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Abstract

Shapley values are popular for explainable artificial intelligence due to their solid theoretical found-
ation of correctness and fairness. However, the computation of the Shapley values is costly, and
therefore, infeasible in many real-world problems. To reduce the cost, Shapley value estimators
are used. The Shapley value estimation can be divided into two steps. The first step is the con-
tribution function estimation. The contribution function is meant to capture how each feature
affects the prediction of the black box model, and a common choice is the expected value of the
model conditioned on a subset of the features being observed, which often is analytically intract-
able. Two estimators are considered in this thesis. The off-manifold method [1, 2] assumes feature
independence, often leading to a bias for real-world data sets. The surrogate model [3] is a su-
pervised machine learning model trained to approximate the contribution function. The second
estimation step is to estimate the Shapley values given an estimate of the contribution function.
We consider two estimators, KernelSHAP [2] and FastSHAP [4]. Out of the exponential number
of feature combinations considered in the exact Shapley values, KernelSHAP reduces the cost by
considering a small subset of the most important ones. FastSHAP is a machine learning model
trained to estimate the Shapley values.

We perform an in-depth empirical study of the estimators based on computational cost and ac-
curacy for simulated and real-world data sets. By clearly separating the estimation steps and
evaluating the methods on simulated data sets where the ground truth is known, we provide new
insights into the methods. We find that the off-manifold method is more accurate for smaller data
sets, especially if the features are “nearly independent”. In contrast, for larger data sets, the sur-
rogate model is more accurate, especially if the features are “far from independent”. The surrogate
model is clearly faster, making it preferable in many real-world problems. Both of the Shapley
value estimators are fast when the contribution function is given. The KernelSHAP method is more
accurate than the FastSHAP method if enough feature combinations are considered, especially for
smaller data sets. In practice, increasing the number of feature combinations in KernelSHAP re-
quires increasing the number of estimates of the contribution function. Thus, if KernelSHAP is
combined with the slower off-manifold method, increasing the accuracy will lead to slower compu-
tation, which must be repeated for every instance’s prediction. FastSHAP has the advantage that
after an initial training procedure, the full two step estimation procedure can be performed by a
single model evaluation per instance of interest. For a real-world data set, we find that the relative
performance of the methods aligns with the results from the simulation study.
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Sammendrag

Shapley-verdier er en populær metode innenfor forklarbar kunstig intelligens p̊a grunn av et solid
teoretiske grunnlag for deres korrekthet og rettferdighet. Imidlertid er beregningen av Shapley-
verdier kostbar og derfor ikke gjennomførbart i mange praktiske situasjoner. For å redusere kost-
naden brukes Shapley-verdiestimater. Estimeringen av Shapley-verdier kan deles inn i to trinn.
Det første trinnet er å estimere bidragsfunksjonen. Bidragsfunksjonen skal fange opp hvordan hver
kovariat p̊avirker prediksjonen til maskinlæringsmodellen, og et vanlig valg er forventningsverdien
til modellen betinget p̊a at en delmengde av kovariatene er observert. Denne forventningsverdien
er ofte analytisk utilgjengelig. To estimatorer betraktes i denne avhandlingen. Metoden “off-
manifold” (norsk: av eller utenfor manifolden) [1, 2] antar uavhengighet mellom kovariatene, noe
som ofte fører til skjevhet (engelsk: bias) for virkelige datasett. Surrogatmodellen [3] er en veiledet
(engelsk: supervised) maskinlæringsmodell som er trent for å tilnærme bidragsfunksjonen. Det
andre estimeringstrinnet er å estimere Shapley-verdiene gitt et estimat av bidragsfunksjonen. Vi
betrakter to estimatorer, KernelSHAP [2] og FastSHAP [4]. Av de eksponentielt mange kom-
binasjonene av kovariater som betraktes i de eksakte Shapley-verdiene, reduserer KernelSHAP
kostnaden ved å betrakte en liten delmengde av de viktigste kombinasjonene. FastSHAP er en
maskinlæringsmodell som er trent for å estimere Shapley-verdiene.

Vi utfører en grundig empirisk studie av estimatorene basert p̊a beregningskostnad og nøyaktighet
for simulerte og virkelige datasett. Ved å tydelig separere estimeringstrinnene og evaluere met-
odene p̊a simulerte datasett der sannheten er kjent, gir vi nye innsikter i metodene. Vi finner
at off-manifold-metoden er mer nøyaktig for mindre datasett, spesielt hvis kovariatene er “nesten
uavhengige”. Derimot for større datasett, er surrogatmodellen mer nøyaktig, i hvert fall hvis
kovariatene er “langt fra uavhengige”. Surrogatmodellen er klart raskere, noe som gjør den fore-
trukket i mange situasjoner. Begge Shapley-verdiestimatorene er raske n̊ar bidragsfunksjonen
er gitt. KernelSHAP-metoden er mer nøyaktig enn FastSHAP-metoden hvis tilstrekkelig mange
kombinasjoner av kovariater betraktes, spesielt for mindre datasett. I praksis krever økning av
antall kombinasjoner av kovariater i KernelSHAP økning av antall estimater av bidragsfunksjonen.
Dermed, hvis KernelSHAP kombineres med den langsommere off-manifold-metoden, vil økning i
nøyaktighet føre til tregere beregning, som m̊a gjentas for hver enkelt observasjons prediksjon.
FastSHAP har fordelen av at etter treningen av modellen er utført, kan hele den totrinns estimer-
ingsprosedyren utføres med en enkelt modellevaluering per observasjon som forklares. Vi finner at
ytelsen til metodene for et virkelighetsdatasett samsvarer med resultatene fra simulasjonsstudien.
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1 Introduction

Machine learning has emerged as an important tool in various fields. The complexity of machine
models has increased significantly, leading to improved predictive abilities, but resulting in models
that are difficult for humans to interpret. Model interpretability or explainability is essential in
order to e.g. detect model biases, build trust in the models and ensure model robustness [5].
The need for interpretability has led to the development of the field eXplainable Artificial
Intelligence (XAI), where various methods are developed in order to interpret complex machine
learning models. A report from the Finance Sector Union of Norway (Finansforbundet) [6], points
out that XAI is crucial for the application of machine learning models in the Norwegian financial
industry.

Within the field of XAI, there are several approaches. One approach is to stick to using models
that are intrinsically interpretable. However, this would rule out the use of some models that
have state-of-the-art performance. In contrast to this, one can perform post hoc interpretability,
where a model is interpreted after training e.g. by analyzing the inputs and outputs of the model.
Within the domain of post hoc interpretability, there are model-agnostic and model-specific
methods. Model-agnostic methods aim at interpreting any kind of machine learning model, and
can therefore only consider the inputs and outputs of the model, and must treat the model itself as
a “black box”. In contrast, model-specific methods aim at explaining a particular kind of machine
learning model, e.g. a random forest or a convolutional neural network. Model-specific methods
can consider the parameters, such as the weights in a neural network, and the structure of the
model. Moreover, some interpretability methods aim at explaining the overall workings of a model.
These are referred to as global, whereas other methods aim at explaining an individual prediction
of the model for a particular observation, which is referred to as a local method.

In this thesis, the focus will be on using Shapley values [7] as a local model-agnostic explanation
method [1]. The Shapley values can also be used for global interpretability. The Shapley values
are a fair and correct way, defined through satisfying some desirable criteria [1, 2, 8], to attribute
the prediction of a model to its features. Although the Shapley values arguably provide a fair and
correct explanation, the computational cost of the Shapley values is exponential in the number
of features in the model, and therefore, infeasible to compute in many situations. To apply the
method, it is necessary to develop estimation methods with a relatively low computational cost
and provide accurate estimates of the Shapley values. The Shapley value estimation procedure
can be divided into two steps. In order to fully evaluate the estimation methods and determine
where each method breaks down, each estimation step is considered separately. The first step is
to estimate the contribution function, which is meant to capture how the black box model’s
prediction changes conditioned on different combinations of features being observed. The second
step is the estimation of the Shapley values given the estimates of the contribution function.

A common choice of contribution function estimator is a Monte Carlo integral under the assumption
of feature independence [1, 2]. In this thesis, this estimator will be referred to as the off-manifold
estimate because the generated Monte Carlo samples will often lay off the data manifold [3]. The
feature independence assumption and the method’s high computational cost are drawbacks. To
incorporate the dependence of the features in the contribution function estimate, Aas, Jullum and
Løland [8] propose parametric and non-parametric methods. However, due to the computational
cost of these methods, they do not scale to more complex higher dimensional problems. Another
strategy, proposed by Frye et al. [3] and Jethani et al. [9], uses supervised and generative machine
learning models, neural networks, to learn to estimate the contribution function. Due to the high
representation ability of neural networks, this strategy is promising [3, 9, 10], but suffer from draw-
back like the need for developing robust strategies for evaluating and tuning the hyperparameters
of the model [10]. Another drawback of this method is that it is somewhat paradoxical to use a
black box machine learning model as part of explaining another black box machine learning model.

Moving on to the second estimation step, Lundberg and Lee [2] propose both model-agnostic and
model-specific Shapley value estimators. One of their proposed methods is KernelSHAP, which is
a model-agnostic Shapley value estimation method that has become popular through the SHAP
library [2]. As previously mentioned, the computation of the exact Shapley values is exponential in
the number of features. This is because exponentially many combinations of features are considered.

1

https://shap.readthedocs.io/en/latest/


KernelSHAP exploits that out of the exponentially many combinations, the contribution of some
combinations is negligible compared to others. Therefore, it approximates the full problem by
choosing a small subset of the most important combinations, reducing the computational cost
significantly. A more recent Shapley value estimator, FastSHAP, was introduced by Jethani et al.
[4]. FastSHAP is a machine learning model, a neural network, trained to approximate the Shapley
values. Again, like for the surrogate model, FastSHAP raises the question of whether a non-
interpretable machine learning model is suitable for explaining another machine learning model.
FastSHAP is a method with a higher initial computational cost, the training of the model, but
the cost is amortized across the number of explanations to be explained. After the initial training
has been performed, any number of observations can be explained at a low cost, corresponding to
a single model evaluation. This is desirable in practical applications where explanations must be
provided within a short time frame. In contrast, in the KernelSHAP method, the computation
related to generating an explanation must be repeated for every instance that is to be explained.
Therefore, especially when combined with the slower off-manifold contribution function estimator,
it is less suitable in situations where a fast generation of explanations is important.

Both KernelSHAP and FastSHAP were introduced with a default choice of contribution function
estimators. In previous work, such as [2, 4, 11], the full two step estimation procedure is evaluated
as a whole. To fully evaluate the estimation in terms of accuracy and computational cost, we
distinguish the two steps from each other and evaluate each step on its own. By separating the
steps, we hope to provide new insight into the properties of each method, determine where in the full
estimation procedure the error in the final approximation originates, and how the computational
cost is distributed between the steps. In this thesis, we consider the off-manifold and surrogate
estimates of the contribution function. In addition, fixing the estimate of the contribution function,
the KernelSHAP and FastSHAP estimates are evaluated. The surrogate model and FastSHAP are
recent methods, and in [3] and [4] the methods are tested on some real-world data sets. However,
as novelty work, we performed an in-depth study of the methods’ performance on simulated data
sets with varying empirical properties where the ground truth Shapley values are known.

As previously mentioned, in the off-manifold estimate, feature independence is assumed. Feature
independence is rarely observed in real-world problems, therefore, in many practical situations,
the assumption will not hold. To investigate the effect of falsely assuming independence, we test
the method on simulated data sets where we vary the degree of linear correlation between the
features. Moreover, the surrogate and FastSHAP models consist of neural networks which require
sufficiently large data sets to yield high-precision predictions. Therefore, in the simulated data
sets, the number of training observations is varied in order to investigate whether this affects the
accuracy of the models’ predictions. Moreover, the data generating distribution is varied in the
simulations to determine how the “difficulty” of the data affects the estimators. The Shapley
value estimators are most needed in high-dimensional problems since the computation of the exact
Shapley values is exponential in the number of features in the model. It is, therefore, interesting
to determine whether the accuracy of the estimators varies based on the number of features in
the black box model. Based on the empirical properties of the simulated data sets, we outline the
relative performance of the methods and present results that may indicate a priori which method
is to be preferred in real-world applications based on the properties of the data set. Finally, the
estimation methods are tested and evaluated on a real-world data set.

The outline of this thesis is as follows. Some concepts from machine learning and statistics are
presented as background material in Section 2. In Section 3, we describe the origin of the Shapley
values and the theory of the Shapley values as an explanation method. Moreover, the Shapley
value and contribution function estimation methods are described in detail. We outline the full
estimation procedures and discuss the computational cost of the methods. The methods are tested
on simulated data, and the results from this study are presented in Section 4. Then, the results of
applying the methods to a real-world data set are presented in Section 5. In all our experiments, we
use our implementation of the methods, which can be found on GitHub. The implementation of the
surrogate and FastSHAP models are adaptations of the FastSHAP implementation in TensorFlow
[4]. The results are summarized and discussed in Section 6 before we conclude and point out some
future work in Sections 7.1 and 7.2, respectively.

Some of the sections of this thesis are, with minor alterations, copied from my specialization
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project, Aase [12]. In Chapter 2, Sections 2.1.1, 2.2.1 and 2.4 are taken from [12]. In Sections
2.2.1 and 2.4, some information has been added and minor alterations have been made e.g. to
improve the notation. In Chapter 3, Sections 3.1 to 3.3 and 3.5.1 have, with minor alterations,
been copied from [12]. Lastly, in Chapter 5, Sections 5.1 and 5.2 are copied from [12] with minor
modifications.
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Figure 1: An example of the splitting region of a CART with two features x1 and x2 is shown on
the left. The corresponding tree representation is shown on the right. These illustrations are based
on similar illustrations in Chapter 9 of Hastie, Tibshirani and Friedman [13].

2 Background Material

This section will present some relevant topics from statistics and machine learning. A general
overview of the field of machine learning can be found in my specialization project [12] and is not
given in this report. The majority of Sections 2.1.1, 2.2.1 and 2.4 are taken from my specialization
project [12] and are included in this report for completion.

2.1 An Intrinsically Interpretable Machine Learning Model

In the following section, an intrinsically interpretable machine learning model is presented. The
model will also be an important building block in the XGBoost model that will be described in
Section 2.2.1.

2.1.1 Classification and Regression Tree (CART)

A tree is a model f that divides the feature space into disjoint (high-dimensional) rectangles or
boxes R1, R2, . . . , RM and predicts the same value cm for all instances in a rectangle. The splitting
rules can be represented by a tree, for an illustration see Figure 1. Mathematically, this can be
expressed as

f(x) =

M∑
m=1

cm1{x ∈ Rm},

where

1{x ∈ Rm} =

{
1, x ∈ Rm,

0, x /∈ Rm,

is the indicator function. There are several tree algorithms. The one that will be considered
here is the one presented by Lewis [14], known as CART, an abbreviation for Classification And
Regression Tree. As the name suggests, trees can be used for both regression and classification,
although the specifics of the algorithm are different in the two cases. In this section, we follow the
notation of Hastie, Tibshirani and Friedman [13].

Splitting the whole feature space in an optimal composition of rectangles is a complex problem.
Therefore, in practice, simplifying the search space into only considering recursive binary partitions
is necessary. This means that the only possible choice at each step is to split one of the existing
rectangles into two. For instance, adding a rectangle in the middle of one of the existing rectangles
is not allowed. The algorithm works by first splitting the feature space into two rectangles and
proceeds by dividing one of them into two, and so forth. To consider all possible combinations of
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such splits is not feasible. Therefore, one greedily approaches the problem. This means that at
every split, one chooses the split giving the most improvement at the current time. One does not
consider whether it would be possible to achieve a better solution in e.g. ten steps from now. This
greedy search solves the problem of how to divide the feature space into disjoint rectangles.

It remains to find the feature and corresponding feature value for which splitting a currently
existing rectangle into two will give the largest improvement. To do this, a loss function is used.
In machine learning, a loss function usually measures the model’s fit to the data. The loss function
measures the amount by which the model’s predictions differ from the response variables in the
training data. This is also the case for determining the splits in CART. Given the loss function, one
can determine the best value to predict within each rectangle. There are many different choices of
loss functions. It depends on the nature of the problem, whether it is classification or regression. In
addition, some loss functions have analytical minimizers, whereas others can only be numerically
approximated. Non-convex functions are generally hard to optimize numerically. Thus, the loss
function must be chosen with care. The details of CART will be treated for one such choice, the
sum of squared losses in the regression setting.

The sum of squares loss is given as
∑n

i=1(yi − f(xi))
2, which is minimized by f(xi) =

1
n

∑n
i=1 yi.

Thus, in each rectangle, the average value of the response variables (of the instances inside the
rectangle) is predicted, i.e. ĉm = 1

nm

∑
xi∈Rm

yi, for m = 1, 2, . . . ,M , where nm is the number of
instances in rectangleRm. Given the split of the feature space, determining the best value to predict
is easy. However, the problem of splitting the feature space is harder to solve. Mathematically, if
there are two rectangles R1 and R2 the splitting problem can be expressed as

min
j,s

{
min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

}
,

where the solutions of the inner two problems are the averages within each rectangle. Considering
a feature j, determining the point s to split is easy as we can scan through the values of the feature
and choose the optimal value as the one with the lowest loss. Then, to find the best split at a
certain time, it is possible to iterate through all the features and find the best splitting point for
each feature. Having the best splits for each feature, the final split is chosen as the split over the
feature reducing the loss the most.

One thing that remains is to choose how many splits to perform and thereby determine the tree’s
topology. If there are too many splits, for instance, if there is one rectangle for each instance in
the data, the model likely overfits the data. A common choice of stopping criteria is to stop when
the change in the loss is reduced by very little in each iteration. However, it is possible that the
current split leads to little improvement, whilst the next might have a big impact. Therefore, it
is necessary to use another strategy. The way CART does this is to build a large tree and then
simplify it, whilst maintaining a sufficiently high accuracy, rather than stopping the tree building
at a predefined point. The “simplification” that is performed is called cost-complexity-pruning. In
this procedure, one specifies a minimum number of instances that should be contained per node.
Thus, the feature space cannot be split into too small regions. The large tree T0 one starts with
is built until the next split divides the space into two regions where at least one contains fewer
instances than the predefined minimum number of allowed instances. Then, the idea is to consider
subtrees T of T0 found by joining some internal nodes of the tree and simultaneously minimizing
the complexity of the subtree and the error rate of the corresponding predictor. A hyperparameter
controls the amount of pruning and can be determined, for instance, by cross-validation. For more
details on cost-complexity-pruning and other details of the CART-algorithm, such as the treatment
of categorical variables, see Chapter 9 of Hastie, Tibshirani and Friedman [13].

2.1.1.1 Interpretability of Trees

To demonstrate the interpretability of trees, a practical example will be considered. Let’s say the
goal is to classify a person as having lung cancer or not. As features in the model, we include age
and smoking. Figure 2 shows a possible tree model for this example. Trees are thought to be good
at mimicking how humans make decisions. First, what is thought to be the most important feature
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Smoker, yes or no?

No cancer

No

Age less than 64?

No cancer

No

Cancer

Yes

Yes

Figure 2: A simple tree where the first split is done based on whether or not an individual smokes.
If not, the model predicts that the individual does not have cancer. If yes, the model then considers
whether the person is above or below 64 years old. If so, the individual is predicted to have cancer;
if not, the model predicts no cancer. Note that this is a very simplified example not based on
real-world data. It is just meant as an illustration of the interpretation of a tree model.

is considered. Then, after evaluating this factor, the second most important factor is considered,
given the conclusion based on the first factor, and so on. Trees are often even easier for laypeople
to understand than linear regression models, which are generally considered interpretable when
there are few features in the model. To remain interpretable, the trees cannot be too deep. The
depth of the tree refers to how many levels of splits there are in the tree.

2.2 Some Examples of “Black Box” Machine Learning Models

In this section, two examples of non-interpretable, “black box” machine learning models are de-
scribed. We start by introducing boosting [15] and XGBoost [16] in the following section. Then,
in Section 2.2.2, feed-forward neural networks are described.

2.2.1 Gradient Boosting and XGBoost

Boosting is a machine learning method that composes weak learners to form a strong learner.
In classification settings, a weak learner is defined as a machine learning model with accuracy
slightly better than pure guessing. This weak learner can, for instance, be a decision tree. A
strong learner is defined as a model with high accuracy, where what is considered a “high”
accuracy depends on the problem. The idea of boosting is to “boost” or improve a set of weak
learners to form a strong learner. In practice, many boosting methods are based on training weak
learners iteratively on a training set weighted based on the accuracy of the weak learner in the
previous iteration. Instances that were misclassified in the previous iteration get a higher weight,
and the weak learner is then forced to focus on learning these instances. Since the weights are
adapted during the training, the method is referred to as “adaptive”. The final model, or strong
learner, is a weighted average of the weak learners, weighted by their accuracy. The first adaptive
boosting algorithm was the AdaBoost [15] algorithm that won the prestigious Gödel prize.

This idea of boosting as a weighted average of weak learners trained on a data set adapted iteratively
to “force” the weak learners to focus on the misclassified points provides the intuition behind the
method and is how the first boosting algorithms worked. However, it was later discovered that these
boosting algorithms could be seen as a minimization problem. This point of view has allowed the
boosting method to be generalized and robustified. Specifically, boosting can be seen as performing
gradient descent, which is a numerical optimization method that will be treated in Section 2.2.2.3,
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in function space. This procedure is known as gradient boosting and was discovered by Friedman
[17]. It has been important for the further development of the boosting method. The specifics of
formulating and proving the equivalence of boosting from both perspectives is quite tedious and
can, for instance, be found in Chapter 10 of Hastie, Tibshirani and Friedman [13]. In the following,
we focus on gradient boosting and specifically the implementation available in the open-source
XGBoost library [16], available in various programming languages. XGBoost is an abbreviation
for eXtreme Gradient Boosting. XGBoost has demonstrated state-of-the-art performance in many
machine learning competitions, especially for tabular data [16]. XGBoost can be used for both
regression and classification.

2.2.1.1 The Details of XGBoost

To express the mathematical details of the gradient boosting technique exploited by XGBoost, we
follow the notation of Chen and Guestrin [16]. This paper was published after the XGBoost-library
had become popular and gave the theoretical details of the method.

The XGBoost model is a composition, or ensemble, of trees and can be expressed as

ŷi =

K∑
k=1

fk(xi), (1)

where ŷi is the prediction of the model for a feature observation xi with corresponding true response
variable yi. The index i is in {1, 2, . . . n}, and n is the number of observations in the available data
set. Moreover, fk is a CART, which was described in Section 2.1.1, and K denotes the total number
of CARTs. To improve upon other boosting versions, the XGBoost method not only considers the
model’s loss but also considers a regularization term ω(fk) penalizing the complexity of the tree
fk. Then, the objective function used by XGBoost can be expressed as

obj(θ) =

n∑
i=1

L(yi, ŷi) +
K∑

k=1

ω(fk), (2)

where L(yi, ŷi) is a loss function measuring the similarity between the true response variable yi
and the prediction ŷi. The ensemble in XGBoost is trained iteratively, where at iteration t, the
ensemble model is given as

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi), ŷ

(0)
i = 0, (3)

where the tree ft(xi) is added to the previous model ŷ
(t−1)
i in iteration t. Thus, the objective

function at iteration t is

obj(t) =

n∑
i=1

L
(
yi, ŷ

(t)
i

)
+

t∑
i=1

ω(fi) =

n∑
i=1

L
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ ω(ft) + constant. (4)

One of the advantages of gradient boosting, in contrast to additive boosting algorithms such as
AdaBoost [15], is that any loss function, which has a defined gradient and Hessian, can be used,
which allows for generalizing the model. However, the objective in (4) cannot be analytically
minimized for any loss function. Therefore, Chen and Guestrin [16] proposes to use a second-order
Taylor expansion of the loss function as an approximation. Accordingly, at every iteration, the
approximate objective becomes

obj(t) =

n∑
i=1

[
L
(
yi, ŷ

(t−1)
i

)
+ gift(xi) +

1

2
hif

2
t (xi)

]
+ ω(ft) + constant (5)

where the gradient gi and Hessian hi of the loss function are defined as

gi = ∂
ŷ
(t−1)
i
L(yi, ŷ(t−1)

i ), hi = ∂2

ŷ
(t−1)
i

L(yi, ŷ(t−1)
i ). (6)

7

https://xgboost.readthedocs.io/en/stable/


The expression L(yi, ŷ(t−1)
i ), i = 1, 2, . . . , n does not depend on the tree ft that is added to the

model. And since this is the quantity we minimize with respect to, the term acts as a constant in
the optimization problem, and we can equivalently minimize the objective

õbj
(t)

=

n∑
i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ ω(ft). (7)

This illustrates the advantage of XGBoost; the objective function only depends on the gradient
and the Hessian of the loss, allowing any loss function, that is two times differentiable, to be used.

To fully write down the explicit formula for the iterative updates, we need to define the complexity
penalty term in the objective. First, we explicitly write down the definition of the tree model as
ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, · · · , T}, where w is the vector containing scores on leaves, T
is the number of leaves in the tree and q is a function assigning each data point to the corresponding
leaf. Then, the definition of the complexity term used in XGBoost is

ω(f) = γT +
1

2
λ

T∑
j=1

w2
j , (8)

where γ is a penalty parameter on the number of leaves in the tree and λ is an L2-regularization
penalty parameter on the scores vector w. Denoting by Ij = {i|q(xi) = j} the set of indices of
data points assigned to the jth leaf, the objective function in (7) can be written as

õbj
(t)

=

n∑
i=1

[
giwq(xi) +

1

2
hiw

2
q(xi)

]
+ γT +

1

2
λ

T∑
j=1

w2
j

=

T∑
j=1

[(∑
i∈Ij

gi

)
wj +

1

2

(∑
i∈Ij

hi + λ

)
w2

j

]
+ γT,

(9)

where the second equality is possible because all instances in the same leaf get the same score.

Defining Gj =
∑

i∈Ij
gi and Hj =

∑
i∈Ij

hi, the objective takes the form

õbj
(t)

=

T∑
j=1

[
Gjwj +

1

2
(Hj + λ)w2

j

]
+ γT. (10)

The score in each leaf wj does not depend on any other wi, i ̸= j, so each term in the sum can
be optimized for the corresponding wj while keeping the structure q(x) constant. This yields the

optimal scores w∗
j = − Gj

Hj+λ . Inserting this in the objective gives the corresponding best objective

reduction as

õbj
∗
= −1

2

T∑
j=1

G2
j

Hj + λ
+ γT. (11)

Now it remains to find the best tree structure. Because the space of all possible tree structures
is very large, it is infeasible to search through the whole space in practice. Therefore, XGBoost
greedily optimizes one level of the tree at a time by splitting one leaf into two leaves and evaluating
the score improvement to decide if the split is sufficiently good to proceed with it. At each level,
the algorithm searches through the space of all possible splits of one leaf into two and proceeds
with the one with the biggest improvement in the overall score. To evaluate the gain of the split,
consider

gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ. (12)

The term in brackets is the combined score of the proposed leaves and the original leaf. Specifically,
the first term inside the brackets is the score of the new leaf to the left, indexed by L. The second
term is the score of the new leaf to the right, indexed by R. The score of the original leaf is
the third term in the brackets. The last term in the gain of the split is a regularizing term −γ
corresponding to the penalty of adding a single leaf node to the tree. Accordingly, this expression
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is positive only if the gain of adding the leaf is greater than γ. Thus, this objective penalizes
too complex tree structures, thereby preventing overfitting. The splitting procedure that has been
described here, will at any time enumerate all possible such splits on all features and choose the
best one. Chen and Guestrin [16] refer to this as an “exact greedy” splitting procedure. This is one
of the splitting procedures that can be chosen in the XGBoost library. It is expensive to consider
all possible splits over all the features when the features are continuous. Therefore, several other,
less computationally expensive, approximative algorithms for splitting are presented in [16] and
implemented in the corresponding library.

Splitting over Categorical Features

As of version 1.5, XGBoost has support for categorical features. Moreover, from version 1.6, the
optimal partitioning technique, which optimality was proven by Fisher [18], has been incorporated
in the XGBoost library to handle splitting for categorical variables. In our experiments, XGBoost
version 1.7.3 is used, meaning that support for categorical variables is available.

2.2.1.2 XGBoost in the Context of XAI

Since the models built by boosting methods are a composition of weak learners, their interpretabil-
ity is very low. With CART models as the underlying weak learners, the final model will typically
be a combination of hundreds of CARTs. Therefore, the transparency of calculating each prediction
is low. However, due to their state-of-the-art performance on many machine learning problems,
it is desirable to use XGBoost models. This makes such models a good example to illustrate the
use of XAI. Although some techniques are specifically designed to explain the predictions of an
XGBoost model, as seen in e.g. [19], one might also use model-agnostic methods, in which the role
of the XGBoost-model is to act as a black box model. This is the theme of Chapter 3, where two
model-agnostic explanation methods will be presented. In the following section, another example
of a machine learning black box model is presented.

