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Abstract
When working with hyperspectral images, a crucial step is to correctly identify the
illumination conditions and remove their influence from the recorded scenes. While
the most common approach is to capture a reference target of known reflectance as
a ground truth measurement, this might not be sufficient for specific applications
under certain conditions, such as unmanned aerial vehicle (UAV) based captures
of forests and agricultural areas. Here, the proper placement of reference targets
within the scene can be complicated or impossible, and time-separated captures
for scene and calibration can be insufficient due to changes in cloud coverage
or similar effects. A possible solution to this problem is the estimation of the
illuminant from the scene capture directly without the use of a calibration target.
Different approaches exist to tackle this underconstrained problem, mainly based on
image statistics or by making use of the physical properties of the recorded objects.
Nevertheless, each of those algorithms has its flaws, such as the dependency on
objects with specific properties, for example convex surfaces or a large variety of
different reflectance properties, while other approaches rely on the identification
of specular highlights. These constraints might not be sufficient for applications
involving vegetation such as agriculture or environmental monitoring, and therefore
a need exists for the development of precise illumination estimation algorithms.

In this work, a novel image statistics-based approach is proposed to estimate
the relative spectral power distribution (SPD) of daylight illuminants from a given
hyperspectral radiance cube. The created method restricts the possible results in
the spectral domain by applying an effective constraint to limit the search area by
utilizing the information inherited in the image cube. Within the resulting search
area, a set of random spectra are generated which represent the image-dependent
plausible illuminants. These spectra are then transferred into a pre-trained, image-
independent principal component space, where an intersection between these
image-dependent plausible illuminants and a set of measured physically possible
illuminants is calculated. The scene illuminant is then derived by transforming this
intersection point back to the spectral domain, where the estimated illuminant can
be used to recover the relative scene reflectance values. The framework created
in this work is tested on a set of 150 hyperspectral radiance cubes simulated by
using 25 spectral reflectance cubes and six representative daylight SPDs. The
daylight illuminants are chosen based on their inverse correlated color temperature
and cover a broad range from vertical daylight, and overcast sky to clear blue
sky conditions. The estimated SPDs and the recovered reflectance spectra are
evaluated using several well-adopted full reference metrics for spectral comparison.
In addition, the performance of the proposed model is compared to several other
image statistics-based illuminant estimation methods and it is demonstrated that
the new model outperforms the competitors significantly. The results clearly show
the ability of the proposed model to accurately estimate the SPD of a representative
variety of common daylight illuminants in the VIS and NIR range.
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1 INTRODUCTION

1.1 Contextualization of the Problem

In the last decades, multi- and hyperspectral imaging emerged to a promising tech-
nology beyond satellite-based earth observation. Especially with new developments
in real-time spectral imaging and snapshot systems, a broad field of applications
are becoming accessible, such as agricultural surveillance (Lu et al., 2020), food
quality assessment (Ma et al., 2019) or cultural heritage (Jung, 2017). For most use
cases, it is of particular interest to convert the captured scene from radiance data
to reflectance values. To do so, the common practice is to capture a reference target
within the same conditions, usually placed within the scene directly or right before
or after the scene capture (Yao and Lewis, 2010). Since the reflective material
properties of such a target are relatively uniform over a broad spectral range,
the obtained data can be used as ground truth measurement for the SPD of the
illuminant present in the scene. However, especially in uncontrolled conditions such
as outdoor measurements, the use of a reference target can cause severe problems.
Weather conditions and cloud coverage can change rapidly, causing a need for
recapturing the ground truth data (Wendel and Underwood, 2017). In other cases,
the correct positioning of the target might be complicated. One way to overcome
these challenges is to eliminate the need for capturing a reference target with the
data in the first place and estimate the illuminant directly from the captured data
itself. Although several such estimation approaches were developed in the past,
there is still room for significant improvement in terms of accuracy and robustness
to a variety of input data. Since many existing algorithms require specific scene
content such as specular reflections or objects with "flat" surface reflectances as
discussed in Chapter 3, this topic is still considered ongoing research with room for
finding new ways to estimate scene illuminant spectra.
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Chapter 1 INTRODUCTION

1.2 Scope of this Work
The scope of this work is to develop a novel framework for the estimation of typical
daylight illuminant spectra from normalized radiance hyperspectral cubes for in
situ measurements. Thereby, the proposed model should not rely on any ground
truth measurements such as the capture of a dedicated reference target of known
reflectance. Such an algorithm is especially valuable for industrial applications
where the proper capture of ground truth data is not possible. A relevant application
in mind hereby are measurements for surveillance of forests and agricultural areas,
for example by using a hyperspectral snapshot camera mounted on an UAV (Woo
et al. (2021), Liu et al. (2020), Chen et al. (2019), Dash et al. (2017)). Of
particular interest for vegetation analysis approaches spectral is thereby the VIS
and NIR range (Marchi et al., 2022). Nevertheless, the proposed model should
not be restricted to these applications. The focus of this work hereby lies on the
development of a novel image statistics-based algorithm using general constraints
and restrictions for the ill-posed problem of illuminant estimation. The possibility
is explored to accurately estimate daylight spectra within an image-independent
principal component space by finding the intersection of image-dependent possible
spectra and a set of physically plausible spectra. It is evaluated by comparison of
the estimated SPD with the corresponding ground truth illuminant, by comparing
the illuminant estimation accuracy of the proposed model against competing image
statistics-based algorithms, and by analyzing the reflectance images recovered by
using the estimated illuminants against the ground truth values. To evaluate
different properties of the estimated spectra, well-adopted metrics are used for
comparison against the ground truth and each other.

1.3 Main Contributions
In this work, a novel approach is proposed to the unsolved problem of the estima-
tion of the illuminant SPD from image data without ground truth measurements.
The main contributions of the author are the development of the proposed frame-
work both theoretically and in practice. For the practical implementation of the
framework, the programming language Python version 3.9 was used.

The theoretical development of the algorithm included a broad-ranging review
of existing literature in the field. Upon this foundation, a first approach for the
estimation was created by using colorimetric information for the estimation of
the illuminant as well as spectral correction factors as proposed by Derhak and
Rosen (2006) to reconstruct the illuminant spectrum and to lessen the influence of
metamerism on the results. Due to technical challenges with the reconstruction
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Outline and Structure 1.4

of the illuminants, this approach was abandoned. Instead, the development of a
method using effective but generic constraints as well as an image-independent
principal component space were prioritized. The main benefit of this second
approach is the utilization of the full potential of the available spectral data. The
theoretical considerations went hand in hand with the practical implementation of
the proposed method. Hereby, the practical implementation in Python does not
only includes the main components of the algorithm itself but also the necessary
data preprocessing and utility functions. Among others, functions were created
for loading and saving hyperspectral data of different formats; the calculation of
reflectance and radiance data; for cropping, interpolation, and normalization of the
spectral data; for the calculation of colorimetric representations of the data cubes,
the proper handling of image metadata; the implementation of existing algorithms
and spectral comparison metrics for the evaluation and batch-processing as well
as evaluation scripts for the creation and analysis of the results. A link to the
relevant Python code that forms the practical part of this work can be found in
Appendix A. In addition, Appendix B shows the structure of the code with all
implemented classes, attributes, and functions in the form of UML diagrams. The
designed method stands out from competing algorithms for two main reasons: The
creation of an image-independent principal component space (PCS) in which the
estimation is performed, as well as the estimation approach within this common
space itself by combining information derived from image-dependent plausible and
physically possible spectra.

1.4 Outline and Structure
This work is divided into five main parts. At first, Chapter 2 THEORY provides
the necessary theoretical background on the topics of multi- and hyperspectral
imaging, prevalent acquisition techniques, and the importance of illuminant in-
variant representation of captured imaging data. In addition, a comprehensive
review is given of the related work done in the field of illuminant estimation from
spectral data, categorized by the higher-level approaches established in the past.
As a main part of this work, Chapter 3 METHODOLOGY then focuses on the
proposed framework for illumination estimation. First, the assumptions and con-
straints are defined, followed by a detailed explanation of the novel framework itself.
Afterwards, a concise summary is given of the main steps for the convenience of
the reader, while the following sections focus on the experiments for evaluating
the model. Here, the preparation of the training and test data is explained and
the metrics used to evaluate the results are defined. Chapter 4 RESULTS then
illustrates the obtained results before critically discussing the findings in Chapter 5
DISCUSSION. Last, Chapter 6 CONCLUSION summarizes the key findings and
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Chapter 1 INTRODUCTION

gives an outlook on possible improvements that can be done to further develop the
proposed illumination estimation algorithm in the future.

1.5 About the Use of Artificial Intelligence
for the Creation of this Work

Within the process of creating this work in written form and practical implemen-
tation, Open AI’s ChatGPT was used for minor tasks of debugging self-written
Python code (such as syntax errors) to streamline the process of code creation. The
author hereby assures that besides the above-mentioned tasks, neither ChatGPT
nor other comparable tools were used for the creation of significant parts of the
program code; the process of writing, editing, rephrasing, or creating this report;
especially with respect to the development of the proposed ideas and techniques
that are presented in this work.
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2 THEORETICAL BACKGROUND
AND RELATED WORK

This chapter aims to provide the relevant background on fundamental concepts
related to this work. First, a brief introduction is given to basic terminology in
the field of hyperspectral imaging. Then, an overview of different spectral data
acquisition techniques is presented, followed by some details on how the captured
raw data is processed after the acquisition process. Afterwards, existing work in
the field of illumination and reflectance estimation is categorized and discussed.

At this point, some clarification must be given about the term illumination
estimation, since its definition differs with the context. When talking about
traditional color imaging and computational color constancy within the context of
colorimetry, illumination estimation usually refers to the recovery of the chromaticity
of a given light source present in the scene. However, in the context of spectral
imaging, which applies to this work, illumination estimation describes the recovery
of the light source’s SPD, in other words, its power as a function of wavelength.

2.1 Hyper- and Multispectral Imaging
The following section focuses on fundamentals and basic principles within the field
of spectral imaging, starting with some clarification about important terminology
within the field. Then, a brief summary is given on what hyperspectral data is, how
it is recorded using different acquisition techniques, and how it is post-processed to
utilize the captured information.

2.1.1 Electromagnetic Spectrum and Spectral Range
The electromagnetic spectrum is caused by electromagnetic radiation of photons
propagated as waves. Hereby, the distance between the peaks of such a wave is
called the wavelength and describes the energy within the spectrum. It is possible to
divide the electromagnetic spectrum into different wavelength-dependent regions, as
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Chapter 2 THEORETICAL BACKGROUND AND RELATED WORK

can be seen in 2.1. Hereby, the shorter the wavelength, the higher the frequency and
energy of the corresponding electromagnetic radiation. The sensitivity of a spectral
imaging system to a specific region of wavelengths within the electromagnetic
spectrum is called its spectral range (Sun, 2010). The human ability to sense
electromagnetic radiation through the visual system is thereby limited to the
spectral range of around 380 - 780nm (Berns, 2019). This range is usually referred
to as visible light (VIS). Other important spectral ranges in the field of spectral
imaging are ultraviolet (UV) (around 100 - 400nm), near infrared (NIR) (around
780 - 1400 nm), and short wavelength infrared (SWIR) (around 1400 – 3000nm),
whereas the boundaries of the respective ranges are only loosely defined.

Figure 2.1: The electromagnetic spectrum and its regions, from Sun (2010).

2.1.2 Spatial and Spectral Resolution
Spatial resolution describes how detailed a scene can be captured geometrically and
how fine the resulting capture is resolved by the image sensor (Liang and Wang,
2020). The main property which defines the spatial resolution is the pixel size and
the number of pixels that built the sensor array. On the contrary, the spectral
resolution is defined by the number of bands of a given imaging system as well as
the bandwidth of each of the spectral bands (Liang and Wang, 2020). In general,
the more spectral bands are used for a given wavelength range, the finer resolved
are the measured spectra of a given device.

The number of bands can vary from three broadband channels when recording
color images in the VIS range (low spectral resolution) up to hundreds of very narrow
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Hyper- and Multispectral Imaging 2.1

bands of hyperspectral acquisition devices with a very high spectral resolution.
Hereby, a trade-off exists between the spatial and spectral resolution, as discussed
by Hagen and Kudenov (2013) and evaluated in depth by Jia et al. (2022). The
reason for this trade-off is a decreased amount of effective energy collected by the
system when reducing the pixel size, which is important to increase the spatial
resolution of a sensor Jia et al. (2020). Less energy is then available for a precise
detection in terms of spectral resolution. On the contrary, increasing the spectral
resolution of a system leads to a decreased amount of energy per band, which
causes a need for increased pixel size.

2.1.3 Multi- and Hyperspectral Image Data

In conventional digital color imaging, the data captured by a camera consists of
three broadband channels red (R), green (G), and blue (B), which correspond to
the respective long, medium, and short wavelength regions of the visible spectrum.
In contrast, multispectral and hyperspectral data is recorded by using many more
channels, each representing a narrower part of the electromagnetic spectrum.
Although not strictly defined, the term multispectral image thereby usually refers
to a capture which contains more than three and up to 10 bands (Lu and Fei, 2014).
Hyperspectral images on the other hand can consist of up to several hundreds of
narrow bands, where each channel refers to a very narrow region of the spectrum,
resolving a scene with a much higher spectral resolution. Such a recorded image
is usually referred to as a (hyper-)spectral image or cube and, dependent on the
spatial and spectral resolution, can easily reach hundreds of megabytes up to several
gigabytes of space needed for storage per captured scene. Whenever applicable and
not explicitly stated otherwise, the term spectral imaging is used in this work to
refer to hyper- and multispectral imaging likewise. With such imaging techniques,
the goal is to preserve the spectral information of the captured scene. This emerging
technology enables many useful applications in a broad range of industrial branches,
such as earth observation and remote sensing ( Bilal et al. (2019), Goetz (2009),
Stuffler et al. (2007)), agriculture and food science (Abdelbaki et al. (2021), Lu
et al. (2020), Rady et al. (2019), Adão et al. (2017), Aasen et al. (2015), Dale
et al. (2013)), medical imaging (Cihan et al. (2022), More et al. (2019), Yang et al.
(2018), Calin et al. (2013)), computer vision and object detection (Bajić and Bajić
(2021), Serranti et al. (2011)) or cultural heritage (Cutajar et al. (2022), Grillini
et al. (2021), Polak et al. (2017)).
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Chapter 2 THEORETICAL BACKGROUND AND RELATED WORK

2.1.4 Data Acquisition Techniques
Four main data acquisition techniques exist in the field of spectral imaging, namely
point-scanning (whiskbroom), line-scanning (pushbroom), area-scanning (filter-
wheel), and single shot (snapshot). Each acquisition technique has its advantages
and disadvantages and different approaches when recording a hyperspectral cube.
Figure 2.2 visualizes what data each method captures when triggering a single
acquisition. The different techniques will be explained in more detail in the following
sections.

