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Abstract
Image quality assessment has been an active research field for decades because

of the high demand for images and video content in daily life. As visual information
is processed in various steps from acquisition and storage to transmission, they
are often degraded by multiple types of distortions. It is necessary to evaluate the
quality of any imaging system to maintain the user’s experience. Thus, objective
image quality assessments were proposed to objectively evaluate the image quality
as close to the perceptual quality rated by human users.

Among the three types of image quality assessment, No-Reference image quality
assessment (NR-IQA) has the most potential to be used in various applications and
is also the most challenging topic. The traditional NR-IQA metrics were proposed
using domain knowledge of natural images to extract hand-crafted features that
can indicate the degradation degree of the distorted image. Recently, many deep
learning models have been used in NR-IQA and outperform the traditional method
in predicting image quality. However, they are still data-driven models which
contain numerous parameters and lack explainability. Therefore, it is challenging
to understand how such deep NR-IQA models estimate the quality of images and
why they do not work on some images. Moreover, although many different methods
of explaining a deep learning model have been introduced, there is no work that
targets to image quality assessment.

In this work, we address the research gap in the explanation for the deep NR-
IQA model. Firstly, we defined a set of definitions and expectations for explainable
artificial intelligence (XAI) in the field of image quality assessment. Then, we
proposed a framework to provide explanations at different levels: from global to
local prediction for the model. The global explanations were formed by analyzing
the images that the model can not predict their quality accurately. To find such
an image, we proposed to use objective detection methods for IQA models. We
also used different existing XAI methods to obtain explanations for the model in
different information domains from spatial, and frequency to color space.

Different explanation results are discussed in our project. We found out that
the existing XAI methods can explain NR-IQA models to some extent. However,
there is no current way to evaluate the effectiveness of those explanations for
image quality assessment problems. Future work is needed to provide an objective
evaluation of XAI for image quality assessment or to find an alternative method to
better explain NR-IQA models.
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1 Introduction

Visual information has been known as one of the richest data representations
for humans to acquire information. According to Sharma et al. (2012), almost
57% of information processing in the human brain is from visual communication,
and around 90% of data received in our brain is visual. Nowadays, advances in
technology have opened access to numerous resources of visual content through the
Internet for various purposes such as communication, education, entertainment,
and so on. For example, social media networks such as Facebook or Instagram
have a millions number of images uploaded daily on their platform (Zhu et al.,
2020). The pandemic times also witnessed the rise of the working remotely trend
of employees in many companies, which resulted in the development of various
videoconference tools such as Zoom, Skype, Microsoft Teams, etc. As the demand
from the global population for producing and sharing visual information is still
increasing, this type of content has played a more crucial role in our daily life.

Visual content such as images undergo many distortions during the process, at
various stages, from acquisition, storage, and transmission to display. Because of
the important role of such content, perceptual quality assessment of images and
videos has become an essential problem for evaluating image processing algorithms
and systems. Researchers have spent a lot of attention on this field of study, which
is called image quality assessment.

1.1 Image Quality Assessment
Image Quality Assessment (IQA) can be classified into subjective and objective
quality assessment. In subjective quality assessment, human observers are asked
to rate the quality of images. Their judgments could be formed on the technical
quality or the aesthetic feeling that they perceive from the images, depending on
the design of the experiment. The former relates to perceptual distortions such
as noise, blur, and compression artifacts while the latter emphasizes the beauty
and artistic value of images. In this work, we focus on the technical quality aspect,
which expresses the degree of distortions perceived in the image. The subjective
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Chapter 1 INTRODUCTION

rating for each image is usually reported by taking the average of scores from
all observers and is termed as Mean Opinion Score (MOS), which represents the
opinion of a statistically average observer. Subjective quality assessment is the
most reliable method of measuring the perceptual quality of images because it is
calculated from human perception. However, this approach has many drawbacks:
the requirement of a large number of observers to form a reliable MOS, the long
time for preparation and recruiting participants, the inability to reproduce results,
etc. Therefore, it is not convenient to conduct a subjective quality assessment in
the image processing algorithms for evaluation purposes. To address this issue,
objective quality assessment methods are designed with the goal of automatically
predicting the quality of images as perceived by humans.

Objective quality assessment models, or image quality metrics (IQMs) are the
solutions to objectively measure the quality of images. IQMs consist of three
frameworks: Full-Reference IQA (FR-IQA), Reduced-Reference IQA (RR-IQA),
and No-Reference IQA (NR-IQA). If a reference image, which is an undistorted
version of the degraded image, is existed as accessible, FR-IQA methods are used
to estimate the quality of the images in comparison with the reference. If only
some information such as distortion type or histogram of the original image is
available, RR-IQA methods are used. In most cases, the reference data is completely
inaccessible or does not exist, NR-IQA methods are the solution to assess the quality
of an image. Because of the unknown reference image, NR-IQA is also called Blind
IQA (BIQA). The FR-IQA and RR-IQA methods usually achieve outstanding
performance because of the usage of the reference image. However, there is a
limited situation in which the reference data is available. Thus, these two types
of IQA are not popularly used in practical applications. In contrast, the NR-IQA
methods are more applicable to the image system. Therefore, in this work, we
focus on the NR-IQA.

1.2 Motivation
For many years, image quality assessment has been a significant subject of research
in various fields such as computer science, neuroscience, psychology, and so on.
Among many directions of this topic, NR-IQA is a branch that has attractive
potential for various applications. From an early start, many NR-IQA metrics were
designed using domain knowledge of natural images to extract hand-crafted features
that can distinguish distorted images from pristine ones. However, this approach
shows poor performance on the images that undergo natural distortions, which are
caused during the acquisition and subsequent processing. Recent advancements
in image quality assessment have demonstrated the effectiveness of deep learning
models in predicting the perceptual quality of such images. These models have
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Research questions 1.3

outperformed hand-crafted models (Athar and Wang, 2019). With the introduction
of large-scale subjective datasets (Hosu et al., 2020; Ghadiyaram and Bovik, 2015;
Lin et al., 2019), deep learning models have learned more generalized features to
make better predictions about image quality. Still, they are data-driven models that
typically rely on deep convolutional neural networks with a numerous number of
parameters and limited explainability, often referred to as the black box effect (Zhou
et al., 2019). Consequently, a challenge arises in understanding the underlying
reasons behind the models’ effectiveness and identifying the scenarios in which they
may not perform well. In addition, the studies about both traditional and deep
learning-based NR-IQA did not provide an objective method to find the image in
which the metric fails to predict its quality.

Looking broadly, the lack of transparency within deep learning architectures has
raised so much concern in Artificial Intelligence (AI) community. It restricts the
deployment of deep learning models in critical sectors in which a bad decision could
risk a human life such as healthcare. Researchers have published many papers
that aim to make such models become more transparent. These approaches are
commonly referred to as Explainable Artificial Intelligence (XAI), which nowadays
is an important domain in AI.

Even though many different methods of explaining a deep learning model have
been introduced, most of them are designed for classification or segmentation
models, which are different from image quality assessment problems. XAI also
has many forms: from the explanation of single prediction to the explanations in
relationship with datasets. To the best of our knowledge, there is no prior work
that targets providing explanations for deep NR-IQA models, especially at the
dataset level. This lack of study limits our understanding of the NR-IQA model’s
performance. Consequently, it prevents the potential of developing more effective
models in image quality assessment.

1.3 Research questions
Considering the research gap mentioned in Section 1.2, this thesis aims to investigate
XAI for NR-IQA models. The research questions can be formulated as follows:

• Q1. What constitutes a good explanation for image quality assessment?

• Q2. How to leverage recent advances in XAI to create a framework that is
specifically dedicated to IQA models?

3



Chapter 1 INTRODUCTION

1.4 Thesis outline
The thesis organization is as follows. In Chapter 1, we defined the main topic
of the project and the research questions. In Chapter 2, the background related
to the topics of research( No-reference image quality assessment and explainable
artificial intelligence) are presented. Next, the proposed method of providing an
explanation for IQA is described in Chapter 3. Chapter 4 represents the experiments
and discussion. Finally, the thesis is closed by Chapter 5, where we discuss the
conclusions and potential future works.

1.5 Contributions
The contribution of this thesis for XAI for NR-IQA is as follows:

• Through a few rounds of interviews with different researchers working in the
field we have defined a set of different definitions and expectations for XAI
in the field of image quality assessment. This contribution will address the
research gap Q1 in section 1.3.

• We proposed a framework to explain NR-IQA models, which address the
research gap Q2 in section 1.3. In this framework, we used different existing
XAI methods. Our main contributions in this project with this regard are:

– The proposing of objective outliers detection methods for IQA models.

– The extension of the perturbation-based methods to the frequency
domain and color space.

– The investigation of the use of the existing XAI methods on NR-IQA
problems.

* Disclaimer: Grammarly is the only software tool that was used in writing this
report for grammatical correction purposes.
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2 Background and Literature Re-
view

This chapter reviews the current state-of-the-art in No-Reference Image Quality
Assessment and Explainable Artificial Intelligence.

2.1 Human Visual System
As image quality assessment aims to estimate the perceptual quality of an image,
an ideal IQA model should behave similarly to the way humans perceive visual
information in images. The study of Human Visual Systems (HVS) lies on the
intersection of physiology and psychologic, which mainly focus on the eyes and
brain. The eyes play the role of an image sensor or the camera to acquire visual
information, while the brain is the component to process images. Although HVS
is not fully discovered, many properties of it have been studied and accepted to
help model the mechanism of human perception in machine and image processing
algorithms.

The characteristics of the HVS have a significant impact on individual perception
and evaluation. By taking into account certain limitations and features of the HVS,
we can better understand how human perception works in the subjective assessment
of image quality. Various IQA models (Wang et al., 2004; Wang and Bovik, 2002;
Toet and Lucassen, 2003) were proposed with the principle of emulating the known
property of HVS in the process of objective quality evaluation. We will discuss
some of the factors of HVS that should be considered in IQA.

An important property of HVS was introduced by Legge (1981) which showed
our ability to detect change in contrast depends on the spatial frequency of the
visual stimulus. It is generally more sensitive to low-frequency distortions than the
high-frequency ones. At each spatial frequency level, there is a visibility threshold
of contrast that makes the visual stimulus become visible to HVS. The change of
this threshold value at different frequency levels can be represented as Contrast
Sensitivity Function (CSF), and is illustrated in Figure 2.1. The vertical acis
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Chapter 2 BACKGROUND AND LITERATURE REVIEW

Figure 2.1: Contrast Sensitivity function graph (image taken from (Hautière
et al., 2007))

represents the contrast amplitude and the horizontal xis indicates the spatial
frequency.

The human visual system (HVS) has a poor response to color (chrominance)
spatial detail compared to its response to luminance spatial detail (Poynton, 1997).
It means that humans will notice the distortion happening in the achromatic
area easier than the color ones. Taking advantage of this characteristic, in image
compression, the data at the illumination channel is preserved more than those of
the color channel. Thus, the size of the image after compression is reduced a lot,
but the perceptual quality is not affected much.

We will consider these mentioned properties to provide an explanation of IQA
models in Chapter 4.

2.2 No-Reference Image Quality Assessment
No-Reference image quality assessment which sometimes is referred as blind image
quality assessment (Saad et al., 2012) is a group of objective image quality metrics
that aims to predict the perceptual quality of an image without any inference
image.
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No-Reference Image Quality Assessment 2.2

2.2.1 Traditional methods
NR-IQA is challenging because of its nature. Wang and Bovik (2011) suggested
three types of knowledge that are necessary to build a successful IQM: 1) distortion
types, such as compression or blur; 2) knowledge of the image source, which can be
the reference image in the case of the FR-IQA, or the statistical information that
can distinguish distorted images from good quality images in the case of NR-IQA;
3) knowledge is about the HVS, based on visual physiology studies about how
humans perceive images. Many NR-IQA methods were proposed by using these
three types of knowledge.

In the early era of NR-IQA studies, metrics were designed for specific distortions.
For example, Marziliano et al. (2002) introduced a metric for blur images and video,
based on the width of the edges in the spatial domain; Wang et al. (2002) proposed
an NR-IQA metric for JPEG compression that considered blocking artifacts and
blurring as the most significant reason for the quality degradation of the compressed
images. In 2005, Sheikh et al. (2005) introduced a metric for JPEG2000 compression
based on statistical properties of images on the wavelet domain.

Later on, with the availability of many subjective IQA databases, different
studies have been proposed for various types of distorted images. Few NR-IQA
methods that do not require training on human-rated scores are referred to as
Opinion Unaware NR (OU NR). NIQE (Mittal et al., 2012b) is the pioneer in this
direction. The NSS features are calculated from the image, then their distribution
is captured by a Gaussian model. The quality of a given image is defined by the
difference between the model fitted on the extracted features and those of the
natural image. The ILIQUE (Zhang et al., 2015) extended NIQUE with three
types of features: quality-aware gradient features, statistical features from the
log-Gabor filters responses, and statistical features from color space. The results
from these OU NR methods (QAC (Xue et al., 2013), LPSI (Wu et al., 2015)) are
not competitive.

Opinion Aware NR are methods that were trained on distorted images whose
human ratings are available. Most are Natural Scene Statistic (NSS) based methods,
which were built based on the assumption that natural images hold certain statistical
properties, while those are absent in the distorted images. For color images, the
NSS based metrics are designed to work on the Y channel as distortion appears
more in the illuminance than in color. Wang and Bovik (2011) proposed the
DIIVINE metric, which uses the wavelet coefficients of the images to map the
statistical feature to the quality score of each distortion category and perform final
quality prediction. Saad et al. (2012) proposed an NSS-based metric, which is called
BLIND-II, extracting image features on the frequency domain using the discrete
cosine transform (DCT) coefficients. BRISQUE (Mittal et al., 2012a) uses scene
statistics of neighboring (locally normalized) luminance coefficients to quantify
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Chapter 2 BACKGROUND AND LITERATURE REVIEW

“naturalness” and the quality due to distortion presence. Some other metrics such
as GWHGLBP (Li et al., 2016a) extract structural information as the handcrafted
features or NRSL (Li et al., 2016b) uses both the structural and illuminance features.
This group of metrics can predict well on one type of distortion or on a specific
dataset, their performance is significantly lower on other types of distortion or
other datasets.

