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Abstract
High dynamic range (HDR) images require tone-mapping to scale the large

range of luminance information that exists in the real world so that it can be
displayed on a device that is capable of only a limited dynamic range in luminance,
to adequately reproduce their perceptual qualities. Here the main objective is to
preserve the original HDR scene appearance, including contrast, sharpness, and
color with the focus on overcoming the limitation of the output media to achieve
the best match given the limited gamut and dynamic range. To the best of our
knowledge, these HDR rendering algorithms have been proposed only for traditional
three-channel (RGB) images. It is well known that having multispectral data can
produce better color-accurate images, but whether the same thing can be said for
tone mapping too or not, has not been explored yet. In addition, limited research
work regarding tone mapping for HDR hyperspectral images is itself a challenge
whereas there is no such publicly available database for HDR hyperspectral images.

To address these issues, this master’s thesis aims to investigate the effective
utilization of spectral radiance for improved color fidelity and tone-accurate repro-
duction of HDR images. To achieve this, an HDR hyperspectral radiance image has
been captured using an approach similar to the multiple exposures HDR technique
which helps to significantly recover the details of a high dynamic range (HDR)
scene both in the dark and bright areas, overcoming the problem of capturing
underexposed and overexposed data. The HDR hyperspectral absolute radiance
image is further improved by applying the proposed linearity correction method
while hyperspectral interpolation has been performed to verify and account for the
missing wavelengths due to pixel saturation. It also introduces a spectral image
color appearance model titled SiCAM which is the first of its kind, designed for tone
mapping a HDR hyperspectral radiance image to a three-channel Low Dynamic
Range (LDR) image. It is to be noted that SiCAM is inspired by the iCAM06
image color appearance model where we adapt the iCAM06 for hyperspectral input
by embedding a spectral adaptation method rather than chromatic adaptation as
in the case of iCAM06 which requires only three-channel RGB input.

Additionally, a psychophysical experiment has been conducted for perceptual
evaluation of the proposed HDR rendering method to determine the effectiveness of
having more spectral data for the tone mapping of HDR images in comparison to
the performance of iCAM06 and the gamma operator. Besides, the objective image
quality assessment (IQA) of these reproduced LDR images has been performed.
The results from both subjective and objective evaluation indicate that SiCAM
outperformed the other two HDR rendering methods in terms of both accurate
color appearance and pleasantness. Finally, we presented a dataset containing four
HDR hyperspectral radiance cubes and their respective three-channel HDR images
as our contribution to future research in this domain.
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1 Introduction

The One who illuminates and reveals the divine light of all the worlds...

Almighty

High dynamic range imaging (HDRI) is a set of techniques that computationally
enhance the conventional or standard dynamic range of an image and/or sequence
of images, which has recently become quite prevalent by being more produced,
distributed, and consumed in different applications such as photogrammetry, enter-
tainment, computer vision, computer graphics, animation, etc. The ultimate goal
of HDRI is to mimic the perception of the human visual system (HVS) which has
already revolutionized the way digital visual content is processed. Human vision is
capable of adapting to lighting conditions of nearly 10 orders of magnitude (Hoef-
flinger, 2007; Ferwerda et al., 1996). Nevertheless, the HVS can operate only within
a limited portion of this wide range at any given instance. The static dynamic
range, which is observed when the HVS is fully adapted, is commonly accepted to
be approximately 10,000:1 as given in Figure 1.1. Not only are real-world scenes
brighter and more vibrant than their digital reproductions, but they also have much
higher contrast, both locally between adjacent objects and globally between distant
ones. The HVS has evolved to handle such high contrasts that are present in
nature which evokes essential perceptual cues. Unlike HDRI, conventional imaging
is unable to reproduce such high-contrast scenes.

The dynamic range of a display represents the ratio of luminance between the
brightest white and the darkest black that it can reproduce. A standard dynamic
range (SDR) display employs a 2.2 gamma electro-optical transfer function (EOTF)
often with 8 bits of color depth. This restricts the dynamic range of the traditional
SDR display to two orders of magnitude while a high dynamic range (HDR) display

1



Chapter 1 INTRODUCTION

Figure 1.1: The HVS exhibits the remarkable ability to adapt to a wide range
of lighting conditions up to 10 orders of magnitude. However, it should be noted
that the HVS has the capability to function within a restricted segment of its wide
at any given moment. The usually accepted static dynamic range, observed under
the full adaptation of the human visual system (HVS), is roughly 10,000:1.

employs an EOTF curve that is extended on both ends (i.e., PQ curve), with
a minimum color depth of 10 bits. In the case of HDR display, it is relatively
achievable to exceed the maximum luminance from 1000nits to 4000nits and beyond
(Reinhard et al., 2010). Color depth refers to how precisely we can encode color
information. The color channel of the SDR display can be encoded up to 256
levels (8-bit) for each of the three primary colors (red, green, and blue) that are
used to synthesize the entire color gamut of these additive displays. Using this 8
bits encoding range, one can specify up to 16,777,216 colors in conventional SDR
display monitors. In contrast, most HDR standards enhance the precision with
which colors can be specified from 8-bit per channel to 10-bit, resulting in a total of
1,073,741,824 colors. These ranges demonstrate the advancements in HDR displays
intending to replicate the wide luminance ranges perceived by the HVS, surpassing
the limitations of traditional SDR displays(Eilertsen et al., 2017b; Mantiuk et al.,
2007). The HDR displays allow the perception of a larger range of luminances and a
higher bit depth compared to conventional standard dynamic range displays. These
features make human vision to have more plausible and realistic representations
due to the clear perception of details in both the darker and brighter areas at the
same time. The HDR images are considered to be scene-referred, which means
that an HDR image stores the radiometric quantity i.e., the radiance of the actual
HDR scene that is only scaled by the sensor’s sensitivity. This is to ensure that
the dynamic range compression and other adjustments are carried out just during
the display phase, and only if a device is incapable of accurately reproducing the
information. With its greater contrast ratio, HDR demonstrates more details in
extremely bright and dark scenes, as well as highly saturated and vibrant colors.
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Figure 1.2: The multiple exposure HDR capture utilizes a set of LDR images
taken at different exposure settings such that all the details of the HDR scene
are captured. Later, these LDR images are used to recover the camera response
function which is employed for linearity correction. Once the camera response
function is obtained, the LDR images are transformed into linear representations.
These linear LDR images are then combined or merged together to create an
estimation of the radiance map of the actual HDR scene.

Consequently, HDR images appear more realistic and stand out more noticeably.
As depicted in Figure 1.2, the multiple exposure HDR capture is the most widely
used technique of HDR imaging where multiple shots of an HDR scene are captured
sequentially at varying exposures (Reinhard et al., 2010; Burt and Kolczynski, 1993;
Tomaszewska and Mantiuk, 2007)

On the other hand, hyperspectral imaging (HSI) is one of the advanced imaging
technologies which is beyond the limitations of HVS. While HVS is limited to only a
narrow range of the electromagnetic spectrum (Malacara, 2003), HSI extends beyond
this limitation by capturing a broader range of spectral information, including
wavelengths that are outside the visible range. It provides significantly more
information i.e., a wider spectrum per data point of the scene than RGB images
captured by a normal color filter array-based camera. The normal cameras only
operate on acquiring three channels of RGB image corresponding to red, green,
and blue regions of the visible spectrum. Because each material has a unique
spectral signature that can be used as its identification, HSI greatly improves
the capability to classify objects based on their spectral properties. With the
advent of HSI, it has been widely used in the field of remote sensing in recent
years (Shukla and Kot, 2016) while it has become an emerging technology in
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medical diagnosis and image-guided surgery (Glaubitz et al., 2014). The field of
cultural heritage has also involved HSI systems for the analysis and restoration of
artworks (Pouyet et al., 2018; Kubik, 2007; Linhares et al., 2008). Additionally,
deep learning has already demonstrated its efficacy with hyperspectral data and
produced state-of-the-art results on hyperspectral classification (Audebert et al.,
2019; Polak et al., 2017). As a result of recent developments in sensor technologies
and efficient computation capabilities, hyperspectral imaging devices have evolved
from relatively slow and unreliable research prototypes to reliable, accurate, and
precise analytical instruments.

In past research, limited studies have been found integrating hyperspectral
data to improve the quality and color accuracy of HDR image reconstruction and
vise-versa. In an attempt to utilize hyperspectral information for enhancing HDR
reproduction, Martínez et al. (2019) proposed a framework for capturing spectral
reflectance through HDR hyperspectral imaging and multi-focus stacking which
was applied for the analysis of artwork. They used three different focus settings
while for each focus, three different exposure settings had been used to obtain
the spectral bands ranging from 400nm to 1000nm. This work was focused on
retrieving spectral reflectance data of artwork such as paintings, documents, posters,
photographs, etc. Lapray et al. (2017) also presented an interesting work that
merged HDR into spectral imaging by proposing an HDR spectral imaging pipeline
for a multispectral filter array camera which was intended to estimate relative
multi-spectral radiance of HDR scenes. The authors took multispectral captures at
three integration settings and merged them by using a hat weighting function i.e.,
giving more weightage to middle-range intensity pixels. However, it is important to
note that the final output images were not the absolute radiometric radiance of an
HDR scene. A novel hyperspectral visualization approach based on high dynamic
range imaging was presented by Ertürk et al. (2014) which aimed to retain visual
detail and provide a superior result in terms of visual quality when converting
hyperspectral images to three-channel color images. Anand Swamy et al. (2022) also
proposed lossless compression of hyperspectral images by employing decorrelation
and a multiscale HDR technique. In addition, Wang et al. (2018) propose an HDR
3D measurement method based on spectral modulation and hyperspectral imaging.

Besides, the concept of spectral adaptation was first introduced by Fairchild
(2007b) in the literature where the author applied it to the full spectral reflectances,
while Khan et al. (2017, 2018) attempted to generalize it to the sensor measurements.
Also, note that the HDR was not incorporated in any of these studies. Khan, H. A et
al. proposed the idea of multispectral constancy, which allowed for the acquisition of
multispectral images independent of illumination. A spectral adaptation transform
(SAT) (Khan et al., 2018) was utilized to change data representation from the
actual sensor domain to a canonical one to achieve multispectral constancy. The
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Motivation 1.1

simulation results demonstrated that a diagonal SAT was helpful to estimate similar
reflectance reconstruction as when the samples are acquired under the calibrated
illumination. By achieving multispectral constancy, multispectral imaging can be
used with any unknown illuminant without the need for re-calibration when the
imaging environment is changed. However, when the SAT was evaluated based on
an estimate of illumination, errors in illuminant estimation significantly reduced
the performance of the proposed approach. Furthermore, it is unknown what level
of accuracy is required for illuminant estimation for this concept to be useful for
computer vision applications.

1.1 Motivation
HDR images require tone mapping to adjust the wide range of luminance found in
real-world HDR scenes. It involves compressing these wide ranges of luminance
which is necessary to display the HDR image on devices with a limited dynamic
range, while still preserving its original appearance, including contrast, sharpness,
and color. The primary goal is to overcome the limitations of the output media
and achieve the best possible match, considering the restricted gamut and dynamic
range of the display device. To the best of our knowledge, existing HDR rendering
methods (Reinhard et al., 2010; Banterle et al., 2017; Eilertsen et al., 2017b; Mantiuk
et al., 2007; Salih et al., 2012) have been proposed only for traditional three-channel
(RGB) images. However, it is well known that having spectral data can produce
better color-accurate images, but whether the same thing can be said for tone
mapping or not has not been explored yet. There are also certain problems with
hyperspectral data acquisition such as bands being unevenly affected by noise at
different exposures while sensitivities of different wavelengths are also not uniform.
Therefore, significant postprocessing of the raw hyperspectral cubes is required
to reduce the effects of noise and to obtain accurate radiances. Other relevant
issues include the influence of chromatic aberration and glare effect especially for
HDR scene captures (McCann and Rizzi, 2007). In addition, limited research work
regarding tone mapping for HDR hyperspectral is itself a challenge whereas there
is no such publicly available database for HDR hyperspectral images.

In this context, the main research objective of our study is to investigate how
the visual quality perception and realism in HDR-rendered images are affected by
using HDR hyperspectral data instead of traditional three-channel HDR images. It
is also motivated by the fact that although trichromatic vision serves as the first
stage of color vision processing, it might be possible that the higher levels of the
visual system have some access to spectral information which may complement
trichromatic mechanisms. This research endeavor has the potential to advance
the field of high dynamic range imaging and contribute to the development of
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Chapter 1 INTRODUCTION

more sophisticated rendering techniques across various applications of imaging
technologies.

1.2 Research questions
To commence our research, we first highlighted our research questions which are as
follows:

• Research question 1: By leveraging the advantages of spectral radiance in
the context of tone mapping, can we achieve superior results when dealing
with high dynamic range content?

• Research question 2: What methodology to use for capturing HDR hy-
perspectral data? To address research question 1, it is important to develop
the methodology for capturing HDR hyperspectral data considering factors
such as hardware requirements, calibration techniques, and data processing
methodologies. This involves acquiring spectral bands covering the entire
visible spectrum, enabling us to gather detailed spectral information for each
pixel in the HDR scene. Because no HDR hyperspectral data is publicly
available for our application, developing the methodology for capturing such
data is crucial to support our research objective.

• Research question 3: How to effectively utilize hyperspectral radiance data
for better tone-accurate HDR image rendering with the intent to adequately
reproduce their perceptual impression of physical HDR scenes? In other
words, how to integrate the HDR and hyperspectral data for improving HDR
reproduction?

• Research question 4: How to render these HDR hyperspectral images on
HDR and SDR display? This involves addressing the challenges posed by the
varying dynamic ranges and color gamuts of HDR and SDR displays.

1.3 Major contributions
Given the mentioned issues and objectives, the major contributions of this research
are as follows:

• The proposed method for HDR hyperspectral image acquisition and post-
processing workflow.

6



Thesis outline 1.4

• A novel hyperspectral image color appearance model titled SiCAM has been
introduced which is the first image color appearance model designed for HDR
hyperspectral radiance images. It is to be noted that the proposed model is
inspired by the three-channel based image color appearance model iCAM06
(Kuang et al., 2007a).

• Another main contribution of this work is the utilization of hyperspectral
adaptation which has been incorporated into SiCAM for generating tone-
accurate LDR images from HDR hyperspectral radiance cube as an input.

• Both subjective and objective image quality assessment of the reproduced
LDR images has been performed to determine the effectiveness of having
more spectral data for tone mapping.

• Considering the lack of a widely accessible standard pipeline for rendering
HDR content of arbitrary luminance ranges, we proposed a display-referred
HDR rendering workflow that effectively translates HDR images into the
specific range of luminance supported by the HDR display.

• As a contribution to extended research in this domain, a dataset containing
four HDR hyperspectral radiances cubes and their respective three-channel
HDR images has been proposed where each of them consisted of a different
HDR scene captured in an indoor setting.

1.4 Thesis outline
This master’s thesis report is organized as follows: In Chapter 1, the theoretical
background of color science is discussed which is necessary to understand the
objectives and methodology of this study. Chapter 2 addresses the fundamentals of
image formation along with an overview of HDR and hyperspectral imaging which
are an integral part of this research study. The details of HDR hyperspectral data
acquisition and post-processing are given in Chapter 3. The proposed HDR imaging
rendering pipeline for HDR displays and its comparison with the HDR standards
are also discussed in this chapter. Chapter 5 provides a concise overview of HDR
tone mapping followed by the proposed SiCAM model for HDR rendering. The
HDR display calibration and characterization to ensure faithful HDR reproduction
and to avoid potentially adverse impacts during the perpetual evaluation of the
proposed model is summarized in Chapter 6. The details of the psychophysical
experiment and its methodology for perceptual-based evaluation of SiCAM with
that of iCAM06 and gamma tone mapping are given in Chapter 7. Additionally,
Chapter 8 presents a summary of HDR image quality assessment (IQA), and also
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Chapter 1 INTRODUCTION

discussed the metrics employed for evaluating the tone-mapped images involved in
psychophysical study. Lastly, the results obtained from the data analysis of the
rating scores given by the observers along with the results of objective assessment
are presented in Chapter 9. This chapter also includes a discussion of the findings
and highlights the limitation of this research study. The poster presented at MCSL
open house session during the Color Impact Conference 2023 is attached in the
appendix. The observer consent form used during the psychophysical experiment
and the CITI program completion certificate is also attached to the appendix.

Acknowledgement: I would like to thank Dr. Mekides Assefa for providing
the initial code for display calibration and the template for the GUI of the psy-
chophysical experiment. These codes were further modified and tested according
to the use case of this thesis work. Besides, I would like to acknowledge the use of
AI-powered tools for grammar checks such as Quillbot, Grammarly, etc.
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2 Fundamentals of color science

Like beauty, color is in the eye of the beholder

Yogi Bera

The ultimate goal of electronic vision is to mimic the capabilities of human
vision and beyond in some aspects, as highlighted in Chapter 1. Since human
vision as a whole is so versatile and powerful, any approach for extracting the
perceptual cues of human vision with electronics and computer vision technologies
requires an understanding of how to model some of the higher and lower-level
processing involved in human vision to collect the most comprehensive information
about our physical world. Likewise, the emerging field of high dynamic range
(HDR) imaging is intrinsically such an interdisciplinary field that it involves not
just imaging formation concepts but also revolves around radiometry, photometry,
colorimetry, color appearance, etc., to deal with certain characteristics of light
and human perception. Hence, this chapter summarizes a brief overview of these
fundamental concepts of color science, which are an integral part of the research
involved in this master’s thesis. It is important to note that this chapter offers a
concise introduction to the realm of color science and its associated concepts. For
a more comprehensive understanding, please refer to (Wyszecki and Stiles, 2000;
Hunt and Pointer, 2011; Fairchild, 2013; Schanda, 2007).
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Figure 2.1: The full electromagnetic spectrum of light consists of ultraviolet,
visible, and infrared regions where the visible spectrum is within the range wave-
lengths from 380nm up to 780nm.

2.1 Theory of light: Radiometry and Pho-
tometry

Light is electromagnetic radiation that propagates in space and interacts with
different materials in our environment. This interaction of light with the materials
results in several optical phenomena where it can be absorbed, refracted, reflected,
and transmitted depending on the properties of the material and the characteristics
of the light. The full electromagnetic spectrum of light involves ultraviolet, visible,
and infrared regions, where the visible spectrum of light lies within the range of
380nm to 780 nm, as illustrated in Figure 2.1. Radiometry and photometry are
two different categories of light measurements, which are further discussed in the
following subsection.

2.1.1 Radiometry
Radiometry deals with the measurement and quantification of electromagnetic radi-
ation across the entire electromagnetic spectrum, including visible light, ultraviolet
light, infrared light, and beyond. It is concerned with the absolute measurement of
light energy in terms of power, radiant flux, radiant intensity, and other radiometric
quantities as given in the table 2.1. Typically, these measurements are expressed
in watts (W ) or joules per second (J/s).
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Theory of light: Radiometry and Photometry 2.1

Table 2.1: The summary of radiometric quantities along with their photometric
counterparts (Wyszecki and Stiles, 2000).

Radiometric Quantities Photometric Quantities

Quantity Symbol Units Quanity Symbol Units
Radiant Power Φe W Luminous Flux ϕv lumens(lm)

Radiant Intensity Ie W/sr Luminous Intensity Iv lm/sr
Irradiance Ee W/m2 illuminance Ev lm/m2

Radiance Le W/m2/sr Luminance Lv lm/m2/sr

2.1.2 Photometry

Photometry is a subfield of radiometry that focuses on the measurement of light
as perceived by human vision, where the radiometric quantities are scaled by the
spectral response of the human eye. It takes into account that HVS has different
sensitivity at different wavelengths of visible light as defined by the Commission
Internationale de l’Eclairage (CIE) as given in Figure 2.2. This curve is known
as the photopic luminous efficiency curve (V(λ)) where it is found to be highly
sensitive at a wavelength of about 555nm. Hence, all the radiometry qualities
defined in the previous table are scaled by the V(λ) to convert into photometric
quantities, which are essentially the spectrally weighted radiometric quantities by
taking into account the human vision sensitivity of visible light.

It is important to note that photometric measurements do not tell us how bright
a stimulus will appear because the appearance of the brightness (i.e., the perceived
luminance) is also dependent on viewing conditions, whereas in any one set of
viewing conditions, the brightness and photometric measures are not proportional
(Hunt and Pointer, 2011). This means that increasing the luminance will not
result in increased brightness, and vice versa. Additionally, stimuli of the same
luminance appear brighter by increasing their colorfulness, while the surroundings
of the stimuli also impact their appearance. These examples indicate that beyond
radiometric and photometric measurements of light, there are other more complex
phenomena involved in the human vision system (HVS), which are briefly discussed
in the following section.
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Figure 2.2: The figure illustrates the photopic luminous efficiency curve (V(λ))
defined by the Commission Internationale de l’Eclairage (CIE) which is the
spectral sensitivity curve of human vision (Reinhard et al., 2010).

2.2 Turning light into color: Human visual
response to light

In order to develop a better understanding of HDR imaging, it is essential to
understand how our visual system works. Illuminants (light sources), which are
identifiable by their unique spectral power distributions (SPDs), objects, which are
identifiable by their own material properties, and the human eye are typically the
three main stages involved in human visual perception. When the light from some
illuminant hits the object, based on the material’s properties, the incoming light
interacts with the object and is then reflected back in the surrounding area. The
reflected light then finally reaches the human eye, as depicted in Figure2.3.

When light from the environment enters the human eye, the HVS is able to
interpret various characteristics of that light. The most fundamental characteristic
is the intensity of the light (power or luminance), which we perceive as brightness.
The HVS is also sensitive to variations in the intensity of light. The spatial
variations in the intensity of light produce contrast, which enables us to perceive
lines, contours, and, finally, the shapes of objects in the environment, while the
spectral variations in the intensity of light allow us to discern the object’s colors.
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Turning light into color: Human visual response to light 2.2

Figure 2.3: The figure illustrates the three fundamental components of color
vision perception which includes: illuminant, object and human eye.

2.2.1 The human visual system:
Figure 2.4 illustrates the schematic diagram of the human eye along with the labeling
of key structures. The human eye accumulates incoming light on photoreceptors,
which then convert this light into biological signals. These signals are transmitted
via the optical nerve to the visual cortex, a region of the brain that processes these
signals to produce the perception of the physical scene. Light entering the eye
is first transmitted through the cornea, a transparent membrane. The light then
enters the pupil, which is an aperture modified by the iris, a muscular diaphragm.
The lens then refracts light, which strikes photoreceptors in the retina. There are
two liquids inside the eye: the vitreous and aqueous humors (Banterle et al., 2017).
The former occupies the eye, maintaining its form and the retina’s contact with
the inner wall. Between the cornea and the lens, the aqueous humor maintains
intraocular pressure.

Photoreceptors are specialized cells in the retina that detect light and convert it
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Figure 2.4: The human eye. (Banterle et al., 2017).

into signals, which are conveyed to the brain via the optic nerve. The cones and rods
are the two categories of photoreceptors, where rods are sensitive at low luminances,
producing significantly low visual acuity. This vision, when the rods are active, is
known as scotopic vision. The cone photoreceptors are sensitive at higher luminance
ranges, producing significantly high visual acuity. This vision, where cones are
activated, is known as photopic vision, which allows color perception. Mesopic
vision is where both types of photoreceptors contribute to vision at intermediate
luminance levels. There are far more rods than cones; however, approximately 6–7
million cones are primarily located in the fovea, where we perceive the best spatial
and color vision, and the fovea is the point on the retina where the projection of
objects on which we fixate our gaze falls.Furthermore, color vision is the result of
signals generated by three types of cones: short-wavelength cones (S), which are
sensitive to wavelengths around 435 nm; middle-wavelength cones (M), which are
sensitive to wavelengths around 530 nm; and long-wavelength cones (L), which are
sensitive to wavelengths around 580 nm. These signals generated by photoreceptors
are subsequently processed by the brain to create a visual impression of the world
around us and are primarily responsible for color vision perception.

2.2.2 Basics of color vision

When cones are activated in the presence of light, the photoreceptors in the retina
generate the signals that lead to color vision. However, there are several theories
that attempt to explain transformations of these signals which serve as useful
insights to understand the overall function of human color vision. Some of the most
relevant mechanisms to our discussion are briefly described as follows:
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2.2.2.1 Trichromatic vision theory

As stated above, cones are the photoreceptors that are primarily responsible for
color vision and serve as the first stage of visual processing for color perception.
Scientists discovered that there are three types of photoreceptors, namely long
(L), middle (M), and short (S) cones, which are sensitive to the red, green, and
blue regions of the visible spectrum, respectively. The trichromatic theory of color
vision is also referred to as the Young-Helmholtz theory (Hunt and Pointer, 2011).

The trichromatic nature of color vision differs significantly from person to
person. In addition to color vision deficiencies due to the lack of a particular cone
photopigment and anomalous trichromacy, large individual variability also exists in
normal color vision (Asano et al., 2016). Thus, a pair of two different spectral stimuli
may create the same trichromatic response for one observer but a mismatch for
another observer. This phenomenon is known as observer metamerism. Typically,
observer variability would not be a significant issue in many observation settings,
owing to the fact that natural spectra are broad-band and do not require side-by-
side comparison. However, variability in color vision and observer metamerism,
on the other hand, could be a severe concern in color-critical applications such as
cross-media color matching (Long and Fairchild, 2014). Due to the narrow band
primaries of modern wide color gamut and HDR display technologies, observer
metamerism has become an even more serious problem, and normal observers may
perceive different colors for the same color values shown on the calibrated displays,
which may appear mismatched (Bergquist, 2008; Hung, 2019).

2.2.2.2 Opponent colors theory

The trichromatic vision theory is based on the assumption that the three cone
photoreceptors generate three separate images of the physical scene and transmit
them to the brain for further processing. However, the assumption of sending
three images to the brain is not sufficient to explain other dominant phenomena.
Hence, the opponent color theory explains that the three separate color images
generated by LMS cones are not transmitted directly to the brain, but there
is a further transformation of these three types of signals into opponent signals
(i.e., red-green and yellow-blue). These opponent signals consist of an achromatic
response generated by the sum of three individual signals from L, M , and S cones,
while two chromatic responses are generated by taking the difference of these cone
responses, i.e., red-green is formed by L−M + S whereas yellow-blue is formed by
L+M − S as shown in Figure 2.5.

The encoding of signals from LMS to the achromatic and chromatic signals
serves to decorrelate the color information carried in LMS responses, which allows
for more efficient signal transmission and reduces difficulties in their efficient

15



Chapter 2 FUNDAMENTALS OF COLOR SCIENCE

Figure 2.5: The opponent colors theory argues that the human visual system
analyzes color information by processing opponent signals from a combination of
responses generated by cone and rod photoreceptors as illustrated in this diagram.

processing. Based on this phenomenon of decorrelation, there are several image
encoding algorithms that are inspired by opponent color theory and incorporate
the principle of decorrelation for efficient data compression and transmission.

2.2.2.3 Adaptation Mechanisms

In addition to the transformation from trichromatic vision to two opponent color
signals and an achromatic signal, the dynamic mechanism of human visual adap-
tation by adjusting its sensitivity to the level of illumination to further optimize
the visual response to certain viewing conditions. These adaption mechanisms are
discussed as follows:

• Dark adaptation It refers to the adjustment of visual sensitivity that occurs
when the prevailing intensity of illumination is reduced. For instance, when
walking into a darkened room on a sunny afternoon, at first everything
appears dark, but eventually, we recover our sight and become able to see
the objects around us. This is because the visual system takes time to adapt
by becoming more sensitive in low-light conditions after being exposed to a
brighter environment.

• Light adaptation The inverse of dark adaptation is light adaptation where
the visual system becomes less sensitive due to the presence of high illumina-
tion in order to produce useful perception.

• Chromatic adaptation In addition to the illumination adaptation, human
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vision also adapts to color of the object or its surround. Chromatic adaptation
is a tendency of the human visual system to disregard the color of the
illumination and maintain the appearance of an object to a reasonable
degree. In other words, the magnitude of change in the appearance of
objects is far lesser than the magnitude of the change in its radiometry or
colorimetry. Examining a white object under different forms of illumination,
such as daylight and incandescent, reveals chromatic adaptation. The visual
system achieves color constancy by discounting scene illumination. As an
approximation, we can say that the perceived chromaticity of the scene is
normalized by removing the perceived illumination. Although, it is safe to
assume that human vision has a natural tendency to correct for the effects
of light source color but the mechanism underlying this ability is not fully
understood yet.

The adaptation to intensity is analogous to exposure setting in electronic cameras
and chromatic adaptation can be thought of as analogous to the automatic white
balancing.

2.2.2.4 Spatial and temporal properties of color vision

Contrast sensitivity is one of the most essential visual measurements. For an object
to be distinguishable from its background, the object’s luminance or color must
differ from that of the background. This distinction is referred to as contrast. The
contrast in the field of visual perception is determined by the difference in color
and/or luminance between an object and its background or other objects within
the same field of view.

Contrast sensitivity is a measurement of the ability to distinguish between
different levels of luminance in a static image. The contrast Sensitivity Function
(CSF) is defined by the threshold response to a function of spatial or temporal
frequency. The contrast sensitivity function that is obtained by measuring contrast
thresholds over a range of spatial frequencies is illustrated in 2.6 , where it can
be observed that the spatial CSF for luminance is bandpass in nature. It also
demonstrates that human vision is most sensitive to an intermediate range of spatial
frequencies (i.e., between 2 and 8 cycles per degree). For comparison, luminance
and chromatic CSFs for both spatial and temporal frequencies in the logarithmic
domain are given side by side in Figure 2.7. It can be observed in this figure
that the chromatic response is lowpass in nature for both temporal and spatial
frequencies.
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Figure 2.6: The figure shows the spatial contrast sensitivity for the luminance
of human vision which is bandpass in nature where the human vision is most
sensitive to an intermediate range of spatial frequencies.(Image credits: Lecture
slides of color imaging course(NTNU).)

Figure 2.7: The figure represents the spatial luminance and chromatic CSFs on
the left side whereas the temporal luminance and chromatic CSFs are given on
the right sideFairchild (2013).

2.2.2.5 Important perceptual attributes of color

For developing an understanding of the fundamental scientific concepts, it is crucial
to learn the definitions of the commonly used terms in that field. Hence, the
definitions of basic perceptual attributes of color are given as follows:

• Brightness vs Lightness: The attribute of a visual sensation according to
which an area exhibited more or less light is known as brightness whereas the
brightness of an area judged in proportional to the brightness of a similarly
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illuminated area is known as lightness.

Lightness =
Brightness

Brightness (Reference_white)
(2.1)

• Colorfulness vs Chroma: The attribute of a visual sensation according
to which an area exhibited more or less of its hue whereas the chroma is
the colorfulness of an area judged relative to the brightness of a similarly
illuminated area.

Chroma =
Colorfulness

Brightness ( Reference_white)
(2.2)

• Hue An area appears to be similar to one of the four unitary hues: red,
yellow, green, and blue, or a combination of two of them

• Saturation The colorfulness in proportion to its brightness is known as
saturation.

