sample colors and tries to
check if these models behave differently for a color and how much the illuminant
affects that. To test specific colors, we needed a color checker, and we needed real
hyperspectral and RGB images of that color checker as well as all the accompanying
white correction required.
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3.7.1 Concept
To do that, we used images taken as part of the color science lab course at the
University of Eastern Finland (UEF). These images include taking both RGB and
hyperspectral images of an X-Rite 24 patch color checker under a lighting box that
provided both D65 and A lighting. Starting with RGB, both photos (D65 and
A) were taken from the same Nikon D800 28 mm camera where the angle from
the light to the checker and from the checker to the camera is 45 degrees and the
distance between the camera and the checker is 60 cm, while the distance between
the light and the checker is 65 cm.

It is worth mentioning that the images were taken as RAW and the importing
process of the images was done while ensuring the images are kept without any
automatic white balancing or any sort of interfering from the camera or the software.
To get the colors of the 24 color checker, we make a rectangle inside each patch
and take the average color of that rectangle. The images are shown in figure 3.37.
Although the images also contain a 72 color checker as well, it is ignored in this
analysis.

For the hyperspectral images, they were taken with a Specim IQ V10E hyper-
spectral camera (same camera as with the NTIRE dataset). The number of bands
taken by the camera was 204 which was much higher than the required 31 bands of
the ground truth. For that, they were resampled to get 31 bands in the same range
and manner as the NTIRE dataset ground truth bands were acquired. In fact, we
used the same interpolation codes published by NTIRE for this particular task.
Then, the 8 colors in the middle left side of the 24 color checker were used since
they conveyed popular colors and they were not affected by the specular reflection
apparent in the top of the color checker. In each color patch, a spatial box was
drawn on both the RGB and the hyperspectral images with the same dimensions,
making an RGB input and a hyperspectral ground truth pair available for testing
with the models.

The importance of using a color checker here is not only to test specific colors,
but also to eliminate any other features that the model uses and focus only on the
colors themselves. This is unlike the previous section which tested full real life
images with multiple features. That gives a different perspective not only on the
colors but on the illuminants. Is illuminant estimation dependent on the shapes of
the image, or on its general color of the observed area?

3.7.2 Results
The results are shown in figure 3.38 where the average SAM error is shown for some
of the models. All other models and error metrics have similar results, so the ones

98



Illuminant and Color Tests 3.7

(a) D65. (b) A.

Figure 3.37: RGB images taken for the X-Rite color checker under both D65
and A lights. Same setup was used to take hyperspectral images of the same
scene.

shown are representative of all models. The first clear result is that for most colors
and most models, the A illuminant error is far higher than that of D65. This was
not the case in the previous section which had real life images. That suggests that
these models depend heavily on shapes and image features in the observed area to
detect the illuminant. So, when they do not have that information anymore in this
test, they failed to distinguish the A illuminant and receded to the most common
illuminant in the dataset they were trained at which is much closer to D65. This
is because most NTIRE images are shot in an outdoor sun-lit setting. This also
highlights the importance of having a larger variety of images in the dataset to
include more illuminants and settings to avoid dataset bias.

Now, looking at the colors, it can be seen that the colors most affected by this
are the ones that change hue dramatically under A light from D65 which are blue,
light blue, and green. However, colors that do not exhibit such a dramatic change
in hue under A light are not as affected like orange and yellow. In fact, for those
colors the D65 error is higher in most cases.

Although this test suggests interesting ideas, it is very limited with its confidence
level since the data tested is very scarce. More investigation is encouraged to actually
gain more confidence in this analysis.
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(a) HDNET errors. (b) HSCNN+ errors.

(c) HRNET errors. (d) MST++ errors.