Figure 2.2: Visualization of the data recorded per capture for the different data
acquisition techniques in the field of spectral imaging. x and y represent the
spatial dimensions of the datacube, while λ is the spectral dimension. Illustration
from Ma et al. (2019).

2.1.4.1 Whiskbroom / Point-Scanning

Whiskbroom acquisition systems, also called point-scanning devices or point-
scanners record a single spectrum per acquisition. Point-scanning systems usually
disperse the incoming radiance through a prism or grating (Li et al., 2013). The
dispersed light then hits the linear image sensor array. Each pixel of the sensor
records a different and usually narrow part of the spectrum. Such point-measuring
devices can not record a scene as a spectral cube by default. To do so, either the
device or the specimen is moved both in x and y direction over the area of interest to
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Hyper- and Multispectral Imaging 2.1

take several measurements of each point of the scene (Ma et al., 2019). This leads to
more complex hardware setups and a limitation to static samples. In addition, the
acquisition process of capturing a spectral cube is very time-consuming compared
to the other systems. Usually, one big advantage of whiskbroom systems is the
large spectral resolution and the fast readout (Hagen and Kudenov, 2013). When
there is no time constraint, the scene can be captured with a high spatial resolution.
But since scanning large scenes with high spatial resolution takes a large amount of
time when using the whiskbroom acquisition technique, there is a trade-off between
acquisition time and spatial resolution.

Figure 2.3: Visualization of the working principle of a whiskbroom acquisition
system, from simtrum.com, last accessed: 05.08.2023.

2.1.4.2 Pushbroom / Line-Scanning

Pushbroom spectral acquisition systems, also referred to as line scanners, sample
a scene in the spectral domain for one spatial dimension at the same time (Ma
et al., 2019). The line is recorded by dispersing the slit image onto a 2D sensor,
where one dimension of the sensor represents the spatial information and the
second dimension inherits the spectral information. The sample or the detector is
linearly moved in the perpendicular spatial dimension, and the acquisition trigger
is synchronized with the moving speed and integration time. Several captures are
then taken to cover the region of interest, creating the spectral cube with two
spatial dimensions and a spectral dimension at each pixel. Thereby the spatial
dimension is restricted in one axis but is theoretically infinite in the second axis
defined by the movement of the sample or detector. The line-scanning method is
not able to record samples in motion, apart from the motion introduced by the
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Chapter 2 THEORETICAL BACKGROUND AND RELATED WORK

scanning process itself. Line-scanning systems are especially suitable for airborne
and spaceborne platforms and conveyor belt applications (Hagen and Kudenov,
2013). They are also excessively used in the field of cultural heritage, for example,
to scan paintings for analysis and restoration as shown for example by Deborah
et al. (2019).

Figure 2.4: Visualization of the working principle of a pushbroom acquisition
system, from simtrum.com, last accessed: 05.08.2023.

2.1.4.3 Filter Wheel / Area-Scanning

A filter wheel system typically consists of a camera, a light source with known SPD
as well as a wheel with several fixed band-pass or linear variable filters (Li et al.,
2013). The spectral bands of the system are determined by the transmittance of
the filters and the quantum efficiency of the sensor. Two different kinds of filter
wheel systems exist. The active type has a rotating wheel of different bandpass
filters with known spectral transmittance in front of the camera’s lens, directly in
the optical path of the system. The passive type has no filter wheel in front of
the imaging system, but in front of the light source instead. The multispectral
cube is recorded by capturing a separate monochromatic 2D image for each of
the filters, one spectral band at a time. Thereby, the number of spectral bands
as well as the spectral sensitivity can be adjusted by using different filters and
different filter combinations. Other approaches exist where multichannel sensors
are used Shrestha and Hardeberg (2013) to reduce the amount of captures that
have to be taken for the acquisition of the spectral cube. A variation of the passive
approach is to use different light sources directly instead of filters, as shown for
example by Trumpy et al. (2021) and Shrestha and Hardeberg (2013). With LED
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Hyper- and Multispectral Imaging 2.1

technology becoming more advanced and cheaper in recent years, this method is now
a promising alternative to the filter wheel in controlled conditions. Figure 2.5 shows
an example of an active filter wheel system. In general, such area-scanning systems
are easier and cheaper to build compared to line scanners or snapshot systems.
In addition, the integration time can be varied for each band, to use more of the
sensor’s dynamic range and to increase the signal-to-noise ratio (SNR). Filter wheel
systems are especially suitable for colorimetry applications, where multispectral
approaches are sufficient and usually high spatial resolution is preferred. One of
their biggest limitations is the need for capturing several images after another,
trading a higher spectral resolution for longer acquisition times. Even when limiting
the number of spectral bands and using an RGB instead of a monochromatic sensor,
several captures have to be acquired. This makes area-scanning devices unsuitable
for applications with moving samples, as well as for scenarios where a rapid or
real-time capturing process is crucial. Instead of using a filter wheel, it is also
possible to use mechanically tunable filters such as liquid-crystal tunable filters or
acousto-optic tunable filters (Poger and Angelopoulou, 2001).

Figure 2.5: Visualization of the working principle of an active filter wheel
acquisition system, from simtrum.com, last accessed: 05.08.2023.

2.1.4.4 Snapshot / Single Shot

Instead of capturing time-sequential 1D or 2D data as with the previously introduced
techniques, snapshot or single shot acquisition systems are able to capture the whole
datacube consisting of the two spatial dimensions as well as the spectral dimension
with a single integration. This removes the temporal restriction of taking several
exposures like when using whiskbroom, pushbroom, and area-scanning devices,
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Chapter 2 THEORETICAL BACKGROUND AND RELATED WORK

which makes this technology especially interesting for real-time applications with
high spectro-temporal resolution Jung (2017). To be able to acquire a full capture
in a single integration period, the sensor region is divided into multiple regions with
each of the regions capturing 2D data, as described by Hagen and Kudenov (2013).
The resulting data is then combined into a spectral datacube in postprocessing.
Besides others, two approaches for creating a snapshot spectral imaging device are
the use of a beamsplitter and the use of a detector array. Beamsplitter separate the
incident light based on the wavelength. The different beams are then projected onto
different sensors, recording the spectral bands. These systems are usually bulky
and expensive as discussed by Lapray et al. (2014) and the number of spectral
bands that can be recorded is limited in practice (Hagen and Kudenov, 2013).
Designs based on detector arrays or spectral filter arrays (SFAs) on the other hand
can overcome those limitations. SFAs are following the same principle as color
filter arrays (CFAs) such as the Bayer pattern used in digital color cameras, where
each of the different filters with unique transmission properties will correspond
to one of the captured bands. The different filters are arranged in a predefined
pattern, where the sensor region corresponding to each of the filters will usually
record one part of the spectral range. Contrary to Bayer filter arrays, SFAs consist
of a number of different filters > 3 that can be chosen to suit a specific use case,
allowing them to sample spectral information rather than colorimetric information
(Lapray et al., 2014). Usually, an additional array of lenslets is used in front of
the filter array or between the filter array and the sensor to focus the incident
radiance. The captured raw data must undergo a demosaicking process, where the
sensor response is resolved to the multichannel datacube (Baone and Qi, 2006).
Snapshot systems record the spectral image cubes faster than the other methods
discussed. There also exist designs using linear varying bandpass filters instead of
a filter array in combination with a microlens array as described by Hubold et al.
(2018). The incoming radiance passes through different regions of the bandpass
filter first. Afterwards, the filtered radiance passes the lens array, where each
lens projects the entire field of view (FOV) at different filtered wavelengths onto
different regions of the sensor. Their recording speed enables the real-time capture
of spectral images and spectral videos, giving them a huge advantage over the other
methods. In addition, snapshot systems are more robust due to the lack of moving
parts (Descour and Dereniak, 1995) and have a much higher optical throughput
(light collection) than pushbroom and whiskbroom systems, as discussed in detail
by Hagen (2012). Caused by the trade-off between spatial and spectral resolution
within the technology of today’s snapshot systems, the quality (either spatial,
spectral, or both) is usually lower than the ones of high-end systems of the other
categories. Recent developments towards spatial (Hu et al., 2022) and spectral
upsampling (Fotiadou et al., 2019) try to compensate for those limitations. Several
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other technical approaches exist for building a snapshot hyperspectral imaging
device, which are discussed in more detail in Hagen and Kudenov (2013).

Figure 2.6: Visualization of the working principle of a snapshot acquisition
system, from simtrum.com, last accessed: 05.08.2023.

2.1.5 Postprocessing of the Captured Spectral Data
The raw response ρi at channel i of a given imaging system in digital numbers (DNs)
can be defined as seen in Equation 2.1, neglecting the spectral transmittance of the
optical path. Hereby, Si(λ) denotes the spectral sensitivity at a given channel, L(λ)
represents the SPD of the illuminant and R(λ) is the reflectance of the measured
object. k is a normalizing constant, bi represents the dark current noise and ϵi is
the random noise. In practice, the equation is altered to work with discrete values
rather than continuous functions, as shown in Equation 2.2

ρi = k

λmax∫
λmin

Si(λ)L(λ)R(λ)dλ+ bi + ϵi (2.1)

ρi = k

n∑
j=1

Si(λj)L(λj)R(λj)∆λj + bi + ϵi (2.2)

However, when working with multi- and hyperspectral data, the captured raw
sensor response in DNs requires further processing. Although the raw response
refers to the recorded incoming radiance at the system, effects such as the quantum
efficiency of the sensor and other physical properties of the camera system influence
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the resulting measurement (Yao and Lewis, 2010). Instead of this uncorrected
radiance it is usually desired to retrieve physically meaningful information such as
physical radiance or reflectance for further analysis as used for example by Liu et al.
(2020) or classification applications discussed among others by Audebert et al. (2019)
and Yan et al. (2019). To calculate physical radiance data (mWcm2sr−1nm−1)
including information about the scene illuminant, a radiometric calibration has
to be carried out individually per camera. This is usually done by calculating a
radiometric calibration coefficient for each spectral band and pixel of the camera
using an integrated sphere and a standardized light source, as described in detail
by Lucieer et al. (2014). After the calibration process, the errors introduced by the
camera system are reduced and the captured spectral information is comparable to
data measured from other calibrated spectral capturing devices.

In many cases, it is desired to convert the captured raw response to illuminant
independent relative reflectance data. If so, the goal is to remove the impact of
the illuminant spectrum on the obtained data completely, or at least to reduce
its influence as much as possible. To obtain the illuminant invariant reflectance
values, the common approach is to determine the SPD of the light source. This
can be a single spectrum if it can be assumed that there is only a single light
source which is spatially uniform over the whole scene captured by the sensor. In
other cases, the light source might not be spatially uniform or even a mixture of
different illuminants are present in the scene. If so, a single SPD might not be
sufficient to represent the illumination conditions present in the scene, but rather
a whole spectral cube is needed where an illumination spectrum for each pixel
captured by the sensor is determined. Several main approaches exist to either
measure or estimate the illuminant SPDs, which will be explained in Section 2.2.
Once the illumination SPD is obtained, the raw sensor response can be corrected
to reflectance values via flat-fielding. This process usually requires the measured or
estimated illuminant and a dark current image and is described in detail in Section
2.2.1.

2.2 Illumination and Reflectance Estimation
In the field of illuminant estimation, much work focuses on the approximation of
colorimetric information such as the illuminant chromaticity from color images
Kaur and Sharma (2016). However, because the focus of this work is the estimation
of illuminant spectra for reflectance recovery from radiance data, the term illumi-
nation estimation refers to the approximation of spectra rather than colorimetric
information if not stated otherwise. Since this is an under-constrained problem,
generally assumptions have to be made about the scene content or the acquisition
environment to successfully narrow down the variety of possible solutions. A
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common constraint used by many approaches is the assumption of a single spatially
uniform source of illumination present in the recorded scene. While this assumption
is valid for many situations where controlled conditions are possible, such single
illuminant approaches might face issues when the scene is illuminated by multiple
light sources or the illumination distribution is highly nonuniform.

The field of illumination estimation can be split into four main approaches.
The most common is the target-based approach, which often is used as a ground
truth measurement in practice. However, it is listed as an estimation approach
here, since the measurement is either taken with a temporal difference in respect
to the scene capture or without covering the full spatial nonuniformity of the
light source. Image statistics-based approaches try to retrieve the illuminant by
utilizing image-dependent information in combination with statistical assumptions.
Physics-based approaches try to model the physical properties of a given scene for
the illumination retrieval, whereas learning-based approaches use neural networks
and large amounts of training data to fulfill their goal. In the following sections,
each of the approaches is described in more detail, and existing work is discussed.