Saturation =
Chroma
Lightness

Saturation =
Colorfulness

Brightness ( Reference_white )
× Brightness ( Reference_white)

Brightness

Saturation =
Colofulness
Brightness

(2.3)

2.3 Theory of Colorimetry
In the midst of all these complex mechanisms involved in the perception of color
by human vision, it is a challenging task to effectively communicate and measure
colors. As discussed in the previous sections, color is determined by the underlying
biology of the human visual system, particularly the spectral characteristics of
the three types of light-sensitive cone photoreceptors in the eye. The trichromatic
nature of color and color matches means they can be specified by three linearly
related variables. The primary objective of colorimetry is to be able to specify these
variables for all spectral compositions of light. (Schanda, 2007). Because color is
a perceptual phenomenon, engineering measurements cannot be used to quantify
colors. Consequently, colorimetry is concerned with the quantitative description of
the color of visual stimuli.
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2.3.1 Color matching functions
Trichromacy implies that the color-matching behavior of an individual can be
examined by determining the intensities of three independent fixed-wavelength
”primary” lights to match a target stimulus where independent means that no
two primaries will match the third. By performing a series of color matches for
the entire spectrum of visible light, one can estimate the color-matching function
(CMF) for an observer. The maximum saturation method and Maxwell’s method
are the two principal methods that attempt to estimate a standard CMF. As a
result of these color-matching experiments, a system of colorimetry was introduced
based on the principles of Grassmann’s laws that color matching must be linear
and additive (Wyszecki and Stiles, 2000). The main idea of this system is that the
color matches can be specified in terms of the intensities of three additive primaries
required to visually match the color of a stimulus as given by the equation 2.4
where C is the unknown stimulus and a, b and c indicates the amount of the RGB
primaries required to match C.

[C] ≡ a[R] + b[G] + c[ B] (2.4)

The researchers performed this color-matching experiment where they projected
a monochrome light from the visible range on the reference field and asked the
observers to match the color of this reference field by modifying the test field
that is usually made up of an additive mixture of three independent primaries as
illustrated in the Figure 2.8.

In some instances, a match cannot be made, necessitating the addition of light
to the reference field, resulting in negative values for the color-matching functions.
Although any three independent primaries can be used, monochromatic red (long
wavelength), green (medium wavelength), and blue (short wavelength) are typically
chosen.

[C] = a · [R] + b · [G] + c · [B]

a =

∫ 780 nm

380 nm

r(λ)P (λ)dλ b =

∫ 780 nm

380 nm

ḡ(λ)P (λ)dλ c =

∫ 780 nm

380 nm

b̄(λ)P (λ)dλ

(2.5)
Repeating the same color-matching process of the whole visible spectrum as

given by equation 2.5, resulted in CMF. The spectral response curves of an average
human eye is defined by CIE in 1931 based on the independent experiments of
William David Wright and John Guild in the late 1920s. The data was averaged
and presumably based on observers with normal vision this then became the basis
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Figure 2.8: The figure illustrates the color matching experiment where three
primary colors are used to match or reproduce the color of a target stimulus.
This is often done by adjusting the intensities of these primary lights until
their combination creates the same color sensation as the target stimulus. By
performing a series of color matches across the entire spectrum of visible light, a
color-matching function (CMF) for that particular observer can be determined.
(Fairchild, 2013; Schanda, 2007).

for what we call the standard observer. The negative values in the CMFs made the
calculation more difficult and hence CIE decided to transform from the real rbg
primaries to CIE XY Z. It is important to note that even in the early 1900’s it was
understood that the field of view had an impact on color perception and a 2◦ field
of view was selected to help neutralize this variable and that is why the standard
observer model is often referred to as a CIE 1931 2◦ standard observer. Most of
the display monitors work on the principle of additive color theory where the linear
combination of the display primaries defines entire color gamut of that display.

2.3.2 Color spaces
A color space is a mathematical explanation of how to describe color which is
basically a mapping between numeric values and specific colors. It is a three-
dimensional model containing all the combinations of the three fundamental in-
dependent vectors known as primary colors. Color spaces are classified into two
types: device-dependent and device-independent which are as follows.

2.3.2.1 Device-dependent color space

This defines the color information with respect to the hardware and software
capabilities of the device for reproducing the color. In the case of a display monitor,
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Figure 2.9: The figure represents CIE chromaticity diagram. All the colors
which are in the spectral local(boundaries of the horseshoe) can be perceived by
the human eye, where we performed the mapping of a 3D color space into 2D to
obtain this CIE XY chromaticity diagrams using 1931 CMF. However, due to
technological limitations, the display standards define how much of this visible
gamut can be achieved by a device. As shown on the chromaticity diagram given
on the right side of the figure, the colors that are within the gamut of REC709
are only reproducible by the display which is designed to operate on this standard
colorspace.

it is determined by the set of primary phosphors, whereas it is determined by the
set of primary inks in an ink-jet printer. For example, display monitors usually
operate on sRGB color space while prints work on CMYK color space.

2.3.2.2 Device-independent color space

The device-independent color space is the superset of all colors visible to the
human eye based on the CIE 1931 2◦ standard observer and hence used by all color
management software for the transfer of color information between different devices
in its workflow. Examples of such color spaces are CIE XYZ, CIE Luv, and CIE
Lab.

2.3.3 Color difference
Color is a crucial attribute that defines the appearance of objects, and understanding
color differences is essential for describing these appearances. In industrial and
practical applications, these differences hold significant importance. Color difference
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models play a key role in quantifying the disparities between visual perceptions
of color (∆V ) and the differences calculated using specific formulas (∆E). The
visual color difference is obtained through psychophysical experiments, whereas
the computed difference is determined using appropriate formulas. CIELAB color
differences are the most used (Hill et al., 1997). They are based on perceptually
uniform color space and they optimize the hue linearity. It is similar to a Euclidean
distance metric, so it is easy to calculate. Even so, depending on the application,
the perceptually uniform CIELAB does not always works because it still contains
some issues regarding the blue and purple non-linearity.

Another widely used color difference is the CIE ∆E2000 color difference formula
Luo et al. 2001, which includes compensation for the non-linearity of CIELAB.
This formula was recommended by the CIE for industrial applications as it has
outperformed previously proposed color difference metrics. Although CIE ∆E2000
is considered better than CIELAB it also has its own shortcomings which have
to be resolved in the future (Melgosa et al., 2008). For example, (Kirchner et al.,
2015) found out that in many cases the CIE ∆E2000 formula predicts the color
differences to be equal while the observers can perceive smaller color differences.
Moreover, they concluded that new color difference equations are needed to obtain
more accurate predictions.

2.3.4 Color appearance model
Color appearance models (Fairchild, 2013) are mathematical models which are
designed to provide the prediction about how humans perceive the appearance of
colors under specific viewing conditions. These models consider various factors
such as illumination, background, viewing angle, and the human visual system’s
response to different wavelengths of light. The color appearance models take into
account at least five attributes of uniform color stimulus which include brightness,
lightness, colorfulness, hue, and saturation.

Some models, such as CIELAB (and its lastest version, CIELUV) (Mahy et al.,
1994), offer a relatively straightforward method for describing and quantifying
color differences and appearances. These models are extensively employed for a
variety of practical applications, such as color quality control, color matching, and
color space transformations. Complex color appearance models, on the other hand,
account for a broader spectrum of perceptual phenomena where color constancy
and simultaneous contrast phenomena are incorporated. CIECAM02 (Moroney
et al., 2002) and CAM02-UCS (Li et al., 2017) are examples of more comprehensive
and complex models of color appearance that attempt to account for a broader
range of perceptual effects.
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3 The fundamentals of Imaging

In the legacy of ‘What you can see, you can capture.’

Erannman Camera

This chapter provides a historical overview of photography, allowing us to
grasp the remarkable progress in imaging technology, from its origins to its current
trajectory. Subsequently, this chapter presents the fundamental workflow of the
digital camera pipeline, highlighting its key stages and processes. Additionally, the
factors influencing image quality are discussed, acknowledging the limitations that
arise within this context.

In the latter part of the chapter, we provide concise summaries of two advanced
imaging techniques: high dynamic range imaging (HDRI) and hyperspectral imag-
ing(HSI). Both of these imaging techniques are an integral part of our research study.
These cutting-edge methods offer exciting possibilities for capturing and processing
images with enhanced dynamic range and spectral information, respectively.

3.1 A brief history of Photography
For nearly 200 years, photography has allowed human beings to capture the
fascination of a single moment in time. Thanks to the inventive minds that have
long been looking for ways to improve or indeed to perfect photography. The
fundamental principle of image formation is the mapping of the 3D world around us
into the 2D plane. In the early days, painting was the dominant medium in the art
world to capture these 2D visual representations. Later, the invention of cameras
allowed capturing light with a digital sensor or film, to create an image. The
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Figure 3.1: The above figure depicts a concise chronology of major developments
in the field of photography.

evolution of the simplest imaging device is so fascinating at every different point in
its history. While our understanding of the camera has evolved significantly, the
"camera obscura" is regarded as the ancient concept upon which all subsequent
revolutionary developments and inventions in the field of photography were built as
illustrated in Figure 3.1. This involves light propagation through a small pinhole
that results in an upside-down mapping of a real-world scene on a 2D plane. This
was essentially designed to facilitate the artist to draw images based on perspective
projection. Sooner it was discovered that by using a smaller pinhole the projection
may appear more sharper but also dimmer. The pinhole allows less light to pass
and hence requires long exposures to capture a bright image.

Therefore, the pinhole camera was enhanced with the addition of an optical
lens. The use of a lens allowed much more light into the camera obscura and, with
a mirror placed at 45 degrees to the rear wall, meant that the image could be
projected onto an opaque glass screen on the top side of the camera. This enabled
the artists to trace the projected image onto paper placed on the screen. Although
the advancement in this imaging device brought a dramatic shift in painting
through an increase in realism, particularly the more naturalistic treatment of faces.
However, one can consider the invention of films as a significant development in the
history of photography which gave artists the freedom to capture the real optical
look of a 3D scene and made it possible to shoot multiple pictures one after the
other. It basically opened the doors of photography for everyone. It is worth noting
that capturing an entire photograph with full colors is an extremely challenging
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task. Photographic technology took an exciting step forward with advances in
color film. The consumer’s film cameras soon appeared in the market with the
advisement of "what you can see, you can capture".

The invention of silicon image detection paved the road to digital photography.
The advent of digital imaging sensors such as CCD (Charge-Coupled Device)
and CMOS (Complementary Metal-Oxide-Semiconductor) sensors brought the
transition from Film photography to digital imaging that broaden the horizons of
visual communication.

3.2 Digital camera pipeline
All digital camera involves three main components which include the optics, the
imaging sensor, and the processing module. These imaging devices operate on a
similar underlying principle where they take in light as an input and convert it into
photons which are eventually transformed into electrons through the photoelectric
effect of semiconductors. At a certain point, the electrons are converted into
voltages, and then these voltages are subsequently converted to digital numbers.
The typical pipeline of digital cameras is illustrated in Figure 3.2.

Light enters the camera through the lens which focuses and directs light onto
the imaging sensor of the camera. The lens’s quality and design characteristics are
critical in determining the image’s sharpness, clarity, and overall performance. The
imaging sensor receives incoming light and converts the optical image created by
the lens into an electrical signal. The camera uses either CMOS or CCD sensors
depending on the requirements of their application. However, CMOS sensors are
widely used in consumer cameras. It is necessary to transform the analog electrical
signals produced by the image sensor into digital information. An analog-to-digital
converter (ADC) executes this process by quantizing the analog signal into digital
values and sampling the analog signal at discrete intervals. The RAW file format
is used to store the digital values obtained from the ADC. These RAW files are
sensor data that has undergone very little processing, preserving all of the data
that was recorded. Compared to processed image formats like JPEG, RAW files
give photographers more flexibility during post-processing because they contain
more dynamic range and color information.

The Bayer filter array is used in most camera sensors, with each pixel capturing
only one of the three primary colors (red, green, or blue). The process of recon-
structing full-color information for each pixel by interpolating the missing color
information based on the values of neighboring pixels is known as demosaicing Li
et al. (2008). After the demosaicing, the camera applies color correction algorithms
Gasparini and Schettini (2003) to guarantee accurate color representation and noise
reduction algorithms to eliminate electronic noise and sensor artifacts that may
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Figure 3.2: The given pipeline illustrates a generic workflow of digital cameras.

have been introduced during image capture, particularly in low-light situations.
The image signal processing (ISP) stage consists of a number of image processing
algorithms that include gamma correction, white balance, sharpness enhancement,
and contrast adjustments. These stages refine the appearance of the final image and
optimize it for display. Finally, the camera may apply lossy compression algorithms
Yang and Bourbakis (2005) to reduce the file size and then store it on the camera’s
memory card. Depending on the camera settings, this could be a RAW file, JPEG
file, or both.

3.2.1 Image quality factors
During the early year of digital imaging, it was the image sensor with its limited
number of pixels which was considered as the main obstacle for capturing images
with higher resolution. Today, high resolution relies on the high quality of camera
optics to produce fine details, especially in the image corners. Due to various
optical distortions such as vignetting and chromatic aberration, the image quality
decreases toward the periphery compared to the image center.

Additionally, an imaging sensor can generate a wide range of noise artifacts,
including thermal noise, readout noise, and shot noise Bigas et al. (2006). These
artifacts diminish image clarity and are more apparent in images captured with a
high ISO setting or in low-light conditions. Moire patterns also appear when the
scene being captured contains repeating textual or lines that are tightly spaced.
The pixel pattern of the sensor can interact with these patterns, resulting in visual
interference or false colors in the image. Many cameras use a rolling shutter to read
data from the sensor line by line. A rolling shutter is used by many cameras to read

28



Advanced imaging techniques: High dynamic range imaging 3.3

data from the sensor line by line. When photographing fast-moving individuals or
scenes, the rolling shutter effect can generate distortions such as skew or ghosting
artifacts because various parts of the scene are captured at different instances.
Image sensors have a limited dynamic range, which is the luminance ratio between
the darkest and brightest parts that can be captured in a single exposure. The
real-world scenes with a dynamic range in luminance can cause the highlights and
shadows to be clipped, leading to a loss of details. It’s worth noting that advances
in sensor technology and image processing techniques are aimed at reducing these
limitations of digital imaging.

3.3 Advanced imaging techniques: High dy-
namic range imaging

The aspiration of electronic vision is to replicate the functionalities of the human
eye and potentially surpass it in some domains. The eye and human vision
possess remarkable versatility and power, necessitating a targeted approach in the
development of electronic and information technology strategies aimed at emulating
these capabilities. The objective is to gather the most comprehensive information
about our physical world by focusing on certain aspects of the human visual system.
Such two advanced fields of imaging science are discussed in the last part of this
Chapter.

One of the key technologies of advanced imaging is High dynamic range imaging
(HDRI). It is a set of techniques that computationally enhance the standard
(conventional) dynamic range of digital images. The difference in the dynamic
range of the human visual system (HVS) (Hoefflinger, 2007) compared to standard
cameras/displays provides an inherent motivation to develop methods for capturing
and displaying HDR images that better simulate the sensation of watching a real
HDR scene. HDRI has emerged in a variety of domains, including computational
photography, computer graphics, animation, etc. HDR content can be generated in
a variety of ways, including merging several lower dynamic range images for HDR
reconstruction, simulating or raytracing via computer graphics tools, or using HDR
sensors for HDR data capture. In the following subsections, a brief summary of
the different aspects of this technology is addressed. However, to develop a better
understanding of HDR imaging and further details on HDR imaging pipeline please
refer to Reinhard et al. (2010).
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Figure 3.3: The figure illustrates luminance ranges commonly encounter in
real-world scenarios and commonly used display screens.

3.3.1 Dynamic Range
The definition of the term "dynamic range" requires more clarification as it is a
dimensionless quantity that can be used to refer to a variety of distinct physical
measurements. Following are the widely encountered scenarios in which the concept
of dynamic range differs.

• Images: The dynamic range of an image is the ratio between its brightest
and darkest pixel. The minimum and maximum pixel values of any image
are arguably outliers by definition, so this way of calculating dynamic range
is not necessarily robust. However, excluding a certain percentage of the
lightest and darkest pixels is a more reliable approach. Commonly researchers
use the 99 percentile and 1 percentile respectively to estimate the dynamic
range of an image.

• Display: The dynamic range of a display is the ratio between the maximum
and minimum luminance levels that it can emanate.

• Camera: The ratio between the luminance that saturates the sensor and
the luminance that shifts the camera response one standard deviation above
the noise floor.

The HVS can adapt to illumination conditions that vary by nearly ten orders
of magnitude, while simultaneously operating over a range of approximately five
orders of magnitude within the scene. Figure 3.3 depicts the luminance ranges
commonly encountered in real-world scenarios and widely used display screens
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3.3.2 High vs low dynamic range imaging
High dynamic range (HDR) images and videos contain pixels that can represent
a significantly greater range of colors and brightness levels than those offered by
current dynamic range standards. HDR does not only offer brighter and more
colorful images than their SDR reproduction but also contains much higher local
and global contrast between neighboring and distant objects respectively (Pouli
et al., 2016; Narwaria et al., 2016).

The electro-optical transfer function (EOTF) of a standard dynamic range
(SDR) display typically follows a 2.2 gamma curve and employs 8 bits of color
depth. As a result, the maximum luminance of the display is approximately 500 nits.
High dynamic range (HDR) displays, on the other hand, utilize an extended EOTF
curve, such as the Perceptual Quantizer (PQ) curve, and a minimum color depth
of 10 bits. This enables HDR displays to achieve significantly higher luminance
levels, exceeding 1000 nits and even exceeding 4000 nits (Seetzen et al., 2004).

Color depth refers to the level of precision that can be used to encode color
information. The additive displays use three primary colors (red, green, and blue)
to synthesize all display gamut colors. In the case of standard dynamic range
(SDR) display, each color channel can be encoded with 8 bits, allowing for 256
levels of color shades. By utilizing this 8-bit encoding range, standard SDR displays
can show up to 16,777,216 colors. Although this appears to be a vast number, it
should be noted that conventional images mostly depict approximately two orders
of magnitude of dynamic range, which is insufficient for many real-world scenes.
In contrast, HDR standards improve color accuracy by increasing the color depth
per channel to 10 bits. This yields a total of 1,073,741,824 range of colors for
HDR displays. Hence, HDR color space is considered to be the superset of all the
SDR traditional color spaces. This expanded color gamut enables HDR displays
to generate more realistic and vibrant images with finer color gradations, thereby
contributing to a more immersive visual experience.

3.3.3 The HDR imaging pipeline
The HDR imaging pipeline can be divided into five main stages i.e., capturing HDR
content, processing, rendering and finally visualizing it on the screen as shown in
Figure 3.4.

The first stage involves capturing HDR content which may be captured in a
variety of ways. The hardware-based methods of HDR capture encompass the
utilization of specialized sensors or devices explicitly engineered to capture a wider
dynamic range of light in comparison to conventional cameras. These techniques
facilitate the simultaneous acquisition of different exposures or enhance the sensor’s
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Figure 3.4: The HDR imaging pipeline consisted of four main stages which
involve HDR capture, post-processing of captured HDR content, efficient encoding
and storage, and finally rendering on the output display screen.

capacity to capture real-world HDR scenes. Examples of such two methods are:
splitting the aperture and varying pixel exposure sensitivity. The software-based
methods include merging LDR images taken at multiple exposures, using computer
graphic tools and/or using computer vision techniques for HDR reconstruction from
single-exposure images. In the next stage, the captured HDR data may be further
posted in a number of ways such as merging the LDR captures for expansion of
dynamic range, to account for the artifacts removal or color shift adjustments, etc.
Besides, tone mapping can also be employed in this stage to adjust the dynamic
range given the limitations of the output display device.

For storage and distribution, specialized HDR data encoding techniques and
file formats are employed as the HDR content may exhibit a much greater file size
compared to its LDR counterpart, owing to the explicit representation of HDR
values. At the display stage, the HDR images are rendered by employing pixel data
decoding considering the Electro-optic transfer function of the display device.

3.3.4 Methods of HDR Acquisition
HDR images can be created through various approaches, each of which employs
different techniques to capture or reproduce HDR scenes. Some common methods
include merging multiple LDR images to reconstruct an HDR image, utilizing
learning-based models to enhance dynamic range, simulating HDR scenes via ray-
tracing, or employing specially designed HDR sensors to capture real-world HDR
scenes which are discussed as follows.

32



Advanced imaging techniques: High dynamic range imaging 3.3

3.3.4.1 Hardware-based single shot HDR capture

A traditional digital camera normally gives a dynamic range of two orders of
magnitude i.e., the ratio of intensity between the brightest and darkest pixels.
However, many real-world scenes have a wider range of brightness. As a result,
some parts of digital camera photos are undersaturated or oversaturated. One way
to expand the dynamic range of digital cameras is to use different exposure setting
to capture different regions of the HDR scene. To capture multiple exposures
simultaneously the researchers have been found using a beam splitter in front
(multiple cameras) or behind (single camera) the lens to split the light into multiple
beams reaching multiple sensors which results in capturing multiple exposures in a
single shot(Wang et al., 2005; Aggarwal and Ahuja, 2001). Another approach is to
utilize a sensor with varying pixel sensitivity (Nayar and Mitsunaga, 2000; Nayar
and Branzoi, 2003; Brajovic and Kanade, 1996). Although these hardware-based
HDR capture techniques result in high quality HDR images with no temporal
misalignment and no ghosting artifacts, however, the required HDR acquisition
setup and post-processing are usually expensive.

3.3.4.2 Multiple exposure HDR capture

The most common technique of HDR imaging is to capture multiple shots of the
scene at varying exposures in a sequential manner (Reinhard et al., 2010; Burt and
Kolczynski, 1993; Tomaszewska and Mantiuk, 2007). The LDR images taken at
low exposures capture relevant details in bright scene regions, whereas the LDR
images taken at high exposures provide helpful data in dark scene regions. As a
result, the captured photos can be merged to produce a single HDR image. This
approach is taken a step further by Debevec and Malik (2008) where the author
attempts to recover the radiometric response of the imaging system from these
multiple exposures HDR images in order to estimate the radiance map of the HDR
scene as depicted from Figure 3.5.

Ghosting artifacts caused by moving objects or misalignments is a key challenge
in high dynamic range (HDR) imaging for dynamic scenes. The methods described
above are, of course, only applicable to static scenes; the imaging apparatus, scene
objects, and their radiances are all required to be constant during the sequential
capture of LDR at different exposures. Therefore, the quality of file HDR image is
highly dependent on LDR image alignment, merging, and other post-processing
algorithms.
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Figure 3.5: (Reproduced from Figure 1.2 for convenience) The multiple exposure
HDR capture utilizes a set of LDR images taken at different exposure settings
such that all the details of the HDR scene are captured. Later, these LDR images
are used to recover the camera response function which is employed for linearity
correction. Once the camera response function is obtained, the LDR images
are transformed into linear representations. These linear LDR images are then
combined or merged together to create an estimation of the radiance map of the
actual HDR scene.

3.3.4.3 Learning-based HDR reconstruction

In recent years, there is a remarkable advance in HDR reconstruction using deep
learning technologies. Learning-based HDR reconstruction is an advanced approach
that employs deep learning algorithms to generate high dynamic range (HDR)
images from a single or limited number of low dynamic range (LDR) images. Instead
of relying on multiple exposures, this method utilizes a trained deep-learning model
to predict the missing HDR details and enhance the image’s dynamic range. These
models can also handle challenging lighting conditions and scenes with moving
objects better than traditional image processing-based methods. By training on
a large dataset of paired LDR and HDR images, a deep learning model extract
the features and use them to comprehend the relationship between the input LDR
images and their corresponding HDR versions. This trained model can then be
used to analyze any LDR image and estimate the missing HDR data. The result is
an enhanced image with a wider range of luminance levels, simulating the visual
characteristics of a true HDR image (Eilertsen et al., 2017a; Park et al., 2022; Pan
et al., 2020).

Others also attempted to incorporate the domain knowledge of the LDR image
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formation pipeline to design the learning-based model to estimate the inverse
camera response function for restoring the missing details caused by quantization
and reducing the visual artifacts in the underexposed regions and over-exposed
regions (Liu et al., 2020). These techniques have also been escalated to learn a
mapping from a stack of LDR images to generate a ghost-free HDR image where
attention-guided networks have also been employed for artifacts removal (Wu et al.,
2018).

3.3.5 Post Processing of HDR content
In order to refine and enhance the final HDR reproduction considering the output
device, post-processing plays a vital role in the HDR imaging workflow. Several post-
processing techniques for optimizing the HDR image’s appearance and accounting
for the undesired atifacts are proposed which are discussed below.

3.3.5.1 Tone compression

HDR images are considered to be scene-referred which means that an HDR image
stores the radiometric quantity i.e., radiance of the actual HDR scene which is
further scaled by the sensor’s sensitivity. HDR images, unlike output-referred JPEG
files produced by traditional cameras, are not pre-processed for rendering on SDR
display i.e., they are not gamma encoded pixel values. Since the HDR stores linear
pixel values, HDR images are unsuitable for direct display on standard display.
The majority of current display technologies are SDR displays which cannot display
HDR images because of the substantially narrower dynamic ranges of the display.
To visualize HDR images of high luminance on a normal SDR display, tone mapping
is generally required to perform tone compression while preserving the maximum
details that are present in HDR images. The details of tone mapping are discussed
in Chapter 4.

It is also important to mention that not just SDR displays require tone compres-
sion but also for HDR display it is required. For instance, HDR images containing
absolute luminance or radiance units in HDR images are sometimes higher than
the maximum luminance of the available HDR display. Hence it is often needed to
be scaled down the absolute luminance of HDR images by a constant factor before
displaying on HDR display them as discussed in Chapter 5.

3.3.5.2 Color correction

One simple example of the need for color correction in HDR images is that the
colorfulness of an object increases at high levels of illumination (Hunt, 1952). To
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accurately represent a scene under low levels of illumination, it is necessary to
artificially enhance the object’s colorfulness in order to get a comparable visual
appearance. To ensure that the colors in the final HDR image are accurate and
aesthetically pleasing, color correction is an important step in the HDR imaging
pipeline. Due to the fact that HDR images are created by combining multiple
exposures with varying levels of brightness, color variations can occur due to
differences in illumination conditions and camera settings. The objective of color
correction techniques is to address these issues and bring uniformity to the image’s
colors. Additionally, HDR images are often processed in a wide-gamut HDR color
space i.e., REC2020 to preserve color accuracy and detail. Color space conversion
may be necessary when exporting or displaying the HDR image on standard
monitors which usually operate in sRGB color space.

3.3.6 Methods of HDR storage and compression
The fundamental difference between HDR and traditional SDR image format and en-
coding techniques lies in the fact that HDR consistently utilizes device-independent
and high-precision data. This ensures that the dynamic range compression and
other adjustments are carried out just during the display phase, and only if a
device is incapable of accurately reproducing the information. Following are the
commonly used pixel encoding and file formats for recommended HDR content

3.3.6.1 HDR pixel encoding

In general, pixel values in HDR images are linearly related to luminance, the
photometric quantity that defines the perceived intensity of light per unit surface
area regardless of color. The cameras used to capture HDR images have a different
spectral sensitivity from the luminous efficiency function of the human eye (which
is used in the definition of luminance). However, HDR pixel values are considered a
close approximation of these photometric quantities. When three color channels are
taken into account, each color component in an HDR image is sometimes referred to
as radiance. The physical definition of radiance implies that the light is integrated
over all wavelengths, whereas the spectral characteristics of red, green, and blue
HDR pixel values are constrained by the spectral sensitivities of a camera system.
Hence the HDR pixel values are assumed as the relative radiance of the HDR
scene. However, the most accurate term describing the quantities that are stored
in HDR pixels is trichromatic color values. Following are the commonly used HDR
pixel encoding approaches that aim to reduce the number of necessary bits while
maintaining adequate accuracy and the capacity to encode a wide dynamic range.

• Half-precision float(fp16) encoding: In half-precision float i.e., fp16
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encoding consists of one bit of sign, 5-bit exponent, and 10-bit mantissa.

• RGBE encoding: RGBE is a 32-bit floating point encoding of pixel values
that employs 8 bits for exponent and additional 8 bits for mantissa (8E8).
RGBE encoding takes advantage of the fact that three is a high correlation
among all color channels in the RGB color spaces and have values of at least
the same order of magnitude. Consequently, there is no need to record a
different exponent for each color channel.

• Logarithmic encoding: The logarithmic encoding decorrelates the lumi-
nances and chrominance by encoding them separately such as the 32-bit
LogLuv encoding utilizes two bytes for luminance and other two bytes for en-
coding the chrominance. In this way, pixel encoding can be roughly correlated
to the perception of HVS.

• Perceptually uniform encoding: The pixel values in LDR (Low Dynamic
Range) exhibit a desired characteristic wherein their values demonstrate
an approximately linear correlation with the perceived brightness of the
corresponding pixels. As a result, the utilization of LDR pixel values is quite
appropriate for image encoding as the artifacts caused by image compression
have the same visual impact across the whole range of image values. In
contrast, HDR pixel values do not possess this characteristic. Consequently,
when a similar level of distortion is applied to regions of low luminance and
high luminance in an image, the artifacts become more discernible in the
low-luminance regions. Hence, a number of encodings have been proposed
which utilize more precise models of the HVS sensitivity to variations in high
luminance such as Mantiuk et al. (2005); Miller et al. (2013).

3.3.6.2 HDR file format

Different file formats have been specifically designed to store HDR images. In the
following sections, the two most widely adopted HDR image formats i.e., Radiance
HDR and OpenEXR are discussed

• Radiance HDR: The Radiance HDR images typically use 32 bits encoding
range per channel to provide enough precision to represent a wide color gamut
and dynamic range. It is one of the early HDR file formats represented by
.hdr file extension which contains a short header text followed by run-length
encoded RGBE pixels values. The MATLAB .hdr is also a radiance HDR
file using RGBE encoding which has been utilized in our work.

• OpenEXR: OpenEXR is a well-known HDR image format that was developed
by Industrial Light and Magic (ILM) and made available in 2003. The format
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Table 3.1: Overview of HDR Standards

HDR Standard Color Space Metadata Bit Depth Max. Luminance Access

HDR10 Rec. 2100 Static 10-bit 1000 Open Source
HDR10+ Rec. 2020 Dynamic 16-bit 10000 Royalty-Free

Dolby Vision Rec. 2020 Dynamic 12-bit 10000 Proprietary
HLG Rec. 2020 Static 10-bit 1000 Royalty-Free

was created to satisfy the needs of the visual effects industry and has since
been widely adopted by the animation, film, and gaming industries.

3.3.7 HDR standards
It is also worth mentioning that 4K and UHD (which stands for ultra-high definition)
refer to the screen’s resolution, which impacts the image’s sharpness. In contrast,
HDR increases the contrast ratio, which is the luminance difference between an
image’s brightest and deepest regions as discussed above. With its greater contrast
ratio, HDR demonstrates more details in extremely bright and dark regions of
the high dynamic range scenes, delivering HDR reproductions that appear more
realistic and stand out more noticeably.

To support HDR imaging in a variety of industrial applications, a number
of HDR standards have been created among which the widely used are briefly
discussed in the following subsections while Table 3.1 provides a summary of these
HDR standards.

3.3.7.1 HDR10

HDR10 is an open standard and one of the most popular HDR formats for consumer
electronics. It employs the ITU-R BT.2020 color space and a static metadata
approach, offering 10-bit color depth and a maximum luminance of 1,000 nits.
HDR10 format supports the compressed transmission of HDR video content. For
display of all levels, they are all required to support the industry standard HDR-10
format in order to properly display HDR content.

3.3.7.2 HDR10+

HDR10+ is an open, royalty-free HDR format developed by Samsung and supported
by various content creators and manufacturers. The difference between HDR10
and HDR10+ is that the former employs static metadata, which applies the same
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parameters (such as maximum luminance and color settings) to the entire video,
thereby limiting the scene-specific optimization. HDR10+ dynamically adjusts
HDR data scene-by-scene or even frame-by-frame, allowing for more precise and
granular control over HDR presentation.

3.3.7.3 Dolby Vision

Dolby Laboratories developed the Dolby Vision proprietary HDR format. Utilizing
dynamic metadata similar to HDR10+, it enables content creators to specify
scene-by-scene adjustments for contrast and color. Dolby Vision supports a higher
color depth, a broader color gamut, and also a higher peak luminance range than
HDR10. However, HDR10+ competes directly with Dolby Vision. The adoption
of HDR10+ has been steadily increasing, and it provides an attractive option for
content creators and consumers who seek a high-quality HDR experience without
the need for proprietary technology or licensing fees.