The traditional NR-IQA methods achieve accurate predictions on synthetic
distorted datasets but fail on authentic ones. Even so, they are explicit to the
human user because we know which features in the image the metrics look for to
make predictions about its perceptual quality. These methods are interpretable in
the aspect of proving saliency maps, or the attribution of image features to the
estimated score. However, they lack explainability in their relationship with the
dataset, at global level.

2.2.2 Deep learning based methods
Recently, with the success of using deep learning in various computer vision tasks
such as image classification, more attention has been paid to applying neural
networks to NR-IQA. CNNIQA (Kang et al., 2014) was the first work that uses
Convolutional Neural Networks (CNN) to predict perceptual image quality scores,
the architecture of which is shown in Figure 2.2. In the original paper, the model
was designed for gray scale images, but it can be extended to color images. Given
an image, a local contrast normalization which is similar to BRIQUE is employed.
Patches of size 32x32 are sampled from the normalized images in a way that they
are not overlapped. The network was trained in a large number of image patches
to predict the local quality score of image patches. The quality estimation for the
image is defined as the average of the patches’ score. Later on, they extended
the networks into a multi-task CNN for simultaneously predicting image quality
and identifying distortions (Kang et al., 2015). Although these methods exhibit
better performance than the previous hand-crafted NR-IQA models, they lack
transparency as there is no explanation of what features influence the model output.

The previous methods have a particular drawback: in the training process, the
patches which are extracted from an image are associated with the same subjective
quality scores. However, because of the variation in local image features, the local
image quality should differ from the global image quality. Kim and Lee (2016)
proposed a CNN-based NR-IQA model named BIECON, which predicts the local
quality score at image patches before producing the global image quality. BIECON
resolved the issue of lacking patch quality ground truth scores by employing local
quality maps provided by a full-reference IQA metric, FSIM (Zhang et al., 2011).
(Ma et al., 2017) followed the same approach in (Kang et al., 2015), in which two
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No-Reference Image Quality Assessment 2.2

Figure 2.2: The architecture of CNNIQA. (Image from (Kang et al., 2014))

subtasks are performed: distortion identification and image quality estimation.
Bosse et al. (2017) proposed a deeper CNN network, which allows two different

pooling strategies: a simple averaging of local patch qualities and weighted averaging
quality aggregation. The former choice is referred to as DIQaM-NR, while the
latter is called WaDIQaM-NR. They share the same architecture as in Figure 2.3,
in which the feature extractor was inspired by the VGG model (Simonyan and
Zisserman, 2014). The DIQaM-NR simply averages local estimated qualities to
get the overall quality score of the image. Meanwhile, the WaDIQaM-NR uses a
weighted pooling aggregation, which assigns each patch with a different estimated
weight. The results from the models which were trained on TID-2013 (Ponomarenko
et al., 2013) and tested on other datasets (CSIQ (Larson and Chandler, 2010),
LIVE (Sheikh et al., 2006)) indicate that WaDIQaM-NR performs better than
DIQaM-NR for most distortion types. This suggests that the relative importance
of local quality is not uniformly distributed over an image. The local weight maps
and quality maps from the WaDIQaM-NR can be considered as explanations for
the global image quality. Still, how the model predicts quality for each patch is not
explicit.

Yang et al. (2019) argue that image quality should be guided by visual attention,
which is represented by a saliency map highlighting the regions in images people’s
eyes focus on. They proposed a SGDNet, which estimates saliency maps of the
input image as a local weighting map for generating the global quality. The
authors pointed out the limitation of the previous saliency-based methods, that
the weighting maps are intermediate steps in the training process, thus they are
not well optimized. Considering this issue, SGDNet is implemented as a multi-task
network, which aims to predict both the visual saliency map and the image quality.

9



Chapter 2 BACKGROUND AND LITERATURE REVIEW

Figure 2.3: The architecture of a deep network from (Bosse et al., 2017).

Figure 2.4: The architecture of DBCNN (Image from (Zhang et al., 2018)).

The saliency map, which represents the visual attention mask, is predicted by a
supervised learning method. The ground truth for this process is provided by a
guided saliency model.

Zhang et al. (2018) introduced a deep bilinear model, named DB-CNN, which
consists of two feature extractors whose outputs are multiplied together to obtain
image descriptors. Figure 2.4 shows the architecture of the network, which can
handle both synthetic and authentic distortions. The CNN model for synthetic
distortion (S-CNN) was trained on an IQA database for classification tasks, that
outputs the class corresponding to the distortion type and level of distortion of the
images. Meanwhile, the CNN for authentic distortion is adopted from the VGG-16
(Simonyan and Zisserman, 2014) that was trained for image classification task on
ImageNet (Deng et al., 2009). The layers after the last convolutional layer of the
pretrained S-CNN and VGG-16 are discarded. The features extracted from the two
branches are pooled together into a representation for quality estimation. DB-CNN
outperforms other competitors in predicting image quality scores of an in-the-wild
dataset (Sheikh et al., 2006).

Su et al. (2020) proposed a self-adaptive hyper network, Hyper-IQA, that
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follows the top-down flow of human perception, in which the quality prediction
is mapped with content awareness. The network extracts both local features and
global semantic features from a given image. The image quality is predicted by
aggregating this representation at multi-scale levels. Ying et al. (2020) demonstrated
that using both local patch quality and global image quality would provide a better
image quality prediction. The authors introduced a network that uses the ResNet
(He et al., 2016a) as the backbone for feature extraction. The networks predict
the perceptual quality map (at patch level), to improve the global image quality
estimation (at picture level), so it is called PaQ-2-PiQ. PaQ-2-PiQ is trained on
a large database, which contains both image quality and patch quality labels of
realistic distorted images. By selecting a suitable size of patches, this metric can
be able to generate the spatial quality map for the whole image. The patch-wise
map shows the regions in the image that have poor and high quality, estimated by
the model. It can be considered as an explanation for the final prediction of the
image quality score.

Fang et al. (2020) introduced an IQA database of smartphone photography,
named SPAQ, which consists of authentically distorted images captured from various
smartphone cameras, subjective quality judgments, and additional information such
as image attributes, scene category labels, and EXIF tags. They also proposed three
objective quality models constructed by baseline and multi-task deep networks.
The baseline model adopted the ResNet-50 (He et al., 2016b), a residual network
as the backbone feature extractor for image quality prediction. The multi-task
models are modified from the baseline, to predict image attributes or the EXIF tags
jointly with the quality score. Their experiments on the same dataset show that
the multi-tasks model outperforms the baseline in predicting image quality. This
result suggests additional information about the images such as image attributes,
or the EXIF tags are useful in improving the prediction accuracy of the NR-IQA
models.

Hosu et al. (2020) proposed an end-to-end BIQA architecture, which is illustrated
in Figure 2.5. The network consists of a CNN backbone, followed by a global
average pooling layer, and four fully connected layers. The authors tried different
CNN base architectures: VGG16, RestNet101, InceptionResNetv2, and so on. The
proposed models were trained and tested with each CNN feature extractor. Their
experimental results suggest deeper base networks perform better in predicting
image quality, and the best model is the one with the InceptionResNetv2 base.

Although CNN-based models are popular among NR-IQA, they have limitations
of missing non-local information and producing strong local bias which leads to
inefficiency when a complex combination of features is needed (Golestaneh et al.,
2022). Inspired by Natural Language Processing (NLP), which uses Transformers
to capture the dependencies of language sequences, recently NR-IQA models
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Figure 2.5: The architecture of the KonIQ model (Image taken from (Hosu
et al., 2020)).

((Zhu et al., 2021), (Golestaneh et al., 2022))adopted vision transformer (ViT)
(Dosovitskiy et al., 2020) into their works. Golestaneh et al. (2022) introduced a
hybrid network that combines CNNs and a Transformer block for image quality
prediction. Local features are extracted by the CNNs at different spatial scales,
while Transformer captures the interaction of those features. In addition, the
authors applied relative ranking and self-consistency loss to improve the robustness
of the proposed model. Using the similar approach of capturing local features
at multi-scale of images, Ke et al. (2021) does not use the CNNs, but creates
multiple-sized variants of the image (2.6). Each image is parted into patches of
fixed size and fed into the model with a scheme to embed patch position and
scale information to ViT. The transformer performs multi-head self-attention and
produces a sequence as the final representation. In the end, a fully connected layer
is applied to predict the image quality.

Yang et al. (2022) also used ViT as a feature extractor, but they applied
self-attention across the channel of an image instead of the spatial dimension.
They first extracted the features from four layers of the ViT. To assign different
weights to each layer depending on their importance in image quality, an attention
block is modified for capturing the global interaction between channels. Then,
the intermediate representations are fed into the scale swin transformer block
for boosting the local connection between image patches. Finally, a dual branch
of weighting and scoring estimation is used to predict the quality score and the
importance of each patch.

Although the deep learning-based NR-IQAs outperform their traditional counter-
parts such as NIQE or BRISQUE, they lack explainability. In traditional methods,
knowledge about HVS or natural images is used to explain the selection of image
properties that play an important role in the quality of an image. For example,
the width of edges in the image, or the structural information is determined as key
image quality factors by Marziliano et al. (2002) and Li et al. (2016a). Thus, they
are more transparent to humans and we can understand how the metric predicts
the quality of an image. In deep learning, these features are learned by a neural
network, which consists of many layers via nonlinear relations. Even if the relation
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Figure 2.6: Model overview of MUSIQ (Ke et al., 2021).

Figure 2.7: The architecture of MANIQA from (Yang et al., 2022).

between each layer is investigated, it is still unfeasible to fully understand how the
model comes to a decision (Van der Velden et al., 2022). For example, given an
image of a blue sky and an image of a cat, we do not know why an IQA model
estimates one image has higher quality than the other. Another concern that such
data-driven models may be biased in some way without notice. A NR-IQA model
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may work well with one type of distortion but fail to predict the quality of images
that are degraded by other distortions. Without understanding how the model
comes to a quality estimation, one can not blindly trust them. Therefore, it is
important to shed light on NR-IQA prediction.

2.2.3 Evaluation of the metrics
For evaluating the performance and training of image quality metrics, the most
common way is by comparing the objective scores and the scores obtained by
subjective quality assessment. The set of images and the score rated by human
observers that are obtained by conducting psychophysical experiments is called an
image quality assessment dataset.

2.2.3.1 Image Quality Assessment Databases

Over the years, a significant number of IQA datasets have been published. IQA
datasets can be classified as synthesized and authentic databases depending on the
characteristic of distortions appearing in the images.

Synthesized databases contain distorted images that are degraded from the
reference images by multiple distortions of different levels. This type of dataset
can be used in evaluation for both full-reference and no-reference IQAs. The LIVE
dataset which was created by Sheikh et al. (2006) is one of the most popular IQA
databases. This dataset contains 29 reference images of different resolutions and
750 degraded images. The distorted images were obtained by applying five types
of distortions: JPEG200, JPEG, white noise, Gaussian blur, and fast Rayleigh
decay on the pristine images. The subjective scores for each image were processed,
and the Difference Mean Opinion Score (DMOS) of the range [0, 100] is provided.
The lower value of DMOS indicates the higher quality of the image. The TID2013
dataset (Ponomarenko et al., 2013) includes 25 reference images and 3000 distorted
images. The authors used 24 distortion types, at 5 distortion levels to simulate the
image degradation. Along with the images, the corresponding DMOS is provided.
The value range of DMOS is from [0, 9] with the larger value suggesting lower
image quality. CSIQ is another simulated IQA dataset that was constructed by
Larson and Chandler (2010). The dataset consists of 30 reference images and 866
degraded images of six distortion types, which include overall contrast reduction.
In this dataset, the subjective quality assessment is also represented in DMOS
of the value range from [0, 1]. The LIVE, TID2013, CSIQ have been used to
evaluate the performance of the IQM. Many deep learning-based IQA models were
proposed and trained in these databases. However, the small number of images
can lead to an overfitting phenomenon of the models. Lately, Lin et al. (2019)
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created two datasets, the KADID-10k and the KADIS-700k. The former contains
81 reference images and the corresponding degraded images of 25 distortions at
five levels. The latter has 140,000 pristine images with five degradation versions
distorted by random distortion types. The subjective judgments were conducted
by crowdsourcing. The DMOS and the variance score for each image are published.
The range of DMOS is [1, 5] with the higher value indicating better image quality.
By far, these two databases are the largest simulated datasets.

Unlike the synthesized datasets, in authentic databases, the images are captured
directly from the real-world environment. Thus, the distortions are natural. The
CLIVE (Ghadiyaram and Bovik, 2015) and KonIQ-10k (Hosu et al., 2020) are the
most common authentic datasets. The CLIVE or LIVE in the Wild was created by
the same laboratory as the LIVE dataset. The database consists of 1162 images
captured by mobile cameras. Thus, the distortions in the images are the results
of the camera processing pipeline. The subjective ratings were collected from an
online crowdsourcing system and processed to produce the Mean Opinion Score
(MOS) for each image. The KonIQ-10k was introduced by the same authors of the
KADID with the aim of a large in-the-wild dataset. 10,073 images were selected
considering the diversity of content, the natural distortions, and the distribution of
image quality indicators. Around 1,2 billion subjective ratings were obtained and
processed to provide the overall opinion score. In addition to the MOS, detail of
the image quality indicators and each category rating are also provided.

For the performance evaluation of an NR-IQA, all of the mentioned datasets
can be used. However, there are disadvantages when using full-reference databases
to assess the no-reference image quality assessment model. We will discuss these
issues and a possible way to minimize their impacts on the evaluation process in
Section 4.

2.2.3.2 Evaluation Criteria

The most common way to compare the performance of the image quality metrics is
based on the correlation coefficient between the quality estimation scores predicted
by the IQA methods and the subjective scores. The higher the correlation value is,
the better the IQA model is.