2.2.1 Target-Based (Ground Truth)
The target-based approach of retrieving the spectral reflectance values for a scene
is the standard procedure to this day (Jablonski et al., 2016). Here, a standardized
tile of known reflectance such as a Spectralon® is used, as described in detail by
Yao and Lewis (2010). But also other, much cheaper materials such as Teflon™

can achieve good results (Koz, 2019). In any case, such a reference tile should
inherit two important properties: First, its surface properties must be Lambertian.
This means that the material is purely diffuse and therefore the distribution of
the incident radiance which is reflected from its surface is distributed equally in
all directions (Koppal, 2014). Hence, the reflected illumination is independent of
the viewing angle. Second, it should be (nearly) 100% reflective and maintain a
uniform reflectance over the whole spectrum of interest. To obtain a meaningful
representation of the incident illumination of the whole scene that is to be captured,
the reference tile should be placed approximately at the same distance as the
object to be measured and at the same angle as the surface of the object to be
measured. However, in many field applications where for example airborne or
UAV-based measurements are taken, it is common practice to capture the reference
white before and after the flight as described for example by Yang et al. (2017),
Aasen et al. (2015) and Suomalainen et al. (2014). To keep track of nonuniform
illumination, the reference should cover the whole spatial dimensions of the sensor.
To increase the SNR, the exposure time should be set to obtain a sensor response
that is as high as possible, while not introducing saturated pixels. But since the
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behavior of imaging sensors becomes nonlinear when approaching the saturation
point (Wang and Theuwissen, 2017) it is recommended to avoid these nonlinear
regions (Aasen et al., 2015) or correct them as described for example in Czech et al.
(2023). Equation 2.3 shows the flat-fielding process to obtain reflectance values Rλ

from the raw camera response in DNs.

Rλ =
Sλ −Dλ

Wλ −Dλ

×WCλ (2.3)

Where Sλ is the sample intensity of the captured scene at wavelength λ, Wλ

is the measurement of the reference tile and Dλ is the dark current intensity. To
measure Dλ, the sensor is covered light-tight and a capture is taken using the same
integration time as for the scene recording. Yao and Lewis (2010) recommend
to capture both calibration measurements Wλ and Dλ first and proceed with the
scene capture afterwards. WCλ refers to a correction factor to compensate for
reference tiles with reflectance factors lower than 1.0. When using highly reflective
reference targets such as a Spectralon® panel with a reflectance factor of 0.99 over
the spectral range of 400 - 1500nm, WCλ can be neglected (Yao and Lewis, 2010).
Since the measured objects usually are much less reflective than the reference
target, the objects of interest are often underexposed, leading to a smaller SNR.
This problem can be avoided by using a gray target instead, as used for example
by Khanna et al. (2017). A slightly different approach is to place the reference tile
within the scene to be captured and acquire a single datacube with the reference
tile close to and at the same angle as the surface of interest, as shown in Amziane
et al. (2020). While no separate reference image has to be captured, the limitations
are a decreased accuracy when calculating the reflectance if the assumption of a
uniform illumination over the whole image does not hold, since the incident light
is not captured on a per-pixel basis. In addition, the coverage of the scene by
the tile reduces the spatial region available for capturing samples. As pointed
out by Wendel and Underwood (2017), target-based approaches achieve accurate
results in close-range settings under controlled lighting conditions but are also
used in ground-based Kurz et al. (2012) and UAV-based (Abdelbaki et al., 2021)
applications. Here, the disadvantages of the method become clearly visible: the data
acquisition in uncontrolled environments is prone to rapid changes in illumination
conditions, causing the need to recapture the reference target multiple times to
maintain the desired accuracy of illumination and reflectance estimation. This
process is time-consuming and usually involves manual labor, both being undesired.
Although automation approaches exist as for example shown by Uto et al. (2013),
they still require several reference measurements and several targets that must be
manually placed beforehand and are not suited for a majority of scenarios. Other
approaches such as an approach proposed by Amziane et al. (2020), where the
authors permanently mount a reference target to cover a portion of the cameras
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FOV can not represent the spatial nonuniformity of the light source at the sample
and causes problems with vignetting. In addition, when using UAVs and airborne
systems, it might not be at all possible to place a reference target properly as
discussed by (Hakala et al., 2018) and also experienced by Arroyo-Mora et al.
(2021), for example when the intention is to measure the tree canopy of a forest.
Here, targets are often captured before the flight, which introduces inaccuracies if
weather conditions change. A solution for these problems can be the estimation of
illumination spectra without a reference target, using image statistics, physically-
or learning-based methods, which will be described in the following sections.

2.2.2 Image Statistics-Based
Image statistics-based approaches try to make use of certain assumptions which
can be made of a given scene to narrow down the number of possible estimation
results. One way to estimate illuminant spectra is to adopt algorithms designed
for the estimation of illuminant chromaticity of color images. They are based on
the ability of the human visual system (HVS) to compensate for the influence of
the surrounding illumination chromaticity when adapted to a scene. This allows
humans to perceive the colors of an object in a consistent way, despite a change in
the illumination conditions. This phenomenon is called color constancy and the
adjustment to change in illumination itself is referred to as chromatic adaptation.
It is an important part of our ability to identify objects (Smithson, 2005), since
natural illumination conditions shift considerably throughout the day and with
different weather conditions, as proven by Judd et al. (1964), Hernández-Andrés
et al. (1999),Romero et al. (2002) and others. The mathematical modeling of
this ability is called computational color constancy (CCC) and is of great interest
in image processing and computer vision Krüger et al. (2013). The mechanisms
behind this phenomenon and possible mathematical representations are described
comprehensively by Ebner (2007), yet this topic is still an area of active research
as shown for example by Seymour (2022) and discussed by Maule et al. (2023) and
Foster (2011).

Widely used approaches to model CCC are the grayworld algorithm (Buchsbaum,
1980), the retinex theory or max-RGB algorithm (Land and McCann, 1971), the
shades-of-gray algorithm (Finlayson and Trezzi, 2004) and the gray-edge algorithm
(van de Weijer and Gevers, 2005). All of the aforementioned algorithms were
expanded to work in the sensor domain for n-channels and therefore to estimate
illuminant spectra instead of illuminant chromaticity by Khan et al. (2017c) with
the goal to achieve an illuminant invariant representation of spectral data Khan et al.
(2018). The gray-world algorithm assumes that the average response of a natural
scene will result in a medium gray shade. Therefore the deviation of the mean
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value per channel from that achromatic reference inherits information about the
illuminant. This estimation method is computationally fast and simple to implement
but also has major drawbacks, such as its high dependency on the image content.
Scenes where the average reflectance is achromatic either require only objects with
achromatic reflectance properties or a broad variety of different reflectances to
be present. Both is not likely for many applications, such as agriculture or food
quality assessment, and therefore the results are often inaccurate. Besides, several
other algorithms for illuminant spectra estimation were adopted by Khan et al.
(2017b) from chromaticity estimation algorithms used in the colorimetric domain,
which will be presented in the following paragraph. The max-spectral algorithm
for example is based on the max-RGB algorithm following the concept of Land
and McCann (1971), where the authors state that the cone responses of the HVS
built images for long, medium, and short wavelength regions each. The theory
describes that these three channels are independent and are compared to each other
by the HVS to generate color sensations. Now, by assuming that the reflectance
properties of the brightest surface within a given scene usually correspond to a
surface perceived as white, information about the light source can be extracted by
determining the maximum value for each color channel. Transferring this concept
to the spectral domain, the maximum response at each sampled wavelength will
form the estimated SPD of the light source. Finlayson and Trezzi (2004) proposed
an algorithm called shades-of-gray, which is shown in Equation 2.4, where F is
the input data, p is the Minkowski norm, k is a constant and e is the estimated
illuminant. The authors suggest a value of p = 6, as they found that for larger
p-values, more weight is given to pixels with higher values. This equation can also
represent the aforementioned grayworld for p = 1 and max-RGB algorithms for
p = ∞ and their spectral counterparts by replacing the averaging operation with
Equation 2.4.

(∫
F pdx∫
dx

)1/p

= ke (2.4)

The gray-edge algorithm assumes that the average reflectance of the computed
edges is achromatic for RGB cases as discussed by van de Weijer and Gevers (2005).
First, each channel is smoothed using a Gaussian filter (σ = 2) first. Then, the edges
are extracted computing the derivative in x and y direction. The average at each
channel describes then the illuminant at each channel. As proposed by Finlayson
and Trezzi (2004), the averaging operation can be replaced by the Minkowski norm.
Here Fσ represents the smoothed input data, p = 6 is the order of the Minkowski
norm, k is a constant between 0 (no reflectance) and 1 (total reflectance) and e is
the resulting illuminant.
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(∫
| Fσ |p dx∫

dx

)1/p

= ke (2.5)

Khan et al. (2017c) found, that of the described algorithms max-spectra and
spectral gray-edge gave the best results since both algorithms use bright pixels for
the illuminant estimation.

Another approach was taken by Fredembach and Finlayson (2008). The authors
used a six-channel system with known properties of the used filters. The transfor-
mation matrices for the sensor response to each SPD of an illuminant database
were calculated and the illuminant SPD with the best fitting transformation was
determined as the scene illuminant. The main drawback of this approach is the
high dependency on the illuminant database used. In addition, for this approach
to work the transmissive properties of the filters have to be known, which might
not be feasible for some applications.

2.2.3 Physically-Based
Physically-based algorithms try to make use of the physical properties of a given
scene to extract information about the present illumination conditions. A common
approach is to estimate the emission spectrum of a given light source by examining
the specular reflections it causes on the surfaces of objects in the scene. Thereby,
it is assumed that specular highlights inherit information about the SPD of the
source of illumination, while diffuse components mostly contain information about
the spectral properties of the given surface material. In general, the radiance
reflected by a dielectric material such as plastic can be expressed by using a basic
dichromatic reflectance model as described by Shafer (1985) and Tominaga (1995).
Here, the total reflected radiance Y (θ, λ) from a dielectric material illuminated
by a light source equals a linear combination of its high-intensity interface (or
specular) reflection LI(λ) and its lower intensity body (or diffuse) reflection LB(λ)
components as determined in Equation 2.6. θ denotes the geometric parameters
for the viewing angle, the angle of the incident illumination, and the phase angle.
LI(λ) and LB(λ) are independent of the geometric angle. cI(θ) and cB(θ) are the
respective geometric sale factors. An illustration is given in Figure 2.7.

Y (θ, λ) = cI(θ)LI(λ) + cB(θ)LB(λ) (2.6)

Illuminant estimation approaches based on dichromatic reflectance models
usually divide the given hyperspectral image into specular and nonspecular regions
first. To detect the highlight areas, different methods can be used, for example by
assuming that the brightest pixels in channels of overall low intensity correspond
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Figure 2.7: Visualization of a dichromatic reflectance model, from Tominaga
(1995).

to specularity (An et al., 2015). A more advanced approach includes using HVS
inspired methods such as the modeling of receptive fields (Goldstein, 2010) via
convolution with two Gaussian distributions, as described by Tominaga et al. (2020).
Once the highlight areas are detected, there are several methods to estimate the
SPD of the light source. Tominaga et al. (2020) used a clustering approach of the
spectral data after projecting it into a subspace of the first and second principal
components and obtained the SPD by using an inverse. An et al. (2015) used
an optimization framework based on several constraints as well as a dictionary of
corresponding specular and diffuse surface areas of the materials in the scene to
guide the estimation. Another approach is to identify objects with ‘flat’ spectral
reflectance properties in a given scene and base the illumination estimation on the
reflected lights coming from those, as proposed by Banerjee et al. (2009).

Dependent on the desired application, a major drawback of many physically-
based models is their limitation to perform well only when used with surfaces that
inherit dichromatic reflection properties, as in Tominaga et al. (2020) and An et al.
(2015). Further, some models do not work without objects that inherit surface
properties close to reference targets and are partially shaded and illuminated by
sunlight at the same time (Banerjee et al., 2009), while others fail when used
with monochromatic materials (An et al., 2015) or assume only convex surfaces
(Tominaga et al., 2020). While most approaches only consider a single light source,
algorithms also exist which try to compensate for multiple illuminants per scene
such as Tominaga et al. (2020) and Tominaga et al. (2012), limited to the VIS-range.
Estimation methods based on specular highlights, suffer from data captured by
sensors with limited spectral range since setting the integration time for a high
SNR might cause the specular highlights to be clipped, which means a significant
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loss of information within the highlights in at least some of the channels. Another
challenge is the proper detection of the specular highlights, which is highly based on
constraints and assumptions and still an open topic of research Khan et al. (2017a).
In addition, due to their dependency on highlights or flat surface reflectances, these
algorithms struggle to estimate illuminants for scenes that predominantly consist
of vegetation.

2.2.4 Learning-Based
The use of neural networks for the estimation of illuminants in the colorimetric
domain was studied by many over the last two decades, as summarized by Sethu
et al. (2023). In the field of hyperspectral imaging however, most of the machine
learning-based applications are focused on classification tasks as discussed by Khan
et al. (2022) and Ozdemir et al. (2020) or spectral unmixing, which describes
the determination of spectral end-members within a scene and their proportional
concentration (Grillini et al., 2021). Not much work exists on learning-based
methods for the estimation of illuminant spectra from hyperspectral radiance data.
Most likely, the reason for that is the massive amount of training data needed for
the training of neural networks. In contrary to the amount of available datasets
containing RGB-images that can be used for training and evaluating illuminant
estimation networks (Gijsenij et al., 2011), there is no comparable amount of spectral
data available including high variation and available ground truth measurements
for the illuminant. Another reason might be the lack of standardization in the
field of spectral imaging. Existing datasets show a high variation in acquisition
techniques and calibration procedures, resulting in large differences in terms of the
spectral range, as well as the spectral and spatial resolution. Robles-Kelly and
Wei (2018) offering a combination of colorimetric and spectral estimation of the
scene illuminant at a pixel-level basis. The main idea is to fine-tune a pre-trained
convolutional neural network (CNN) similar in architecture to the model proposed
by Snoek et al. (2012). The model consists of five convolution layers with pooling
operations after the first three layers and rectifier linear units after each of the
convolution layers. Randomly chosen tensors constructed from uniformly sampled
local patches from the spectral cube at different scales computed via the use of
a Gaussian kernel are used as input for the model. The size of each patch was
determined with a spatial resolution of 10x10 pixels and the SPD at the center of
each patch served as ground truth value. The model was then trained to predict
the ground truth illuminant at the center of each patch. The authors state that the
model is restricted to detecting "smooth spectra" (Robles-Kelly and Wei, 2018),
irregular or "spiky" light sources like LEDs are not considered for the prediction.
In addition, the spectral range of the estimated illuminants is restricted to the
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VIS-range, in this case specifically to a range of 400 - 700nm with a spectral
resolution of 10nm. It also has to be noted that the main focus of the authors lies
on the colorimetric estimation of the illuminant and less on the spectral counterpart,
which hinders an objective interpretation of the model quality in terms of the
prediction of illuminant spectra.