3.3.7.4 Hybrid Log-Gamma(HLG)

HLG (Hybrid Log-Gamma) is an HDR standard developed together by the BBC
and the Japan Broadcasting Corporation (NHK). It was established to overcome
the issues of distributing HDR content to a wide range of devices, including HDR
and SDR (Standard Dynamic Range) displays, without the need for tone mapping
based on metadata. One of the key benefits of HLG is its backward compatibility
with SDR screens. When an HLG signal is displayed on an SDR display, the
content will seem as if it were a conventional broadcast, with no color or brightness
aberrations. This is due to the fact that HLG employs a hybrid gamma curve,
which includes both standard gamma information for SDR and HDR enhancement
information.

While HLG has the advantage of backward compatibility and simplicity, it may
lack the precision and scene-by-scene adjustments that dynamic metadata-based
formats such as Dolby Vision or HDR10+ offer. HLG, on the other hand, remains
a valuable HDR standard, particularly for applications where compatibility with
SDR displays is essential.

3.4 Advanced imaging techniques: Hyper-
spectral imaging

Hyperspectral imaging gathers hundreds of images at various wavelengths for the
same spatial. While the human eye is only limited to trichromatic vision, hyper-
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Figure 3.6: The hyperspectral imaging measures a continuous spectrum (in
radiance or reflectance) and can be used to precisely characterize the objects
within the scene with great detail

spectral imaging measures the continuous spectrum of light for each pixel of a scene
with fine wavelength resolution in both the visible and near-infrared. The first two
dimensions of the hyperspectral cube represent the spatial extent of the scene(i.e.,
rows and columns ), whereas the third represents its spectral composition as shown
in Figure 3.6. The capability of digital imaging and spectroscopy is combined
in hyperspectral imaging, also known as imaging spectroscopy. A hyperspectral
camera measures the light intensity (radiance) for a large number of contiguous
spectral bands for each pixel in an image. Every pixel in the image thus has
a continuous spectrum (in radiance or reflectance) and can be used to precisely
characterize the objects within the scene with great detail.

Clearly, hyperspectral images provide significantly more information about the
scene than images captured by a normal RGB camera, which only acquires three
spectral channels corresponding to the visual primary colors channel i.e., red, green,
and blue. Each material has a unique spectral signature that can be used as its
unique identification. Therefore, hyperspectral imaging greatly improves the capa-
bility to classify scene objects based on their spectral properties. This technology
has numerous applications in various fields, such as agriculture, environmental
monitoring, forensics, medical imaging, remote sensing, and food quality control.
As a result of recent developments in sensor technology and computing power,
hyperspectral imaging has evolved from relatively slow and unreliable research
prototypes to reliable, accurate, and precise analytical instruments.
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3.4.1 Types of hyperspectral acquisition modes:
Hyperspectral imaging can be acquired using different modes, each with its own
advantages and disadvantages.The four primary hyperspectral acquisition modes
are:

• Point scanning (whiskbroom mode): In this mode, the hyperspectral
camera obtains a hyperspectral image by scanning a single spatial point
across the scene. Typically, a mirror that oscillates back and forth is used to
sweep the scene during the scanning process. This mode is also referred to
as whiskbroom mode because it resembles sweeping the scene with a broom.
The main advantage is its high spectral and spatial resolution, but the data
acquisition rate is limited.

• Line scanning (pushbroom mode): In this mode, the hyperspectral
camera simultaneously captures a scene line by line in all spectral bands as it
travels over the target area. Compared to point scanning mode, this mode
provides greater spectral and spatial resolution and quicker data acquisition
rates.

• Plane scanning (area scanning mode): In this mode, the hyperspectral
camera simultaneously captures a two-dimensional scene region across the
spectral range. This mode offers a rapid data acquisition rate, but its spatial
resolution is inferior to that of the point scanning and line scanning modes.

• Single shot mode: In this mode, the hyperspectral camera simultaneously
captures an entire scene in a single snap. This mode is helpful for applications
requiring instant information capture, such as medical imaging or surveillance.
Nevertheless, it typically has inferior spatial and spectral resolution than
other modes.

Overall, the choice of hyperspectral imaging mode depends on the specific
application requirements and tradeoffs between spatial and spectral resolution,
data acquisition rate, and equipment cost.
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4 High Dynamic Hyperspectral Data
Acquisition and Processing

If we knew what it was we were doing, it would not be called research,
would it?

Albert Einstein

The main focus of this chapter is to discuss the process of adequately performing
hyperspectral data acquisition and the post-processing of the raw hyperspectral
cubes to estimate the radiances in the HDR hyperspectral cube (hyperspectral
radiance map) accurate to the actual HDR scene. Due to uncontrolled lighting
conditions and limitations of the imaging devices such as a low dynamic range, it
becomes difficult to recover the details in hyperspectral images with bright regions
and dark shadows at the same time. To overcome this problem, HDR techniques
can be used which allow us to significantly recover the radiance of the HDR scene.

The widely used technique of HDR image capture from multiple exposures as
discussed in Chapter 3, has been employed for capturing the HDR hyperspectral
cube. The main idea was to capture hyperspectral cubes at different integration
settings (i.e., exposures) such that all the details of the HDR scene are properly
captured avoiding under or overexposed pixel values. During the post-processing
stage, the properly exposed region in each of the hyperspectral cubes can be merged
together to get the full radiance map(i.e., hyperspectral mean radiance cube) of
the HDR scene.

As imaging sensors are linear in the lower and middle regions of their linearity,
the sensor’s response becomes non-linear in the upper region which results in incor-
rect radiance values. Hence sensor linearity correction has also been implemented to
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recover the digital counts beyond the linearity threshold of the sensor. Furthermore,
the hyperspectral interpolation was performed to verify and account for the missing
wavelengths in the calculated mean radiance cube (i.e., radiance map) where the
sensor was saturated across all the integration settings. Finally, the mean radiance
cube has been converted to a linear three-channel RBG image and stored in 32-bit
hdr format.

In this chapter, the hyperspectral camera is discussed to understand its working
and output quantities followed by the characterization. The characterization
involved three primary tasks: assessing the camera’s linearity, estimating the
spectral sensitivity curve, and validating the radiance outputs produced by the
camera. Later, we discussed the methodology for data acquisition and proposed
the workflow for storing and displaying it. For displaying HDR images on an HDR
display, we have proposed a display-referred HDR rendering workflow which has
also been compared with the ITU-recommended pipeline.

4.1 HySpexVNIR-1800
For calculating the HDR hyperspectral radiance image, HySpexVNIR1800 hyper-
spectral camera was used. The range of this hyperspectral camera is from 400 nm to
1000 nm and contains 186 bands with a step size of 3.26 nm. The HySpexVNIR1800
is a line scanner where the scanning speed is synchronized automatically with the
integration time. The integration time can manually be adjusted through its soft-
ware namely HySpex GROUND. In this experiment, a 30 cm cylindrical lens with
a field of view of approximately 86 mm was used and it captures 1800 spatial pixels
across a line. Because of limited bandwidth and dynamic range, the cameras usually
perform compression and convert linear sensor response into gamma-corrected pixel
values. However, HySpex VNIR-1800 stores the captured data as RAW digital
number images which can be converted to calibrated digital numbers and their
corresponding absolute radiances using HySpex RAD software(see section 4.1.2 of
details of supporting packages).

For our application, the HySpexVNIR1800 has been used in ground-based
operations with a transitional stage to capture the hyperspectral cubes at different
exposures in a laboratory setting, as depicted on the left side of Figure 4.1. Other
relevant specifications of this hyperspectral camera are summarized in Table 4.1.

4.1.1 Working of HySpex-VNIR1800
The camera’s internal operation is depicted schematically on the right side in
Figure 4.1. The focusing mirror projects the scene onto a slit through which only

44



HySpexVNIR-1800 4.1

Figure 4.1: The HySpex VNIR-1800 has been integrated with a translation stage
that scans the camera field of view across the scene as shown on the left side
while the internal working diagram(taken from manual) of HySpex cameras is
given on the right side.

light from a thin line in the scene passes where each line captures 1800 pixels.
After passing from the collimating lens, different wavelengths are separated by a
transmission grating which has been used as a dispersive element, and the light is
then focused onto a detector array of photodiodes. For each pixel interval along
the line specified by the slit, a corresponding spectrum is projected onto a column
of detectors on the array as a result of the optics. Therefore, the data read from
the array comprises a segment of a hyperspectral image, with spectral information
in one direction and spatial (image) information in the other as illustrated in figure
4.2.

4.1.2 HySpex Softwares Overview
Four different software packages are provided with the HySpexVNIR1800 camera
which are as follows: HySpex GROUND is the main software package for ground
base operations, HySpex AIR is developed for airborne operations, HySpex RAD
is intended for the radiometric calibration, and HySpex NAV for resampling the
navigation data to the HySpex image data. Only HySpex GROUND and HySpex
RAD have been used in this project which are discussed below.

• HySpex GROUND is the primary software package for ground-based
operations in the laboratory and field, including rotation and translation
stage scanning. The hyperspectral images captured by this software are
stored in the form of raw digital numbers from the sensor with the “.hyspex”
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Figure 4.2: The HySpexVNIR1800 functions as a line scanner as shown in this
diagram where it captures 1800 pixels per line and behind each pixel the spectrum
spans from 400 nm to 1000 nm containing 186 bands with a step size of 3.26 nm.

Table 4.1: The main specifications of HySpex VNIR-1800 camera are given in
the table below.

Specification Value

Spectral range 400 – 1000 nm
Spatial pixels 1800
Spectral channels 186
Spectral sampling 3.26 nm
FOV* 17°
Pixel FOV across/along* 0.16/0.32 mrad
Bit resolution 16 bit
Noise floor 2.4 e-
Dynamic range 20000
Peak SNR (at full resolution) >255
Max speed (at full resolution) 260 fps
Power consumption 30 W
Dimensions (l–w–h) 39 – 9.9 – 15 cm
Weight 5.0 kg
Camera Interface CameraLink

file format. The HySpex GROUND software interface along with the preview
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Figure 4.3: The interface of the HySpexVNIR1800 Ground is illustrated in
this figure with the description of how to operate it for data acquisition when
the HySpexVNIR1800 camera is set up in Ground mode and integrated with a
translation stage.

window is shown in Figure 4.3. The preview has four different options i.e.,
sq_rootRGB, RGB, SAT , and BANDS view mode. We have mostly used
SAT which shows the saturation map of the capture. If the pixels are closer
to red in color, it means that the pixels are about to saturate while it is
better to operate in the greenish region to get a better signal-to-noise ratio.
Additionally, multiple captures can be taken and averaged to boost the signal,
especially in the dark regions of the scene.

• HySpex RAD is the software package that can be used for converting
RAW images from HySpex GROUND to absolute radiance. The real-time
image correction feature handles image data non-uniformity and dark offset
correction. If absolute radiance measurements are not required, all subsequent
processing can be performed on these real-time corrected data that are stored
directly on the given path with the “raw.hyspex” file format.

4.1.3 Output Qualities of HySpex VNIR-1800: RAW
image vs Radiance image

Image sensors emulate artificially the transduction process of converting one form
of signal into another as performed by human vision. As discussed in Chapter 2,
rod and cone photoreceptors in the retina work together with ganglion cells to
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Figure 4.4: The interface of HySpex RAD software is shown in this figure with
the labeling of available options for converting RAW data files into corresponding
absolute radiances which are stored in 32 bits float format in our study.

convert photons into an electrochemical signal that the occipital lobe in our brain
can then process (see Section 2.4). In the case of imaging sensors, the photoelectric
effect is used by both CCD and CMOS sensors to collect a charge in their silicon
pixels when light hits the sensor. The amount of charge in each pixel is measured
by a capacitor and generated a voltage proportional to the charge which is then
Later transferred into digital numbers. These digital numbers can be processed by
a computer for image formation as discussed in Section 3.2 of Chapter 3. Likewise,
HySpexVNIR1800 also works in a similar manner as depicted in Figure 4.5. RAW
images are snapshots of the values registered by the camera’s imaging sensor. The
raw data output from the camera is digital number (DN) values ranging from 1 to
2N minus 1, where N is the digitization bit width. For each readout of the camera,
corresponding to one row of pixels in the image, we obtain a digital number matrix
DN [i, j], where i is the band number and j is the spatial pixel number as depicted
in equation 4.1. Here, Ni[i, j] represents the count of photons received by the jth
spatial pixel in the ith band over a period of time t. QE[i] denotes the quantum
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Figure 4.5: HySpexVNIR1800 converts the photons hitting it’s sensor into
electrons which are then converted into voltages. At certain stages, these voltages
are transformed into RAW digital numbers. Using the software packages as
discussed in previous sections, the RAW data can be converted to calibrated digital
numbers and corresponding absolute radiance values.

efficiency of the camera (including optics and sensor) for the ith band. Quantum
efficiency is generally measured as the ratio of photoelectrons produced per photon.
SF is a scaling factor that defines the Digital Number (DN) per photoelectron.
RE is a relative responsivity matrix for each detector element, which displays
an average value of 1 and indicates the inherent non-uniformity in the sensor’s
response. Finally, BG denotes the background matrix, which accounts for dark
current and offsets.

DN [i, j] = Ni[i, j] ·QE[i] · SF ·RE[i, j] +BG[i, j] (4.1)

Because of limited bandwidth and dynamic range, the cameras usually perform
compression and convert linear sensor response into gamma-corrected pixel values
by applying tone mapping. However, HySpex VNIR-1800 stores the captured
data as RAW digital number images which can be converted to calibrated digital
numbers and absolute radiances using HySpex RAD software.

To fit the calibrated image into a 16-bit unsigned int format, a scaling factor is
used. This scaling factor is included in the header file (.hdr) of each image. The
absolute radiance is calculated by dividing the calibrated image by this scaling
factor. Converting an image to 16-bit format can occasionally result in information
loss. Alternatively, the image can also be converted to a 32-bit format to avoid
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Figure 4.6: The figure illustrates the data acquisition setup for capturing HDR
hyperspectral radiance data. However, it is essential to clarify that the shown
images are solely for demonstration purposes. The room was darkened while
capturing the data.

needing a scaling factor to convert it to radiance. However, the disadvantage of
this format is that it takes up twice as much storage space on the computer.

The transition from RAW data to absolute radiance data is performed using
the parameters that are acquisition-dependent, and variables that are permanently
stored in the software as shown in the equation 4.2

L(i, j) =

DN(i,j)−BG(i,j)
RE(i,j)

· h · c
QE(i) · SF · t · A · Ω · λ(i) ·∆λ(i)

(4.2)

where Digital Number (DN), background matrix (BG), and integration time t are
the only parameters that depend on data capture settings while all other variables
are permanently stored in the camera’s software (details of these parameters are
available in the user manual of HySpex VNIR-1800).

4.2 Data acquisition setup
For calculating the HDR hyperspectral image, HySpexVNIR1800 hyperspectral
camera was used as discussed above. It is important to recall that the range of
this hyperspectral camera is from 400nm to 1000nm and contains 186 bands with
a step size of 3.26nm. The HySpexVNIR1800 is a line scanner where the scanning
speed is synchronized automatically with the integration time, which can manually
be adjusted through its software named HySpex GROUND. In this experiment,
a 30 cm cylindrical lens with a field of view of approximately 86mm was used
and it captures 1800 spatial pixels across a line. Because of limited bandwidth
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and dynamic range, the cameras usually perform compression and convert linear
sensor response into gamma-corrected pixel values. However, HySpexVNIR-1800
stores the captured data as RAW digital number images which can be converted to
calibrated digital numbers and absolute radiances using HySpex RAD software as
discussed in the previous sections.

4.2.1 Setting up an HDR scene
For setting up an HDR scene, the backlight as shown in Figure 4.6 has been utilized
where we placed a film/transmissive color target and a reflective passport color
checker. The rest of the surface of the backlight was covered with a black sheet.
We also included some mid-tones in this HDR scene, and for that, we utilized a
neutral density filter that was placed on a transmissive target. Another diffused
halogen light source was used because of the limitation of the hyperspectral camera
to capture the details of the passport colorchecker even at its maximum integration
setting. It is important to note that the actual data captures were taken in a
dark room, however, the image shown in Figure 4.6 has been taken with dim room
lighting for the purpose of demonstration. This section has addressed only one
HDR scene while all other HDR scenes in the proposed dataset were also captured
using a similar approach.

4.3 Camera characterization
Before capturing the data, the hyperspectral camera was characterized in order to
develop a better understanding of its characteristics. The characterization of the
hyperspectral camera involved three tasks i.e., 1) estimating the linearity curve of
the camera, 2) calculating the spectral sensitivity curve, and 3) finally verifying
the measured radiances and comparing them with the values measured with the
CS2000A telespectroradiometer. Each of these tasks is discussed in the following
subsections:

4.3.1 Linearity of imaging sensor:
A cutting-edge scientific CMOS imaging sensor is used by the HySpexVNIR1800.
Because of this, the VNIR-1800 is claimed to be the perfect camera for sophis-
ticated data collection that demands high radiometric accuracy. One important
characteristic of the camera’s imaging sensor is that the response of the sensor
should be linear to the amount of light imping on it. Therefore, 31 captures were
taken from the hyperspectral camera using a standard white tile under uniform
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Figure 4.7: The figure shows the heatmap of 31 measurements of white tile
under uniform illumination taken from the HySpexVNIR1800 on the left side.
The heatmap indicates that if the pixels are closer to red color, it means that the
pixels are about to saturate. The estimated linearity of the HySpexVNIR1800
camera (i.e., digital count vs. exposure time) was found to be linear up to a
digital count of nearly 40242 as depicted from the graph on the right side.

illumination from 6 milliseconds up to 306 milliseconds integration settings with a
step-size of 10 milliseconds over the full spectral range (from 400nm to 1000nm )
of this camera for characterization. We then selected the spectral band at around
653.3nm as it was highly sensitivity. It has been found that the sensor’s response
was linear i.e., when the integration time was increased, the digital count also
increased proportionally. However, this linearity was limited to nearly 40,000 digital
counts as shown in Figure 4.7 where the measured linearity curve deviates from the
ideal linear response. The ideal linear response is represented as a red curve which
is plotted using linear regression on the data points which were within the linearity
range and the green circle shows the linearity deviation point of the sensor from
ideal linearity.

Although the graph is represented for digital numbers, it is important to note
that the radiance values corresponding to digital numbers within the linearity of
the sensor are valid and independent of the exposure setting as shown in Figure
4.8. In this figure, the digital numbers are given on the left side of the graph
along with the corresponding radiances on its right side. It is worth noting this
graph is calculated from only those captures of white tile which were within the
linearity of the HySpexVNIR1800. As long as the digital counts remain within
the linearity limit, it is evident from these graphs that the radiances are absolute
and independent of the exposure whose unit is cd/m2, unlike conventional cameras
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Figure 4.8: The figure illustrates the digital numbers within the linearity of the
imaging sensor of HySpexVNIR1800 which demonstrates that the radiances are
absolute and are independent of the exposure as long as the digital count(digital
number) is within the linearity limit, unlike conventional cameras where the
output quality is gamma encoded or constrained by the sensor’s nonlinearity.

where the output quality is constrained by the sensor’s non-linearity.

4.3.1.1 Proposed linearity correction method:

Enhancing the linearity of a sensor involves characterizing the camera’s sensor
response across its entire range and any non-linear regions can be effectively
compensated for by applying the proposed linearity correction using measured data.
It can be observed in the graph shown on the right side in 4.7 that the sensor
behaves linearly up to a certain threshold (i.e., 40,242 digital counts). Then the
measured linearity curve deviates from the ideal linear response which is a red
curve plotted using linear regression in the given graph where the green circle shows
the point of deviation of the sensor’s linearity from ideal linearity.

The aim is to estimate the hypothetical radiance values that would have been
obtained if the sensor had exhibited a linear behavior. In order to achieve this,
the proposed linearity correction method has been utilized which is based on the
lookup table where the objective is to quantify the deviation between the "ideal"
response and the measured response. This is achieved by calculating the ratio
of the "ideal" response to the measured response. Subsequently, these ratios are
stored in the lookup table as the scaling factors which are then applied to the
radiance values corresponding to the digital numbers within the non-linear region
since digital numbers and radiances are directly proportional to each other. The
linearity compensation was applied up to approximately 63,000 digital counts which
has been found empirically given the HDR scene.
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4.3.2 HySpexVNIR1800 spectral sensitivity verifica-
tion:

The spectral sensitivity response is the change in the output signal as a function of
the wavelength of the input signal. For estimating the spectral sensitivity of the
imaging device, the experimental setup involved the utilization of the Bentham
MT300 monochromator to direct monochrome light into the integrating sphere.
The monochrome wavelength ranged from 440nm to 780nm, with a step size of
20nm while the HyspexVNIR1800 was employed on another end (i.e., opening of
integrating sphere) to capture these 21 different monochrome lights impinged into
the integrating sphere by the monochromator as depicted in the Figure 4.9. The
CS2000A telespectroradiometer was used to measure the spectral power distribution
(SPD) of each of these wavelengths and these measurements were treated as the
ground truth. It is also important to note the spectral range of this hyperspectral
camera is from 400nm upto 1000nam with a stepsize of 3.26nm while CS2000 takes
measurements with wavelengths ranging from 380nm up to 780nm with a stepsize
of 5nm. Therefore, the measurements taken by the camera were interpolated to the
wavelengths at which CS2000A takes reading while both of these measurements
were normalized between 0 and 1.

We calculated the spectral sensitivity of the camera, Smeas as given by equation
4.3:

Smeas(λ
′) = max

(
DNλ′(λ)

max(Eλ′(λ))

)
(4.3)

where DNλ′(λ) is the digital numbers generated from the hyperspectral camera
when it captured the monochromatic light of λ′ from the integrating sphere. Note
that DNλ′(λ) is itself the function of λ wavelengths since we are using a hyperspec-
tral camera. Eλ′(λ) is the spectral radiance from CS2000A telespectroradiometer
and Smeas(λ

′) is the measured spectral sensitivity for the camera at λ′. The peaks
of these 21 curves were then interpolated and the resultant spectral sensitivity
curve was obtained. However, the spectral sensitivity curve was converted to the
quantum efficiency (QE) represented by the blue curve as shown in the graph in
Figure 4.10 where the red curve represents the ground truth quantum efficiency(QE)
curve of HySpexVNIR1800.

Both the estimated curve and provided QE curve are normalized. The reason for
converting spectral sensitivity to QE is that the QE curve is the only available data
provided by the manufacturer(i.e., stored in the header file of HyspexVNIR1800
output) for verification. We converted the spectral sensitivity to quantum efficiency
Qmeas using equation 4.4 as given below
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Figure 4.9: To estimate the spectral sensitivity curve, 21 measurements of
monochrome lights were taken using Bentham MT300 monochromator by im-
pinging monochrome light into integrating sphere, and the HyspexVNIR1800
camera was used to capture them. CS2000 spectroradiometer was employed to
measure spectral power distribution (SPD) at each of these wavelengths ranging
from 440nm to 780nm with a stepsize of 20nm.

Qmeas(λ
′) =

Smeas(λ
′)

λ′ (4.4)

The quantum efficiency (QE) is the ratio of the actual number of photons
detected to the number of incident photons. In the imaging sensor such as CCD
and CMOS, this QE quantity varies with wavelength. In the range of wavelengths
from 300nm up to 900 nm typical this values fall in the range of 0.2–0.75 with
maximum efficiency around 500 nm.
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Figure 4.10: The red curve is a quantum efficiency curve(stored in the header
file of the camera’s output) and the blue curve is the estimated characterization
curve.

Figure 4.11: CS2000A telespectroradiometer vs. HySpexVNIR1800

4.3.3 HyspexVNIR1800 Radiance verification
In order to verify the accuracy of radiance measurements obtained from the
VNIR 1800 hyperspectral, a comparative analysis was conducted by comparing the
radiance measurements acquired from a white tile using both the VNIR 1800 and
CS2000A radiometric instrument. The results of this comparison are presented in
Figure 4.11.

It is worth noting that some data points are missing from the measured CS2000A
readings. This is due to the limited wavelength range of the CS2000A telespec-
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troradiometer, which only extends up to 780nm. In order to ensure a fair and
consistent comparison, we performed an average calculation over a circular region
for both instruments. This was done to account for the fact that CS2000 also
averages the radiances over a circular region, thereby allowing a meaningful and
equitable evaluation between the two instruments. The average absolute difference
between both measurements is 1.8e− 3 and the standard deviation of the absolute
differences is 8.54e− 4 which is acceptable for our application.

4.3.4 Noise correction:
Every unprocessed image produced by an image sensor contains at least two types
of sensor artifacts. The objective of the noise correction process is to eliminate
these artifacts so that the resulting image is a precise representation of the quantity
of light that struck the chip sensor. According to fundamentals of optoelectronics
(Pollock, 1995), the basic working principle of the imaging sensor is that it is a
photon-counting device that counts the photoelectrons produced due to the photo-
electric effect. The assumption that these photoelectrons are the only source of the
accumulated charge, is challenged by the existence of dark currents. Dark currents
occur naturally in semiconductors through the thermal generation of charge carriers.
Even in the absence of light, collisions between atoms can excite electrons into the
conduction band. The result is electrons residual present in every pixel which refer
to as dark current(thermal electrons) as illustrated in equation 4.5. Certain pixels
accumulate an excessive quantity of these free electrons which is dependent on the
quality of the silicon and fabrication used in the production of the chip. Such pixels
are known as hot pixels. This issue is more pronounced in CCD sensors where
charge is transferred row by row and due to the delay in pixel readout, thermal
motions generate free extra electrons.

Measured electrons = (Thermal electrons) + (Photo-electrons) (4.5)

The dark current correction can be performed by taking the average of three
dark frames taken at the identical settings which were used while capturing the
HDR scene (i.e., 20 ms, 40 ms, and 440 ms in our case). Then these averaged
dark frames were subtracted from subsequent hyperspectral images. Another issue
with the image sensor is the variations in the sensitivity of its pixels. In the
scenario when 100 photons impinge onto pixel A and an equal number of photons
likewise impinge upon the adjacent pixel B, it is seen that pixel A yields a readout
of 55 electrons, whereas pixel B yields a readout of 56 electrons. The observed
discrepancy, although typically negligible but might have significant effects in
the field of photometry. The hyperspectral camera itself performs dark current
correction and cater pixel non-uniformity as discussed in Section 4.1.3.
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Figure 4.12: The workflow for processing hyperspectral data to calculate hyper-
spectral HDR radiance cube.

4.4 Hyperspectral data acquisition and pro-
cessing

The workflow of the hyperspectral data processing for capturing and processing the
HDR hyperspectral radiance image of our physical HDR scene is given in Figure
4.12 below.

In order to adequately capture the maximum details of this HDR scene, a series
of hyperspectral cubes were acquired using the hyperspectral camera, employing
various integration settings. We incorporated three different exposure settings as it
is the most frequently used in existing literature (Mann et al., 2012; Bouderbane
et al., 2016). Also, these individual hyperspectral images were acquired to ensure
that the detailed information pertaining in dark shadows, mid-tones, and bright
regions of the HDR scene was captured for better estimation of HDR radiances.
In particular, two hyperspectral cubes were acquired using integration times of 20
milliseconds and 40 milliseconds, respectively. These short exposure settings were
selected to effectively capture the nuanced details present in the brighter regions of
the HDR scene. Additionally, an integration time of 440 milliseconds was employed
to acquire a hyperspectral cube with longer integration, enabling the capture of
details within the darker regions of the HDR scene as shown in Figure 4.13.

HySpexVNIR1800 stores the captured data in the form of raw digital numbers
in 16-bit format. However, these raw images can be converted to calibrated digital
numbers and absolute radiances using HySpexRAD software as discussed in 4.1.2
and verified during the camera characterization as given in 4.3. The size of each
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Figure 4.13: The preview of hyperspectral captures along with their heatmap.

3D hyperspectral cube is 3976-by-1800-by-186 pixels where 186 is the number
of bands that lie within the range of visible and near-infrared wavelengths (i.e.,
from 407.469nm to 998.107nm), 3976 is the total number of lines captured and
1800 are the number of pixels per line as discussed in the previous section and
demonstrated in Figure 4.2. Each of these hyperspectral images was then converted
to radiances and was stored in 32-bit float format as demonstrated in Figure 4.4.
The transition from raw data to absolute radiance is performed via HySpexRAD
software which has embedded the equation 4.6 that contains the parameters that are
acquisition-dependent, and variables that are permanently stored in the software.

L(i, j) =

DN(i,j)−BG(i,j)
RE(i,j)

· h · c
QE(i) · SF · t · A · Ω · λ(i) ·∆λ(i)

(4.6)

where Digital Number (DN), background matrix (BG), and integration time t are
the only parameters that depend on data capture settings while all other variables
are permanently stored in the camera’s software (details of these parameters are
available in the user manual of HySpexVNIR1800).

The radiance values corresponding to the digital count less than 40,242 (i.e.,
the radiances which are calculated from digital numbers within the linearity of the
sensor) are valid radiances. In contrast, the radiances corresponding to the digital
number greater than 40,242 are corrected up to 63,000 digital counts (which was an
empirically defined threshold up to which the linearity correction has been applied
as discussed in Section 4.3). The radiances corresponding to the digital number
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Figure 4.14: The figure shows radiance values corresponding to the digital
count less than 40,242(green boxes) are calculated from digital numbers within
the linearity of the sensor and are valid radiances. In contrast, the radiances
corresponding to the digital number greater than 40,242 (blue boxes) are corrected
up to 63,000 digital counts. The 63,000 was an empirically defined threshold up
to which the linearity correction has been applied as discussed in Section 4.3.1.1).
The radiances corresponding to the digital number beyond that are invalid and
hence they are clipped before merging these hyperspectral cubes by taking an
average for estimating an HDR hyperspectral radiance image of our real-world
HDR scene.

beyond that were invalid and hence they were clipped as illustrated in Figure4.14
before merging these hyperspectral radiances cubes.

Finally, these three hyperspectral cubes are merged into an HDR hyperspectral
radiance image by simply taking an average of these individual hyperspectral
cubes. The average of individual hyperspectral captures also helped to improve
the single-to-noise ratio in the dark regions and suppressed the artifacts due to
the non-uniformity of pixel sensitivities of the imaging sensor. The hyperspectral
interpolation was performed to account for the missing wavelengths in this radiance
mean cube due to the saturation of the pixels. Although, this is not the case in this
HDR scene but in some of the previous HDR scenes (also given in the proposed
dataset), we had speckles that were saturating the pixel. Finally, this gave us the
absolute hyperspectral radiance of the physical HDR scene which was stored in a
32-bit float format using MATLAB .mat file while the luminance heatmap of this
HDR hyperspectral image is shown in Figure 4.15.
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(a) (b)

Figure 4.15: The figure illustrates the luminance heatmap of calculated HDR
hyperspectral radiance image of the physical HDR scene for visualization, where
the red patch corresponds to the maximum luminance in the scene which is
approximately equal to 4000cd/m2.