Pearson Linear Correlation Coefficient
The Pearson Linear Correlation Coefficient (PLCC) was developed by Karl

Pearson and is used as a measure of the linear relationship between two variables.
Given two sets of subjective scores X and estimated quality scores Y of N images,
the Pearson correlation coefficient can be computed using equation 2.1, in which
Xi and Yi are the subjective ratings and the estimated quality of the ith image, X̄
and Ȳ is the mean values of subjective scores and all estimated quality score of all
the images.
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PLCC(X, Y ) =

∑N
i=1(Xi − X̄).(Yi − Ȳ√∑N

i=1(Xi − X̄)2.
∑N

i=1(Yi − Ȳ )2
(2.1)

Because the scores estimated by IQA methods are usually not linear with the
subjective opinion, a nonlinear fitting step is used before calculating of the PLCC.
Any logistic function, which is monotonic can be used for this regression so that
the order of the quality values is reserved. However, inherited from Sheikh et al.
(2006), a five-parameter logistic function as in the equation 2.2 is commonly used.

f(x) = β1

[
1

2
− 1

1 + exp β2(x− β3)

]
+ β4x+ β5 (2.2)

In the equation 2.2, f(x) denotes the IQA score after the nonlinear mapping, x
denotes the objective score produced by the IQA methods, β1, β2, β3, β4, β5 are
the model parameters that are found by using optimization function.

Spearman Correlation Coefficient
The Spearman Rank-order Correlation Coefficient (SRCC) is used to measure

the monotonicity of the relationship between two vectors. SRCC is a non-parametric
rank-order correlation and does not need the nonlinear fitting step. While PLCC
assesses the linear relationship between the two variables, SRCC is equal to the
SRCC between the rank values of these variables. The SRCC value between
the subjective scores and the quality score estimated by an IQA method can be
computed using the following equation:

SRCC(X, Y ) = 1− g
∑N

i=1 d
2
i

N(N2 − 1)
(2.3)

In the equation 2.3, di denotes the difference between the ranks in subjective
scores and estimated scores of the ith image.

Kendall Correlation Coefficient
Kendall Rank Correlation Coefficient (KRCC) is another rank-order based

method to measure the ordinal association between two variables. This correlation
has a similar principle as the Spearman correlation but uses the difference between
the probabilities instead of the difference between ranks. Let (xi, yi) is a set of
subjective rating and an estimated score, a pair of concordant (xi, yi) and (xj, yj)
is defined if the rank order of their variables agrees. In other words, if either both
xi > xj and yi > yj or both xi < xj and yi < yj, the pair of (xi, xj) and (yi, yj) is
a consonant pair. Otherwise, it is a dis-concordant one. The Kendall correlation is
computed as:

KRCC(X, Y ) = 1− 2(numberofdiscordantpairs)
N(N−1)

2

(2.4)
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In the equation 2.4, N is the number of images in the database. As KRCC is
found highly consistent with SRCC and does not provide much more information,
in the literature, KRCC is normally not reported.

Other evaluation metrics such as Root Mean Square Error (RMSE) or Mean
Absolute Error (MAE) report how accurate the predicted quality score is with
regard to the subjective quality score. They are simple, computed by using the
equation 2.5, 2.6, in respectively. However, these performance metrics require
subjective scores and the objective scores are in the same range of value, with is
not always true because the objective IQA methods are usually designed without
the normalization of output score.

RMSE(X, Y ) =

√√√√ 1

N

N∑
i=1

(Xi − Yi)2 (2.5)

MAE(X, Y ) =
1

N

N∑
i=1

|Xi − Yi| (2.6)

It has been shown that the deep neural network models which were trained on
large-scale datasets achieve better results than the hand-crafted metrics. However,
that high performance is highly dependent on the dataset that the models were
trained on. Therefore, it is suggested to cross-test the models on many datasets.
In addition, because the images which were collected in the same dataset share
similar properties, for example, type of distortions; cross-dataset evaluation can be
used to test the generality of the model. In this type of assessment, the model is
trained on one dataset and evaluated on another by using correlation coefficients.

Image quality assessment in general, and NR-IQA in particular have been
extensively studied for decades. The IQA models are usually assessed by using the
correlation coefficients which were mentioned above with the subjective score on
an IQA database. With recent advances in AI, many deep learning base models
have been proposed and achieved excellent performance in predicting the quality of
images. However, the explainability of them is still missing. Although correlation
is good to evaluate how a model performs it does not give us any information
about why a metric works well for some kind of an image and bad for another. It
does also not provide us with information about why a model works better than
another. This is why in the case of deep learning methods we are dealing with
a black box, we would need look into the explainability of the models to have a
better understanding of the metric and also be able to improve the performance of
the model. This work aims to fill this gap by providing explanations for NR-IQA
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models. In the next section, we will review the state-of-the-art explainable artificial
intelligence methods and discuss their potential in interpreting IQA models.

2.3 Explainable Artificial Intelligence
Deep learning models are not only becoming popular in IQA, but they have been also
immersed more in our daily life. While the models are achieving better predictive
performance, their complexity is increasing. Thus, it is becoming more difficult to
understand the underlying behind the models. There is usually a trade-off between
the explainability and the accuracy of the models. (Figure 2.8). Simple models
such as rule based or decision trees have low performance, while deep learning
models exhibit high accuracy and little explainability. As the opacity of the AI
models makes them a black-box to humans, it prevents the users from completely
trusting and using the systems. For example, in the healthcare sector, if a doctor
does not know if the model predicts a patient has a high chance of heart stroke
because of their gender or their health record, they can not trust that prediction
even though the model achieves high accuracy on a test set. Therefore, the need for
explanations on how the AI-based system makes the decision is highly in demand.
This led to the release of a new area of research, which focus on providing an
understanding of AI models, called Explainable AI (XAI).

Recently, the number of studies in XAI has increased significantly. Many survey
papers were published that provided an overview of the current research situation of
XAI. Some of them ((Adadi and Berrada, 2018), (Angelov et al., 2021), (Belle and
Papantonis, 2021), (Linardatos et al., 2020), (Samek et al., 2021)) reviewed XAI
methods, Speith (2022) discussed the different approaches to construct taxonomies
of XAI. Nauta et al. (2022) provided a systematic review of the evaluation of XAI.
The term interpretability and explainability are usually used interchangeably with
the meaning of providing ways to improve the understanding of users about an AI
system. As the image is input data of IQA models, in the scope of this project, we
will go through the XAI methods that can be applied to images. We follow the
framework from Adadi and Berrada (2018) and Murdoch et al. (2019) to classify
XAI techniques using three criteria: model-based versus post hoc, the scope of the
explanation, the applicability of the XAI method. The following subsections will
describe the methods in each category. In this report, we will use the term “model”
to refer to the pretrained AI models and the term “methods” or “techniques” to
indicate the XAI explanation.

Model-based versus post-hoc methods: The model-based explanation
refers to the models, for example, a linear regression model, which is simple to
be understood but can find well the relationship between the output and input
(Murdoch et al., 2019). Thus, they are also referred to as transparent models or
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Figure 2.8: Model interpretability vs. model accuracy for machine learning and
deep learning algorithms (Joshi, 2021).

white-box. They are usually the traditional machine learning methods such as linear
regression or decision trees. The interpretation of these models comes directly
from the algorithms. Such models that are intrinsically interpretable often have
low accuracy. Meanwhile, more complicated models (for example neural networks)
achieve better performance and usually do not provide an explanation themselves,
which make them become black-box to human. The groups of XAI methods that
aim to analyze the insight of such models are called post-hoc explanations. Most
of the works on XAI belong to this category.

Scope of the explanation: As the name indicates, the XAI methods can
be classified based on the scope of the explanation that it can provide: for the
entire models or for a single prediction. The global explanations provide general
reasons for all outcomes that the model makes. They are also called dataset-level
explanations because this understanding of the model is obtained from investigating
multiple input instances. For example, how much a feature contributes to the
output in the entire dataset. Bau et al. (2017) is another global explanation that
provides information about the semantic concept which are embedded latent spaces
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of the convolutional neural network. Saleem et al. (2022) surveyed the global
interpretation methods and found that most of them were constructed by using
local explanation techniques and required computation cost. On the other hand,
local explanation provides the reason for a specific decision of the models. For
example, why an image is recognized as a dog image by a classification model. As
the interpretation for a single output is usually readable to humans, the majority
of XAI techniques are local explanation methods.

Applicability-based methods: This criteria distinguish if an XAI method
can be applied for only specific types or any type of AI models. The former is
referred to model-specific explanation while the latter is called model-agnostic. By
definition, model-based methods are model-specific methods, but a model-specific
method is not always model-based methods (Adadi and Berrada, 2018). While
there is a limit in the choice of models that can be explained by model-specific
XAI techniques, model-agnostic is model-independent. For example, XAI methods
that aim to visualize the learned filter of CNNs can not be applied to other types
of deep learning models. Meanwhile, the methods which find the importance of
input features to the output by modifying input data can be used to explain any
black box model.

Because an XAI method can be classified into multiple groups based on different
criteria, we provide here a brief review of the popular explanation techniques that
can be applied to image data.

2.3.1 Visual explanation
The visual explanation provides the attribution map, which demonstrates the
importance of regions in the input image, or in the intermediate representation
of the networks that cause the model’s decision. The common XAI visualization
methods will be discussed in the following paragraphs.

The very first attempt from (Simonyan et al., 2013) visualized image classi-
fication models. The authors proposed two methods of visualization based on
computing the gradient of the output corresponding to the change in the input
image. The first technique generates an artificial image that represents the fea-
tures of the class captured by the classification. The second provides a saliency
map for a specific image and class, which highlight the region in the images that
suggest it belongs to the given class. This method is referred to by the name
Gradient in literature. Figure 2.9 shows the visualization of these techniques. In
subfigure 2.9a, we can see that the images do demonstrate some properties of the
corresponding class, i.e: the shape of the dumbbells, cups, and the color of the
dog. However, these images look unrealistic and contain a lot of noise information.
The saliency maps in the bottom row show the position of the main object in the
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images with poor discrimination between the foreground and background. Zeiler
and Fergus (2014) proposed a method - Deconvolution which improved Gradient
with a modification of backpropagating only positive signal at the ReLU. Later on,
Springenberg et al. (2014) introduced Guided Backpropagation which is similar
to Deconvolution, but uses the ReLU at both the forward and backpropagation
stages. As the computation of this method is based on gradient, it can be used for
both classification and regression problems. We will describe it in detail in section
3.3 on NR-IQA models.

(a) Generated images illustrate some class appearance model

(b) Image-specific saliency maps

Figure 2.9: Class model visualization and image-specific saliency maps of a
CNN (Simonyan et al., 2013).

Sundararajan et al. (2017) introduced two main axioms that an explanation
should satisfy: sensitivity and implementation invariance, and states that most of
the methods did not meet these requirements. Based on these axioms, a method
called Integrated Gradients was proposed. Given a model, this method expects
the existence of a baseline that corresponds to a ‘neutral’ output. For a specific
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input, the method aggregates the gradient along the inputs that fail on a trajectory
between the baseline and the given input. Although integrated gradients are simple
in computation, the main challenge of this method is to select a good baseline (or
root point). For example, with an input image of the IQA task, there is no exact
definition of a baseline image. Thus, it is not applicable on our work.

SmoothGrad Smilkov et al. (2017) used a similar approach which uses gradients
to produce an explanation. The main idea of SmoothGrad is to add noise to the
given image, then take the average of the result of the saliency maps for each
variant of the image. This method creates a smoother explanation and addresses
the issue of scatter gradient in deep neural network (Samek et al., 2021). DeepLift
Shrikumar et al. (2017) backpropagated the contribution to every feature of the
input. The measurement of importance is based on the difference from a reference
states. It compares the activation of each neuron to its ‘reference activation’ and
associates neurons with contribution scores according to the difference. This method
is different from most gradient-based methods, in a way that the discontinuities of
the gradients are avoided, thus the importance of the signal is maintained from the
target layer to the input space.

Grad-CAM (Selvaraju et al., 2017) is one of the most popular explanation
methods for the classification deep neural networks. GradCAM is derived from
Classification Activation Mapping (CAM) (Zhou et al., 2016), an visualization
of features that discriminate an image to a target class. Given an input image
and a target class, the explanation is created by computing the weighted sum of
activation maps at the last convolutional layer which is located right before the
final softmax layer. CAM has two particular drawbacks. Firstly, it can only be
applied on the CNN networks that have a specific structure in the last layers and
do not contain any fully connected layer. Secondly, it is not possible to visualize
the layers before the last convolutional layer. GradCAM (Gradient-weighted CAM)
generalizes CAM to apply to wider variants of CNN models. The authors analyzed
the failure of the model by visualizing the failed examples, creating the adversarial
images, and identifying the bias in the dataset. They also combine GradCAM
with other visualization methods to provide high-resolution results. Guided Grad-
CAM, the multiplication of the mentioned guided backpropagation and Grad-CAM,
outperformed other explanation methods on both interpretability and faithfulness
to the model. Figure 2.10 shows examples of using various techniques for finding
relevant features supporting different classification predictions. While Guided
Backpropagation results in fine-grained maps, Grad-CAM highlights an coarse area
in the image that contributes toward a specific class (cat or dog).

Grad-CAM++ (Chattopadhay et al., 2018) is an extension of Grad-CAM that
provides a better visual explanation of CNN models. Instead of using gradient in
the computation of the feature’s importance as in Grad-CAM, Grad-CAM++ uses
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Figure 2.10: Original images (a, g) and the supported evidence for the cat
category by different visualization techniques for VGG16 (b-e) and for ResNet
(f); Support for the dog category (h-l) Selvaraju et al. (2017).

the positive partial derivatives of the last convolutional layers activation maps to
generate the visual explanation for the target class. This method produces the
saliency map for all the instances of the object in case there are multiple of them in
an image. Therefore, the explanation from Grad-CAM++ gained more faithfulness
to the classification model, in comparison with the result from Grad-CAM. For
the NR-IQA models, as the number of objects in an image are not crucial to the
quality of an image, Grad-CAMM++ show the similar result as Grad-CAM.