2.2.2 Feed-Forward Neural Networks

Deep learning models such as feed-forward neural networks are perhaps the most famous example
of non-interpretable machine learning models. Deep learning models can consist of millions of
parameters and are very complex. They have a high representation capacity and therefore perform
well for many real-world problems. In this section, feed-forward neural networks are reviewed.
Generally, neural networks are a very flexible and complex type of machine learning model. In
this section, we try to give a brief outline of the method and provide some detail on topics that
are especially relevant to this thesis. Neural networks are building blocks in the FastSHAP and
surrogate methods, which are investigated in this thesis and will be presented in Sections 3.4
and 3.5.2, respectively. Deep neural networks are examples of non-interpretable machine learning
black box models and, therefore, also illustrate the need for XAI. The outline of this section is as
follows. Firstly, the general feed-forward neural networks are presented. Then, some choices of
loss functions, activation functions, and optimization methods for neural networks are explained
in more detail. Moreover, some other aspects of neural network training are described. Lastly, the
universal approximation theorem is presented, which gives a theoretical foundation for why the
class of neural networks is useful for finding good approximators in a wide range of applications.
To start, some mathematical details of a feed-forward neural network are given.

To train a neural network, a training data set is necessary. In this thesis, tabular data is con-
sidered, therefore consider a training data set {(xi, yi)}ni=1 of feature observations xi ∈ Rq and
corresponding response variables yi. It is assumed that the response variables were generated by a
function f(x) and that the response variables are noisy observations of this function evaluated at
the features. In machine learning the goal is to approximate f(x) by a function that is commonly

denoted f̂(x). The function f̂(x) is learned from the data. A neural network is an example of such
a function.

The components of a deep neural network can be visualized using a graph. Each input in the model,
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Figure 3: An illustration of a fully connected feed-forward neural network with three hidden layers.
The illustration has been adapted from here [20]. In this example, each observation consists of
q features represented by the input layer. The hidden layers consist of M1,M2, and M3 nodes,
and the output layer consists of K nodes, where each node represents one of the K classes in
a classification problem. In a regression problem, K = 1, and the output node represents the
predicted value of the response variable.

corresponding to a feature, and output, corresponding to the response variable, can be represented
by a node in the graph. The inputs make up a “layer” in the network, and likewise, so do the
outputs. Between the layer of inputs and the layer of outputs, there are layers of nodes called
hidden layers. The nodes in the hidden layers receive information from the previous layer and send
information to the next layer. More details on this will follow. An illustration of a feed-forward
neural network is seen in Figure 3. The information contained in a neural network is propagated
through the layers. In a feed-forward neural network, a layer uses information only from previous
layers. The information contained in one layer is transferred to the next by applying a non-linear
function, called an activation function, commonly denoted by σ(·), to an affine transformation of
the elements in each layer. Some examples of activation functions will be given in Section 2.2.2.1.

To mathematically express the information flow between the layers in a neural network, some
notation must be introduced. Let the total number of layers in the deep neural network be denoted
L+1, where layer 0 is the input layer, and layer L is the output layer. In the input layer, there are
q nodes corresponding to the q components of the feature vector x, and in the output layer, there
are K nodes, where K is the number of classes in a classification problem. In a regression setting
K = 1, and there is only one output node. Let the number of nodes in the lth layer be denoted Ml.
Then M0 = q and ML = K. In the most elementary structure of feed-forward neural networks,
all the nodes in the previous layers are connected to all nodes in the next layer. An illustration of

this is shown in Figure 3. Let z
(l−1)
j denote the jth node in the l−1th layer and z

(l)
m the mth node

in the lth layer. The nodes are connected by weight and bias terms. The weight connecting the

nodes z
(l−1)
j and z

(l)
m is denoted wl

jm. In total, there are Ml−1 ·Ml weights connecting these two
layers. In addition per node in the lth layer, there is a bias term bm. We introduce the following
matrix and vectors,

Wl =


wl

1,1, wl
1,2, . . . , wl

1,Ml−1

wl
2,1, wl

2,2, . . . , wl
2,Ml−1

...
...

. . .
...

wl
Ml,1

, wl
Ml,2

, . . . , wl
Ml,Ml−1

 , bl =


bl1
bl2
...

blMl

 , zl =


zl1
zl2
...

zlMl

 . (13)
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Moreover, let the activation function between layer l − 1 and layer l be denoted σl. Using the
values of the nodes in the previous layer, the values of the nodes in the next are computed as
σl(Wlzl−1 + bl). The neural network model f̂ can then be expressed as a composition of the
activation functions applied to affine transformations of the inputs of each layer as

f̂(x) = σL(WLσL−1(. . . σ2(W2σ1(W1x+ b1) + b2) . . .) + bL), (14)

where evaluating the activation functions at a vector means element-wise evaluation. It is common
to use the symbol θ to denote a vector that contains all the parameters of the neural network
model. This includes all weights and bias terms. Then, the neural network model can be expressed
as f̂(x;θ) where it is emphasized that the model is parametric and that it is the parameters θ
of the model that are learned during training. As mentioned, there are many possible activation
functions that can be used in a neural network. In the following section, some examples of activation
functions are given.

2.2.2.1 Activation Functions

One on the most popular activation function is the Rectified Linear Unit (ReLU) activation
function, which is given as

σReLU(z) = max{0, z}. (15)

The function is evaluated element-wise on the vector z. The ReLU activation function is mostly
used between the input and hidden layers, or between two hidden layers. The activation function
that acts between the last hidden layer and the output layer must be chosen with care taking into
account the nature of the response variable. Some activation functions are suited for classification
problems and others for regression problems. For regression problems, it is common to use the
identity function as the activation between the last hidden layer and the output layer. An
activation function that is common for classification functions is the softmax activation function.
For class k = 1, 2, . . . ,K, the kth element of the softmax function is given as

σsoftmax(z)k =
ezk∑K
l=1

ezl
, k = 1, . . . ,K, (16)

for z ∈ RK .

2.2.2.2 Loss Functions

The loss function is a function that takes in the model’s prediction ŷi and compares it to the true
response variable yi. The loss function encaptures the similarity between the predictions of the
model and the truth. If ŷi deviates a lot from yi, the loss assigned by the loss function will be
large, and if ŷi is similar to yi, the assigned loss will be small. In the training of a neural network,
the loss function is used to steer the training in the right direction. More formally, the goal of the
training procedure is to minimize the expected value of the loss function. In practice, it is common
to train the model on a data set and use another data set to evaluate how well the model performs
on unseen data. This is done in order to prevent overfitting. The choice of loss function depends
on the nature of the problem. Typically, different loss functions will be used for classification and
regression problems. In regression problems, a common loss function is the mean squared error

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2, (17)

where n is the number of observations in the data set that the loss is evaluated over. In classification
problems with K classes, a typical loss function is the categorical cross-entropy, which is defined
as

LCE = −
n∑

i=1

K∑
k=1

yik log(ŷik), (18)

where the true response variables are one-hot-encoded such that yik ∈ {0, 1} and the predicted
probabilities ŷik ∈ (0, 1) for all K classes. This loss function evaluates the loss over all the classes
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for each observation. As mentioned, the goal of the training procedure is to minimize the expected
value of the loss function. In general, the loss function will be a complex function. Therefore, it
is necessary to use approximative optimization strategies to search for the minimizer(s) of the loss
function. Some commonly used optimizers are presented in the following section.

2.2.2.3 Optimizers

Precisely, the goal of training a neural network is to find the parameters of the model that minimizes
the loss function and generalizes well across other samples from the same distribution. In general,
neural networks are used to approximate non-convex functions, and therefore, it will generally be
infeasible to find the global minimizer of the loss function. It should be noted that based on the
training data, it is undesirable to find the global optimum of the loss function since this is likely to
produce a model that overfits the training data set and performs poorly on observations that are
not in the training data set. As a consequence, when training a neural network, algorithms that
approach a local minimum of the loss function are used.

Gradient Descent

A commonly used optimization strategy is the gradient descent algorithm. Given the current best
estimates of the model, the gradient descent method moves in the direction of the steepest descent,
given by the negative gradient of the loss function, in order to move towards the local minimizer
of the loss function. Let θprev denote the previous parameter estimates of the model. Then, the
next parameter estimate of the gradient descent method is

θcurrent = θprev − α∇prev
θ L, (19)

where the parameter α is called the learning rate and the notation ∇prev
θ L means the gradient of L

with respect to the parameters θ evaluated at the previous parameter estimates θprev. A large value
of the learning rate α means that the updates will be large, which could lead to faster convergence,
but it may also result in updates that overshoot the minimizer by moving too far, and thereby the
estimates will not converge to the local minimizer. On the other hand, a small value of α ensures
that the updates will not overshoot the minimizer, however, it can lead to small updates which
cause the convergence of the method to be too slow. Since generally the loss function will consist
of a composition of many functions, the computation of its gradient ∇θL is complicated. The
method that is commonly used for handling this computation is called backpropagation, details on
backpropagation can be seen in e.g. Guilhoto [21].

Stochastic Gradient Descent

To both reduce the computational complexity of updating the parameters of the model and to
improve the convergence of the optimizer, more sophisticated optimization techniques are used. In
gradient descent, the gradient of the loss function is computed using the whole training data set.
If the training data set is large, this may be very computationally expensive. Therefore, it makes
sense to consider estimates of the gradient of the loss function computed using a subset of the full
training data set. One optimization method that does this is stochastic gradient descent, which
is based on the Robbins-Monro algorithm [22], where a stochastic estimate of the gradient is used
instead of the full gradient. Typically, the loss function that is used is such that the full loss can
be expressed as a sum over the loss of each observation in the training data set, i.e.,

L(θ) = 1

n

n∑
i=1

Li(θ),

where the total number of observations in the training data set is n and Li is the loss associated
with observation i. If the loss function is of this form, its gradient also satisfies this property, i.e.,

∇θL(θ) =
1

n

n∑
i=1

∇θLi(θ).

The stochastic gradient descent estimate of the gradient is to consider the gradient evaluated at a
randomly drawn observation from the training data set as an approximation of the full gradient,
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which is expressed as
∇θL(θ) ≈ ∇θLi(θ), i ∼ {1, 2, . . . , n}, (20)

where the notation i ∼ {1, 2, . . . , n} means that the index i was randomly drawn from the full set
of indices {1, 2, . . . , n} and the probability of drawing each observation is uniform over the set.
The stochastic gradient descent update is similar to the gradient descent update (19), but with
the gradient approximation (20).

A compromise between gradient descent, where all the n training observations are considered,
and stochastic gradient descent where a single observation is considered, is to consider a batch
consisting of B randomly drawn observations in each update of the gradient. The strategy of
using batches often performs better than stochastic gradient descent. Therefore, this is a popular
technique used in neural network training. When using stochastic gradient descent or batches of
observations, one can also specify the number of times to iterate through the whole training data
set. This is referred to as the number of epochs.

Adam

Kingma and Ba [23] introduced the “Adam”-method (Adaptive Moment Estimation) which is a
more sophisticated stochastic optimization method than stochastic gradient descent. Adam has
been very successful and is commonly used for minimizing stochastic loss functions, such as the
loss in a deep learning model. Adam builds on the idea of stochastic gradient descent by utilizing
a subsample of the full training data set to update the gradient of the loss function. In addition,
Adam considers the running averages of both the gradient and second-order moments of the loss
function in the previous iteration. The resulting update is a combination of the gradient approx-
imation and these moments. Empirical results have shown that Adam performs well compared
with other optimization methods [23].

Algorithm 1: Adam Optimization

Input: Step size α

Input: Exponential decay rates for the moment estimates β1, β2 ∈ [0, 1)

Input: Stochastic objective function with parameters θ: f(θ)

Input: Initial parameter values θ0

Input: A small positive constant to prevent division by 0: ε. A typical value is ε = 10−8

Output: Resulting parameter estimates θt

1 Initialize first moment vector: m0 ← 0

2 Initialize second moment vector: v0 ← 0

3 Initialize timestep: t← 0

4 while not converged do

5 t← t+ 1

6 Calculate the gradient of the objective w.r.t. current parameter values:

gt ← ∇θft(θt−1)

7 Update the biased first moment estimate: mt ← β1 ·mt−1 + (1− β1) · gt
8 Update the biased second moment estimate: vt ← β2 · vt−1 + (1− β2) · gt ⊙ gt

9 Compute the bias-corrected first moment estimate: m̂t ← mt

1−βt
1

10 Compute the bias-corrected second moment estimate: v̂t ← vt

1−βt
2

11 Update parameters θt ← θt−1 − α · m̂t√
v̂t+ε

12 end

We follow the notation of Kingma and Ba [23] and denote the stochastic scalar objective function
as f(θ) where θ are the parameters of the function. In the neural network setting, f is the loss
function L. The goal is to minimize the expected value of this function. The objective function must
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be differentiable with respect to the parameters θ. Denote the gradient of f at time step t in the
iteration scheme by gt = ∇θft(θ) evaluated at the current parameter estimates θt. The algorithm
considers exponential moving averages mt of the gradient, and the element-wise squared gradient,
vt, which are estimates of the mean, the first moment, and the uncentered variance, the second
moment, of the gradient. The method uses hyperparameters β1, β2 ∈ [0, 1) in order to control the
rate of the exponential decay of the moving averages. The outline of the Adam procedure is given
in Algorithm 1. The algorithm takes as inputs a step size α, the exponential decay rates β1, β2, the
objective function f(θ), initial values of the parameters θ0, and a hyperparameter ε that prevents
division by 0. According to Kingma and Ba [23], the method requires little hyperparameter tuning,
and good default values for the hyperparameters are α = 0.001, β1 = 0.9, β2 = 0.99, and ε = 10−8.
The algorithm’s output is the final parameter estimates θt. In Steps 1-2 the first and second
moments, denoted m0 and v0, respectively, are initialized to 0. The counter of the current time
step is set to 0 in Step 3. Then, Steps 5-11 are repeated until convergence. In Step 5, the iteration
index is increased. Next, the gradient of the objective function gt at the previous values of the
parameters θt−1 is computed. Then, in Steps 7 and 8, respectively, the biased estimates of the
first and second moments are updated. Steps 9 and 10 compute the bias-corrected first and second
moment, respectively. The final step of the current iteration is to update the current estimate
of the parameters θt according to the update rule in Line 11 of the algorithm. In Step 11, the
notation

√
vt means element-wise square root. After this step, the algorithm either proceeds to the

next iteration or finishes and returns the current parameter estimates if the convergence criterion
is met. The convergence criteria can e.g. be to end the iterations if the update has stagnated and
the parameter estimates change (very) little between iterations. In Algorithm 1, it has not been
specified what the batch size is. However, in the iterative scheme, Steps 5-11 are repeated for each
sample in the batch that is considered.

2.2.2.4 Validation Sets, Adaptive Learning Rates, and Early Stopping

In this section, some other topics related to training neural networks are considered.

Validation Sets and Batches

To avoid overfitting, it is common to evaluate the loss of the model during training on another data
set than the training data set. This data set is called the validation data set. In some settings,
evaluating the loss on the whole validation data set can be too computationally expensive. Then
it is common to consider only a batch of the validation data set each time the loss is evaluated. A
batch means that only a subset of the validation set is used when evaluating the loss at a current
time point during training. The deep learning model uses the loss evaluated on the validation data
set/batch to guide the learning of the parameters of the model. Typically, the validation loss is
calculated at the end of an epoch to evaluate if the model has improved. This steers the model to
learn parameter values that generalize well over unseen samples.

Adaptive Learning Rates

In the update of the parameters in the optimizers in Section 2.2.2.3, the learning rate or step
size α is important for determining the convergence rate of the methods. Intuitively, considering
the simplified setting of minimizing a convex loss function with a unique global minimizer, if the
current estimates of the parameters are far from the minimizer of the loss function, it makes sense
to use a large value of the learning rate to allow for fast convergence. If the parameters are close
to the minimizer, it makes sense to use a low learning rate in order to avoid overshooting the
minimizer. This illustrates that the learning rate should not be kept constant during the whole
training process. It should be adapted. A common adaptation scheme is to reduce the learning
rate by a certain factor, e.g. 0.5, if there has been no improvement in the loss for the last few
epochs, e.g. five epochs. Often this is combined with the validation batch strategy previously
discussed.

Early Stopping

Another common strategy used in the training of deep learning models is early stopping. This
is used to avoid overfitting and unnecessary training resulting in no improvement of the model.

14



Rather than specifying a low number of epochs, which could lead to underfitting, one can use early
stopping. The idea of early stopping is to monitor a metric, such as the validation loss, and stop
training the model if this metric no longer improves. At a given time, it could be that the metric
does not improve, but if the training were continued, there would be significant improvements
after a few iterations. Therefore, an option is to specify several that there should have been no
improvement for several epochs before stopping.

There exists a wide range of methods related to the training, architecture, optimization, and so
forth of neural networks that have not been discussed here. In the previous sections, the focus
has been to provide an overview of the techniques that will be relevant to this thesis. To close
off this section about neural networks, a brief insight into the universal approximation theorem is
provided, which gives insight into why neural networks can provide good approximations of a wide
range of functions.

2.2.2.5 The Universal Approximation Theorem

Neural networks have been very successful in many machine learning competitions. This is due to
the expressive power of deep neural networks. The expressive power of artificial neural networks
is rooted in the universal approximation theorem. The universal approximation theorem states
that a sufficiently large neural network can represent a wide range of interesting functions if the
weights of the neural network are chosen correctly [24, 25]. The theorem does not provide a way
to choose the weights but gives a theoretical foundation for the potential power of neural networks
as function approximators. In practice, the training of neural networks relies on e.g. successful
optimization strategies to find good parameter estimates, such as Adam, which was discussed in
Section 2.2.2.3. This finishes the section on neural networks, and in the following section, the focus
is multivariate probability distributions with analytically known conditional distributions. These
will be useful in the simulation study that will be presented in Section 4.

2.3 Some Multivariate Probability Distributions with Known Condi-
tional Distributions

The methods that will be introduced in Section 3 will be tested on simulated data because the
true Shapley values are rarely known for real-world data sets and complex black box machine
learning models. In the simulation study, we need to simulate data from a distribution where the
conditional distribution of some of the features in the model, given the observation of the others,
is known. Therefore, two multivariate distributions which have this property will be presented.

2.3.1 The Multivariate Normal Distribution

Let x ∈ Rq denote a random vector with q components that follows a multivariate normal distribu-
tion with expected value µ ∈ Rq and covariance matrixΣ ∈ Rq×q. This is denoted as x ∼ N (µ,Σ).
The probability density function of x is then

fq(x) =
1√

(2π)q|Σ|
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (21)

where |Σ| denotes the determinant of Σ and Σ−1 denotes the inverse of Σ. Let x1 ∈ Rq1 denote the
first q1 components of x and let x2 ∈ Rq2 denote the last q2 components of x, such that q1+q2 = q.

This corresponds to the partitioning x =
(
x⊤
1 , x⊤

2

)⊤
. Moreover, partition the vector of expected

values µ and covariance matrix Σ in accordance with the partitioning of x as follows

µ =

(
µ1,
µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.
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Then the conditional distribution of x1 given the observation x2 = x∗
2 is also multivariate normally

distributed, (x1 | x2 = x∗
2) ∼ N (µ,Σ), where

µ = µ1 +Σ12Σ
−1
22 (x∗

2 − µ2) , (22)

Σ = Σ11 −Σ12Σ
−1
22 Σ21. (23)

The multivariate normal distribution is fully determined by its expected value and covariance
matrix. Therefore, knowing these two quantities is sufficient for determining the conditional distri-
bution. By computing (22) and (23), the conditional distributions are known and can be simulated
from by using e.g. the available functionality for generating numbers from a multivariate normal
distribution in the NumPy [26] library in Python.

2.3.2 The Multivariate Burr Distribution

The probability density function of the q-dimensional Burr distribution [27] is given as

fq(x) =
Γ(ζ + q)

Γ(ζ)

 q∏
j=1

bjrj

 ∏q
j=1 x

bj−1
j(

1 +
∑q

j=1 rjx
bj
j

)ζ+q
, (24)

where ζ, b1, b2, . . . , bq and r1, r2, . . . , rq are the parameters of the distribution. The distribution is
defined for xj > 0, j = 1, 2, . . . , q. The multivariate Burr is a compound Weibull distribution with
the Gamma distribution as a compounder [27]. It can be regarded as a special case of the Pareto
IV distribution [28].

The multivariate Burr distribution, like the normal distribution, has the desirable property that any
marginal and conditional distribution of it is also a (multivariate) Burr distribution, a proof is given
in Takahasi [27]. The conditional density f(x1, x2, . . . , xq̃|xq̃+1 = x∗

q̃+1, xq̃+2 = x∗
q̃+2, . . . , xq = x∗

q)

is a q̃-dimensional Burr density with parameters ζ̃, b̃1, b̃2, . . . , b̃q̃ and r̃1, r̃2, . . . r̃q̃ where

ζ̃ = ζ + q − q̃,

b̃j = bj , for j = 1, 2, . . . , q̃, (25)

r̃j =
rj

1 +
∑q

j=q̃+1 rj(x
∗
j )

bj
, for j = 1, 2, . . . , q̃.

The Burr distribution allows for heavy-tailed, skewed marginal distributions, in addition to non-
linear correlation structures [29] between the variables in x. These properties are often found in
real-world data, and the normal distribution often behaves “too nicely” compared to real-world
data. Therefore, the Burr distribution is useful to check the accuracy of a method on more realistic
simulated data. There are preexisting R-packages [30] where the random generation of samples
from the multivariate Burr distribution is implemented. We omit details of the simulation as this
goes beyond the scope of this thesis, but have replicated the simulation procedure in Python based
on the R-package [30].

2.4 Monte Carlo Integration

Many statistical applications involve computing a possibly high-dimensional integral. Some ex-
amples are computing a posterior probability in Bayesian statistics, marginalizing over a joint
density in frequentist statistics, and computing moments, like the expected value and variance,
of a probability distribution. Many high-dimensional integrals are analytically intractable and
must therefore be approximated. One way to approximate such integrals when the integrand is a
function of random variables is Monte Carlo integration.

The idea behind Monte Carlo integration is to use samples x∗
1,x

∗
2, . . . ,x

∗
M ∈ Rq obtained from a

distribution f(x). The samples are obtained independently. Let x denote a random variable and
let x ∼ f(x). Moreover, define h : Rq → R as a function of x. The goal is to estimate the expected
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value of h(x). The strong law of large numbers states that the Monte Carlo approximation µ̂MC of
E[h(x)] converges towards E[h(x)]. For the Monte Carlo integral, the strong law of large numbers
can be written as

µ̂MC =
1

M

M∑
m=1

h(x∗
m)

a.s.−→
∫

h(x)f(x)dx = E[h(x)] =: µ as M →∞, (26)

where
a.s.−→ means “converges almost surely”, which is the strongest type of convergence in probabil-

ity theory. Mathematically, an infinite sequence of random variables {ym}m∈N, ym ∈ R converges
almost surely to the random variable y ∈ R if P (limm→∞ ym = y) = 1, i.e. the event that the
sequence converges to y has probability one.

Under the assumption that the second moment is finite E[h(x)2] <∞, the variance of the Monte
Carlo estimator [31] is

Var[µ̂MC] =
1

M
E[(h(x)− µ)2] =:

σ2

M
.

Then, using a similar Monte Carlo estimate, the variance σ2 can be estimated by

σ̂2
MC =

1

M − 1

M∑
i=1

(h(x∗
i )− µ̂MC)

2
.

By the central limit theorem, µ̂MC is approximately normally distributed:
√
M − 1(µ̂MC − µ) ∼

N (0, σ2) ≈ N (0, σ̂2
MC), where the approximate distribution still holds when replacing the variance

σ2 by the maximum likelihood estimator σ̂2
MC. This shows that the error δMC in the Monte Carlo

estimate grows as
δMC = O(M− 1

2 ), (27)

which is quite slow compared to the best deterministic quadrature methods [31]. However, as the
number of dimensions grows, the number of nodes required in the deterministic quadrature methods
grows exponentially. The Monte Carlo sampling, on the other hand, does not systematically explore
the whole support of the integrand. Therefore, it is less affected by the dimensionality increasing
[31]. The increasing number of dimensions means that it might be necessary to increase the number
of samples M , and hence, the computational cost. However, the increase is not as severe as the
exponential growth in the number of quadrature nodes in the deterministic methods. Moreover,
quadrature methods often make assumptions about the smoothness of the integrand, limiting their
area of use. No smoothness assumptions are made about the function h in the Monte Carlo integral
(26). Therefore, it can be applied to also non-smooth functions.

2.4.1 Monte Carlo Integration Using the Empirical Distribution Function

Let x∗
1,x

∗
2, . . . ,x

∗
M ∈ Rq be observations that are assumed to have been obtained independently of

each other from the same distribution. Let the observations be realizations of the random variable
x that follows the cumulative distribution function (cdf) Fx(ξ), where Fx(ξ) = P(x ≤ ξ) =
P(x1 ≤ ξ1, x2 ≤ ξ2, . . . , xq ≤ ξq). In many practical situations, the cdf is unknown, and therefore
it is desirable to estimate it. An appropriate estimator of the cdf is the empricial distribution
function (edf) defined as

F̂ (ξ) =

M∑
i=1

1x∗
i ≤ξ, where 1x∗

i ≤x =

{
1, x∗

i ≤ ξ,

0, otherwise,

is the indicator function. By the vector inequalities x∗
i ≤ ξ, it is meant that x∗

i1 ≤ ξ1, x
∗
i2 ≤

ξ2, . . . , x
∗
iq ≤ ξq.

In machine learning we typically have many observations assumed to be drawn independently from
the same cdf. Thus, we can estimate the edf using this data set. Having estimated the edf from the
data set, we can draw new samples from it. These samples can be used to estimate the expected
value of a function of the samples using Monte Carlo integration defined in (26). In practice, one
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does not have to estimate the edf and then sample from this distribution. Drawing samples from
the data set, with an equal probability of drawing each instance, will yield samples that implicitly
follow the edf because more frequently observed values will be drawn more often as there are more
observations containing these values.
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3 The Shapley Value and Shapley Value Estimators

Shapley value is a term that originates from game theory. It was introduced by Shapley [7]. In
the context of game theory, its purpose is to find each player’s contribution to the total payoff in
a cooperative game. How does this translate to the interpretable machine learning setting? The
idea is to consider the prediction for an instance as a game where the features are the players
and the prediction is the payoff. The outline of this chapter is as follows. In the next section,
Section 3.1, the Shapley value will be defined, and it will be argued why the Shapley value can
be seen as a fair evaluation of the contribution of each player. Then, in Section 3.2, we will
describe how the Shapley value can be used as a local model-agnostic explanation method. As
will be explained, the computation of the Shapley values is expensive. Therefore, in practice, it
is necessary to consider estimators of it. Two approximation methods for estimating the Shapley
values will be presented in Sections 3.3 and 3.4. An important step in estimating the Shapley
values is estimating the contribution function, discussed in Section 3.5. Combining the two steps
of the estimation procedure, the full estimation methods are summarized in Section 3.6. The
computational cost of the estimation procedures is discussed in Section 3.7. Lastly, we end the
chapter by briefly discussing how Shapley values can be used for global interpretability in Section
3.8. In this chapter, the majority of Sections 3.1, 3.2, 3.3 and 3.5.1 are taken from my specialization
project [12].

3.1 The Shapley Value and Cooperative Game Theory

The Shapley value originates from cooperative game theory. Assume that there are q players
participating in a cooperative game, all with the goal of maximizing their profits. As the players are
allowed to collaborate, their contribution to the different coalitions of players must be determined
in order to decide on the payout of each player. The Shapley value is one way of assigning the
payout among the players. Denote the set of all q players by Q = {1, 2, . . . , q}. Consider now a
subset S ⊆ Q consisting of |S| players. A contribution function v(S) is used to calculate the gain
earned by a coalition. To find the gain for each player in a coalition, the Shapley value compares the
gain of coalitions including and excluding the player. If two coalitions, where the only difference is
that player j is included in one of them and not the other, have different gains, then the difference
in the gain is the contribution of that player. Considering all the possible coalitions of the players,
the Shapley value is the weighted average of the difference in gain between all coalitions including
and excluding player j. Since the permutation of players in a set S does not matter, the weights
account for this, and the Shapley value for player j = 1, 2, . . . , q is calculated as

ϕj(v) = ϕj =
∑

S⊆Q\{j}

|S|! (q − |S| − 1)!

q!
(v (S ∪ {j})− v(S)) . (28)

The Shapley value assigns to player j the weighted average of the difference between the contribu-
tion function of sets including and excluding player j. The empty set ∅ is also included in the sum.
This means that the case where the player chooses not to collaborate with anyone is also included.
A fixed payout that is not associated with any of the players is defined as ϕ0(v) = ϕ0 = v(∅).
Although this is often zero in collaborative games, it can in general be non-zero.

The Shapley value is “fair” in the sense that it is the only distribution of the payout satisfying the
following four properties. Proof of this can be found in [7].