4.5 Hyperspectral HDR Radiances to three
channel HDR image(Scene-referred)

The calculated HDR hyperspectral radiance cube as mentioned above, can be
converted to HDR three-channel RGB image using the proposed workflow as shown
in Figure 4.16 which maps the visible spectrum of HDR hyperspectral radiance
cube to the XYZ color space and from there to the Rec. 2020 color space. To recall,
this HDR hyperspectral radiance cube consisted of 186 bands with wavelengths
ranging from 400nm up to 1000nm with a step size of 3.26nm and was stored in
a 32-bit float .mat file. In this workflow, the dot product of HDR hyperspectral
radiance cube is taken with 1931 2◦ CMF(color matching function) to obtain three
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Figure 4.16: The figure illustrates the proposed workflow for converting hyper-
spectral HDR radiance cube into HDR three-channel RGB image which is finally
stored in 32-bit float using .hdr format which is basically a mapping of the visible
spectrum of HDR hyperspectral radiance cube to the XYZ color space and from
there to the Rec. 2020 color space.

channel XY Z tristimulus values as given by equation 4.7:

X(x, y) =
780∑

λ=380

H(x, y, λ)x̄(λ)

Y (x, y) =
780∑

λ=380

H(x, y, λ)ȳ(λ)

Z(x, y) =
780∑

λ=380

H(x, y, λ)z̄(λ)

(4.7)

where H is the HDR hyperspectral radiance cube which is a function of spatial
pixel coordinates: x and y, and spectral bands λ, and x̄, ȳ, z̄ are the 1931 2◦ CMF.
Also, note that the summation limit spans from 380 nm to 780 nm even though
the HDR hyperspectral radiance cube is defined up to 1000nm. The wavelength is
limited to 780nm because CMFs are defined in the visible region only.

This converts the spectral bands that are within the visible range from the
hyperspectral radiance cube to the CIE XYZ color space(See Chapter 2 details of
CMF and CIE 1931 color space). Next, these XYZ tristimulus values are converted
to ITU-R Recommendation BT.2020 which is commonly known as Rec. 2020 color
space.  R

G
B

 = M

 X
Y
Z

 (4.8)

Hence, the 3x3 transformation matrix M of Rec2020 has been employed to
convert these XY Z channels to the linear three-channel RGB image as represented
by equation 4.8. This linear RGB image is then normalized with its maximum and
referred to as linRGBNorm in the workflow. Finally, linRGBNorm is stored in a
32-bit float .hdr format which is the HDR radiance file format. The MATLAB .hdr
format which is used to store the 3-channel HDR image, uses RGBE pixel encoding
where the first three bytes of the RGBE pixel encoding are used to represent the red,
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Figure 4.17: The workflow illustrates the steps involved in the proposed display
referred HDR rendering workflow for converting the hyperspectral HDR radiances
cube of an HDR scene into three channel HDR image for HDR display.

green, and blue color channels, while the last byte serves as a common exponent
for all channels. RGBE encoding takes advantage of the fact that three is a high
correlation among all color channels in the RGB color spaces and have values of
at least the same order of magnitude. Consequently, there is no need to record a
different exponent for each color channel.

4.6 Proposed display-referred HDR render-
ing workflow:

The HDR hyperspectral radiance cube contains 186 spectral bands as mentioned
above. These hyperspectral bands are required to map to three-channel HDR
images that would eventually be rendered on the HDR monitor. The proposed
display referred HDR rendering workflow is given in Figure 4.17 which illustrates
the required processing steps for rendering HDR images on an HDR display. Firstly,
the dot product of the HDR hyperspectral radiance image is taken with 1931
2◦ CMF to get three channel tristimulus values. Since our hyperspectral HDR
cube is a radiometric quantity, the tristimulus values need to be multiplied by
683 (Wyszecki and Stiles, 2000) to obtain absolute luminance where the unit of
luminance is cd/m∧2.

To display the HDR image, we used a 24-inch HDR Sony display that has a
maximum luminance level of 1000 cd/m2 and was calibrated to Rec. 2020 PQ mode.
It is important to note that the maximum luminance of the physical HDR scene was
measured to be approximately 4000cd/m2 using a CS2000A telespectroradiometer
and also demonstrated in the luminance heat map given in Figure 4.15 whereas the
maximum luminance of our HDR display is 1000cd/m2. Therefore tone mapping is
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required to compress the luminance within the capabilities of the available HDR
display screen. Hence, a gamma of 1.2 has been utilized to compress the dynamic
range of the XY Z tristimulus values so that the maximum luminance would
be within the display capabilities. Then, the inverse of the display colorimetric
transformation matrix as given by equation 4.9 has been applied for converting
XY Z tristimulus values to display linear RGB. R′

G′

B′

 = M−1
RGBtoXY Z

 X
Y
Z

 (4.9)

The display 3x3 matrix MRGBtoXY Z has been calculated through display calibration
as discussed in Section 6.5 of Chapter 6. The display calibration also accounts for
the fact that the display sometimes does not strictly follow the targeted color space
and deviates from the theoretically perfect system (Berns, 1996). This also makes
it important to know the actual colorimetry of the display so that we would be able
to correctly transform our XYZ tristimulus data to display R′G′B′ pixel values.
These negative values of R′G′B′ are clipped down to zero as defined in equation
4.10.

Rdisplay = max (0, R′)

Gdisplay = max (0, G′)

Bdisplay = max (0, B′)

(4.10)

In our case, the EOTF is simulated by PQ curve (Froehlich et al., 2015;
Nezamabadi et al., 2014) as the display was calibrated to Rec. 2020 PQ mode. It is
to be noted that the final HDR image was displayed using MATLAB Psychtoolbox-
3, which assumes a linear Rec. 2020 RGB as input and takes care of PQ encoding
itself as shown in Figure 4.17.

4.7 Comparing proposed HDR rendering with
ITU recommendation

The workflow illustrated in Figure 4.18 is the conversion of BT.2100 to arbitrary
linear color signals for display systems. This conversion process assumes a display
referred workflow for both PQ and HLG. The full report is available at https:
//www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2408-5-2022-PDF-E.pdf.

It is interesting to compare our proposed HDR rendering as given in the above
Section 4.6 with this ITU-recommended HDR rendering workflow as it defines
the procedure that can be used to convert linear and normalized BT.2100 RGB

64

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2408-5-2022-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2408-5-2022-PDF-E.pdf


Comparing proposed HDR rendering with ITU recommendation 4.7

Figure 4.18: The figure illustrates the steps for conversion of ITU-R BT.2100
HDR signals to an arbitrary display using a display referred workflow

primaries to the RGB primaries of any display system. It is also important to
mention that the input signal is already within the range of 1000 cd/m2 which is
achieved using a display referred camera workflow(refer to report to see details).
In this diagram, the input signal is first linearized by applying PQ EOTF and then
the equation 4.11 has been utilized for converting the linearized BT.2100 input
primaries to display RGB primaries. In this equation, the input BT.2100 RGB is
transformed to XYZ using BT.2100 transformation matrix as shown in Figure 4.18.
Then the XYZ to display transformation is applied using the inverse of the 3x3
display colorimetric transformation matrix. ER

EG

EB


display

=

 XR XG XB

YR YG YB

ZR ZG ZB

−1

display

∗

 0.6370 0.1446 0.1689
0.2627 0.6780 0.0593
0.0000 0.0281 1.0610

 ∗

 ER

EG

EB


(4.11)

It is likely that not every color from the source color space may be included in
the display color gamut. Negative values may be clipped down to zero. Positive
values may also be trimmed to the display’s capabilities. Although both soft and
hard clipping are possible, hard clipping is preferred in many applications, such
as when using a reference display as in our case. In this workflow, only negative
values are subjected to severe clipping as given by the equation 4.12. These clipped
RGB values are then sent to the display for its processing and finally, the output is
shown on the screen.

ER = Max (0, ER)

EG = Max (0, EG)

EB = Max (0, EB)

(4.12)

In our proposed HDR rendering as discussed in Section 4.6, it can be observed
that we have almost followed similar transformation steps, and the only additional
step in our workflow is applying a tone-mapping or tone compression to the XYZ
tristimulus values as illustrated in Figure 4.19. The value of gamma is calculated
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using the equation 4.13 to map the wide range of HDR values to the limited
dynamic range of the available HDR display where n is the maximum luminance
of a physical HDR scene and m is the display maximum luminance. In our case,
the n is equal to 4000cd/m2 whereas the value of m is set to 1000cd/m2.

gamma =
log10(n)

log10(m)
(4.13)

Furthermore, the display was set to Rec. 2020 PQ mode, and the HDR image
was rendered using Psychtoolbox-3. The Psychtoolbox-3 assumes a linear Rec.
2020 RGB as input and takes care of PQ encoding itself. These PQ-encoded RGB
values are decoded at the display end while rendering them on the HDR screen.

Figure 4.19: The figure shows the transformation steps involved in our workflow
for conversion of HDR hyperspectral radiance cube to display HDR RGB image.

4.8 Proposed dataset:
As a contribution to extended research in this domain, a dataset containing four
HDR hyperspectral radiances cubes and their respective three-channel HDR images
has been proposed where each of them consisted of a different HDR scene captured in
an indoor setting using HyspexVNIR1800 camera. In Figure 4.20, the tone-mapped
images of the four HDR hyperspectral radiance cubes are illustrated whereas the
corresponding luminance heatmaps derived from these HDR hyperspectral cubes
in our dataset are presented in 4.21 (Please email at ah1333@g.rit.edu to access
the dataset).
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Proposed dataset: 4.8

(a) Pen image (b) backlight image

(c) COSI image (d) Backlight Midtones image

Figure 4.20: The proposed dataset contains four HDR hyperspectral radiance
cubes along which their corresponding three-channel HDR images(note that these
are tone-mapped images for visualization).
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(a) Pen image (b) backlight image

(c) COSI image (d) Backlight Midtones image

Figure 4.21: The figure shows the luminance heatmap of the HDR hyperspectral
cubes in the proposed dataset.
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5 Tone mapping and Proposed SiCAM
model

The results of all truly great actions are often accomplished in the minds
of those who do them long before the work is done

Albert Einstein

Tone-mapping operators (TMOs), also known as HDR rendering algorithms, are
designed to adjust the wide range of luminance information found in real-world
scenes so that it can be rendered on display screens with the limitation of producing
only lower dynamic range (LDR) images. Tone-mapping objectives might vary
substantially depending on the application and discipline. In medical imaging, for
example, tone mapping algorithms aim to preserve as much details as possible,
which is important for radiologists analyzing medical MR images. The objectives
of digital photography may include but are not limited to, producing visually
appealing and preferred images, replicating the overall appearance of the original
scene on the display, preserving image contrast, and might also include predicting
the visibility of artifacts due to tone compression.

Several tone-mapping methods have been proposed in the past while the un-
derlying principles and assumptions of numerous operators in tone-mapping share
notable similarities which are discussed briefly in this chapter. Additionally, as
image appearance models attempt to predict the perceptual response to spatially
complex stimuli, they can provide a unique framework for the prediction of HDR
image appearance. Fairchild proposed an image appearance model called iCAM06,
specifically designed for rendering High Dynamic Range (HDR) images. This model
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is built upon the iCAM framework and integrates spatial processing models found
in the human visual system. It incorporates contrast enhancement techniques,
photoreceptor light adaptation functions that enhance local details in highlights
and shadows, as well as functions that predict various color appearance phenomena.
Through rigorous evaluation in past research, iCAM06 has consistently demon-
strated excellent performance in HDR rendering, both in terms of preference and
accuracy. As a result, iCAM06 is a promising choice as a general-purpose tone-
mapping operator. Moreover, its potential applications extend to a wide range of
image appearance research and practical use. Due to the above mention reasons, an
extension of this model namely the spectral image color appearance model (SiCAM)
has been proposed in this work, for tone mapping of hyperspectral HDR radiances
to generate better tone-accurate LDR tone-mapped images. The main objective of
this proposed model is to keep the working principles of iCAM06 (Kuang et al.,
2007b) intact and introduce spectral radiances so the appearance pipeline can
benefit from the additional information in spectral radiances in comparison to a
three-channel image. Additionally, we have proposed a hyperspectral adaptation
method in comparison to chromatic adaptation.

This chapter addresses an overview of tone mapping along with the summary
of different tone mapping approaches. Refer to Banterle et al. (2017); Eilertsen
et al. (2017b); Salih et al. (2012); Mantiuk et al. (2007) for a detailed review of
tone-mapping algorithms. Besides other widely used tone mapping algorithms, it
also discussed the iCAM06 HDR image rendering model in detail and the proposed
SiCAM model which takes a HDR hyperspectral radiance cube as input and
generates a three-channel LDR image.

5.1 An overview of tone mapping
Tone mapping is the process of reproducing high-contrast scenes with a poten-
tially wide color gamut on a destination media with limited contrast and color
reproduction. It usually entails converting high dynamic range images/videos
containing scene radiance or brightness into pixel values that can be shown on
a Low Dynamic Range (LDR) display screen. There are two stages in common
regardless of whatever category the tone mapping operator (TMO) belongs to.
The first step is to extract luminance information from the input HDR image or
video frame. This is due to the fact that a TMO normally works on the luminance
channel, avoiding color compression. The second step is to restore color information
in the compressed image. However, tone-mapping algorithms strive for a wide
range of objectives, methodologies, and applications, which are discussed in the
following subsections.
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5.1.1 Mathematics of tone mapping
A tone mapping operator is a mathematical function that converts HDR scene
luminance into the level of luminance range that can be displayed on a limited
dynamic range display as depicted in equation 5.1 where LDR is the low dynamic
range output image which is in 8 bits(i.e., 0 to 255).

f(Image) : HDRrows×columns×bands
i → LDRrows×columns×bands

o (5.1)

To develop a proper understanding of tone-mapping mechanisms, it is crucial to
comprehend how the shape of the tone-mapping function impacts the visual percep-
tion of output tone-mapped images. The summary of fundamental mathematical
operators used in tone mapping and their effect on the final output is given in
Table 6.1. The multiplication of luminance values alters image brightness but has
no effect on dynamic range or contrast. As a result, the brightness adjustment
parameter B will increase or decrease the overall image brightness as a result of the
multiplication. Since the process is similar to adjusting the exposure settings on a
camera, it is commonly referred to as "exposure adjustment." The dynamic range
of an image can be modified using the Power function. Since reducing the dynamic
range has the same effect as reducing the contrast of an image, the two terms
are sometimes used interchangeably. The contrast of an image can be adjusted
using contrast adjustment parameter C while Igwhite is usually assumed to be the
scene luminance that is mapped to the peak luminance of a display. The change
is relative to the luminance of a reference white point thus the contrast shrinks
or expands towards or away from that point. In the literature, this operator is
sometimes referred to as gamma correction since the formula is comparable to
the display model with the exponent equal to gamma values of 2.2 or 2.4. As a
result of the Weber law, adding a constant value to an image has little effect on
the bright image areas but has a large effect on the darker image regions. The
addition creates a fog or uniform glare impression in an image. The operation will
change the contrast and brightness of the image’s darkest areas.

Table 5.1: The given below table presents a comprehensive overview of the
fundamental mathematical operators employed in tone mapping and their impact
on the final output.

Operator logarithmic domain Visual effect Analogous
Multiplication f(Ig) = Ig +B image brightness exposure adjustment
Power function f(Ig) = c(Ig − Igwhite) image contrast gamma correction

Addition no representation both contrast and brightness
of darker regions fog or a uniform glare
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5.1.2 Categories of tone mapping

The underlying principles and assumptions of numerous operators in tone map-
ping share notable similarities. However, in terms of processing, tone mapping
operators(TMOs) can be generally categorized into three main categories.

5.1.2.1 Global TMO

The global tone mapping methods are spatially invariant, which means that the
processing is identical for all pixel values within an image regardless of the varying
pixel values of its neighbors (Banterle et al., 2017; Eilertsen et al., 2016; Mantiuk
et al., 2006).

Sometimes the operator will do preliminary processing of the input image to
calculate image statistics, which are then utilized for the dynamic range reduction.
Maximum brightness, minimum luminance, and logarithmic or arithmetic average
values are some common statistics calculated for this type of tone mapping. These
statistics are calculated using percentiles to boost robustness and avoid outliers,
notably for lowest and maximum values, which may have been impacted by noise
during image acquisition. After obtaining the global statistics from the image’s
luminance, a logarithmic or exponential-like function is used in the pipeline to
compute the tone-mapped image.

The fundamental disadvantage of global operators is that, because they use
global image statistics, they cannot preserve local contrast and fine details of the
original HDR image.

5.1.2.2 Local TMO

Local operators outperform global operators in terms of image quality by attempting
to mimic both local and global contrast. This is accomplished by enabling the tone
mapping operator to consider local characteristics of the neighborhood surrounding
the pixel being tone mapped. However, neighbors must be carefully chosen, i.e.,
only pixels that are comparable or belong to the same region. Otherwise, local
statistics will be skewed, resulting in halo artifacts. These artifacts are most
common at boundaries that separate sections with varying intensities and/or color
values. It should be noted that halos are often desired when focusing attention on
a specific location (Banterle et al., 2017), but if the phenomenon is uncontrolled, it
might produce unpleasantness.
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5.1.2.3 Segmented TMO

Segmented tone mapping is an approach that divides an image into segments or
areas based on criteria such as color similarity or texture coherence. Each segment
is then processed independently using a tone mapping operator to change the tone
and contrast within that segment. This method enables localized tone mapping
modifications that take into consideration the unique qualities and content of
distinct sections of the image.

Segmented tone mapping can generate more accurate and visually appealing
results by applying distinct tone mapping operators to different segments, especially
in scenes with varying levels of brightness and contrast. Another advantage of this
method is that gamut modifications are minimized because a linear operator for
each segment is often sufficient.

5.1.2.4 Frequency/gradient TMO

The goal of frequency-based/gradient-domain operators is the same as that of
local operators: to preserve edges and local contrast. unlike local TMO, dynamic
range compression is applied in the frequency/gradient-domain rather than the
spatial domain. This method divides the images into low frequencies and high
frequencies. Low frequencies are typically tone mapped, while high frequencies
(details) are either lightly processed or left unaltered. The higher frequencies usually
persevere because they contain fine details of an image. The essential finding for
such approaches is that edges and local contrast are preserved only when there is a
proper separation between large features and fine details.

5.1.2.5 Others categories

Further categorization might be made based on the TMO’s design philosophy or
its use as given below:

• Perception operators These are tone-mapping methods inspired by Human
Visual System(HVS) and aim to model several aspects of it such as chromatic
adaptation, temporal adaptation, limited visual acuity at night, degrading
of visual due to aging, etc. These perception operators can be global, local,
segmentation, or frequency/gradient.

• Empirical operators: The main focus of these operators is to generate
pleasing outputs inspired by other fields, such as photography, and are usually
based on empirical or subjective analysis. Like perception operators, these
TMOs can also be of any category such as global, local, segmented, or
gradient-based.
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5.1.3 Intents of tone mapping
Tone-mapping objectives might vary substantially depending on the application
and discipline. Because the range of aims is the source of most uncertainty and
misunderstanding about tone-mapping, it is critical to precisely describe these
goals. Tone-mapping operators can be generally classified based on their intent.

• Visual system simulation: These perception operators imitate the visual
system’s limitations and properties. A tone mapping operator (TMO), for
example, can generate glare, replicate the limitations of human night vision,
or lower color and contrast in dark scene sections. Another example is image
correction for the difference between real-world scene adaptation conditions
and viewing conditions (including chromatic adaptation).

• Accurate scene reproduction: When an image is displayed on a device
with a reduced color gamut, contrast, and peak luminance, the original
scene appearance, including contrast, detail, and colors, is preserved. These
operators do not attempt to simulate changes in appearance caused by
perceptual effects, such as nighttime loss of acuity and color vision. Instead,
they concentrate on overcoming the limitations of the output medium in
order to obtain the best possible color gamut and dynamic range match. This
is important for maintaining the visual fidelity and realism of the scene.

• Best subjective quality (BSQ) operators: Tone mapping operators also
consider the subjective visual perception of the image. They are designed to
generate the most pleasing images or videos based on subjective preference
or artistic objectives. These operators typically include a set of modifiable
parameters that can be altered empirically in accordance with artistic goals.
Such an example would be photo editing software such as Adobe Photoshop
Lightroom. They may incorporate perceptual models to ensure the resulting
image is visually pleasing and avoids artifacts such as halo artifacts, noise
amplification, or unnatural contrast adjustments.

5.1.4 Basic approaches of tone mapping
In recent years, hundreds of papers on tone mapping have been published, providing
an abundance of options. Nonetheless, many of these operators share very similar
underlying assumptions and mechanisms. Instead of discussing various tone-
mapping algorithms, In this section, a summary of the main approaches is provided
along with examples of operators that they rely upon. Refer to Banterle et al.
(2017); Eilertsen et al. (2017b); Salih et al. (2012); Mantiuk et al. (2007) for a
detailed review of tone-mapping algorithms.
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5.1.4.1 Illumination and reflectance separation

The pixel values for most diffuse objects can be thought of as a multiplication of the
amount of light hitting the sensor (the irradiance) and the amount of light reflected
back from the surface(surface reflectance). This is a simplified model that disregards
geometry and more complex reflectance properties, but it is extensively employed
in computer vision and related fields. If we know how to separate illumination
and reflectance, we can construct a tone mapping operator that only modifies the
illumination component without distorting reflectance.

Restricting alterations to the illumination component is particularly advan-
tageous for tone mapping, as illumination is primarily responsible for the wide
dynamic range of real-world scenes while reflectance provides information about an
object’s shape, texture, and color as well as is generally invariant to the viewing
conditions. Originally, this approach to dynamic range compression was proposed
by Oppenheim et al. (1968).

5.1.4.2 Low-pass filter decomposition

The main challenge is separating illumination from reflectance. Given only an
image, it is impossible to arrive at a precise solution for such a problem (Salih et al.,
2012). There are, however, various approximations that rely on the mathematical
characteristics of light in real-world settings. Unlike reflectance, illumination in a
scene typically varies uniformly between pixels. The only strong discontinuities to
be expected are at the boundaries of harsh shadows and light sources. Convolving
an image with a Gaussian filter is the simplest approach to extracting the gradually
changing regions of an image.

5.1.4.3 Bilateral filter decomposition:

The use of Gaussian filtering as the illumination-separation operator has a number
of limitations, the most significant of which is that it is unable to detect sudden
changes in illumination, such as those that occur at the margins of sharp shadows
and light sources. Consequently, Gaussian filtering results in the blurring of the
edges in an image. The bilateral filter (Durand and Dorsey, 2002a) is an example
of one of these edge-preserving operators where the smoothing by employing the
bilateral filter is limited not only in the spatial domain but also in the domain of
the intensities of the individual pixels.
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5.1.4.4 Retinex algorithms:

In order to provide an explanation for the color constancy phenomena (Land and
McCann, 1971), the Retinex algorithm was initially proposed. The goal of the
Retinex research was to imitate the ability of the HVS to extract reliable details from
the environment that humans experience, despite the variations in illumination( i.e.,
Human Color Constancy). The technique essentially seeks to isolate reflectance from
illumination by suppressing tiny gradients that are associated with illumination
and is thus an effective method of tone-mapping images (Kim et al., 2011; Meylan
and Susstrunk, 2006).

5.1.5 Gradient and contrast-based methods:
Rather than splitting an image into reflectance and illumination layers, it is feasible
to enhance image details (reflectance) before compressing image contrast with a
gamma function (or linear scaling in the log domain). Several operators that change
visual gradients or local contrast have used this method (Farbman et al., 2008;
Fattal et al., 2002; Mantiuk et al., 2006). The primary advantage of operating on
gradients rather than pixel values is that it allows for dramatic increases in local
contrast without causing unpleasant contrast residuals known as halo artifacts.
Local gradient manipulation (Fattal et al., 2002), on the other hand, may result
in discrepancies in global image brightness between distant image regions. As a
result, modern operators (Farbman et al., 2008; Mantiuk et al., 2006) developed
multi-scale structures to retain image contrast at different scales of an image.

5.2 iCAM06: HDR image rendering model
Color appearance models have been used in cross-media color reproduction frame-
works, but their application is limited as they are not meant to anticipate the
visual appearance of complex spatially variable stimuli (i.e., images or videos). For
details of the color appearance model, refer to the book titled "Color Appearance
Models" by Fairchild (2013). The image color appearance models (iCAM) proposed
by Fairchild and Johnson (2002) extend color appearance models by incorporating
spatial and temporal vision features, allowing for the prediction of the appearance
of complex stimuli. An image appearance model, given an input of images and
viewing conditions, can yield perceptual qualities of each pixel, not just the essential
color appearance attributes such as brightness, lightness, saturation, chroma, and
hue, but also image attributes like its contrast and sharpness.

As image appearance models attempt to predict the perceptual response to
spatially complex stimuli, they can provide a unique framework for the prediction
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of HDR image appearance. Hence, iCAM has been extended for tone mapping of
HDR images without altering its fundamental architecture (Johnson and Fairchild,
2003). Recent tone-mapping operator evaluations demonstrated that iCAM is
effective in HDR image rendering (Fairchild and Johnson, 2002); however, iCAM
does not outperform alternative operators, such as the bilateral filter (Durand and
Dorsey, 2002b). It integrates efficient anisotropic filters and simple tone compression
techniques. Even in terms of reproduction accuracy where iCAM claimed to be
the most applicable, iCAM renderings were shown to have less local contrast and
colorfulness than real scenes. This has motivated further advancement of iCAM
which resulted in proposing iCAM06 (Kuang et al., 2007a) for the purpose of an
HDR image rendering through the integration of bilateral filtering and photoreceptor
response functions to reproduce more accurate and pleasing tone-mapped LDR
images.

5.3 Proposed SiCAM model for HDR hyper-
spectral radiances

The latest version and widely used image color appearance model is iCAM06
(Kuang et al., 2007a) which is specifically designed for rendering High-Dynamic-
Range (HDR) images. This model is built upon the iCAM framework (Fairchild
and Johnson, 2002) and integrates spatial processing models found in the human
visual system as discussed above. It incorporates contrast enhancement techniques,
photoreceptor light adaptation functions that enhance local details in highlights
and shadows, as well as functions that predict various color appearance phenomena.

Through extensive evaluation, iCAM06 has consistently demonstrated excellent
performance in HDR rendering, both in terms of preference and accuracy. As a
result, iCAM06 is a promising choice as a general-purpose tone mapping operator.
Moreover, its potential applications extend to a wide range of image appearance
research and practical use. Due to the above mention reasons, we have extended
this model for tone mapping of hyperspectral HDR radiances for generating LDR
tone-mapped images and proposed a new model namely the spectral image color
appearance model (SiCAM). We kept the working principles of iCAM06 (Kuang
et al., 2007b) intact and introduce spectral radiances so the appearance pipeline
can benefit from the additional information in spectral radiances in comparison to
a three-channel image. Additionally, we have proposed hyperspectral adaptation
in comparison to chromatic adaptation. This comes as an extension of applying
Von Kries normalization (Chong et al., 2007) in spectral radiances rather than
tristimulus values which is a linear Von Kries normalization of hyperspectral
bands to the hyperspectral adaptation signal derived from the low-pass adaptation
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hyperspectral signal at each pixel location. It should be noted that, while a few
modules in this model are identical to that in iCAM06 (Kuang et al., 2007a), the
SiCAM model is already significantly different since it uses hyperspectral data as
input rather than RGB image and chromatic adaptation. The complete workflow
of SiCAM is given in Figure 5.1 while the details of each processing stage involved
in this model are discussed in the following subsections:

5.3.1 Bilateral filtering for base layer
The initial processing stage in the proposed model is Bilateral filtering. The term
filtering in image processing usually implies a function that is dependent on the
values of the input image in a small window of the pixel under consideration.
The widely used filtering operation is averaging among which Gaussian-weighted
averaging is one of the most common approaches. This is a function that estimates
the average value for the center pixel by averaging the pixels in the neighborhood
such that the weights are assigned based on their distance from the central pixel
where the weights fall off as we move farther from the central pixel. This low-pass
filtering is based on the assumption that the pixels which are spatially closer
together are similar to each other. The averaging operation suppresses the noise in
the neighborhood and preserves the signal.

This low-pass filtering breaks down on edges where it also blurs out the edges
in an image. Many approaches have been proposed for operations intended to
preserve edges (Boult, 1993; Chin and Yeh, 1983; Graham, 1962; Himayat and
Kassam, 1993; Huang et al., 1979; Lee, 1980; Nagao, 1979; Narendra, 1981; Edition
et al., 2002; Perona and Malik, 1990; Ramponi, 1995; Sapiro and Ringach, 1996;
Wang et al., 1981; Yin et al., 1996). One method to perform edge-preserving
smoothing is anisotropic filtering, which calculates the local image variations at
every pixel (Perona and Malik, 1990; Sapiro and Ringach, 1996). It involves solving
partial differential equations in an iterative manner which makes it unsuitable
for larger data input or time-critical applications while it also poses issues of
stability of solutions. A bilateral filter is a non-iterative edge-preserving filter
proposed by Tomasi and Manduchi (1998) and then further developed through
linear approximations by Durand and Dorsey (2002a). The bilateral filter works
both in the spatial and intensity domain. The filter operation is given in equation
5.2.

Js =
1

k(s)

∑
p∈Ω

f(p− s)g (Ip − IS) Ip (5.2)

k(s) =
∑
p∈Ω

f(p− s)g (Ip − IS) (5.3)
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where Js is the output pixel value at location s, f is the function that operates
on spatial domain, g is the function that works on intensity values, Ω is the window
around the central pixel, and k is the normalizing function which keeps the sum of
the weights equal to 1.

Both f and g are defined as Gaussian functions. In Eq.5.2, notice what would
happen on an edge. Consider the center pixel to be on the lighter side. For the
weights of the lighter side of the window, Ip−IS would be closer to 0, and g (Ip − IS)
would be closer to 1. Now consider the center pixel to be on the darker side. For
the weights for the darker side of the window, Ip − IS would be much greater, and
g (Ip − IS) would be closer to 0. So for the pixels on the lighter side of the edge,
the filter gives more weightage to them and very low weightage to the darker side
of the window. Hence the edge is preserved. The same reasoning can be carried
out for the central pixels to be on the darker side of the edge.

Although the bilateral filters are discussed above as an operator with an intention
to suppress the details through its low-pass filtering nature, in iCAM06 its usage
is also extended to divide the image into a base layer and detail layer. The base
layer is calculated by applying the bilateral-filter channel-wise on the image. After
converting the base layer and original image into a logarithmic domain, their
difference is taken and converted back to the linear domain to extract the detail
layer which corresponds to the fine details in an image. The motivation for the
base layer and detail layer comes from the decomposition of the image into its
reflectance and illumination. It is also inspired by HVS in the sense that our vision
responds strongly to local contrast (detail layer) in comparison to global contrast
(base layer).

In SiCAM, the channel-wise application of bilateral filter on XYZ image, as in
iCAM06 (Kuang et al., 2007a), is extended to be applied channel-wise on spectral
radiance cube as shown in Fig.5.1. We argue for this extension based on our
reasoning of how the bilateral filter and contrast sensitivity function (CSF) works.
A bilateral filter works similarly as regular Gaussian filtering on surfaces without
edges (g (Ip − IS) is nearly 1) and for the pixel values near edges, it also takes into
account the intensity information of the surrounding pixels as well. We divide our
explanation into two parts as follows.

1. Surface without edges: The tristimulus values are the linear combinations
of the spectral radiances with CMFs as shown in Eq.5.4.

X = r(λ1)x̄(λ1) + r(λ2)x̄(λ2) + . . .+ r(λn)x̄(λn) (5.4)

where X is one of the tristimulus values, r is the spectral radiance, x̄ is the
CMF, and λn corresponds to the wavelengths withing visible range of the spectrum.

In the region where there are no edges, the bilateral filter approximates a regular
Gaussian filter i.e., the weights for the averages are completely defined by the
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spatial location of the pixels in the window and not their intensity values. Let w,
be the weight that is being multiplied by any pixel in the window, then it can be
written as:

kX = kr(λ1)x̄(λ1) + kr(λ2)x̄(λ2) + . . .+ kr(λn)x̄(λn) (5.5)

We can see from equation 5.5, that this is equivalent to if we would have
calculated the X value by giving the radiances, that made X, the same weight.
In the case of a spectral radiance cube, we do know the spectral formation of the
radiances, which would be used to calculate X. Hence the same weights can be
applied to the spectral radiances.