Figure 3.38: Mean SAM errors for some of the models on specific colors under
both D65 and A illuminants (lblue is light blue).
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4 Discussion

Many tests were done on multiple aspects of reconstruction models. We started
with investigative tests that provided clues on the models’ general points of failure
with error maps, then we went deeper to find about the models’ range and spatial
features with saliency maps. Box tests provided more certainty and detail on which
parts of these spatial areas and features the model uses. Activation Maximizers
provided insight on the inner workings of illuminant estimation within the model.
Parameters sensitivity tests allowed us to quantify how much and where important
parameters are being processed in each network. Finally, illuminant and color
tests provided details on what kind of information illuminant correction needs and
performance for each color and illuminant.

In this section, we aim to compile all these results, and list the main outcomes
these tests concluded, but from a different perspective. Then, we try to relate
them to each other to draw a big picture image of how these models work. We
also try to evaluate each of these results in terms of their validity, importance, and
generalization to most models.

4.1 Trust, and Points of Failure
One of the main targets of this thesis (like most explainability works), is to provide
some level of trust (or distrust) to a certain black box model. Unfortunately, we
cannot say that our results provide full trust with a model. In fact, they pointed
out multiple points of failure that could contribute to not trusting the model under
certain circumstances.

First, we showed (through error maps and activation maximizers) that there
are inherent problems with RGB images that prevent reconstruction models from
performing as expected. These include images that have no clear setup or context
information (especially indoor images) as well as saturated images (or parts of the
image). Although this might not be because of a problem with the models, it is
still a problem with the setup that users have to take into account when using the
models.
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Also, the narrow saliency and observation area of local saliency models especially
makes them prone to error when the target pixel does not have similar pixels in
close proximity around it. This includes edge pixels or very small objects in the
image. This was shown by error maps, saliency maps (both random and edge ones),
and box tests. The area local models look at when reconstructing a pixel is no
more than 50 x 50 pixels and averages on 45 x 45.

These models proved they can reconstruct spectra from this small area, so
they must depend on features in that area. However, as shown by the tests, these
features are not always present for all pixels. This creates a point of uncertainty or
distrust by users (when can a user safely use the models and when they cannot).
We tried to find all these features and we did find some of them (through activation
maximizers, illuminant tests, and parameters sensitivity tests) but our list is not
comprehensive and cannot exhaust all possible features the models used. This is
why we cannot draw a fine line between where the users can trust the model and
where they cannot. All we can do is give recommendations to users where the
models (especially local ones) are expected to fail (points of failure) mentioned
earlier.

Also, the problem with the setup (indoor images) could be due to the dataset
having most of its images taken in an outdoor sunny day setup. This could be
avoided by taking more images in the dataset that include more setups and more
illuminants. Then, we can verify if the performance limitation in these setups is
due to the actual model, or simply the dataset it uses.

4.2 Illuminant Estimation
One of the main tasks of reconstruction is to estimate and correct the illuminant
(color correction). Without it, the model cannot deal with metamersim and
materials with different colors than their original due to lighting conditions.

Activation maximizers provided a lot of insight on how that is done within the
local networks. We showed that these networks seem generate possible illuminations
around the original illumination in an illuminant feature space. Then, the network
’chooses’ one of the these illuminants as the most likely true illuminant of the scene.
This was shown in figures 3.23 through 3.29. As we mentioned, this theory is well
founded since it has 3 different tests suggesting the same conclusion.

To summarize, these tests are: the activation maximizers generated images
showing variations of the original image color in the end layers for local models.
Then, the natural activations of these end layers kernels which showed clear and
consistent scarcity and only one or 2 chosen kernels. Finally, proving that these
chosen kernels were dependent on the illuminant since they only changed by
changing the illuminant and stayed consistent to that change.
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However, none of these tests is conclusive enough prove that this is how the
models work. This is because as we mentioned, these results could be the outcome of
a hidden underlying mechanism that only correlates with the illuminant variations
but not explicitly driven by it. That said, these results provide a possible way for
the illuminant to be corrected. Even if this way was not the actual method used in
the networks, it could still be used to build an equivalent explainable model that
does the same thing.

