Frida Svendal Aase

An Exploration of Shapley Values for
Model Interpretability: Providing a
Fair and Accurate Explanation of
Black Box Models

Master’s thesis in Applied Physics and Mathematics
Supervisor: Kjersti Aas

June 2023

.ﬂ
(7]
()

i o
)

0
[
Q
=
(7))
©

=

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

@ NTNU

Norwegian University of
Science and Technology

Frida Svendal Aase

An Exploration of Shapley Values for
Model Interpretability: Providing a Fair
and Accurate Explanation of Black Box
Models

Master’s thesis in Applied Physics and Mathematics
Supervisor: Kjersti Aas
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

@ NTNU

Norwegian University of
Science and Technology

Preface

This thesis, with course code TMA4900, completes my master’s thesis in Applied Physics and
Mathematics at the Norwegian University of Science and Technology (NTNU), Department of
Mathematics. The work was completed in the Spring of 2023.

I would like to thank my supervisor Kjersti Aas for her excellent guidance and supervision with
both my specialization project and master’s thesis. Her feedback and advice have been invaluable.
Thank you also to Ian Covert for answering our questions regarding the FastSHAP method. In
addition, thank you to my friends and family for their support and for rooting for me, and to my
classmates for keeping me company at university during the long work hours.

Trondheim, June 2023
Frida Svendal Aase

Abstract

Shapley values are popular for explainable artificial intelligence due to their solid theoretical found-
ation of correctness and fairness. However, the computation of the Shapley values is costly, and
therefore, infeasible in many real-world problems. To reduce the cost, Shapley value estimators
are used. The Shapley value estimation can be divided into two steps. The first step is the con-
tribution function estimation. The contribution function is meant to capture how each feature
affects the prediction of the black box model, and a common choice is the expected value of the
model conditioned on a subset of the features being observed, which often is analytically intract-
able. Two estimators are considered in this thesis. The off-manifold method [1, 2] assumes feature
independence, often leading to a bias for real-world data sets. The surrogate model [3] is a su-
pervised machine learning model trained to approximate the contribution function. The second
estimation step is to estimate the Shapley values given an estimate of the contribution function.
We consider two estimators, KernelSHAP [2] and FastSHAP [4]. Out of the exponential number
of feature combinations considered in the exact Shapley values, KernelSHAP reduces the cost by
considering a small subset of the most important ones. FastSHAP is a machine learning model
trained to estimate the Shapley values.

We perform an in-depth empirical study of the estimators based on computational cost and ac-
curacy for simulated and real-world data sets. By clearly separating the estimation steps and
evaluating the methods on simulated data sets where the ground truth is known, we provide new
insights into the methods. We find that the off-manifold method is more accurate for smaller data
sets, especially if the features are “nearly independent”. In contrast, for larger data sets, the sur-
rogate model is more accurate, especially if the features are “far from independent”. The surrogate
model is clearly faster, making it preferable in many real-world problems. Both of the Shapley
value estimators are fast when the contribution function is given. The KernelSHAP method is more
accurate than the FastSHAP method if enough feature combinations are considered, especially for
smaller data sets. In practice, increasing the number of feature combinations in KernelSHAP re-
quires increasing the number of estimates of the contribution function. Thus, if KernelSHAP is
combined with the slower off-manifold method, increasing the accuracy will lead to slower compu-
tation, which must be repeated for every instance’s prediction. FastSHAP has the advantage that
after an initial training procedure, the full two step estimation procedure can be performed by a
single model evaluation per instance of interest. For a real-world data set, we find that the relative
performance of the methods aligns with the results from the simulation study.

ii

Sammendrag

Shapley-verdier er en populser metode innenfor forklarbar kunstig intelligens pa grunn av et solid
teoretiske grunnlag for deres korrekthet og rettferdighet. Imidlertid er beregningen av Shapley-
verdier kostbar og derfor ikke gjennomfgrbart i mange praktiske situasjoner. For & redusere kost-
naden brukes Shapley-verdiestimater. Estimeringen av Shapley-verdier kan deles inn i to trinn.
Det fgrste trinnet er a estimere bidragsfunksjonen. Bidragsfunksjonen skal fange opp hvordan hver
kovariat pavirker prediksjonen til maskinlaeringsmodellen, og et vanlig valg er forventningsverdien
til modellen betinget pa at en delmengde av kovariatene er observert. Denne forventningsverdien
er ofte analytisk utilgjengelig. To estimatorer betraktes i denne avhandlingen. Metoden “off-
manifold” (norsk: av eller utenfor manifolden) [1, 2] antar uavhengighet mellom kovariatene, noe
som ofte forer til skjevhet (engelsk: bias) for virkelige datasett. Surrogatmodellen [3] er en veiledet
(engelsk: supervised) maskinleringsmodell som er trent for & tilnserme bidragsfunksjonen. Det
andre estimeringstrinnet er & estimere Shapley-verdiene gitt et estimat av bidragsfunksjonen. Vi
betrakter to estimatorer, KernelSHAP [2] og FastSHAP [4]. Av de eksponentielt mange kom-
binasjonene av kovariater som betraktes i de eksakte Shapley-verdiene, reduserer KernelSHAP
kostnaden ved a betrakte en liten delmengde av de viktigste kombinasjonene. FastSHAP er en
maskinlaeringsmodell som er trent for a estimere Shapley-verdiene.