Layer-wise Relevance Propagation (LRP) Bach et al. (2015) introduced the
explanation at the pixel level of the input image to the corresponding output. The
method starts at the output of the network and propagates backward, layer by
layer, until reaching the input. The main principle in LRP is the propagation
rule, which aims to find the relevance value - the importance of each neuron in the
models to the prediction output. From the last layers back to the input variable,
the neuron in a layer redistributes the information that it received from the later
layers to the neurons in the lower layer. In other words, the relevance value of a
neuron in a deeper layer is equal to the summation of the connection-relevance
values of the neurons in the previous consecutive layer. Subsequently, LRP satisfies
the conservation property for all layers. Montavon et al. (2018) pointed out that
the explanation produced by LRP is usually noisy, which could confuse human
observers. While the original LRP propagation rule could only apply to certain
types of neural network layers, Kohlbrenner et al. (2020) mentioned about using
the combination of the LRP-rule can provide better results, and they quantify the
fidelity of different methods by using a measurement based on the bounding box of
object location.

Kindermans et al. (2017) mentioned that the previous methods such as De-
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Convnet, Guided BackProp, and LRP work based on the assumption that it is
possible to propagate the output signal back through all the layers until the input
and get something that shows how the relevant signal was encoded and explained
by the networks. Moreover, the theoretical analysis and the quantitative evaluation
of the methods are lacking. The experiment that was implemented in this work
shows that these methods are not able to distinguish signal from distractor, thus
propagating the sub-optimal explanation of how the deep networks work. Based
on the analysis which treats the input data as a combination of the signal (relevant
information) and the distractor, the two explanation techniques PatternNet and
PatternAttribution were proposed to provide an improved explanation for the deep
network. A measurement was introduced to quantify the quality of the explanation
methods and prove that the assumption used in DeConvNet and Guided BackProp
is not right (the weights do not correspond to the detected stimuli).

Ribeiro et al. (2016) proposed LIME (Local Interpretable Model-Agnostic
Explanation) that can provide the local explanation of a model by a simpler
surrogate model. Firstly, a local distribution around the interested data point (for
example, an image or a single scalar value) is defined. Then, the method finds the
importance of each feature in data representation by minimizing the loss between
the original output of the model and the output from the simplified model over the
local distribution. As the name indicates, LIME can be applied to any black-box
model, unlike the above methods, which are mostly applicable to deep-learning
models.

Lundberg and Lee (2017) introduced SHapley Addictive exPlanation (SHAP),
which is based on game theory to compute the explanation of model prediction.
The authors defined a group of explanation methods which is called additive
feature attribution methods. They are the techniques in which each feature in data
representation is assigned a single importance value, and the sum of the important
values approximately matches the prediction output of the original model. LIME,
DeepLIFT and LRP are some additive feature attribution methods. SHAP is a
unified framework for this group of explanation methods that can provide a unique
solution for a prediction from a model. SHAP determines the importance of each
feature for a particular output by the difference between the original output and the
predictions when a feature is absent. As this method require multiple permutations
of features in implementation, it is computation-consuming. Especially, if the
input of the model is an image, the number of combination features, or pixels,
to be hidden is numerous. Thus, it requires a strong computational resource to
implement this XAI method on image data.

For computer vision tasks of images as input data, there is a group of explanation
methods that share the same idea: computing the significance of image features by
how much their perturbation changes the model’s prediction. The using of local
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data distribution in LIME is similar to this approach. In earlier work, Zeiler and
Fergus (2014) occluded different regions in images to analyze which parts play
the most important role in classification prediction. This method is referred to
as occlusion analysis, in which the absence of an image region is represented by
gray patches of the same shape. Fong and Vedaldi (2017) proposed meaningful
perturbation for explaining classification models. Instead of using a grey box to
occlude parts of the images, the authors suggested to simulates the interested region
by naturalistic effects. The three types of perturbation were proposed: adding
noise, replacing with a constant value, and blurring.

Zintgraf et al. (2017) presented the prediction difference analysis method for
visualizing which pixels or regions in an image devote or again the prediction of
the model. Based on two observations: a pixel mostly depends on small pixels
around it, and the conditional probability of a pixel in its neighborhood regions
does not depend on the position of the pixel in the image; the authors proposed a
conditional sampling for perturbations of image features (pixels).

All the above methods provide saliency maps for data representation of a specific
input image corresponding to a prediction of a classification model. The data
representation could be the input image (in case of perturbation-based approaches),
or a representation from intermediate layers of the model.

2.3.2 Explainable AI for regression models
Image quality assessment can be considered as a subset of regression problems
because the output of IQA models are normally a continuous scalar. While
explainable AI has been widely studied for image classification/recognition tasks,
interpretation for regression models only got little attention. As a result, there are
limited works that explored the interpretability of IQA metrics.

Letzgus et al. (2022) pointed out the main challenge in explaining the regression
model: focus on the attribution of each feature at a specific sample (data point).
The explanation should take into account the unit of measurement of each feature in
the input samples. Moreover, it should be contextually sufficient, not only by being
able to explain the reason for the output of each data point but also the relevant
region around each specific point. For XAIR, the removal-based and gradient-based
methods may require a reference data point for producing the explanation. On
the other hand, the propagation-based methods do not require the reference point;
however, this type of approach assumes that the model is disentangled. The paper
proposed two approaches: retraining and reconstructing the models. In the former,
a surrogate network is retrained to have the same accuracy as the target model.
The training data for this approach need to be chosen carefully to avoid bias in
explanation. The latter rewrites the last layers in a way that the representation
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is alternated and has a fine-grained explanation. It assumes that the last two
layers of the network are ReLU and linear. The reconstructing includes two steps:
propagation in the linear layer and propagation in the ReLU layer. Because of
this assumption, this approach is applicable to a limited set of models that have a
specific architecture.

Tamaddon-Jahromi et al. (2020) and Papadopoulos and Kontokosta (2019)
used Shapley values to get an understanding of a heat transfer model (DNN) and
a building consumption computation (XGBoost model). Kratzert et al. (2019)
applied Integrated Gradient to determine the importance of each natural factor
to the rainfall-runoff which is modeled by a LSTM network. In these studies, the
authors use the common XAI techniques of the classification task to interpret the
model of regression. However, the input data of these models are in a table format,
which is more flexible than image data.

By far, the most common approach for applying XAI to regression is to use
the XAI methods that were originally developed for classification models directly
on regression models. Another way is to approximate the regression task to a
classification problem by clustering the regression output into some classes and
applying the XAI techniques to get an understanding of the model.

In terms of the image quality assessment, the only prior work that aims to
provide an explanation for any IQA model is from Prabhushankar et al. (2020).
The authors proposed a contrastive explanation scheme that provides the answer
to the question "Why the quality score of an image is P, rather than Q?. Consider
a regression network f(), trained to predict a continuous output y. During the
training, an empirical loss L(y, y′, θ) is minimized with y is the predicted output,
y′ is the ground truth output, and θ is the network parameters. The process
of minimizing the loss L() is conducted by backpropagation using the gradients
∂L
∂θ

. The authors define the contrast explanation as the difference between two
predictions of the neural network. Each prediction belongs to a manifold that is
spanned by the weight W1 and W2 of the neural network in the output space. An
example is shown in Figure 2.11 in which the learned manifold is in blue, and the
contrastive manifold is in purple. The difference between the learned manifold
(of the predicted score P ) and the contrastive manifold (of the contrastive score
Q) is measured by using gradients backpropagating the loss between P and Q.
With the loss function L(), the contrast is computed by ∂L(P,Q,θ)

∂θ
. In the paper, the

authors choose mean square error for the regression networks and integrate with
Grad-CAM to show the contrastive explanation. Firstly, the contrastive gradient
∂L(P,Q,θ)

∂θ
is backpropagated to the last convolutional layer of the model, and K

gradient maps are obtained. They are average pooled and then resized to the size
of the input images as a contrastive map. The heatmap is overlaid on top of the
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original image and shown.

Figure 2.11: Predicted manifold and contrastive manifold. Prabhushankar et al.
(2020).

Figure 2.12 shows the explanation for the predicted quality score 55 of an image
and the contrastive explanations on why the NR-IQA model does not predict a
higher score (75) or a lower score (45). The red pixels in the heatmaps represent
the regions in the image that support the prediction, while the dark blue ones
are the opposite. From Figure 2.12b, we can see that the model considers the
areas around the middle horizontal of the images to estimate a quality score of
55. Comparing the top-down images, the dark blue region in Figure 2.12c, which
suggests the quality should be higher than 55, overlaps with the dark blue region
in Figure 2.12c, which indicates a lower quality than 55. In other words, the same
features in the input images represent two opposite opinions, which is unexpected.
This example shows the drawback of this method, in which the explanation results
in conflict with each other.

Contrastive explanation brings a new idea to make an IQA model more in-
terpretable by finding the features that can make a neural network change its
prediction. However, their visualization results are inconsistent. It could confuse
users instead of helping them to better understand the model. Therefore, future
works are still needed to bring explainability to IQA neural networks.
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(a) Distorted image (b) Why 55?

(c) Why 55, rather than 75? (d) Why 55, rather than 45?

Figure 2.12: An image (a) and the explanations for each question shown below
each image. Red pixels in the heatmap represent the regions that support the
answer of the corresponding question.
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3 Methodology

In this Chapter, we will describe the general idea of our solution for the research
questions of this work. Firstly, we conducted short interviews with students and
some experts in the field of IQA to form an overall concept of good explanations
for IQA models. The result of this interview is presented in section 3.1, which
addresses question Q1. After that, an workflow to provide such explanations is
proposed and described in section 3.2 and 3.3.

3.1 Definition of good explanations for IQA
IQA is a vast topic, which is an emerging multidisciplinary field based on social
psychology, cognitive science and engineering science, focused on understanding
overall human quality requirements. Thus, it is difficult to determine which factors
will contribute to a good explanation of an objective IQA model. Therefore, we
conducted a short interview with students and experts who have a background in
this topic to find their expectations of good explanations. 15 participants were
interviewed, among them, there are four experts. Our question was: "Given an
objective quality model, which kinds of explanation will make you trust the model?".
This question is equivalent to the question Q1 that was mentioned in section 1.3.
The collected answers were slightly different between interviewees, and the common
expectation are the followings:

• The explanation that can point out the limitations of the current model.

• The explanation that illustrates the features of the image the model focuses
on to make the prediction of image quality.

• The explanation that can show how the model mimics the human visual
system.

• The explanation provides the knowledge of the model, from the primary to
higher layers, which can contribute to a better understanding of the HVS.
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Ideally, it would be great to have explanations that can satisfy all four expecta-
tions. However, as it is difficult to achieve such ambition, in this work, we try to
provide explanations that meet at least one of the above conditions. To address the
first opinion - finding the drawback of the model, we aim to detect the images that
the model fails to predict their subjective quality. Then, the explanation which
corresponds to the second and third conditions is provided for selected predictions.
The general process of the proposed workflow is shown in Figure 3.1. Given a
pre-trained image quality model, our goal is to provide an explanation of how the
model makes a prediction for the quality of images. Unlike other computer vision
task such as image classification, in which the output of the model can be evaluated
as right or wrong objectively; a prediction in the image quality assessment need to
be evaluated in the relationship with the subjective ratings. Therefore, a set of
images with the available human opinion score are necessary to check the model
performance. Given a pre-trained IQA model and a subjective dataset. Firstly, we
will find the outlier images, which are the images that the model fails to accurately
estimate quality. Different outlier detection methods will be described in section
3.2. After this step, we will have a set of images, which represent the failure
prediction of the model, while the other images in the input IQA subjective set are
considered good predictions. By analyzing the sets of failure decisions of the model

IQA Model

IQA subjective
images

Outlier detection

Good Predictions

Failure predictions

Global explanation

Local explanation

Figure 3.1: The general workflow of our method to provide an explanation of
an IQA model.

on different IQA databases, we can form a global explanation of the model, which
corresponds to the first point: limitation of the model. After that, an investigation
into which features of an image contribute more to a prediction of the model is
conducted. This explanation is called visualization explanation because it will
provide the importance of corresponding to image feature on an interpretable map.
The local explanation by visualization will be described in section 3.3. The visual
explanation of the spatial domain provides the explanation of the second condition,
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while the third condition is explained on the frequency and color domain.

3.2 Explanations through outliers
This section will address the issue of lacking objective methods to detect failure
cases of the IQA models. In the literature, when evaluating the performance of an
IQA model, the authors hardly showed the images that the estimated quality from
the model does not match the subjective quality score. Even if this information is
provided, these images are selected subjectively. To the best of our knowledge, there
is no prior work that proposes objective methods to find these failure cases of IQA
model. We believe that the set of these images can form a global explanation of the
limitations of the model. In other words, the inaccurate predictions would provide
more understanding of the model. In image quality assessment, a prediction is
considered inaccurate if the subjective judgments and the estimated quality scores
are poorly matched. We call the images that correspond to this type of prediction
outliers.

In this work, we investigate different ways to detect outlier images given an
image quality assessment database and an IQA method. It should be noted that
these methods can be used for both traditional and deep learning based NR-IQA
models.

3.2.1 Outlier detection based on correlation coeffi-
cient

In the literature, the Spearman correlation is commonly used for comparison
between an IQA metric score and the perceived quality judgments. The coefficient
value of this type of correlation indicates the degree of agreement between the
estimations of the IQA model and the subjective quality assessment. The larger the
magnitude of the coefficient is, the better the IQA model is. Meanwhile, the outlier
images are the ones that represent the failure predictions of the metrics. Therefore,
the appearance of outliers in a set of images will lead to a lower correlation
coefficient. From this observation, we propose a method to detect outliers based
on the change in the correlation coefficient. The outlier detection method consists
of the following steps:

Input: an IQA model, a set of images I with the corresponding subjective quality
rating MOS

1. For all image I(i) in the image set, get the estimation score of the IQA model:

Prediction(i) = M(I(i)) (3.1)
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2. Calculate the overall correlation coefficient between the subjective scores and
the predicted scores for the data set:

rall = Correlation(MOS,Prediction) (3.2)

3. Calculate the correlation coefficient between the subjective scores and the
predicted scores when each pair of MOS and prediction score for one image
is excluded:

rexl(i) = Correlation(MOS/i, P rediction/i) (3.3)

4. Calculate the change of correlation between the full data set and when each
image is removed:

∆r(i) = rall − rexl(i) (3.4)

5. Select the images with the biggest ∆r as the outliers.

While this method can not classify the outliers automatically, it gives the
freedom to define the number of outliers on the user side. Therefore, we carefully
use this approach along with the visualization plot of data distribution for better
reliability.