2. Surface with edges: For the pixels which are on the edges, the weights
are calculated by considering both the spatial location of the pixels in the window
and also their intensity values. The reasoning from the previous part can not be
applicable here, because the weights calculated for X would be different than the
weights calculated for individual spectral radiance values. This boils down to our
understanding of how luminance contrast sensitivity works for each monochromatic
wavelength. We should be more strongly preserving the edges for the wavelengths
for which HVS is more sensitive. Such data for HVS sensitivity to wavelength-
specific contrast is not available to the best of our knowledge. Hence, we apply the
same bilateral filter for all the channels. Although it is a rudimentary approach
but it gives satisfactory final results.

After applying the bilateral filter on the spectral radiance cube, we convert both
the original spectral cube and the bilateral filter applied cube into XYZ tristimulus
values. We extract the details layer by subtracting the base-layer XYZ from the
original XYZ in the logarithmic domain. Note that the spectral radiance cube is
still retained to be processed in the next stage.

5.3.2 Hyperspectral adaptation transform (HAT)
Chromatic adaptation refers to the ability of the HVS to resist the change in
the appearance of objects due to the change in illumination. In other words, the
magnitude of change in the appearance of objects is far lesser than the magnitude
of the change in its radiometry or colorimetry. This phenomenon is often referred
to as color constancy. The term color constancy implies a bit of exaggeration
because if constancy had worked perfectly in HVS then colorimetry would reduce to
only calculating matrix multiplication between reflectance and CMFs without the
need of knowing illumination SPD (Fairchild, 2007b). Very good approximations
of chromatic adaptation are achieved with the seemingly rudimentary von Kries
scaling. According to this scaling, the response to the neutral patch remains
constant in any illumination post-adaptation.
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This can be mathematically written as:La

Ma

Sa

 =

 1
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0 0

0 1
Mw

0

0 0 1
Sw
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S

 (5.6)

where La, Ma, and Sa are adapted cone responses, L, M , and S are unadapted
cone responses, and Lw, Mw, and Sw are the responses to the scene white. Now in
order to find corresponding colors between two different viewing conditions, we can
equate the adapted responses of both stimuli to get Ld,Md, Sd.
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where Ld, Md, and Sd are the responses for the corresponding color in destination
viewing condition, Ls, Ms, and Ss are the responses for the source viewing condition,
Ldw, Mdw, and Sdw are destination scene white, and Lsw, Msw, and Ssw are source
scene white.

As can be inferred from the above discussion on von Kries scaling, the phe-
nomenon of chromatic adaptation is heavily dependent on the trichromatic working
of HVS. This approach is widely studied and is also based on well-studied physio-
logical data (Fairchild, 2007b; Khan et al., 2017). It has also been proven effective
across different use cases of color appearance phenomena. Over the past few years,
there have been very few studies that attempted to explore alternative approaches
for adaptation based on the utilization of spectral information(Fairchild, 2007b;
Khan et al., 2017; Burns, 2019; Derhak et al., 2020).

(Fairchild, 2007b) has also described several possible physiological reasoning
for how the HVS can actually be working on more bands than just trichromatic
vision. In multispectral imaging systems, it is a common methodology to include
an additional filter on top of the RGB bayer-patterned sensor array, giving rise
to a six-channel multispectral imaging system (one capture with filter and one
without filter). We can find a correlate of this principle in HVS too. The macula is
a yellow-pigmented area from which light passes through for foveal vision which is
not present outside the foveal region. This implies that HVS might be able to get
multispectral information processing the data from both the foveal and outside the
foveal region. Hence, it can be assumed to extract six channels. Also for describing
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a color fully, we need five dimensions of data i.e., brightness, colorfulness, lightness,
chroma, and hue. This also hints at more then three dimensions of signals being
processed in HVS. Liu and Fairchild (2006) also showed the need for two CMFs for
color matching between the display and surround. Additionally, the existence of
both 2◦ and 10◦ observers with different CMFs which are not linear transforms of
each other also hints at a multi-spectral approach in HVS.

We define the proposed hyperspectral adaptation transform (HAT) as follows:

T = CT (DKdiagB + (1−D)B) (5.9)

where T is a 3x1 matrix of tristimulus values, C is Mx3 CIE 2◦ CMF matrix,
and B is Mx1 matrix of the spectral radiance of single spatial pixel location, M is
the total number of channels in base radiance cube, and D is the partial adaptation
factor calculated similarly as in iCAM06 (Kuang et al., 2007a). We define Kdiag as
follows:

Kdiag =


D65(λ1)
W (λ1)

0 · · · 0

0 D65(λ2)
W (λ2)

· · · 0
...

... . . . ...
0 0 · · · D65(λm)

W (λm)

 (5.10)

where the W is the white spectral cube taken as an approximation of source
white point (discussed below) and D65 is the CIE D65 illuminant spectrum. This
is similar to von Kries-type scaling applied to spectral radiances rather than
tristimulus values. By comparing the approach of Fairchild (2007b), we see that the
difference mainly lies in the estimation of source white, where the source illuminant
was already known to Fairchild (2007b), whereas in our work we estimate the white
cube as shown in Figure 5.1. Additionally, Fairchild (2007b) used uniform colored
patches with uniform illumination whereas we are working with complex HDR
scene with non-uniform illumination.

White cube: We calculate the white cube by applying a Gaussian filter on the
original spectral radiance cube as illustrated in Figure 5.1. This white cube serves
as a source white point spectrum for each spatial pixel location. This is similar
to the working of iCAM06 extended to spectral radiances. The reasoning for the
plausibility of the extension of the Gaussian filter from 3-channels to n-channels is
similar to as discussed in the Section 5.3.1. The output of HAT is spectral-adapted
tristimulus values to CIE D65 as the later stages of SiCAM operate in IPT uniform
opponent color space as depicted in Figure 5.1. The rest of the working modules
in SiCAM are almost similar to the iCAM06 (Kuang et al., 2007a) as now we
have converted all the spectral information to tristimulus values which are briefly
discussed in the following subsections.
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5.3.3 Post adaption and tone compression:
Using the CIECAM02 formula given by equation 5.11, the chromatically adapted
RGB responses are first converted from the CAT02 space to the Hunt-Pointer-
Estevez fundamentals. Even though the CIE XYZ functions are close to a linear
transform of the LMS cone response, they are not exactly related, and hence a
better approximation is needed. Therefore, a widely used alternative is the Hunt-
Pointer-Estevez cone fundamentals which are utilized in color appearance models.
This model has been adopted as the cone response prediction model because it has
been extensively studied and proven to accurately predict all available visual data. R′

G′

B′

 = MHPE

 XHAT

YHAT

ZHAT

 ,

MHPE =

 0.38971 0.68898 −0.07868
−0.22981 1.18340 0.04641
0.0 0.0 1.0

 (5.11)

The nonlinear tone compression functions used in SiCAM are similar to that of
iCAM06 (Kuang et al., 2007a) as given in Equation 5.12 which are initially adopted
from CIECAM02; however, the power value has been modified to an adjustable
variable p as illustrated in Figure /reftone. This variable p determines the steepness
of the tone compression curves whose value can be set between 0.6 and 0.85 while
a larger value results in an output image with greater overall contrast. A pilot
parameter setting experiment yielded an empirical value of 0.75 as a default value.

R′
a =

400 (FLR
′/YW )p

27.13 + (FLR′/YW )p
+ 0.1

G′
a =

400 (FLG
′/YW )p

27.13 + (FLG′/YW )p
+ 0.1

B′
a =

400 (FLB
′/YW )p

27.13 + (FLB′/YW )p
+ 0.1

FL = 0.2k4 (5LA) + 0.1
(
1− k4

)2
(5LA)

1/3

k = 1/ (5LA + 1))

(5.12)

In CIECAM02 and earlier models, the FL function is used to predict a variety
of luminance-dependent appearance effects. Nevertheless, the computation of the
FL factor in iCAM06 differs significantly from that of previous color appearance
models, as it is derived from the low-pass adaptation image at each pixel location
and Yw represents the luminance of the locally adapted white image by applying a
filter of one-third the size of the image which is determined empirically. While the
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Figure 5.2: The diagram illustrates the tone compression curves as the response
of cones to adaptation plotted against log intensity (log cd/m2) for three levels of
adaptation in iCAM06 where open circles represent reference whites while filled
circles represent adapting luminances (Kuang et al., 2007b).

response functions of the rods are adapted from the Hunt Model (Hunt, 2005) and
given by equation 5.13

As = 3.05Bs

[
400 (FLSS/Sw)

p

27.13 + (FLSS/Sw)
p

]
+ 0.3

FLS = 3800j2 (5LAS/2.26) + 0.2
(
1− j2

)4
(5LAS/2.26)

1/6

LAS = 2.26LA

j = 0.00001/ [(5LAS/2.26) + 0.00001]

BS = 0.5/
{
1 + 0.3 [(5LAS/2.26) (S/Sw)]

0.3}
+ 0.5/ {1 + 5 [5LAS/2.26]}

(5.13)

The final tone compression response is a sum of the cone response and the rod
response as given in equation 5.14. Next, the model converts tone-compressed
RGB signals back to CIE XYZ images and combines the detail layer. This merged
tone-mapped image is then converted into IPT uniform opponent color space and
details adjustment is applied to predict the Stevens effect, wherein an increase in
luminance level causes an increase in local perceptual contrast which is identical to
iCAM06 (Kuang et al., 2007a).

RGBTC = RGB′
a + AS (5.14)
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Figure 5.3: The figure illustrates the outputs generated by SiCAM and iCAM06
(Kuang et al., 2007a).

5.3.4 SiCAM output:
The final output of both SiCAM and iCAM06 is a three-channel RGB image which
is scaled between 0 and 255(i.e., 8 bits encoding). However, SiCAM has been found
to generate more tone-accurate reproduction of HDR images as compared to that
of iCAM06 (Kuang et al., 2007a) and also sharper LDR images. It can be observed
from Figure 5.3 that the output generated by SiCAM using hyperspectral radiances
as input resulted in better and more uniform color patches. On the other hand,
the iCAM06’s output has a slight yellowish color cast and also the patches are
non-uniform in terms of color fidelity. Figure 5.4 is the zoomed-in on the patches
where the difference clearly visible. We observe that the reflective part in SiCAM
is more saturated than the iCAM06. Also, we observe a yellowish white in the
transmissive color target(film) of the iCAM06 whereas in SiCAM, the white seems
more neutral. Also, we observe that in SiCAM the fixed pattern noise is not visible
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Figure 5.4: The figure illustrates the zoom-in patches of the outputs generated
by SiCAM and iCAM06. It can be observed in these color target patches that
the SiCAM’s output is more uniform whereas the iCAM06’s output has a slight
yellowish color cast and also the patches are non-uniform in terms of color fidelity.

whereas the iCAM06 output has visible noise artifacts.
We have discussed subjective and objective evaluations of SiCAM’s outputs in

the following chapters, as well as a comparison of those outputs with LDR images
created by iCAM06 and the gamma tone mapping operator. The main objective is
to assess how the visual quality perception and realism in HDR-rendered images
is affected by using HDR hyperspectral data instead of traditional three-channel
HDR data.
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6 Display calibration and character-
ization:

In order for the light to shine so brightly, the darkness must be present.

Francis Bacon

To ensure faithful results and to avoid potentially adverse impacts during the
perpetual evaluation of the proposed HDR rendering methods, display monitors
involved in our psychological experiment have been calibrated and characterized.
It has been observed that the color temperature and luminous intensity of the
display may alter under continuous use, which can affect the display’s performance.
Therefore, regular calibration is necessary to restore the display to its original
state. Hence, the procedure to achieve this is a two-step process that includes
display calibration and characterization. The display is first calibrated to the
desired behavior, and it is during the second step that an ICC profile is generated,
taking into account the settings that were optimized in the previous step. The
fundamental working principle of the display is an additive system, which implies
that all the display colors are synthesized using linear combinations of their three
RGB primaries. Therefore, it is also important to measure and verify the display
model. A display model defines how it generates colors and also reveals the actual
color gamut of a display. The display’s electro-optical transfer function (OETF)
describes the nonlinear relationship between the display’s photometric output and
digital input while the display’s linear 3x3 matrix describes the RGB primary colors.
Hence, these two components collectively define a display model.

In this chapter, an overview of color management is discussed to highlight
the importance of display profiling, followed by a brief discussion of the necessary
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concepts involved in display characterization. Later, the method used to characterize
both HDR and LDR displays is described to ensure that the display behaves
consistently and accurately during the experiment, leading to more reliable results.

6.1 An overview of color management:
Color management is necessary for ensuring consistent color reproduction across
various types of devices and multimedia platforms. The advent of the latest color
imaging technologies, such as cameras, display monitors, printers, scanners, etc., has
made this task more challenging due to the differences in their color reproduction
capabilities. The transfer of color information from one device to another necessitate
control of how the color is communicated between different devices. For example,
when an image is captured with a digital camera, it can be uploaded to a computer
for viewing on its screen and then sent to a printer for printing. Managing the
translation and communication of color information in such interactions is what
we refer to as color management. As long as the device can reproduce the colors,
the aim of color management is to ensure that colors appear as close as possible to
each other across all of the devices in the color management workflow.

Figure 6.1: In the color management workflow, individual devices convert their
device-dependent color space data to a common device-independent color space
called Profile Connection Space (PCS), through which we can efficiently share
color content to any other device-dependent space.

The challenge for color management is that each device has its own color
characteristics and therefore, it is not possible to just share the same image across
different devices and expect the colors to appear the same throughout. Instead of
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converting data from between different devices in a one-to-one manner, the solution
provided by color management is to convert device-dependent colors to central scale
i.e., profile connection space(PCS) using color profiles which is the description of the
relationship between device dependent i.e RGB color space to device independent
i.e., L*ab or CIE XYZ color space as illustrated in Figure 6.1. The framework for
the PCS and the format of such profiles are defined by a regulatory body that
governs color management protocols known as the International Color Consortium
(ICC).

6.1.1 ICC Profiles
An ICC profile is a data file that describes the color characteristics of an imaging
device. The file size usually varies from 4k to 4MB with the extension of .icc
or .icm. There are a total of fourteen profile types provided for in ICC format
specification while the most commonly used are input, display, and output profiles.
The color transformations defined by ICC profiles are either matrix-based or
lookup-table(LUT) based profiles which are discussed below.

6.1.1.1 Matrix/TRC-based profile

A matrix-based profile performs a two-step transformation to convert data from
device-dependent color values to device-independent color values. The first is
the gamma value to estimate the tone reproduction curve(TRC) which helps to
linearize the input data before applying the colorimetric transformation. The
second step is the multiplication of a 3x3 transformation matrix that is used to
transform the device-dependent color values (e.g., sRGB) to device-independent
color values (e.g., CIELAB or CIE XYZ) as shown in Figure 6.2. Before creating

Figure 6.2: Steps involved in color transformation defined by ICC matrix/TRC-
based profile where TRC stands for tone reproduction curve.

a matrix-based profile, it is important to verify that RGB input channels are
independent otherwise the LUT-based profile is recommended. To start, a series of
XYZ data for different RGB values need to be measured. If the gamma is the same
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for all the display’s primaries, then we can collect neutral RGB color measurements,
where the RGB values are the same, at equal step sizes. However, if the value of
gamma is not the same for all RGB display primaries, we need to collect equally
stepped measurements for individual primaries separately.

Once the data collection is complete, both RGB and XYZ values are converted
into the logarithmic domain. The regression is then applied with RGB as the input
and Y (luminance) value as the output. By using the logarithmic domain, we
calculate the slope of the fitted line which is equivalent to the gamma where the
value of gamma is usually 2.2 or 2.4.

Before performing the regression, it is essential to consider the ICC PCS (Profile
Connection Space) space, where the illuminant is assumed to be CIE D50. As
a result, the XYZ data must be chromatically adapted to CIE D50 illuminant.
Additionally, the chromatic adaptation matrix should be included in the ICC profile
under the chad (chromatic adaptation) tag (see section 6.1.2 for details of profile
tags). This inclusion allows the profile to interpret the original white point of the
display.

6.1.1.2 CLUT based profile

The colour look-up-table (CLUT) based profiles, allow color management to define
a more complex relationship between the different color spaces. Also, note that
the LUT-based profiles overcome the limitation of mapping the color spaces with a
simple gamma relationship. However, the CLUT does not contain all the different
combinations of input domains. This implies that interpolation needs to be done
for the intermediate input data values. CLUT can be defined in two ways i.e., input
as device RGB (in the case of displays) and output as PCS Lab and vice versa, as
illustrated in Figure 6.3.

Figure 6.3: Steps involved in color transformation defined by ICC color lookup
table based profile
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6.1.2 Display Profiling
The display profiles are mostly matrix-based and they require only a small number of
measurements to determine the phosphor chromaticities and the display intensities.
Measurements of color patches on the display screen can be made using any
radiometric instrument as discussed in section 6.2 of this chapter. It is essential to
determine which measuring instrument would be suitable as a single error in several
hundred measurements can seriously weaken the quality of resulting conversions.
The selection of the instrument depends on many factors among which spectral
responsitivities and integrating time are of great importance. ICC profiles have
two main parts i.e., a header that contains a fixed number of items and tags that
vary depending on the type of profile. The header reveals if a profile is made
in accordance with version 2 or version 4 of the ICC specifications (Green and
MacDonald, 2011). Another important part of the header is the class field. This
field indicates what sorts of tags to expect in the body of the profile and that
is why most processors will look first at the class field. There are seven profile
classes: display(mntr), input(scnr), output(prtr), device link(link), colorspace(spac),
abstract(abst), and name color (nmcl). There are also three categories of tags in
ICC profiles namely basic tags, optional tags, and private tags. The basic tags for
the display profile are the Profile Description, Media White Profile tag, Copyright
tag, and Chromatic Adaptation tag as shown in Table 6.1.

Table 6.1: The list of basic tags for display profile

Tag Tag name General Description

desc Profile Description Versions of the profile name for display

wtpt Media White point Media XYZ white point

cprt Copyright Profile copyright information

chad Chromatic Adaptation Method for converting a color from another illuminant to D50

6.1.2.1 Creating Matrix/TRC based Display Profile

The display profiles are generally matrix/TRC-based because they generally fulfill
the assumption of additivity where the RGB input channels are independent. One
of the scanity check for channel independency to verify the additivity of individual
input primaries. For instance, using a spectroradiometer measure the CIE XYZ
values of the pure Red channel (255, 0, 0), pure blue channel (0, 255, 0), and pure
green channel (0, 0, 255) and add these values together. The sum of these individual
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RGB primaries at their full intensities should be approximately equal to the CIE
XYZ of white patch measurement(white patch is equal to R=255, G=255, and B=
255 if the input data is 8-bit encoded). Next, the XYZ values of RGB primaries,
white point, black point, and a few intermediate ramp colors are determined using
radiometric measurement instruments. Then, scale all measured data to the point
where the Y of the white point equals 100 and apply chromatic adaptation to the
measurement data using the XYZ of the scaled white point as the source illuminant.
One way to achieve this is to use ICC bradford function of the MATLAB color
engineering toolbox (Green and MacDonald, 2011). The MATLAB command can
be used as follows: data = bradford(xyzs, xyzw, d(50)) where xyzs is the array of
scaled measurement data and xyzw is the scaled CIE XYZ white point. The white
point should now correlate to D50’s XYZ coordinate system. Divide this value
by 100 to ensure that it is within the acceptable range for the ICC profile and
use linear regression on this data to estimate the value of gamma. Open an XML
file containing a Matrix/TRC profile (for example, MatTRC.icc/MatTRC.icm)
or create one using IccToXml.exe using the DemoIccMAX software (Green and
MacDonald, 2011). Fill in the appropriate fields in the XML file as given in Table
6.1. For ICC display profiles, the media white point (wtpt) is set to the D50 XYZ
values. Then utilize IccFromXml.exe to verify all entries, update the header and
description sections, and write the profile. To verify the contents of created ICC
display profile, the DemoIccMax validation routine (Green and MacDonald, 2011)
can be used to test for conformance with the current ICC specification as defined
by ICC.

6.1.2.2 Creating CLUT-based Display Profile

Like TRC- based profile, the XYZ values of display primaries, white point, black
point, and some intermediate ramp colors are required to measure. Then, this data
is scaled to the media relative using the equation 6.1:

XXMrel
= XD50/XW (6.1)

where XMrel= is the media-relative X, XD50 is the X value of D50, and
XW is the X of the media white point. Note this means that the scaling ratios are
different for X, Y , and Z, unlike the normalization to Y = 100 used for the display
colorimetry. To generate a transformation model for the relationship of RGB to
XYZ, the charac3 function of the MATLAB color engineering toolbox(Green and
MacDonald, 2011) can be utilized e.g., abc = charac3(rgb, xyz). Then, generate a
uniformly sampled input table using the Matlab command: lut = create3dlut(n)
where n is the number of nodes you want in each dimension of the table (n is
commonly 9, 17, or 33). Now multiply this by the data encoding maximum
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(a) Densitometer (b) Colorimeter

(c) Spectrophotometer

Figure 6.4: The color measuring instruments in color management.

e.g., LUT = lut ∗ 255 for eight-bit data. Convert the LUT to XYZ using the
following Matlab command: XY Z = polyconvert3(LUT, abc). Convert this CIE
XYZ data to CIELAB. Use encoding code to convert the CIELab to uint8 and then
scale it to uint16. Open an XML file for a LUT-based profile or make one from
a profile using IccToXml.exe, ensuring that the data color space (RGB, CMY
etc) matches the data you have. Write the PCSLUT values into the AToB1 <
CLUT >< TableData > field. Set the < GridPoints > entry to match the
number of nodes chosen. Update the header and description fields and write the
profile using IccFromXml.exe. Finally, DemoIccMax validation routine (Green
and MacDonald, 2011) can be used to verify the profile’s conformity.

6.2 Measuring Instruments
The entire process of color management relies on measuring instruments because
all calibration and characterization techniques involve taking measurements from
the display screen. There are three main categories of color measuring instruments
as shown in Figure 6.4 and details about their measurements are given in Table 6.2
which are further discussed in the following subsections:
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6.2.1 Densitometers
The densitometers basically work on the principle of photometers that measures
the total amount of light reflected from the surface of an object to the incident
light falling on the surface of an object from the instrument’s lamp. The measured
reflectance is then converted to an optical density using D = −logR, where D is
the density and R represents the reflectance. The density reveals the depth of tone
and can also be used to evaluate the thickness of the printing inks. However, it
does not provide information about chromaticity and does not relate well to human
perception. Therefore their usage is not recommended for taking measurements to
perform color management-related tasks. The densitometer is usually preferred to
measure the density of photographic materials and printing inks.

6.2.2 Colorimeters
The colorimeter tries to meet Luther’s condition by simulating the sensitivities
of LMS cones using three or four filters. As the colorimeter has a response
approximately equal to CIE standard observer, this can directly measure CIE
XYZ values. From XYZ, L*AB and Yxy can easily be determined. The limitation
of colorimeters is that they cannot record spectral data. In color management,
these devices can be used to make CRT and LCD display profiles because they are
portable and inexpensive devices.

6.2.3 Spectrophotometers
Due to the versatility of spectrophotometers, they are becoming the default instru-
ment for color measurement. The spectrophotometer measures the whole spectrum
of the sample by splitting the incident light into different wavelengths of light using
a diffraction grating. They can also be used as a densitometer and colorimeter. For
example, they can be used to measure CIE XYZ and can also be used to measure
optical density.

Table 6.2: Color measuring instruments and what data they can measure.

Density Tristimulus values Spectral Data

Densitometer Yes No No

Colorimeter No Yes No

Spectrophotometer Yes Yes Yes
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Other types of color measuring devices are:spectrocolorimeter which
only reports the output as CIE XYZ values whereas telespectroradiometer
which records the ambient light falling on the sample and measures the color at a
distance from it. Telespectroradiometer records the full spectrum of incoming light
which is usually in the range of 380nm to 780nm.

6.3 Display Calibration
Calibration refers to determining the properties of a display monitor to place
them in a predetermined state that can be standardized and repeatable. Display
calibration is necessary to be performed on a regular basis since display behavior
varies considerably over time. It allows similar display devices at different locations
to operate in a consistent and similar way. A good practice is to warm up the
display to its normal operating temperature and conditions for at least 30 minutes
before calibration and set its resolution to the default screen setting. To ensure
that the color reproduction device which is a monitor display in our case operates
under optimal conditions, we need to adjust four important parameters of the
monitor display which are listed below:

1. Primary colors: The types of primary colors (RGB) determine the color
gamut of the device system. Display primaries determine every color displayed
on a screen that is essentially the additive mixture of these three primary
colors in varying intensities. In the realm of display technology, several
additive color spaces based on the RGB color model are commonly employed.
The two most prevalent of these are the sRGB and Adobe RGB color spaces.

2. Brightness: Brightness is the preserved luminance by the human visual
system. Display brightness is the intensity of light that is emitted by a monitor
which is measured and expressed in Candela per square meters (cd/m2). For
example, 160 cd/m2 is a common brightness parameter within the graphic
art industry (see ISO 12646 Displays for colour proofing — Characteristics
and viewing conditions (ISO, 2023)).

3. White Point: The white point is the color of the light emitted by the
monitor and measured in Kelvin. The white point levels can be configured
by increasing or decreasing the Kelvin degree setting, which corresponds to
the screen’s color temperature. For example, 5000 Kelvin is a common color
temperature parameter within the graphic art industry (ISO, 2023) to use as
the white point.
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4. Gamma: Gamma describes the nonlinear relationship between the pixel
levels in the computer and the corresponding luminance of the monitor (the
light energy it emits). Gamma is expressed as (Luminance)=Constant x input
gamma. While gamma has no effect on black or white, it does affect grey or
mid-tones. If a monitor’s gamma level is set to high, mid-tones will appear
too dark. Likewise, for low gamma values, mid-tones will appear brighter.
A gamma of 2.2 is widely used within the graphic art industry (ISO, 2023).
The chart given in Figure 6.5 illustrates the relationship for gamma = 1, 1.5,
1.8 and 2.2.

Figure 6.5: The relationship for different values of gamma = 1, 1.5, 1.8, and
2.2 (Image credits: Lecture slides of cross-media reproduction, NTNU).

Recommended Monitor calibration according to ISO standard 12646 (2015) are as
follows: Primary colors: Adobe RGB, Brightness: 160cd/m2, White Point: 5000
Kelvin and Gamma: 2.2

6.4 Display Characterization:
Calibration means adjusting a display to operate in a predefined working state
which is standardized and repeatable. In other words, calibration means adjusting
a display’s behavior to match a standard such as sRGB. In this case, the dis-
play would correctly display an image encoded in sRGB. Characterization means
building a model that describes actual display working behavior, thus colorimetric
characterization describes how a display is producing the colors on the screen which
also reveals the actual gamut of the display as shown in Figure 6.6.
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Figure 6.6: During display characterization we measure and verify the forward
and reverse model of the display where the forward model is from display RGB to
CIE XYZ while the reverse model is from CIE XYZ to display RGB.

The display forward model tells the relationship between the input RGB values
and the output XYZ tristimulus while the display reverse model is responsible for
calculating the display’s RGB to accurately generate a desired XYZ output. Char-
acterization means building these display models and performing their verification.
There are two steps involved in characterizing a display which are as illustrated in
Figure 6.7 i.e., 1) calculating the colorimetric transformation matrix, and 2) the
display’s Electro-Optical Transfer function (OETF).

Figure 6.7: The display model involves the display’s Electro-Optical Transfer
function (OETF) and the colorimetric transformation matrix.

6.4.1 Determining the EOFT of display primaries
The Electro-Optical Transfer function (E0TF) defines how the optical or light
output relates to the electric or digital input which is a nonlinear relationship and
can be approximated by GOG model(Berns, 1996). The EOTF is based on four
main assumptions which are as follows:

• Display primaries: Three RGB primaries are used to generate the display’s
colors by their linear combinations.
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• Channel Independence: The output of one channel does not influence the
output of another channel.

• Separability of nonlinearity: The chromaticity of the primaries does not
change with intensity.

• Constant offset: Displays have a black level that is typically not equal to
zero due to flare or optical leakage which can be modeled by a constant offset.

This nonlinear EOTF function can be described as a power function that is the
input values are nonlinearly related to the physical luminance of the light output
as illustrated in figure 6.5 which has also been referred to as a tone reproduction
curve (TRC) in ICC color management. Another better approach is to store this
relationship in a separate look-up table (LUT) for each channel. The input RGB
uses are usually gamma-encoded so we use this function to decode the linear RGB
values and then apply a linear transformation matrix to get display independent
XYZ values.

6.4.2 Determining the colorimetry of display pri-
maries

To calculate the colorimetric transformation matrix, it is sufficient to have knowledge
of display primaries i.e., the CIE XYZ coordinates for a display’s maximum red,
green, and blue colors. This 3x3 linear matrix is constructed by concatenating the
XYZ values of the display primaries as columns as given by equation 6.2 (Green
and MacDonald, 2011). Xpixel

Ypixel

Zpixel

 =

 Xr,max Xg,max Xb,max

Yr,max Yg,max Yb,max

Zr,max Zg,max Zb,max

 R
G
B

 (6.2)

Thus, the RGB triplet [1 0 0] corresponds to the XYZ triplet for the red primary,
and similarly for the green and blue primaries. For instance, the primary colors
of any HDTV display should closely match ITU-R recommendation BT.709 (BT,
2002), and the chroma coordinates are given in Table 6.3 where these chromaticity
coordinates can be converted into CIE XYZ values using the formulas given by
equation 6.3. Using these CIE XYZ we can obtain the linear transformation matrix
for BT.709 as given by the equation 6.4

X =
x

y
· Y, Z =

1− x− y

y
· Y (6.3)
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Table 6.3: The chromaticity coordinates of ITU-R recommendation BT.709.
(BT, 2002)

Chromaticity Red Green Blue
x 0.6400 0.3000 0.1500
y 0.3300 0.6000 0.0600
Y 0.2126 0.7152 0.0722

 Xred Xgreen Xblue

Yred Ygreen Yblue

Zred Zgreen Zblue

 =

 0.412424 0.357579 0.180464
0.212656 0.715158 0.072186
0.019332 0.119193 0.950444

 (6.4)

The matrix given by equation 6.4 is a forward transformation i.e., linear RGB
pixel values to display XYZ values as shown in 6.2 while the reverse transformation
can also be computed by taking the inverse of this matrix. Please note that for
further reading on display characterization, refer to the seminal work by Berns (1996)
and/or Chapter 6 and Chapter 7 of Color Engineering (Green and MacDonald,
2011).

6.5 Adopted methodology for HDR display
characterization

In order to ensure faithful color reproduction and to avoid potentially adverse
impacts during the perceptual evaluation of HDR rendering methods both LDR
and HDR displays were calibrated and characterized before setting up the exper-
iment. As elaborated earlier, the color characterization of the LDR display was
accomplished through ICC profiling. In our psychophysical study, we employed the
PVM-X2400 24-inch 4K HDR Sony display with the resolution of 1920-by-1080
pixels, to show an HDR image of the physical HDR scene. The HDR display has
been configured to operate in the PQ REC2020 mode using 10-bit pixel encoding.
However, for displaying HDR images on this HDR Sony display, we used MATLAB
Psychtoolbox-3. It is important to note that MATLAB Psychtoolbox-3 does not
support the display ICC profile. Currently, it only supports HDR-10 display mode
for rendering HDR images. It requires linear RGB values as input and takes care
of encoding these linear RGB pixel values by applying PQ non-linearity curve
(i.e., EOTF) itself. Also, note that generally displays sometimes do not strictly
follow the targeted color space and deviate from the theoretically perfect system
(Berns, 1996). Hence it necessitates estimating the display model by conducting
colorimetric characterization of this HDR display. Additionally, in order to convert
HDR hyperspectral radiance image to three channel HDR image as illustrated in
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Figure 4.17, we need to apply the 3x3 colorimetric transformation metric of this
display to ensure accurate color representation instead of using standard REC2020
primaries. This also makes it important to know the actual colorimetry of the
display to correctly transform our XYZ tristimulus values to display RGB pixel
values.