Vi utferer en grundig empirisk studie av estimatorene basert pa beregningskostnad og ngyaktighet
for simulerte og virkelige datasett. Ved & tydelig separere estimeringstrinnene og evaluere met-
odene pa simulerte datasett der sannheten er kjent, gir vi nye innsikter i metodene. Vi finner
at off-manifold-metoden er mer ngyaktig for mindre datasett, spesielt hvis kovariatene er “nesten
uavhengige”. Derimot for stgrre datasett, er surrogatmodellen mer ngyaktig, i hvert fall hvis
kovariatene er “langt fra uavhengige”. Surrogatmodellen er klart raskere, noe som gjgr den fore-
trukket i mange situasjoner. Begge Shapley-verdiestimatorene er raske nar bidragsfunksjonen
er gitt. KernelSHAP-metoden er mer ngyaktig enn FastSHAP-metoden hvis tilstrekkelig mange
kombinasjoner av kovariater betraktes, spesielt for mindre datasett. I praksis krever gkning av
antall kombinasjoner av kovariater i KernelSHAP gkning av antall estimater av bidragsfunksjonen.
Dermed, hvis KernelSHAP kombineres med den langsommere off-manifold-metoden, vil gkning i
ngyaktighet fgre til tregere beregning, som ma gjentas for hver enkelt observasjons prediksjon.
FastSHAP har fordelen av at etter treningen av modellen er utfgrt, kan hele den totrinns estimer-
ingsprosedyren utfgres med en enkelt modellevaluering per observasjon som forklares. Vi finner at
ytelsen til metodene for et virkelighetsdatasett samsvarer med resultatene fra simulasjonsstudien.

iii

Table of Contents

List of Figures

1 Introduction

2 Background Material

2.1

2.2

2.3

24

3 The
3.1
3.2
3.3

3.4

3.5

An Intrinsically Interpretable Machine Learning Model
2.1.1 Classification and Regression Tree (CART)
2.1.1.1 Interpretability of Trees
Some Examples of “Black Box” Machine Learning Models
2.2.1 Gradient Boosting and XGBoost oo
2.2.1.1 The Details of XGBoost
2.2.1.2 XGBoost in the Context of XAT
2.2.2 Feed-Forward Neural Networks
2.2.2.1 Activation Functions oL
2.2.2.2 Loss Functions o
2.2.2.3 Optimizers
2.2.2.4 Validation Sets, Adaptive Learning Rates, and Early Stopping . .
2.2.2.5 The Universal Approximation Theorem
Some Multivariate Probability Distributions with Known Conditional Distributions
2.3.1 The Multivariate Normal Distribution
2.3.2 The Multivariate Burr Distribution
Monte Carlo Integration L L

2.4.1 Monte Carlo Integration Using the Empirical Distribution Function

Shapley Value and Shapley Value Estimators

The Shapley Value and Cooperative Game Theory
The Shapley Value in the Context of Explainable Artificial Intelligence
KernelSHAP o e
3.3.1 The KernelSHAP Approximation
FastSHAP o o e
3.4.1 Enforcing the “Efficiency”-Property of the Shapley Values
3.4.2 Training the Shapley Value Estimator
Estimating the Contribution Function
3.5.1 The Off-Manifold Estimate via Monte Carlo Integration

3.5.2 The On-Manifold Estimate via a Supervised Surrogate Model

vii

NoRE-TEEEN T = T =2 TS, S~ TN

11

15
15
16
16
17

iv

3.6 Full Procedures for Estimating the Shapley Values
3.7 The Computational Cost of the Estimators

3.8 Shapley Values for Global Interpretability

Simulation Study

4.1 Experimental Design e

4.2 Evaluation Metric L L

4.3 Simulation Modelso
4.3.1 Simulation Model 1: The Multivariate Normal Distribution
4.3.2 Simulation Model 2: The Multivariate Burr Distribution

4.4 Evaluating the Contribution Function Estimators
4.4.1 Simulation Model 1: Multivariate Normally Distributed Features
4.4.2 Simulation Model 2: Multivariate Burr Distributed Features.