3.2.2 Outlier detection with RANSAC
RANdom SAmple Consensus (RANSAC) is an algorithm proposed by Fischler
and Bolles (1981). This is an iterative method to estimate the parameters of
a mathematical model that works with input data containing outliers. While
other robust estimation methods such as least-mean squares initially came from
statistic literature and then adopted to computer vision, RANSAC was designed
for computer vision problems.

The RANSAC algorithm learns the parameter of the model by randomly
resampling the observed data. While other popular techniques of model estimation
use as much data as possible to find the solution of the model’s parameters,
RANSAC uses only a small set of data and then processes with large data. This
principle of the algorithm is based on the assumption that the outliers do not
contribute consistently to finding the optimal parameters of the model.

The RANSAC algorithm is implemented as follows:

1. Select a randomly minimum number of data points from the original set of
data.

2. A model is fitted to the set of selected data points.
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3. Test the model again with all the original data points. If the data point fits
the model with a predefined threshold ϵ, it is called consensus or inlier point.

4. If the consensus set contains a reasonable number of data points, re-estimate
the model using the inlier set. This is the solution for model estimation.

5. If the number of data points in the consensus set is not sufficient, repeat from
step 1 to step 4 (maximum of N times).

The number of iterations, N is usually chosen high to ensure that at least one
of the random sets does not contain outlier data.

We can apply RANSAC to find the linear model that best represents the
relationship between the predicted scores from an IQA method and the subjective
ratings for a set of images. When the relationship model is determined, the outlier
images are also identified.

3.2.3 Outlier detection with logistic mapping and
standard deviation of MOS

Many subjective IQA databases provide the standard deviation score along with
the MOS for each image. This standard deviation score represents the uncertainty
of observer while judging the quality of an image. This measurement was used in
conventional studies (Krasula and Le Callet, 2018) of image quality assessment to
classify if a data point is an outlier or not. According to Bull and Zhang (2021),
if the MOS and the objective metric score have the same range of minimum and
maximum values, an image whose subjective and predicted score are indicated by
MOSi and Predictioni, respectively, is an outlier if:

|MOSi − Predictioni| > 2σi (3.5)
In equation 3.5 σi represent the standard deviation of the ith image. The outlier

detection method in this section is proposed based on this knowledge. It should be
mentioned that for many IQA databases, the number of observers who participated
in rating the images is large. Thus, the standard deviation for each image is small,
which leads to the classification of too many images as outliers. In our method, we
add one more condition of the data point location to compensate for this issue.

Because the range of value in the MOS and the objective score can be different,
and the correlation between them happens to be non-linear, a logistic mapping can
be used to convert them into the same range.

1. Find a mathematical model (non-linear) fmap() that represents the mapping
from the objective scores Prediction to the MOS. This model needs to be
monotonic. so that the relative position of the data points is preserved.
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2. Calculate the mapped scores

Prediction′ = fmap(Prediction) (3.6)

3. Calculate the distance di from the data point of each image to the mapping
line.

4. If the mapped score Prediction′
i of an image satisfies the condition in equation

3.5 and the distance from the data point is in top p% of all the distance, the
image is classified as an outlier.

The set of detected outlier images can be considered as criticism examples,
which fail the IQA methods. By analyzing the criticisms, we can have some insight
into the IQA models.

3.3 Explanation through visualization
Visualization explanation shows the importance of features in an image for a
model prediction. This is the most user-friendly approach to provide the model’s
understanding as we can see which part of the image the IQA model focuses on. In
this section, we will describe the visualization methods that were used in this work.

3.3.1 Perturbation-based methods
Perturbation-based techniques aim to explain a black box by modifying the input
of the model. If the input data is a text, words in that text could be replaced by
other words; in the case of image data, pixels’ values are perturbed. This group
of understanding deep learning models assumes that the change in the model’s
output indicates which parts of input data are crucial in decision-making. The
importance of the input features is measured by the difference between output
prediction when the element is present and when it is absent. If an input feature is
removed or replaced and the model output changes significantly, the corresponding
feature is assigned a high value of importance. For image classification problems,
a significant change in the models’ output can be a different class of object from
the original prediction of the unperturbed image. For image quality assessment
problems, all changes in the quality estimation of the images are recorded.

The perturbation-based methods do not need access to the deep learning model,
or modify any part of the models. Therefore, they are able to be applied to deep
models, but also to any kind of black-box model. The traditional approach of
perturbation-based methods is implemented on the spatial domain of the input
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image. In other words, different regions in the images will be sequentially replaced
by a new set of pixels of the same size as the original region to create a modified
version of the input image.

3.3.1.1 Spatial domain

Following a process that was introduced by Zeiler and Fergus (2014) for the classic
image classification problem, we propose a workflow of generating an importance
map for an image in objective quality assessment with some modification. Figure
3.2 demonstrates the steps of our workflow. Given an image x0 and a pre-trained
IQA model f , the estimated quality of an image predicted by the IQA model is
denoted as the Original score, f(x0). A perturbation rule is applied to the original
image to obtain a set of perturbed images. These generated images are different
from the original image at specific locations while keeping the pixels in other regions.
Therefore, they can be considered as the neighborhood X0 of the original input
image. For each image x0i in the perturbed set X0, the quality score estimated
by the IQA method is denoted as f(x0i). The difference between the original
score and the perturbed score ∆f(x0i) = f(x0)− f(xoi) indicates the importance
of the corresponding location of pixel change. If the IQA model was designed
in a way that the output estimated score f(x) represents the better quality, the
higher absolute(∆f(x0i)) suggests more attribution of the modified region and vice
versa. If ∆f(x0i) is greater than 0, the perturbation region contributes toward
the prediction of higher quality. On the other hand, if ∆f(x0i) is negative, the
corresponding location contributes toward the prediction of poorer quality. After
calculating the importance values for all the regions in the image, we obtain a
saliency map that represents the attribution distribution of spatial features of the
original image to the objective quality score. This attribution map could provide
the local explanation of the IQA model f at a single instance x0.

It can be seen that the concept of image perturbation to identify the saliency
map is simple and easy to understand. The main problem with this idea is how to
generate the perturbed images, or how to absent different regions in the original
image. We aim to find methods for simulating the absence of a set of pixels without
creating many artifacts on the generated image. Thus, we consider four scenarios
of image generation: 1) replacing the region in the image with a black patch,
2) replacing the region with a patch of the mean value of the original region, 3)
replacing with a patch of the median value of the original patch and 4) blurring
the patch region.

Figure 3.3 illustrates four types of perturbation. Given a patch (Figure 3.3a)
from the original input image, in the first three perturbation types, the patch is
replaced by a set of pixels of the same size and constant values. First, the new patch
has all the pixel intensities equal to 0. This approach is taken from (Zeiler and

35



Chapter 3 METHODOLOGY

Original Image

Region Perturbation

IQA Model Original
score

Perturbed Images

IQA Model Perturbed
score

Importance
Calculation

Attribution Map

Figure 3.2: Perturbation-based approach on the spatial domain. The Importance
Calculation can be implemented by a simple subtraction.

Fergus, 2014). As for any region in the image regardless of its location or information,
the alternative patches are the same, which is a black area (Figure 3.3b); this type
of perturbation delete all the features of the original input. Therefore, it is also
called occlusion technique. However, when putting the black patch at the location
of the original patches, it could lead to perceptible artifacts 3.4a. Perturbations by
replacing with mean and median values of the target pixels’ locations, as their name
indicates, generate the alternative patches of constant intensity, which equal to
mean and median of all pixels in the origin, respectively. The synthesized patches
corresponding to the two techniques are represented in Figure 3.3d and Figure
3.3e. The two perturbed images are Figure 3.4b and Figure 3.4c. As we expected,
they look to contain fewer artifacts than the black patch case, but at the border
of the replaced patch, there is still discontinuation of the image pattern. These
distortions could strongly affect the quality score that the IQA model predicts,
which leads to an inaccurate attribution map. For minimizing the influence of this
issue, the fourth perturbation type is considered: blurring the patches. We use
the 2D Gaussian kernel as illustrated in Figure 3.3c and produce the alternative
patch as in Figure 3.4d. The corresponding perturbation image is shown in Figure
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(a) Original patch (b) Black patch (c) Blur filter

(d) Mean patch (e) Median patch (f) Blurred patch

Figure 3.3: Original patch (a) and difference types of perturbation (b,d,e,f).

3.4d. We can see that the image patterns at the border of the replaced patches are
smoother, which makes the images more naturalistic.

Further investigation about the effect of patch sizes and patch stride will be
described in Section 4.3.

3.3.1.2 Frequency domain

While the mentioned process performs on the spatial domain of the image, we
decided to extend the workflow to other domains of the image. This is a new
contribution to the field as no prior studies have investigated the contribution of
image features in other domains than the spatial. Because the majority of introduced
IQA methods only accept normal images, which are in the spatial domain, as input,
two additional steps of domain conversion are added as illustrated in Figure 3.5.
The purple block indicates the transformation from the spatial space to the target
space, while the other converts image information back to the spatial domain. The
first problem we encounter is identifying which target information domains should
be considered to bring meaningful explanations of the IQA methods. Based on
the observation that the IQA models were designed to mimic how human visual

37



Chapter 3 METHODOLOGY

(a) Black (b) Mean

(c) Median (d) Blur

Figure 3.4: Perturbed images generated using four perturbation types. The
Importance Calculation can be implemented by a simple subtraction.

system’s perceptive quality of an image and the literature of HVS on different
information domains (section 2.1), we select to investigate the frequency domain
and color space (HSV). The next issue is how to perturb image features in these
new domains. For each chosen space, different ways of hiding information were
implemented.

Given an input image (Figure 3.6a), the information in the frequency domain is
obtained by using the Discrete Cosine Transform (DCT) along each dimension of the
image. Thus, the Domain Conversion block in the diagram (Figure 3.5) is the DCT
in this case. After this step, the image information is represented in the form of
matrices of coefficients (for a color image, there will be three matrices corresponding
to three channels of the input image). A visualization of a transformed image is
illustrated in Figure 3.6b, in which the brighter intensity indicates the greater value
of the coefficient. We can notice that the upper left corner is brighter, which means
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Original Image
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Perturbation
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Perturbed Images
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IQA Model Perturbed
score

Importance
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Figure 3.5: Perturbation-based approach on other image domains.

that the coefficients in this area are bigger than others.

As shown in Figure 3.7, the DCT can separate images into three sub-bands:
low frequency, middle frequency, and high frequency. The highest energy of an
image is concentrated on the low-frequency sub-band, which contains the most
important visual part of the image. Therefore, the visual quality of an image
would be degraded significantly if the information in the low-frequency DCT sub-
band is distracted, while the image visual quality would not be affected if the
distraction happens in the high-frequency sub-band. Many computer vision tasks
take this knowledge to embed watermarks or compress the images without causing
imperceptible artifacts. We wonder if the IQA models follow this property in
their quality estimation process for images. Therefore, we design the perturbation
methods to hide the information at each frequency sub-band. At one time, the
information at one small sub-band is replaced by setting the magnitude to the
value zero, while the other coefficients have remained the same. After that, the
modified DCT matrix will be converted back to the spatial domain by using the
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(a) (b)

Figure 3.6: An image (left) and the DCT transformation (right).

Figure 3.7: Frequency distribution of DCT coefficients (Images taken from
(Madhuri and Bindu, 2015)).

Inverse Discrete Cosine Transform (IDCT). Thus, the Domain Inversion block
is IDCT for the frequency domain. The output of the domain inversion step is
perturbed images. These images are put through the IQA models to predict the
new quality scores. The next steps are similar as described in the perturbation on
the spatial domain: the importance of each frequency band is computed as the
difference between the original score and the perturbed scores. Finally, we have the
attribution maps which show the importance of frequency bins to the prediction of
image quality produced by the IQA methods.

3.3.1.3 Color domain

We also applied the workflow illustrated in Figure 3.5 to the color space HSV.
Our initial goal is to find which range of color (hue) will contribute the most to
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(a) Hue channel (b) Saturation channel (c) Value channel

Figure 3.8: Three components of image 3.6a in HSV color space.

the objective quality score. The HSV color space has three components: Hue,
Saturation, and Value. it describes colors (hue) in terms of shade (saturation) and
brightness (value). Thus, the influence of image feature components such as color
and brightness on the image quality can be modeled more separative in this color
space.

Because normal images are usually stored in RBG format, we need to convert
image pixel intensity from RGB to HSV. This is corresponding to the block Domain
Conversion in Figure 3.5. Similarly, the block Domain Inversion represents the
transform from HSV back to RGB color space.

Figure 3.8 represents three components of the image in HSV color space. The
perturbation for the color channel is a bit tricky because setting the pixel intensity
in this component to 0 will make their color change to 0. Therefore, we sequentially
replace each pixel of value in a range [pmin, pmax] by a new value pnew such as
pnew /∈ [pmin, pmax]. For example, by replacing all pixels whose values are in the
range of [0, 0.1] in channel Hue by 0.5, we get the new hue channel as shown in
Figure 3.9a. If other channels of saturation and brightness are unchanged, we will
have a new image (Figure 3.9b) of color perturbation. We can see that the red
parrot in the original image now is in blue. The new image is put into the IQA
model to predict the perturbed quality score, and the difference between the new
and the original quality score is recorded. The process is repeated until all the
color range in the image is changed once.

Similar procedures are applied for saturation and brightness channels. We
collected the score changes of all perturbations to evaluate the modification of
which channel will significantly change the objective quality of the image. The
result of this experiment is discussed later in section 4.5.
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(a) Perturbation in hue channel. (b) The perturbed image.

Figure 3.9: An example of perturbation in color space.

3.3.2 Grad-CAM and Guided Backpropagation
While the perturbation methods only make changes in input data to find what a
deep model is looking for to make a prediction, we can access the network layers and
visualize which are embedded in the latent space. In this section, we will describe
the two well-known XAI methods: Grad-CAM and Guided Backpropagation, and
apply them to explain the NR-IQA models.