6.5.1 Experimental setup
The state of the display during measurement would be the state of the display
preserved in the display characterization model. Therefore, it is important to
calibrate the display to its default setting and also turn off automatic settings such
as screen savers and power savers, etc. It is also a good practice to turn on the
display for at least 30 minutes warm up and stabilize the display. Due to angular
dependence and possible spatial non-uniformity, it is best to measure the display
from the observer’s perspective viewpoint as illustrated in Figure 6.8.

Figure 6.8: The optimal approach is to take measurements for characterizing
a display from the observer’s viewing angle due to the angular dependence and
possible spatial non-uniformity. Another approach is to take measurements with
varying RGB patch sizes.

For accurate measurements, it is important to avoid any ambient light therefore,
the display measurements were taken in the darkroom with black-colored walls and
curtains as illustrated in figure 6.9. Considering all the recommendations mentioned
above the display was turned on for 30 minutes before taking the measurements
and was to its default setting. The Konica Minolta CS2000A telespectroradiometer
was utilized for the measurements where the distance between the display screen
and the telespectroradiometer was set to 60cm making 2◦ measuring angle. The
room was darkened while taking the measurement.
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Figure 6.9: The figure illustrates the setup used for characterizing the HDR
display where the Konica Minolta CS2000A tele-spectroradiometer was used to
take measurements of different color patches displayed on the HDR screen using
Psychtoolbox-3.

6.5.2 Procedure
The display characterization involved calculating three major components of the
display model i.e., the colorimetric transformation matrix M , the XYZ black level
or flare values, and the RGB LUTs as illustrated by Figure 6.10. We used MATLAB
to generate the RGB patch of 800-by-800 pixels using 10-bit pixel encoding, and
Psychtoolbox-3 was used to display those patches.

The colorimetric 3X3 matrix M defines how colors are formed by the display
which comes from measurements of CIE XYZ of each of the RGB primaries at full
their maximum intensity i.e., (1023, 0, 0), (0, 1023, 0), and (0, 0, 1023) considering
10-bit encoding. The flare vector comes from the measurement of XYZ of black
i.e., (0, 0, 0). The LUT comes from measurements of XYZ of a neutral ramp,

103



Chapter 6 DISPLAY CALIBRATION AND CHARACTERIZATION:

Figure 6.10: The display characterization involved calculating three major
components of the display model namely RGB LUT which defines the EOTF
of the display, the 3x3 colorimetric transformation matrix (M), and the black
offset/flare as illustrated in this display workflow model.

where “ramp” simply means a series of increasing or decreasing values whereas
neutral ramp means input primaries are all equally incremented (i.e., R=G=B).
We created 60 logarithmically spaced 800X800 patches for each RGB primaries
and the neural ramp where R=G=B and hence 240 measurements were taken
in total. Outliners were first removed from these measurements which exceeded
the predefined threshold i.e., their difference from the median chromaticity was
greater than 0.2. Then channel independence and spatial independence tests were
conducted where if the display exhibits channel independence then the addition
of maximum values measured for the individual primaries should equal to the
measured peak white. Spatial independence was tested by measuring peak white
at varying patch sizes. The errors for both of these tests were below 1∆E∗ab when
using the display’s peak white to calculate CIELAB coordinate. Subsequently, the
mean average of measurements taken from five black patches (where R=G=B=0)
was computed to estimate the flare offset value. It was then subtracted from the
RGB patch measurements in order to perform the black correction as shown in
equation 6.5

 X
Y
Z

 =

 Xr,max −Xf Xg,max −Xf Xb,max −Xf

Yr,max − Yf Yg,max − Yf Yb,max − Yf

Zr,max − Zf Zg,max − Zf Zb,max − Zf

 R
G
B

+

 Xf

Yf

Zf


(6.5)

The colorimetric matrix was calculated by concatenating the maximum individ-
ual values of RGB primaries into a 3x3 matrix. This matrix was further optimized
by employing the Nelder-Mead simplex algorithm (Lagarias et al., 1998) using 1331
training RGB patches where root mean squared error was used as the objective
function to minimize the mean CIEDE2000 color difference, calculated by the
CIED2000 color difference formula, of test RGB patches sampling the display’s
gamut. The final matrix is given in equation 6.6. Finally, the EOTF is simulated
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by PQ encoding (Nezamabadi et al., 2014; Boitard et al., 2015). As mentioned
above the display was set to REC2020 PQ mode and the patches were displayed
using Psychtoolbox-3 which assumes a linear RGB input and takes care of PQ
encoding itself. These PQ-encoded RGB values are decoded at the display end
while rendering them on the HDR screen. Hence, the output is again linearized
when displayed on the screen. Therefore the relationship between the input RGB
to output CIE XYZ is linear as depicted from the graph 6.11 which is calculated
as input neutral ramp (R=G=B) on the x-axis while the output luminance (Y) is
given on Y-axis.

MRGBtoXY Z =

 0.5818 0.1807 0.2106
0.2545 0.6671 0.0783
−0.0159 0.0355 1.1380

 (6.6)

Figure 6.11: The relationship between the input RGB to output CIE XYZ is
linear as depicted from the given graph which is calculated as input neural ramp
(R = G = B) on the x-axis while the output luminance (Y ) is given on the y-axis.

The measured and estimated peak white luminance and chromaticities are given
in Table 6.4. In Figure 6.12, the chromaticity diagram illustrating the color gamut
of the HDR display is plotted along with the color gamut of REC2020.
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Figure 6.12: The chromaticity diagram illustrates the color gamut of the Sony
HDR display represented by the triangle with black boundaries whereas REC2020
is represented by white boundaries.

Table 6.4: Measured and estimated peak white luminance and chromaticities

Channel Y (cd/m2) x y

Red 222.0700 0.6889 0.3085
Green 501.400 0.2049 0.7334
Blue 56.868 0.1478 0.0533
Measured peak white 780.338 0.3082 0.319
Calculated peak white 736.102 0.3212 0.3158
∆ 44.2 -0.013 0.003
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7 Perceptual evaluation of proposed
HDR rendering

Art is the lie that enables us to realize the truth

Pablo Picasso

As human observers are the end users of most image-based applications, the
subjective image quality assessment is the most accurate and reliable approach
for analyzing the perceptual quality of images. Additionally, there is no such
computational model which is designed for perceptual evaluation of HDR rendering
with real-world HDR scenes therefore it was necessary to conduct a psychophysical
experiment in order to evaluate the performance of the proposed SiCAM model.
The subjective IQA involves conducting psychophysical experiments where human
observers are asked to judge the quality of images based on a predetermined scale.
Category judgment, pairwise comparison, and rank order are the three most common
types of psychophysical experiments for subjective IQA. Collecting subjectively
annotated data through psychophysical experiments can be a challenging task as
these experiments are time-consuming and expensive. They require setting up
an appropriately controlled environment that involves many factors including the
observer’s visual acuity, display calibration, lighting condition, and also the physical
and mental state of the observer. In addition, there are many potential flaws that
researchers can easily overlook while conducting subjective assessments that could
also affect collected subjective data e.g. the recruitment of observers with vision
impairment, communicating unclear instructions, flaws in experimental design and
outliers in data analysis, etc.
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In this chapter, we have given a brief introduction of psychological studies and
later our psychological experiment which has been conducted in order to evaluate
the performance of the proposed SiCAM model is discussed. The main goal of
most tone-mapping algorithms for high dynamic range is to faithfully reproduce
the visual appearance of the original scenes while also striving for aesthetically
pleasing results. Consequently, this subjective study was specifically designed to
evaluate HDR rendering algorithms, considering both preference and accuracy as
evaluation criteria.

7.1 An overview of subjective assessment
Subjective assessment entails psychophysical experiments in which human observers
are asked to judge a set of images based on a predetermined criterion. Subjective
evaluation is a traditional way of comparing the performance of several methods
or algorithms that are intended to accomplish a similar objective. In HDR, this
is required in a number of applications, e.g., to evaluate different tone mapping
approaches, evaluate HDR compression algorithms for images and/or video, evaluate
inverse tone mapping techniques, etc. The observers are required to visually compare
the outputs generated from various techniques, which are generally referred to as
test stimuli, with each other and/or with a ground truth stimulus. The ground truth
stimulus is referred to as a reference stimulus. In these psychophysical experiments,
usually participants with normal or corrected-to-normal vision are chosen, and at
the beginning of each session, the observers are carefully instructed on the task at
hand, the grading scale, and/or the sequence and timing of stimuli. The task is
generally completed by interacting with a computer interface that displays stimuli
and stores the scores given by the observers.

It is to be noted that conducting a psychophysical experiment can be a challeng-
ing task that is time-consuming. The quality of results obtained from such studies
is highly dependent upon several factors which involve recruiting the observers,
experiment methodology, duration of the experiment, viewing conditions, number
and types of stimuli, etc.

7.1.1 International standards for subjective assess-
ment:

Several international standards (BT.500-11, 2002; BT.710-4, 1998; P.910, 2008;
BT.814-1, 1994; BT.1129-2, 1998; BT.1361, 1998; BT.815-1, 1994) are proposed
to perform subjective image quality testing and provide reliable results. Among
these ITU-R BT.500-11 (BT.500-11, 2002) proposes various methods for assessing
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the subjective quality of television images. This is a widely used standard that
includes information about general viewing conditions, instructions on how to
conduct subjective experiments, test materials, and subjective results presentation.
For example, it has been mentioned that at least 15 observers should be used
in experiments, participants should be carefully introduced to the method of
assessment and should undergo a test session prior to the actual experiment,
and details regarding general viewing conditions for subjective assessments in a
laboratory environment and selection of test methods. The description of other
relevant standards is summarized as below:

• RECOMMENDATION ITU-R BT.500-11 (BT.500-11, 2002): provides several
methods for evaluating the subjective quality of television images.

• RECOMMENDATION ITU-T P.910 (P.910, 2008): provides details for
assessing digital video quality at transmission rates less than 1.5 Mbits/sec.

• RECOMMENDATION ITU-R BT.814-1 (BT.814-1, 1994): provides recom-
mendations for adjusting the brightness and contrast of the display screens.

• RECOMMENDATION ITU-R BT.1129-2 (BT.1129-2, 1998): provides details
for evaluating the quality of the standard definition video sequences.

7.1.2 Methodologies of subjective assessment:
There are several existing methods for carrying out these types of experiments and
the choice of a specific methodology impacts the accuracy and reliability of the
collected data. Several past studies have compared the strengths and weaknesses
of these methods (Pinson and Wolf, 2003; Rouse et al., 2010; Mantiuk et al., 2012).
The three most commonly used methods for conducting psychophysical experiments
namely category judgment, pair comparison, and rank order are discussed as follows:

7.1.2.1 Pairwise comparison

In pairwise comparison, observers assess quality by comparing image pairs. For
instance, observers are tasked to choose the test stimulus with the highest quality
or judge the quality difference from the reference image. These experiments can be
forced-choice, where the observer must provide an answer, or non-forced-choice,
where the observer may judge the two reproductions as equals (tie). Pair comparison
experiments do not ask for information on the distance between the images, making
them less precise than category judgment but also less complex. The example of a
pairwise experiment is shown in Figure 7.1
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Figure 7.1: The figure illustrates an example of pairwise comparison where an
observer is forced to choose an image of the highest quality .

7.1.2.2 Category judgment

The category judgment can be based on single and double stimulus as illustrated
in Figure 7.2, in which observers rate the quality of a single or a pair of images on
a pre-defined scale of five or seven levels which is also known as Absolute Category
Rating (ACR). The primary benefit of category judgment is that the rating score
of each image is recorded, but the task becomes more challenging for observers
than pair comparison (Jones and McManus, 1986). Besides, these experiments are
often faster than pair comparisons, with fewer comparisons necessary.

7.1.2.3 Rank order

In rank-order-based experiments, the participant ranks the test stimuli from best to
worst according to given criteria as illustrated in Figure 7.3. The results obtained
from such experiments are accurate in terms of comparing stimuli. As observers
have to take a firm decision on the order of given test stimuli, it again becomes more
time-consuming. However, it is faster than a pairwise comparison. These ranking
of the test stimuli can also be computed indirectly using pairwise comparison-based
experiments.

After collecting the data, we would have a subjective image quality dataset
resembling the one shown below in Figure 7.4.
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Figure 7.2: The figure illustrates an example of category judgment where an
observer is forced to rate a test image by utilizing the standard five-point Absolute
Category Rating (ACR) scale.

Figure 7.3: The figure illustrates an example of ranking order where observers
are asked to the test stimuli displayed on the screen according to given criteria.

7.2 Our Experimental Setup:
Subjective assessment is the most reliable method for evaluating the quality of
HDR images and their corresponding tone-mapped LDR images (Drago et al., 2003;
Ledda et al., 2005). Besides, there is no computational model which is designed
for perceptual evaluation of HDR rendering with real-world HDR scenes therefore
it was necessary to conduct a psychophysical experiment in order to evaluate the

111



Chapter 7 PERCEPTUAL EVALUATION OF PROPOSED HDR RENDERING

Figure 7.4: After the subjective experiment, each test image with be associated
with a mean opinion score which is calculated using the ratings given by all
observers (Ponomarenko et al., 2013).

performance of the proposed SiCAM model. This experiment was based on rating
the HDR rendering on both HDR and LDR displays while the real-world HDR
scene was considered as a reference. The primary goal of most tone-mapping
algorithms is to faithfully reproduce the visual appearance of the original scenes
while also striving for aesthetically pleasing results. Consequently, this subjective
study was specifically designed to evaluate HDR rendering algorithms, considering
both preference and accuracy as evaluation criteria. The details of the experimental
setup are discussed in the following subsections.

7.2.1 Observers:

In order to evaluate the performance of the proposed SiCAM model, we have
conducted a psychophysical experiment in which 30 observers participated among
which 11 observers were female and 19 observers were male. Among all male
observers, one was found to have Colour Vision Deficiency (CVD) and hence
eliminated from this study. All the observers who participated were with either
normal visual acuity or corrected-to-normal. The average age of the observers was
approximately 27 years among which 14 observers were already aware of image
quality assessments and most of them had prior experience of participating in
such psychophysical studies. The observers were communicated clear instructions
on how to participate while a pilot experiment was conducted before starting to
perform the actual experiment.
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Figure 7.5: The figures illustrates the psychophysical experimental setup for
evaluating the image quality of HDR image rendering by different methods. The
experiment was set up in a dark room with three adjoining partitions to avoid
interaction for three different types of stimuli during the subjective study which
includes an original HDR scene, an HDR image displayed on an HDR monitor,
and tone-mapped images which were displayed on an LDR monitor.

7.2.2 Viewing conditions

The experiment was set up in a dark room with three adjoining partitions to avoid
interaction for three different types of stimuli during the subjective study which
includes an original HDR scene, an HDR image displayed on an HDR monitor,
and tone-mapped images which were displayed on an LDR monitor as shown in
Figure 7.5. The HDR image was rendered on an HDR display using HDR Sony
display as discussed in Section 4.6 while the calibration method for HDR display
is discussed in Section 6.5. To recall, we employed the PVM-X2400 24-inch 4K
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HDR Sony display with the resolution of 1920-by-1080 pixels, to show an HDR
image of the physical HDR scene. The HDR display has been configured to operate
in the PQ Rec. 2020 mode using 10-bit pixel encoding. However, for displaying
HDR images on this HDR Sony display, we used MATLAB Psychtoolbox-3. The
tone-mapped images were shown on a 24,1 inches, color-calibrated DELL monitor.
The LDR display was calibrated to sRGB color space and the pixel resolution
was 1920-by-1080 similar to HDR display. The white point was calibrated to
6500K color temperature and luminance was set to 80cd/m2. The observers were
positioned at a distance of roughly 100cm from the LDR screen and 160cm from
the HDR screen. At these distances, each stimulus was subtended approximately
14.25 degrees of visual angle.

7.2.3 Test stimuli and HDR scene:
In total seven tone-mapped images were used in this experiment which were
generated using three different methods as listed in Table 7.1. It is important to
note that the input of iCAM06 and gamma tone mapping is three channel HDR
image whereas only input of SiCAM is HDR hyperspectral radiance cube. The
images generated from the reduced number of hyperspectral radiance bands were
included to investigate how many bands are necessary for a better tone-mapped
image. The hyperspectral bands are reduced by taking the weighted average of
spectral samples by applying a Gaussian averaging as given by equation 7.1 where
L is the number of samples in a window, α was set to 1.8 and L was set to 3 and
11 for reducing the number of bands to 39 and 10 respectively. We did not skip the
middle wavelengths and opted for an odd number of samples for applying Gaussian
weights in order to avoid aliasing.

Table 7.1: Table.7.1 The details of test images used during the experiment are
summarized in the given table. It is important to note that the input of iCAM06
and gamma tone mapping is three channel HDR image whereas only the input of
SiCAM model is HDR hyperspectral radiance cube.

HDR Input Created from Tone mapping method
3-channel RGB 119-channel spectral iCAM06

119-channel spectral same as input SiCAM
10-channel spectral 119-channel spectral SiCAM
39-channel spectral 119-channel spectral SiCAM

3-channel RGB 119-channel spectral Gamma
3-channel RGB 10-channel spectral Gamma
3-channel RGB 39-channel spectral Gamma
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w(n) = e
− 1

2

(
α n

(L−1)/2

)2

(7.1)

7.2.4 Procedure
As mentioned earlier, three different stimuli have been utilized in this experiment
i.e., original HDR scene, an HDR image displayed on the HDR monitor screen,
and seven tone-mapped LDR images which were displayed on the LDR monitor
screen. This subjective study was specifically designed to evaluate HDR rendering
algorithms based on their respective output images as given in Table 7.1, considering
both preference and accuracy as evaluation criteria. The observer’s task was to
judge the seven LDR reproductions where the original HDR scene was considered
as the main reference. These test images were displayed against a gray background
with a luminance level equivalent to 20% of the adapting white point while the
observer-rated these LDR test stimuli using a user interface as illustrated in Figure
7.6 that was running on a connected screen. The experiment was conducted in two
parts as follows:

• In the first part, observers rate the tone-mapped LDR images (total 7 of
them) according to accurate reproduction by keeping the original scene as
a ground truth. Observers give judgments based on the rating scale of 100
using the slider where a score of 100 indicates excellent reproduction and a
score of 0 indicates worst reproduction.

• In the second part, observers rate each of the seven LDR images according to
pleasantness/preference by keeping the original scene as ground truth once
again on the same rating scale.

It is important to note that the white point and luminance range of the LCD
display and the physical HDR scenes differed significantly. As a result, participants
were required to undergo a minimum adaptation period of 60 seconds for both
the physical HDR scene and the LCD display. The participants were allowed
to complete the experiment in a single sitting based on their memory. However,
they had the option to revisit the original HDR scene whenever they deemed it
necessary. The intention behind enforcing repeated viewing of the original scene
was to ensure that participants based their judgments on the accuracy of the
rendering, especially during that part of the experiment where the observers were
required to rate the LDR reproduction based on accurate reproduction(i.e., the
first part of the experiment). The observers performed the experiment in random
order where half observers performed part one of the experiment first and then
performed the second part while the rest of the observers did the experiment in
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reverse order. When observers finished both parts of the experiment they were
asked an open-ended question to comment about what was the factors or cues
that they were considering while making the judgments. Lastly, the observers were
also shown an HDR image on an HDR display screen using the proposed display
referred HDR rendering workflow as discussed in Section 4.6. They were asked
to judge this HDR image by considering the original HDR scene as the reference.
Once again the observers were obligated to have a minimum adaptation period of
60 seconds for both the real-world HDR scene and the HDR display while they
were allowed to view the HDR scene anytime they felt it necessary while answering
the questionnaire. For rating the HDR display after which the observers were asked
the following questions:

• Rate the overall impression of image quality of the HDR image by considering
the physical HDR scene as a reference on the rating scale of 100 where a score
of 100 indicates excellent reproduction and 0 indicates the worst reproduction.

• Observers were also asked to give individual scores for contrast, colorfulness,
image sharpness, and overall naturalness of the HDR image on the above-
mentioned scale.

we carried out this perceptual evaluation to assess the performance of the
SiCAM model compared to iCAM06 and gamma tone mapping. Our goal was to
determine how well each algorithm faithfully reproduced the visual appearance of
the original HDR scene while also producing aesthetically pleasing results. Thus,
this subjective study was designed to evaluate the HDR tone mapping algorithms,
considering both preference and accuracy as evaluation criteria. The data analysis
and results of the perceptual evaluation are discussed in Chapter 9.
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Figure 7.6: The figure illustrates the user interface running on a connected
screen for rating the test stimuli which were separately displayed to the observers
on a calibrated LDR display screen during the psychophysical experiment as shown
in 7.5.
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8 Objective assessment of HDR ren-
dering:

To measure is to know

Lord Kelvin

The HDR displays allow the perception of a larger range of luminances and a
higher bit depth compared to conventional standard dynamic range displays. These
features make human vision to have more plausible and realistic representations
due to the clear perception of details in both the darker and brighter areas at
the same time. As demonstrated in prior chapters, many techniques have been
suggested for various stages within the high dynamic range (HDR) pipeline. Given
the considerable number of methodologies available, it is essential to understand
the comparative advantages of each. Consequently, a diverse range of HDR image
quality assessment (IQA) methods have been proposed to assess and compare the
quality of High dynamic range (HDR) images.

In this chapter, we have given a brief introduction to the most popular ap-
proaches to image quality assessment which is to use computational algorithms
known as image quality metrics (IQMs) to try to predict the quality of natural
images. Later, we discussed the IQMs which are fundamentally designed for HDR
content since HDR content poses new challenges with respect to conventional Low
Dynamic Range (LDR) images. As tone mapping plays a vital role in HDR imaging
workflow to visualize HDR images on LDR displays hence a tremendous amount
of tone mapping operators (TMOs) have been proposed in past research. In this
context, image quality metrics(IQMs) for evaluating the tone-mapped represen-
tation of the HDR data have also been addressed. Lastly, the IQMs utilized for
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evaluating the performance of the proposed HDR rendering methods have been
discussed whereas the results of the objective assessment are discussed in Chapter
9.

8.1 An overview of objective image quality
assessment

The image quality assessment (IQA) can be classified into subjective IQA and
objective IQA. The objective IQA aims to provide quantitative metrics known
as image quality metrics (IQMs) that can predict the image quality without the
involvement of human observer judgments about the perceived image quality. The
ultimate goal of objective IQA is to produce efficient and consistent judgments
which should also correlate with human quality judgments. According to the
availability of reference (original/distortion-free) images with which the test image
(reproduced/distorted) images are to be compared, IQMs can be categorized into
three types as follows: full reference, no reference, and reduced reference. The
majority of IQA metrics are full reference, which implies that a reference (i.e.,
original) image is known. However, when the full reference image is not available,
making a no-reference or blind quality assessment approach is preferable. In
reduced-reference quality assessment, the reference image is only partially provided
that uses a collection of extracted features as side data to assess the quality of the
test image. These IQMs are often designed by taking into account the knowledge
of how the human visual system (HVS) analyzes the image quality and intend to
give predictions that are close to the prediction of image quality by an average
human observer. These metrics are derived from many ideas and were created for
various goals, such as quantifying distortions, producing benchmarks, monitoring
quality, optimizing a process, or indicating trouble areas.

Since different metrics are proposed for distinct purposes, it is critical to consider
their area of application while evaluating their effectiveness. citechandler2013seven
presented a detailed survey of quality assessment where the first half of his re-
view discusses key visual perception attributes, IQA databases, and existing IQA
algorithms while the rest of his survey focuses on several outstanding challenges
in quality assessment. Nevertheless, his survey focuses more on IQA problems
and challenges rather than algorithms. Pedersen et al. (2012) provided a concise
summary of over 100 IQMs. Mohammadi et al. (2014) reviewed both subjective and
objective IQA methods with a focus on nine classic full reference IQA measures and
two emerging techniques: high dynamic range (HDR) and three-dimensional(3D)
rendering. While Rousselot et al. (2019) presented HDR IQA based on HDR
uniform color spaces and proposed two new databases.
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8.1.1 Generic framework of image quality metrics:

As discussed above there are hundreds of proposed image quality metrics however
the majority of these metrics usually follow a common framework as illustrated in
Figure 8.1. Here we have presented a generic workflow of image quality metrics
using full reference as an example. The first step is usually transforming the input
RGB values to another more suitable color space where a better representation
of the perception of color can be achieved, such as an opponent color space or a
perceptually uniform color space is commonly preferred. The second stage involves
modeling important aspects of the human visual system (HVS). These models
usually simulate low-level features of the HVS, such as contrast sensitivity functions
(CSFs) or masking while other high-level features can also be simulated based
on the idea that our human visual system is adapted to extract information or
structures from the image. Then, the quality calculation is performed based on
calculating pixel-wise differences i.e., the most basic approach is to calculate the
Euclidean distance. Finally, pooling is performed on these quality scores to reduce
these so many numbers and generate a single score indicating overall image quality.

Figure 8.1: The generic workflow of image quality metrics that involves four
main stages which include transforming the input RGB values to another more
suitable color space, modeling certain aspects of the human visual system (HVS)
such as contrast sensitivity functions (CSFs), estimating quality scores and finally
pooling these scores to assign a single quality score value.
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8.1.2 Classification of image quality metrics
The IQMs can be classified into five classes based on their underlying working
principle which are listed below. Please refer to the seminal work of Pedersen et al.
(2012) for detailed information on each of these groups of metrics.

8.1.2.1 Mathematically based metrics

These IQMs operate only on the intensity of the distortions by calculating the image
statistics such as Mean Square Error(MSE), ∆Eab while the metrics measuring
color difference also belong to the group of mathematically based metrics. These
simple mathematical models are usually not well correlated with perceived image
quality.

8.1.2.2 Low-level based metrics

Metrics classified as low-level based metrics simulate the low-level features of the
HVS, such as contrast sensitivity functions (CSFs) or masking whiles others also
depend on image decorrelation-based methods to separate color and luminance
information in an image where the input RGB image is first transformed into CIE
XYZ and then further into the opponent color space. The examples of low-level
based metrics are S-CIELAB or S-DEE.

8.1.2.3 High-level based metrics

High-level based metrics quantify quality based on the idea that our HVS is
adapted to extract information or structures from the image such as SSIM defines
the structural information in an image as those attributes that represent the
structure of the objects in the scene, independent of the average luminance and
contrast.

8.1.2.4 Other metrics

These metrics are either based on other strategies or combine two or more of
the above metric types. For example, Visual Signal to Noise Ratio (VSNR) was
proposed by [Chandler and Hemami, 2007] which was based on near-threshold and
suprathreshold aspects of the HVS i.e., incorporating both low-level features and
mid-level features.
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8.2 HDR image quality metrics:
Compared to conventional LDR quality assessment, evaluating HDR visual quality
poses new challenges (Narwaria et al., 2016). The higher peak brightness and
contrast provided by HDR increases the visibility of artifacts, while simultaneously
altering how viewers focus their attention in comparison to LDR (Zerman et al.,
2017; Hanhart et al., 2015). In addition, color distortion plays a significant role in
the overall quality evaluation as a result of the increased luminance (Pouli et al.,
2016). Since these and other additional factors interact in a complex manner to
determine HDR visual quality. Therefore, LDR image quality metrics can not
directly be applied to HDR content. To overcome this performance, the two main
approaches are followed to develop HDR image quality metrics which are discussed:

8.2.1 Adapting LDR IQA metrics to HDR images
Because of the lack of IQMs designed specifically for HDR images, various objective
LDR metrics are also used to assess the quality of HDR images. However, these
LDR metrics assume that pixel values are perceptually linear, i.e., that change
in intensity of pixel values corresponds to an equivalent amount of change in
perceived luminance whereas the HDR pixel values store linear radiometric value,
i.e., pixels are proportional to the scene’s physical luminance which is not same as
the perceived luminance. Human perception has a more complex behavior where
the luminance perception can be approximated by a square root at low luminance
levels and is approximately proportional to luminance ratios at higher luminance
levels (Kundu and Pal, 1986). Therefore, to get meaningful quality scores using
LDR metrics such as from PSNR and SSIM for HDR images, the physical luminance
of HDR images needs to be converted to perceptually uniform pixels values by
utilizing a logarithmic or perceptually uniform encoding as illustrated in Figure
8.2. The logarithmic encoding is used for a very coarse approximation of the HVS
response along the entire visible luminance range and also does not account for the
loss of sensitivity for the low light conditions while the drawbacks of the logarithmic
encoding can be overcome by applying the PU encoding to generate perceptually
uniform pixel values for HDR images (Aydın et al., 2008).

8.2.2 HVS inspired HDR metric
The second approach is to design dedicated HDR IQMs such as HDR VDP2
(Mantiuk et al., 2011) is designed for HDR images and HDR-VQM (Narwaria et al.,
2015) metrics is designed for HDR video sequences where both are based upon
full reference IQA. These metrics require modeling of the human visual system
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Figure 8.2: The workflow of extending LDR metrics to HDR content.

(HVS). For instance, the HDR-VDP metric incorporated the different models of the
early stages of HVS, such as intra-ocular scattering, luminance masking, and the
achromatic response of the photoreceptors, to accurately predict the visibility and
strength of the pixel-wise distortion in HDR images where HDR-VQM embedded
a spatio-temporal analysis based model that correlates with the HVS fixation
behavior during the video frames.

8.2.3 Relevant HDR datasets:
Table 8.1 provides a concise description of publicly available HDR image databases
along with their characteristics and links to access these databases.

Table 8.1: HDR Image Datasets

Dataset Name Number of Images Observers Method Access Link

Valenzise Dataset (HDR_IMT) (Valenzise et al., 2014) 50 15 DSIS http://webpages.l2s.centralesupelec.fr/
IRCCyN-IVC HDR Image Datasets (Narwaria et al., 2013) 160 27 ACR-HR http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/
HDR Photographic Survey (Fairchild, 2007a) 106 - - http://markfairchild.org/HDR.htm
Rousselot_et_al_EUSIPCO2018 (Rousselot et al., 2019) 104 27 DSIS http://www-percept.irisa.fr/software/
HDRcompressed V2(Zerman et al., 2017) 110 15 DSIS http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
HDdTB HDR dataset (Rousselot et al., 2018) 100 27 DSIS https://hevc.hhi.fraunhofer.de/
Database of HDR images compressed with JPEG XT(Korshunov et al., 2015) 240 24 DSIS http://mmspg.epfl.ch/jpegxt-hdr
HDR Image Dataset(Xiao et al., 2002) 210 29 ACR-HR -
Tone-mapped Image Database (TMID)(Yeganeh and Wang, 2012) 180 20 ACR-HR https://qualinet.github.io/databases/image/tone-mapped-image-quality-database/
RV-TMO (Krasula et al., 2015) 250 3500 DSIS ftp://ftp.polytech.univ-nantes.fr/RV-TMO

8.3 Objective metrics used for proposed HDR
rendering method:

For investigating the effectiveness of utilizing hyperspectral data for HDR rendering
and tone mapping, we have mainly relied on perceptual evaluation by conducting a
psychophysical experiment. However, we have also utilized a few objective IQA
metrics among which two are full reference metrics i.e., Tone-mapped quality index
(TMQI) (Yeganeh and Wang, 2012) and Feature similarity index for tone-mapped
image (FSITM) (Nafchi et al., 2014). These metrics are designed to evaluate the
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perceptual quality of tone-mapped high dynamic range images by considering the
corresponding HDR image as the reference. Both of these metrics are further
discussed in the following subsections.