4.5 Evaluating the Shapley Value Estimators
4.5.1 Simulation Model 1: The Multivariate Normal Distribution
4.5.2 Simulation Model 2: The Multivariate Burr Distribution
4.5.3 Evaluation Aggregated over the Simulation Models

4.5.4 The Accuracy of KernelSHAP as a Function of the Number of Feature Co-
alitions [D]o

4.5.5 The Accuracy of FastSHAP as a Function of the Hyperparameter ncoas . -
4.5.6 Evaluation in Terms of Computational Cost

4.5.7 Other Results

A Real-World Data Experiment

5.1 The “Adult Data” Set
5.2 The Black Box Model
5.3 Evaluation Metric oo
5.4 Evaluation of the Contribution Function Estimators

5.5 Evaluation of the Shapley Values Estimators

Summary and Discussion of the Experiments

6.1 Contribution Function Estimation
6.2 Shapley Value Estimation
6.3 The Usefulness of the Estimated Shapley Values

Conclusion and Future Work

7.1 Conclusion e

7.2 Future Work

References

Appendix

A TImplementation Detalils.

95

95

vi

List of Figures

10

11

12

13

14

15
16
17

18

19

20

21

22
23
24
25
26

CART THustration. 0 i e e e e e e e e e e 4
Tllustration of the Interpretability of Trees. 6
An Illustration of a Feed-Forward Neural Network. 10
Unrealistic Monte Carlo Samples. 30
Evaluation of the Contribution Function Estimators: Independent Multivariate Nor-

mally Distributed Features. 43
Evaluation of the Contribution Function Estimators: CPU time. 44
Evaluation of the Contribution Function Estimators: Somewhat Correlated Mul-

tivariate Normally Distributed Features. 46
Evaluation of the Contribution Function Estimators: Highly Correlated Multivariate

Normally Distributed Features. 47
Resampled Estimates. o 50

Evaluation of the Contribution Function Estimators: Burr Distributed Features with
C= T e e 51

Evaluation of the Contribution Function Estimators: Burr Distributed Features with
C= 20 e 54

Evaluation of the Shapley Value Estimators: Independent Multivariate Normally
Distributed Features e 56

Evaluation of the Shapley Value Estimators: Somewhat Correlated Multivariate
Normally Distributed Features 58

Evaluation of the Shapley Value Estimators: Highly Correlated Multivariate Nor-
mally Distributed Features 59

Evaluation of the Shapley Value Estimators: Burr Distributed Features with ¢ =7. 61
Evaluation of the Shapley Value Estimators: Burr Distributed Features with ¢ =2. 62

Evaluation of the Shapley Value Estimators: Aggregated over the Simulated Data

Sets. . . e 64
The Accuracy of KernelSHAP as a Function of the Number of Feature Coalitions

IDI. 66
The Accuracy of FastSHAP as a Function of the Hyperparameter ncoais for ngrain =

1,280, . . . e 67
The Accuracy of FastSHAP as a Function of the Hyperparameter ncoais for ngain =

6,400. . . . e e 68
The Accuracy of FastSHAP as a Function of the Hyperparameter n¢oais for ngain =

64,000, « © o o e 69
FastSHAP: The Computational Cost of Training the Model. 71
FastSHAP: the CPU Time of Explaining One Instance of Interest. 72
KernelSHAP: the Initialization CPU Time. 73
KernelSHAP: the CPU Time of Explaining One Instance of Interest. 73
Global Shapley Values and KernelSHAP (I) 76

vii

27
28
29
30
31
32

33

34

Global Shapley Values and KernelSHAP (IT) 7

Global Shapley Values and KernelSHAP (IIT) 78
Global Shapley Values and the Convergence of KernelSHAP. 79
“Adult Data”: the Error of the Contribution Function Estimates. 82
“Adult Data”: the CPU Time of the Contribution Function Estimates. 83
“Adult Data”: the Error of the Shapley Values Estimates. 84
“Adult Data”: the Accuracy of FastSHAP as a Function of the Hyperparameter

Theoals ¢ o e e e e e e e e e e e e e e e 85
“Adult Data”: the CPU time of the Shapley Values Estimators. 85

viii

1 Introduction

Machine learning has emerged as an important tool in various fields. The complexity of machine
models has increased significantly, leading to improved predictive abilities, but resulting in models
that are difficult for humans to interpret. Model interpretability or explainability is essential in
order to e.g. detect model biases, build trust in the models and ensure model robustness [5].
The need for interpretability has led to the development of the field eXplainable Artificial
Intelligence (XAI), where various methods are developed in order to interpret complex machine
learning models. A report from the Finance Sector Union of Norway (Finansforbundet) [6], points
out that XAl is crucial for the application of machine learning models in the Norwegian financial
industry.