4.3 Different Models
It is important to note how different reconstruction models are from each other.
In the saliency maps section, we classified them based on their saliency (observed
area) size into local, partially local, and global models. However, even models from
the same type vary significantly. For example, we mentioned how the HDNET
model is considered global, but it has a very random and relatively small global
saliency that is very different from other global models (MST and MST++). We
also see a clear difference in architecture parameters used by each model (from the
parameters sensitivity tests).

What is important to note here is that most of our conclusions and theories only
apply to local models that include HSCNN+ and HRNET. They also sometimes
apply to the partially local models (HINET and MultiScale). For example, applying
Activation Maximizers to global models did not provide any conclusive or identifiable
results. No illuminant variations were noticed, and no specific kernels being
activated towards the end of the network. This suggests that these models either
work in a different way or -because of their globality- are harder to detect and
understand.

However, one of the main targets of this work is to identify how a reconstruction
CNN works on a fundamental level. That means we need to find the minimum
amount of information required to do a reconstruction. This is the information
inside the local saliency area observed by local models. Global information used
by global models only increase the accuracy but are not absolutely necessary to
perform reconstruction. Also, most models as we have seen do not have complete
global saliency (only MST and MST++ do) and All models have a far higher
saliency on the local area than on the rest of the image.

All that does not necessarily support the importance of that area (to the
reconstruction task in general). However, it does support the dependency of
these models on that area (how these models perform reconstruction). This is an
important distinction because what we are trying to find is not how the model
should work (optimally), but how the model actually works.
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4.4 Big Picture
Now we try to relate these tests together to paint a big picture of how the models
(at least parts of the models) are suspected to work. As mentioned earlier, we
consider reconstruction models to be of Class D, which means that they are black
boxes, and that we do not have any expectations for how they might be doing
their task. This is the part where we try to break down the Class D models into
more explainable Class B models, since class B models have a clear workflow even
though they can still be vague in terms of their exact parameters. As discussed,
this series of class B models is not sequential in reality and is very mixed, but it
can act as an equivalent to how the real model works. This helps with providing
an equivalent explainable model to the black box CNN. Again, this is only for local
models.

Figure 4.1 shows the main parts of that big picture. Clearly it is not very
detailed since it is made to be as general as possible to encompass the general
workflow of local models. The following is a possible equivalent workflow and not
necessarily how the models work. At first, each target pixel is taken along with a
small local area around it as was shown.

At first layers, different parts of the network detect and process features like
edges, foreground, background, noise, high frequencies, and strong colors and
sometimes highly saturated colors (box number 1 in diagram 4.1). This can be
seen in the results of activation maximizers and parameters sensitivity tests.

Going to middle layers, the networks start generating the illuminant variations
around each pixel while still processing other parameters that help with the
illuminant generation, feature extraction, and illuminant choice (box number 2
in the diagram). Going towards end layers, the generated illuminants are mostly
complete. Now, we do not know how the generation of multiple illuminants is made
exactly. It is part of the learning the model does. However, we can think of its
equivalent as any illuminant distribution around the illuminant of each pixel. It
could be a normal distribution, or something more customized (table and illuminant
feature space shown in the diagram).

Now, if we combine that with the knowledge that the observation area is small
for local models, we can understand this better. The illuminant choice is made by
having each part of the network activated by a particular illuminant. So, each pixel
in the observed area will activate a range of these parts (a range of illuminants)
around its original pixel color. There will be a clear overlap in these activations,
which would act as a voting mechanism to activate the most likely illuminant in
the feature space. This is shown in the process from box number 2 to 3 in figure
4.1.