8.3.1 Tone-mapped quality index (TMQI)
Yeganeh and Wang (2012) introduced the Tone Mapped Quality Index (TMQI) as a
comprehensive image quality assessment metric designed to evaluate the quality of
tone-mapped high dynamic range (HDR) images. TMQI measures the perceptual
similarity between a tone-mapped image and its reference HDR image, taking into
account the luminance and contrast adjustments during the tone mapping of HDR
images.

The TMQI algorithm operates by quantifying differences between the tone-
mapped image and the reference image by considering both global and local
image characteristics to provide a comprehensive evaluation of image quality in
terms of luminance, contrast, and structural features. It considers the perceptual
importance of different frequency components to weight the luminance differences
and captures the image’s overall contrast changes introduced during tone mapping
by utilizing the contrast sensitivity function of HVS. Additionally, it evaluates the
structural similarity of textures and edges between the test and reference images
by employing a structural similarity index to measure the similarity of local image
patterns. Finally, TMQI calculates an image quality score as a combination of these
components that represents the quality of the tone-mapped image in comparison
to the reference HDR image.

8.3.2 Feature similarity index for tone-mapped im-
age (FSITM)

The Feature Similarity Index for Tone-Mapped Images (FSITM) (Nafchi et al.,
2014) is another dedicated metric for assessing the quality of reproduced HDR
tone-mapped images. The primary objective of FSITM is to quantify the degree
of similarity between the perceptual features of a tone-mapped image and the
corresponding HDR reference image. The FSITM algorithm operates by comparing
and analyzing the perceptual local similarity maps based on the locally weighted
mean phase angle to evaluate the overall quality of tone-mapped images. The
authors presented the performance results of FSITM on two datasets and also
compared them to the state-of-the-art TMQI where FSITM was found to output
the TMQI. It would be interesting to combine the scores of both FSITM and the
TMQI to produce a more precise quality evaluation.
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8.3.3 Other metrics
Besides, the above-mentioned full reference metrics that are fundamentally designed
for evaluating the tone mapping output, other blind metrics have also been consid-
ered such as the perception-based Image Quality Evaluator (PIQE) (Venkatanath
et al., 2015) where a smaller score indicates better perceptual quality and already
demonstrated its efficacy on three widely used image quality datasets. Furthermore,
we also estimate the scores of the sharpness of the reproduced LDR images and
also calculated their contrast ratio which are two essential factors of image quality.
The results of the objective image quality assessment of the tone-mapped LDR
images utilized in our psychophysical are discussed in Chapter 9.
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9 Results and discussion

The end is where we start from.

T.S. Eliot

The results of both the perceptual evaluation of HDR rendering and the objective
image quality assessment with the HDR real-world scene are discussed in this
chapter. Additionally, the limitations of this study and future directions have also
been addressed. Finally, the conclusion of this master thesis is presented at the
end of this chapter.

9.1 Subjective assessment
As human observers are the end users of the majority of image-based applications,
the subjective image quality assessment is the most accurate and reliable approach
for analyzing the quality of images. In our study, we aimed to assess how the
visual quality perception and realism in HDR-rendered images are affected by
using HDR hyperspectral data instead of traditional HDR three-channel data. To
achieve this, we conducted a psychophysical study, where participants were shown
HDR-rendered images generated using two different approaches: one produced
using traditional three-channel HDR data and the other using hyperspectral HDR
data. In addition, we also reduced the number of spectral bands to generate some
test stimuli for investigating the effect of reducing spectral information. Test stimuli
are generated using three types of tone mapping methods as listed in 7.1, including
Gamma 10-bands, Gamma 39-bands, Gamma Full, iCAM06, SiCAM 10-bands,
SiCAM 39-bands, and SiCAM Full. The suffix "Full" indicates images with 119
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spectral bands covering the entire visible spectrum, while "n-bands" denotes output
generated from reduced spectral bands HDR image as input. It is important to
note that SiCAM had a hyperspectral cube as input, making it distinct from the
other tone mapping methods which used three-channel HDR data.

The details of how this psychophysical experiment was set up and conducted are
discussed in Chapter 7. This experiment was conducted to evaluate the effectiveness
of the SiCAM model, discussed in Chapter 5, which leverages hyperspectral HDR
information. We compared its performance with that of iCAM06, a model that
relies solely on three-channel HDR input. Furthermore, we integrated gamma
tone mapping into our test stimuli. Our goal is to determine how faithfully each
algorithm reproduced the visual appearance of the original HDR scene while also
producing aesthetically pleasing results. Thus, this subjective study was explicitly
designed to evaluate the HDR tone mapping algorithms, considering both preference
and accuracy as judging criteria.

The distribution of the rating scores given by the observers is depicted using
box plots, which offer insights into the central tendency, spread, skewness, and
presence of outliers within the collected data during the psychophysical experi-
ment. Additionally, important statistical analyses of these subjective scores are
summarized in their respective tables. Lastly, we conducted an ANOVA (Analysis
of Variance) (St et al., 1989) on the subjective scores. This involves interpreting
the estimated differences in the subjective scores of the different tone-mapping
methods to ascertain whether significant differences exist among the subjective
scores in our study. This approach aids us in extracting meaningful insights and
conclusions from these subjective scores.

The results of this subjective evaluation are discussed in the following sub-
sections, highlighting the differences in perceptual quality and observer’s preference
between the different types of rendered images as listed in Table 7.1. Through
a comprehensive analysis of the rating scores obtained from the psychophysical
experiment, we extracted valuable insights regarding the efficacy of employing
HDR hyperspectral data for HDR rendering and its impact on the overall visual
experience and realism of the HDR images.

9.1.1 Rating scores for tone-mapped LDR images:
In total, seven test stimuli were presented to the observers as listed in Table 7.1
during the experiment. Since it has been observed that the LDR images reproduced
by the SiCAM model were preferred by the majority of the participants as discussed
in the following sections, it can be concluded that the tone-mapped images of
SiCAM have more natural colors and contrast levels, and thus are a more faithful
reproduction of the original HDR scene in terms of both accurate reproduction and
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pleasantness. The individual scores given by the observers for color appearance
reproduction and image pleasantness are discussed in the following subsection

9.1.1.1 Color appearance scores

The subjective scores given by the observers to color appearance (i.e., how accurately
the tone mapping methods reproduced the appearance of the corresponding real-
world HDR scene) are summarized in the box graph given in Figure 9.1. This
box plot contains rating scores for seven different tone-mapped reproduced images
including iCAM06, SiCAM 10-bands, SiCAM 39-bands, and SiCAM Full(i.e., where
Full indicates 119 spectral bands within the visible spectrum). It can be observed
that SiCAM has been found to outperform other tone mapping approaches whereas
the results of iCAM06 are comparable to that of SiCAM. The box plot given in
this Figure 9.1 represents an overall distribution of subjective scores given by the
observer during the perceptual evaluation of the test stimuli. The red-colored
central line denotes the median value of seven reproduced LDR images which were
generated using different tone mapping methods as given in Table 7.1. The width
of the blue box in the box plot indicates the interquartile range (IQR), which is the
range between the 25th percentile (Q1) and the 75th percentile (Q3) of the data.

It can be observed from this graph that Gamma TMO has obtained significantly
lower scores than iCAM06 and SiCAM for accurate color appearance reproduction.
Interestingly, the rating scores revealed that SiCAM with 10 bands of hyperspectral
input yielded the best results in contrast to our initial hypothesis that using all
119 bands covering the whole range of the visible spectrum would lead to better
outputs. The possible explanations for this trend are given in the discussion section.
Additionally, the smaller size of the box for SiCAM-10 indicates that the variation
in the scores of the observers is also minimum which shows that the rating trend
was consistent for this reproduced LDR image.

On the other hand, iCAM06 output also obtained rating scores which are
close to that of SiCAM where the input was three channel HDR image. It is
worth mentioning that the observers were shown one image at a time during the
experiment. It might be possible that the nonuniform target patches(transmissive
film) and an overall slightly yellowish color cast on the output of iCAM06 as shown
in Figure 9.2, were not that visible to participants affecting the rating of their
judgments. For a better comparison of SiCAM and iCAM06, we analyzed color
fidelity by estimating the patch uniformity of the target patches in our physical
HDR scene as presented in Figure 9.3. To achieve this, we first annotated the
patches of film target patches of LDR images that were reproduced by these specific
tone mapping methods and estimated their standard deviation. As the uniformity
of these patches is inversely proportional to standard deviation, we can observe
that the output LDR images generated by SiCAM are more uniform than iCAM06

129



Chapter 9 RESULTS AND DISCUSSION

Figure 9.1: Subjective scores for color appearance.

Figure 9.2: The figure illustrates the zoom-in patches of the outputs generated
by SiCAM with 119 spectral bands of hyperspectral input and iCAM06 with three
channel HDR image.

as illustrated in Figure 9.2. Additionally, SiCAM 10-bands have been found to give
the best results among these LDR images.
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Chapter 9 RESULTS AND DISCUSSION

Furthermore, as the experiment was conducted during the open house session
of Munsell color science Laboratory(MCSL), the participants who had a strong
background in color science(i.e., industrial professionals and senior researchers)
also took part in this psychophysical experiment. It is interesting to highlight that
these participants gave higher scores to SiCAM-Full while there is a discernible
difference in the rating scores of iCAM06 and SiCAM-Full as illustrated in Figure
9.4.

Figure 9.4: The plot given in this figure shows the rating scores given by the
observers with a strong background in color science where there is a discernible
difference in the rating scores of iCAM06 and SiCAM-Full.

Additional statistical analyses to complement the insights gained from the
box plot 9.1 are given in Table 9.1 which shows the mean, standard deviation
(std.dev), and standard error (std. Error) of the rating scores given by the observer
during the experiment where it can be seen that the output images generated
by SiCAM 10-bands and SiCAM full have notably higher mean color appearance
scores compared to the other methods.

9.1.1.2 Pleasantness scores

The pleasantness scores(i.e., the observer preference irrespective of the accuracy of
reproduction) are given in Figure 9.5. When the pleasantness scores are compared,
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Table 9.1: Summary of Color Appearance Scores: The table summarizes the
statistical analysis of the observers’ score for perceptual evaluation of color
appearance for tone-mapped images

Method Mean Std. Dev. Std. Error

Gamma 10bands 37.458 27.0603 5.523
Gamma 39bands 34.125 25.0847 5.120
Gamma full 36.875 25.9084 5.288
iCAM06 57.125 22.3535 4.562
SiCAM 10bands 60.291 21.0909 4.305
SiCAM 39bands 52.208 24.6488 5.0314
SiCAM full 62 26.929 5.497

SiCAM produced comparable results to that of the iCAM06 model as shown in
this boxplot. In the context of reduced spectral bands, SiCAM with the spectral
input image of 10 bands gained maximum scores similar to the rating trend of
accurate color appearance reproduction of physical HDR scene as depicted from the
central red line of the medians of each group as shown in this group. In contrast,
it has been noticed that the IQR (represented by box size as mentioned above)
is more spread out in this graph presented in Figure 9.5, which tells that the
variation in pleasantness scores is higher than the subjective scores for accurate
reproduction of color appearance as given in Figure 9.1.1.2. Overall, the rating
scores for pleasantness are almost similar for iCAM06, SiCAM 10-bands, SiCAM
39-bands, and SiCAM Full(i.e., 119 spectral bands covering the whole visible
spectrum).

The means of the pleasantness scores for the different tone mapping methods
in Table 9.2 where Gamma 10bands, Gamma 39bands, and Gamma full exhibit
mean pleasantness scores around the range of 30-32, indicating a lower level of
pleasantness scores while iCAM06, SiCAM 10bands, SiCAM 39bands, and SiCAM
full show much higher mean pleasantness scores, ranging from 57 to 83. These
methods seem to yield significantly higher pleasantness ratings compared to the
LDR images generated using gamma tone mapping.

The observers with a color science background also gave a similar rating score
where the highest scores are given to iCAM06 and SiCAM-Full as illustrated in
the boxplot given in Figure 9.4.
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Figure 9.5: Subjective scores for pleasantness

Table 9.2: Summary of Pleasantness Scores

Method Mean Std. Dev Std. Error

Gamma 10bands 30.16 20.507 4.101
Gamma 39bands 29.76 18.666 3.733
Gamma full 31.583 22.122 4.515
iCAM06 63.16 19.349 3.869
SiCAM 10bands 61.28 23.055 4.611
SiCAM 39bands 57.20 22.501 4.500
SiCAM full 57.72 24.354 4.870

9.1.2 Analysis of Variance (ANOVA)

The ANOVA analysis (St et al., 1989) has been conducted for both the subjective
scores of color appearance and pleasantness which are discussed in section 9.1.1
and 9.1.1.2 respectively, to identify and quantify the significance of variability in
the subjective scores as given in Table 9.3 and 9.4. In both tables, we conducted
variation analyses categorized as "Between Groups" and "Within Groups." Each
group corresponds to a specific type of LDR (Low Dynamic Range) image, including
Gamma 10-bands, Gamma 39-bands, Gamma Full, iCAM06, SiCAM 10-bands,
SiCAM 39-bands, and SiCAM Full. The suffix "Full" indicates images with 119
spectral bands covering the entire visible spectrum, while "n-bands" denotes output
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generated from reduced spectral bands HDR image as input. It is important to note
that iCAM06 and gamma tone mapping had a three-channel HDR image as input
while SiCAM operates on the hyperspectral data. The DF (Degrees of Freedom)
represents the number of independent pieces of information available for estimating
the variability in the data. The SS (Sum of Squares) is a measure of the variability
or dispersion of the data whereas the MS (Mean Square) is calculated by dividing
the sum of squares by the corresponding degrees of freedom. It provides an estimate
of the variance between and within the group. F-Stat (F-Statistic) is the ratio of
the variance between groups to the variance within groups. It indicates whether
there are significant differences between the group means. Finally, the p-value
indicates the probability of observing the F-statistic if there were no significant
differences among the groups.

The low p-values i.e., 0.00002 for accurate color appearance reproduction scores
and 0.0000 for pleasantness scores indicate highly significant differences between the
subjective scores given to these LDR images which were generated using different
tone mapping methods. It is to be noted that one-way ANOVA does not identify
which group is having the most significant difference. However, it can be deduced
from the box plots given in Figure 9.1 and 9.5 as discussed above that a discernible
difference is visible between the scores given to LDR images generated using gamma
tone mapping and SiCAM whereas the difference between the scores of iCAM06
and SiCAM might not be that significant, especially in the case of pleasantness
scores.

Table 9.3: ANOVA for Color Appearance Rating Scores

Source DF SS MS F-Stat P-Value

Between Groups 6 20954.1141 3492.3523 5.67199 0.00002
Within Groups 161 99130.8069 615.7193

Table 9.4: ANOVA for Color Pleasantness Rating Scores

Source DF SS MS F-Stat P-Value

Between Groups 63.16 19.349 3.869 13.338 0.000
Within Groups 61.28 23.055 4.611
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9.1.3 Rating scores for HDR rendering on HDR dis-
play

As mentioned in the methodology of the psychophysical experiment discussed in
Chapter 7, the observers were asked to rate the overall image quality of the HDR
image based on the real-world HDR screen as the reference. The HDR image was
shown on an HDR display using the proposed display referred HDR rendering
workflow as explained in Section 4.6. For the HDR image displayed to the observers
on an HDR monitor, the rating scores given by the observers are summarized
in Figure 9.6. Among these rating scores, the maximum rating is 100% and the
minimum rating is 40%. The average of all the rating scores is 68.655% while the
standard deviation is 14.125. These statistics reflect that an overall impression of
image quality of the HDR image is close to the original HDR scene despite the
maximum luminance of the physical HDR scene being approximately 4000nits and
the HDR display being limited to only 1000nits of peak luminance.

Figure 9.6: The barplot represents the subjective rating scores given by observers
for the overall image quality of the HDR image which has been presented on an
HDR display. In this part of the experiment, the original HDR scene has been
considered as the reference.

In addition, the observers were also asked to rate individual attributes of the
HDR image displayed on the HDR screen compared to the original HDR scene
as a reference. These attributes include colorfulness, sharpness, contrast, and
naturalness. The rating scores given by the observers are summarized in the box
plot given in Figure 9.7, where the image sharpness obtained the highest rating
compared to other attributes while the rating scores for naturalness varied between
65% to 75%. Furthermore, the attribute of colorfulness obtained a slightly higher
rating score compared to image contrast, as illustrated in the box plot. Thus, it
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can be observed that overall perceived the quality of HDR rendering on an HDR
display is comparable to that of the original HDR scene.

Figure 9.7: The rating scores revealed that sharpness received the highest ratings
compared to other attributes, while ratings for naturalness varied between 65%
and 75%. Colorfulness obtained slightly better rating scores than contrast as
illustrated in the given plot.

Lastly, the observers were asked an open-ended question to list down the
image quality factors/cues that they were considering while making the judgments.
While answering this question, the vocabulary used by the observers is given in
Figure 9.8. It can be observed in this plot that almost all observers mentioned
brightness/lightness whereas the second most frequently used attribute was color.
Among other cues, observers also gave significant importance to saturation, contrast,
and perceivable details.

9.2 Objective assessment
The objective image quality assessment (IQA) aims to provide quantitative metrics
known as image quality metrics (IQMs) that can predict image quality without the
involvement of human observer judgments. The ultimate goal of objective IQA is to
produce efficient and consistent judgments which should be correlated with human
quality judgments. We have primarily relied on perceptual evaluation by carrying
out a psychophysical experiment to investigate the efficacy of using hyperspectral
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Figure 9.8: The figure illustrates the image attributes used by observers while
making judgments about the LDR tone-mapped images during the psychophysical
experiment. Most of the participants said that they considered how bright or light
the image was as the most significant attribute while rating the test images. The
second most frequently used attribute was the colors of the LDR images. Many
participants also talked about other image attributes like how saturated the image
was, how much contrast was present, etc.

data for HDR rendering and tone mapping. Additionally, we have also utilized
objective IQA metrics among which two are full reference metrics i.e., Tone-mapped
quality index (TMQI) (Yeganeh and Wang, 2012) and Feature similarity index
for tone-mapped image (FSITM)(Nafchi et al., 2014). These metrics are designed
to evaluate the perceptual quality of tone-mapped high dynamic range images
by considering the corresponding HDR image as the reference. Both of these
metrics are further discussed in Chapter 5. Besides, the above-mentioned full
reference metrics that are fundamentally designed for evaluating the tone mapping
algorithms, other blind metrics(i.e., no reference) have also been considered such
as the perception-based Image Quality Evaluator (PIQE) (Venkatanath et al.,
2015) where a smaller score indicates better perceptual quality. Furthermore, we
estimated the scores of the sharpness of the reproduced LDR images and calculated
their contrast ratio which are two important factors of image quality.
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Chapter 9 RESULTS AND DISCUSSION

As mentioned above, FSITM and TMQI have been utilized for evaluating the
performance of the proposed SiCAM model with that of iCAM06 and gamma TMO.
To calculate these metric scores, the scene referred HDR image has been utilized
as a reference (details are given in Section 4.5) whereas the seven reproduced
tone-mapped images as given in Table 7.1 were used as test images. The output
scores for these metrics are summarized in Figure 9.10. It is clearly visible that

Figure 9.10: The metric scores of FSITM and TMQI are presented in this
graph where HDR image is compared with seven different tone-mapped images
reproduced by methods mentioned in Table 7.1 given in Chapter 6.

the seven tone-mapped images reproduced using different methods have a similar
ranking order as we observed in the subjective scores where it has been observed
that based on the median of the scores SiCAM-10bands outperformed other tone
mapping methods. It is evident from the given graph that these metrics fall short in
accurately representing the absolute disparity between the original HDR image and
the tone-mapped counterparts. During subjective scores, the gamma tone-mapped
images obtained rating scores between 10 to 30 whereas the SiCAM-based LDR
images received rating scores between 50 to 87. In contrast, the objective metrics
FSITM and TMQI gave almost similar scores to all the test stimuli.

We also employed another widely used blind image quality metric named the
perception-based Image Quality Evaluator (PIQE) (Venkatanath et al., 2015).
Previous research has demonstrated a notable correlation between PIQE scores and
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Figure 9.11: The PIQE scores for tone mapping images are illustrated in the
given plot where a smaller score indicates better perceptual quality.

Figure 9.12: The scores calculated for the sharpness and contrast ratio of
tone-mapped LDR images are shown in this graph.

human subjective scores across diverse databases, including LIVE and TID datasets.
Consequently, PIQE proves to be a valuable tool for assessing the perceptual quality
of our tone-mapped images. Hence, the PIQE scores are illustrated in Figure 9.11
where a smaller score indicates better perceptual quality. Notably, within this
plot, Gamma-10 emerges as the least successful HDR reproduction, while SiCAM-
39bands stands out as the image with the highest perceived quality. Besides,
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sharpness and contrast ratio are also important image quality factors. Hence, the
scores were calculated for sharpness and contrast of these LDR reproductions which
are given in Figure 9.12. The measurement of image sharpness was performed
by quantifying the high-frequency content present in the images using the well-
established method based on the normalized gradient magnitudes. By estimating
the BT709 luma value for each pixel of LDR images, we quantify the range of
luminance variations in an image by calculating the dynamic range by considering
the 1 and 99th percentile as lower mean and upper mean values respectively. Lastly
as discussed above in Section 9.1.1.1, we analyzed color fidelity by estimating the
patch uniformity of the color target (film )in the HDR scene as represented in
Figure 9.3 for a better comparison of SiCAM-based LDR images and the output of
iCAM06.

9.3 Discussion
In our study, we aimed to assess how the visual quality perception and realism in
HDR-rendered images are affected by using HDR hyperspectral data instead of tra-
ditional three-channel HDR image. To achieve this, we conducted a psychophysical
study, where participants were shown tone mapped LDR images generated using
two different approaches: one produced using traditional three-channel HDR data
and the other using hyperspectral HDR data. In addition, we also reduced the
number of spectral bands to generate some test stimuli for investigating the effect of
reducing spectral information. The test images include Gamma 10-bands, Gamma
39-bands, Gamma-Full, iCAM06, SiCAM 10-bands, SiCAM 39-bands, and SiCAM
Full as shown in 9.9. The suffix "Full" indicates images with 119 spectral bands
covering the entire visible spectrum, while "n-bands" denotes output generated
from reduced spectral images as input. It is important to note that iCAM06 and
gamma tone mapping had a three-channel HDR image as input while SiCAM
operates on hyperspectral data. Further details about how these test stimuli were
generated and the methodology of conducting the psychophysical experiment is
discussed in Section 7.2.4. It is important to recall that the subjective study was
specifically designed to evaluate the HDR tone mapping algorithms, considering
both preference and accuracy as evaluation criteria.

Based on the evaluation scores obtained from both subjective and objective
assessments as discussed in the previous sections 9.1 and 9.2 respectively, it becomes
evident that the SiCAM tone mapping method exhibits better performance. As
the subjective assessment is the most reliable method for performance evaluation
of novel tone mapping algorithms(Drago et al., 2003; Ledda et al., 2005) and
considering that there is no such computational model which is designed for
perceptual evaluation of HDR rendering with real-world HDR scenes, we primarily
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relied on the perceptual quality scores given by the observers to investigate the
efficacy of using hyperspectral data for HDR rendering and tone mapping.

Hence it can be concluded from the data analysis of the subjective scores given
by all the observers to LDR test images that SiCAM-10bands is deemed as the
optimal LDR reproduction of the physical HDR scene while the participants with
a color science background favored SiCAM-Full as the best LDR image among the
test samples as illustrated in Figure 9.4. It can be observed from the box plots
given in Figure 9.1 and 9.5 as discussed above that a discernible difference is visible
between the scores given to LDR images generated using gamma tone mapping and
SiCAM whereas the difference between the scores of iCAM06 and SiCAM is less
pronounced, especially in the case of pleasantness scores. It is worth mentioning
that the observers were shown one test image at a time during the experiment.
It might be possible that the nonuniform target patches(transmissive film) and a
slight overall yellowish color cast on the output of iCAM06 as depicted in Figure
9.2, were not that visible to participants affecting the rating of their judgments.
Therefore, for a better comparison of SiCAM and iCAM06, we analyzed color
fidelity by estimating the patch uniformity of the target patches in our physical
HDR scene as where it can be observed that the output LDR images generated by
SiCAM are more uniform than iCAM06 as illustrated in Figure 9.2.

These findings suggest that the proposed SiCAM model which utilizes hy-
perspectral information generated better tone-mapped images. To reiterate, the
proposed SiCAM model is an extension of iCAM06 (Kuang et al., 2007b) where we
introduced spectral radiances so that the processing pipeline can benefit from the
additional information in spectral radiances in comparison to a three-channel HDR
image. The detailed explanation of this model is presented in Chapter 5 Section
5.3 and the full workflow of SiCAM is given in Figure 5.1. It should be noted
that, while a few modules in this model are identical to that in iCAM06(Kuang
et al., 2007b), the SiCAM model is already significantly different since it uses
hyperspectral data as input rather than RGB image. Another major difference is
that we incorporated the proposed hyperspectral adaptation in the SiCAM model
instead of the chromatic adaptation as in the case of iCAM06.

The above-mentioned results support the argument that despite the fact that
trichromatic vision serves as the first stage of color vision processing, it might be
possible that the higher levels of the visual system have some access to spectral
information which may complement trichromatic mechanisms. If that is assumed
to be the case then utilizing HDR hyperspectral data instead of traditional three-
channel HDR image in tone mapping and other HDR rendering workflow should
be deemed to improve visual quality perception and realism in HDR-rendered
images. Hence, the answer to our initial research question is "yes" that using
HDR hyperspectral data instead of traditional three-channel HDR image positively
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impact the visual quality perception and realism in HDR-rendered images as the
SiCAM outperformed. In the realm of human vision, we can find such supporting
shreds of evidence which challenge the underlying working principles of colorimetry
that are solely based on the assumption that humans have trichromatic vision
(Wyszecki and Stiles, 2000). For instance, the cone photoreceptors detect light that
passes through the macula’s yellow filter in the foveal vision, whereas there is no
macula in the periphery (Fairchild, 2013). Therefore, the human visual system
seems to acquire the six spectral channels considering the same scene has been
viewed with the foveal and extra-foveal retina which aids spectral adaptation and
human vision color constancy. Other examples involve the color appearance models
which suggest that at least five dimensions are necessary to consider in order to
model the appearance of a uniform color patch (Fairchild and Johnson, 2002) which
include brightness, hue, lightness, colorfulness, and chroma. In addition, it has
also been found in past research studies that there is a difference in the spectral
sensitivity (Abramov and Gordon, 1977) and shapes of the cones which lie within
the fovea and those which are in the periphery while the two eyes do not have
a similar preretinal absorption. Additionally, the existence of both 2◦ and 10◦

observers with different CMFs which are not linear transforms of each other also
hints at the spectral approach in HVS (Liu and Fairchild, 2006). All the above-
mentioned arguments indicate that human vision utilizes spectral information at a
certain level of visual processing and is not completely trichromatic.

Another possible explanation for the SiCAM generating better results is that
even though the final output of both HDR and LDR tone-mapped reproduction
of real-world HDR scene is the three-channel image, the estimation of these RGB
images is more optimal if the spectral information has been utilized in comparison
to methods that solely rely on trichromatic information. It has been found that
the improvement in the output LDR images of the SiCAM model have emerged by
incorporating the hyperspectral adaption module where the fine-grained spectral
information enables the SiCAM model to capture more uniform color patches.

It is necessary to acknowledge that the idea of utilizing hyperspectral information
for HDR rendering is currently in the infancy stage of research for practical
application, necessitating additional investigation and evaluation to ascertain its
suitability in advanced imaging algorithms. However, this research serves as the
foundational basis for further investigations.

9.4 Limitation and Future Work
The limitations of this research study are highlighted below which can be addressed
in future work.
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• Due to the limitation of the imaging device, we were confined to only capturing
the top view of flat 2D HDR scenes. Additionally, only one HDR real-world
scene has been utilized during the perceptual evaluation of the proposed
HDR rendering method whereas multiple real-world HDR scenes would have
resulted in more reliable analysis.

• In this study, we have compared the performance of the proposed HDR
rendering method with iCAM06 and gamma TMO but in future studies,
we would be interested in utilizing a large number of state-of-the-art tone
mapping algorithms for a more extensive evaluation of the proposed SiCAM.

• As mentioned above, the SiCAM is currently in the infancy stage of research
for practical application, therefore, this model can be improved further
by incorporating other adjustments such as color saturation compensation,
and/or employing a more robust tone mapping curve, etc.

• Additionally, the hyperspectral band selection method can be embedded in
the hyperspectral HDR image rendering that would be intended to select a
small subset of hyperspectral bands in order to eliminate spectral redundancy
and reduce computational costs while preserving the significant spectral
information of the HDR scene.

• Since the psychophysical experiment was conducted in just one day due to
the limited availability of HDR display, the experiment methodology could
be improved by setting up a more detailed experiment with a higher number
of observers.

• The objective metrics that are utilized in our work failed to generate quality
scores that could correlate with subjective ratings given by the observers.
Hence, more sophisticated methods for HDR image quality assessment can
be investigated in this context or other LDR-based image quality metrics can
be adapted for evaluating tone-mapped images in future work.

• The limited research work in this domain of merging HDR and hyperspec-
tral has been a challenge in determining the formulation of our research
methodology.

• The proposed display referred workflow can be further compared with other
HDR standards for evaluating its suitability for practical application.

• The proposed methodology for acquiring HDR hyperspectral radiances has
the potential to be extended for other hyperspectral cameras by incorporating
the method for radiance estimation.
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9.5 Conclusion

This work focuses on investigating the effective utilization of spectral radiance
for improved color fidelity and tone-accurate reproduction of HDR images. It is
difficult to retrieve the details in HDR hyperspectral images where both dark areas
and bright areas are present which results in underexposed and overexposed regions.
It is due to arbitrary illumination and imaging device constraints, such as limited
dynamic range. To address these issues, high dynamic range imaging techniques
can be applied which help to significantly recover the details of a high dynamic
range (HDR) scene. We commence our study by capturing the HDR hyperspectral
radiance cube of a physical HDR scene using an approach similar to the multiple
exposures HDR technique. Furthermore, the HDR hyperspectral absolute radiance
image was enhanced by employing the proposed linearity correction method and
hyperspectral interpolation. The linearity correction was applied for enhancing the
linearity of the sensor response to recover the radiances in its upper non-linear region
whereas hyperspectral interpolation was employed to check for missing wavelengths
due to saturated pixels. Additionally, we proposed the workflow for converting the
HDR hyperspectral radiance cube into three channel HDR image. Considering the
lack of a widely accessible standard pipeline for rendering HDR content of arbitrary
luminance ranges, we proposed a display-referred HDR rendering workflow that
effectively translates HDR images into the specific range of luminance supported
by the HDR display

A spectral image color appearance model titled SiCAM has been introduced
which is the first of its kind, designed for HDR hyperspectral radiance images.
Although SiCAM is inspired by the latest iCAM06 HDR image rendering model,
it is already significantly different since it uses hyperspectral data as input rather
than RGB HDR image. The SiCAM incorporated the hyperspectral adaption
transform for generating tone-accurate LDR images from the input hyperspectral
HDR radiances image which is another major contribution of this work. We kept
the working principles of iCAM06 intact and introduced spectral radiances so the
pipeline can benefit from hyperspectral HDR data in comparison to a three-channel
HDR image.