24



3 METHODOLOGY

In this work, a novel framework is proposed for estimating daylight illumination
spectra and calculating relative reflectance data directly from a hyperspectral
radiance cube. Thereby no reference or ground truth target is needed for calibration
as described previously in Section 2.2.1. Section 3.1 describes the proposed image
statistics-based model itself as well as the general assumptions that were made to
solve the under-constrained problem of illumination estimation in detail. Section
3.2 focuses on the evaluation of the experiments done.

3.1 The proposed Framework
The main idea developed in this work is to estimate the spectral power distribution
of an unknown light source from a hyperspectral cube by using general assumptions
about the input data to restrict the possible estimations from two perspectives:
On one side, two image-dependent constraints define an area where the unknown
illuminant spectrum is likely to be found in the spectral domain. Within this region,
a set of random spectra are generated. They are referred to as spectral candidates.
These spectral candidates define the variation of image-dependent plausible spectra
which could represent the illuminant within the given hyperspectral cube. On the
other side, the estimation result is restricted by a database of measured real-world
illuminants. This data represents a set of physically possible illuminant spectra.
Both restrictions are used to find a point in an image-independent PCS, where
the image-dependent plausible candidates meet the physically possible measured
illuminants. This intersection is then used to generate the estimated SPD by
transforming back from the PCS to the spectral domain. The resulting estimated
SPD can then be used to calculate reflectance values from the radiance input
data. Although a physically possible set of illuminants is used to find the estimated
illuminant spectra, the proposed algorithm for the illuminant estimation is classified
as image statistics-based, since the illumination mostly depends on the generated
spectral candidates.

In the following sections, the proposed model is explained in detail. At first, the
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constraints for the model are defined and the generation of the image-dependent
spectral candidates is described. Afterwards, the transformation to a common PCS
to a broad range of training data is explained. Then, the illuminant estimation
itself is explained in detail. Afterwards, the calculation of the resulting reflectance
data is shown. At last, a summary of the steps is given for the convenience of the
reader.

3.1.1 Assumptions and Constraints
Since the problem of illumination spectra estimation from radiance data without
ground truth is an under-constrained problem, well-defined assumptions have to
be made to obtain results that are accurate enough to justify their use over a
ground truth-based approach. For the image statistics-based framework proposed
in this work, uniform and diffuse illumination properties over the whole spatial
domain of the captured scene is assumed. The focus lies on estimating daylight
spectra for two main reasons: First, a special interest is taken in designing an
illumination estimation approach for UAV-based applications. When working
in outdoor environments within uncontrolled weather conditions, the capture
of reference targets might introduce errors due to rapid changes in cloud cover
and lighting conditions (Wendel and Underwood, 2017). In such time-critical
scenarios, the use of estimation algorithms seems to be sufficient if the illuminant
can be accurately recovered from within the captured scene data. In addition,
the placement of delicate reference targets within the scene directly might not be
sufficient as pointed out by Wendel and Underwood (2017), for example when
monitoring forests or large agricultural areas. Laboratory-based measurements on
the other hand do not have these restrictions, which makes the use of a target-based
approach less challenging. Second, the availability of reference data of daylight
illuminant spectra was several times larger in size and variation than other kinds,
such as LEDs and incandescent light sources at the time this work is proposed.
Nevertheless, the proposed framework is assumed to be adjustable in the future
to estimate other light sources by using a different reference database for the
estimation. Further, it is assumed that the captured scene does not contain objects
which emit radiance themselves. Finally, the input data for the framework is
assumed to be radiance data normalized to a range between 0 and 1. With the
aforementioned assumptions in mind, several main constraints are defined for the
framework.

1. Since the input data is normalized, the theoretically possible SPD with the
highest maximum value at each wavelength is a spectrum of unity over the
whole spectral range. This upper limit will be referred to as maxConstraint.
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2. The lower limit of the theoretically possible SPD can be defined as the
maximum value of the spectral cube at each wavelength of the input data.
This constraint will from now on referred to as minConstraint.

3. The unknown SPD of the light source present in the radiance input data
must therefore lie somewhere within an area defined by the minConstraint
and maxConstraint.

3.1.2 Calculation of Constraints
To use the given information of the radiance input data to derive information
about the illuminant, a simple but effective constraint was chosen. Given that the
radiance input data is normalized to a range of 0 to 1, the theoretical upper limit
for the illumination at any wavelength would be unity. Therefore, the maximum
spectrum over the whole spectral range investigated can be described as a horizontal
line with y = 1.0. This maxConstraint builds the upper limit of the search area
for the unknown illuminant, as shown in Figure 3.1. Other maxConstraints were
investigated, such as the maximum value at each wavelength of a given dataset of
different illuminants. Although this would further restrict the search area for the
illuminant, the idea was neglected to prevent any overfitting and instead use only
the information available within the input data at this stage of the framework and
not introduce external information from other datasets or measurements yet.

Next, to restrict the search area for the illuminant SPD further, a lower bound
called the minConstraint was calculated by introducing a simple yet effective
constraint: The incoming radiance at one point (x, y) at the sensor can be simplified
as the product of the spectral power distribution of a given light source Sλ and the
reflectance properties of the object present at the spatial coordinate Rλ as shown
in Equation 3.1. Here, it is assumed that the radiance data is already corrected for
dark current noise, vignetting, and the sensor sensitivities.

Lλ(x, y) = Sλ(x, y)Rλ(x, y) (3.1)

Since the maximum response possible at each wavelength is 1.0 and the measured
objects are assumed to be reflective and therefore only absorb incoming radiance
but do not work as an emitter, the maximum value of the spectral cube at each
wavelength band is the minimum possible value of the illuminant SPD. Therefore,
the minConstraint Cmin of the image-dependent area of plausible illuminants can
be defined as an equivalent to the retinex theory proposed by Land and McCann
(1971). Equation 3.2 shows the computation of the minContraint for a given
channel.
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Figure 3.1: Example of the maxConstraint as a spectrum of unity and an
example SPD, normalized to a range between 0 and 1.

Cmin(λ) = max{L(λ)} (3.2)

It can be observed in Figure 3.2 that in this particular example, the minCon-
straint models the illuminant SPD fairly well by itself in the range of roughly 750 -
1000nm, but can not represent the shape for shorter wavelengths. The reason for
that is the radiance cube which was used as input data for this visualization. Since
the information about the constraint is derived from the image data directly, the
quality of the minConstraint is highly dependent on a large variation of different
reflectance spectra within the given scene.

Although a result as close as possible to the original illuminant would be
preferable since this would restrict the search area as much as possible, a perfect
representation would indicate the presence of a reference target or an object with
similar properties within the scene, making the use of a complex framework for
illuminant estimation redundant. Instead, the purpose of this constraint is not
to work as an illuminant estimator itself but rather to be utilized as a restriction
of the search area. This can be seen in Figure 3.3, where the minConstraint and
maxConstraint define the search area over the spectral range of the input data. Per
definition, the unknown illuminant SPD lies within this search area, which was the
case for all tested scenarios. This area will be utilized in the next step.
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Figure 3.2: Example of the minConstraint as maximum value of the cube at
each wavelength and the original SPD, normalized to a range between 0 and 1.

Figure 3.3: minConstraint and maxConstraint define the search area for the
unknown illuminant SPD.

3.1.3 Calculation of the Spectral Candidates
With the upper and lower bound of the search area set, a series of random spectra in
λmin ≤ x ≤ λmax are generated, where the value yi at each xi lies withing the search
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area defined by corresponding Y -values of the minConstraint and maxConstraint.
To generate the spectral candidates, a modified version of Pearson’s random walk
algorithm (Pearson, 1905) with equal stepsize and variable amplitude is used. First,
the Y -value of the starting point (x1, y1) is defined by a random number 0 ≤ j ≤ 1.
The values yi of the remaining samples xi ≤ xn are then found by generating a
different random number 0 ≤ mi ≤ 1 at each step, which determines the direction
and amount of movement on the Y -axis compared to the previous sample. If
m ≥ 0.5, the resulting value yi will be higher than its predecessor, resulting in a
positive slope within the generated spectrum. Otherwise, the generated value will
be lower, resulting in a negative slope of the generated spectrum. The result is a
randomly generated "rough" spectrum in the desired spectral range with intensities
between 0 and 1. Pseudocode for the generation of such a rough spectral candidate
is given in Algorithm 1.

Algorithm 1 Pseudocode: Generation of spectral candidates
INPUT
minConstraint
spectralCandidate as empty list

PROCESS create spectralCandidate
value of first channel = random number between minConstraint1 and 1
for all other channels of the image cube do

create random number ramount between 0 and 1 ▷ amount of movement
create random number rdirection between 0 and 1 ▷ direction of movement
if rdirection ≤ 0.5 then

value at current channel = value at previous channel+ramount

else
value at current channel = value at previous channel−ramount

end if
append value of current channel to spectralCandidate

end for
return spectralCandidate

Once this initial spectrum is generated, a smoothing operation is carried out to
ensure a more natural shape of the resulting spectral candidate. Based on the find-
ings of Kosztyán and Schanda (2012), the locally weighted scatter-plot smoothing
(LOWESS) first introduced by Cleveland (1979) is suitable for the smoothing of
daylight spectra. Hereby, it offers locally adapting smoothing properties, robustness
against outliers, and a good smoothing performance that can be adjusted using
a single parameter. LOWESS is based on robust locally weighted regression. For
the X-value xi for each point (xi, yi) of the dataset, an initial weight wk is assigned

30



The proposed Framework 3.1

to each of the remaining points xk of the dataset with a parameter f determining
the size of the neighborhood. The further away the abscissas xk are from xi, the
smaller their weights. Now, a locally weighted regression is carried out, where
weighted least squares are used to compute the initial smoothed values y′i for each
xi using the previously calculated weights wk. Afterwards, the residuals yi − y′i are
computed for each point. These residuals are now used as a second set of weights
δi, where small residuals will cause larger δi than large residuals. The computation
of all y′i is performed repeatedly n times, using the new weights δi instead of wk.

Since several hundreds of these spectral candidates are generated per input
cube n = 3 was chosen to limit the computational cost for the smoothing operation
while maintaining a good overall shape of the generated spectra. To assure that
all generated values lie between the minConstraint and the maxConstraint but
maintain their relative proportions, a normalization process is carried out at each
xi after the smoothing process using Equation 3.3. Some examples of randomly
generated spectra can be seen in Figure 3.4. A whole set of hundreds of such
generated spectra is generated for a given input cube.

y
′

i =
yi − ymin

maxConstraint i − minConstraint i
+ minConstraint i (3.3)

It has to be noted that the focus lies not on finding the actual illuminant by
chance in one of the generated spectra. These random spectral candidates represent
the image-dependent possible illuminant spectra, which are used further to estimate
the unknown illuminant within an image-independent, multidimensional subspace.
The creation of this subspace using principal component analysis (PCA) will be
the main focus of the next section.

Figure 3.4: Examples of randomly generated spectral candidates within the
search area.
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3.1.4 Principal Component Analysis
The following sections focus on giving an overview of principal component analysis
(PCA) with focus on the creation of an input-independent subspace in which the
estimation of a scene illuminant from hyperspectral radiance data is performed. At
first, Section 3.1.4.1 will summarize the general idea of what PCA is and how it is
used to reduce the dimensionality of a given dataset while preserving most of the
relevant data. Afterwards, Section 3.1.4.2 focuses on how an input-independent
principal component space PCS can be created. This input-independent PCS will
then serve as a multidimensional space for the illuminant estimation, which will be
explained in detail in Section 3.1.5. A more in-depth explanation about PCA in
general can be found in Principal Component Analysis, Second Edition by Jolliffe
(2002).

3.1.4.1 Dimensionality Reduction using Principal Component
Analysis

Principal component analysis is a widely used technique to reduce the dimensionality
of a given dataset while preserving most of its meaningful information in a least-
square sense. It is used in many fields and different applications and is of particular
interest in the spectral imaging domain, since it can be used for compressing the
large amount of data that often has to be saved and processed when working
with hyperspectral images (Du and Fowler, 2007), or for analysis (Yang et al.,
2018). This section focuses on summarizing the fundamentals of PCA while the
following section will explain how it was used to create an input-independent
multidimensional space for the illuminant estimation.

The general idea of PCA is to project the given data onto a new multidimensional
orthogonal coordinate system. The axes of this new coordinate system, the principal
component space, are sorted by decreasing variance of the data represented at these
axes. It can therefore be assumed that the data along the first axis represents more
of the important information about the input data as the second one and so on
(Richards, 2022). A visual example is given in Figure 3.5.

In reverse, this means that most of the data variation can be preserved when
performing an inverse transformation (or reconstruction) only using the first few
principal components, with 6 components required for accurate spectral reproduc-
tions as investigated by Hernández-Andrés et al. (2001a).