Property 1: Efficiency. The total worth of the game is distributed over the players, which
mathematically means that

q∑
j=0

ϕj = v(Q).

Property 2: Symmetry. If two players i ∈ Q and j ∈ Q, contribute equally to all possible
coalitions, meaning that v(S ∪ {i}) = v(S ∪ {j}) for all S where neither of the two players
participates, then they must have same Shapley value:

ϕi = ϕj .
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Property 3: Dummy player. If a player j does not change the worth of the payout for any
coalition S ⊆ Q \ {j}, meaning v(S ∪ {j}) = v(S), then the value distributed to the player
must be zero, i.e.

ϕj = 0.

Property 4: Linearity. Consider two coalition games that are described, respectively, by the
contribution functions v and w. Then, if the two games are combined, the distributed
gain of each player in the combined game equals the sum of the game from the two games
individually:

ϕj(v + w) = ϕj(v) + ϕj(w), j = 1, 2, . . . , q.

In addition, if the contribution function is scaled by a real number a, then so is the Shapley
value of each player, expressed mathematically as

ϕj(av) = aϕj(v).

3.2 The Shapley Value in the Context of Explainable Artificial Intelli-
gence

In the context of XAI, the Shapley value is used to explain the prediction of a machine learning
model for an instance of interest. In their paper introducing the Shapley value as an explanation
method, Štrumbelj and Kononenko [1] write that “its advantage over existing general methods is
that all subsets of input features are perturbed, so interactions and redundancies between features
are taken into account”. This is a very desirable property because features will often interact in
practice.

In order to compute the Shapley values, the contribution function must be specified. The contribu-
tion function of a subset S of the features should calculate the expected prediction for the instance
of interest (x∗, y∗) when only the features in the subset S are known to the model. Denote by the

black box model f̂y(x). If the underlying problem is a regression problem, f̂y(x) is the model’s

predicted value. Whereas in the classification setting, f̂y(x) is the predicted probability of belong-
ing to class y. One choice of contribution function v(S) is then to use the expected prediction of
the model, conditional on the feature values of the instance of interest in the subset S. Denote the
set of features that are not included in S by Sc, where superscript c denotes the complement of
the set S, then a common choice of contribution function is

v(S) = vx∗,y∗(S) = E
p(xSc |xS=x∗

S)
[f̂y(x)|xS = x∗

S ], (29)

where the notation vx∗,y∗ is used to emphasize that this is the value of the contribution function
for the subset S for the instance of interest (x∗, y∗). Moreover, throughout this thesis the notation
E

p(x)
[f(x)] means the expectation of f(x) with respect to the probability density function p(x)

Analytical computation of (29) involves computing an integral in q − |S| dimensions for each
subset S. In situations with a high number of features q, this is generally intractable.

When applying the Shapley value to explain the prediction of a black box machine learning model,
the features are considered as the players in the game. The “prize” that will be distributed among
the players is the prediction of the black box model for the instance of interest. In other words,
the final prediction is distributed among the players. In accordance with the first property from
above, the “Efficiency”-property, the distribution is additive. That is, the gain of each feature sums
up to the prediction and we can interpret each Shapley value as the contribution of the feature
value to the final prediction. This gives us a way to explain the prediction of the model. The
“Efficiency”-property with contribution function (29) then takes the concrete form

f̂y(x
∗) = ϕ0 +

q∑
j=1

ϕ∗
j , (30)

where ϕ0 = E[f̂y(x)], v(Q) = f̂y(x
∗) and ϕ∗

j is the Shapley value of feature j for the prediction of
the instance of interest (x∗, y∗). Since ϕ0 is the mean prediction of the model, it does not depend
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on the instance of interest, and therefore it is denoted as ϕ0, without the asterisk superscript. That
is, the Shapley values of the features add up to the difference between the global average prediction
and the prediction of the instance. Or in other words, the features explain the deviation of that
particular prediction from the global average prediction, and the explanation is the Shapley values.

The Shapley values are here expressed as an additive feature attribution method. It is the only
additive attribution method that satisfies the above four properties. These properties are also
desirable for an explanation, and the resulting explanation can be seen as correct. To provide
an understanding of why the Shapley values provide a fair and correct explanation, each of the
four properties given in 3.1 will be interpreted in the setting where the Shapley value is used
to explain a prediction of a black box model. The interpretation of the “Efficiency”-property is
that this property ensures that the part of the prediction that cannot be explained by the global
mean prediction is fully distributed and explained by the features. In addition, it ensures that
the Shapley values can be compared across predictions of different instances of interest. The
interpretation of the “Symmetry”-property is that if two features when combined with any other
subset of features, contribute equally to the resulting prediction of the black box model, they
will have the same Shapley value. If the Shapley values did not satisfy this property, then the
explanation would be inconsistent and untrustworthy. The interpretation of the third property,
the “Dummy Player”-property, is that if a feature never affects a prediction, regardless of which
feature subset it is combined with, it has a Shapley value of 0. That a feature that does not
contribute to the prediction is assigned no contribution to the final explanation is reasonable, and
therefore an explanation method should satisfy this property. If a black box model consists of a
sum of simple ensemble models, e.g. a random forest, then the simple models can be interpreted
and explained individually, and the explanation of the black box model is the combined explanation
of the ensemble methods. This is ensured by the “Linearity”-property of the Shapley values. It
is sensible that any explanation should satisfy these four properties. Since the Shapley values
are the only additive distribution method that satisfies all these four properties [7], the resulting
explanations from the Shapley values are the only truthful additive explanation method [2, 1, 8].

The computation of the Shapley values (28) grows exponentially in the number of features, as 2q,
and it is, therefore, generally infeasible to compute for a high number of features. Therefore, in
practice, it is necessary to use approximations that can be computed in polynomial rather than
exponential time. The estimation of the Shapley values can be divided into two steps. The first
step is to estimate the contribution function (29). This will be denoted as contribution function
estimation. Given the estimate of the contribution function, the next step is to estimate the
Shapley values (28). In order to separate the two steps from each other, we refer to this simply as
Shapley value estimation, although the precise term would be “Shapley value estimation for a
given contribution function estimate”. Because the estimation is performed in two steps, different
combinations of contribution function estimators and Shapley values estimators are possible. In
Section 3.3 and Section 3.4, two Shapley value estimators are presented. In these sections, it is
assumed that the contribution function, or an estimate thereof, is given. Then, two methods for
estimating the contribution function are presented in Section 3.5.

3.3 KernelSHAP

The KernelSHAP method was proposed by Lundberg and Lee [2]. Because some detail was missing
in the original paper, Aas, Jullum and Løland [8] published a more detailed explanation of the
method. The description of the KernelSHAP method given here closely follows that given by
Aas, Jullum and Løland [8] in their paper. In the original paper on KernelSHAP, Lundberg and
Lee [2] propose methods both for estimating the Shapley values (28) for a given contribution
function v(S) and for estimating the contribution function as defined in (29). In this section, the
Shapley value estimation for a given contribution function estimate is treated. Accordingly, by
the “KernelSHAP” estimate, this is what will be referred to. In Section 3.5, the estimation of the
contribution function (29) is treated, meanwhile it is assumed that this is given.

In their paper, Lundberg and Lee [2] define the Shapley values as the optimal solution of a weighted
least squares (WLS) problem. Before introducing the KernelSHAP method, the WLS problem
with the Shapley values as the minimizer will be presented, which will lead to a new formula for
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computing the Shapley values. This will make it more clear where the idea of the KernelSHAP
method originated. To find the Shapley values ϕ0, ϕ

∗
1, . . . , ϕ

∗
q of the instance of interest (x∗, y∗) for

a contribution function vx,y one can minimize the following weighted least squares problem

∑
S⊆Q

k(Q,S)
[
vx∗,y∗(S)−

(
ϕ0 +

q∑
j∈S

ϕ∗
j

)]2
, (31)

with respect to ϕ0, ϕ
∗
1, . . . , ϕ

∗
q , where the Shapley kernel weights are defined as

k(Q,S) = q − 1(
q
|S|

)
|S|(q − |S|)

. (32)

The WLS problem can further be rewritten using matrix-vector notation. Denote by Z the 2q ×
(q + 1) matrix representing all combinations of inclusion/exclusion of the features and an extra
column which is necessary for the computation of the Shapley value ϕ0 that is not associated with
any of the features. The first column of this matrix has 1 in all rows, and element j+1 of row l is 1 if
feature j is included in the combination the row represents, and 0 otherwise. Let the vector vx∗,y∗

contain vx∗,y∗(S) for all subsets S ⊆ Q. Note that we also consider the sets ∅ and Q for which the
Shapley kernel weights (32) are infinite. This can in practice be solved by setting them equal to a
large positive constant c, e.g. c = 106 [8]. Moreover, let W be the 2q×2q matrix with the Shapley
kernel weights k(Q,S) on the diagonal. In both vx∗,y∗ and W the element in each row must

correspond to the same subset S as in that row in Z. Lastly, let ϕx∗,y∗ =
(
ϕ0, ϕ∗

1, . . . , ϕ∗
q

)⊤
.

Then the weighted least squares problem in (31) can be expressed as

(vx∗,y∗ −Zϕx∗,y∗)⊤W (vx∗,y∗ −Zϕx∗,y∗),

which has minimizer
ϕx∗,y∗ = (Z⊤WZ)−1Z⊤Wvx∗,y∗ . (33)

These are the exact Shapley values, equivalent to (28). As previously mentioned, the number of
inclusions/exclusions of features 2q grows exponentially in the number of features q. This makes
the computation of the Shapley values expensive, and an approximation desirable. We now present
an approximator that is based on the Shapley values as the minimizer (33) of the WLS problem.

3.3.1 The KernelSHAP Approximation

To reduce the computational complexity, the KernelSHAP method [2] is introduced. Lundberg and
Lee [2] propose to use the probability distribution following the Shapley kernel weights to select
a subset D of the rows of Z and use only these to approximate the minimizer (33). By drawing
from this distribution, with replacement, the rows with the highest kernel Shapley weight, which
contribute most to the computation of the Shapley values, are used. The probability distribution
is calculated by dividing each weight by the sum of all the weights such that they sum to one and
are normalized. To do this in practice, it is necessary to assume that all weights are finite, i.e. the
weights corresponding to the empty set and the full set Q cannot be included. Thus, the sampling
occurs first while omitting these rows, and the rows corresponding to the empty set and full set are
manually included since they have infinite weight. Let ZD, v

D
x∗,y∗ , and WD be the rows/elements

of Z, v, and W respectively, that corresponds to the subset D. In addition, the rows and elements
corresponding to the coalition of all the features Q and the coalition of no features ∅ are added to
ZD, v

D
x∗,y∗ , and WD. We will refer to D as the subset of all feature combinations including ∅ and

Q. As before, the value of the Shapley kernel weights can be set to a large constant c for these
two rows. Thus, an approximation to the minimizer in (33) is

ϕD
x∗,y∗ = (Z⊤

DWDZD)
−1Z⊤

DWDv
D
x∗,y∗ = RDv

D
x∗,y∗ , (34)

where the matrix RD = (Z⊤
DWDZD)

−1Z⊤
DWD does not depend on the instance of interest. It can

therefore be used to generate explanations for several instances of interest. Only vD
x∗,y∗ depends

on the instance of interest and must be recomputed for every instance that one wishes to explain
the prediction for. It should be noted that the computation of vD

x∗,y∗ with contribution function

22



as defined in (29) is often analytically intractable and in many practical situations expensive to
approximate, something we will get back to in Section 3.5. Therefore, even though RD does not
have to be recomputed for each instance, explaining the prediction for a new instance will be
computationally expensive in general.

Covert and Lee [32] find evidence of variance reduction in the KernelSHAP estimate when using
paired sampling. For each coalition S in D that is considered, the compliment Sc is also used.
Covert and Lee [32] find that in some cases paired sampling will reduce the computational time
of KernelSHAP by as much as nine times compared to without paired sampling. Therefore, this
is a possible improvement of the method that we have incorporated as a hyperparameter in our
implementation of the method.

To summarize, the KernelSHAP method reduces the computational cost of computing the Shapley
values from exponential 2q in the total number of features q to considering only |D| terms. To give
more details on the computational cost of the full Shapley value estimation method, the cost of
computing the contribution function (29) must also be considered. Therefore, we consider this in
Section 3.7 after the full estimation procedures have been presented. In the following section, we
present an alternative Shapley value estimator. The method amortizes the computational cost of
estimating the Shapley values over the instances to be explained.

3.4 FastSHAP

Jethani et al. [4] presents an alternative estimation method to KernelSHAP, which they call Fast-
SHAP. The idea of the method is to train a machine learning model to predict the Shapley values.
The model is trained on the data set the black box model is trained on. This model can then be
used to calculate the Shapley values for any instance, without requiring any additional estimation.
This amortizes the cost of estimating the Shapley value over the instances to be explained; even
though the initial training of the machine learning model is expensive, it is made up for because
explaining a new instance simply requires the evaluation of the machine learning model, a neural
network, in a forward pass. In this section, we focus on introducing the theoretical foundation
of the FastSHAP method and present both an algorithmic overview of the method and a more
in-depth algorithm of the method.

The intuitive idea when the goal is to train a machine learning model to learn the Shapley values is
that it would require a large data set of true Shapley values in order to train the machine learning
model. This is not possible, since the estimation of the Shapley values is still an ongoing problem
in research, and exactly the topic we are considering. Thus, it is unrealistic to require a data
set of exact Shapley values or good approximations thereof. However, Jethani et al. [4] present a
loss function with global optimizer that converges almost surely to the true Shapley values in the
joint distribution of x and y. Therefore, one can train a machine learning model on the feature
observations in the original data set with this loss function, and given a large enough sample and
a complex enough model, one can obtain a good estimate of the true contribution function. Thus,
the training of this model does not require access to the true Shapley values. In general, in XAI,
the explanations can be calculated on the training data set, the test data set, or a combination of
the two. However, since the FastSHAP model is a machine learning model, it makes sense to train
the model on the training data set and evaluate it on the validation and test data sets in order to
prevent overfitting the training data set.

Jethani et al. [4] introduce FastSHAP in the classification setting, therefore, like the authors, we
present FastSHAP as a method to explain a classification machine learning model. Let the possible
classes the response variable y can belong to be denoted by 1, 2, . . . ,K. Let f̂(x) denote a machine
learning model that outputs a probability distribution over the K classes. As in the previous
section, let f̂y(x) denote the predicted probability of a single class y ∈ {1, 2, . . . ,K}. The full

model f̂(x) gives a prediction for all K classes, and the model f̂y(x) only gives the prediction
for a single class y. For now, it is assumed that the contribution function vx,y(S) is given. In
Section 3.5.2, the details of how the contribution function is estimated in the original version of
the FastSHAP method are given. Like with KernelSHAP, we refer to “FastSHAP” as an estimator
of the Shapley values for a given estimate of the contribution function. As a starting point, Jethani
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et al. [4] exploit that the weighted least squares characterization of the Shapley values (31) can
be rewritten by defining a probability distribution over the subsets S, which will be denoted by
p(S). The probability distribution is the Shapley kernel weights (32) normalized to sum to 1 so
that they are a true probability distribution. Thus, the distribution p(S) is proportional to the
Shapley kernel weights k(Q,S) defined in (32), which is denoted by p(S) ∝ k(Q,S). It should be
noted that Jethani et al. [4] does not define the probability distribution for S = ∅ and S = Q,
therefore there is not a problem related to infinite weights. Thus, for a given contribution function
vx,y the Shapley values of the instance of interest ϕ∗ = ϕx∗,y∗ = ϕ(vx∗,y∗) are the solution to the
optimization problem

ϕ(vx∗,y∗) = argmin
ϕx∗,y∗

E
p(S)

[(
vx∗,y∗(S)− vx∗,y∗(∅)−

q∑
j∈S

ϕ∗
j

)2
]
. (35)

Recalling that vx∗,y∗(∅) = ϕ0, and because p(S) ∝ k(Q,S) it is clear that this optimization problem
is equivalent to the weighted least squares optimization problem (31).

As briefly mentioned, the idea of FastSHAP is to train a machine learning model on the feature
observations {xi}ni=1 from the original training data set with a specific loss function which ensures
that the machine learning model learns the Shapley values rather than predicting the response
variables y, which is the most common predictive task in machine learning. We follow the notation
of Jethani et al. [4] and denote the machine learning model by ϕfast(x, y;θ) : X ×Y 7→ Rq, where θ
are the parameters of the model. The model outputs the Shapley values for all 1, 2, . . . , q features
and all 1, 2, . . . ,K classes, not only the true class. Therefore, to get the predicted Shapley values for
feature j of an observation (x∗, y∗), one has to evaluate the model at the true value of the response
variable y∗ and take the jth element of the output. Let now x and y be random variables, and let
the instance of interest (x∗, y∗) be an observation of x and y. Jethani et al. [4] prove that if the
predictions of the model ϕfast(x, y;θ) are forced to satisfy the “Efficiency”-constraint (30), and if
ϕfast(x, y;θ) belongs to a sufficiently expressive class of functions, then the global optimizer of the
loss function they introduce converges almost surely in the joint distribution of x and y to the true
Shapley values of (x∗, y∗). The loss function they present is

Lfast(θ) = E
p(x)

E
Unif(y)

E
p(S)

[(
vx,y(S)− vx,y(∅)−

q∑
j∈S

ϕfast
j (x, y;θ)

)2
]
, (36)

where Unif(y) denotes a uniform distribution over the K classes of y. In practice, this means
assuming that our data set is sufficiently large and that all the observations are from the same
distribution, a sufficiently large neural network, which can approximate any continuous function
by the universal approximation theorem, can learn to approximate the Shapley value function.
Note that the innermost expectation in (36) is the loss function (35), which has the exact Shapley
values as the minimizer. Thus, the loss function (36) in FastSHAP is the expectation of (35) over
x and y. Now that the loss function of the FastSHAP model ϕfast(x, y;θ) has been introduced,
we proceed in the following section by describing how the efficiency property (30) is enforced in
the FastSHAP framework. Then, the algorithm for training the FastSHAP model, including the
efficiency enforcement, will be described in Section 3.4.2.

3.4.1 Enforcing the “Efficiency”-Property of the Shapley Values

Jethani et al. [4] present two methods for ensuring that the Shapley values estimated by the
FastSHAP model satisfy the “Efficiency”-property (30). The first is to adjust the estimates by
using additive efficiency normalization [33], which corresponds to adding a term to the estimated
values:

ϕfast
eff (x∗, y∗;θ) = ϕfast(x∗, y∗;θ) +

1

q

(
vx∗,y∗(Q)− vx∗,y∗(∅)−

q∑
j=1

ϕfast
j (x∗, y∗;θ)

)2

. (37)

The term that is added to the estimate ϕfast(x∗, y∗;θ) is called the efficiency gap. The efficiency
gap can be added to the Shapley value estimates both during the training of the neural network
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and during inference, i.e., the term can be added any time the network makes a prediction. The
efficiency gap is zero if the current estimates satisfy the “Efficiency”-property and positive if they
don’t. Jethani et al. [4] prove that adding this term is guaranteed to make the estimates closer
to the true Shapley values. The other proposed strategy is to alter the loss function (36) with a
penalty γ > 0 on the efficiency gap. As γ → ∞, the “Efficiency”-property is guaranteed to hold
[4]. The loss function (36) with the efficiency gap added as a regularizing term is

Lfast
eff (θ) = Lfast(θ) + γ ·

(
vx∗,y∗(Q)− vx∗,y∗(∅)−

q∑
j=1

ϕfast
j (x∗, y∗;θ)

)2

, (38)

where the penalty parameter γ must be specified by the user, and can therefore be seen as a
hyperparameter of the method.

In their empirical studies, Jethani et al. [4] explore the effect of different combinations of how
to enforce the efficiency constraint. In summary, they find that enforcing the additive efficiency
normalization both during training and inference results in more accurate Shapley value estimates
than either not enforcing it at all or only enforcing it during inference. Moreover, adding the
regularizing term to the loss function, like in (38), with penalty parameter γ = 0.1, yields less
accurate estimates of the Shapley values. Therefore, in their experiments, the authors use additive
efficiency normalization both during training and inference and no regularization term. These are
also the default choices in the implementations of FastSHAP in PyTorch and TensorFlow [4].

3.4.2 Training the Shapley Value Estimator

In this section, the algorithm for training the Shapley value estimator ϕfast(x, y;θ) is given. Two
versions of this algorithm are given. Algorithm 2 gives an overview of the training process, and
Algorithm 3 gives more details, including techniques guaranteed to reduce the variance of the
estimate [4].

The feature observations {xi}ni=n from the data set the black box model was trained on are given
as inputs to Algorithm 2. Moreover, a given contribution function vx,y, or an estimate thereof,
is required in the algorithm. Recall that the FastSHAP model ϕfast(x, y;θ) is a neural network.
Therefore, a learning rate α to use in the update of the neural network’s parameters is required and
input in the algorithm. By default, in the FastSHAP implementations in PyTorch and TensorFlow,
the optimizer in the neural network is the Adam-optimizer that was described in Section 2.2.2.3,
thus α is the learning rate that will be used in the Adam-algorithm 1. Algorithm 2 outputs the
Shapley value estimator ϕfast(x, y;θ), that predicts the Shapley values of an instance (x∗, y∗) for
all features j = 1, 2, . . . , q and all classes y = 1, 2, . . . ,K.

The first step of Algorithm 2 is to initialize a value of the machine learning model that will predict
the Shapley values ϕfast(x, y;θ). Then, until the neural network training converges, Steps 3-13 of
the algorithm are repeated. The convergence criterion of training a neural network can be specified
in different ways. In the FastSHAP implementations in PyTorch and TensorFlow, an adaptive
learning rate is used in addition to early stopping based on a validation batch. In Appendix A,
the implementation details of the method are given, including the convergence criteria. Until
convergence is met the following steps are repeated.

In Step 3, a feature observation x′ is sampled from the data set of feature observations {xi}ni=n given
as input to the algorithm. Next, a feature coalition S ′ is drawn from the probability distribution
p(S) ∝ k(Q,S) that is defined via the Shapley kernel weights (32). In Step 5, the loss L is
initialized to 0. Then, iterating through the classes y = 1, 2, . . . ,K in the for-loop in lines 6-11,
facilitates the learning of the Shapley values for all K classes. In Step 7, using the current model
estimate ϕfast(x, y;θ), the Shapley values of the sample x′ corresponding to class y is predicted.
If the boolean indicator corresponding to additive efficiency normalization is set to true (this is

checked in Step 8), the current estimate ϕ̂ is updated by adding the term corresponding to the
efficiency gap defined in (37) in Step 9. Next, in Step 11, the loss function (36) evaluated at the
current estimate for class y is added to the previous value of the loss. This is done to evaluate
the total loss over all the classes y = 1, 2, . . . ,K. After Steps 7-11 have been repeated for all K
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Algorithm 2: FastSHAP training

Input: Data set {xi}ni=n consisting of feature observations only

Input: Contribution function (estimator) vx,y

Input: Learning rate α

Output: Shapley value predictor ϕfast(x, y;θ)

1 initialize ϕfast(x, y;θ)

2 while not converged do

3 sample x′ ∼ {xi}ni=n

4 sample S ′ ∼ p(S) ∝ k(Q,S)
5 L ← 0

6 for y = 1, 2, . . . , K do

7 predict ϕ̂← ϕfast(x′, y;θ)

8 if additive efficiency normalization then

9 set ϕ̂← ϕ̂+ 1
q

(
vx′,y(Q)− vx′,y(∅)−

∑q
j=1 ϕ̂j

)2

10 end

11 calculate L ← L+
(
vx′,y(S ′)− vx′,y(∅)−

∑
j∈S′ ϕ̂j

)2

12 end

13 update θ ← ADAM Update (L)

14 end

classes, the parameters θ of the neural network are updated according to the Adam scheme given
in Algorithm 1. This is the final step performed before starting the next iteration, or if the training
has converged, the algorithm finishes and returns the current model ϕfast(x, y;θ).

Notice that in the definition of the loss function Lfast(θ) in (36), the expectation is taken over
the probability distribution of x, a uniform distribution of y and the Shapley kernel distribution
p(S) ∝ k(Q,S) over S. In practice, this is approximated by using the empirical distribution over
x, which is standard procedure in machine learning. Moreover, all the K classes are considered in
each iteration of the training, thus, the consideration of all the classes is deterministic. Lastly, the
expectation over the distribution p(S) ∝ k(Q,S) is imitated by considering a randomly selected
subset of all the coalitions drawn with probability p(S) ∝ k(Q,S).

The full training procedure of FastSHAP is more complicated and involves several variance-reducing
techniques that are common in deep learning and some that are specific to the Shapley value estim-
ation problem. The full algorithm is given in Algorithm 3. Some of the steps in the algorithm are
strictly necessary parts of the FastSHAP method, however, others are hyperparameters/variations
of the neural network that can be tuned like in any other deep learning task. Throughout the de-
scription of the algorithm, it will be clarified which parts are standard techniques in deep learning,
and which are FastSHAP specific. However, it should be mentioned that the FastSHAP-specific
parts are built into the neural network, so the whole procedure is performed through the neural
network.

The first three inputs of Algorithm 3 are the same as the inputs of Algorithm 2. These three inputs
are the training data set of feature observations {xi}ni=1, the contribution function, or an estimate
thereof, vx,y(S), and the learning rate α of the optimizer in the neural network. As additional
input parameters, Algorithm 3 takes the batch size B to use in the neural network, details about
using batches in the training of a neural network can be found in Section 2.2.2.4. The FastSHAP
method allows for considering several feature coalitions S per instance x in a batch. In the exact
Shapley values, all possible feature coalitions are considered per instance. Therefore, it is sensible
that considering several coalitions per instance should better enable the model to learn to estimate
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Algorithm 3: FastSHAP training in-depth

Input: Data set {xi}ni=1 consisting of feature observations only

Input: Contribution function (estimator) vx,y

Input: Learning rate α

Input: Batch size B

Input: Number of different coalitions to consider per instance ncoals

Input: Penalty parameter γ

Output: Shapley value predictor ϕfast(x, y;θ)

1 initialize ϕfast(x, y;θ)

2 while not converged do

3 set R ← 0, L ← 0

4 for b = 1, 2, . . .B do // B is the batch size

5 sample x′ ∼ {xi}ni=1 // Randomly draw an instance from data set

6 for y = 1, 2, . . . , K do // K is the number of classes

7 predict ϕ̂← ϕfast(x′, y;θ)

8 calculate R ← R+
(
vx′,y(Q)− vx′,y(∅)−

∑q
j=1 ϕ̂j

)2

// Pre-normalization

by adding regularizing term to the loss

9 if additive efficiency normalization then

10 set ϕ̂← ϕ̂+ 1
q

(
vx′,y(Q)− vx′,y(∅)−

∑q
j=1 ϕ̂j

)2

11 end

12 for m = 1, 2, . . . , ncoals do // ncoals is the number of coalitions S to

consider per sample x′

13 if paired sampling and b mod 2 = 0 then

14 set S ′ ← (S ′)c

15 else

16 sample S ′ ∼ p(S) ∝ k(Q,S)
17 end

18 calculate L ← L+
(
vx′,y(S ′)− vx′,y(∅)−

∑
j∈S′ ϕ̂j

)2

19 end

20 end

21 end

22 update θ ← ADAM Update
(

L
B·K·ncoals

+ γ R
B·K

)
23 end
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the Shapley values. Therefore, the desired number of coalitions to consider per instance ncoals is
given as an input to the algorithm. Thus, within each batch, ncoals coalitions S are considered per
observation x. Lastly, the penalty parameter γ in the regularized loss (38) must be provided as
input. As mentioned, γ = 0 by default in the algorithm because Jethani et al. [4] provide empirical
evidence that using the regularized loss (38) reduces the accuracy of the predictions. The output
of Algorithm 3 is the neural network that predicts Shapley values ϕfast(x, y;θ).

The first step of Algorithm 3 is to initialize the value of ϕfast(x, y;θ). Next, Steps 3-22 are repeated
until convergence. The first step per iteration is to set the current value of the loss (36) and
regularizing term, which is the efficiency gap defined in (38), to zero. Then the training procedure
is performed batch-wise by iterating through the batches that the training data has been divided
into. The for-loop in lines 4-21 of the algorithm contains the steps that are repeated per sample in
a batch. Using batches is a common neural network strategy and not specific to FastSHAP. The
size of the batches can be seen as a hyperparameter of the neural network. The first step performed
within a batch is to sample a training observation from the data set, as seen in step 5. The samples
are drawn without replacement. Thus, in the span of an epoch, all the samples in the training data
set are considered once. For each sample, the algorithm considers the predictions of the Shapley
values for each of the K classes by iterating through the classes in the for-loop in Steps 6-20.
The first step of the for-loop, Step 7 of the algorithm, is to predict the Shapley values using the
current model ϕfast(x, y;θ). Then, the regularizing term for that prediction is added to the current
value of the regularizing term in Step 8. Step 8 is FastSHAP specific, however, as mentioned in
Section 3.4.1, Jethani et al. [4] generally find that efficiency regularization decreases the accuracy
of the estimated Shapley. Therefore, by default, the penalty parameter γ that controls the degree
of regularization is set to zero, and no regularization is performed. However, Jethani et al. [4]
find that additive efficiency normalization (37) yields more accurate estimates, and therefore, by
default, this is applied in Step 10 of Algorithm 3. In the implementations, however, the user can
choose to omit it if desired. The additive efficiency normalization is also a FastSHAP-specific step.