3.3.2.1 Grad-CAM

Grad-CAM is proposed by Selvaraju et al. (2017) to visualize the feature maps
which are learned by the classification deep learning model. In the classification
model, the output is the predicted class of an input image. To get the class-
discriminative localization map for the class c, we first need to compute the
gradients of classification score yc for the final convolutional layer feature map Ak,
or ∂yc

∂Ak . This gradient is computed by using the backpropagation method. The
importance weight of each feature map to the class score yc is defined by taking
the global average of all pixels of location (i, j) in the feature map:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
(3.7)

Because the gradients change when Ak change, αc
k indicates how important each

feature is to the class c. At each convolutional layer, there are multiple feature
maps, they are combined by taking the sum of the importance weights and the
maps. A Rectified Linear Unit (ReLU) is used to filter out the parts that have a
negative effect on the class decision. The relevant features forwarding the class c
are formulated as:
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Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (3.8)

Because a ReLU is used in the formulation, the relevant features show parts of
the image that positive influence on the class c. In the regression problem, there
is only one output of infinite range, using Grad-CAM will result in visualizing
the features that increase the output value. Additionally, for finding the part of
images that decrease the output value, or the objective quality score, we will use a
modification of equation 3.7 for computing the importance weight of each feature
map toward this direction:

αc
k =

1

Z

∑
i

∑
j

− ∂yc

∂Ak
(3.9)

The authors also suggest applying Grad-CAM in the last convolutional layer in
the networks because the output of this layer is the features for the fully connected
layers, which are responsible for the regression of the model output value.

3.3.2.2 Guided Backpropagation

Similar to Grad-CAM, Guided Backpropagation Springenberg et al. (2014) is a
gradient-based XAI method. The important features of an output value are defined
by the gradient of images when backpropagating through ReLU functions.

Figure 3.10: Forward pass in a neural network. (Image taken from (Blog,
2020)).

In the forward pass of a neural network, let’s suppose there are ReLU activations
between each two maps as shown in Figure 3.10. We will have:

f l+1 = ReLU(f l) = max(f l, 0) (3.10)

The ReLU functions only allow the input values which are not negative. Simi-
larly, at the backward pass, by applying ReLU, only the non-negative gradients are
backpropagated to the previous layers. Let Ri denote the reconstructed feature
maps at layer i, the reconstructed of the previous layer Ri−1 can be formulated as:
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Figure 3.11: Guided backpropagation. (Image taken from (Blog, 2020)).

Ri−1 = (Ri > 0).(f i−1 > 0).Ri (3.11)

At the last layer, R is the gradient of the output value with respect to the
learned featured map. using this technique until the input layer is reached, we get
the visualization of relevant features in the input image to the output score. From
the formulations of this method, we can see that it can be applied not only to the
traditional classification problem but also to regression models.
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4 Experiments and results

In the current Chapter, we will describe the experiments that we implemented
using the proposed methods and evaluate their performance on some no-reference
image quality models. The metric choice will be explained in Section 4.1, while the
database selection for each experiment is clarified in Sections 4.2.1.

4.1 NR-IQA model selection
Although there are many no-reference image quality assessment methods that have
been introduced, due to time limitations and the scope of this work we have defined
the following criteria to select the IQMs we will use in our study.

• Popularity: The frequency that the models were mentioned in other studies
about IQA.

• Availability: If the source code of the metric is publicly available for repro-
ducing the process of estimating image quality and efficiency comparison.

• self-explainability: If the methods are patch-based or can provide the quality
map of the input image, they are the explainable AI model to some extent.
Therefore, we select the models which do not follow this approach.

Five deep learning NR-IQA models (Table 4.1) are investigated in our work,
including Koncept512 (Hosu et al., 2020), DBCNN (Zhang et al., 2018), CNNIQA
(Kang et al., 2014), SPAQ (Fang et al., 2020), and MUSIQ (Ke et al., 2021). Among
them, the first four models are Convolutional Neural Networks while the last have
transformer-based architectures.

4.2 Outliers detection
In this step, we will compare different methods to find outlier images, or the images
for which the IQA metric fails to predict the quality score. It should be mentioned
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Table 4.1: The No-Reference Image Quality Assessment models that are inves-
tigated in this work

NR IQA Method Year Trained on database Type of model

CNNIQA 2014 KonIQ-10k CNN
DBCNN 2020 KonIQ-10k Bilinear CNN
Koncept512 2020 KonIQ-10k InceptionResNetv2
SPAQ 2020 SPAQ ResNet-50
MUSIQ 2021 KonIQ-10k Transformer

that the absolute predicted score of an image made by a metric does not bring
meaningful information, but the relative scores of different images do. This is
the reason why in the previous studies that proposed a new image quality metric,
correlation measurements such as PLCC and SRCC were used to evaluate the
metric’s performance. Firstly, the database choice is explained in Section 4.2.1, in
which we pointed out a drawback of using the popular FR-IQA datasets in the
evaluation of BIQA methods. After that, three different ways of detecting outlier
images were implemented as will be described in Section 4.2.2 - 4.2.4. In addition
to outlier detection, we also find the best-predicted images, whose quality score
estimated by the IQA model well matches the subjective MOS.

4.2.1 Image quality databases selection
Initially, we expected to propose an outlier detection approach that can work
for any image quality dataset. In many previous studies ((Zhang et al., 2018),
(Kang et al., 2014), (Hosu et al., 2020)), full-reference image quality databases were
used to assess the performance of NR-IQA metrics. The efficiency of a metric is
defined as proportional to the correlation coefficient between the metric score and
subjective judgments. However, as our work focuses on no-reference metrics, which
predict the quality of an image without comparison to any reference, we figured
out the limitation of using the full-reference image quality database to evaluate
NR-IQA methods. While the NR-IQA metrics estimate the quality of an image
independently, the subjective scores in the full-reference images quality however
show the perceptual quality of an image in comparison with a reference image. In
other words, the subjective rating and the objective scores do not measure the
same property. For example, three images shown in Figure 4.1 are all associated
with the MOS = 5 (highest in subjective opinion) because they are the reference
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(a) Predicted score: 59.80 (b) Predicted score: 50.40 (c) Predicted score: 44.86

Figure 4.1: Three reference images from (Larson and Chandler, 2010) with
the same subjective quality judgment, but are predicted with very different quality
scores by an IQA model.

image in the psychological experiment. But their quality scores which are predicted
by the same NR-IQA models are significantly different, for example in the case of
using the DBCNN model, the objective score ranges from 44.86 to 59.80. Although
the MOS, or DMOS obtained from human participants can be simulated using
additional processes, we prefer to use the image quality assessment databases that
were built specifically for blind image quality assessments. Only one legacy dataset
is used in this part of the experiment. Table 4.2 summarizes the databases that
will be used in the outlier detection experiment.

Table 4.2: Image Quality Databases that were chosen for outlier detection
experiment

Database Year Type MOS/DMOS Score Range # Images # ratings per images

KonIQ-10k 2020 authentic MOS 0 to 100 10,073 9-15
CLIVE 2014 authentic MOS 0 to 100 1,162 137-213
SPAQ 2020 authentic MOS 0 to 100 11,125 137-213
TID2013 2013 synthetic MOS 0 to 9 3000 23

4.2.2 Outlier detection using correlation coefficient
The detail of this method was described in Section 3.2.1. In this section, we will
describe the experiments that were conducted to select the suitable correlation type
for outlier detection. We can choose any among Pearson correlation, Spearman
rank, or Kendall rank correlation to measure the correlation coefficient between

47



Chapter 4 EXPERIMENTS AND RESULTS

Figure 4.2: MOS versus predicted scores by the DBCNN model on the CLIVE
database.

the subjective judgments and the objective quality estimation. As the SRCC and
KRCC are similar, we only implemented the algorithm with PLCC and SRCC.
It is worth noting that the PLCC indicates the accuracy of the metric, while the
SRCC measures the monotone association between the subjective and objective
quality scores.

An example of the relationship between the subjective and objective score
produced by the DBCNN model on the CLIVE dataset is shown in Figure 4.2,
in which the horizontal axis represents the estimated score, and the vertical axis
represents the ground truth MOS. Each point corresponds to the location of the
evaluation of an image by the IQA model and human observer respectively. The
range of both subjective and objective quality scores is from 0 to 100, where 0
represents the worst quality and 100 is the best image quality. The outliers which
correspond to the overestimated images are expected to locate in the right-bottom
corner of the graph, while the underestimated ones are located in the top-left
corner.
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We use the algorithm mentioned in Section 3.2.1 using the Spearman rank
correlation coefficients on the set of the MOS and prediction scores in Figure 4.2.
Along with the outliers, we also plot the points whose removal will lead to the
largest decrease in correlation values. This kind of point is expected to represent the
images whose subjective and objective quality score well matches. Figure 4.3 shows
the results when 5% and 30% of total images are defined as outliers. The result
when using Pearson correlation with the same amount of outlier is represented in
Figure 4.4.

(a) Number of outlier = 5% (b) Number of outlier = 30%

Figure 4.3: Examples of outlier finding based on SRCC with different amounts
of outliers (5% in the left and 30% in the right). In the plots, the red dots
represent the outlier images, while the greengreen green dots indicate the best
prediction, the blue dots are other data point.

Comparing the results shown in Figure 4.3 and Figure 4.4, we can see that in
both cases, the best predictions found by the algorithm are located in the tails of
the data point cloud. The reason for this distribution is that the PLCC measures
the linear relationship between two variables or the closeness of association of the
points in a scatter plot to a linear regression line; meanwhile, the points which lie
on the tail of the points cloud contribute toward shaping the cloud shape more
linearity. Therefore, the removal of these points would lead to the largest declines
in correlation coefficients between the two variables (the MOS and the predicted
score). It should be noted that the “largest" correlation coefficient change can be
very small, at around 0.001 for a dataset of 2000 images, because this value is
inversely proportional to the number of images. In the case of the SRCC, as its
coefficient is computed based on the difference between the rank of the subjective
and objective score of each image (equation 2.3), the data points located in the
tails of distribution have the smallest rank difference, dedicate to increasing the
monotonic association of the two types of quality.
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(a) Number of outlier = 5% (b) Number of outlier = 30%

Figure 4.4: Examples of outlier finding based on PLCC with different amounts
of outliers (5% in the left and 30% in the right). In the plots, the red dots
represent the outlier images, while the greengreen green dots indicate the best
prediction, the blue dots are other data point.

On one hand, the qualitative results of the outliers which are detected by using
the SRCC show that this method is not effective for the detection task. When the
number of outliers is small, the outliers’ locations are appropriate, because they are
the ones near the top-left and bottom-right of the graph. However, when the number
of outliers is increased from 5% to 30% of total images, the distribution of outliers
moves towards the center of the graph. Therefore, the Spearman rank correlation is
not suitable for our algorithm. On the other hand, the outlier detection from using
the PLCC shows promising results. When the defined amount of outliers increases,
the outliers are still the nearest points from the top-left or bottom-right corner of
the graph. Therefore, we choose the PLCC for the computation of correlation for
this outlier detection method.

4.2.3 Outlier detection using RANSAC
The process of outlier detection by the RANSAC linear model is described in
Section 3.2.2. As the number of outliers in this method can change according to
the setting residual threshold, we select different numbers of outliers to evaluate
the efficiency of the algorithm. The result of the implementation of this algorithm
on two IQA datasets, the CLIVE and the TID2013, are shown in Figure 4.5 and
Figure 4.6, respectively. The black lines in the graph indicate the regression line
that are fitted by the RANSAC algorithm.

We can see that the finding best predictions are the points that locate on the
regression line because their distance to the line is equal to 0. The outliers are the
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(a) Amount of outlier = 5% (b) Amount of outlier = 30%

Figure 4.5: Examples of outlier finding using RANSAC with different amounts
of outliers (5% in the left and 30% in the right). In the graphs, red dots represent
the outlier images, while green dots indicate the best prediction. The black line
represents the linear model fitted by the RANSAC algorithm.

farthest points from the line. The linear regression line captures the relationship
between the subjective and objective quality score well in Figure 4.5. But when
the data shows some nonlinear relation between the two variables, the line fails to
reflect the relevance of the scores as in Figure 4.6. In both cases, we notice that
when the amount of outliers is small, the detection result is more reliable as the
outliers are more separated from the remaining data. If the number of outliers is
set to a big value, the outlier and the good predictions can be dismissed, as their
locations are close together. From our empirical experiments, determining 5% of
total images as the outlier will give the most consistent results.

4.2.4 Outlier detection by logistic mapping
The process of outlier detection by logistic mapping and standard deviation of
MOS is described in Section 3.2.3. We follow the same approach in the previous
experiment to evaluate the reliability of this outlier detection technique.

The result of the implementation of this algorithm on two IQA datasets, the
CLIVE, and the TID2013, are shown in Figure 4.7 and Figure 4.8, respectively.
The yellow lines in the graph represent the logistic mapping from the normalized
predicted score to the subjective MOS. When the setting amount of outliers is
increased from 5% to 30% in Figure 4.7, thanks to the constrain of reliable range of
MOS in equation 3.5, a number of data which are far from the non-linear mapping
lines but has a small standard deviation of the MOS are excluded from outlier
sets. Therefore, the detection result is more consistent with the location of outliers
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(a) Amount of outlier = 5% (b) Amount of outlier = 30%

Figure 4.6: Examples of outlier finding using RANSAC with different amounts
of outliers (5% in the left and 30% in the right) on the TID2013 dataset. In
the graphs, red dots represent the outlier images, while green dots indicate the
best prediction. The black line represents the linear model fitted by the RANSAC
algorithm.