Before performing the PCA itself, the first step is to standardize the input data.
In particular, each input sample is centered to a mean value of 0 and scaled with
respect to unit variance. This process is called z-transform and ensures that all
features contribute equally to the PCA. The formula to perform the standardization
is given by Equation 3.4, where x is an input sample, u denotes the mean of the whole
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Figure 3.5: Visualization of the first two principal components as new orthogonal
axes for a given set of input data. Most of the variance of the data is captured by
PC 1. The variance accounted for decreases with each additional PC.

dataset, s represents the standard deviation and z is the resulting standardized
sample. The centering ensures that the data will be distributed around the origin,
and the offset of the data from the center is removed.

z =
(x− u)

s
(3.4)

Next, a singular value decomposition (SVD) is performed on the covariance
matrix of the input data. Let M be a m × n matrix, where m represents the
number of spectral samples and n represents the number of features, with the
features being the measured points of the spectral range between λmin and λmax at
an interval of λ∆. SVD decomposes M into three matrices as shown in Equation
3.5, where S contains the explained variance, or singular values, within its diagonal
in decreasing order. U and VT are orthonormal matrices, meaning the result of
UUT = I and VVT = I, where I denotes an identity matrix. They contain the
left singular vectors and right singular vectors respectively, with the left singular
vectors U representing the principal components of the data.

Mm×n = Um×mSm×nV
T
n×n (3.5)

The explained variance ratio σi for a given principal component Ui can be
calculated by using Equation 3.6. σ inherits information about how much variance
of the data is explained by each principal component in particular. By sorting S
and U by the explained variance ratio σ in descending order, a ranking from the
most important to the least important principal component is performed.

σi =
S2
i∑
S2

(3.6)

To transform the input data M into the PCS, Equation 3.7 is used, where ·
represents the dot product. The inverse transform for the scaled reconstruction
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from PCS back to the scaled data is given by Equation 3.8. After performing
an inverse scaling on Mrec, the final reconstructed values of the input data are
obtained.

M
′
= M ·U (3.7)

Mrec = M
′ ·UT (3.8)

3.1.4.2 Fitting an Input-independent Principal Component
Space

For the illuminant estimation approach in this work, PCA was used to generate
an input-independent subspace in which the illuminant estimation is performed.
This has two advantages: First, when transforming an illuminant SPD into the
previously fitted PCS, it is geometrically represented by a n-dimensional point,
where n denotes the number of discrete wavelengths that define the spectrum. This
is a key concept for the estimation approach explained in Section 3.1.5. Second,
the use of a PCS allows to perform a dimensionality reduction of the estimated
illuminant at the same step when converting back from the principal component
(PC) domain to the spectral domain. This leads to more robustness against noise
within the data, which is assumed to be of more influence in the lower-ranked
components.

To create the input independent PCS, a representative set of radiance training
data was simulated using a set of varying reflectance spectra in combination with
a set of measured illuminant SPDs as described in Section 3.2.1. Both datasets
were first cropped and linearly interpolated to a common spectral range of the
input cubes from which the illuminant information is later estimated. Here, it is
preferred to preserve the range and interval of the radiance input cubes, if possible,
and rather adjust the ranges and interval of the reflectance and illuminant dataset.
It is important that all ranges and sampling intervals match exactly, otherwise the
transformation to a common PCS will not give the desired results. Once a common
spectral range for all components is found, Equation 3.1 is used to simulate radiance
data out of the reflectance and illuminant sets. Then, a normalization is performed
to obtain relative spectral radiance in the range of [0−1]. The resulting data is from
now on referred to as the training dataset, which represents a variety of different
Lambertian surfaces under a broad amount of different daylight illuminants. The
training dataset is centered and scaled, using Equation 3.4 and a PCS is fitted for
the scaled data training, using SVD as previously described in Section 3.1.4.1.
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3.1.5 Illuminant Estimation in the Principal Com-
ponent Space

Now, the relevant data for the illuminant estimation is transformed into the
common subspace by applying the same centering and scaling as well as the same
transformation using 3.7, where U are the principal components already calculated
for the input independent space. The relevant data consists of two parts: A dataset
of physically possible illuminant spectra such as the preprocessed Granada daylight
spectral database (Section 3.2.1.1), as well as the input-dependent plausible spectral
candidates calculated as described in Section 3.1.3. Once converted into principal
component space, each spectrum is represented as a multidimensional point. The
goal is now to estimate the illuminant in the PCS by calculating the intersection
of the physically possible illuminants and the image-dependent plausible region
defined by the spectral candidates, as described in the following sections.

3.1.5.1 Fitting a Line to the Illuminant Dataset using RANSAC

After visually examining as in Figure 3.6, it can be assumed that the distribution
of the points within the illuminant dataset can be approximated by a line.

Figure 3.6: The general trend of the illuminant dataset for the first principal
components can be represented by fitting a line. Each green dot represents a SPD
of the Granada daylight spectral database. The red line was fitted using RANSAC.
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This property can be utilized by fitting a line that represents a majority of the
physically possible daylight illuminants. To do so, the well-established and widely
used random sample consensus (RANSAC) algorithm developed by Fischler and
Bolles (1981) is used, since it is robust against outliers and does not add significant
complexity. Two random points of the dataset are picked and a linear model is
fitted to them. Then, the distance for each point of the dataset to the current
model is calculated. All points of the dataset below the residual threshold, which
is set to 0.5 for the calculations of this work, were chosen as inliers. This process
is now repeated for a set number of iterations, 15.000 in this case, and the model
which produced the most inliers is chosen as the final one. This fitted linear model
now represents the illuminant database in the image-independent PCS. The general
idea of RANSAC that was used in this work is further expressed in the form of
pseudocode in Algorithm 2.

Algorithm 2 Pseudocode: RANSAC
INPUT
data as a set of points
maxIterations > 0
maximumInliersRequired > 0

PROCESS RANSAC previousModel = empty
while iterations < maxIterations do

currentModel (Line) = two random points from data
for all other points in data do

calculate distanceToLine
if distanceToLine < threshold then

increase numberInliers by 1
end if

end for
if numberInliers >= maximumInliersRequired then

bestModel = currentModel
end if

end while
if numberInliers > previousnumberInliers then

finalModel = currentModel
else

finalModel = previousModel
end if
return finalModel
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3.1.5.2 Fitting a Hyperplane to represent the Spectral Candi-
dates

Once the n-dimensional line is fitted to the illuminant dataset, the spectral candi-
dates are calculated as described in Section 3.1.3 and converted into the common
PCS. Figure 3.7 shows the ground truth illuminant within the region where the
illuminant data and the spectral candidates intersect.

Figure 3.7: The physically possible illuminants (green dots) meet the image-
dependent possible candidates (black squares) within the input independent PCS.
The red ’X’ lies in the region where both sets intersect and marks the ground
truth illuminant.

The spectral candidates are now represented by a hyperplane (Wang, 2012).
The hyperplane hereby serves as a simplified representation of the image-dependent
’plausible’ spectral candidates. This step is necessary to be able to estimate the
illuminant as a single, n-dimensional point of intersection between the illumi-
nant dataset represented by the n-dimensional line and the spectral candidates
represented by the hyperplane as described below.

The hyperplane of the given set of points can be expressed by its centroid C
and its normal vector N . Let matrix M of shape m × n be defined by a set of
m input points in n dimensions, in this case, the representation of the spectral
candidates as points in the PCS. The centroid C is defined as a n-dimensional
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point, which is calculated by the mean value of all m points of the dataset in each
dimension (Equation 3.9).

C =
1

N

N∑
i=1

vi (3.9)

To calculate the normal vector N , SVD is used once again (see Section 3.1.4.1).
First, M is decomposed into the three matrices U , S, and V T . The normal N of
the hyperplane can now be defined as the last unitary vector of V T . Hereby, the
last unitary vector is determined by finding the vector of V T which corresponds
to the smallest singular value of the diagonal matrix S. It represents - in a least
squares sense - the direction with the least variation for the set of input points in
M .

3.1.5.3 Calculating the Estimated Illuminant as Intersection
Point in PCS

A rough illuminant estimation in the fitted PCS can now be achieved by calculating
the intersection between the line representing the physically possible data and the
hyperplane representing the image-dependent plausible candidates.

To calculate the intersection point, the hyperplane is represented by its centroid
C and its normal N as discussed previously. The line, defined in parameterized
form by two points P1, P2 in n-dimensions found via RANSAC, and parameter t, is
shown in Equation 3.10, where P (t) represents a point on the line. A given point
P (t) of the line lies on the plane if Equation 3.11 is satisfied, with · representing
the dot product. By substituting the line Equation 3.10 into the equation of the
hyperplane (Equation 3.11), Equation 3.12 is obtained. It is possible to solve for t
as shown in Equation 3.13. Substituting t back into Equation 3.10 and solving for
P (t) now gives intersection point Pest, which represents the estimated illuminant.

P (t) = t ∗ P1 + (1− t) ∗ P2 (3.10)

N · (P (t)− C) = 0 (3.11)

N · ((t ∗ P1 + (1− t) ∗ P2)− C) = 0 (3.12)

t = (N · C −N · P2)/(N · P1 −N · P2) (3.13)

The process is visualized in Figure 3.8, where the red line represents the
illuminant dataset, the plane represents the spectral candidates, the red cross
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marks the intersection point between both, as calculated using Equations 3.10 -
3.13, while the blue dot represents the ground truth illuminant. This solution
works well, particularly in the first three dimensions.

The obtained rough estimation of the input cubes illuminant is now validated,
refined and transformed back into the spectral domain as described below.

Figure 3.8: The red line is fitted using RANSAC on the illuminant dataset
(green dots), the plane representing and the the spectral candidates are shown in
gray. The intersection point is marked as red square, whereas the ground truth is
shown as red ’X’.

3.1.5.4 Validation and Refinement of the Estimated Illumi-
nant

The next step is to ensure that the intersection point which represents the estimated
illuminant lies within a valid region of the PCS. To do so, a n-dimensional convex
hull is created, enclosing a volume that represents the intersection A ∩B for the
illuminant training set and the set of spectral candidates. It is then ensured that
the estimated illuminant lies inside that convex hull.

A convex hull of a set of points is defined as the smallest convex shape which
encloses all points of the set (Chadnov and Skvortsov, 2004). Different algorithms
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Figure 3.9: Determination of the convex hull H of a set of points S using the
Quickhull algorithm in two dimensions, where the hull is represented by the black
lines, the points that represent the hull are marked as red dots and the area inside
the hull is shaded in gray.

exist to compute a convex hull, as summarized for example by Jayaram and Fleyeh
(2016) and Chadnov and Skvortsov (2004). In this work, the Quickhull algorithm
as proposed by Barber et al. (1996) was used to calculate the convex hulls. To
demonstrate the general idea of the Quickhull algorithm and give an impression
of its functionality, a two-dimensional example is given as follows. To find the
convex hull of a set of points S, first, the leftmost point a (smallest x-value) and
the rightmost point b (largest x-value) of the set are determined. Next, point c
is defined which is the farthest point from line ab within S. All points of S that
lie within the triangle abc are now omitted since they lie inside the hull. Then,
the residual points are divided into two subsets based on their positions. The first
subset S

′
1 contains all remaining points to the left of the line ac, and the second

subset S ′
2 contains all remaining points to the right in respect to the line bc. Now,

the point c′1 with the largest distance to line ac is found and the points inside the
triangle acc

′
1 are omitted. the same procedure is executed for S ′

2 in respect to line
bc, by finding point c

′
2, discarding the points inside bcc

′
2. This process is repeated

iteratively with the remaining points. The same procedure is then used to calculate
the boundary points below the line ab. graphical visualization is given in Figure
3.9.

The valid region for the illuminant estimation is defined by a convex hull HA∩B,
which represents the intersection between the set of spectral candidates and the set
of illuminants. To calculate HA∩B, first a convex hull Hsc representing the spectral
candidates is defined. All points of the illuminant set within Hsc are added to the
set SA∩B that defines the valid region. This process is repeated in the opposite
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configuration, determining all spectral candidates inside the convex hull of the
illuminant dataset Hill and adding them to SA∩B. The convex hull HA∩B can now
be derived from the combined set of inliers.

Next, it is checked if the intersection point Pest calculated previously lies within
HA∩B. This can be done by adding Pest to the set of vertices that define HA∩B,
and then computing a new convex hull H ′

A∩B. If Pest is part of the vertices that
form H

′
A∩B, it lies outside of the convex hull, otherwise it lies inside. A sketch of

this process is given in Algorithm 3 in the form of pseudocode.

Algorithm 3 Pseudocode: Point inside ConvexHull
INPUT
Pest, the previously calculated intersection point
HA∩B, the Convexhull

PROCESS point_inside_ConvexHull
add Pest to the vertices of HA∩B to create a new set of points
create H

′
A∩B from the new set

if vertices of HA∩B are equal to vertices of H ′
A∩B then

return point_inside = True
else

return point_inside = False
end if

If the estimated illuminant lies within HA∩B, it is proceeded with the inverse
transformation of the PCA to transfer the estimated illuminant back to the spectral
domain. But if the estimated point lies outside of HA∩B, the Euclidean distance of
Pest to all points of the convex hull HA∩B are calculated as shown in Equation 3.14,
where d is the euclidean distance, and p, n are the points in n dimensions. The
new estimated illuminant P ′

est is defined as the point of HA∩B with the smallest d
to Pest.

d(p, q) =
√

(p1 − q1)2 + (p1 − q1)2 + ...+ (pn − qn)2 (3.14)

Not all components are used for transforming the estimated point back into the
spectral domain. To save computation time, these calculations are done only for
the dimensions that are used for the conversion, usually the first n-components,
where n is dependent on the configuration of the reconstruction as described in the
next section.

41



Chapter 3 METHODOLOGY

3.1.6 Obtaining and further Refining the Estimated
Illuminant in the Spectral Domain

Once the intersection point is determined in the PCS, the estimated point is
converted back into the spectral domain by using the inverse transform of the PCA
first and then the inverse scaling and centering described in Section 3.1.4.1. The
number of components for the reconstruction is determined beforehand. Hernández-
Andrés et al. (2001b) suggest the use of a minimum of six components for a
spectrally accurate reconstruction. After the estimated spectrum is obtained, it
is ensured that the estimated spectral power distribution still meets the initial
considerations as described in Section 3.1.2. For each spectral band, the estimated
curve is checked to meet the criteria of being equal to or above the curve defined by
the minConstraint. If the estimated illuminant lies below the minConstraint, it is
modified to satisfy the constraint. Else, the initial estimated values are preserved.
Algorithm 4 illustrates the procedure in the form of pseudocode.