The for-loop in Lines 12-19 handles the sampling of coalitions S. Per feature observation x′, a
total of ncoals different coalitions are randomly drawn according to the Shapley kernel probability
distribution p(S) ∝ k(Q,S) where k(Q,S) are as in (32). Since paired sampling has been found
to improve the accuracy of other Shapley value estimators [32], it is included in FastSHAP as
well. Jethani et al. [4] provide results showing that this improves the accuracy of the estimates. If
paired sampling is desired, rather than drawing a new coalition in each iteration, at every second
iteration, the complement of the previous coalition Sc will be used in the following iteration. The
loss per coalition for sample x′ and class y is added to the total loss in Step 18 of the algorithm.
Thus, the loss that is considered for each sample x′ will be over all classes y = 1, 2, . . . ,K and
all ncoals coalitions. The full for-loop in Steps 12-19 is FastSHAP-specific since the loss function
(36) that is used is chosen because its global minimizer is the Shapley values. Therefore, this
is the key step to ensuring that the neural network will learn the Shapley values rather than
predicting the response variables, which is the most common task in machine learning. Moreover,
the coalition sampling that is performed in the if-else statement in Lines 13-17, a total of ncoals

times, is FastSHAP specific. To empirically learn the minimizer of the loss function (36), taking the
expectation over p(S) ∝ k(Q,S) must be approximated. Therefore, for all instances in a batch and
all K classes, the loss over ncoals coalitions S is considered as an approximation of the expectation.
After all y = 1, 2, . . . ,K classes have been considered, the iteration for that sample ends, and the
next sample in the current batch is processed. After a whole batch has been processed in this
manner, the parameters θ of the FastSHAP predictive model ϕfast(x, y;θ) are updated in Step 22
by using the Adam optimizer, which is given in Algorithm 1. By default, FastSHAP uses the Adam
optimization scheme given in Algorithm 1. In general, the choice of an optimization strategy is
a hyperparameter of the neural network and can be changed. However, the specific loss that is
numerically minimized in Step 22 is FastSHAP specific.

The algorithm either continues by considering a new batch, repeating steps 4-22, either until the
total number of epochs has been reached or until the convergence criterion is met. By default in the
Python implementations of FastSHAP in PyTorch and TensorFlow, an adaptive learning rate and
early stopping based on the loss of a validation batch is used. However, there are other strategies
that can be used to evaluate the convergence of a neural network. Therefore, the convergence
criteria can be seen as a hyperparameter of the neural network.
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This completes the description of training the Shapley value prediction model ϕfast(x, y;θ) and
the FastSHAP method. As previously mentioned, estimating the contribution function (29) is an
important part of estimating the Shapley values (28). Therefore, two methods for estimating the
contribution function (29) are presented in the following section.

3.5 Estimating the Contribution Function

To be able to estimate the Shapley values (28), it is necessary to compute the contribution function
vx∗,y∗(S) defined in (29) for all feature coalitions S ⊆ Q. In this section, two estimators of the
contribution function are presented. The first method is based on Monte Carlo integration (26)
and assumes feature independence, an assumption that rarely holds in practice. This estimator was
originally used in the KernelSHAP method [2] that was presented in Section 3.3. This estimate will
be called the “off-manifold” estimate like in [3] to make it easier to distinguish the two methods
from each other. It is called the off-manifold estimate because the Monte Carlo samples generated
when falsely assuming independence will generally be far from the true distribution of the data and
lie off the data manifold. The other estimation method trains a surrogate machine learning model
to predict the value of the contribution function. The surrogate model is a supervised machine
learning method. We follow the supervised procedure of Frye et al. [3], which is the proposed
default contribution function estimator in the FastSHAP method [4]. The estimate resulting from
the predictions of the surrogate model will be referred to as the “on-manifold” estimate because
they generally will lay on the data manifold [3]. Throughout the whole section, we estimate the
contribution function (29). It should be noted that there are two problems with computing (29) in
practice. First, the conditional distributions p(xSc |xS = x∗

S)∀S ⊆ Q are generally unknown and
analytically intractable in most real-world situations. Moreover, given a conditional distribution,
or an estimate thereof, for many interesting machine learning models, calculating the expected
value in (29) is not generally feasible, especially when the number of features q is high since
this corresponds to a q − |S| dimensional integral of a complex expression. Therefore, estimation
procedures are necessary.

3.5.1 The Off-Manifold Estimate via Monte Carlo Integration

As mentioned, the off-manifold estimate is to estimate the contribution function (29) by Monte
Carlo integration (26) under the assumption of feature independence [2, 1]. Under the assumption
of feature independence, the following rewrite of the contribution function (29) holds

vx∗,y∗(S) = E
p(xSc |xS=x∗

S)
[f̂y(x)|xS = x∗

S ] = E
p(xSc |xS=x∗

S)
[f̂y(xSc ,xS)|xS = x∗

S ]

=

∫
f̂y(xSc ,x∗

S)p(xSc |xS = x∗
S)dxSc

independence
=

∫
f̂y(xSc ,x∗

S)p(xSc)dxSc ,

where the independence assumption leads to the assumption that the conditional distribution
p(xSc |xS = x∗

S) = p(xSc), where p(xSc) is the marginal distribution of the features in Sc. Under
this assumption, the contribution function can be estimated by Monte Carlo integration with
respect to the empirical distribution of the features, discussed in Section 2.4. This yields the
off-manifold estimate

voffx∗,y∗(S) =
1

M

M∑
m=1

f̂y(x
m
Sc ,x∗

S), (39)

where xm for m = 1, 2, . . . ,M is a randomly drawn instance from the data set and M is the total
number of Monte Carlo samples. The feature values in xm

Sc are sampled from the data set. In
practice, we randomly choose an instance in the data set and extract the features in Sc from it.
This sampling will implicitly follow the empirical distribution of the features in Sc since more
common feature values are more likely to be drawn because there are more instances in the data
with these feature values. If the independence assumption were not made, then we would have to
sample in a way that considers how the features in Sc depend on the features in S. By simply
sampling a point in the data and extracting the values of some of the features, no such relationship
is considered, and only the empirical distribution of the feature in Sc is taken into account. The
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Figure 4: Some examples of unrealistic digits that were generated by splicing observations together,
creating the Monte Carlo samples in the off-manifold estimate. The examples of Monte Carlo
samples are captioned “Splice 1”-“Splice 5” and the original instance is the observation of the digit
7 at the left-hand side of the figure. The coalition S used to create the splices is shown in the
second position from the left. This figure is taken from [3].

Monte Carlo samples can be drawn from the training data set, the test data set, or both of these
data sets combined. In our experiments that are presented in Section 4 and 5, it is ensured that
the same data set is used in all estimates to ensure that the conditions of the experiments are as
similar as possible.

For S = Q since Qc = ∅, the estimate is

v̂offx∗,y∗(Q) =
1

M

M∑
m=1

f̂y(x
m
∅ ,x∗

Q) =
1

M

M∑
m=1

f̂y(x
∗
Q) = f̂y(x

∗),

which is the black box model’s prediction for the instance of interest. Thus, this can be computed
separately by evaluating the black box model instead of estimating it using Monte Carlo integration.
For S = ∅, note that v(∅) = E[f̂y(x)]. This is the global average prediction of the model. Thus, it
can be estimated as the mean prediction in the data set and only has to be computed once, since
it does not depend on the instance of interest. For the other |Q| − 2 subsets, M samples are used.
Thus in total, to estimate the contribution function for all feature coalitions, (|Q| − 2) ·M Monte
Carlo samples are used in the off-manifold estimate. To simplify, we round the total number of
samples off to |Q| ·M . This corresponds to |Q| evaluations of the black box model per instance
of interest. The number of model evaluations is typically the size that is used to characterize the
computational cost of the different estimates. Examples of this can be found in among others [2,
4, 3].

As previously mentioned, in the off-manifold estimate (39) of the contribution function (29), the
features in S are assumed independent of the features in Sc. In practice, the features are often
correlated (and thus not independent), and this assumption can lead to unrealistic Monte Carlo
samples with feature combinations that in reality could not have occurred. A good example of this
is given for the MNIST data set [34] in Frye et al. [3], which can be seen in Figure 4. The MNIST
data set consists of images of the handwritten digits 0 to 9. By combining the observations together
under the assumption of feature independence, here resulting in the assumption of independent
pixels, to create Monte Carlo samples, unrealistic digits are created. Although this thesis does
not treat image data, this example is included because it serves as a good visual illustration of
how incorrectly assuming feature independence can result in unrealistic Monte Carlo samples. For
samples like these, the off-manifold method may “evaluate the [black box] model outside its domain
of validity, where it is untrained and potentially wildly misbehaved. This garbage-in-garbage-out
problem is the clearest reason to avoid the off-manifold approach” [3]. Especially deep learning
models are known to be sensitive to distributional shifts [3], which means that evaluating the models
outside the region they are trained on can lead to spurious and misleading final explanations.

Recall from Section 2.4 that the variance of the Monte Carlo integral decreases as M increases. By
reducing the variance, the error (27) in the Monte Carlo integral decreases. However, in our case,

because voffx∗,y∗
a.s.,M→∞−→ E

p(xSc )
[f̂y(x

c
S ,x

∗
S)] ̸= E

p(xSc |xS=x∗
S)
[f̂y(x

c
S ,x

∗
S)] = vx∗,y∗ , in general, there

is a bias in the estimate. Therefore, even though the variance of the estimate can be reduced by
increasing the number of Monte Carlo samples, the bias term remains, which corresponds to an
error in the estimate.

In general, it is desirable to calculate the Shapley value for dependent features. The exact Shapley
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value incorporates the dependence structure between features. Therefore, to maintain this, it is
necessary to use another estimation method to approximate the contribution function, that takes
into account the dependence structure of the features. For instance, Aas, Jullum and Løland [8]
propose several methods for estimating the contribution function (29) without the assumption
of independent features. However, these methods do not scale to higher dimensional problems.
Another contribution function estimation method that does assume feature independence and
scales to higher dimensional problems is the surrogate model [3], which will be presented in the
following section. Similar to the FastSHAP model, the method trains a machine learning model to
learn the contribution function and amortizes the estimation of the contribution function across
the number of instances to explain. Therefore, it can provide estimates fast by evaluating the
surrogate model after the initial computationally costly phase has been performed. This makes
the surrogate model useful in many practical situations.

3.5.2 The On-Manifold Estimate via a Supervised Surrogate Model

As a default choice of an estimator of the contribution function (29) in FastSHAP, Jethani et al.
[4] consider a surrogate model. The surrogate model is a supervised machine learning model that
is trained to learn the contribution function (29). This results in a method with a high initial
computational cost, but after the initial model training, a new explanation can be given with a
simple model evaluation. Thus, the method amortizes the computational cost of estimating the
contribution function over the number of instances to explain. Training a predictive model to either
directly learn the contribution function (29) or learn the conditional distributions p(xSc |xS = x∗

S)
has been done previously by Frye et al. [3] and Jethani et al. [9]. In this thesis, the surrogate
model is trained in accordance with the supervised method of Frye et al. [3] like in the FastSHAP
method [4], that was introduced in Section 3.4. The surrogate model is a machine learning model,
a neural network, which has high representation abilities. Details on neural networks can be found
in Section 2.2.2. Unlike the off-manifold estimate from the previous section that assumes feature
independence, a sufficiently large neural network can learn interactions between the features. The
estimate of the surrogate model will, therefore, more closely follow the correct distribution and lie
on the data manifold [3]. Frye et al. [3] provide evidence that the surrogate model outperforms the
off-manifold estimator for some real-world data sets. We now present the details of the method.

Frye et al. [3] introduce their surrogate model in the classification setting. Although the method
can be generalized to the regression setting [3], we here give the details for the classification
setting. Recall that FastSHAP [4] also was introduced in the classification setting, which makes
the surrogate model and FastSHAP compatible. KernelSHAP, as presented in Section 3.3, can
be used both in the classification and regression setting. The combination of KernelSHAP and
the surrogate model is therefore also possible. The surrogate model aims at learning the expected
value of the black box machine learning model conditional on having observed some of the feature
values (29). To replicate the evaluation of the black box model on a subset of the features S, the
idea is to replace the feature values in Sc with a [mask]-value. Supervised by the black box model’s
predictions for the unmasked, original feature observations, the surrogate model tries to learn
to replicate these predictions accurately, but it only observes the masked vector of features. The
minimizer of the loss function that is used in the training of the surrogate model is the contribution
function (29). Therefore, the surrogate model can learn the contribution function if provided with
a sufficiently large data set to train on. This is the intuition behind the method, and the details
will be given in the following sections.

We use similar notation to Jethani et al. [4] in the description of the surrogate model. The surrogate
model takes as input a masking m(x,S) of the features such that for j ∈ Sc the feature value xj

is replaced by a value that is not in the support of f̂(x). Recall that the full black box model

that makes predictions for all K classes is denoted f̂(x), and as before, f̂y(x) denotes the model
that makes prediction for a single class y ∈ {1, 2, . . . ,K}. Specifically, the jth component of the
masking is defined as

mj(x,S) =

{
xj , j ∈ S,
[mask], j /∈ S.

(40)

The [mask]-value must be chosen by the user, and can therefore be seen as a hyperparameter of
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the method, Frye et al. [3] use a value that has not been observed in the data set. We stick to
the notation of Jethani et al. [4] and denote the surrogate model as v̂on(y|m(x,S);β), where β
are the parameters of the surrogate model. According to Jethani et al. [4], the parameters of the
surrogate model are learned by minimizing

Lsurr(β) = E
p(x)

E
p(S)

[
DKL

(
f̂(x)∥v̂on(y |m(x,S);β)

)]
, (41)

where the Kullback–Leibler divergenceDKL(p1∥p2) between two probability distributions p1 and p2
is defined as

DKL(p1∥p2) = E
p1(x)

[
log

(
p1(x)

p2(x)

)]
. (42)

Since the surrogate model v̂on(y |m(x,S);β) was introduced for classification problems, f̂(x) is a
probability density function, accordingly so is v̂on(y |m(x,S);β), and using the Kullback-Leibler
divergence is unproblematic. Keeping the probability density function p1 fixed, minimizing the
Kullback–Leibler divergence (42) is equivalent to minimizing the categorical cross-entropy between
the distributions. The categorical cross-entropy is defined as

H(p1, p2) = − E
p1(x)

[log(p2(x))] = DKL(p1∥p2)− E
p1(x)

[log(p1(x))], (43)

where the second term only depends on p1. Therefore, minimization with respect to p2 of the
categorical cross-entropy and the Kullback-Leibler divergence is equivalent. As cited in [4], Covert,
Lundberg and Lee [35] show that the global optimizer of (41), which is the surrogate model, is

equivalent to marginalizing out features from f̂(x) with their conditional distribution, thus,

v̂on(y |m(x∗,S);β) = E
p(xSc |xS=x∗

S)
[f̂(x)|xS = x∗

S ], (44)

which is exactly the contribution function (29).

Note that in Frye et al. [3], where the supervised surrogate model was introduced, the proposed
loss function was the mean squared error, rather than the Kullback-Leibler divergence as in (41).
However, both loss functions have (44) as the minimizer, which is the contribution function (29).
However, for classification problems, it is more common to use the categorical cross-entropy loss
than the mean squared error, therefore we stick to the practice of Jethani et al. [4] and use the
loss function (41). This also makes it easier to compare our results to those of Jethani et al. [4]
since we use the same loss function as them.

In summary, to estimate the contribution function, a machine learning model can be trained on
masked feature observations from the original data set with (41) as the loss function. The response
variables used in the training are the predictions of the black box model, not the response variables
in the original data set. In practice, it is necessary to randomly sample subsets S determining
which features to mask according to (40) and samples x from the data set to train the model
on, in order to simulate taking the expectation over p(x) and p(S) in (41). The samples of x are
drawn from the available data set, and therefore, follow the empirical distribution of the features in
the data set. Moreover, the subsets S are drawn from the Shapley kernel probability distribution
p(Q,S) ∝ k(Q,S) where k(Q,S) is defined in (32).

The details of training the surrogate model are given in Algorithm 4. The [mask]-value used to fill
in the missing feature values should not be in the support of the black box model f(x). In addition,
for the surrogate model to learn that some features have been masked, the masking locations can
be provided to the model. This is done by providing a masking net which for each observation is
the same dimension as x. The elements of the mask net are 0 if the corresponding feature is in Sc
and 1 if the feature is in S. Whether to append this to the observations the model is trained on is
determined by a boolean parameter append mask, which is given as an input in Algorithm 4. The
other input parameters of the algorithm are the [mask]-value, the feature observations from the
original data set {x}ni=1 that will be used to train the model on, and the corresponding predictions
of the black box model for these feature observations {ybbi }ni=1. These are used as the response
variables in the training. The algorithm outputs the surrogate model that predicts the value of
the contribution function for a masked feature vector v̂on(y|m(x,S);β). The first step of the
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Algorithm 4: Surrogate model training

Input: Mask value: [mask]

Input: Boolean determining whether to append masking to the data set that the

surrogate model is trained on: append mask

Input: Feature observations: {xi}ni=1

Input: Black box model’s predictions, which are denoted {ybbi }ni=1 in the algorithm

Output: Contribution function estimator: v̂on(y|m(x,S);β)
1 Initialize v̂on(y|m(x,S);β)
2 while not converged do

3 x′ ∼ {xi}ni=1 sample a feature observation from the training data given as input with

corresponding response y′bb

4 sample S ′ ∼ p(S) ∝ k(Q,S)

5 create masked vector x′
S′ with elements (x′

S′)j =

x′
j , j ∈ S ′,

[mask], j /∈ S ′

6 if append mask then // If specified, the model is also given the coalition

S ′ as an input to train on

7 x′
S′ ←

(
x′
S′ , S ′

)
8 end

9 L ← 0

10 for y = 1, 2, . . . , K do

11 predict v̂ ← v̂on(y|x′
S′ ;β)

12 calculate L ← L+H(v̂, y′bb)

13 end

14 update β ← Adam Update(L)

15 end
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algorithm is to initialize the surrogate model v̂on(y|m(x,S);β). Then, until convergence, Steps
3-14 are repeated. In Step 3, a sample x′ is drawn randomly from the data set given as input to
the model. It is paired with the corresponding prediction of the black box model y′bb. In addition,
in Step 4, a feature coalition S is drawn according to p(Q,S) ∝ k(Q,S) defined in (32). In Step 5,
a masked vector based on the sample x′ and coalition S is created in accordance with (40). Then,
if the user has specified to append the mask net to the training data, this is done in Step 7 of the
algorithm. Then, the loss is initialized to 0 in Step 9. Next, for the K classes y = 1, 2, . . . ,K, the
current estimate of the model is predicted in Step 11. The categorical cross-entropy loss H (43) of
the prediction is added to the loss in Step 12. The loss is added because the loss over all K classes
must be considered. After the loss over all K classes has been computed, the parameters β of the
surrogate model are updated according to the Adam optimization scheme given in Algorithm 1 in
Step 14.

3.6 Full Procedures for Estimating the Shapley Values

In the previous sections, two contribution function estimators and two Shapley value estimators
have been presented. The results of investigating the accuracy of both the contribution function
estimates and the Shapley value estimates on simulated data will be presented in Section 4. Since
there are two methods for performing each of the two steps in the estimation procedure, there are
in total four ways to finally estimate the Shapley values. These are as follows.

(A) KernelSHAP-Off-Manifold: The original KernelSHAP version involves estimating the
contribution function by the off-manifold estimate (39). Then, estimating the Shapley values
by the KernelSHAP approximation (34).

(B) KernelSHAP-Surrogate: Estimating the contribution function by a surrogate model
trained according to Algorithm 4, and estimating the Shapley values by the KernelSHAP
approximation (34).

(C) FastSHAP-Off-Manifold: Combining the off-manifold estimate of the contribution func-
tion (39) with a machine learning model ϕfast(x, y;θ) trained to predict the Shapley values
according to Algorithm 2. The FastSHAP model ϕfast(x, y;θ) is trained with the off-manifold
estimate as the input of the contribution function estimator in Algorithm 2.

(D) FastSHAP-Surrogate: The original version of FastSHAP, using the surrogate model trained
according to Algorithm 4 to predict the value of contribution function, and the FastSHAP
model ϕfast(x, y;θ) to predict the Shapley values. The FastSHAP model ϕfast(x, y;θ) is
trained with the surrogate model as the input of the contribution function estimator in
Algorithm 2.

3.7 The Computational Cost of the Estimators

In many practical applications, the computational cost related to an estimation method is an
important factor in choosing a method. We will first consider the computational cost of the off-
manifold method, the surrogate model, the KernelSHAP estimate, and the FastSHAP separately.
Then, based on the individual cost of each estimator, we outline the cost of the full estimation
procedures, defined in Section 3.6. For the estimators we consider, it is difficult to give exact
expressions for the computational cost, therefore, we give a simplified overview.

• Off-manifold estimate: To calculate the off-manifold estimate (39), one must create
M · |Q| = M · 2q Monte Carlo samples if all Q feature coalitions are considered. In addition,
one must evaluate the black box model |Q| = 2q times. This computation must be repeated
for each instance we want to explain.

• Surrogate model: The cost of the surrogate model can be split into two parts. These are
as follows:
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– Training : the surrogate model must be trained according to Algorithm 4. The training
corresponds to a high initial cost that amortizes across the instances to be explained.

– Providing an estimate: In order to compute the value of the contribution function for
all feature coalitions S in Q for an instance of interest, the surrogate model must be
evaluated once for all the |Q| = 2q coalitions. This must be repeated for all instances
to be explained.

• KernelSHAP: The KernelSHAP estimate (34) needs access to the value of the contribution
function, or an estimate thereof, for all feature coalitions S in D. We assume here that it
already has been computed and stored in a vector vD

x∗,y∗ . Then, the computational cost of
KernelSHAP can be divided into two parts as follows:

– Initialization: The matrix RD in (34) does not depend on the instance of interest and
can therefore be precomputed and stored. It must only be computed once. Hence, the
initialization cost is amortized over the instances to be explained.

– Providing an estimate: To provide the explanation for an instance, one must compute
the matrix-vector product RDv

D
x∗,y∗ . This must be repeated for all instances to be

explained.

• FastSHAP: The computational cost of the FastSHAP model is similar to that of the sur-
rogate model. It divides into two parts as follows:

– Training : The FastSHAP model must be trained according to Algorithm 2. This is an
initial cost that amortizes over the instances to be explained. The model can be used to
explain any number of instances after the initial training. In the training, a contribution
function estimator must be provided as input in Algorithm 2. It is assumed that this is
given.

– Providing an estimate: To provide an explanation with FastSHAP, the FastSHAP model
ϕfast(x, y;θ) must be evaluated once for every instance of interest x∗.

Correspondingly, the outline of the computational cost of the full estimation procedures is as
follows:

• KernelSHAP-Off-Manifold: The cost divides into two parts, which are:

– Initialization: The initialization corresponds to that of KernelSHAP, which means that
the matrix RD in (34) must be computed.

– Providing an estimate: To provide an explanation for an instance of interest one must
first compute the off-manifold estimate for all feature coalitions in D, which is stored
in the vector vD

x∗,y∗ . This corresponds to generating M · |D| Monte Carlo samples and
evaluating the black box model |D| times. Then, one must compute the matrix-vector
product RDv

D
x∗,y∗ .

• KernelSHAP-Surrogate: The computation of the KernelSHAP-Surrogate method is as
follows:

– Initialization: The surrogate model must be trained according to Algorithm 4. In
addition, the matrix RD in (34) must be computed.

– Providing an estimate: Firstly, the surrogate model must be evaluated once for all
feature coalitions in D. The values of the surrogate model’s predictions are stored in
the vector vD

x∗,y∗ . Then, the matrix-vector product RDv
D
x∗,y∗ must be computed.

• FastSHAP-Off-Manifold: The cost divides as follows:

– Initialization: The FastSHAP model must be trained according to Algorithm 2. The
off-manifold estimator is given as the input of the contribution function estimator in
Algorithm 2. When training the model, the off-manifold estimate must be computed
for all feature coalitions S that are considered per instance in a batch.
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– Providing an estimate: The FastSHAP-Off-Manifold model must be evaluated for each
instance of interest x∗.

• FastSHAP-Surrogate: The cost is divided into two parts as follows:

– The surrogate model must be trained according to Algorithm 4. Then, with the sur-
rogate model as input, the FastSHAP model must be trained according to Algorithm
3. The surrogate model is evaluated for all feature coalitions per instance in a batch
during the training of the model.

– Providing an estimate: The FastSHAP-Surrogate model must be evaluated for each
instance of interest x∗.

In the experiments that will be presented in Sections 4 and 5, for the different estimation methods,
the central processing unit (CPU) time it takes to provide an estimate will be given. The
CPU time is the usage time of a central processing unit to complete a computation. It provides a
more accurate estimate of the computation time than a wall clock because it will not be influenced
by other processes running simultaneously. In Python, the function process time in the time
library [36] can be used to get the CPU time of a process. All experiments presented in Sections
4 and 5 have been run on the same laptop with an Intel(R) Core(TM) i7-8550U CPU. The CPU
time reported in the experiments is the total for the eight threads in the CPU.

3.8 Shapley Values for Global Interpretability

In the theoretical description of the Shapley values, we have described the method as a local
explanation method. Local refers to the method explaining the prediction of the black box model
for a single instance of interest. The Shapley values attribute the prediction of the black box model
to its features. Therefore, if the Shapley values for all observations in a data set are computed,
these can be aggregated to provide global Shapley values. The global Shapley value of a feature is
the average of the absolute Shapley values of that feature over the instances in the data set. The
global Shapley values indicate which variable is the most important for the model’s predictions
overall. If a feature has a high global Shapley value, it has been assigned a high, in absolute value,
attribution on average for the observations in the data set. It has, therefore, on average, been
important for the black box model’s predictions. In practice, because the computational cost of
the Shapley values is high, the global Shapley values can be approximated by considering a subset
of the full data set rather than the whole data set.
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4 Simulation Study

In many real-world problems, the exact Shapley values are unknown due to the contribution
function (29) being analytically intractable and the computational complexity of computing the
Shapley values (28) that is exponential 2q in the number of features q. Since the exact Shapley
values are generally unknown in practical situations, checking the accuracy of the Shapley value
estimates is difficult. Therefore, it is necessary to simulate data where either the Shapley values
are known, or a good estimate thereof can be computed using a preexisting method known to be
accurate. The Shapley value estimates can then be compared to this estimate. In the simulations
that will be presented in this section, we will not have access to the exact Shapley values. However,
we will be able to estimate them accurately. Therefore, we can evaluate the accuracy of the
Shapley value estimators presented in Sections 3.3 and 3.4 and the contribution function estimators
presented in Section 3.5.

Recall that the computation of the Shapley values can be seen as a two step estimation procedure.
The first step is to estimate the contribution function, and the second is to estimate the Shapley
values for a given contribution function. In Section 3.5, two estimators of the contribution func-
tion were presented. To evaluate these, it is necessary to be able to compute the true value of
the contribution function (29). If the conditional distributions p(xSc |xS = x∗

S) are known, the
Monte Carlo integral (26) using the black box model evaluated at samples from this distribution
is an unbiased estimator of the contribution function. Therefore, this estimate can be used as the
true value, or more precisely, a sufficiently good estimate, of the contribution function. To invest-
igate the accuracy of the estimation methods, simulated data where the conditional distributions
p(x|xS = x∗

S) are analytically given is used. Then, fixing an estimate of the contribution function,
the exact weighted least squares formulation (33) of the Shapley values can be used to obtain a
ground truth estimate of the Shapley values. The Shapley value estimators from Sections 3.3 and
3.4 will be evaluated against this.

In Section 2.3, two multivariate distributions where the conditional densities p(x|xS = x∗
S) are

known were introduced. These are the multivariate normal distribution and the multivariate Burr
distribution. Both distributions will be used to simulate data, and the performance of the methods
will be evaluated for these simulated data sets. In general, the multivariate normal distribution has
many desirable properties, but it “behaves too nicely” to replicate real-world data in many cases.
Therefore, the Burr distribution is also used because it can have heavier tails, be skewed, and have
non-linear correlation structures. Hence, it more accurately represents a complex real-world data
set.

The outline of this chapter is as follows. In Section 4.1, the procedure we follow in the experiments
is described in detail. Then, in Section 4.2, the evaluation metrics that we will use to measure the
accuracy of our method are presented. Next, the simulation models that we use are presented in
Section 4.3. Finally, the evaluation of the contribution function estimators is presented in Section
4.4, and in Section 4.5, the Shapley value estimators are evaluated. In all the experiments, we
use our own implementation of the estimation methods. The implementation can be found on
GitHub. Some details on the hyperparameters of the estimation methods used in the simulation
experiments are given in Appendix A.