(a) Amount of outlier = 5% (b) Amount of outlier = 30%

Figure 4.7: Examples of outlier finding using logistic mapping with different
amounts of outliers (5% in the left and 30% in the right) on the CLIVE dataset.
In the graphs, red dots represent the outlier images, while green dots indicate the
best prediction. The yellow line represents linear nonlinear mapping.

distinguish from other data. In addition, the mapping line also captures the relation
between the MOS and predicted scores better than the result from the RANSAC
method. For example, in Figure 4.8, the mapping line represents a nonlinear
association of the two types of quality score, which also can be observed from the
shape of the data cloud. Therefore, this method is more suitable for data that
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(a) Amount of outlier = 5% (b) Amount of outlier = 30%

Figure 4.8: Examples of outlier finding using logistic mapping with different
amounts of outliers (5% in the left and 30% in the right) on the TID2013
dataset.In the graphs, red dots represent the outlier images, while green dots
indicate the best prediction. The yellow line represents linear nonlinear mapping.

contains a nonlinear relationship between the subjective and objective scores than
the previous methods.

4.2.5 Results and discussion
In this section, we will find the answers to the following questions:

1. Which images are problematic for each IQA model?

2. What are the common features shared between the outlier images for each
IQA metric?

3. Are there any common problematic images for all the IQA models, regardless
of their architecture?

To answer the first question, we selected the outliers that are found by all
three outlier detection methods. By combining the result from all the previous
experiments, we have a robust result. Figure 4.9 shows the outlier finding on the
data predicted by the DBCNN on the CLIVE database. In the graph, the outliers
detected by the correlation coefficient, the RANSAC, and the logistic mapping are
colored in yellow, green, and red, respectively.

Some representatives of the outliers from the DCBNN model on the CLIVE
and the KonIQ-10k are shown in Figure 4.10 and Figure 4.11, respectively. The top
row shows the images of underestimated predictions, in which the objective scores
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Figure 4.9: The outlier detection result when combining the three methods
performed on the data predicted by the DBCNN on the CLIVE database. In
the graph, the outliers detected by the correlation coefficient, by the RANSAC
and by the logistic mapping are represented by the colors yellow, green, and red,
respectively. As shown in the figure different outlier detection approaches detect
the same image as an outlier.

are higher than the subjective score. The images of overestimated predictions are
in the bottom rows. The number of underestimated predictions over the number of
detected outliers for each IQA model on different datasets are reported in Table
4.2. We notice that the metrics tend to make more overestimated predictions.

Table 4.3: Number of failure predictions of each NR-IQA model on each dataset.
“Under” columns indicate the number of images whose quality is underestimated
by the IQA metric, “Over” columns represent the number of overestimated cases.

DBCNN CNNIQA SPAQ KonIQ MUSIQ
Under Over Under Over Under Over Under Over Under Over

KonIQ-10k 4 15 13 17 11 15 5 20 9 17
CLIVE 4 20 4 21 11 22 9 21 14 19
SPAQ 5 25 6 18 5 26 5 13 5 21
TID2013 0 33 1 11 0 29 0 25 4 27

54



Outliers detection 4.2

Figure 4.10: The images that the DBCNN model fails to estimate their perceptual
quality in the CLIVE database. Top row: underestimated prediction, bottom row:
overestimated quality.

Question number two is answered by comparing the detected failures case of
the same metric on each dataset. Due to the limit of space, we will not show all the
outliers images in this report. For the DBCNN model, we notice that the majority
of outliers in the authentic databases contain either blurred or dark backgrounds
on a large part of the image. The results on the synthesized dataset, the TID2013
are the images that were distorted by the JPEG 2000 transmission, which causes a
similar effect as blurring (Sun et al., 2020).

Figure 4.11: The images that the DBCNN model fails to estimate their perceptual
quality in the KonIQ-10k database. Top row: underestimated prediction, bottom
row: overestimated quality.
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Figure 4.12 shows the common outliers for the four IQA models. The top-left
image is taken from the CLIVE database, the bottom left is from the TID2013,
and the rests are from the KonIQ-10k dataset. This is the answer for the question
number four we listed at the beginning of this section. All the NR-IQA models
predict that these images have a higher quality than the subjective opinion. By
perceptual assessment, we notice the similar features between these images: they
are all blurry. This point out popular failure scenarios in which NR-IQA methods
do not work. This observation should be considered in the design of future IQA
models for better performance by tackling the issue of predicting the perceptual
scores for blurry images.

Figure 4.12: Common outliers with all IQA models.

In this section, we described the experiments to find the failure prediction of
NR-IQA models. It can be seen that the models face difficulty in estimating the
quality of blurry images. Some models of CNNs such as DBCNN and CNNIQA
have another challenge with images that were captured in low illumination. In the
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next experiment, we will explain which part of those outliers that are important in
the decision of the NR-IQA model.

4.3 Spatial domain perturbation
In this part, we will have to find the answer to the following questions: In spatial
space, which regions in the images play an important role in the prediction of an
NR-IQA model? We will use the perturbation-based method, that was described
in section 3.3.1 to generate the attribution map of each image area. Firstly, we will
need to find which type of mask and which size of the hidden patches will produce
a more effective visualization.

(a) Black patch (b) Mean patch

(c) Median patch (d) Smooth blur patch

Figure 4.13: The attribution maps produced by using four types of patch
perturbation with the input image in Figure 3.6a, and the CNNIQA model. The
brighter color represents the more importance of the pixels to the predicted score.
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We implemented the algorithm in section 3.3, with the four perturbation types:
black, mean, median, and smooth blur patches. Figure 4.13 shows the attribution
maps of the original image in Figure 3.6a with the quality score estimated by the
CNNIQA model. Similar results for other models are shown in Figure A.6 and
A.7. The brighter color represents more importance of the regions to the overall
quality score of the image. Apparently, the visual map corresponding to the black
type is the most detailed, in which we can recognize the features from the original
image; meanwhile, the results from other types of hiding patches are not meaningful.
We argue that this result may be affected by the property of the input image,
which has a large out of focus background. Thus, replacing the patches in this
area with a mean, median, or blur alternative will actually not change the image.
However, when the four types of patch replacement are tested on another texture
image (similar to the bottom right image in Figure 4.12), we still have the same
observation: using the black patches as the replacement for patches will provide
more meaning attribution map.

Although the reason which is mentioned above for choosing black patches as
the most suitable perturbation type seems appropriate. Our selection method is
subjective, which is based on the observation of some images when we use the
same normalization to visualize the attribution map. Therefore, it may not be the
best choice for the general datasets. In particular, when different normalization
techniques are applied to the attribution maps from each perturbation type, more
image features can appear in the map and make them become more meaningful.
We realize the limitations of our work. However, because there is no available way
in the literature to validate the explanation for the IQA problem, this is the feasible
way that can be used.

With regards to the size of the removed patch, we see that if it is small, the
computation cost will increase, but more detail of the original image features will
be captured in the attribution maps. On the other hand, if the size of the patches
is large, the computational time is reduced, but the attribution maps will be more
homogeneous as all the pixels within the patch size are aligned with the same
importance value. From our empirical experiments, the removal of image patches
of size 15x15 with a stride equal to 5 gives the best visualization result for the
input image of resolution 384x512.

Figure 4.14 and Figure 4.15 show the corresponding attribution maps of the
four common outlier images (Figure 4.12) to the prediction score estimated by the
CNNIQA and the DBCNN model, in respectively. Attributions maps for other NR-
IQA models can be found in Figure A.8 - A.10. Pixels in yellow colors indicate more
influence of the feature on the output prediction score, while those in darker colors
suggest less importance. We can notice that all the generated attribution maps
are coarse, without fine-grained details. However, several interesting observations
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Figure 4.14: Attribution maps corresponding to four images in Figure 4.12 to
the quality prediction by the CNNIQA model. The brighter color represents the
more importance of the pixels to the predicted score.

can be obtained when comparing the maps and the original images. The CNNIQA
models focus more on the homogenous regions of bright color in the images to
estimate the quality score. For example, the sky in the bridge image is associated
with the color yellow in the attribution maps; and the wall in the image of people
also corresponds to the bright color in the produced map. Meanwhile, the DBCNN
focuses on the pixels representing the water in the bridge photo, and three people in
the top-left photo. When the NR-IQA models have a deeper network of more hidden
layers, it is difficult to interpret the generated attribution maps. For example, in
the case of the KonIQ model with the InceptionRestNetv2 network which consists
of 164 layers, the attribution maps do not highlight any particular regions in the
image. Similarly, with the MUSIQ models of vision transformer architecture, four
attribution maps are abstract.

Our experiment results suggest the perturbation method of explaining a single
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prediction on the spatial domain can provide attribution maps, which represent
where the NR-IQA model looks for in the image to predict its quality. This
is equivalent to the first expectation which was mentioned in section 3.1 of the
explanation for IQA. If the number of hidden layers in the networks is small, the
attribution maps show patterns in the image. However, this method is not suitable
for explaining the network of deep layers, as the produced attribution maps become
more abstract.

Figure 4.15: Attribution maps corresponding to four images in Figure 4.12 to
the quality prediction by the DBCNN model. The brighter color represents the
more importance of the pixels to the predicted score.

4.4 Frequency domain perturbation
This part of our study aims to explain an IQA model in terms of how well it mimics
the human sensitivity to contrast in different frequency bands. The purpose of this
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section is to address the second and third expectations of XAI for IQA which were
mentioned in section 3.1. We will sequentially exclude the image information in
different frequency bands and measure the change in the quality prediction from
the models.

With each outlier image from Figure 4.12, the importance of image data in each
frequency level is represented in Figure 4.16, the objectives scores were produced
by the DBCNN model. The results for other models can be found in the Appendix
in Figure A.11 - A.18. The vertical coordinate represents the contribution of image
data at each frequency band to the estimated quality prediction, and the horizontal
coordinate represents the frequency. The negative values indicate that the removal
of the corresponding frequency band will result in an increase in the predicted
quality score. It happens that the importance distributions are different among
outlier images, however, we can notice a common similarity between the four plots:
the data at low frequency bands (except the lowest band) are somewhat misleading
the model. For all four outliers, removing the data at some low-frequency bins even
increases the predicted quality scores.

Figure 4.16: Contribution of data in each frequency band to the estimated
quality prediction by the DBCNN model of the four common outliers in Figure
4.12.
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(a) Gaussian blur (b) High frequency noise

Figure 4.17: Contribution of data in each frequency band of two types of
distorted images to the estimated quality prediction by the DBCNN model. The
error bar indicates the standard deviation.

We will compare these graphs with the results from the good prediction im-
ages. Because the different distortion types can result in different shapes of the
importance distribution, we provide the result for two common types of distortions:
Gaussian blur and high frequency noise. Figure 4.17 shows the average importance
distribution for the images which are distorted by the two types of distortion to
the prediction by the DBCNN model. The graph on the left suggests that the IQA
model weighted more score on the lowest frequency bin, the middle bins are also
important with lower importance values; meanwhile, the data at the high frequency
bands seem to not contribute significantly to the final prediction result. Considering
these good prediction images are distorted with the same visual appearance effect
of the outlier images - blurring, we notice the difference: the model assigns more
weight to the high-frequency information of the outliers. That might be a reason
for the inaccurate predictions of the IQA model on the challenge images. Similar
observation can be seen from the results produced by the CNNIQA model, which
is shown in Figure A.11 - A.12. Thus, the difference in weight the models assign to
each frequency in the outliers and the common images lead to the mismatch of the
objective and subjective quality scores. The results for other models are shown in
Figure A.13 - A.18.

Comparing the two graphs in Figure 4.17, we see that the importance values of
the mid-range frequency in the images which were undergone high frequency noised
are very small, and if the highest frequency band is removed, the overall quality
will be better. This explanation shows that the model (DBCNN) does mimic HVS
as the distortions are embedded at high-frequency levels. This provides insight
into how image features at different frequency bands contribute to the estimated
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quality of the image. This knowledge can forest the trust in the models, as an ideal
model should predict the quality of an image the same way our HVS perceives it.
However, if a model does not show a similar property as HVS, it does not mean
that it can not be trusted at all. In that case, the analysis of what image features in
the spatial domain, or which information is encoded in models during the process
of making a prediction should be considered.

4.5 Color domain perturbation
In this section, we investigate how the NR-IQA models react to changes in achro-
matic and chromatic dimensions in the HSV color space. The conversion from the
RBG to HSV and vice versa was implemented by using the built-in function of
skimage library. The intensity of pixels in HSV is in the range [0.0, 1.0]. The score
changes were collected for all the combinations of replacing pixel values in hue,
saturation, and value channels with a new pixel value.

Figure 4.18: The trend of estimated quality score change from the DBCNN
model when perturbing hue, saturation and value channel. The error bars indicated
the standard deviation.

First of all, we notice that there is no common particular hue that significantly
contributes to the quality score of images of all IQA models. If we delete any color
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from the input image and replace it with another color, its corresponding objective
quality score differs, but score differences are similar between all the perturbations.
Meanwhile, changing the value channel of images leads to a significant change
in objective quality scores. Figure 4.18 represents the tendency of the change of
estimated quality scores from the DBCNN model on the set of the undistorted
images in the TID2013 dataset Ponomarenko et al. (2013). In the graphs, the red
line denotes the score change when the hue channel is perturbed and the two other
channels are preserved. The green and blue lines represent the perturbation in
only saturation and value channel, respectively. The correspondence graphs of the
other three IQA models can be found in the Appendix (Figure A.19 -A.20). There
is a clear agreement between the graphs in those figures: the blue lines are the
highest, followed by the green line, and the red lines are in the lowest position.
They suggest that all NR-IQA models that we are considering are more sensitive
to the change in value channel than in the hue information on the set of images
from the TID2013.

As the color space is the knowledge domain that we want to explore, the same
experiments were implemented on the images which are degraded by color-based
distortions in the KADID-10k database (Lin et al., 2019). Four sets of images
correspond to four distortion types: color diffusion, color shift, color quantization,
and color saturation are investigated separately.