Algorithm 4 Pseudocode: minConstraint adjustment
INPUT
estimated illuminant
minConstraint

PROCESS minConstraint adjustment
for λ in spectral range do

if estimated illuminant(λ) ≥ minConstraint(λ) then
estimated illuminant′(λ) = estimated illuminant(λ)

else
estimated illuminant′(λ) = minConstraint(λ)

end if
end for
return estimated illuminant′
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3.1.7 Optimization of the Input Parameters
To find the model parameters which give the most accurate results for the illuminant
estimation, an optimization process was carried out. complemented GFC (CGFC)
as explained in Section 3.2.2 was chosen as a metric for the optimization because of
its ability to compare the overall shape of two spectra, which was chosen as the most
important property of the reconstruction. A set of radiance cubes were calculated
using Equation 3.1 on three test images excluded from the final test dataset as
well as 20 randomly chosen daylight illuminants. Then different configurations
were tested, varying several input parameters of the model. The altered input
parameters and their values are listed in Table 3.1.

Table 3.1: Parameters chosen for optimization of the proposed method

Input Parameter Values
number of spectral candidates 500, 1000, 1500, 2000
smoothing method none, Median, LOWESS
Median kernel size 3, 5, 7
smoothing LOWESS (f) 0.03, 0.08, 0.15
number of PC for reconstruction 3, 6

The results of the optimization process show that in some cases 500 spectral
candidates are not enough to define a meaningful volume when computing the
convex hull for the validation process in six dimensions as described in Section
3.1.5.4. This can be caused by input images where the minConstraint does not
significantly narrow down the search area in the spectral domain, as shown in
Figure 3.10. In the worst case, none of the spectral candidates intersects with the
set of physically possible illuminants within the PCS. A number of 1500 for the
creation of spectral candidates was chosen in the end to provide a balance between
creating a detailed volume for the estimation and saving computational costs.

In order to investigate the performance of LOWESS smoothing as described
in Section 3.1.3, it was tested against a Median filter at different configurations.
Thereby, both algorithms were used with three different amounts of smoothing. As
expected, the LOWESS algorithm provides a more natural shape of the generated
curve while preserving local variation. In the end, a smoothing factor of f = 0.03
was determined to give the best results overall.
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Figure 3.10: In this example, the minConstraint does not restrict the search
area significantly.

3.1.8 Step by Step Framework Summary
In this section, a concise overview is given of the different steps that built the
proposed model as described comprehensively in the previous sections.

1. Define the image-dependent constraints to restrict the possible illumination
estimation results to a plausible region.

2. Randomly generate spectral candidates that lie within the plausible region
for a given radiance cube.

3. Fit a common PCS using a set of reflectances and a representative database
of daylight illuminants SPDs, such as the Granada daylight spectral database
created by Hernández-Andrés et al. (2001b).

4. Transform the illuminant database as well as the spectral candidates into the
PCS.

5. In the PCS, fit an n-dimensional line that represents the illuminant database
and a hyperplane that represents the spectral candidates.

7. Estimate the illuminant within the PCS by calculating the intersection of
line and hyperplane.

8. Ensure a valid estimation by comparing it against the volume of possible
points.
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9. Convert the estimated illuminant back to the spectral domain using the PCAs
inverse transform.

10. Ensure the estimated illuminant lies within the initial constraints.

11. Use the estimated illuminant spectrum to calculate reflectance values for the
input radiance cube.

3.2 Experiments
To test the performance of the proposed image statistics-based framework, the
model was evaluated regarding its ability to estimate illuminant spectra and to
reconstruct relative reflectance from the input radiance cubes. First, a set of
normalized radiance cubes was simulated from ground truth reflectance cubes and
representative ground truth daylight illuminants. These radiance cubes served as
input for the model. The framework as proposed in the previous sections then
predicted the illuminant spectrum for each cube from the input data without the use
of a reference target. Afterwards, the reconstructed illuminants were evaluated using
different full reference metrics explained in detail in Section 3.2.2. In addition, the
proposed illuminant estimation was compared to other statistics-based illuminant
estimation algorithms, namely spectral grayworld, spectral gray-edge, and max-
spectral, referred to as spectral constancy algorithms.

In addition, the estimated SPD was used to recover the relative reflectance
values for each of the input cubes, which were then compared to the ground truth
reflectance. The same reference metrics as for the illuminant estimation were then
applied to evaluate the ability of the proposed framework in terms of its reflectance
recovery capabilities.

The following sections focus in detail on how the training and test datasets were
created and which full reference metrics were chosen to evaluate the reconstructed
data. Additionally, an overview is given of the competing estimation algorithms
used for comparing the proposed method against other work that was done in the
field as described in Section 2.2.2.

3.2.1 Data Preparation

3.2.1.1 Reducing the Bias within the Illuminant Database

A simple and well-adopted way of specifying a given source of daylight by using
a single parameter is to express the spectrum in terms of its correlated color
temperature (CCT) as discussed by McCamy (1992). The CCT in Kelvin indicates
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the perceived color of a given illumination spectrum by referring to the temperature
of a Planckian radiator with approximately the same color under specified viewing
conditions Hunt (1978). Due to metamerism, caused by the trichromatic properties
of the human visual system this concept is based on, infinite spectra exist that
can result in the same CCT. To determine the CCT of a SPD, the radiation of
a Planckian body at different temperatures is expressed as unique CIE 1931 x,y
chromaticity coordinates. These chromaticity coordinates, whose computation is
described in detail by Wyszecki and Stiles (2000) and others, are a way to describe
the quality of a given color in terms of hue and saturation. A locus can be built
within CIE 1931 chromaticity space using these chromaticity coordinates, called
the Planckian or blackbody locus. The computed chromaticity coordinates of many
natural and artificial light sources lie on or near by this Planckian locus in CIE 1931
x,y chromaticity space. The point on the Planckian locus which is closest to the
chromaticity coordinates of a given illuminant hereby defines its CCT. The CCT
of a given daylight spectrum can be obtained by using Equation 3.15 and Equation
3.16 alongside the corresponding values from Table 3.2 from Hernández-Andrés et al.
(1999). For other light spectra, it is recommended to use the method proposed by
Robertson (1968). Hereby, x and y denote the CIE 1931 chromaticity coordinates.
A perceptually more uniform scale to describe the color of a given light source is
to express the illuminant spectrum by the inverse correlated color temperature
(CCT−1) instead. The CCT−1 can describe the perceived color temperature of a
given spectral power distribution in reciprocal mega-Kelvin (MK−1) and can be a
good estimate for the classification of irradiance spectra in the VIS range. It can
be calculated by computing the CCT as mentioned before and then using Equation
3.17.

As stated by the authors (Hernández-Andrés et al., 2001b), the Granada daylight
spectral database1 is biased towards illuminants of an CCT−1 of around 175 to
180 MK−1. To reduce the bias on the computation of the principal components
significantly, the dataset was divided into different regions with a range of 5MK−1

each, spanning from 5 to 270MK−1. Up to 40 spectra were then randomly selected
from the dataset for each region to simulate a more uniform distribution. At
the extremes of the range, only a few spectra were available for selection. The
distribution of illuminant spectra with respect to their CCT−1 before and after
bias reduction are shown in Figure 3.11. The result was a dataset of 1326 daylight
spectra, which replaces the initial dataset in all calculations that are described
from now on.

n = (x− xe)/(y − ye) (3.15)

1available at https://colorimaginglab.ugr.es/pages/Data, last accessed 09.08.2023
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CCT = A0 + A1e
(−n/t1) + A2e

(−n/t2) + A3e
(−n/t3) (3.16)

CCT−1 = 106/CCT (3.17)

Table 3.2: Constants and colorimetric epicenters (xe, ye) for the calculation
of CCT values within the valid range of 3000 − 8 × 105 Kelvin, as defined by
Hernández-Andrés et al. (2001b)

Constants 3000K − 50.000K 50.000K − 8× 105K

xe 0.3366 0.3356
ye 0.1735 0.1691
A0 −949.86315 36284.48953
A1 6253.80338 0.00228
t1 0.92159 0.07861
A2 28.70599 5.4535×10−36

t2 0.20039 0.01543
A3 0.00004
t3 0.07125

Figure 3.11: Left: initial distribution of all 2600 illuminant spectra of the
Granada daylight spectral database in respect to their inverse CCT.
Right: Dataset after bias reduction, consisting of a total of 1326 spectra.
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3.2.1.2 Simulating Radiance Cubes for Testing

A test dataset of relative radiance consisting of a total of 150 radiance cubes in
the range from 0 to 1 was calculated by the combinations of 25 reflectance cubes
as well as six representative illuminant spectra. Since homogeneous illumination
conditions are assumed in this work, Equation 3.1 was used for the computation.
The reflectance cubes were recorded using a Cubert Ultris X50 as well as a Cubert
Ultris X20 hyperspectral snapshot camera mounted on an UAV, as seen in Figure
3.12. Both cameras capture a spectral range of 350 - 1002nm with a spectral
sampling of 4nm, resulting in 164 channels with a bit depth of 12 bit. While
the Ultris X20 provides a native spatial resolution of 410x410 pixels, the spatial
resolution of the Ultris X50 is 570x570 pixels. The image cubes of the Ultris X50
were cropped to 550x550 pixels to remove artifacts that were present in some of
the images.

Figure 3.12: Cubert Ultris X20P, including an additional panchromatic sensor,
mounted on a UAV mid-flight.

From the altered illuminant dataset described in Section 3.2.1.1, six representa-
tive spectra were chosen based on their CCT−1. The chosen spectra range from 75
to 200 MK−1 in steps of 25 MK−1 and plots of their relative SPDs are shown in
Figure 3.13. Their variety with respect to common daylight scenarios is visualized
in Figure 3.14. The spectra used for the calculation or radiance test images were
removed from the dataset since they were used to calculate the training data for
the PCS, as described in Section 3.2.1.3. The illuminant data was cropped and
interpolated to match the spectral bands recorded by the Cubert Ultris cameras.
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Figure 3.13: Chosen SPDs of the Granada daylight spectral dataset based on
their inverse CCT.

200 175 150 125 100 75

5.000 5.700 6.000 8.000 10.000 13.300

MK−1

K
vertical daylight overcast sky clear blue sky

Figure 3.14: Inverse correlated color temperature of the chosen SPDs shown
above the bar and proximate CCT values shown below. The color of the bar
indicates the perceived shift in chromaticity from warmer to cooler colors for the
respective illuminants.

Colorimetric thumbnail example images rendered in sRGB using the CIE D65
standard illuminant at a spectral resolution of 5nm and the CIE 1964 color matching
functions at 5nm resolution are shown in Figure 3.15 below. With a focus on drone-
based applications, the images show a variation of vegetation and crops as well
as soil, dirt, and tarmac roads as well as other man-made objects like cars and
houses. But also several cubes captured under controlled conditions in the lab were
included.
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Figure 3.15: Example images, rendered as sRGB images using CIE standard
illuminant D65 and CIE 1964 color matching functions at 5nm spectral resolution.

3.2.1.3 Simulating Radiance Data for Training of the PCS

Besides preparing radiance cubes for testing the framework, radiance spectra were
simulated to serve as a training dataset to fit the image-independent PCS. The
training dataset contains a total of 316.800 radiance spectra. It was created by
combining 240 reflectance spectra and a total of 1320 illuminant spectra. The
reflectance spectra, kindly provided by the University of Granada, were obtained
by measuring a Greta McBeth ColorChecker DC using a Photoresearch PR745
spectroradiometer within a spectral range of 380 - 1080nm. The spectra of the
Granada daylight spectral database that were not used for creating the radiance
test cubes served as SPDs for the calculation, which was carried out using Equation
3.1 for all combinations of reflectance and radiance spectra, resulting in 316.800
training spectra in a range of 380 - 1080nm.

Afterwards, it was assured that all data involved in the illuminant estimation
was sharing a common spectral range and spectral resolution. This was necessary
to make it possible to fit the common PCS, transfer the input data into it, calculate
the intersection and convert the data back to the spectral domain. Therefore, the
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training and the test dataset as well as the illuminant database were all cropped
to a common spectral range of 382 - 1002 nm. Then, the training and illuminant
datasets were linearly interpolated to match the spectral bands of the radiance
data.

3.2.2 Evaluation Metrics

The following paragraphs explain the full-reference metrics used to evaluate the
results of the estimated SPD and reflectance values, by comparing the estimated
spectra against the respective ground truth data. As stated by Imai et al. (2002),
there is no single metric recommended for the evaluation of a spectral match.
Therefore, a variety of metrics are chosen to reflect the model’s performance in
different aspects.

3.2.2.1 Root Mean Square Error (RMSE)

The root mean square error (RMSE) is a well-established metric that can be used to
evaluate the average magnitude of the differences between an estimated spectrum
and its original counterpart. Equation 3.18 shows how to calculate the RMSE of
two given spectra, where S is the original spectrum, SR is the estimated spectrum
and n is the number of bands.

RMSE =

√√√√ 1

n

n∑
i=1

(S(λi)− SR(λi)) (3.18)

with 0 ≥ RMSE ≥ 1 for input data in a range between 0 and 1. A RMSE value
of 0 indicates a perfect match, whereas 1 indicates the worst match (or ∞, if the
input data is not normalized). Shifts in amplitude and scale affect the score of the
metric, but offsets by a constant do not.