4.1 Experimental Design

We perform experiments using several simulated data sets. In each simulation experiment, the
following steps are repeated.

1. Generate n observations of feature variables x ∈ Rq according to one of the models that will
be described in Section 4.3. Set 20 % aside to form a test data set.1 Then, of the remaining 80
% of the observations, let 80 % be the training data set, and the other 20 % be the validation
data set. To investigate the effect of the size of the available data set, this is performed for

1In the experiments, we only used 100 test observations from the test data set. It was, therefore, unnecessary to
generate additional observations in the test data set.
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data set sizes n = 2,000, 10,000 and 100,000, which corresponds to training data sets of sizes
ntrain = 1,280, 6,400 and 64,000, respectively. In addition, for one of the simulation models,
the experiments are also performed for n = 200,000, corresponding to ntrain = 128,000. It
will later be argued why this is only done for one of the simulation models.

All estimates, both of the contribution function and the Shapley values, are calculated using
the training data set. This is to make the conditions of each experiment as equal as possible.
In addition, since a machine learning model is trained both to estimate the contribution
function using the surrogate model and to predict the Shapley values using the FastSHAP
predictor ϕfast(x, y;θ), it makes sense to stick to the machine learning practice of using
separate training, validation, and test data sets. This is to avoid typical machine learning
problems like overfitting to the training data set. The surrogate model and FastSHAP model
ϕfast(x, y;θ) are trained on the training data set, and the validation data set is used to
evaluate the model at the end of an epoch, as is common when training neural networks, see
Section 2.2.2.4 for details on this.

It is interesting to investigate if the performance of the estimators varies depending on the
size of the data set because, in real-world applications, the number of available observations
can vary greatly. Therefore, empirical results ranking the methods in different situations can
make it easier to decide which method to use based on the properties of the available data
set.

2. For all simulated feature observations, compute the corresponding response variables. We
will return to this in Section 4.3, where the details of the simulation models are given. The
response variable is either 0 or 1, corresponding to a classification data set.

3. In all experiments, an XGBoost classifier with default hyperparameter settings is used as the
black box machine learning model that will be explained. The XGBoost model is trained
on the training data set. It outputs the predicted probabilities of belonging to class 0 and
class 1. For reproducibility, the most important hyperparameters in the XGBoost model
are listed. They are as follows. The number of boosted trees n estimators is set to 100,
the learning rate eta is set to 0.3, the maximum depth max depth of each tree is set to
6, and the L2-regularization penalty parameter λ is set to 1. Moreover, the minimum loss
reduction required to proceed with a new partition on a leaf of the tree gamma is set to 0, i.e.,
the model will keep building trees even if there was no improvement in the last step. The
hyperparameter min child weight, determining the minimum weight needed inside a child
to keep partitioning, is set to 1. This parameter corresponds to the minimum number of
instances needed in each node if linear regression mode is used. In the theoretical description
of the XGBoost model in Section 2.2.1, we outlined the method and its working mechanisms.
However, the full XGBoost library has more hyperparameters and functionality than we
covered. In this thesis, we use the XGBoost model as an example of a complex black box
model. The focus of this thesis is the contribution function and Shapley value estimators.
Therefore, we do not provide more details on XGBoost and its hyperparameters here, but
refer to the documentation of the XGBoost Python package [16] for more details.

4. Draw 100 test observations from the test data set. The contribution function and Shapley
value estimates will be computed for these observations.

5. Perform either step (a) or step (b) below:

(a) Evaluate the contribution function estimators: When evaluating the contribution
function estimators, the number of features in the simulation model q is kept constant
and equal to 10. The contribution function estimates will be computed for all 2q =
210 = 1024 feature coalition S, and the accuracy of the estimates is calculated over all
the coalitions. For each simulated data set, the following steps are performed.

• Train the surrogate model using the training and validation data sets according to
Algorithm 4. Next, for the 100 test observations, use the surrogate model to predict
the contribution function estimate for all coalitions S. The hyperparameters and
architecture of the surrogate model are given in Appendix A.
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• Compute the off-manifold estimate (39) with the number of Monte Carlo samples
M equal to 100, 300, and 1,000. The number of Monte Carlo samples used in the
off-manifold estimate is varied to investigate how this affects the method’s accuracy.
Repeat this for all coalitions S of the features for all 100 test observations.

• Compute the unbiased Monte Carlo estimate (26) of the contribution function using
the analytical formula for the conditional probability distributions p(x|xS = x∗

S)
of the simulation models. This will be used as the ground truth value of the con-
tribution function. Repeat this for all coalitions S for the 100 test observations.

(b) Evaluate the Shapley value estimators: When evaluating the Shapley value es-
timates, the contribution function estimate is kept fixed for all Shapley value estimation
methods, as well as for estimating the ground truth Shapley values. In our experiments,
the number of features to consider must be sufficiently high to replicate a real-world
data set, but sufficiently low such that the exact Shapley values (33) can be computed
for a given estimate of the contribution function. To investigate how the number of
features q affects the performance of the methods, the experiments are performed for
q = 10, 11, . . . , 16 feature variables. Since the KernelSHAP estimate (34) uses only a
subset of size |D| out of the total of 2q feature coalitions, it is especially interesting to
investigate the effect of the number of features on the estimate. In each experiment, we
perform the following steps.

• Train the FastSHAP prediction model ϕfast(x, y;θ) using the training and valida-
tion data sets according to Algorithm 2. Use ϕfast(x, y;θ) to predict the Shapley
values of the 100 test observations. Repeat this for ncoals = 4, 32, and 64, where
ncoals is the hyperparameter of the model that determines the number of feature
coalitions S to consider per observation in a batch, as outlined in the more detailed
Algorithm 3. The other hyperparameters and architecture of the FastSHAP model
are given in Appendix A.

• Compute the KernelSHAP estimate (39) with the number of coalitions |D| equal to
50, 60, 70, . . . , 1,000 for the 100 test observations. We do not use paired sampling
in KernelSHAP.2

• Compute the exact Shapley values (33) for the 100 test observations and use this
as the ground truth to evaluate all the estimates against.

4.2 Evaluation Metric

To evaluate the accuracy of the estimation methods, an evaluation metric must be specified. Here,
we specify both the evaluation metric that will be used to evaluate the contribution function
estimates and the evaluation metric that will be used to evaluate the Shapley value estimates.

The mean absolute error (MAE) is used to evaluate the accuracy of the contribution function
estimates. The MAE is computed across all 2q coalitions S of the q features. For an observation
(x∗, y∗), denote the vector containing the exact value of the contribution function for all 2q fea-

ture coalitions S by vx∗,y∗ =
(
v∗0 , v∗1 , . . . , v∗2q

)⊤ ∈ R2q . Correspondingly, denote the vector

containing the estimate thereof by v̂x∗,y∗ =
(
v̂∗0 , v̂∗1 , . . . , v̂∗2q

)⊤ ∈ R2q . Then, the MAE between
the exact and estimated values is

EM1 = MAE(vx∗,y∗ , v̂x∗,y∗) =
1

2q

2q∑
s=1

|v∗s − v̂∗s |. (45)

The accuracy of the Shapley value estimators will be calculated using the mean Euclidean distance
averaged over n test observations. Denote the exact Shapley values of the ith observation (x∗

i , y
∗
i ),

i ∈ {1, 2, . . . , n} by ϕx∗
i ,y

∗
i
=

(
ϕ∗
i1, ϕ∗

i2, . . . , ϕ∗
iq

)⊤ ∈ Rq and the estimated Shapley values by

ϕ̂x∗
i ,y

∗
i
=

(
ϕ̂∗
i1, ϕ̂∗

i2, . . . , ϕ̂∗
iq

)⊤
∈ Rq. The Euclidean between the estimate and the ground

2In [4], paired sampling is found to improve both KernelSHAP and FastSHAP. However, the relative performance
using paired sampling in both methods is similar to the performance when it is used in neither method. Therefore,
we only provide results when it is not used.
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truth for the ith observation is defined as ℓ2(ϕx∗
i ,y

∗
i
, ϕ̂x∗

i ,y
∗
i
) = 1

q

√∑q
j=1(ϕ

∗
ij − ϕ̂∗

ij)
2. Accordingly,

we define the following metric across n test observations

EM2 =
1

n

n∑
i=1

1

q

√√√√ q∑
j=1

(ϕ∗
ij − ϕ̂∗

ij)
2. (46)

4.3 Simulation Models

In the experiments, a tabular data set consisting of a set of features and a response variable is
generated. Two different simulation models are considered for the features, which will be presented
in the following paragraphs, and the response variable is calculated in the same way for both feature
models. Because FastSHAP is proposed in the classification setting, the response variable in the
simulated data set must be categorical. For i = 1, 2, . . . , n, the response variable yi for feature
observation xi ∈ Rq is determined by using a latent variable zi in the following way

zi = eβ0+β⊤xi+εi , yi =

{
1, zi ≥ 0.5,

0, zi < 0.5,
(47)

for a bias term β0 and coefficients β =
(
β1, β2, . . . , βq

)⊤
. A noise term εi ∼ N (0, σ2) is

added to each latent variable zi to replicate real-world data better since real data often arise from
noisy measurements. The specific values of the coefficient β1, β2, . . . , βq and the variance of the
noise term σ2 are changed in the experiments depending on both the parametric distribution of
the features and the specific parameters of the distribution. This is because these choices affect the
range of the feature values. The coefficients must be adjusted based on the range of the features
to ensure that class 1 is the minority class when calculating the response variables by (47). In
addition, the variance σ2 must be adjusted based on the range of the feature values in order to
ensure that the noise term is of a reasonable magnitude compared to the feature values. We specify
the values of the coefficients in β and the variance of the noise terms σ2 in the following sections
for each simulation model. The bias term β0 equals −1 in all the simulation models.

4.3.1 Simulation Model 1: The Multivariate Normal Distribution

In the first simulation model, the observations of the features x ∈ Rq are sampled from a mul-
tivariate normal distribution with mean vector µ ∈ Rq and covariance matrix Σ ∈ Rq×q. In the
computation of the contribution function (29), the expectation is taken over the conditional prob-
ability densities p(x|xS = x∗

S). In the case of the multivariate normal distribution, the conditional
densities p(x|xS = x∗

S) are analytically known, and are uniquely defined by its mean vector µ
according to (22) and covariance matrix Σ as in (23). Drawing Monte Carlo samples directly from
p(x|xS = x∗

S) and taking the average of the prediction of the black box model evaluated at the
Monte Carlo samples will give an unbiased estimate of the contribution function (29) regardless
of the covariance matrix Σ used to sample the original feature observations. Both the surrogate
model, given in Algorithm 4, and the off-manifold estimate (39) will be checked against the un-
biased Monte Carlo estimate. Note that when providing the unbiased Monte Carlo estimate, the
samples are drawn directly from the multivariate distribution, whereas in the off-manifold estim-
ate, the Monte Carlo samples are drawn from the simulated training data set. The same data set
is used in the off-manifold and surrogate methods to provide as similar conditions as possible.

We want to investigate how the degree of correlation affects the accuracy of the simulations. In
particular, this is interesting because feature independence is assumed in the off-manifold estimate
(39). Three different correlation matrices R ∈ Rq×q are used in the simulations of the feature
observations. These are as follows.

1. The identity matrix, which corresponds to independent features. In this simulation, all the
features have variance equal to 1 such that the correlation and covariance matrices are equal.
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2. A correlation matrix where some of the covariates are positively correlated and some covari-
ates are negatively correlated. The matrix is of the form

Rsome corr =



1 0.1 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 1 −0.1 0 0 0 0 −0.9 0 0 0 0 0 0 0 0
0.8 −0.1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0.9 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.5 1 0 0 0 0 0 0 0 0 0
0 −0.9 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0.9 0 0 0 0 1 0.4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.4 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(48)

The matrix Rsome corr is of dimension 16× 16, corresponding to q = 16 features. When the
number of features q is less than 16, the submatrix corresponding to the first q features is
used. In this simulation experiment, some of the features have variance different from 1,
specifically, Var(x2) = 1.44, Var(x4) = 0.64 and Var(xq) = 4,∀q. The relation between the
correlation matrix Rsome corr and the corresponding covariance matrix Σsome corr is

Rsome corr = (diag(Σsome corr))
− 1

2Σsome corrdiag((Σsome corr))
− 1

2 , (49)

where diag(Σsome corr) is a diagonal matrix with the variance of the features as elements
along the diagonal. Moreover, by raising a matrix to a power, we mean that the operation
is performed elementwise. Hence, the distribution is determined by the covariance matrix
Σsome corr using (48) and (49).

3. A correlation matrix where all the off-diagonal elements are 0.9 and the diagonal elements are
1 such that all the covariates are heavily correlated. Let this matrix be denoted Rhigh corr.
In this case, the variance of all the covariates is 1 in the simulation. Thus, the correlation
and covariance matrices are equal such that the covariance matrix is Σhigh corr = Rhigh corr.

In all the simulations, the mean vector µ ∈ Rq is the vector with all elements equal to 0.

When simulating from the multivariate normal distribution, the coefficients β in the expression
the response variable is determined by (47) are as follows(

β1, β2, . . . , βq

)⊤
=
(
2,−1.5, 1,−2.3,−1.3, 0.4, 0.7,−0.3, 0.9,−0.1, 0.25, 0.3,−0.1, 2,−1.5,−0.1, 0.45

)⊤
.

The variance of the noise term in (47) is σ2
indep = 1, σ2

some corr = 4 and σ2
some corr = 1 for the case

of independent, somewhat correlated and heavily correlated features, respectively.

4.3.2 Simulation Model 2: The Multivariate Burr Distribution

The second simulation model is similar to the previous, except that the features now follow the
multivariate Burr distribution (24), which also has analytically known conditional probability
densities p(x|xS = x∗

S) with parameters defined in (25). The parameter ζ in the multivari-
ate Burr probability density function (24) affects the degree of linear correlation between the
variables. As ζ → ∞, the correlation between the features goes towards zero, whereas for low
values of ζ, the covariates will tend to be heavily correlated. Therefore, to compare the per-
formance of the methods in situations where the degree of correlation between the features var-
ies, two values of ζ are considered. These values are ζ equal to 2 and 7, where the features
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have a relatively high correlation for ζ = 2 and a relatively low correlation for ζ = 7. For
the other parameters in the Burr distribution (24), the values are kept constant in all simu-
lations. The values of the parameters are b1, b2, . . . bq = 2, 4, 6, 2, 4, 6, 2, 4, 6, 6, 4, 2, 6, 4, 2, 6 and
r1, r2, . . . , rq = 1, 3, 5, 1, 3, 5, 1, 3, 5, 5, 3, 1, 5, 3, 1, 5. If q < 16, the first q values are used. The value
of ζ also affects the tails of the Burr distribution. For lower values of ζ, the tails are heavier, cor-
responding to more extreme “outlier” observations, which generally means that the simulated data
is more difficult to learn. For higher values of ζ the tails are less heavy, and the data is relatively
easier to learn. It is interesting to investigate how the estimators perform in situations where the
“difficultness” of the data varies. Generally, the data generated from the Burr distribution will be
more difficult to learn than data generated from the normal distribution.

For the case with ζ = 2, the coefficients β in the expression determining the response variables
(47) are (

β1, β2, . . . , βq

)⊤
=
(
3,−1.5, 1,−1.7,−1.6,−1, 1.7,−2, 0.9,−0.1,−1.9, 1.3,−0.1, 1.8,−1.5,−0.1

)⊤
,

and the variance of the noise term σ2 in (47) is equal to 0.752. In the case with ζ = 7, the
coefficients β are(

β1, β2, . . . , βq

)⊤
=
(
0.1,−1.5, 1.7,−1.7, 1., 2, 0.7,−2, 0.9,−0.1, 0.25,−1.5,−0.1, 2,−1.5,−0.1

)⊤
,

and the variance of the noise term σ2 equals 0.52.

4.4 Evaluating the Contribution Function Estimators

In this section, the accuracy of the off-manifold estimate (39) and surrogate model, trained ac-
cording to Algorithm 4, are evaluated for the two different simulation models presented in Section
4.3. Firstly, the results when the features follow a multivariate normal distribution are presen-
ted in Section 4.4.1. Then, the results from the second simulation model, where the features are
multivariate Burr distributed, are presented in Section 4.4.2.

4.4.1 Simulation Model 1: Multivariate Normally Distributed Features

Independent Features

In this paragraph, the accuracy of the contribution function estimates for independent features
drawn from the multivariate normal distribution is investigated. The experiment investigates the
effect of varying the size of the training data set ntrain. For each value of ntrain, the surrogate model
is trained, and the MAE (45) of its predictions for all possible feature coalitions S is calculated for
100 test observations is calculated. Moreover, for each value of ntrain, the off-manifold estimate is
calculated for all feature coalitions S for the same 100 test observations for three different values of
the number of Monte Carlo samples; M = 100, 300 and 1,000. The MAE of the three off-manifold
estimates is calculated and plotted in the same plot as the MAE of the surrogate model’s predictions
for each value of ntrain. Because an unbiased Monte Carlo integral with samples drawn directly
from the conditional distributions p(x|xS = x∗

S) is used as the true value of the contribution
function, it is investigated how large the variations that are caused by resampling the truth are,
compared to the MAE of the off-manifold and surrogate model estimates.

The results of the experiment are shown for ntrain = 1,280, 6,400 and 64,000 in Figures 5a, 5b
and 5c, respectively. As shown in Figures 5a and 5b, respectively, when 1,280 and 6,400 training
observations are used, the MAE of the surrogate model is the highest with a significant margin.
A notable difference between the smaller data sets and when ntrain = 64,000 is that the surrogate
model has higher accuracy than the off-manifold estimate using M = 100 Monte Carlo samples
when the larger training data set is used, as shown in Figure 5c. Having a larger training data set
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 5: Independent Multivariate Normally Distributed Features.
In the plot, MAEs resulting from the different estimates are shown in different colors. In dashed
lines, the mean MAE of each estimation method is plotted in the same color as the MAE of the
estimation method. Next to the dashed line, on the y-axis, the value of the mean MAE of each
method is written. The “method” with the lowest MAE is the other realization of the estimate of
the true value.
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Figure 6: Independent Multivariate Normally Distributed Features.
The CPU time of computing the contribution function estimates is shown in the bar chart.

increases the accuracy of the surrogate model’s predictions from an average MAE of 0.056 when
ntrain = 1,280 and 0.042 with 6,400 training observations to 0.022 with 64,000 training observations.
Thus, this example shows that the accuracy of the surrogate model increases when the size of the
training data set increases. This is a sensible result since, in general, having a larger training data
set will result in a machine learning model that has better predictive abilities.

Moreover, the variability that is observed when resampling the true value in all plots in Figure 5 is
much lower than the error in the estimates. Recall from Section 2.4 that the variance of the Monte
Carlo estimate decreases as a function of increasing the number of samples M in the estimate,
and for an unbiased estimate, the error decreases as in (27). Since the number of samples used to
sample the ground truth is very high, M = 10,000, this explains the low variability. Clearly, the
large error in the surrogate model’s predictions is not due to noise arising from sampling the true
value. The figure shows that for all three values of ntrain, the MAE of the off-manifold estimate
decreases as the number of Monte Carlo samples increases. In this example, the features are truly
independent, and the “off-manifold” estimate is not truly off the manifold. Thus, the off-manifold
estimate is equivalent to the sampling scheme that provides the true value of the contribution
function. The only difference is that in the off-manifold estimate, the Monte Carlo samples are
drawn from the training data set, whereas, in the estimate of the true value, the Monte Carlo
samples are drawn directly from a multivariate normal distribution with mean and covariance
matrix computed according to the formulas for the conditional multivariate normal distribution,
(22) and (23), respectively. This explains the low error in the off-manifold estimates for higher
values of M .

In addition to creating the plots of the MAEs shown in Figure 5, the CPU time of the computation
of each estimate has been recorded. The CPU time was briefly described in Section 3.7. For the
off-manifold estimate with M = 100, 300 and 1,000 Monte Carlo samples, the average CPU time
of computing the off-manifold estimate (39) for all feature coalitions S ∈ Q, where Q is the set
containing all 2q feature coalitions, is reported. The average is taken across 100 test observations.
For the surrogate model, recall that we split the process into two phases, as described in Section
3.7. The first phase is the training of the surrogate model. This initial cost is only performed
once per black box model and is amortized across the instances to be explained. The second phase
is to generate the estimate of the surrogate model for all feature coalitions S ∈ Q for each new
instance to be explained. This corresponds to evaluating the surrogate model 2q times. We report
the average CPU time of evaluating the surrogate models for all S ∈ Q, where the average is taken
across 100 test observations. We refer to the first phase as “surrogate training” and the second
phase as “surrogate prediction”.
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The corresponding CPU time of the experiment is shown in Figure 6. The figure shows that
the CPU time of computing the off-manifold estimate increases as a function of the number of
Monte Carlo samples M . However, as shown in Figure 5, the estimate’s accuracy also increases.
Therefore, the increased accuracy must be weighed against the increase in computation time. Note
also that the CPU time of the off-manifold estimate is approximately unaffected by varying values
of ntrain. Moreover, for ntrain equal to 1,280 and 6,400, the training of the surrogate model is faster
than computing a single off-manifold estimate for all values of M . When ntrain equals 64,000, the
training of the surrogate model is significantly higher than computing an off-manifold estimate for
all values of M . However, if more than around ten instances are to be explained, the computation
time of training the surrogate model will be lower than computing the off-manifold estimate for all
the instances. As the figure shows, the surrogate prediction time, which is so small that it is not
visible in the bar chart, is negligible compared to the computation time of the off-manifold estimate
and the training of the surrogate model. Thus, using the trained surrogate model, the values of
the contribution function for all feature coalitions S ∈ Q can be computed almost instantaneously.
In summary, the surrogate model is faster when explaining more than a few instances. In many
practical applications, it is desirable to be able to provide new explanations instantaneously after
a model is put into a production system. Therefore, it is more important to be able to provide
explanations instantaneously than to have a low initialization cost. In these situations especially,
it is natural to prefer the surrogate model, although one has to weigh the lower computation time
against a higher error in some cases.

Somewhat Correlated Features

The same experiments that were performed for independent features are repeated for the case
when the features are simulated from a multivariate normal distribution with the covariance matrix
Σsome corr defined in (49). The MAE (45) of each estimate is shown for the three values of ntrain

in Figure 7. First, notice that the mean MAE of the surrogate estimate decreases as a function
of an increasing number of training observations ntrain. It is 0.088, 0.063, and 0.032 for ntrain =
1,280, 6,400 and 64,000 as shown in Figures 7a, 7b and 7c, respectively. Unlike for the case with
independent features, the mean MAE of the surrogate estimate is lower than the mean MAE of the
off-manifold estimates for all values of ntrain and all values of the number of Monte Carlo samples
M . The error arising from resampling the truth is much smaller than the error in all estimates,
and therefore is not the cause of the estimate’s error.

The figure shows that the MAE of the off-manifold estimate for all three values of M is approx-
imately equal for all the values of ntrain. The bias in the estimate can explain this. The bias is
caused by falsely assuming feature independence. Recall that the standard deviation in the Monte
Carlo integral grows as O(M− 1

2 ) according to (27). Therefore, increasing M reduces the variance
of the Monte Carlo estimate. However, since the estimate is biased, the bias term remains, and
increasing M does not reduce the mean MAE of the estimate below a certain threshold value.

The results in Figure 7 demonstrate that the surrogate model can outperform the off-manifold
estimate in settings with some correlation between the features. Thus, based on this example,
it seems reasonable that in real-world problems, where feature independence is rare, the false
assumption of feature independence is severe in terms of the accuracy of the resulting estimate of
the contribution function. Based on the accuracy of the estimates, for this example, the estimate
of the surrogate model should be preferred. The CPU times for this experiment are of similar
magnitudes as for the case with independent features shown in Figure 6, and therefore, omitted
here. However, the surrogate model should also be preferred based on the CPU time as long as
more than a few instances are to be explained.

Highly Correlated Features

The last covariance matrix that is used is Σhigh corr with diagonal elements of 1 and off-diagonal
elements of 0.9. Such a correlation matrix is not common in real-world problems, however, high
correlation between pairs of features can occur. Therefore, it serves as a demonstration of how the
methods perform in cases with a very high correlation between the features.

The results with this correlation matrix are shown in Figure 8. Like for the case with somewhat
correlated features shown in Figure 7, the surrogate model outperforms the off-manifold method for
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 7: Somewhat Correlated Multivariate Normally Distributed Features.
The MAE of the surrogate and the three off-manifold estimates using different numbers of Monte
Carlo samples are plotted in different colors. In dashed lines, the mean MAE of each estimation
method is plotted in the same color as the MAE of the estimation method. Next to the dashed line,
on the y-axis, the value of the mean MAE of each method is written. In each example, the ground
truth has been resampled and the MAE between the two realizations is plotted. The resampled
truth is plotted in yellow and is the “method” with the lowest MAE for all values of ntrain.
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 8: Highly Correlated Multivariate Normally Distributed Features.
In the plot, the MAEs of the contribution function estimates are plotted in different colors. In
dashed lines, the mean MAE of each estimation method is plotted in the same color as the MAE
of the estimation method, with the value of the mean MAE of each method written next to it.
In this simulation example, all three off-manifold estimates are nearly identical, and therefore,
the graphs of their MAEs are overlapping. The “method” with the lowest MAE is the resampled
ground truth.
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all combinations of the number of training observations ntrain and the number of Monte Carlo M .
Moreover, again like for the case with somewhat correlated features, the MAE of the off-manifold
estimates is almost constant for all values of M , which like before, can be explained by the bias in
the estimate. The off-manifold estimates are so similar that they overlap in the plots. Notice that
the mean MAE of the off-manifold estimate is even higher relative to the surrogate estimate when
the features are heavily correlated than when they are somewhat correlated. In this example as
well, the variation in the estimate of the true value of the contribution function is small. It can
not explain the relatively much higher error in all the estimates. Also, in this case, the CPU times
are of similar magnitude as for the case with independent features, and therefore, omitted here. In
summary, for the examples with normally distributed features, it is clear that the surrogate model
outperforms the off-manifold method when the features are correlated, especially for large training
data sets.

Other Results

In Figures 5, 7 and 8, the MAE of all estimates is spiky. This means that the MAE in the estimate
of the contribution function is higher for some instances and lower for others. It is, therefore,
interesting to investigate why this is the case. For the off-manifold estimates, this could be caused
by randomly drawing Monte Carlo samples from the training data set. Therefore, the computation
of the off-manifold estimates is repeated several times with different seeds in order to investigate
if this could explain the large variation in the MAE of the off-manifold estimates for different
instances. In the surrogate model, the random seed can affect e.g. the initial distribution of
the weights in the training of the neural network and can therefore affect the performance of the
resulting model. Therefore, the surrogate model is retrained and evaluated for the same instances
using different seeds to investigate the stability of the model.

Hence, in order to investigate the effect of randomly drawing Monte Carlo samples in the off-
manifold estimate and the effect of randomness in the surrogate model, we reestimate both of
them several times. This is done for ntrain = 1,280 and 6,400 training observations and the off-
manifold estimate is calculated using M = 300 Monte Carlo samples. The truth is sampled with
1,000 Monte Carlo samples. This is considered sufficient since the MAE is significantly larger based
on our previously described experiments. For ntrain = 1,280, the covariance matrix Σhigh corr is
used to simulate the features, and the MAEs of all the reruns are shown in Figures 9a and 9b for
the off-manifold and surrogate estimate, respectively. In both cases, the MAEs resulting from the
different reruns are so similar that the graph of the MAEs overlaps. The fluctuations arising from
re-estimation with another seed are relatively small compared to the spikes in the MAE. Hence, it
does not explain why some test observations have a higher error in the estimate of the contribution
function. The same experiments have been performed for ntrain = 6,400 with somewhat correlated
features, the results of which are shown in Figures 9c and 9d for the off-manifold and surrogate
estimates, respectively. As before, the MAEs resulting from the reruns are so similar that their
graphs overlap, and the fluctuations arising from resampling do not explain the large differences
in MAE between instances.

Another hypothesis for why the estimates are higher for some instances than others is that the
observations with a higher error are outliers. The Mahalanobis distance [37] measures the distance
from an observation to the center of a normal distribution and thereby detects outliers. The ob-
servations that are very far from the center are likely in the regions where there are few training
observations, and therefore, the black box model has not been trained on such observations. How-
ever, we did not find a correspondence between the Mahalanobis distance to the center and the
observations with a high error. In our experiments, the off-manifold estimate and surrogate model
can have a high error for different observations. This indicates that the methods fail in different
scenarios. For the off-manifold estimate, it is plausible that although an observation is not an
outlier, the Monte Carlo samples used in the off-manifold estimate are outliers since the samples
might consist of combinations of feature values that have never occurred in the training data. If
so, the off-manifold estimate will rely on evaluating the black box model outside the region it has
been trained on. Frye et al. [3] refer to this problem as “garbage-in-garbage-out”, meaning that
if the samples are unrepresentative of the training data and true conditional distributions, the
predictions of the black box model for these observations are invalid. This might lead to a high
estimation error.
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(a) Off-manifold, ntrain = 1,280, Σhigh corr.
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(b) Surrogate, ntrain = 1,280, Σhigh corr.
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(c) Off-manifold, ntrain = 6,400, Σsome corr.