In the figure, the table beneath box number 2 takes each of the observed pixels
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RGB

First layers

1
Detect edges and features
(feature extrac�on) + noise

processing

Mid to end layers

2
For each pixel in the observed

area, generate a range of
possible RGB values around it in

a feature space

Pixel 1 Pixel 2 ... Pixel n

RGB11 RGB21 ... RGBn1

RGB12 RGB22 ... RGBn2

RGB1m RGB2m ... RGBnm

3
Choice is naturally
made by parts of

the network being
ac�vated the most

This choice represents
the most likely

illuminant of the scene.
That helps the model

discard it to get
reflectance spectra 

4
Informa�on of that

value used along with
informa�on learned

from texture, grain and
any other parameters

to correspond to a
learned spectra

Illuminant feature space

Hyperspectral

Figure 4.1: Diagram explaining the suggested equivalent to local reconstruction
models.

and produces a range of possible values around it in the illuminant features space.
We note here that the table has these values as RGB, but in reality they could be
in any space depending on the network. These generated variations will create a
range in the illuminant feature space (represented by circles in the diagram). Each
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pixel will make a contribution to that activation which would ultimately activate
the most overlapped parts of the space (blue ellipse in the diagram).

We consider this chosen illuminant to be the illuminant of the scene (the local
scene in the observed area). Finding it is equivalent to the network applying color
correction to that scene. This helps the model discard the illuminant to find true
reflectance spectra. We suspect that this part is only affected by the illuminant
since we varied other parameters but they all had little change in the activation
of the end layers except for the illuminant (and contributing parameters like hue
and saturation). This was done in both activation maximizers and parameters
sensitivity tests.

This means that by the end layers, other parameters are already processed like
frequency, grain, noise, and patters. They could also contribute to the generation
and choosing of the illuminant.

4.5 What Was Achieved
We discussed before that the model needs to perform 2 main tasks to achieve
reconstruction. These are illuminant correction and up-sampling. Our results show
a general possible description of how illuminant estimation is done. As for the
up-sampling part, we unfortunately did not find any specific mechanism the models
use to do it. It is still hidden in the black box.

However, once the illuminant problem is out, up-sampling can theoretically be
done by learning relationships between color corrected colors and their corresponding
spectra. We have an expectation for how it could work out in a neural network.
That makes the problem of up-sampling a class C model. So, using the results of
this work, we reduced the Class D reconstruction model into a combination of class
B (illuminant correction) and a Class C (up-sampling). This falls short of what
we aspired to achieve, but it still sheds a lot of light into the original obscurity of
reconstruction models.

4.6 Conclusion
We conducted a series of tests and explainability methods that aim to break down
RGB to hyperspectral reconstruction CNN models into explainable equivalents
and analyze how they work and the parameters they depend on in their workflow.
We established the spatial area used by the networks and classified the networks
to local, partially-local, and global models based on their observed spatial area.
We established the model’s dependency on features within that limited area of 45
x 45 around the target pixel. We established points of failure for these models
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like saturation, vague setting, and thin object edges and small objects within the
image.

We presented a theory on how the models perform illuminant estimation and
correction supported by various tests and proofs discussed in the work. We also
analysed the model’s sensitivity and processing to various parameters and where
in the model those parameters are processed. We identified many differences
and similarities on how each type of models work and connected that to their
architecture and class. We identified color and illuminant sensitivity in each model
and for various colors. Finally, we introduced a general workflow for local models
that describes how illuminant estimation could be done in an equivalent explainable
model.

Furthermore, the XAI methods implemented and used throughout this work
were customized and modified to be used specifically for these models and can also
be used for any hyperspectral reconstruction and even similar models with similar
architecture like spatial super-resolution models. This opens the door to explain
CNN models in many fields that had no explainability methods before.

4.7 Future Work
We mentioned where our work has shortcomings in each test. This is where
we believe future work can be done to improve certainty and fill the gaps of
these shortcomings. Activation maximizers and parameters sensitivity tests have
limited generalization (to all layers of the network) which has the consequence of
having no complete conclusive evidence for the theory we presented on illuminant
estimation workflow in the models. Also, more parameters can be studied and their
contributions connected directly to the workflow of the models.

The Activation Maximizers tested in this thesis are applied to some kernels in
some layers, but more work can be done to optimize the objective using matrix
factorization as we discussed. This can lead to more informative and reliable results.
Also, more layers and models can be tested with more regularization parameters
which can yield even more insight into the models.