3.2.2.2 Goodness of Fit Coefficient (GFC)

The goodness of fit coefficient (GFC), based on Schwartz’s inequality and proposed
by Romero et al. (1997) can be used to compare two spectra, usually a reference
spectrum and its reproduction. The GFC can be calculated as shown in Equation
3.19, where S is the original, measured spectrum, SR is the estimated spectrum
and n indicates the number of bands:

51



Chapter 3 METHODOLOGY

GFC =

∣∣∣∣ n∑
i=1

S(λi)SR(λi)

∣∣∣∣∣∣∣∣ n∑
i=1

[S(λi)]2
∣∣∣∣1\2∣∣∣∣ n∑

i=1

[SR(λi)]2
∣∣∣∣1\2

(3.19)

The resulting value lies between 0 and 1, where 1 indicates a perfect match of
the two spectra. As described by Romero et al., a GFC ≥ 0.99 indicates acceptable
results, a GFC ≥ 0.999 is considered of very good reproduction quality and a GFC
≥ 0.9999 can be considered an almost exact mathematical match. These ratings
were proposed in the context of dimensionality reduction of given spectra, not in
terms of illuminant estimation. Nevertheless, these numbers can also give a good
indication of the quality of an estimated spectrum. It has to be noted that GFC
is insensitive to shifts in scale. An adjustment of this method was proposed by
Viggiano (2004). For the convenience of matching other metrics like RMSE, GFC
can be subtracted from unity, resulting in 0 being the best fit and 1 being the
worst possible spectral match. Viggiano (2004) refer to this method as CGFC.
GFC and CGFC are good metrics to compare the overall match in shape of a
sample spectrum against a reference. For the convenience of the reader, CGFC is
chosen over GFC for presenting and discussing the results in this work. By doing
so, a perfect match between two spectra corresponds to a value of 0 for all metrics
presented in this section.

3.2.2.3 Spectral Angle Mapper (SAM)

The spectral angle mapper (SAM) as described by Kruse et al. (1993) is another
widely used metric to compare the spectral similarity of a reference spectrum and
a sample spectrum. SAM treats the two input spectra as n-dimensional vectors
and calculates the angle between them. The mathematical expression is given in
Equation 3.20, where S is the reference spectrum and SR is the spectral sample to
compare. SAM is the inverse cosine of the GFC. The smaller the resulting value, the
more similar the compared spectra. However, SAM does not consider the overall
shape of the spectra, but rather their similarity in a higher dimensional space.
Since the lengths of the vectors are not taken into account, SAM is insensitive to
differences in intensity.

SAM = cos−1


∣∣∣∣ n∑
i=1

S(λi)SR(λi)

∣∣∣∣∣∣∣∣ n∑
i=1

[S(λi)]2
∣∣∣∣1\2∣∣∣∣ n∑

i=1

[SR(λi)]2
∣∣∣∣1\2

 (3.20)
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3.2.2.4 Integrated Radiance Error (IRE)

The integrated radiance error (IRE) metric as described by Michalsky (1985)
calculates the sum of the absolute values of difference at each wavelength and
normalizes the result by dividing by the integrated reference spectrum. The
mathematical notation is shown in Equation 3.21, where S is the reference spectrum,
SR is the reproduction, and n is the number of spectral bands.

IRE =

∣∣∣∣ n∑
i=1

S(λi)− SR(λi)

∣∣∣∣
n∑

i=1

S(λi)
(3.21)

The best possible match is 0, whereas the worst match is ∞. The metric can
give a good indication of how well the two compared spectra match overall, but
spectra that produce an identical area will result in the same IRE. The metric is
highly sensitive to a change of scale.

3.2.3 Comparison to other Statistics-based Illumina-
tion Estimation Algorithms

In addition to comparing the estimated illuminant and the recovered reflectance
cubes against their respective ground truth data, the estimated SPDs is also com-
pared against three other image statistics-based illumination estimation algorithms,
namely spectral grayworld, spectral gray-edge and max-spectral as proposed by
Khan et al. (2017c) and already described in Section 2.2.2. Since these methods are
adopted from their color constancy algorithm counterparts, they will be referred to
as spectral constancy algorithms when talking about them as a set of algorithms.
For each of the radiance cubes used as test data for the proposed algorithm, the
illumination is estimated using each of the spectral constancy algorithms. Their
performance is evaluated by comparison against the ground truth illuminant by
using the spectral full reference metrics CGFC, RMSE, IRE and SAM described in
Section 3.2.2.

53



Chapter 3 METHODOLOGY

54



4 RESULTS

In this chapter, the results are represented. Hereby, the chapter is split into two
main parts. The first one focuses on the results obtained from the SPD estimation.
Tables are presented that show the performance of the presented model when
estimating the SPD present in the given input data by comparing it to the ground
truth SPD via the previously described metrics. Hereby, a perfect match between
a sample and the ground truth with respect to a given metric will always result in
a value of 0. Results are given for the performance of the proposed model on the
whole dataset, which are then compared to competing statistics-based illuminant
estimation algorithms. Then, results are displayed that provide information about
the performance of the proposed algorithm to predict illuminants with a certain
CCT−1. Alongside, plots are given as an example for the estimation results for a
given CCT−1. The second part focuses on the performance of relative reflectance
recovery for the whole dataset.

4.1 Estimated Illuminants
After estimating the SPD for each of the 150 radiance input cubes in the common
PCS and reconstructing the illuminant spectra using three principal components,
the error metrics explained in the previous section were computed. The results in
terms of the mean CGFC, RMSE, IRE and SAM over all input cubes are shown in
Table 4.1. In addition, the table shows the performance compared to the spectral
constancy algorithms described in Chapter 2.

After presenting the results for the general performance over a broad range of
different daylight illuminants, the capabilities of the proposed method to estimate
daylight illuminants of a certain CCT−1 are shown below. Figure 4.1 consists of six
plots showing an estimated relative SPD against the corresponding ground truth
for each CCT−1 used for the experiments. Below, Table 4.2 shows the ability of the
proposed model to predict daylight illuminants with a certain CCT−1. In addition,
a plot of the trendlines for estimating different CCT−1 is shown in Figure 4.2.
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Table 4.1: Results of the estimation of the illuminant SPD using three compo-
nents for reconstruction from PCS, mean values for all 150 estimated illuminants
of the test dataset.

proposed grayworld max-spectral gray-edge
CGFC
min 0.0026 0.0074 0.0011 0.0049
mean 0.0219 0.2537 0.1279 0.1539
max 0.0832 0.5297 0.3259 0.3527
90thpctl 0.0508 0.4141 0.2675 0.2910

RMSE
min 0.0568 0.0829 0.0368 0.0735
mean 0.1593 0.4156 0.3183 0.3465
max 0.3685 0.6117 0.6533 0.6166
90thpctl 0.2795 0.5430 0.4629 0.4995

IRE
min 0.0022 0.0038 0.0019 0.0003
mean 0.2043 0.2961 0.2815 0.3154
max 0.6775 0.5782 0.7870 0.7262
90thpctl 0.4464 0.4859 0.5824 0.5456

SAM
min 0.0726 0.1213 0.0474 0.0993
mean 0.1889 0.6988 0.4689 0.5207
max 0.4109 1.0812 0.8310 0.8668
90thpctl 0.3200 0.9448 0.7488 0.7827

Surprisingly, a reconstruction from the PCS back to the spectral domain using
three components yielded better results than using at least six components, as
recommended by Hernández-Andrés et al. (2001b). A table showing a comparison
of illuminant reconstruction results using three and six principal components is
shown in Appendix C, Table C.1. A possible reason for lower estimation accuracy
using 6 components will be addressed within Chapter 5, DISCUSSION.

56



Estimated Illuminants 4.1

Figure 4.1: Individual reconstruction results, one for each chosen CCT−1.
The blue curve represents the ground truth illuminant used for creating the
radiance image, the orange line is the reconstructed illuminant from three principal
components using the proposed estimation model.
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Table 4.2: Results of the illuminant estimation, subdivided by the CCT−1 of the
ground truth SPD.

75MK−1 100MK−1 125MK−1 150MK−1 175MK−1 200MK−1

CGFC
min 0.0117 0.0101 0.0046 0.0026 0.0048 0.0046
mean 0.0566 0.0339 0.0175 0.0081 0.0079 0.0072
max 0.0832 0.0503 0.0277 0.0209 0.0118 0.0144
90thpctl 0.0745 0.0454 0.0260 0.0113 0.0104 0.0118

RMSE
min 0.0818 0.0821 0.0597 0.0568 0.0740 0.0776
mean 0.2698 0.2168 0.1525 0.1020 0.1006 0.1141
max 0.3685 0.2963 0.2237 0.1845 0.1486 0.1881
90thpctl 0.3340 0.2720 0.2125 0.1314 0.1175 0.1695

IRE
min 0.0443 0.0611 0.0123 0.0094 0.0022 0.0112
mean 0.4848 0.3276 0.1719 0.0878 0.0674 0.0862
max 0.6775 0.4638 0.2803 0.2466 0.1799 0.1927
90thpctl 0.6099 0.4238 0.2631 0.1177 0.1051 0.1702

SAM
min 0.1530 0.1420 0.0955 0.0726 0.0984 0.0964
mean 0.3329 0.2559 0.1807 0.1225 0.1242 0.1176
max 0.4109 0.3184 0.2359 0.2047 0.1540 0.1698
90thpctl 0.3884 0.3024 0.2283 0.1506 0.1442 0.1533
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Figure 4.2: Trendlines for the mean estimation accuracy of the proposed model
per CCT−1 of all evaluation metrics.
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4.2 Reconstructed Reflectance Cubes
Comparing ground truth reflectance against reconstructed reflectance using the
illuminant SPD estimated by the proposed model. First, the reflectance cubes
are reconstructed by dividing each radiance cube by its corresponding estimated
illuminant. Then, for each point spectrum of all 150 reflectance cubes (more than
45.3 Million point spectra in total), the reconstructed reflectance is compared
against the ground truth using the metrics discussed in Section 3.2.2. From these
sets of values, the minimum, mean, maximum, and 90th percentile are calculated
for each metric to evaluate the overall performance of the reflectance reconstruction.
The results are shown in Table 4.3. Then, detailed results of the performance per
tested CCT−1 are shown in Table 4.4. Figure 4.3 then shows a comparison between
the errors of the SPD estimation and the reflectance recovery, summarizing the
general findings of the comparison of Table 4.2 and Table 4.4.

Table 4.3: Results of the relative reflectance reconstruction. The results are
calculated using all 45.3 million spectra of the 150 test cubes.

CGFC
min 0.0002
mean 0.0172
max 0.3364
90thpctl 0.0461

RMSE
min 0.0003
mean 0.0470
max 0.3783
90thpctl 0.1178

IRE
min 0.0000
mean 0.2312
max 0.7199
90thpctl 0.5110

SAM
min 0.0200
mean 0.1520
max 0.8451
90thpctl 0.3048
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Table 4.4: Results of the reflectance recovery, subdivided by the CCT−1 of the
ground truth SPD.

75MK−1 100MK−1 125MK−1 150MK−1 175MK−1 200MK−1

CGFC
min 0.0072 0.0043 0.0004 0.0002 0.0005 0.0002
mean 0.0470 0.0305 0.0114 0.0067 0.0069 0.0033
max 0.3364 0.2619 0.2155 0.1764 0.1299 0.0537
90thpctl 0.0915 0.0554 0.0272 0.0171 0.0147 0.0094
RMSE
min 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003
mean 0.0867 0.0709 0.0497 0.0338 0.0355 0.0180
max 0.3783 0.3327 0.2580 0.2006 0.1775 0.1010
90thpctl 0.1857 0.1607 0.1171 0.0876 0.0884 0.0418
IRE
min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
mean 0.4457 0.3425 0.2367 0.1586 0.1679 0.0747
max 0.7199 0.5923 0.4456 0.4576 0.5749 0.2321
90thpctl 0.6162 0.5378 0.4150 0.2932 0.2849 0.1400
SAM
min 0.1201 0.0929 0.0282 0.0200 0.0326 0.0216
mean 0.2941 0.2368 0.1242 0.0933 0.1047 0.0720
max 0.8451 0.7405 0.6689 0.6031 0.5155 0.3291
90thpctl 0.4312 0.3344 0.2339 0.1851 0.1718 0.1369
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Figure 4.3: Comparison of trendlines for the mean results in terms of illuminant
SPD estimation and reflectance recovery of the proposed model per CCT−1 of all
evaluation metrics. First three principal components used.
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This chapter discusses the results presented in the previous section as well as the
general abilities and restrictions of the proposed framework. It is thereby divided
into three main parts. The first section focuses on the capabilities of the designed
algorithm in terms of its illumination estimation capabilities, whereas the second
part then elaborates on the reflectance recovery results. The third part considers
general remarks about the model, its limitations, and possible improvements.

5.1 Evaluation of Illuminant Estimation Ca-
pabilities and Comparison to Competing
Algorithms

The numerical results of the illuminant estimation presented in Table 4.1 clearly
indicate the ability of the model to successfully estimate a variety of representative
daylight illuminant spectra to a reasonable precision. A CGFC mean value of 0.02
and a value of 0.05 for measuring the 90th percentile over all images indicates a
strong correlation of the estimated spectrum with the ground truth. Following
the lead of Romero et al. (1997), the threshold for a ’good’ spectral reproduction
of CGFC-value ≤ 0.01 is not achieved over the whole dataset, indicating room
for improvement. On the other hand, the best illuminant reconstruction achieves
an CGFC value of 0.0026, which is very promising. In addition, one has to keep
in mind that these threshold values were defined for dimensionality reduction.
Considering the ill-posed problem of no-reference illumination estimation as this
work does, the perfect estimation of a broad variety of ground truth spectra over a
large variety of different scenes is unlikely when using a single algorithm. Therefore,
the evaluation against the aforementioned threshold values can be thought of as a
guideline rather than a definitive categorization.

Examining the results in terms of RMSE, the proposed algorithm shows decent
estimation qualities. A mean RMSE of 0.1593 and 0.2795 when considering the
90th percentile, over all estimated illuminants is moderately accurate. The ability
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of the model to accurately estimate SPDs is visually underlined by Figure 4.1,
showing the selected ground truth SPDs and a corresponding estimation result for
different CCT−1.