Figure 9
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(d) Surrogate, ntrain = 6,400, Σsome corr.

Figure 9: (Continued) In the plot, the MAEs resulting from reestimating the contribution function
with both the off-manifold and surrogate method for 100 test observations with a new seed in each
run are plotted in different colors. In total 20 different seeds are used per example. In the caption
of each plot, the details of each simulation are specified.

4.4.2 Simulation Model 2: Multivariate Burr Distributed Features

In this section, the results of performing similar experiments to those presented in Section 4.4.1, this
time using the multivariate Burr distribution (24) are presented. The simulations of the features
are generated as described in Section 4.3.2. As before, to evaluate the accuracy of the contribution
function estimate, the MAE over all possible coalitions S of the q features is calculated. In total
there are 2q = 210 = 1024 coalitions of the q = 10 features. In all experiments, the true value of
the contribution function (29) is calculated by Monte Carlo integration (26) sampling directly from
the conditional distributions p(x|xS = x∗

S) with parameters as in (25) which yields an unbiased
estimate.

For the parameter ζ equal to 2 and 7, the off-manifold estimate is computed for M = 100, 300 and
1,000 Monte Carlo samples. In addition, the surrogate model is trained and used to predict the
values of the contribution function. All simulations are repeated for ntrain = 1,280, 6,400, 64,000,
and 128,000 training observations to investigate how the size of the training data set affects the
estimates. Since data generated from the Burr distribution generally is more challenging to learn
than data from the normal distribution, we also consider a larger training data set than in the
cases with the normal distribution. For each case, the average empirical correlation between the
features, which is denoted ρ̂avg, in the simulated training data set is calculated. Lastly, for each
combination of ntrain and ζ, the truth is resampled and the MAE between the two realizations
are plotted to investigate how large the error arising from this is compared to the error in the
estimates. In both realizations, the truth is estimated with M = 1,000 Monte Carlo samples. The
results of the simulations are shown in Figures 10 and 11 for ζ = 7 and ζ = 2, respectively.

Lower Correlation and Lighter Tails

In Figure 10, the simulation results for ζ = 7 are shown. This corresponds to an average empirical
linear correlation of between 0.11 and 0.12 between the features in the training data set. The
correlation between all feature pairs is approximately equal to the average correlation. Notice that
for ntrain = 1,280, 6,400 and 64,000, the off-manifold method outperforms the surrogate model for
all values of the number of Monte Carlo M , as shown in Figures 10a, 10b and 10c, respectively. For
ntrain = 1,280 and 6,400, the surrogate model performs significantly worse than the off-manifold
method for all values of M . However, when ntrain = 64,000, the mean MAE of the surrogate
estimate is almost the same as the off-manifold estimate with M = 100 Monte Carlo samples.
For the largest training data set with ntrain = 128,000, the surrogate model outperforms the off-
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(a) ρ̂avg ≈ 0.12, ntrain = 1,280.
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(b) ρ̂avg ≈ 0.11, ntrain = 6,400.
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(c) ρ̂avg ≈ 0.11, ntrain = 64,000.

Figure 10: Burr Distributed Features with ζ = 7.
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(d) ρ̂avg ≈ 0.11, ntrain = 128,000.

Figure 10: (Continued) Burr Distributed Features with ζ = 7.
In the plot, MAEs resulting from the different estimates are shown in different colors. In dashed
lines, the mean MAE of each estimation method is plotted in the same color as the MAE of the
corresponding estimation method. Next to the dashed line, on the y-axis, the value of the mean
MAE of each method is written. The “method” with the lowest MAE is the other realization of
the estimate of the true value. Each plot is captioned with the empirical average correlation ρ̂avg
in the simulated training data set and the number of training observations ntrain.

manifold estimate with M = 100 Monte Carlo Samples, as shown in Figure 10d. Moreover, the
average MAE of the surrogate model is, in this case, only slightly higher than that of the off-
manifold estimate with M = 300 Monte Carlo samples. These results show that as the number of
training samples ntrain increases, the surrogate estimate obtains a lower average MAE. Notice also
that in all cases, the off-manifold estimates for M = 300 and 1,000 have circa the same mean MAE,
whereas the mean MAE of the off-manifold estimate with M = 100 is somewhat larger. Therefore,
in this context, it seems like it is necessary to use at least M = 300 Monte Carlo samples in order
to obtain the best possible estimate with the off-manifold estimate.

As the plots show, the mean MAE of the off-manifold estimate stops improving significantly when
increasing the number of Monte Carlo samples from 300 to 1,000. This can be explained by the
bias in the estimate caused by the false assumption of feature independence. Therefore, further
increasing the number of Monte Carlo samples in the off-manifold estimate will likely not improve
the mean MAE in the estimate. This is consistent with the results from the simulations with the
multivariate normal distribution using the correlation matrices Σsome corr and Σhigh corr shown in
Figures 7 and 8, respectively. When there is some correlation between the features, the mean MAE
off-manifold estimate does not seem to improve by increasing the number of Monte Carlo samples
beyond a certain threshold value. There seems to be a value that is the lowest possible attainable
mean MAE in the off-manifold estimate, which is explained by the bias in the estimate.

The surrogate model, on the other hand, can improve further if there are sufficiently many train-
ing observations. In practice, the number of training observations can usually not be increased.
However, it illustrates how the methods perform based on the properties of the data set. It is also
reasonable to believe that by tuning the hyperparameters of the surrogate model, both by tun-
ing the hyperparameters in the neural network and the hyperparameters specific to the surrogate
model, the surrogate model can yield more accurate estimates. In the simulations with somewhat
correlated features in the multivariate normal distribution, the surrogate model outperformed the
off-manifold estimates as shown in Figure 7. Whereas for this example with the Burr distribution,
the off-manifold estimate outperformed the surrogate model. As discussed in Section 2.3.2, the
multivariate Burr distribution has several properties that cause the data simulated from it to be
harder to learn than data simulated from the multivariate normal distribution. This can explain

52



why the surrogate model outperforms the off-manifold method when there is only some correlation
between the features in the case of multivariate normally distributed features, but not when they
are multivariate Burr distributed.

Higher Correlation and Heavier Tails

In Figure 11, the simulation results when using the multivariate Burr distribution with the para-
meter ζ = 2 corresponding to an average empirical linear correlation of the features between 0.37
and 0.38 is shown. In these simulations, it is the surrogate model that outperforms the off-manifold
method for all values of the number of training observations ntrain and all values of the number of
Monte Carlo samples M , although only slightly for ntrain = 1,280 as shown in Figure 11a. This
shows that when the correlation between the features is relatively high, the false assumption of
feature independence made in the off-manifold estimate has a more severe impact on the mean
MAE of the method. Moreover, in this case, the off-manifold estimates are almost identical regard-
less of the number of Monte Carlo samples M . The bias term in the MAE of the method caused
by falsely assuming feature independence cannot be reduced by increasing the number of Monte
Carlo samples. It should also be noted that when ζ = 2 in the multivariate Burr distribution, the
distribution’s tails will be heavier than when ζ = 7 while keeping all other parameters in the dis-
tribution constant. When the tails are heavier, there will be more extreme “outlier” observations,
and the data will be harder to learn. Therefore, the data used in the simulations with results shown
in Figure 11 is harder to learn than the data used to get the results shown in Figure 10. Thus,
this example shows that even when the data arise from a heavy-tailed distribution, the surrogate
model can perform well compared to the off-manifold method, also when there are few training
observations, as long as the average correlation between the features is sufficiently high.

4.5 Evaluating the Shapley Value Estimators

In this section, the KernelSHAP and FastSHAP Shapley value estimators will be evaluated. For
details on the methods, see Sections 3.3 and 3.4, respectively. Jethani et al. [4] find that the relative
accuracy of FastSHAP compared to other methods, including KernelSHAP, is similar regardless of
the choice of contribution function estimator. In their experiments, they use the same contribution
function estimate in the ground truth Shapley values and all Shapley value estimates to distinguish
the error arising in each step. We adopt this methodology in the experiments in this section, and
therefore, the estimate of the contribution function will be kept constant in the computation of the
KernelSHAP estimate (34), the training of the FastSHAP model ϕfast(x, y;θ) and the computation
of the exact Shapley values (33). Because the computation time of the off-manifold estimate is
high, the surrogate model trained according to Algorithm 4 is used in all experiments.

To be clear, in this section, what we use as the ground truth Shapley values, which we refer to
as the “exact Shapley values”, is the exact solution of the weighted least squares problem (33)
given the surrogate model’s predictions as the values of the contribution function. To compute
(33), the values of the contribution function, which in the experiments are the surrogate model’s
predictions, must be given for all 2q feature coalition. Throughout this section, it is assumed
that this is given. Moreover, what we refer to as KernelSHAP, is the KernelSHAP estimate (34),
also using the surrogate model’s estimate of the contribution function. Lastly, we refer to the
FastSHAP estimate as the predictions of the model ϕfast(x, y;θ) trained with the surrogate model
as the input in Algorithm 3 of the contribution function estimator.

In the simulations, we will vary the number of features in the model q and the number of observa-
tions in the training data set ntrain. Because this changes the training data set, we have to train
a new black box model and surrogate model for each combination of q and ntrain. This should be
kept in mind when the simulation results are compared between the training data sets.

As before, the simulations are repeated for three sizes of the training data set, these are ntrain =
1,280, 6,400, and 64,000. Moreover, for each value of ntrain, the experiments are repeated for the
number of features q equal to 10, 11, . . . , 16. The KernelSHAP estimate (34) is computed with
the number of feature coalitions |D| equal to 100, 300, 500 and 1,000. Moreover, the FastSHAP
model is trained with the hyperparameter ncoals equal to 4, 32, and 64, see Algorithm 3 and
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(a) ρ̂avg ≈ 0.38, ntrain = 1,280.
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(b) ρ̂avg ≈ 0.37, ntrain = 6,400.
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(c) ρ̂avg ≈ 0.37, ntrain = 64,000.

Figure 11: Burr Distributed Features with ζ = 2.
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(d) ρ̂avg ≈ 0.37, ntrain = 128,000.

Figure 11: (Continued) Burr Distributed Features with ζ = 2.
In the plot, MAEs resulting from the different estimates are shown in different colors. In dashed
lines, the mean MAE of each estimation method is plotted in the same color as the MAE of the
corresponding estimation method. Next to the dashed line, on the y-axis, the value of the mean
MAE of each method is written. The “method” with the lowest MAE is the other realization of
the estimate of the true value. Each plot is captioned with the empirical average correlation ρ̂avg
in the simulated training data set and the number of training observations ntrain.

Section 3.4.2 for details regarding this hyperparameter. In the first experiments, only these values
of |D| and ncoals will be considered. However, other values of |D| and ncoals will be considered
later in Sections 4.5.4 and 4.5.5, respectively. Throughout this section, for simplicity, the notation
“KernelSHAP|D|” will be used to denote the KernelSHAP estimate computed with |D| feature
coalitions, e.g. KernelSHAP100 when |D| = 100. In addition, the notation “FastSHAPncoals” will
be used to denote the FastSHAP model trained with the specific value of the hyperparameter ncoals,
e.g. FastSHAP4 when ncoals = 4. First, in Section 4.5.1, we consider the multivariate normally
distributed features with the three covariance matrices defined in Section 4.3.1. Then, in Section
4.5.2, the results related to the multivariate Burr distribution are presented.

4.5.1 Simulation Model 1: The Multivariate Normal Distribution

Independent Features

The error of the KernelSHAP and FastSHAP estimates are shown for independently multivariate
normally distributed features in Figures 12a, 12b and 12c for ntrain equal to 1,280, 6,400 and
64,000, respectively. Firstly, note that for all values of ntrain, the error in the KernelSHAP es-
timate decreases when |D| increases. In addition, the error in the predictions of the FastSHAP
model is smaller for ncoals = 32 and 64 than ncoals = 4, also for all values of ntrain and q. The
improvement between FastSHAP64 and FastSHAP32 is much smaller than between FastSHAP32
and FastSHAP4 in most cases, and the relative performance of FastSHAP32 and FastSHAP64
varies in the examples. Since these two models are separate neural networks, in which the train-
ing is affected by randomness, this indicates that after sufficiently many coalitions are considered,
the error in the model’s predictions stops decreasing. In Section 4.5.5, we try to determine more
precisely the effect of the hyperparameter by considering also other values of it. Increasing |D|
and ncoals increases the computational complexity of KernelSHAP and FastSHAP, respectively,
therefore, this must be weighed against the increased accuracy of the estimates, which we will
discuss more later on in Section 4.5.6.
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(a) ntrain = 1,280.
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(c) ntrain = 64,000.

Figure 12: Independent Multivariate Normally Distributed Features.
The error in the KernelSHAP and FastSHAP estimates evaluated using the metric (46).
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When ntrain = 1,280, KernelSHAP outperforms FastSHAP for all values of the number of fea-
tures q, for all values of ncoals, and for all values of the number of feature coalitions |D|. This
might indicate that the training data set with ntrain = 1,280 training observations is too small
for the FastSHAP models to successfully learn to estimate the Shapley values, at least relative
to KernelSHAP. For the larger data sets, the performance of the FastSHAP models is at best
similar to KernelSHAP300. Thus, KernelSHAP clearly outperforms FastSHAP when the number
of feature coalitions |D| considered in KernelSHAP is sufficiently high. Comparing the cases with
ntrain = 6,400 and ntrain = 64,000, the FastSHAP models perform worse for the larger data set.
This indicates that the size of the training data set is not the only factor that determines the re-
lative performance of FastSHAP compared to KernelSHAP. However, since the FastSHAP model
is a neural network, it is clear that access to a sufficiently large training data set is necessary for
FastSHAP to perform well. When considering this, we must keep in mind that the black box
model and surrogate model differ in the two cases, which can cause some dissimilarity between the
examples, and might explain why the performance of FastSHAP is worse for the larger training
data set.

It is interesting to note that for all three values of ntrain, the plots show that the average error over
the 100 test observations is quite similar for all values of q, with an exception of the FastSHAP
models when ntrain = 64,000 and q equal to 10 and 11. For KernelSHAP, this might seem counter-
intuitive since the fixed values of |D| that are used in the KernelSHAP estimates make out a much
smaller proportion of the total number of feature coalitions 2q for larger values of q. However, as
argued in Doumard et al. [11], “this is probably due to the fact that usually, the more features
there are, the less influence amplitude each individual feature has in the prediction”. Therefore,
it might be reasonable to assume that the difficulty of estimating the Shapley values of a model
is related to the number of significant features in the model, not the full number of features the
model is trained on.

Somewhat Correlated Features

In Figures 13a, 13b and 13c, the error of the estimates are shown for somewhat correlated features
with ntrain equal to 1,280, 6,400 and 64,000, respectively. As in the case with independent features,
for all values of ntrain and q, the error in the KernelSHAP estimate decreases when |D| increases.
In addition, the error in the predictions of the FastSHAP model is smaller for ncoals = 32 and 64
than ncoals = 4, also for all values of ntrain. Increasing ncoals from 32 to 64 does not necessarily lead
to an increase in the accuracy of the FastSHAP model, which may indicate that using ncoals = 32
is sufficient in this case. More results regarding this parameter will be presented in Section 4.5.5.
When ntrain = 1,280, KernelSHAP100 outperforms all FastSHAP models for all values of q, which
was also the case for independent features as shown in Figure 12a. From this, it seems like 1,280
training observations is too few for the FastSHAP model to successfully learn to estimate the
Shapley values. In the examples in Figure 13, it seems like the performance of FastSHAP is better
relative to KernelSHAP when ntrain = 64,000 and ntrain = 6,400. The FastSHAP models perform
quite similarly relative to KernelSHAP in these two cases, as shown in Figures 13b and 13c.
Moreover, in these cases, the best FastSHAP models are either with ncoals = 32 or 64. They are
competitive with KernelSHAP300, or in the best cases KernelSHAP500. In total, in the training of
FastSHAP, ntrain ·nepochs ·ncoals combinations of instances x and feature coalitions S are processed,
where nepochs is the number of epochs in the training procedure. Thus in the span of an epoch, the
“efficient size” of the training data set is ntrain · ncoals, which may explain why the FastSHAP32
and FastSHAP64 models do not seem to perform better for the larger data set with ntrain equal
to 64,000 than when ntrain equals 6,400. It might be that because each instance is considered
ncoals times, the data set with 6,400 training samples is sufficiently large for the FastSHAP32 and
FastSHAP64 models to learn to estimate the Shapley values.

Highly Correlated Features

For the case with highly correlated multivariate normally distributed features, the error of the
estimation methods is shown in Figures 14a, 14b and 14c for ntrain equal to 1,280, 6,400 and
64,000, respectively. Strikingly, for all three values of ntrain, the KernelSHAP estimates for all
values of |D| have a much higher error in the case with q = 14 features, than any other value
of q. For now, we will treat this case as an “outlier” and disregard it, however, in Section 4.5.7
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 13: Somewhat Correlated Multivariate Normally Distributed Features.
The average error of the KernelSHAP and FastSHAP estimators over 100 test observations.
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 14: Highly Correlated Multivariate Normally Distributed Features.
The error of the Shapley value estimators evaluated using the metric (46).
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we will get back to this case and try to distinguish the causes of why the KernelSHAP method
behaves differently in this case. As shown in Figure 14a, when the number of training observations
ntrain equals 1,280, the FastSHAP32 and FastSHAP64 models are performing similarly to Ker-
nelSHAP100. KernelSHAP1000, which is the best estimate, is significantly better for all values of
q. The performance of FastSHAP32 and FastSHAP64 is for some values of q close to the perform-
ance of KernelSHAP300 when ntrain equals 6,400 and 64,000. However, also in these examples,
none of the FastSHAP models are competitive with KernelSHAP1000, with the exception of the
cases with q = 14 which we will analyze in more detail in Section 4.5.7.

In summary, based on Figures 12, 13 and 14 it is clear that increasing the number of feature
coalitions |D| increases the accuracy of KernelSHAP. Moreover, increasing the hyperparameter
ncoals from 4 to 32 in the training of the FastSHAP model in accordance with Algorithm 3, increases
the accuracy of the method. However, the relative performance of FastSHAP32 and FastSHAP64
varies in the examples, which can indicate that using ncoals = 32 is sufficient, which we discuss
in more detail in Section 4.5.5. In general, it seems like the error in the estimation methods is
not determined by the number of features q in the training data set. There is no clear trend of
how the number of features affects the error in the estimates. Especially for KernelSHAP, this
is interesting, since the fixed values of the number of feature coalitions |D| used in the estimates
make out a much smaller proportion of the total number of feature coalitions 2q as the dimension q
increases. As previously mentioned, a possible explanation of this is that if the number of features
is increased, the amplitude of the Shapley values that each feature is assigned will be smaller,
therefore the number of features significant to the model does not necessarily increase when the
total number of features increases.

Overall, it also seems like using more than around 300 feature coalitions in KernelSHAP generally
means that KernelSHAP outperforms FastSHAP, whereas, for lower values, FastSHAP is more
competitive. Using |D| equal to 1000 feature coalitions in KernelSHAP makes it significantly more
accurate than the FastSHAP models in all the examples, except the “outlier” examples shown in
Figure 14 with q = 14. However, the computational cost of KernelSHAP is increased by increasing
|D|, which must be weighed against the increase in accuracy, which we will get back to in Section
4.5.6. Lastly, the results indicate that a training data set with 1,280 training observations is too
small for training the FastSHAP models to provide high accuracy results, even with a higher value
of ncoals. Since the FastSHAP model is a neural network, it seems counterintuitive its performance
is not significantly better in the case with ntrain equal to 64,000 than with 6,400. However, per
epoch in the training of the model, each instance is processed ncoals times. Therefore, ncoals ·ntrian

combinations of instances x and feature coalitions S are considered per epoch, which means that
the “efficient” size of the training data set is larger, which can explain why having more than 6,400
training observations does not increase FastSHAP’s accuracy in these examples. As previously
discussed, the normal distribution has several properties that make data generated from it relatively
easy to learn. Therefore, we have also tested the methods on a non-normal distribution and will
present the results from this in the following section.

4.5.2 Simulation Model 2: The Multivariate Burr Distribution

Lower Correlation and Lighter Tails

Firstly, the results concerning the data set simulated from the multivariate Burr distribution (24)
with parameter ζ = 7, as described in Section 4.3, are presented. For ntrain equal to 1,280,
6,400 and 64,000, the accuracy of the FastSHAP and KernelSHAP estimates are shown in Figures
15a, 15b and 15c, respectively. As before, we consider KernelSHAP with the number of feature
coalitions |D| equal to 100, 300, 500, and 1,000. In addition, FastSHAP is considered for three
values of the hyperparameter ncoals. These are ncoals equal to 4, 32, and 64. For all values of
ntrain and q, as for the examples shown in Figures 12, 13 and 14 with the normal distributions, the
KernelSHAP estimate improves as a function of the number of feature coalitions |D|. Overall, the
performance of FastSHAP32 and FastSHAP64 is better than FastSHAP4. However, the relative
performance of FastSHAP32 and FastSHAP64 varies, which can indicate that using ncoals = 32 is
sufficient. Noticeably, as shown in Figure 15a, the error in the estimates of all three FastSHAP
models is much higher than all KernelSHAP estimates when ntrain = 1,280 for all values of the
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 15: Burr Distributed Features with ζ = 7.
The error (46) of the Shapley value estimators over 100 test observations.
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 16: Burr Distributed Features with ζ = 2.
The error of the Shapley value estimators averaged over 100 test observations.
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number of features q. This shows that the training data set consisting of only 1,280 observations
is too small for the FastSHAP model to learn to approximate the Shapley values well. On the
other hand, the error in the KernelSHAP estimate is of a similar magnitude for all values of ntrain,
as shown in Figure 15, which shows that the size of the training data set ntrain does not directly
affect KernelSHAP in these examples. For ntrain equal to 1,280 and 6,400, the FastSHAP4 and
FastSHAP32 seem to fail more severely in the case with q = 13 features. This seems to be an
“outlier” in the experiments. Looking aside from this example, the number of features in the data
set generally does not have a direct influence on the accuracy of either FastSHAP or KernelSHAP.
For this example, the performance of FastSHAP relative to KernelSHAP is similar when ntrain

equals 6,400 and when ntrain equals 64,000. In both cases, the FastSHAP models’ performance is
worse than or similar to KernelSHAP100 for all values of the number of features q. Therefore, it
seems like having a 6,400 rather than 1,280 training observations is important for FastSHAP to be
more accurate. However, it seems like for the largest data set with 64,000 training observations,
the model does not improve further. Clearly, in practical situations, it is not possible to increase
the size of the training data set. The point of varying the number of training observations is to
investigate empirically when each method is suitable depending on the properties of the original
data set.

Higher Correlation and Heavier Tails

Recall that a lower value of the parameter ζ in the multivariate Burr distribution will lead to heavier
tails and more extreme outlier observations. This means that generally, the data simulated from a
Burr distribution with a lower value of ζ will be more difficult to learn. Therefore, the experiments
are repeated with ζ equal to 2 in order to investigate if the heavier tails of the distribution affect the
performance of the Shapley value estimation methods. In Figure 16, the accuracy of the Shapley
value estimators evaluated according to the metric (46) is shown for the case with multivariate
Burr distributed (24) features with the parameter ζ = 2. As shown in Figure 16a, the error of
the estimates of all the FastSHAP models is large compared to the error of KernelSHAP when
ntrain = 1,280, for all values of |D| in KernelSHAP. Hence, for the data set with ntrain = 1,280, it
is clear that KernelSHAP is to be preferred. This is in accordance with the results in Figure 15a.
Compared to the examples shown in Figures 12a, 13a and 14a where the features were multivariate
normally distributed, the relative performance of FastSHAP compared with KernelSHAP is worse
in the case of the Burr distribution with ζ = 2 and 7, as shown in Figures 16a and 15a. This may
indicate that a non-normal distribution is more difficult for the FastSHAP model to successfully
learn. The KernelSHAP weighted least squared (34) approximation seems less affected by this,
based on these examples.

For the two larger data sets, the FastSHAP32 and FastSHAP64 models perform comparatively to
KernelSHAP300 for some values of q, and better than KernelSHAP100 for all values of q. The
FastSHAP4 model is outperformed in most cases by KernelSHAP100 when ntrain equals 6,400, and
when ntrain equals 64,000, the FastSHAP4 model performs similarly to KernelSHAP100. However,
even for the two larger data sets, KernelSHAP1000 clearly outperforms all the FastSHAP models.
Moreover, also in this case, for all values of ntrain, there is no clear trend between the number of
features q and the accuracy of the estimates, which as previously mentioned can be explained by
the number of features in a model not necessarily increasing the number of significant features in
the model. In order to further investigate the relative accuracy of FastSHAP and KernelSHAP
depending on the properties of the training data set, we will in the following section aggregate
the results across the five data sets we have considered so far to distinguish the overall tendencies
from the elements of randomness such as the initialization of the weights in the neural network in
FastSHAP.

4.5.3 Evaluation Aggregated over the Simulation Models

In the evaluation of the Shapley value estimators presented in Sections 4.5.1 and 4.5.2, there is
some discrepancy in the relative performance of KernelSHAP and FastSHAP depending on e.g.
the size of the training data set. Therefore, in order to investigate further the relative performance
of FastSHAP and KernelSHAP depending on the nature of the data set, the results are aggregated
across the five data sets from the previous section. Specifically, for each value of the number
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 17: Error Aggregated over the Simulated Data Sets.
The error of the Shapley value estimators aggregated over the data sets simulated from the Burr
and normal distributions.
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of features q, the error according to the metric (46) is averaged over the five data sets for the
KernelSHAP estimates with |D| equal to 100, 300, 500 and 100, and FastSHAP with ncoals equal
to 4, 32, and 64.

The aggregated results are shown in Figures 17a, 17b and 17c for ntrain equal to 1,280, 6,400 and
64,000, respectively. From the aggregated results, it seems clear that when the number of training
observations is small, as illustrated for ntrain equal to 1,280 in Figure 17a, FastSHAP overall
performs significantly worse than KernelSHAP, even for smaller values of |D|. The aggregated
results with ntrain equal to 6,400 and 64,000 show that in these cases FastSHAP32 and FastSHAP64
are competitive to KernelSHAP100 for all values of q. However, KernelSHAP clearly outperforms
FastSHAP when the number of feature coalitions |D| is greater than a 500. The number of features
q does not seem to directly affect the accuracy of either FastSHAP or KernelSHAP directly. This
behavior is similar to that seen in [11], where an empirical study of several explanation methods,
including KernelSHAP, is presented. Our results show that also FastSHAP behaves similarly. It
might be that the “dimension” of the Shapley value approximation problem should be measured
based on the number of Shapley values that are found to be significant when explaining a model
rather than based on the number of features in the original data set. In practice, however, the
number of significant Shapley values is not known a priori, and therefore, the dimension of the
estimation problem will be unknown. It is still an important finding since it demonstrates that the
methods’ behavior are affected by other factors than the empirical properties of the data set. We
will get back to this in Section 4.5.7, where we go into more detail on the examples with q = 14
shown in Figure 14, where the error of the KernelSHAP estimates was much higher than in all the
other examples.

In this section, we have evaluated the methods purely based on accuracy. However, the compu-
tational cost of the methods is important in many practical applications. Therefore, in Section
4.5.6, the results of evaluating the methods based on computational time are presented. Before
the results of evaluating the methods in terms of computational cost are presented, KernelSHAP’s
accuracy as a function of the number of feature coalitions |D| is analyzed in more detail in the
following section. In addition, in Section 4.5.5, the accuracy of the FastSHAP model is evaluated
as a function of the hyperparameter ncoals.

4.5.4 The Accuracy of KernelSHAP as a Function of the Number of Feature Coali-
tions |D|

In the previous section, we saw that the KernelSHAP method’s accuracy increased as a function
of the number of feature coalitions |D|. However, we only considered four values of |D|, which
where |D| equal to 100, 300, 500 and 1,000. Therefore, to further investigate how the value of |D|
affects the estimate, we will give an example where the error in the KernelSHAP estimate is plotted
for |D| = 50, 60, 70, . . . , 2000. In this example we have simulated ntrain = 6,400 observations of
q = 16 features following the multivariate normal distribution with correlation matrix Σsome corr.
It should be noted that based on our experiments, the convergence behaviour of KernelSHAP is
similar for the other simulation models, other values of the number of features q, and other values
of the number of training observations ntrain. Therefore, we only include this example here.