The description of each distortion type from Lin et al. (2019) provides informa-
tion about how they were processed from the pristine image. For example, color
diffusion images were collected by applying Gaussian blur to the color channels
(a and b) in the Lab color space; color shift: randomly translating the green
channel, and blending it into the original image; color quantization: quantization
and dithering the original image to 8 -64 colors; and color saturation: multiplying
the saturation channel in the HSV color space by a factor then convert back to
RGB space. The subfigures in Figure 4.19 show the tendency of the change in
estimated quality scores by the DBCNN model of these distorted images when each
channel: hue, saturation and value is perturbed while the two other channels are
kept remaining. We can see that the three graphs 4.19a, 4.19b and 4.19d share
the same pattern in which the scores change corresponds to the perturbation in
hue channels is the largest, followed by the scores changes of the perturbation of
saturation and hue channels. However, the red and green lines in these graphs are
not completely separated but intersect at some points. Especially, the three lines
which represent the score change of perturbation in three channels in the graph
4.19c are located in the same position. It indicates that the model reacts to the
change in the three channels similarly to each other. Combining the observation
in Figure 4.18 and this observation, we could not claim that the model is more
sensitive to the change in achromatic than the change in chromatic information.
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(a) Color diffusion (b) Color shift

(c) Color quantization (d) Color saturation

Figure 4.19: The trend of estimated quality score change from the DBCNN
model when perturbing hue, saturation, and value channel on subsets of color-
distorted images. The error bars indicated the standard deviation.

In this section, we discussed the results of using the perturbation method
on color space to check if a NR-IQA model follows the same property of HSV
with regard to the change of information in achromatic and chromatic images.
Our experiment results suggest that we can not claim whether the model work
with this principle or not. Although the explanation method which was used is
understandable and easy to extend to other information domains, it has several
drawbacks. Its first disadvantage is data-dependent: the explanation results rely
on the input image and they can be contradictory with different images. Thus, it is
difficult to form a reliable explanation of the model. Additionally, the perturbation
process which hides a part of color information may cause unaware distortion
on the perturbed version of the image, which in the end, affects the explanation
results. Therefore, future work which focuses on designing a better way of removing
information without seeding more distortions on the original image is important to
XAI for image quality assessment.
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4.6 Other XAI methods
In the previous sections, we treated NR-IQA models as black boxes and implemented
experiments without the knowledge of the model’s architecture. In this section, we
will use XAI methods (Selvaraju et al., 2017), (Springenberg et al., 2014) for CNN
models that require access to each layer of the models. These XAI methods were
originally proposed for classification (Schöttl, 2022) and are modified for regression
models in our work. In the following, we will describe the selection of XAI methods
for each NR-IQA model.

CNNIQA
Among the five NR-IQA that are considered in this work, CNNIQA has the

simplest architecture with only one convolutional layer, follows by three fully
connected layers. Because of its simplicity, using Grad-CAM already provides good
explanation results. Figure 4.20 shows the feature in the images that increases
the estimated quality score (in the left) and those will lower the quality score (in
the right) of the two images in the left of Figure 4.12. More visualization results
of other images can be seen in the Appendix in Figure A.21. The brighter pixels
in the positive feature maps indicate a larger contribution toward the increase of
model output, and those in the negative feature maps indicate a large contribution
toward the decrease of model output. On the other hand, the dark pixels that
appear in both types of feature maps have less influence on the quality of the image.
These feature maps address the second condition of expected explanation which is
mentioned in section 3.1.

We can see that in the photo of the bridge, because of the sky, the model
predicts the image has high subjective quality; meanwhile, the details of the bridge
lower the overall quality score. However, when judging this image, human observers
tend to not focus on the white sky but notice the faded color. That can be a reason
why the model fails to estimate the subjective quality score of this image. In the
image of texture (in the second row), we can see the highlight in the smooth area
in the maps of positive features, and some texture appears on the negative map.
It is important to point out that many smooth areas in this image are caused by
distortion. Thus, they should lower the estimated score of the model, which is in
contrast to what is presented in the positive feature map. Therefore, the model is
not able to estimate the image’s perceived quality.

From the above feature maps, it seems like this model rates an image of high
quality if they have a large homogenous area. However, looking at the corresponding
feature maps (in Figure A.21) of other images, we have a contrast observation:
the positive features in those images highlight the edges of objects (for example,
the tables, the chair, or the border of the flashlight); and the negative features
indicates the smooth area. The inconsistency in the influence of different image
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(a) Positive features (b) Negative features

(c) Positive features (d) Negative features

Figure 4.20: The positive and negative features visualized by Grad-CAM with
the CNNIQA model. The brighter pixels in the positive feature maps indicate a
larger contribution toward the increase of model output, and those in the negative
feature maps indicate a large contribution toward the decrease of model output.

features (edges, smooth regions) on the predicted quality of images brings distrust
in this model.

DBCNN
The DBCNN has an architecture of two feature extractors: one was tailored

from the pretrained classification model VGG16, and the other was adopted from
a pretrained distortion classification model S-CNN. Because the model consists of
two sub-networks, and using Grad-CAM requires the selection of a convolutional
network to visualize the learned feature; we can not decide which of the last
convolutional layers in two branches is more important to the prediction score.
Therefore, Guided Backpropagation was used to interpret the extracted features
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from the input image.

Figure 4.21: The relevant features visualized by Guided Backpropagation with
the DBCNN model. The brighter pixels indicate more attribution to the output
of the model.

Figure 4.21 shows the features in the outlier images that are relevant to the
objective quality score estimated by the DBCNN model. They represent the answer
to the second condition of expected explanation which is mentioned in section 3.1.
From the four relevant feature maps, we can see that the models mostly detect the
edges of the image to make their prediction about image quality In the top-left
image, the faces of three persons are highlighted, and interestingly, the neck of the
man and a small poster on the windows seems to be the most important features
that affect the quality score of the image. In the image of the bridge, all the edges
of the objects (bridges, buildings, and even the waves) are detected and contribute
significantly to the output of the model. Similar observations can be seen from the
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bottom-row images, in which the edges of strong gradients are illustrated in the
relevant maps.

From these feature maps, users can decide whether to trust the model or not,
based on their subjective evaluation of the relevant features. For example, if a
human observer pays attention to the necks of a person in an image to rate its
perceptual quality as the model does.

SPAQ
The SPAQ model adopted the pretrained ResNet-50 classification model and

retrained it for image quality assessment. We also use Guided Backpropagation
to visualize the pixels in the input images that affect the output of the model the
most.

Figure 4.22 shows the features in the outlier images that are relevant to the
objective quality score estimated by the SPAQ model. We can see that these
feature maps highlight not only the edges of objects in images but also many pixels
in the horizontal and vertical directions. Even in the regions of the sky, there are
many bright dots shown in the relevant feature maps. In the bottom right images,
the feature maps focus on all the regions over the images. This suggests that the
model either fails to extract features from this image or looks at all the regions
in the image with the same attribute to predict the quality score. Moreover, the
appearance of the bright dots in both horizontal and vertical lines can suggest that
this model is sensitive to the distortions that cause degradation in those directions.
For example, compression artifact that leads to block distortions (Unterweger,
2013). However, a large number of images needed to be considered to confirm this
observation.

KONIQ
The KonIQ model adopted the deep network InceptionResNetv2 classification

model and retrained it for image quality assessment. We also use Guided Back-
propagation to visualize the pixels in the input images that affect the output of
the model the most.

Figure 4.23 shows the features in the outlier images that are relevant to the
objective quality score estimated by the KonIQ model. address the second condition
of expected explanation which is mentioned in section 3.1. These feature maps
are somewhat similar to those of the DBCNN model (Figure 4.21). However, they
are different in some extent. For example, in the top-left image, the KonIQ model
focuses less on the facial features of the people but pays more attention to the shoe
of the woman on the right. And for the top-right image, this model only treats a
part of the bridge as well as some buildings as important features to predict the
image’s quality.
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Figure 4.22: The relevant features visualized by Guided Backpropagation with
the SPAQ model. The brighter pixels indicate more attribution to the output of
the model.

In this section, we showed the explanation provided by using the popular XAI
methods on NR-IQA problems. Our analysis suggests that these techniques are
able to explain the prediction of the model by showing which pixels are relevant
to the model’s output. This type of explanation satisfies the second condition of
good explanations, which was mentioned in section 3.1. However, they are only
applicable to CNN-bsed models, and can not explain other types of models such as
transformers. Based on the attribution maps of many images, a user can decide
whether to trust the model or not based on their subjective evaluation because
there is currently no objective framework for assessing the explanation of NR-IQA
models. Although it is difficult, this could be an important direction for future
work in XAI for NR-IQA.
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Figure 4.23: The relevant features visualized by Guided Backpropagation with
the KonIQ model. The brighter pixels indicate more attribution to the output of
the model.
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5 Conclusions and Future work

5.1 Conclusion

The objective of this work was to provide the explanation for NR-IQA models and
answer four questions which were presented in section 1.3. We conducted interviews
to find the expected properties of goods explanation for IQA models. A workflow
was proposed to provide knowledge about the model. First of all, we provide the
limitations of the model by finding the set of images that the model fails to predict
their subjective quality. Different outlier detection methods were introduced and
compared. As each of them has its own drawbacks and advantages, we figured out
that combining the three methods will provide robust results. Our experiments
show that the existing NR-IQA models face difficulty in predicting the perceptual
quality for images with blurring appearance.

We used perturbation methods, which were applied to any black-box model, on
three information domains: spatial, frequency, and color to explain the NR-IQA
model. Our experiment shows that the attribution maps from this method can be
interpreted for the network with a small number of hidden layers. However, if the
networks are deeper, it is difficult to explain the attribution of image features in
the overall image quality. Our experiment results in the frequency domain and
color space show that it is not feasible to claim whether the model mimics HSV in
predicting image quality or not by using the explanation from the perturbation
method. Although this XAI method does not require access to the architecture of
the model and can be used to explain any black box model, its explanation results
need to be validated.

We also used the popular XAI methods (Grad-CAM and Guided Backpropa-
gation) which were originally proposed for classification problems to visualize the
relevant features in the image that affect the objective quality of images. They
resulted in the attribution maps which show what in the images matter to the
predicted score of a CNN-based model. These attribution maps shed some light on
the understanding of the NR-IQA model, however, users still need to have expertise
in the field to build trust in the model.
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5.2 Future works
Although our work studied several ways to explain an NR-IQA model, there are a
few limitations that can be resolved in the future to bring deeper contribution to
the field of IQA:

• There are no objective criteria to assess the effectiveness of each perturbation
type in the spatial domain.

• The color perturbation results may be affected by the content of the image,
if an image has a dominant hue, replacing that with another hue value can
significantly change the objective quality score. When we consider a group
of images, their dominant color can be different. In the end, if we take the
average score changes, they may compensate for each other.

From the preliminary of this work, we can extend the studies in XAI for NR-IQA
with several directions, which are the followings:

• Finding a more effective method to hide the information in each patch of the
image, in order to not produce more artifacts on the image. In this case, the
attribution maps from the perturbation methods will become robust.

• Creating a framework to objectively evaluate the explanations produced by
the proposed methods.

• Finding other explanations that use the information from the embedded space
in the deep learning model.
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The following images are the graphs from the experiments of outliers detections.

(a) On KonIQ-10k test set (b) On CLIVE

(c) On SPAQ (d) On TID2013

Figure A.1: MOS vs quality score predicted by DBCNN model on four databases.

The following figures are from the experiments to select which perturbation
type is suitable in the spatial domain.

75



Appendix A APPENDIX

(a) On KonIQ-10k test set (b) On CLIVE

(c) On SPAQ (d) On TID2013

Figure A.2: Examples of outlier finding based on correlation coefficient using
the CNNIQA model on different databases. In the plots, the red dots represent
the outlier images, while the green dots indicate the best prediction.
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Figure A.3: The twelve most outliers from CLIVE datasets with the CNNIQA
model.
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Figure A.4: The twelve most outliers from KonIQ-10k datasets with the CN-
NIQA model.

Figure A.5: The twelve most outliers from TID2013 datasets with the CNNIQA
model.
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(a) Black patch (b) Mean patch

(c) Median patch (d) Smooth blur patch

Figure A.6: The attribution maps produced by using four types of patch pertur-
bation with the input image in Figure 3.6a, and the DBCNN model. The brighter
color represents the more importance of the pixels to the predicted score.
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(a) Black patch (b) Mean patch

(c) Median patch (d) Smooth blur patch

Figure A.7: The attribution maps produced by using four types of patch pertur-
bation with the input image in Figure 3.6a, and the SPAQ model. The brighter
color represents the more importance of the pixels to the predicted score.
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Figure A.8: Attribution maps corresponding to four images in Figure 4.12 to
the quality prediction by the SPAQ model.

81



Appendix A APPENDIX

Figure A.9: Attribution maps corresponding to four images in Figure 4.12 to
the quality prediction by the KonIQ model.

82



Figure A.10: Attribution maps corresponding to four images in Figure 4.12 to
the quality prediction by the MUSIQ model.
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Figure A.11: Contribution of data in each frequency bands of the Gaussian
blurred images to the estimated quality prediction by the CNNIQA model.

(a) Gaussian blur (b) High frequency noise

Figure A.12: Importance of data in each frequency level of two types of distorted
images to the estimated quality prediction by the CNNIQA. The error bar indicates
the variation of importance values.
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Figure A.13: Importance of data in each frequency level of the Gaussian blurred
images to the estimated quality prediction by the SPAQ model.

(a) Gaussian blur (b) High frequency noise

Figure A.14: Contribution of data in each frequency level of two types of
distorted images to the estimated quality prediction by the SPAQ. The error bar
indicates the standard deviation.
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Figure A.15: Importance of data in each frequency level of the Gaussian blurred
images to the estimated quality prediction by the SPAQ model.

(a) Gaussian blur (b) High frequency noise

Figure A.16: Contribution of data in each frequency level of two types of
distorted images to the estimated quality prediction by the KONIQ. The error bar
indicates the standard deviation.
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Figure A.17: Contribution of data in each frequency level of the Gaussian
blurred images to the estimated quality prediction by the MUSIQ model.

(a) Gaussian blur (b) High frequency noise

Figure A.18: Contribution of data in each frequency level of two types of
distorted images to the estimated quality prediction by the MUSIQ. The error bar
indicates the standard deviation.
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(a) CNNIQA model

(b) KonIQ model

Figure A.19: The trend of estimated quality score change when perturbing hue,
saturation and values.
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(a) SPAQ model

(b) MUSIQ model

Figure A.20: The trend of estimated quality score change when perturbing hue,
saturation and values.
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(a) Positive features (b) Negative features

(c) Positive features (d) Negative features

Figure A.21: The positive and negative features visualized by Grad-CAM on
CNNIQA model.
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