Besides, the image quality assessment of the reproduced LDR images using
SiCAM has been conducted in comparison to iCAM06 and gamma tone mapping
to determine the effectiveness of having hyperspectral data through objective and
subjective study. However, we primarily relied on the perceptual quality scores given
by the observers to investigate the efficacy of using hyperspectral data for HDR
rendering and tone mapping. The findings suggest that the proposed SiCAM model
which utilizes hyperspectral information generated better tone-mapped images. It
has been observed that SiCAM-10bands generated the optimal LDR reproduction
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of the physical HDR scene while the participants with a color science background
favored SiCAM-Full as the best LDR image among the test samples generated using
different tone mapping methods. Consequently, it can be argued that although
trichromatic vision serves as the first stage of color vision processing, it might be
possible that the higher levels of the visual system have some access to spectral
information which may complement trichromatic mechanisms. It is essential to
realize that simply having hyperspectral data to improve HDR rendering is not
sufficient. Equally important is how well the processing method can leverage this
hyperspectral information to produce better tone-mapped images. Given the fact
that no HDR hyperspectral radiance data is currently available, a dataset containing
four HDR hyperspectral radiances cubes and their respective three-channel HDR
images have been proposed where each of them consisting of a different HDR scene
captured in an indoor setting.
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Figure A.1: The poster presented at MCSL open house session.
150



151



Appendix A APPENDIX

F
igure

A
.2:

T
he

C
IT

I
program

com
pletion

certificate
w
as

required
before

conducting
a

psychophysicalstudy
involving

hum
an

observers.

152



Bibliography

Abramov, I. and Gordon, J. (1977). Color vision in the peripheral retina. i. spectral
sensitivity. JOSA, 67(2):195–202. (cited on page 144)

Aggarwal, M. and Ahuja, N. (2001). High dynamic range panoramic imaging. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV
2001, volume 1, pages 2–9. IEEE. (cited on page 33)

Anand Swamy, A., Mamatha, A., Shylashree, N., and Nath, V. (2022). Lossless
compression of hyperspectral imagery by assimilating decorrelation and pre-
processing with efficient displaying using multiscale hdr approach. IETE Journal
of Research, pages 1–12. (cited on page 4)

Asano, Y., Fairchild, M., and Blondé, L. (2016). Individual colorimetric observer
model. PLOS ONE, 11(2):0145671. (cited on page 15)

Audebert, N., Le Saux, B., and Lefèvre, S. (2019). Deep learning for classification of
hyperspectral data: A comparative review. IEEE geoscience and remote sensing
magazine, 7(2):159–173. (cited on page 4)

Aydın, T. O., Mantiuk, R., and Seidel, H.-P. (2008). Extending quality metrics
to full luminance range images. In Human vision and electronic imaging xiii,
volume 6806, pages 109–118. SPIE. (cited on page 123)

Banterle, F., Artusi, A., Debattista, K., and Chalmers, A. (2017). Advanced high
dynamic range imaging. CRC press. (cited on pages 5, 13, 14, 70, 72, 74, and 167)

Bergquist, J. (2008). 52.2: Display with arbitrary primary spectra. Sid Symposium
Digest of Technical Papers, 39. (cited on page 15)

Berns, R. S. (1996). Methods for characterizing crt displays. Displays, 16(4):173–182.
(cited on pages 64, 99, and 101)

Bigas, M., Cabruja, E., Forest, J., and Salvi, J. (2006). Review of cmos image
sensors. Microelectronics journal, 37:433–451. (cited on page 28)

153



BIBLIOGRAPHY

Boitard, R., Mantiuk, R. K., and Pouli, T. (2015). Evaluation of color encodings
for high dynamic range pixels. In Human Vision and Electronic Imaging XX,
volume 9394, pages 532–540. SPIE. (cited on page 105)

Bouderbane, M., Lapray, P.-J., Dubois, J., Heyrman, B., and Ginhac, D. (2016).
Real-time ghost free hdr video stream generation using weight adaptation based
method. In Proceedings of the 10th International Conference on Distributed
Smart Camera, pages 116–120. (cited on page 58)

Boult, T. E. (1993). G-neighbors. Vision Geometry, II. Vol. 2060. (cited on page 78)

Brajovic, V. and Kanade, T. (1996). A sorting image sensor: An example of
massively parallel intensity-to-time processing for low-latency computational
sensors. In Proceedings of IEEE International Conference on Robotics and
Automation, volume 2, pages 1638–1643. IEEE. (cited on page 33)

BT, I. R. (2002). Parameter values for the hdtv standards for production and
international programme exchange. International Telecommunication Union,
Recommendation, May. (cited on pages 100, 101, and 175)

BT.1129-2, I.-R. (1998). Subjective assessment of standard definition digital
television (sdtv) systems. ITU. (cited on pages 108 and 109)

BT.1361, I.-R. (1998). Worldwide unified colorimetry and related characteristics of
future television and imaging systems. ITU. (cited on page 108)

BT.500-11, I.-R. (2002). Methodology for the subjective assessment of the quality
of television pictures. ITU, Geneva, Switzerland. (cited on pages 108 and 109)

BT.710-4, I.-R. (1998). Subjective assessment methods for image quality in high-
definition television. ITU, Geneva, Switzerland. (cited on page 108)

BT.814-1, I.-R. (1994). Specification and alignment procedures for setting of
brightness and contrast of displays. ITU. (cited on pages 108 and 109)

BT.815-1, I.-R. (1994). Specification of a signal for measurement of the contrast
ratio of displays. ITU. (cited on page 108)

Burns, S. A. (2019). Chromatic adaptation transform by spectral reconstruction.
Color Research and Application, 44(5):682–693. (cited on page 82)

Burt, P. J. and Kolczynski, R. J. (1993). Enhanced image capture through fusion.
In 1993 (4th) international Conference on Computer Vision, pages 173–182.
IEEE. (cited on pages 3 and 33)

154



BIBLIOGRAPHY

Chin, R. T. and Yeh, C.-L. (1983). Quantitative evaluation of some edge-preserving
noise-smoothing techniques. Computer vision, graphics, and image processing,
23:67–91. (cited on page 78)

Chong, H. Y., Gortler, S. J., and Zickler, T. (2007). The von kries hypothesis
and a basis for color constancy. In 2007 IEEE 11th International Conference on
Computer Vision, pages 1–8. IEEE. (cited on page 77)

Debevec, P. E. and Malik, J. (2008). Recovering high dynamic range radiance
maps from photographs. In ACM SIGGRAPH 2008 classes, pages 1–10. unknow.
(cited on page 33)

Derhak, M. W., Luo, E. L., and Green, P. J. (2020). Fast chromatic adaptation
transform utilizing wpt (waypoint) based spectral reconstruction. In London
Imaging Meeting 2020: Future Colour Imaging. Society for Imaging Science and
Technology. (cited on page 82)

Drago, F., Martens, W. L., Myszkowski, K., and Seidel, H.-P. (2003). Perceptual
evaluation of tone mapping operators. In ACM SIGGRAPH 2003 Sketches and
Applications, pages 1–1. ACM SIGGRAPH. (cited on pages 111 and 142)

Durand, F. and Dorsey, J. (2002a). Fast bilateral filtering for the display of
high-dynamic-range images. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 257–266. (cited on pages 75
and 78)

Durand, F. and Dorsey, J. (2002b). Fast bilateral filtering for the display of
highdynamic-range image. In Proceedings of ACM SIGGRAPH 2002, Computer
Graphics Proceedings, Annual Conference Proceedings, page 257–266. (cited on
page 77)

Edition, F., Papoulis, A., and Pillai, S. (2002). Probability, random variables, and
stochastic processes. unkown. (cited on page 78)

Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R. K., and Unger, J. (2017a). Hdr
image reconstruction from a single exposure using deep cnns. ACM transactions
on graphics (TOG), 36(6):1–15. (cited on page 34)

Eilertsen, G., Mantiuk, R. K., and Unger, J. (2017b). A comparative review of
tone-mapping algorithms for high dynamic range video. In Computer graphics
forum, volume 36, pages 565–592. Wiley Online Library. (cited on pages 2, 5, 70,
and 74)

155



BIBLIOGRAPHY

Eilertsen, G., Unger, J., and Mantiuk, R. K. (2016). Evaluation of tone mapping
operators for hdr video. In High dynamic range video, pages 185–207. Elsevier.
(cited on page 72)

Ertürk, S., Süer, S., and Koç, H. (2014). A high-dynamic-range-based approach
for the display of hyperspectral images. IEEE Geoscience and Remote Sensing
Letters, 11(11):2001–2004. (cited on page 4)

Fairchild, M. and Johnson, G. (2002). Meet icam: a next-generation color appear-
ance model. In IST/SID 10th Color Imaging Conference, page 33–38. (cited on
pages 76, 77, and 144)

Fairchild, M. D. (2007a). The hdr photographic survey. In Color and imaging
conference, volume 15, pages 233–238. Society of Imaging Science and Technology.
(cited on page 124)

Fairchild, M. D. (2007b). Spectral adaptation." color research and application:
Endorsed by inter-society color council, the colour group (great britain), canadian
society for color, color science association of japan, dutch society for the study of
color, the swedish colour centre foundation. Colour Society of Australia, Centre
Français de la Couleur, 32(2):100–112. (cited on pages 4, 81, 82, and 83)

Fairchild, M. D. (2013). Color appearance models. John Wiley and Sons. (cited on
pages 9, 18, 21, 23, 76, 144, and 168)

Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. (2008). Edge-preserving
decompositions for multi-scale tone and detail manipulation. ACM transactions
on graphics (TOG), 27(3):1–10. (cited on page 76)

Fattal, R., Lischinski, D., and Werman, M. (2002). Gradient domain high dynamic
range compression. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 249–256. (cited on page 76)

Ferwerda, J. A., Pattanaik, S. N., Shirley, P., and Greenberg, D. P. (1996). A
model of visual adaptation for realistic image synthesis. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, pages
249–258. (cited on page 1)

Froehlich, J., Kunkel, T., Atkins, R., Pytlarz, J., Daly, S., Schilling, A., and
Eberhardt, B. (2015). Encoding color difference signals for high dynamic range
and wide gamut imagery. In Color and Imaging Conference, volume 2015, pages
240–247. Society for Imaging Science and Technology. (cited on page 64)

156



BIBLIOGRAPHY

Gasparini, F. and Schettini, R. (2003). Color correction for digital photographs. In
12th International Conference on Image Analysis and Processing, 2003. Proceed-
ings., pages 646–651. IEEE. (cited on page 27)

Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q.,
and Buckler, E. S. (2014). Tassel-gbs: a high capacity genotyping by sequencing
analysis pipeline. PloS one, 9(2):e90346. (cited on page 4)

Graham, R. (1962). Snow removal–a noise-stripping process for picture signals.
IRE Transactions on Information Theory, 8(2):129–144. (cited on page 78)

Green, P. and MacDonald, L. (2011). Colour engineering: achieving device inde-
pendent colour. John Wiley and Sons. (cited on pages 93, 94, 95, 100, and 101)

Hanhart, P., Bernardo, M. V., Pereira, M., G Pinheiro, A. M., and Ebrahimi,
T. (2015). Benchmarking of objective quality metrics for hdr image quality
assessment. EURASIP Journal on Image and Video Processing, 2015(1):1–18.
(cited on page 123)

Hill, B., Roger, T., and Vorhagen, F. W. (1997). Comparative analysis of the
quantization of color spaces on the basis of the cielab color-difference formula.
ACM Transactions on Graphics (TOG), 16(2):109–154. (cited on page 23)

Himayat, N. and Kassam, S. A. (1993). Approximate performance analysis of edge
preserving filters. IEEE Transactions on Signal Processing, 41(9):2764–2777.
(cited on page 78)

Hoefflinger, B. (2007). High-dynamic-range (HDR) vision. Springer. (cited on pages
1 and 29)

Huang, T., Yang, G., and Tang, G. (1979). A fast two-dimensional median
filtering algorithm. IEEE transactions on acoustics, speech, and signal processing,
27(1):13–18. (cited on page 78)

Hung, P.-C. (2019). 61-3: Invited paper: Cie activities on wide colour gamut and
high dynamic range imaging. SID Symp Dig Tech Pap, 50(1):866–869. (cited on
page 15)

Hunt, R. W. G. (1952). Light and dark adaptation and the perception of color.
JOSA, 42(3):190–199. (cited on page 35)

Hunt, R. W. G. (2005). The reproduction of colour. John Wiley and Sons. (cited on
page 85)

157



BIBLIOGRAPHY

Hunt, R. W. G. and Pointer, M. R. (2011). Measuring colour. John Wiley & Sons.
(cited on pages 9, 11, and 15)

ISO (2023). ISO 12646:2008. [Online; accessed 12. Jul. 2023]. (cited on pages 97
and 98)

Johnson, G. and Fairchild, M. (2003). Rendering hdr images. In IST SID 11th
Color Imaging Conference, page 36–41, Scottsdale. (cited on page 77)

Jones, B. L. and McManus, P. R. (1986). Graphic scaling of qualitative terms.
SMPTE Journal, 95(11):1166–1171. (cited on page 110)

Khan, H. A., Thomas, J. B., and Hardeberg, J. Y. (June 12–14, 2017). Multispectral
constancy based on spectral adaptation transform. In Image Analysis: 20th
Scandinavian Conference, SCIA 2017, Tromsø, Norway. Springer International
Publishing. (cited on pages 4 and 82)

Khan, H. A., Thomas, J.-B., Hardeberg, J. Y., and Laligant, O. (2018). Spectral
adaptation transform for multispectral constancy. Journal of Imaging Science
and Technology, 62(2):205041–2050412. (cited on page 4)

Kim, K., Bae, J., and Kim, J. (2011). Natural hdr image tone mapping based on
retinex. IEEE Transactions on Consumer Electronics, 57(4):1807–1814. (cited on
page 76)

Kirchner, E., Dekker, N., Lucassen, M., Njo, L., van der Lans, I., Urban, P., and
Huertas, R. (2015). How psychophysical methods influence optimizations of color
difference formulas. JOSA A, 32(3):357–366. (cited on page 23)

Korshunov, P., Hanhart, P., Richter, T., Artusi, A., Mantiuk, R., and Ebrahimi,
T. (2015). Subjective quality assessment database of hdr images compressed
with jpeg xt. In 2015 seventh international workshop on quality of multimedia
experience (QoMEX), pages 1–6. IEEE. (cited on page 124)

Krasula, L., Narwaria, M., Fliegel, K., and Le Callet, P. (2015). Influence of hdr
reference on observers preference in tone-mapped images evaluation. In 2015
Seventh International Workshop on Quality of Multimedia Experience (QoMEX),
pages 1–6. IEEE. (cited on page 124)

Kuang, J., Johnson, G. M., and Fairchild, M. D. (2007a). icam06: A refined image
appearance model for hdr image rendering. Journal of Visual Communication
and Image Representation, 18(5):406–414. Special issue on High Dynamic Range
Imaging. (cited on pages 7, 77, 78, 80, 83, 84, 85, 86, and 171)

158



BIBLIOGRAPHY

Kuang, J., Yamaguchi, H., Liu, C., Johnson, G., and Fairchild, M. (2007b).
Evaluating hdr rendering algorithms. ACM Trans. Appl. Percept. (cited on pages
70, 77, 85, 143, and 171)

Kubik, M. (2007). Hyperspectral imaging: a new technique for the non-invasive
study of artworks. In Physical techniques in the study of art, archaeology and
cultural heritage, volume 2, pages 199–259. Elsevier. (cited on page 4)

Kundu, M. K. and Pal, S. K. (1986). Thresholding for edge detection using human
psychovisual phenomena. Pattern Recognition Letters, 4(6):433–441. (cited on
page 123)

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Convergence
properties of the nelder–mead simplex method in low dimensions. SIAM Journal
on optimization, 9(1):112–147. (cited on page 104)

Land, E. and McCann, J. (1971). Lightness and retinex theory, journal of the
optical society of america. JOlunal of the Optical Society of America, 61(1).
(cited on page 76)

Lapray, P.-J., Thomas, J.-B., and Gouton, P. (2017). High dynamic range spectral
imaging pipeline for multispectral filter array cameras. Sensors, 17(6):1281. (cited
on page 4)

Ledda, P., Chalmers, A., Troscianko, T., and Seetzen, H. (2005). Evaluation of
tone mapping operators using a high dynamic range display. ACM Transactions
on Graphics (TOG), 24(3):640–648. (cited on pages 111 and 142)

Lee, J.-S. (1980). Digital image enhancement and noise filtering by use of local
statistics. IEEE transactions on pattern analysis and machine intelligence,
2:165–168. (cited on page 78)

Li, C., Li, Z., Wang, Z., Xu, Y., Luo, M. R., Cui, G., Melgosa, M., Brill, M. H.,
and Pointer, M. (2017). Comprehensive color solutions: Cam16, cat16, and
cam16-ucs. Color Research & Application, 42:703–718. (cited on page 23)

Li, X., Gunturk, B., and Zhang, L. (2008). Image demosaicing: A systematic
survey. In Visual Communications and Image Processing 2008, volume 6822,
pages 489–503. SPIE. (cited on page 27)

Linhares, J. M. M., Pinto, P. D., and Nascimento, S. M. C. (2008). The number of
discernible colors in natural scenes. JOSA A, 25:2918–2924. (cited on page 4)

159



BIBLIOGRAPHY

Liu, C. and Fairchild, M. D. (2006). The surround color and color matching
functions. In Proc. IST 14th Color and Imaging Conf, page 203 – 208. (cited on
pages 83 and 144)

Liu, Y.-L., Lai, W.-S., Chen, Y.-S., Kao, Y.-L., Yang, M.-H., Chuang, Y.-Y., and
Huang, J.-B. (2020). Single-image hdr reconstruction by learning to reverse the
camera pipeline. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1651–1660. (cited on page 35)

Long, D. L. and Fairchild, M. D. (2014). Modeling observer variability and
metamerism failure in electronic color displays. Journal of Imaging Science and
Technology, pages 30402–1 – 30402–14,. (cited on page 15)

Mahy, M., Van Eycken, L., and Oosterlinck, A. (1994). Evaluation of uniform
color spaces developed after the adoption of cielab and cieluv. Color Research &
Application, 19(2):105–121. (cited on page 23)

Malacara, D. (2003). Color vision and colorimetry: theory and applications. (cited
on page 3)

Mann, S., Lo, R. C. H., Ovtcharov, K., Gu, S., Dai, D., Ngan, C., and Ai, T.
(2012). Realtime hdr (high dynamic range) video for eyetap wearable computers,
fpga-based seeing aids, and glasseyes (eyetaps). In 2012 25th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), pages 1–6. IEEE.
(cited on page 58)

Mantiuk, R., Daly, S. J., Myszkowski, K., and Seidel, H.-P. (2005). Predicting
visible differences in high dynamic range images: model and its calibration. In
Human Vision and Electronic Imaging X, volume 5666, pages 204–214. SPIE.
(cited on page 37)

Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. (2011). Hdr-vdp-2: A
calibrated visual metric for visibility and quality predictions in all luminance
conditions. ACM Transactions on graphics (TOG), 30(4):1–14. (cited on page 123)

Mantiuk, R., Krawczyk, G., Mantiuk, R., and Seidel, H.-P. (2007). High-dynamic
range imaging pipeline: perception-motivated representation of visual content. In
Human Vision and Electronic Imaging XII, volume 6492, pages 382–393. SPIE.
(cited on pages 2, 5, 70, and 74)

Mantiuk, R., Myszkowski, K., and Seidel, H.-P. (2006). A perceptual framework
for contrast processing of high dynamic range images. ACM Transactions on
Applied Perception (TAP), 3:286–308. (cited on pages 72 and 76)

160



BIBLIOGRAPHY

Mantiuk, R. K., Tomaszewska, A., and Mantiuk, R. (2012). Comparison of four
subjective methods for image quality assessment. In Computer graphics forum,
volume 31, pages 2478–2491. Wiley Online Library. (cited on page 109)

Martínez, M. Á., Valero, E. M., Nieves, J. L., Blanc, R., Manzano, E., and Vílchez,
J. L. (2019). Multifocus hdr vis/nir hyperspectral imaging and its application to
works of art. Optics Express, 27(8):11323–11338. (cited on page 4)

McCann, J. J. and Rizzi, A. (2007). Veiling glare: the dynamic range limit of
hdr images. In Human Vision and Electronic Imaging XII, volume 6492, pages
394–403. SPIE. (cited on page 5)

Melgosa, M., Huertas, R., and Berns, R. S. (2008). Performance of recent advanced
color-difference formulas using the standardized residual sum of squares index.
JOSA A, 25(7):1828–1834. (cited on page 23)

Meylan, L. and Susstrunk, S. (2006). High dynamic range image rendering with a
retinex-based adaptive filter. IEEE Transactions on image processing, 15(9):2820–
2830. (cited on page 76)

Miller, S., Nezamabadi, M., and Daly, S. (2013). Perceptual signal coding for more
efficient usage of bit codes. SMPTE Motion Imaging Journal, 122(4):52–59. (cited
on page 37)

Mohammadi, P., Ebrahimi-Moghadam, A., and Shirani, S. (2014). Subjective and
objective quality assessment of image: A survey. arXiv preprint arXiv:1406.7799.
(cited on page 120)

Moroney, N., Fairchild, M., Hunt, R., and Li, C. (2002). The ciecam02 color
appearance model. Color Research & Application. (cited on page 23)

Nafchi, H. Z., Shahkolaei, A., Moghaddam, R. F., and Cheriet, M. (2014). Fsitm: A
feature similarity index for tone-mapped images. IEEE Signal Processing Letters,
22(8):1026–1029. (cited on pages 124, 125, and 138)

Nagao, M. (1979). Edge preserving smoothing. (cited on page 78)

Narendra, P. M. (1981). A separable median filter for image noise smoothing. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1:20–29. (cited on
page 78)

Narwaria, M., Da Silva, M. P., and Le Callet, P. (2015). Hdr-vqm: An objec-
tive quality measure for high dynamic range video. Signal Processing: Image
Communication, 35:46–60. (cited on page 123)

161



BIBLIOGRAPHY

Narwaria, M., Da Silva, M. P., Le Callet, P., and Pepion, R. (2013). Tone mapping-
based high-dynamic-range image compression: study of optimization criterion
and perceptual quality. Optical Engineering, 52(10):102008–102008. (cited on page
124)

Narwaria, M., Da Silva, M. P., Le Callet, P., Valenzise, G., De Simone, F., and
Dufaux, F. (2016). Quality of experience and hdr: concepts and how to measure
it. In High Dynamic Range Video, pages 431–454. Elsevier. (cited on pages 31
and 123)

Nayar and Branzoi (2003). Adaptive dynamic range imaging: Optical control of
pixel exposures over space and time. In Proceedings Ninth IEEE International
Conference on Computer Vision, pages 1168–1175. IEEE. (cited on page 33)

Nayar, S. K. and Mitsunaga, T. (2000). High dynamic range imaging: Spatially
varying pixel exposures. In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 1, pages
472–479. IEEE. (cited on page 33)

Nezamabadi, M., Miller, S., Daly, S., and Atkins, R. (2014). Color signal encoding
for high dynamic range and wide color gamut based on human perception. In
Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications, volume
9015, pages 98–109. SPIE. (cited on pages 64 and 105)

Oppenheim, A., Schafer, R., and Stockham, T. (1968). Nonlinear filtering of
multiplied and convolved signals. Proceedings of the IEEE, 56(8):1264–1291.
(cited on page 75)

P.910, I.-T. (2008). Subjective video quality assessment methods for multimedia
applications. ITU, Geneva, Switzerland. (cited on pages 108 and 109)

Pan, Z., Yu, M., Jiang, G., Xu, H., Peng, Z., and Chen, F. (2020). Multi-
exposure high dynamic range imaging with informative content enhanced network.
Neurocomputing, 386:147–164. (cited on page 34)

Park, Y.-I., Song, J. W., and Kang, S.-J. (2022). 65-3: Invited paper: Deep
learning-based image enhancement for hdr imaging. In SID Symposium Digest
of Technical Papers, volume 53, pages 865–868. Wiley Online Library. (cited on
page 34)

Pedersen, M., Hardeberg, J. Y., et al. (2012). Full-reference image quality metrics:
Classification and evaluation. Foundations and Trends® in Computer Graphics
and Vision, 7(1):1–80. (cited on pages 120 and 122)

162



BIBLIOGRAPHY

Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on pattern analysis and machine intelligence,
12(7):629–639. (cited on page 78)

Pinson, M. H. and Wolf, S. (2003). Comparing subjective video quality testing
methodologies. In Visual Communications and Image Processing 2003, volume
5150, pages 573–582. SPIE. (cited on page 109)

Polak, A., Kelman, T., Murray, P., Marshall, S., Stothard, D. J., Eastaugh, N., and
Eastaugh, F. (2017). Hyperspectral imaging combined with data classification
techniques as an aid for artwork authentication. Journal of Cultural Heritage,
26:1–11. (cited on page 4)

Pollock, C. R. (1995). Fundamentals of optoelectronics. Irwin. (cited on page 57)

Ponomarenko, N., Ieremeiev, O., Lukin, V., Jin, L., Egiazarian, K., Astola, J.,
Vozel, B., Chehdi, K., Carli, M., Battisti, F., et al. (2013). A new color image
database tid2013: Innovations and results. In Advanced Concepts for Intelligent
Vision Systems: 15th International Conference, ACIVS 2013, Poznań, Poland,
October 28-31, 2013. Proceedings 15, pages 402–413. Springer. (cited on pages 112
and 173)

Pouli, T., Reinhard, E., Larabi, M.-C., and Abebe, M. (2016). Color management
in hdr imaging. In High Dynamic Range Video, pages 237–272. Elsevier. (cited on
pages 31 and 123)

Pouyet, E., Rohani, N., Katsaggelos, A. K., Cossairt, O., and Walton, M. (2018).
Innovative data reduction and visualization strategy for hyperspectral imaging
datasets using t-sne approach. Pure and Applied Chemistry, 90(3):493–506. (cited
on page 4)

Ramponi, G. (1995). A rational edge-preserving smoother. In Proceedings., In-
ternational Conference on Image Processing, volume 1. IEEE. (cited on page
78)

Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., and Myszkowski,
K. (2010). High dynamic range imaging: acquisition, display, and image-based
lighting. Morgan Kaufmann. (cited on pages 2, 3, 5, 12, 29, 33, and 167)

Rouse, D. M., Pépion, R., Le Callet, P., and Hemami, S. S. (2010). Tradeoffs in
subjective testing methods for image and video quality assessment. In Human
Vision and Electronic Imaging XV, volume 7527, pages 108–118. SPIE. (cited on
page 109)

163



BIBLIOGRAPHY

Rousselot, M., Auffret, E., Ducloux, X., Le Meur, O., and Cozot, R. (2018). Impacts
of viewing conditions on hdr-vdp2. In 2018 26th European Signal Processing
Conference (EUSIPCO), pages 1442–1446. IEEE. (cited on page 124)

Rousselot, M., Le Meur, O., Cozot, R., and Ducloux, X. (2019). Quality assessment
of hdr/wcg images using hdr uniform color spaces. Journal of Imaging, 5(1):18.
(cited on pages 120 and 124)

Salih, Y., Malik, A. S., Saad, N., et al. (2012). Tone mapping of hdr images:
A review. In 2012 4th International Conference on Intelligent and Advanced
Systems (ICIAS2012), volume 1, pages 368–373. IEEE. (cited on pages 5, 70, 74,
and 75)

Sapiro, G. and Ringach, D. L. (1996). Anisotropic diffusion of color images. Human
Vision and Electronic Imaging, 2657. (cited on page 78)

Schanda, J. (2007). Colorimetry: understanding the CIE system. John Wiley &
Sons. (cited on pages 9, 19, 21, and 168)

Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste,
M., Ghosh, A., and Vorozcovs, A. (2004). High dynamic range display systems.
In ACM SIGGRAPH 2004 Papers, pages 760–768. ACM SIGGRAPH. (cited on
page 31)

Shukla, A. and Kot, R. (2016). An overview of hyperspectral remote sensing and
its applications in various disciplines. IRA Int. J. Appl. Sci, 5:85. (cited on page 3)

St, L., Wold, S., et al. (1989). Analysis of variance (anova). Chemometrics and
intelligent laboratory systems, 6(4):259–272. (cited on pages 128 and 134)

Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In
Sixth international conference on computer vision (IEEE Cat. No. 98CH36271),
pages 839–846. IEEE. (cited on page 78)

Tomaszewska, A. and Mantiuk, R. (2007). Image registration for multi-exposure
high dynamic range image acquisition. Skala-UNION Agency. (cited on pages 3
and 33)

Valenzise, G., De Simone, F., Lauga, P., and Dufaux, F. (2014). Performance
evaluation of objective quality metrics for hdr image compression. In Applications
of Digital Image Processing XXXVII, volume 9217, pages 78–87. SPIE. (cited on
page 124)

164



BIBLIOGRAPHY

Venkatanath, N., Praneeth, D., Bh, M. C., Channappayya, S. S., and Medasani,
S. S. (2015). Blind image quality evaluation using perception based features.
In 2015 twenty first national conference on communications (NCC), pages 1–6.
IEEE. (cited on pages 126, 138, and 140)

Wang, D. C., Vagnucci, A. H., and Li, C. (1981). Gradient inverse weighted
smoothing scheme and the evaluation of its performance. Computer Graphics
and image processing, 15(2):167–181. (cited on page 78)

Wang, H., Raskar, R., and Ahuja, N. (2005). High dynamic range video using split
aperture camera. In IEEE 6th Workshop on Omnidirectional Vision, Camera
Networks and Non-classical Cameras, Washington, DC, USA. Citeseer. (cited on
page 33)

Wang, Y., Zhang, J., and Luo, B. (2018). High dynamic range 3d measurement based
on spectral modulation and hyperspectral imaging. Optics Express, 26:34442–
34450. (cited on page 4)

Wu, S., Xu, J., Tai, Y.-W., and Tang, C.-K. (2018). Deep high dynamic range
imaging with large foreground motions. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 117–132. (cited on page 35)

Wyszecki, G. and Stiles, W. S. (2000). Color science: concepts and methods,
quantitative data and formulae, volume 40. John wiley & sons. (cited on pages 9,
11, 20, 63, 144, and 175)

Xiao, F., DiCarlo, J. M., Catrysse, P. B., and Wandell, B. A. (2002). High dynamic
range imaging of natural scenes. In Color and imaging conference, volume 2002,
pages 337–342. Society for Imaging Science and Technology. (cited on page 124)

Yang, M. and Bourbakis, N. (2005). An overview of lossless digital image compres-
sion techniques. In 48th Midwest Symposium on Circuits and Systems, 2005.,
pages 1099–1102. IEEE. (cited on page 28)

Yeganeh, H. and Wang, Z. (2012). Objective quality assessment of tone-mapped
images. IEEE Transactions on Image processing, 22(2):657–667. (cited on pages
124, 125, and 138)

Yin, L., Yang, R., Gabbouj, M., and Neuvo, Y. (1996). Weighted median filters: a
tutorial. IEEE Transactions on circuits and systems II: analog and digital signal
processing, 43(3):157–192. (cited on page 78)

Zerman, E., Valenzise, G., and Dufaux, F. (2017). An extensive performance evalu-
ation of full-reference hdr image quality metrics. Quality and User Experience,
2:1–16. (cited on pages 123 and 124)

165



BIBLIOGRAPHY

166



List of Figures

1.1 The HVS exhibits the remarkable ability to adapt to a wide range
of lighting conditions up to 10 orders of magnitude. However, it
should be noted that the HVS has the capability to function within
a restricted segment of its wide at any given moment. The usually
accepted static dynamic range, observed under the full adaptation
of the human visual system (HVS), is roughly 10,000:1. . . . . . . . 2

1.2 The multiple exposure HDR capture utilizes a set of LDR images
taken at different exposure settings such that all the details of the
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