The error in the KernelSHAP estimates (34) is shown for this example in Figure 18. As shown in the
plot, the accuracy of the KernelSHAP estimate overall increases for increasing values of the number
of coalitions |D|. The minor discrepancies from the trend of the decreasing accuracy are caused
by the coalitions in D being randomly drawn from the set of all possible coalitions. In most of
the examples in the previous section, shown in Figures 12 to 16, KernelSHAP300 outperformed all
three FastSHAP models, and KernelSHAP500 and KernelSHAP1000 outperformed the FastSHAP
models in all examples, with the exception of when q = 14 in the examples shown in Figure 14.
Figure 18 shows that the accuracy of KernelSHAP has not converged when |D| equals 500, meaning
that even before the error has converged, the KernelSHAP method outperforms FastSHAP in
terms of accuracy. Therefore, based on our simulation experiments, it seems clear that when using
e.g. 1,000 feature coalitions, the KernelSHAP method will provide significantly more accurate
approximations than FastSHAP. However, the computational cost of the KernelSHAP method
increases as a function of |D|. Therefore, the increased computational cost must be weighed
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Figure 18: Multivariate Normal, Σsome corr, q = 16 and ntrain = 6,400
The error in the KernelSHAP estimate is plotted as a function of the number of coalitions |D|.

against the decrease in the error of the estimate. In Section 4.5.6, more results concerning the
computational cost of the methods will be presented.

4.5.5 The Accuracy of FastSHAP as a Function of the Hyperparameter ncoals

As explained in Section 3.4.2, in Algorithm 3, the training algorithm of the FastSHAP model
ϕfast(x, y;θ), the hyperparameter ncoals is important. It determines the number of feature co-
alitions S to consider per instance x in a batch. Recall that in the duration of an epoch, the
whole training data set is processed once. For the FastSHAP model, the loss will be evaluated
for ncoals · ntrain feature coalitions per epoch in the training process, where ntrain is the size of
the training set. Therefore, setting ncoals > 1 ensures that several coalitions S are considered per
instance in the batch. This is beneficial since in the exact Shapley values (33), all 2q coalitions are
considered per instance x. Hence, this should facilitate the model’s learning of the Shapley values.
This was also the case in the examples in Figure 12 to 16, where the FastSHAP32 and FastSHAP64
models performed better than the FastSHAP4 model. However, the relative performance of Fast-
SHAP32 and FastSHAP64 differed in the examples, which may indicate that increasing the value
of the hyperparameter beyond a certain threshold is not necessarily beneficial. Therefore, we have
performed a more detailed study of the effect of the hyperparameter and present the results here.
In the training of the FastSHAP model, the loss will be evaluated ncoals ·ntrain per epoch, therefore,
the time complexity of training the FastSHAP model ϕfast(x, y;θ) increases when increasing ncoals.

In order to investigate the effect of changing this hyperparameter, the mean error (46) over 100
test observations is computed for FastSHAP models trained with ncoals = 1, 4, 16, 32, 48, 64, 128,
256, and 512. In addition, the CPU time of training the FastSHAP models is determined. As an
example, we use the simulation model described in Section 4.3.1 for q = 16 and somewhat correlated
multivariate normally distributed features. In Figure 19, the error according to the evaluation
metric (46) over 100 test observations and CPU training times are plotted as a function of ncoals

for ntrain = 1,280. This is repeated for ntrain equal to 6,400 and 64,000, and the corresponding
results are shown in Figures 20 and 21, respectively.

For all three values of ntrain, the plots are very similar. The accuracy of the FastSHAP model
increases as a function of increasing ncoals until the accuracy seems to have converged when ncoals

is greater than or equal to 32. There are some fluctuations in the accuracy when ncoals ≥ 32. This
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Figure 19: Multivariate Normal, Σsome corr, q = 16 and ntrain = 1,280.
The upper panel shows the accuracy of the FastSHAP model ϕfast(x, y;θ) as a function of ncoals.
The lower panel shows the CPU time of the training of the model as a function of ncoals.
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Figure 20: Multivariate Normal, Σsome corr, q = 16 and ntrain = 6,400.
The upper panel shows the accuracy of the FastSHAP model ϕfast(x, y;θ) as a function of ncoals,
while the lower panel shows the CPU time of the training of the model as a function of ncoals.
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Figure 21: Multivariate Normal, Σsome corr, q = 16 and ntrain = 64,000.
At the top panel, the accuracy of the FastSHAP model ϕfast(x, y;θ) is shown as a function of
ncoals for ntrain = 64,000. In the lower plot, the corresponding CPU time of the training of the
models is shown.
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might be caused by elements of randomness in the FastSHAP model, e.g. the random initialization
of the weights in the neural network. In [3], the surrogate models are retrained ten times, and the
final results are the average of these models, which also provides uncertainty estimates and should
stabilize the effect of such elements of randomness. Therefore, in practice, similar considerations
may also be taken for the FastSHAP model. Since ncoals is a hyperparameter of the model, it
can be tuned, and the models can be evaluated using e.g. cross-validation. As the lower plots of
Figures 19, 20 and 21 show, the CPU time training the FastSHAP model ϕfast(x, y;θ) increases
approximately linearly as a function of ncoals. The increased computation time must be weighed
against the increase in the accuracy when determining the value of ncoals. Clearly, there is no
benefit in increasing ncoals beyond the value for which the accuracy of the methods has converged,
since this will only increase the computational cost of the method. In summary, based on our
results, it seems that using ncoals > 1 is beneficial, e.g. ncoals = 32, which coincides with the
results of Jethani et al. [4], where the FastSHAP method was introduced.

Because the exact Shapley values are often unavailable, one can use the loss function (36) to rank
the models on a test set. Then, the choice of the hyperparameters of the FastSHAP model is
similar to in a supervised machine learning task since the model’s predictions can be evaluated
using the loss function (36). The model’s hyperparameters can be tuned by e.g. randomized grid
searches and evaluated using e.g. cross-validation. However, this requires the user to have in-depth
knowledge of machine learning since it is not included in the FastSHAP libraries in PyTorch and
TensorFlow [4], meaning that the user would have to implement it themselves. In addition, such
hyperparameter tuning is computationally costly.

4.5.6 Evaluation in Terms of Computational Cost

In this section, the computational cost of the KernelSHAP and FastSHAP estimation methods
will be estimated by the CPU time. CPU time was briefly described in Section 3.7. This section
discusses the computational cost of the Shapley value estimators, assuming that the contribution
function, or an estimate thereof, is given for all test observations. In Section 3.7, we also outlined
how the computation of the methods is performed and how it can be divided into an initialization
step that only has to be performed once per black box model and an estimation step that must be
repeated for every new instance that the black box model’s prediction is to be explained.

It is assumed that the vector vD
x∗,y∗ containing the contribution function estimate for all coalitions

S ∈ D as defined in the KernelSHAP approximation (34) is given. Thus, to obtain the Ker-
nelSHAP estimate, only the matrix product RDv

D
x∗,y∗ in (34) must be computed for each instance

of interest. Recall that in this product, only vD
x∗,y∗ depends on the instance of instance. The

matrix RD can be precomputed and stored, and the cost of computing it is amortized over all
instances to be explained. Also the computational cost of FastSHAP is divided into two steps.
Firstly, the FastSHAP model must be trained according to Algorithm 3. The cost of training the
FastSHAP model is amortized across the instances to be explained. After the initial training, the
only additional cost related to providing an explanation for an instance is to evaluate the Fast-
SHAP model ϕfast(x, y;θ) at the instance. In practice, it is important to distinguish the cost of
initializing/training each estimation method from the cost of providing a new explanation, given
that the method has been initialized/trained. This is because, in many practical situations, it is
feasible to use a method with a high initial computational cost if the method can be evaluated fast
after the initialization phase. In this section, all results are with multivariate normally distributed
features with some correlation determined by the covariance matrix Σsome corr defined in (49). The
results for the other simulation models are, however, analogous.

We start by discussing the initial computational cost of FastSHAP, which corresponds to training
the FastSHAP model ϕfast(x, y;θ) according to Algorithm 3. This cost is amortized over the
instances and can be performed in a development phase. In Figure 22, the CPU time of training
the FastSHAP32 model is plotted as a function of the number of features q in the model for ntrain

equal to 1,280, 6,400 and 64,000. The figure shows that the mean CPU time over the number of
features increases as a function of ntrain. The mean CPU time for the example with ntrain = 6,400
is roughly three times larger than when ntrain equals 1,280, corresponding to a fifth of the number
of training observations. Comparing the cases with ntrain equal to 6,400 and 64,000, we see that the
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(a) ntrain = 1,280.
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(b) ntrain = 6,400.
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(c) ntrain = 64,000.

Figure 22: Multivariate Normal, Σsome corr, ncoals = 32.
The CPU time of training the FastSHAP32 model as a function of the number of features q in the
data set. The mean CPU time taken over the different values of q is shown in dashed lines in the
plots.
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Figure 23: Multivariate Normal, Σsome corr, ncoals = 32.
The CPU time of providing a single explanation using FastSHAP32.

mean CPU time of training the FastSHAP32 models is approximately 11 times higher for the 10
times larger data set. Hence, the increase in CPU time is roughly linear in the number of training
observations. We cannot expect a fully linear increase in CPU time caused by increasing ntrain

since there is some initialization etc. in the network that is unaffected by ntrain. In addition, since
we use early stopping and a learning rate reduction schedule in the training of the FastSHAP32
model, some variation must be expected in relation to the effect of the size of the training data set
on the computational cost of training the model.

In order to compare the computational cost of providing a single explanation using FastSHAP
and KernelSHAP, we include the evaluation time of the FastSHAP model. The evaluation time is
computed as the average time the model takes to provide a prediction over 100 test observations.
To stabilize the results, we redo this 1000 times and report the average value as the CPU time
of the prediction for a single observation. The resulting CPU time is shown in Figure 23 for the
simulation model with somewhat correlated normally distributed features with a total of q = 16
features for ntrain = 1,280, 6,400 and 64,000. The CPU time corresponds to one model evaluation
of the FastSHAP model with the hyperparameter ncoals equal to 32. Since the FastSHAP model
is trained on different data sets when ntrain differs, the resulting FastSHAP models will differ.
Therefore, the time one model evaluation takes will differ somewhat for each case, as shown in the
figure. However, the CPU times are very small compared with e.g. the time it takes to compute
the off-manifold estimate for an instance of interest, as shown in Figure 6. In addition, compared
to the CPU time of training the FastSHAP model, the time it takes to provide an additional
explanation is very short. This demonstrates that FastSHAP can be used to provide explanations
almost instantaneously after the training phase has been performed.

As previously mentioned, assuming that the vector containing the estimate of the contribution
function vD

x∗,y∗ is given for all observations, the KernelSHAP estimate corresponds to computing

the matrix-vector product RDv
D
x∗,y∗ in (34), where the matrix RD can be computed once and

used for all the instances that will be explained. Therefore, as for FastSHAP, we divide the
computational time into two phases. The first is to generate the matrix RD that will be used
for all explanations. The CPU of generating this matrix is shown as a function of the number of
feature coalitions |D| = 50, 60, 70, . . . , 2,000 in Figure 24. The matrix RD only depends on the
number of features in the model q and the number of feature coalitions |D|, not the number of
training observations. Therefore, the initialization time is irrespective of the simulation model. To
stabilize the result, we redo the computation 500 times and present the CPU time as the average
of these. The figure shows that the CPU time of generating RD increases roughly linearly as
a function of |D|. In the figure, there are some deviations from this at |D| less than circa 250.
Because the dimensions of the matrices and vectors in (34) increase as |D| increased, one should
expect the computation of RD to be slower for increasing |D|, since e.g. matrix inversion and
multiplication generally is slower in higher dimensions. Therefore, we believe the deviations at
|D| less than 250 are random fluctuations. Note that the initialization step is much faster than
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Figure 24: Irrespective of the simulation model, q = 16.
The CPU time of initializing the KernelSHAP method.
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Figure 25: Multivariate Normal, Σsome corr, q = 16.
The CPU time of providing a single explanation using KernelSHAP as a function of the number
of feature coalitions |D| in the KernelSHAP estimate (34).
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training the FastSHAP model, and only amounts to less than a second of CPU time at worst.

After the matrix RD has been computed, all that remains to provide the KernelSHAP estimate
is to compute the matrix-vector product RDv

D
x∗,y∗ . To stabilize the CPU time, we repeat the

computation of RDv
D
x∗,y∗ 1000 times for |D| = 50, 60, 70, . . . , 2000. This is done for 100 test

observations. The resulting CPU time is shown in Figure 25. Because the KernelSHAP estimate
corresponds to the matrix-vector product RDv

D
x∗,y∗ , the computational time of the evaluation

phase of the estimate will be determined by the speed of the library used to compute the matrix-
vector product. In our experiments, we use the Python library NumPy [26]. As shown in the
figure, the CPU time increases as a function of |D|. Noticeably, at around |D| = 550, there is a
jump in the CPU time. Further investigations of why this occurs are omitted because it is outside
the scope of this thesis since it is determined by the implementation of the matrix-vector product
in the NumPy [26] library. For us, it is important to note that regardless of |D|, the computation
is fast. The figure shows that the CPU time of computing the KernelSHAP estimates (34) are
around a tenth of the CPU time of evaluating the FastSHAP models, as shown in Figure 23. This
is sensible since the FastSHAP model is a neural network, and its evaluation will correspond to
a forward pass. In contrast, the KernelSHAP estimate is even simpler since it is only a matrix-
vector product. In the figure, there is some difference in the CPU time for the different values of
ntrain. The computational time of matrix-vector inversions and products can generally be bounded
analytically by the dimension of the matrices and vectors. Details are omitted because it is outside
the scope of this thesis. In practice, it will depend e.g. on the number of zeros in the matrices and
vectors. Therefore, since vD

x∗,y∗ depends on the simulation model and the matrix RD has been
randomly generated for each simulation model3, there may be a difference in the CPU time even
though the dimensions of all the vectors and matrices are the same for all values of ntrain.

Figures 23 and 25 show that the computational time of estimating the Shapley values after the
initialization phase can be achieved very fast with both methods. Compared to the computational
time of estimating the contribution function, it is clear that the off-manifold estimate has a much
higher computational cost, as shown in Figure 6, than the estimation of the Shapley values when
disregarding the initialization phase. In the full estimation procedure, including the estimation of
both the contribution function and the Shapley values, the computational time will differ more
based on which of KernelSHAP and FastSHAP is used in the last step. The computation time of
providing an explanation with the FastSHAP-Off-Manifold method will be distributed in a similar
way as the computation time of FastSHAP-Surrogate shown in Figure 23. This is because, in
the full procedure, when using FastSHAP, the contribution function estimation is “built into”
the FastSHAP model, and its computational complexity is only relevant during the training of
the model. Providing a new explanation will always correspond to a single evaluation of the
FastSHAP model ϕfast(x, y;θ), regardless of the estimator of the contribution function. The
training time, however, will be severely longer if the off-manifold estimate is used because one
off-manifold estimate (39) must be computed per coalition S per batch. Meaning that in the
duration of an epoch, ntrain · ncoals off-manifold estimates must be computed. Although we have
not included results demonstrating this, we have verified it using the current FastSHAP PyTorch
library [4], where the FastSHAP-Off-Manifold method is implemented.

In the full estimation procedure, the computational time of calculating the full KernelSHAP estim-
ates will correspond to the time it takes to estimate the contribution function for all |D| coalitions
in (34), in addition to computing the matrix-vector product RDv

D
x∗,y∗ . The computation of the

contribution function must be repeated for every instance to be explained. Since the computation
of the off-manifold estimate of the contribution function is very high compared to the surrogate
model and the methods in the second estimation step, the computation time of KernelSHAP-Off-
Manifold method is significantly higher than the other methods, when disregarding the initializ-
ation/training phase. In order to facilitate a faster KernelSHAP approximation than the original
version [2], one might replace the off-manifold estimate with the surrogate model. This would
exploit that the accuracy of KernelSHAP is significantly higher than FastSHAP’s when |D| ⪆ 500
in KernelSHAP, as shown in almost all examples in Figures 12 to 16. However, in some cases, the

3We are using a global seed in the random generation to ensure that the results are reproducible. In the simulation
we are basing the CPU time on, we first simulate the training observations. Therefore, a different number of random
numbers have been generated before the matrix RD is generated, which means that RD will generally differ in the
three simulations. However, we could have used the exact same matrix in the three cases.
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off-manifold estimate is more accurate than the surrogate model’s estimate, which one would have
to take into account.

4.5.7 Other Results

Recall that in the examples with highly correlated normally distributed features shown in Figure
14, the error of the KernelSHAP estimate is significantly higher when the number of features q
equals 14 than for all other values of q, for all values of the number of feature coalitions |D| and
all values of the number of training observations ntrain. Also compared to the examples with
independent and somewhat correlated normally distributed features, shown in Figures 12 and 13,
and the examples with Burr distributed features, shown in Figures 15 and 16, the example with
highly correlated features with q = 14 stands out. The KernelSHAP estimate has a higher error
in this case, and it is interesting to determine the cause. The error of the FastSHAP estimate is
similar to that in the other cases, and the method does not seem to be performing differently in
this case.

When comparing the examples in Figure 14, it is important to recall that for each combination
of ntrain and q, the training data set differs. Thus, the black box and surrogate models are
different in each case. This can lead to differences in the true exact Shapley values and errors
that propagate differently because the surrogate models are different. However, the features are
simulated according to the same simulation model, as described in Section 4.3.1, and the response
variables are determined by (47) in all cases. Therefore, it is reasonable to expect some similarity
between the black box models and surrogate models when the number of features is the same,
even when the number of training observations differs. In the Shapley value estimation, for every
instance of interest, we are trying to determine how each feature in the model affects the prediction
of the black box model. Thus, not only the empirical properties of the data set are relevant to the
Shapley value estimation problem, but also the properties of the black box model.

Doumard et al. [11] find that the error of KernelSHAP does not generally increase with the number
of features in the model, which “is probably due to the fact that usually, the more features there are,
the less influence amplitude each individual feature has in the prediction”. Seemingly, it is easier
for KernelSHAP to pick up when a feature has almost no effect on the model’s predictions. Recall
that KernelSHAP only considers a subset of size |D| of the total number of feature coalitions 2q.
If |D| is fixed, one would intuitively expect the KernelSHAP approximation to have a higher error
as q increases because the proportion of feature coalitions considered decreases. However, keeping
the results of Doumard et al. [11] in mind, it is perhaps more correct to expect the approximation
error to increase when the number of significant features in the model increases.

To investigate whether this is the case, it is most interesting to consider the cases where the num-
ber of feature coalitions |D| in KernelSHAP is much lower than the total number of coalitions 2q

because these are the cases where the reduction in the computational cost of using KernelSHAP
(34) compared to the exact solution (33) is most significant. Therefore, we compare the “outlier”
examples with q = 14 to the examples with q = 13, 15, and 16, shown in Figure 14. To provide
an explanation of the overall workings of the black box model, we consider the global Shapley val-
ues, described in Section 3.8. We estimate the global Shapley values by taking the average of the
absolute ground truth Shapley values (33), with the surrogate model as contribution function es-
timator, over 100 test observations. The surrogate model must be used to replicate the experiment
in Figure 14 since this was the estimator we used there.

The global Shapley values of the black box models with q = 13, 14, 15 and 16 features are shown in
Figures 26, 27 and 28 for ntrain equal to 1,280, 6,400 and 64,000, respectively. The global Shapley
values are sorted in decreasing order in all the plots. For each value of ntrain, we indicate the
smallest absolute global Shapley value in the case with q = 14 by a red line. This red line is also
shown in the plots for q = 13, 15, and 16. Although it is difficult to determine a threshold value
for when a feature is significant to the model, we use the smallest global Shapley values for the
cases with q = 14 as a threshold. Since all the black box models are classification models and the
predictions are the predicted probabilities of belonging to a class, and therefore, in the range (0,1),
the Shapley values of each model are on the same scale, and hence, comparable. Noticeably, for
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Figure 26: Multivariate Normal, Σhigh corr, ntrain = 1,280.
The global absolute ground truth Shapley values of the black box model used to get the results
shown in Figure 14 for q = 13, 14, 15 and 16.
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Figure 27: Multivariate Normal, Σhigh corr, ntrain = 6,400.
The global absolute ground truth Shapley values with ntrain = 6,400 for q = 13, 14, 15 and 16.
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Figure 28: Multivariate Normal, Σhigh corr, ntrain = 64,000.
The global absolute ground truth Shapley values of the black box model with highly correlated
multivariate normally distributed features for q = 13, 14, 15 and 16.

78



0 500 1000 1500 2000 2500 3000
| |

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

M
ea

n 
2 d

ist
an

ce

KernelSHAP, ntrain = 1280
KernelSHAP, ntrain = 6400
KernelSHAP, ntrain = 64000

Figure 29: Multivariate Normal, Σhigh corr, q = 14 .
The error in the KernelSHAP estimate is plotted as a function of the number of coalitions |D| for
the “outlier examples” in Figure 14.

all values of ntrain and q = 13, 15, and 16, several of the smallest global absolute Shapley values
are below the threshold value indicated by the red line. Thus, several features are assigned less
importance, by a significant margin, than the least important feature in the case with q = 14.
Hence, although the case with q = 14 is not the case with most features in the model, it can
be argued that it is the case with the highest number of significant features. This suggests that
to provide high accuracy estimates, KernelSHAP needs to consider a higher number of feature
coalitions for black box models with a higher number of significant features. FastSHAP does not
seem to be affected by this, at least not in our experiments.

The observant reader may have noticed that the highest value of the number of feature coalitions |D|
used in the examples in Figure 14 is |D| equal to 1000. For the training data sets with ntrain equal to
6,400 and 64,000 in the case with q = 14 in Figure 14, the best FastSHAP model is competitive to
KernelSHAP1000. As previously shown in the example in Figure 18, the error of the KernelSHAP
estimate has not fully converged for this value. However, as Figure 29 shows, when considering
|D| > 1000, KernelSHAP outperforms FastSHAP also in the cases with q = 14. The figure shows
that the estimate of KernelSHAP reaches an error of slightly below 0.0025 when |D| = 3000 for all
values of ntrain. On the other hand, the error of the best FastSHAP model is around 0.006, 0.004,
and 0.003 when ntrain equals 1,280, 6,400 and 64,000, respectively. Recall that the computational
cost of KernelSHAP increases as a function of |D|. In the full estimation procedure, if KernelSHAP-
Off-Manifold is used, the cost increases drastically when |D| increases because it is necessary to
compute the values of the contribution function for all |D| feature coalitions. Therefore, the
computation of the KernelSHAP estimate with e.g. 3000 feature coalitions will be expensive and
must be weighed against the increase in accuracy. In the example with q = 14, since the cost of
FastSHAP, disregarding the model training, is much lower and the accuracy is similar to that of
KernelSHAP1000, one might prefer FastSHAP in this case. This may indicate that FastSHAP is
more competitive compared to KernelSHAP when the number of significant features in the model
is higher.
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5 A Real-World Data Experiment

In addition to the experiments in the simulation study presented in the previous chapter, we have
performed an evaluation of the estimators for a real-world data set. Firstly, we will describe the
data set in Section 5.1 and the black box model in Section 5.2. The contribution function (29) is
unknown in this case, and unlike in the simulation study, we cannot provide an accurate, unbiased
estimate in a reasonable amount of time. Therefore, in Section 5.3, an evaluation metric that does
not require access to the true values of the contribution function is introduced. It can be used
to rank the estimates of the contribution function. Based on this metric and the CPU time of
the contribution function estimators, the results of evaluating the contribution function estimators
for the real-world data set are presented in Section 5.4. Then, in Section 5.5, the Shapley value
estimators are evaluated. The majority of Sections 5.1 and 5.2 are from my specialization project
[12].

5.1 The “Adult Data” Set

To illustrate the use of the explanation methods on a real-world data set, the data set “Adult
Data”, which can be found here [38], will be used. The data set is also known as the “Census
Income” data set. The data set contains 12 features4 and a response variable. The data set is split
into a training set and a test set consisting of 32,561 and 16,281 instances, respectively. There are
some missing values in the data set. After removing rows, corresponding to instances, containing
missing values, there are 30,162 instances left in the training set and 15,060 in the test set. Only a
small proportion of the data is removed when deleting the instances with missing values. Therefore,
it is assumed that the model’s accuracy will not be significantly worse because of the use of fewer
data points. To facilitate the learning of the neural networks in the surrogate and FastSHAP
models, we further split the training data set into a training and a validation data set. Then there
are 24,129 observations in the training data set and 6,033 observations in the validation data set.

The response variable is categorical with two categories. Hence, this is a classification problem.
The classes are whether the adult earned more than 50,000 $ per year or less than or equal to 50,000
$ per year. These groups are referred to as high-earners and low-earners, respectively. The data is
from the US census in 1994. The data set is unbalanced, with circa 25 % of the observations in the
high-earner group (after deleting the rows with missing values). According to common practice, the
majority class is encoded ‘0’, which is the group of low-earners, and the minority class is encoded
‘1’, which is the group of high-earners. There are five numerical and seven categorical features
in the data set. The numerical features are age, education-num, capital-gain, capital-loss
and hours-per-week. The categorical features are workclass, marital-status, occupation,
relationship, race, sex and native-country.

5.2 The Black Box Model

In the experiments, the black box model is an XGBoost classifier. The model classifies instances
to belong to class 1 if the predicted probability of belonging to that class exceeds 0.5. If the
predicted probability is predicted to be below 0.5, the instance is classified as class 0. The model
obtains an AUC score of circa 0.91 and an AP/AUPCR [39] score of around 0.80 on the test
data set. The focus of this thesis is to evaluate the contribution function and Shapley value
estimators. Therefore, it has not been a focus to tune the hyperparameters in the XGBoost model.
To illustrate the use of the explanation methods, it is sufficient to have a black box model that
performs relatively well. Therefore, in the XGBoost model, the default parameter choices have
been used. XGBoost is known to be quite robust against overfitting, and it is, therefore, not
essential to tune its hyperparameters to get a model that performs relatively well. The AUC and

4In the original “Adult Data” set [38], there are 14 features, but according to common practice, two of the
features have been removed, this is also done in e.g. [4]. It is outside the scope of this thesis to find the best possible
model for the “Adult Data” set. Therefore, we omit results related to how the removal of these features affects the
performance of the model.
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AP/AUPCR scores we obtained on the test data set also indicate that the model performs quite
well.

The XGBoost package in Python [16] has many hyperparameters and we will not go into detail
on all of them here. In the theoretical description of XGBoost in Section 2.2.1, an outline of the
method was given. The full XGBoost method is more flexible and has more functionality. Thus, not
all the hyperparameters in XGBoost were introduced in Section 2.2.1.1. Again, since the aim of this
thesis is to investigate the contribution function and Shapley value estimators, not the XGBoost
model, we refer to the original paper on XGBoost [16] and the documentation of the XGBoost
package for more details. For reproducibility, we still list the most important hyperparameters in
the XGBoost model we use. In the default settings, the most important hyperparameters in the
model are as follows, the number of boosted trees n estimators is set to 100, the learning rate eta
is set to 0.3, the maximum depth max depth of each tree is set to 6, the L2-regularization penalty
parameter λ is set to 1, the minimum loss reduction required to proceed with a new partition
on a leaf of the tree gamma is set to 0, i.e. the model will keep building trees even if there was
no improvement in the last step, and min child weight determining the minimum weight needed
inside a child to keep partitioning is set to 1, this parameter corresponds to the minimum number
of instances needed in each node if linear regression mode is used. To handle categorical variables,
some of the hyperparameters in the model must be specified. Therefore, in the XGBoost model,
the hyperparameter tree method set to hist and the hyperparameter enable categorical set
to True. How XGBoost handles categorical variables was briefly outlined in Section 2.2.1.1. For
the interested reader, we refer to the documentation of the XGBoost Python package [16] for more
details on the hyperparameters.

5.3 Evaluation Metric

For the “Adult Data” set, the values of the contribution function (29) are generally unknown.
Therefore, the evaluation metric (45) cannot be used because it requires access to the true value
of the contribution function or an unbiased, accurate estimate thereof. However, in accordance
with Frye et al. [3] and Olsen et al. [40], we introduce a metric that can be used to rank two
estimates of the contribution function, that only requires access to the predictions of the black
box model f̂(x∗

i ) and the contribution function estimates v̂x∗
i ,y

∗
i
. Here, (x∗, y∗) is the instance of

interest with i ∈ {1, 2, . . . , n}, where n is the number of test observations for which the contribution
function is estimated. The metric originates from the contribution function being the minimizer
of the loss (41), which is equivalent to minimizing (43), with minimizer (44). Therefore, to get an
estimate of the relative performance of the estimators, we can approximate the expectation Ep(x)

with considering n observations from the test set drawn according to the empirical distribution
in the test set. Moreover, we approximate the expectation Ep(S) by considering all 2q possible
feature coalitions. Therefore, Frye et al. [3] and Olsen et al. [40] propose to use the mean squared
error (MSE) over n test observations and 2q coalitions as the evaluation metric. As argued in
Section 3.5.2, the minimizer of both (41) and the expectation of the MSE over p(x) and p(S) is
(44). Therefore, both these metrics are valid choices. We choose to use the MSE, as in [3, 40].5

Correspondingly, the evaluation metric we introduce is

EM3 =
1

n

n∑
i=1

1

2q

∑
S∈Q

[
f̂(x∗

i )− v̂x∗
i ,y

∗
i
(S)

]2
, (50)

where Q denotes the set of all 2q coalitions of the q features.