Most importantly, the up-sampling workflow used in these models is still unclear
and needs further studying. Many insights from this work can be tracked further
to establish their connection to the models. For example, the shape-dependent
saliency seen in some models like HINET and MST++ (single image analysis
section), which needs investigating on how the models track these shapes and how
they incorporate them in the workflow. Also, many ideas presented by Activation
Maximizers can be studied further like background segmentation.

Also, the color and illuminant test needs to be conducted on a larger scale to
establish its validity since the test done here was done on limited number of images.

107



Chapter 4 DISCUSSION

All that is towards the goal of ultimately establishing a line of trust for the users
so they know which models to use and how to use them. Finally, more parameters
can be studied besides the ones analysed in the parameters sensitivity test and
more color spaces can be employed to extract more important parameters.
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A Appendix

Here we show some more results for the tests that we could not show due to lack
of space in the main body of the report. We also show a test that we chose not
to include in the main body due to its redundancy, but it acts as a supporting
evidence.

A.1 Activation Maximizers for Global Mod-
els

Figure A.1 shows the same Activation Maximizers method applied to the 30 kernels
on 3 stages of the MST++ model. The architecture of this model consists of 3
encoder decoder modules connected to each other making the main stream of the
model. We use the output of each of these modules to visualize here since these
resemble the division of the network into 3 thirds. Only 30 kernels exist in these
layers of the MST++ model so we show all these 30 kernels.

As we can see, the behaviour that was seen in local models like HSCNN+ and
HRNET shown before cannot be seen here in this global model. All stages seem
to have various kinds of shapes and colors. We could not find a specific pattern
in these models like we did for local models. The colors of the last stage does not
seem to have colors of an illuminant (not a natural illuminant at least). They
instead seem to portray highly saturated colors and strong not very different from
those in the first stage. Clearly, more work needs to be done on these models to
understand how their behaviour.

A.2 More Error Maps
Since error maps are examined individually, we show here a few more examples to
affirm the reader of our conclusions. Figure A.2 shows these maps for other images
than previously shown and can lead to the same conclusions. We can also see in
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(a) After first module example 1. (b) After first module example 2.

(c) After second module example 1. (d) After second module example 2.

(e) After third module example 1. (f) After third module example 2.

Figure A.1: Activation Maximizers output of 2 examples on 30 kernels for the
MST++ model at 3 stages, each stage after an encoder-decoder module in the
network.

the last 2 photos that when the sky is not overcast (blue sky in this case), the
models can easily reconstruct it.
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(a) Original. (b) HSCNN+. (c) HDNET. (d) MST++.

Figure A.2: More example error maps for images from NTIRE for some of the
models showcasing a variety of scenes with various characteristics.
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A.3 Thin Edge Test
This test is not well established and was made redundant, but it points to the
edge problem in the models. It was actually my first clue into the edge problem
and local saliency in the models before saliency maps and box tests. It is a very
simple test that intends to find the impact of having an edge in the image on the
model’s performance and how thin that edge should be to start causing performance
problems to the model. The test does the following:

For an original image, take a thin spatial line (we choose it to be vertical but it
could be in any orientation). Take the values of that line in the image and assign it
to another place in the image. Then, assign the values replaced to the place of the
original line (switch 2 thin lines with each other). That creates 2 artificial edges
for each image like shown in the top row of figure A.3 where an original image has
these 2 thin lines. Then, the width of that line is increased gradually from 1 pixel
to 20 pixels. The increase is shown (in 4 images out of 20) in the top row of figure
A.3. Then, the error map (here it is SAM error) is monitored for each image with
each line for each model. We can see that the very thin line at the beginning has
high error (white line in the error maps), but when the width increase to a certain
point, the error recovers (becomes black).

This is a very simple and naive approach and was not quantified and substanti-
ated well, but it was my first clue to the models having problems with edges and
their possible local saliency.
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Figure A.3: Thin edge test results showing the original image input to the model
and then the SAM error map for HSCNN+, HRNET, HDNET, and MST++
from top to bottom respectively.
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