When comparing the results against the other tested image statistics-based
algorithms, it can be seen that the proposed model outperforms its competitors
with respect to most metrics used. Although max-spectral and spectral gray-edge
achieve better peak performance in single cases, the proposed algorithm is able to
achieve significantly better estimation precision over a larger variety of different
input data, which can be seen when comparing the mean values and 90th percentiles
of the given metrics in Table 4.1. The maximum error over all metrics besides
IRE is lowest when using the proposed algorithm, strongly indicating that fewer
outliers with very large reproduction errors are produced. In addition, the created
algorithm still shows the best results in terms of IRE mean and 90th percentile,
indicating that it is able to estimate the overall normalized power better than the
competitors over a variety of input data. Hereby, IRE compares the integrals under
the sample and ground truth curves and does not take into account the general
shape of the spectra. Comparing the different algorithms in terms of the resulting
CGFC values, it can be seen that the proposed model significantly outperforms the
other algorithms. The same can be observed when evaluating SAM results, where
the error between estimation and ground truth SPDs can be substantially reduced
by using the proposed algorithm.

A reason for the good overall performance of the newly created model is
the restriction of the estimated illuminant in PCS to a volume of intersection
between the image-dependent plausible and physically possible measured spectra
of the dataset. This prevents the estimation to be far off of any plausible daylight
illumination spectrum within the broad variety represented by the Granada daylight
illuminant database. The competing algorithms lack such restrictions in terms of
the plausibility of their estimation results. The good peak performances of the
max-spectral algorithm are most likely achieved for images where at least one
pixel captured a specular reflection or an object with high reflective and relatively
uniform spectral properties and therefore is able to predict the SPD accurately. In
such cases, the proposed model restricts the estimation in a way that it can not
lie below its maxConstraint, which is similar to estimation using the max-spectral
algorithm. Hereby, it is possible that the created model overestimates the relative
radiance of the SPD, which then results in slightly higher errors. Nevertheless,
such cases are not very common for the intended application in forest areas and
agricultural environments.

It is noted, that among the three spectral-constancy algorithms tested, the
max-spectral and spectral gray-edge algorithms showed better results than spectral
grayworld. This correlates with the findings of the authors who originally proposed
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these estimation methods.
Comparing the SPD estimation results subdivided by their CCT−1) as presented

in Table 4.2 shows that on average, the proposed model predicts illuminants with
an CCT−1 of 150 MK−1 and above with higher precision. This behavior is clearly
visible when evaluating Figure 4.2, where a trend over all metrics can be observed.
Since the bias of the illuminant dataset was reduced before simulating the training
data by a large amount, this is not expected to be the reason.

When comparing the illuminant estimation results using the first three principal
components against the first six for the reconstruction of the estimated illuminant
spectrum from the PCS, the results in Table C.1 indicate a difference in performance.
It is noticeable that the performance gets worse when using six principal components.
Since the physically possible daylight illuminants are not represented precisely
enough by a line in the input independent PCS for dimensions higher than three,
the calculated intersection point is not accurate enough to precisely estimate the
illuminant. Hernández-Andrés et al. (2001a), however, concluded that at least six
components should be used for accurate spectral reconstruction. This indicates that
refining the assumption of a linear approximation within the PCS might increase
the estimation accuracy of the framework significantly in the future. Possible
improvements could be a different technique when calculating the intersection or
different training data to fit the common PCS. Nevertheless, this work shows that
the presented method can achieve good results in illuminant estimation accuracy
using only the first three principal components for reconstructing the SPD from
the principal component space.

5.2 Evaluation of Reflectance Recovery Re-
sults

The evaluation of the reflectance recovery in Section 4.2 shows excellent reconstruc-
tion qualities in the best cases with a minimum CGFC value of 0.0002, minimum
RMSE of 0.0003 and an almost perfect match in terms of IRE. Also, as expected,
the overall reflectance estimation results increase slightly in comparison to the illu-
mination estimation. This improvement is visualized in Figure 4.3, where the mean
results of all metrics are plotted for the mean SPD estimation and the reflectance
recovery for each CCT−1. It can be seen that the overall trend of the curves is the
same, but the error is slightly smaller in terms of SAM and significantly smaller
in terms of RMSE over all CCT−1. Since the illuminant estimation from image
data without ground truth measurements is always dependent on the information
present in the image, some regions of the SPDs spectral range might not be properly
represented by the input data. There always exists the possibility that the objects
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within the scene barely reflect any radiance in certain ranges of the measured
spectrum. Since the illuminant information is recovered from a particular scene
measurement directly, the uncertainties of the estimation results will most likely be
higher for the same regions as well. However, this means in reverse that even if the
illuminant can not be predicted with high accuracy over the whole spectral range,
using that estimation might not introduce large errors when predicting reflectance
values of the given radiance cube.

5.3 General Considerations
After showing that the created method is clearly capable of accurately estimating
daylight illuminants, some general considerations will be discussed in this section.
Although the spectral range of 382 - 1002nm for the illuminant estimation is suitable
for many applications, especially when examining biochemical and biophysical plant
parameters, it is not limited to a specific spectral range, as long as sufficient training
data is available for creating the independent PCS. This could for example enable
an expansion of the spectral range for estimation to the UV and SWIR range as well.
Hereby, it is expected that the general structure of the model must not undergo any
changes and can simply be extended by using different training data. Although the
Granada daylight spectral database can be considered a representative collection
for daylight in (southern) Europe, the estimation results might benefit from an
extended database consisting of illuminant measurements from different sites all
over the world.

The major limitation of the proposed method is, like with most other methods
in this field, the assumption of a single, uniformly distributed light source. When
considering cloudless illumination conditions at the time of the scene capture, the
estimation of a single light source might not be sufficient enough, considering the
effect of direct and indirect sunlight as well as shadow areas on the captured data. A
possible solution to this problem will be given in Section 6.2, Possible Improvements
and Future Work. Nevertheless, this work not only proposes a completely new
approach for the estimation of illumination spectra, but it also lays the foundation
for further development of illumination estimation algorithms.
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6.1 Key Findings
This work aimed to develop a framework capable of precisely estimating daylight
illuminant spectra from hyperspectral radiance data without the use of simultane-
ous ground truth measurements such as reflectance targets. A special interest was
taken in the application of drone-based surveillance of agricultural and forestry ap-
plications. Unlike other work, the proposed method restricts the possible illuminant
spectra by defining image-dependent plausible spectra and physically possible spec-
tra. The image-dependent plausible spectra are generated by restricting the search
space within the spectral domain by using generic assumptions and calculating
spectral candidates using a random walk approach. The physically possible spectra
are represented by a set of measured daylight illuminants. Within a pre-trained,
input-independent principal component space, the intersection point between those
two sets of data is calculated. By converting the intersection point back to the
spectral domain, the estimated illuminant is derived.

The evaluation of the obtained results demonstrates that the proposed model
is capable of accurately estimating a representative set of illuminant spectra over
a large set of 150 input images. It thereby significantly outperforms competing
statistics-based approaches over the tested images.

It is evident that the key assumption, the possibility to estimate a given daylight
illuminant as an intersection between these restrictions within an image-independent
PCA, can yield promising results. Especially illuminants corresponding to an CCT−1

of 150− 200MK−1 are predicted accurately. In addition, the proposed framework
is able to accurately recover reflectance values from the radiance input data.

At its current state, the model has been validated to estimate illuminants within
a spectral range of 382− 1002nm, making it suitable for many vegetation-based
analysis approaches. Nevertheless, the proposed model is not restricted to these
applications.
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Chapter 6 CONCLUSION

6.2 Possible Improvements and Future Work
Although the framework proposed in this work can estimate a broad range of
daylight illuminants with acceptable to very good performance, some key points
can be identified to further improve the proposed method in the future. First, the
illuminant estimation within the PCS can be improved, especially for dimensions
higher than three. This can be done by using another way to calculate the estimation
result, for example by using other, gamut-based methods instead of the intersection
between line and plane. Another possibility would be an extension and optimization
of the training data to create the common PCS. This might lead to a different
representation of the physically possible daylight spectra within the dimensions
greater than three, which can be utilized for the estimation in a better way.

Since daylight spectra can be highly dependent on the geographical location,
the use of a worldwide database of measured illuminants could lead to accurate
estimation results for an even broader range of daylight scenarios. In addition,
possibilities should be explored to extend and test the proposed framework for the
estimation of illumination spectra other than those of typical daylight conditions,
such as incandescent light or LED. A possible approach would be the use of different
reference databases for different illuminant categories, which can be interchanged
based on the desired application.

Last, in this work it is considered that the scenes are illuminated by a single,
uniformly distributed light source. While this is a common restriction for most
illumination estimation algorithms, this assumption does not hold for many practical
applications. The estimation of spatially nonuniform illumination conditions can
be achieved by dividing the scene into smaller portions in a grid-wise manner and
deriving local estimates, for example, as proposed for three-channel color images by
(Gijsenij et al., 2012). It would then be possible to interpolate these local results to
create a map that considers the spatial distribution of several illuminants. A more
advanced approach could include the generation of 3D hyperspectral information
to guide the local illuminant estimation process.
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The corresponding Python code of the proposed framework is available on request
at:

https://github.com/CaptainCornflakes/PCA_based_illuminant_estimation_framework
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Spectrum
«class»

Attributes:
- name : string
- wavelength : list
- spectralRange : list
- samplingInterval : int
- channels : int
- data : numpy.array
- dataShape : list
- processingMode : string
- pca : PcaObj
- gamut : scipy.spatial.ConvexHull
- ransac : numpy.array
- dataPCS : numpy.array

Functions:
+ load_dataset(name : string)
+ normalize_data(range : list)
+ crop_spectralRange(range : list)
+ resample_data(wl : list)
+ set_metadata(obj : Spectrum)
+ pop_spectrum(idx : int)
+ plot_spectrum(title : string)

SpectralCube
«class»

Attributes:
- filename : string
- filepath : string
- id : int
- cameraModel : string
- integrationTime : double
- width : int
- height : int
- spd : Spectrum
- minConstraint : numpy.array
- spectralCandidates : numpy.array
- image : numpy.array
- hyperplane : Hyperplane
- volumeIntersect : scipy.spatial.ConvexHull
- spdEstimated : numpy.array

Functions:
+ _handle_paths(filepath : string, filename :
string)
+ load_from_dir(path : string)
+ load_from_file(filepath : string, filename :
string)
+ save_to_file(out_dir ; string, filename : string)
+ crop_cube(x0 : string, x1 : string, y0 : string, y1
: string)
+ calc_radiance(spd : Spectrum)
+ calc_reflectance(spd : Spectrum)
+ calc_minConstaint()
+ calc_spectralCandidates(n : int, smooth-
ing_method : string, smoothing : float)
+ calc_image()
+ show_channel(idx : int)
+ get_spectrum(pos : list)
+ plot_spectrum(pos : list)

inherits
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PcaObj
«class»

Attributes:
- name : string
- processingMode : string
- data_train : numpy.array - pca : sklearn.decomposition.PCA
- pcaSscaler : sklearn.preprocessing.StandardScaler

Functions:
+ pcaScaler_fit(data : numpy.array)
+ pcaScaler_transform_data(data : numpy.array) : numpy.array
+ pcaScaler_inverse_transform(data : numpy.array) : numpy.array
+ pca_fit(data : numpy.array)
+ pca_transform_data(data : numpy.array) : numpy.array
+ pca_inverse_transform(data : numpy.array) : numpy.array

Hyperplane
«class»

Attributes:
- centroid : numpy.array
- normal : numpy.array
- points : numpy.array
- dims : int

Functions:
+ calc_from_points(points : numpy.array)
+ calc_intersection(p1 : numpy.array, p2 : numpy.array) :
numpy.array
+ point_inside(point : numpy.array, hull : scipy.spatial.ConvexHull)
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utils_COLOR
«package»

Functions:
- calc_XYZ(obj : Spectrum, cmfs : numpy.array, spd : Spectrum) : numpy.array
- calc_cct_from_spectra(obj : Spectrum) : float
- calc_inverse_cct_from_spectra(obj : Spectrum) : double
- cct_to_inverse_cct(cct : double) : double
- inverse_cct_to_cct(inv_cct : double) : double

utils_GEO
«package»

Functions:
- fit_line_ransac(X : numpy.array, y : numpy.array, max_trials : int) :
numpy.array
- line_hyperplane_intersection(data : numpy.array) : numpy.array
- find_nearest_point(p : numpy.array, set_p : numpy.array) : numpy.array

utils_EVAL
«package»

Functions:
- GFC(sample : numpy.array, reference : numpy.array) : double
- CGFC(sample : numpy.array, reference : numpy.array) : double
- RMSE(sample : numpy.array, reference : numpy.array) : double
- IRE(sample : numpy.array, reference : numpy.array) : double
- SAM(sample : numpy.array, reference : numpy.array) : double

colorSpace_transforms
«package»

Functions:
- sRGB2sRGBlin(data : numpy.array) : numpy.array
- sRGBlin2sRGB(data : numpy.array) : numpy.array
- sRGB2XYZ(data : numpy.array) : numpy.array
- XYZ2sRGB(data : numpy.array) : numpy.array
- XYZ2xyY(data : numpy.array) : numpy.array
- xyY2XYZ(data : numpy.array) : numpy.array

spectral_constancy_algorithms
«package»

Functions:
- spectral_grayworld(data : numpy.array) : numpy.array
- max_spectral(data : numpy.array) : numpy.array
- spectral_grayedge(data : numpy.array) : numpy.array
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Table C.1: Results of the estimation of the illuminant SPD using three com-
ponents for reconstruction from PC-space, mean values for all 150 estimated
illuminants of the test dataset.

3 principal components 6 principal components
CGFC
min 0.0026 0.0038
mean 0.0219 0.0616
max 0.0832 0.1271
90thpctl 0.0508 0.1051

RMSE
min 0.0568 0.0918
mean 0.1593 0.2325
max 0.3685 0.4149
90thpctl 0.2795 0.3234

IRE
min 0.0022 0.0017
mean 0.2043 0.1923
max 0.6775 0.6125
90thpctl 0.4464 0.3599
SAM
min 0.0726 0.0874
mean 0.1889 0.3341
max 0.4109 0.5097
90thpctl 0.3200 0.4625
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