For the Shapley values, since there are only q = 12 features in the “Adult Data” set, the exact
Shapley values (33) can be computed if the contribution function is given. Therefore, the evaluation
metric (46) can also be used for the “Adult Data” set. Note that by “exact Shapley values”, we
refer to the exact minimizer (33) given an estimate of the contribution function (29). Since we
cannot provide a ground truth value of the contribution function for the “Adult Data” set, the exact
Shapley values are not truly exact because (29) is unknown. However, as previously mentioned,

5Note that in our experiments, the ranking of the methods is found to be the same irrespective of the choice of
metric.
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Figure 30: The error of the contribution function estimates for the “Adult Data” set.

Jethani et al. [4] find that the relative performance of the Shapley value estimators is similar
for different choices of contribution function estimators when the same estimator is used in all
Shapley value estimates and the ground truth. Therefore, we stick to this convention and evaluate
the Shapley values for a given, fixed estimate of the contribution function as in the simulation
study.

5.4 Evaluation of the Contribution Function Estimators

The error according to the evaluation metric (50) of the off-manifold estimate (39) with M =
3, 5, 50, 300, and 1,000 Monte Carlo samples, and the error of the estimate of the surrogate model,
trained according to Algorithm 4, are shown in Figure 30. The figure shows that the off-manifold
estimate outperforms the surrogate model when M ≥ 5 per feature coalition S, which is a quite
low number of Monte Carlo samples M . The numerical features in the “Adult Data” set have an
average absolute empirical linear correlation of around 0.08, with absolute correlations between
0.03 and 0.15. It is not obvious how to compute correlations between pairs of categorical variables
and between a numerical and a categorical variable. Hence, we do not compute such correlations.
Based on the low values of the correlation of the numerical features, we compare the results with
the simulation examples with some linear correlation between the features.

In the simulation study, for the case with the normal distribution with somewhat correlated fea-
tures, the surrogate model outperformed the off-manifold estimate for all values of ntrain and all
values of the number of Monte Carlo samples M . The results of this example are shown in Figure
7. In addition, we found that with Burr distributed features with an average empirical correla-
tion of between 0.11 and 0.12, shown in Figure 10, the surrogate model only outperformed the
off-manifold estimate in one case, where ntrain was equal to 128,000 and the off-manifold estimate
used 100 samples. In the “Adult Data” set, there are 24,129 training observations after splitting
into a training, validation, and test set. Therefore, when comparing with the example with the
Burr distribution in Figure 10, it seems reasonable that the off-manifold method outperforms the
surrogate model when M ≥ 5 because of the relatively small number of training observations in the
“Adult Data” set. If we assume that the data in the “Adult Data” set arises from a distribution
that is more difficult to learn than data generated from the normal distribution, which will often
be the case for real-world data, it seems reasonable that the surrogate model performs worse for
the “Adult Data” set than the data set with somewhat correlated multivariate normal features,
which is shown in Figure 7.

In summary, we believe that these results align with the results for the simulated data and that for
somewhat correlated features, the biased off-manifold estimate can provide more accurate results
unless the training data set is sufficiently large. If, in addition, the data arises from a distribution
that is more difficult to learn, the accuracy of the off-manifold estimate is better relative to the
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Figure 31: The CPU time of computing the contribution function estimates for the “Adult Data”
set.

surrogate model. However, the surrogate model’s hyperparameters have not been tuned. By tuning
the hyperparameters and architecture of the surrogate model, it may be possible to improve the
performance of the surrogate model. However, this is not implemented in the current versions of
the FastSHAP library [4]. Therefore, incorporating this requires the user to have in-depth domain
knowledge. We have used the same hyperparameter values in our surrogate model as Jethani et al.
[4] to replicate their results.

In the results presented in the original paper describing the surrogate model [3], the surrogate
model outperforms the off-manifold estimate for the “Adult Data” set. In our experiments, the
relative performance is the opposite when the number of Monte Carlo samplesM in the off-manifold
estimate is greater than or equal to 5, as shown in Figure 30. However, it is unclear how many
Monte Carlo samples are used to compute the off-manifold estimate for the “Adult Data” set in [3].
Therefore, if Frye et al. [3] use fewer Monte Carlo samples, this can explain why our results differ
in terms of the relative performance of the methods. As shown in Figure 30, the surrogate model
is more accurate than the off-manifold estimate with M = 3 Monte Carlo samples per feature
coalition. In addition, in the surrogate model, we use the same hyperparameters and architecture
as Jethani et al. [4], which differs from the surrogate model in [3]. This means that our surrogate
model is not equivalent, which can explain why the accuracy differs.

Lastly, the CPU time of estimating the contribution function is shown in Figure 31 for the different
estimators. In the figure, the off-manifold estimates’ CPU time is the average time of calculating
one estimate of the off-manifold estimate (39) for all coalitions S ∈ Q, where Q denotes the set of
all 2q coalitions of the q features. The average is taken over 100 test observations. This CPU time
measures the cost related to the computation that has to be repeated for every instance of interest
to be explained. For the surrogate model, the CPU time of the model’s training is shown. The cost
of training the surrogate model is an initial cost that does not have to be repeated and is amortized
over the instances to be explained. The cost corresponding to estimating the contribution function
for all coalitions S ∈ Q corresponds to evaluating the surrogate model |Q| times. The CPU time
of evaluating the surrogate model |Q| time is calculated for 100 test observations, and the average
CPU time is shown in Figure 31, where it is denoted “surrogate prediction”.

The figure shows that the surrogate prediction CPU time, which is so small it is not visible in the
bar chart, is negligible compared to the CPU time of computing the off-manifold estimates for all
values of the number of Monte Carlo samples M . Moreover, the training time of the surrogate
model is of a similar order of magnitude as computing the off-manifold estimate for a single instance
of interest when M ≈ 300. Therefore, the surrogate model will provide explanations faster even
if only a few instances are to be explained and much faster if many instances are to be explained.
Thus, if computational speed is of the essence, one might prefer the surrogate model, although
it has a higher error than the off-manifold estimates with M ≥ 5. If the hyperparameters of the
surrogate model are tuned, and we include the full computation time of this in the initial training
phase of the surrogate model, this initial computation time will significantly increase. However,
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Figure 32: The error of the Shapley value estimates for the “Adult Data” set.

the cost amortizes over the instances that are explained and can be performed in an initial phase,
which can be feasible in practice.

5.5 Evaluation of the Shapley Values Estimators

In this section, the results of evaluating the Shapley value estimators for the “Adult Data” set
are presented. As previously mentioned, Jethani et al. [4] find that the relative accuracy of the
Shapley value estimators is the same, regardless of the choice of contribution function estimators,
when the same estimator is used in the ground truth and Shapley value estimates. Accordingly,
the estimates of the contribution function values used in the computation of the ground truth
Shapley values (33) and all estimates are the predictions of the surrogate model. This also makes
it easier to compare the results with the simulation study where the same choice was made. The
KernelSHAP estimate (34) is computed with the number of feature coalitions |D| equal to 100,
300, 500, and 1,0006, with the surrogate model’s predictions as the contribution function estimates.
As in the previous section, we refer to KernelSHAP with |D| coalitions as KernelSHAP|D|, e.g.
KernelSHAP100. Moreover, we consider FastSHAP with ncoals equal to 4, 32, and 64, which we
refer to as FastSHAP4, FastSHAP32, and FastSHAP64, respectively. The FastSHAP models are
also trained with the surrogate model as the contribution function estimator. Details are given in
Algorithm 3.

The error of the estimates according to the metric (46) is shown in Figure 32. For this example,
FastSHAP4 and FastSHAP32 perform similarly to KernelSHAP300, and the performance of Fast-
SHAP64 is somewhere between KernelSHAP300 and KernelSHAP500. KernelSHAP1000 clearly
outperforms all the FastSHAP models. In Figure 33, the accuracy of FastSHAP is plotted as a
function of the hyperparameter ncoals. As the figure shows, the accuracy seems to have converged
at ncoals equal to 32. The FastSHAP32 model is the “best possible” FastSHAP model in our
experiments since it has the lowest possible error, and among the models that attain this error, it
has the lowest computational cost. The KernelSHAP1000 estimate is significantly better than the
best FastSHAP model and should therefore be preferred in terms of accuracy.

The CPU time of initializing and evaluating KernelSHAP1000 is shown in Figure 34. This is the
average for 100 test observations. In addition, the CPU time of training the FastSHAP32 model
and the mean CPU time of providing a prediction with it for 100 test observations are shown in the

6The convergence of KernelSHAP as a function of |D| is very similar for the simulated data and the “Adult
Data” set. Therefore, we omit it from the report and refer to Figure 18 for an illustration of the effect of the number
of feature coalitions |D| on the KernelSHAP estimate (34).
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Figure 33: The accuracy of FastSHAP as a function of the hyperparameter ncoals for the “Adult
Data” set.
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Figure 34: The CPU time of computing the Shapley value estimates for the “Adult Data” set.
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figure. In the figure, the only visible bar is the FastSHAP32 training CPU time. In comparison,
the other CPU times are negligible. Thus, the KernelSHAP is the fastest of the two methods
when only the Shapley value estimation is considered. For more details on the CPU time of the
methods, and a discussion on the computational time of the full estimation procedures, we refer
to the results of the simulation study presented in Section 4.5.6.
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6 Summary and Discussion of the Experiments

6.1 Contribution Function Estimation

We have evaluated the off-manifold and surrogate estimates of the contribution function on several
simulated data sets. The data sets varied in terms of the number of training observations, the
degree of correlation between the features, and the difficulty of the generating distribution. In the
experiments, in terms of accuracy, we found that neither of the two methods outperforms the other
in all situations. On the contrary, the examples illustrate that in some situations, the off-manifold
method is clearly to be preferred, and in others, the surrogate model should be preferred.

In summary, the experiments show that the surrogate model outperforms the off-manifold method
if the training data set is large, especially if the feature variables have a higher linear correlation.
Since the off-manifold method assumes feature independence, the method fails more severely when
the assumption is far from true, such as in these examples. On the other hand, the off-manifold
method tends to outperform the surrogate model when the training data set is small, especially if
the features are independent or “approximately independent”, as illustrated with features simulated
with only some linear correlation. In these situations, the error caused by the bias in the off-
manifold estimate is relatively small. The poor performance of the surrogate model for smaller
data sets can be explained by neural networks generally requiring access to much data to perform
well. The off-manifold method, on the other hand, uses at most the number of Monte Carlo samples
M from the training data set since the samples are drawn with replacements. In our experiments,
we find that the variance of the Monte Carlo estimate has been empirically minimized when the
number of Monte Carlo samples used per feature coalition is above circa 300. Generally, when
the variance is minimized, the error of the off-manifold estimate attains its obtainable minimum
since the bias term caused by falsely assuming feature independence will remain. Thus, the off-
manifold method requires few training observations compared to the surrogate model. Lastly,
fixing the number of training observations, we find that the off-manifold method performs better
relative to the surrogate model in situations where the data distribution is more difficult to learn.
Specifically, in our experiments, when the degree of correlation is similar, and the number of
training observations is fixed, we find that the surrogate model performs worse in the case of Burr
distributed features than in the case of normally distributed features. Since the surrogate model is
a neural network, it needs many training observations, where “many” will vary depending on how
hard the data generating distribution is to learn. The off-manifold estimate has a similar accuracy
regardless of the difficulty of the data in our experiments. However, also in the case of the more
difficult data, the surrogate model can outperform the off-manifold method if the training data set
is sufficiently large and/or if the independence assumption is far from true.

Based on the accuracy of the methods, it seems that the methods are to be preferred in different
situations. The previous paragraph roughly outlines when each method is appropriated and should
be preferred. However, we cannot make any firm statements regarding e.g. how many training
observations are enough for a data set to be large enough for the surrogate model to be preferred.
Therefore, a priori, one cannot be certain which methods will perform best. However, if time allows,
one can calculate the contribution function estimate for a given number of test observations and
rank the methods to choose the best one analogously to Frye et al. [3] and Olsen et al. [40]. From
the perspective of accuracy, the problem of estimating the contribution function is similar to the
original problem of fitting a model to learn the data; one has to test out several methods and
choose the best based on e.g. the performance on a test set.

Related to this, as pointed out by Chen et al. [10], it remains to develop robust techniques for
optimizing the hyperparameters and architecture of the surrogate model. In our experiments, we
used a default set of hyperparameters and architecture in the surrogate model for all the data
sets. To fully determine the performance of the surrogate model in terms of accuracy, we should
have performed hyperparameter tuning, e.g., by performing a randomized grid search over its
hyperparameters. However, since this is not available in the current FastSHAP libraries [4], this
would have to be implemented by the user and requires the user to have in-depth knowledge of the
working mechanisms of the method and domain knowledge regarding machine learning in general.
Therefore, our results represent what a non-expert can expect when applying the method. The
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off-manifold does not require as much hyperparameter tuning. Generally, increasing the number of
Monte Carlo samples will reduce the estimate’s variance, and there is no downside in increasing the
number from an accuracy point of view. Another possible improvement in the surrogate training
algorithm is to consider several feature coalitions S per instance in a batch. In the version we are
using, which corresponds to the version in [4], only one feature coalition is considered per instance
in a batch. However, as shown in Figures 19, 20, 21 and 33, the FastSHAP model significantly
improves when several coalitions are considered per instance in a batch, determined by using a
value of the hyperparameter ncoals that is greater than 1. Therefore, allowing the use of several
coalitions S per instance in a batch in the training of the surrogate model may lead to an increase
in its accuracy.

From the experiments, it is clear that the surrogate model is faster than the off-manifold method
when more than a few instances are to be explained, especially if the initial cost of training the
surrogate model is disregarded. In some practical situations, the initial cost can be disregarded
because it is possible to spend time developing the model, but once it has been put into production,
it is required to make fast predictions, which is exactly what the surrogate model achieves. If the
process of tuning the surrogate’s hyperparameters is included, the initial cost will significantly
increase. However, this might be necessary to ensure that the surrogate model performs well and
can also be feasible because it is an initial cost that amortizes across the instances to be explained.
The off-manifold estimate, on the other hand, has a relatively high computational cost that must
be repeated for every instance that is to be explained.

In summary, when considering the accuracy and computational cost of the methods, it is not
straightforward to conclude on which method to use. In some situations, there are very clear
preferences towards one of the methods. For example, in the cases with higher correlations shown
in Figures 8 and 11 for the normal and Burr distributions, respectively, the surrogate model should
be preferred since it has a higher, or equally as high, accuracy, and a lower computational cost.
However, with e.g. some correlation and a small training data set, one has to weigh accuracy
against computation time when choosing a method. We also found that for the real-world “Adult
Data” set, even though the correlation between the numerical features was low, the off-manifold
estimate outperformed the surrogate model when sufficiently many Monte Carlo samples were used
in the estimate. This reflects that for real-world data, using a biased estimator can still give better
results because the data is too difficult for the surrogate model to learn with the available number
of training observations.

6.2 Shapley Value Estimation

We now summarize the results of the Shapley value estimation procedure, where we have con-
sidered the KernelSHAP and FastSHAP methods. Based on the simulation study, it is clear that
KernelSHAP should be preferred in terms of accuracy for smaller training data sets. Compared to
the estimation of the contribution function, we do not find as clear trends on how the remaining
properties of the data set affect the performance of the methods. An interesting observation of
[11] is that the accuracy of KernelSHAP does not necessarily increase for an increasing number of
features in the model. However, we show that KernelSHAP’s accuracy is lower if there is a higher
number of significant features in the model. For all the simulated data sets and the real-world
“Adult Data” set, we find that when the number of coalitions |D| included in KernelSHAP is
sufficiently high, e.g. |D| ≥ 500, KernelSHAP outperforms FastSHAP. Lastly, as for the surrogate
model, to fully evaluate the accuracy of the FastSHAP model, we should have optimized all the
hyperparameters, both those specific to the method and those that are general for neural networks.
An argument against doing this, however, is that it requires the user to have domain knowledge.
In the experiments, we find that increasing the value of the hyperparameter ncoals can improve the
estimate of the FastSHAP model.

Isolating the cost of the Shapley value estimation step, both the KernelSHAP and FastSHAP
methods can provide explanations very fast. The disadvantage of KernelSHAP, however, is that
|D| estimates of the contribution function must be provided per instance to be explained. For the
full KernelSHAP-Off-Manifold estimation procedure, this is severe in terms of the computational
cost because the computation of the off-manifold estimate is high. However, for the KernelSHAP-
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Surrogate method, it may be acceptable because the evaluation of the surrogate model is fast.
FastSHAP, on the other hand, can provide explanations by a single evaluation of the FastSHAP
model, regardless of the estimation of the contribution function, after the model has been trained.
The speed of the estimation of the contribution function will only affect the initial training of the
model. However, because of the high computational cost of the off-manifold estimate, FastSHAP-
Off-Manifold will have a significantly higher initial training time than FastSHAP-Surrogate. If it
is essential to provide explanations instantaneously, there seem to be three viable options. The
options are KernelSHAP-Surrogate, FastSHAP-Off-Manifold, and FastSHAP-Surrogate.

6.3 The Usefulness of the Estimated Shapley Values

In this thesis, we have focused on evaluating the Shapley value estimation methods based on
accuracy and computational cost. However, there is a larger context that these methods can be
evaluated within, something we will briefly discuss in the following paragraphs. Through the four
properties they are required to satisfy, one can argue that the exact Shapley values provide an
objective standard for what an explanation of a black box machine learning model is. If so, the
Shapley values can be seen as a universal explanation framework that can be used to increase trust
in black box machine learning models. However, since, in practice, it is only feasible to estimate
the Shapley values, the resulting explanations will be more subjective. An example of this is that
the user must weigh the need to provide explanations fast against the need to provide accurate
explanations. If the off-manifold method is used to estimate the contribution function, another
problem related to the resulting explanation is that one must be very careful regarding the validity
of the independence assumption.

In the surrogate and FastSHAP models, neural networks are used to provide explanations of the
black box models. It raises the question of whether neural networks, which are typical examples of
non-interpretable black box machine learning models, should also be used to explain these models.
To some extent, it is paradoxical to use non-interpretable machine learning models to increase
the interpretability of black box models. If the explanation method is non-interpretable, to which
extent is it useful? Is it sufficient to use these methods based on empirical evidence demonstrating
their accuracy?

We have briefly mentioned some aspects related to the ongoing discussion of what a good explan-
ation method is. However, there are many other considerations that should be taken into account,
e.g. whether an explanation is intuitively understandable, also for laypeople from a psychological
point of view. It has not been a focus of this thesis to tackle the challenges that remain within
XAI regarding developing a framework for what a good explanation is, how it should standardize
etc. However, these are key questions that must be taken into account also for Shapley values.
Therefore, we end this discussion by pointing out that this is an important part of the further
development of Shapley value estimators as explanation methods.
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7 Conclusion and Future Work

7.1 Conclusion

In this thesis, we have considered Shapley values as a model-agnostic post hoc explanation method
within the field of XAI. The computation of the exact Shapley values involves determining ex-
ponentially many values of the contribution function, which corresponds to a potentially high
dimensional integral of a complex expression that often is analytically intractable. Because numer-
ical integration techniques suffer in high dimensions due to the grid size increasing exponentially
[31], they cannot be used to approximate the integral for general real-world problems. The need
for XAI is especially relevant for high dimensional data sets, since the Shapley value computation
is exponential in the number of features q, this is a severe drawback. Moreover, since the black
box models we are interested in explaining have become extremely complex, the integrand in the
contribution function is very complicated when considering these models. However, the Shapley
values have a solid theoretical foundation as an explanation method, something few other methods
have. The explanations provided by the Shapley values can be seen as correct and fair, which is a
huge advantage of the method.

Therefore, it is desirable to use Shapley values to explain black box machine learning models.
Since the exact Shapley values are unknown in many real-world problems, several estimators have
been introduced. Separating the estimation of the contribution function from the estimation of
the Shapley values, we have evaluated various estimators based on accuracy and computational
cost. We find that the off-manifold method and surrogate model are highly accurate in different
situations. Regarding the Shapley value estimators, we find that KernelSHAP generally can provide
estimates with significantly higher accuracy than FastSHAP. Based on various simulated data sets
and a real-world data set, we have studied the relative performance of the estimation methods in
different settings. In terms of accuracy, we find some empirical properties of the data set that,
a priori, can indicate how the estimation methods are expected to perform, especially for the
contribution function estimators. In practical applications, this is useful since one can favor one
method over another based on the properties of the data set. However, we cannot provide any
strict rules for when a method should be preferred. Therefore, in practice, it may be necessary to
calculate estimates with all methods and use evaluation metrics to rank their performance on a
test set to determine which method has the highest accuracy.

In many real-world applications, the computational cost of the methods is also important. In
our results, we find that the off-manifold estimate of the contribution function has a much higher
computation time than the surrogate estimate of the contribution function and both Shapley value
estimators. In addition, how the computation time is distributed varies for the two Shapley value
estimators. FastSHAP has a high initial computation time but can provide real-time explanations
for a new instance of interest because this corresponds to a single evaluation of a neural network,
even if the slow off-manifold estimate is used in combination with it. KernelSHAP, on the other
hand, has a low initial computation time, but to explain a new instance, the contribution function
must be computed for |D| feature coalitions. If the contribution function estimator is the off-
manifold estimate, the computation time of the full estimation procedure is high, which means
that it is infeasible to use the method in many real-world problems.

In practice, the user must decide which property is most important, accuracy or computation time,
which makes the explanation method suffer from the user’s subjectivity. This is a drawback since
one of the reasons for using Shapley values as an explanation method is the objective theoretical
foundation that ensures the method’s correctness and fairness. To further evaluate the estimation
methods, it is necessary to develop a stricter definition and consensus of what a good explanation
is, e.g., one must agree on whether non-interpretable models can be used to provide explanations.
Overall, we cannot say that one estimation procedure is preferred based on all evaluation criteria.
Therefore, it may be necessary for these methods to coexist and perhaps be combined when provid-
ing an explanation. This may reduce the objectivity of the explanations but increase the accuracy
and improve the computation time.
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7.2 Future Work

In our experiments, we have performed an empirical study of how the FastSHAP and KernelSHAP
methods perform in various situations depending on the empirical properties of the data set.
However, when considering e.g. the number of features q in the black box model, we do not find
that it has a clear effect on the accuracy of the Shapley values estimates. As pointed out by
Doumard et al. [11], “this is probably due to the fact that usually, the more features there are,
the less influence amplitude each individual feature has in the prediction”. This reflects that the
performance of the estimators does not only depend on the data set but also on the properties of
the black box models. Therefore, it could be interesting to investigate if the KernelSHAP estimate,
which considers a subset of size |D| of the 2q feature coalitions, breaks down when the number
of significant features is higher. A strategy for considering this is to use convergence detection
techniques [32] to approximate the ground truth Shapley values in higher dimensional settings,
e.g. when the number of features q is around 30. This could lead to models with a higher number
of significant features, which perhaps alters the relative performance of the estimation methods.

Although we have studied the performance of the estimation methods on different data sets, it
would be interesting to replicate the study of Doumard et al. [11]. In the study, they consider
the accuracy of various additive local explanation methods for 304 OpenML data sets. However,
they do not consider FastSHAP. In addition, the estimation of the contribution function is not
separated from the estimation of the Shapley values. It would be interesting to replicate the study
for the full estimation procedures, KernelSHAP-Off-Manifold, KernelSHAP-Surrogate, FastSHAP-
Off-Manifold, and FastSHAP-Surrogate. Separating the two estimation steps, the contribution
function estimators can be ranked. Moreover, fixing the estimate of the contribution function, the
estimate of the Shapley values can be evaluated compared to the exact Shapley values. This would
give further insight into the estimation methods’ performance for real-world data sets. In [11],
TreeSHAP [2] is also considered. It is a model-specific method that can be used for tree-based
models and has a lower computational cost than e.g. KernelSHAP. However, in the SHAP library
[2], the off-manifold estimate is used in TreeSHAP as well. Frye et al. [3] find that the problems
related to using the off-manifold estimate are also present for TreeSHAP. Therefore, it is interesting
to investigate how the TreeSHAP model performs when it is combined with the surrogate model.
Moreover, since we found evidence that may suggest that KernelSHAP performs worse if there are
more significant features in the model, it would be interesting to replicate the experiments in [11],
also for data sets with more than 13 features, which is the highest number of features considered
in the study.

In their experiments, Jethani et al. [4] find that regardless of which estimate of the contribution
function is used, FastSHAP can provide accurate estimates of the Shapley values. To be clear,
they fix an estimate of the contribution function and compare different Shapley value estimators.
Therefore, the result is regarding the Shapley values estimators given an estimate of the contribu-
tion function. With this in mind, it seems sensible to evaluate the performance of the estimators
by separating the two estimation procedures, such as we have done in our experiments. However,
it is not given that the most accurate estimator in the full procedure is the combination of the most
accurate estimator in each step. For real-world data sets, it is not generally possible to evaluate
the full estimation procedure by using the exact Shapley value. However, when considering data
simulated from e.g. the Burr and normal distributions, the contribution function can be estimated
accurately and used in the computation of the exact Shapley values. This will provide a ground
truth estimate that the full estimation procedures can be evaluated against.

As future work within the field of XAI, it is necessary to develop a more rigorous framework for
evaluating the explanation methods and a consensus on what a good explanation is. If more precise
requirements of what an explanation consists of, e.g., within a legal framework, one can develop
evaluation metrics that take these into account. This will enable us to develop better explanation
methods. A better framework may reduce matters of subjectivity, e.g., that the user must prioritize
accuracy versus computation time, related to the explanation methods, leading to better and more
trustworthy explanation methods.
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Appendix

A Implementation Details.

The implementation of all the estimation methods that we have used in our experiments can be
found on GitHub. For KernelSHAP and the off-manifold method, all the relevant hyperparameters
are stated in the description of the experiments in Chapters 4 and 5. Therefore, they are not listed
here. For the surrogate and FastSHAP models, the hyperparameters we have chosen are based on
the examples in the FastSHAP implementation in TensorFlow [4]. In the experiments, we have
explicitly stated some of the hyperparameters. These are the hyperparameters that are varied
between the experiments. The remaining hyperparameters and architecture of the models will be
given in what follows.

The Surrogate Model

In the implementation of the surrogate model, we use a TensorFlow [41] neural network. The
hyperparameters and the architecture of the model are the same in all the experiments. The
model has two hidden dense layers with 128 nodes. The layers are fully connected. Between the
input and hidden layers, we use the ReLU (15) activation function. In the output layer, we use
a softmax (16) activation function. The number of nodes in the output layer is set to two in all
our experiments, since in both the simulation study and real-data experiment there are only two
classes the response variable can belong to.

The batch size is set to 64, and the maximum number of epochs is set to 100. The loss function in
the model is the categorical cross-entropy (18). In the training, early stopping and a learning rate
schedule that reduces the learning date are used. The initial learning rate is set to 10−3 and it is
reduced by a factor of 0.9 if there is no improvement for two epochs, determined by setting the
patience to two. The minimum learning rate is set to 10−5, the training will stop if the learning
rate attains this value. Moreover, we use early stopping with a lookback of 10, meaning that if no
improvement occurs for 10 epochs, the training will stop. A validation batch is used, and we set
the validation batch size to 10,000. We use the Adam optimizer [23], according to Algorithm 1, in
the surrogate model. We do not use paired sampling or append the masking net to the training
data.

The FastSHAP Model

In the implementation of the FastSHAP model, we also use a TensorFlow [41] neural network.
The hyperparameters and the architecture of the model are the same in all the experiments. The
model has two hidden dense layers with 128 nodes. The layers are fully connected. Between the
input and hidden layers, we use the ReLU (15) activation function. In the output layer, we use a
linear activation function.

The batch size is set to 32, and the maximum number of epochs is set to 200. In the training,
we use early stopping and a learning rate schedule that reduces the learning date. The initial
learning rate is set to 10−3, and it is reduced by a factor of 0.9 if there is no improvement for two
epochs, determined by setting the patience to two. The minimum learning rate is set to 10−5.
The training will stop if the learning rate attains this value. Moreover, we use early stopping with
a lookback of 10, meaning that if no improvement occurs for 10 epochs, the training stops. A
validation batch is used, and we set the validation batch size to 64. We use the Adam optimizer
[23], according to Algorithm 1, in the FastSHAP model. We do not use paired sampling or append
the masking net to the training data.

In the FastSHAP model, several hyperparameters can be used to enforce the efficiency constraint
of the Shapley values. These were described in Section 3.4.1. Jethani et al. [4] find that setting the
hyperparameter γ > 0 in the regularized loss function (38) leads to less accurate estimates than
using γ = 0. Therefore, we set γ = 0. Moreover, they demonstrate that using additive efficiency
normalization (37) during both training and inference increases the accuracy of the estimates. In
accordance with this, we also use additive efficiency normalization in both steps.
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