Within the field of XAI, there are several approaches. One approach is to stick to using models
that are intrinsically interpretable. However, this would rule out the use of some models that
have state-of-the-art performance. In contrast to this, one can perform post hoc interpretability,
where a model is interpreted after training e.g. by analyzing the inputs and outputs of the model.
Within the domain of post hoc interpretability, there are model-agnostic and model-specific
methods. Model-agnostic methods aim at interpreting any kind of machine learning model, and
can therefore only consider the inputs and outputs of the model, and must treat the model itself as
a “black box”. In contrast, model-specific methods aim at explaining a particular kind of machine
learning model, e.g. a random forest or a convolutional neural network. Model-specific methods
can consider the parameters, such as the weights in a neural network, and the structure of the
model. Moreover, some interpretability methods aim at explaining the overall workings of a model.
These are referred to as global, whereas other methods aim at explaining an individual prediction
of the model for a particular observation, which is referred to as a local method.

In this thesis, the focus will be on using Shapley values [7] as a local model-agnostic explanation
method [1]. The Shapley values can also be used for global interpretability. The Shapley values
are a fair and correct way, defined through satisfying some desirable criteria [1, 2, 8], to attribute
the prediction of a model to its features. Although the Shapley values arguably provide a fair and
correct explanation, the computational cost of the Shapley values is exponential in the number
of features in the model, and therefore, infeasible to compute in many situations. To apply the
method, it is necessary to develop estimation methods with a relatively low computational cost
and provide accurate estimates of the Shapley values. The Shapley value estimation procedure
can be divided into two steps. In order to fully evaluate the estimation methods and determine
where each method breaks down, each estimation step is considered separately. The first step is
to estimate the contribution function, which is meant to capture how the black box model’s
prediction changes conditioned on different combinations of features being observed. The second
step is the estimation of the Shapley values given the estimates of the contribution function.

A common choice of contribution function estimator is a Monte Carlo integral under the assumption
of feature independence [1, 2]. In this thesis, this estimator will be referred to as the off-manifold
estimate because the generated Monte Carlo samples will often lay off the data manifold [3]. The
feature independence assumption and the method’s high computational cost are drawbacks. To
incorporate the dependence of the features in the contribution function estimate, Aas, Jullum and
Lgland [8] propose parametric and non-parametric methods. However, due to the computational
cost of these methods, they do not scale to more complex higher dimensional problems. Another
strategy, proposed by Frye et al. [3] and Jethani et al. [9], uses supervised and generative machine
learning models, neural networks, to learn to estimate the contribution function. Due to the high
representation ability of neural networks, this strategy is promising [3, 9, 10], but suffer from draw-
back like the need for developing robust strategies for evaluating and tuning the hyperparameters
of the model [10]. Another drawback of this method is that it is somewhat paradoxical to use a
black box machine learning model as part of explaining another black box machine learning model.

Moving on to the second estimation step, Lundberg and Lee [2] propose both model-agnostic and
model-specific Shapley value estimators. One of their proposed methods is KernelSHAP, which is
a model-agnostic Shapley value estimation method that has become popular through the SHAP
library [2]. As previously mentioned, the computation of the exact Shapley values is exponential in
the number of features. This is because exponentially many combinations of features are considered.

https://shap.readthedocs.io/en/latest/

KernelSHAP exploits that out of the exponentially many combinations, the contribution of some
combinations is negligible compared to others. Therefore, it approximates the full problem by
choosing a small subset of the most important combinations, reducing the computational cost
significantly. A more recent Shapley value estimator, FastSHAP, was introduced by Jethani et al.
[4]. FastSHAP is a machine learning model, a neural network, trained to approximate the Shapley
values. Again, like for the surrogate model, FastSHAP raises the question of whether a non-
interpretable machine learning model is suitable for explaining another machine learning model.
FastSHAP is a method with a higher initial computational cost, the training of the model, but
the cost is amortized across the number of explanations to be explained. After the initial training
has been performed, any number of observations can be explained at a low cost, corresponding to
a single model evaluation. This is desirable in practical applications where explanations must be
provided within a short time frame. In contrast, in the KernelSHAP method, the computation
related to generating an explanation must be repeated for every instance that is to be explained.
Therefore, especially when combined with the slower off-manifold contribution function estimator,
it is less suitable in situations where a fast generation of explanations is important.

Both KernelSHAP and FastSHAP were introduced with a default choice of contribution function
estimators. In previous work, such as [2, 4, 11], the full two step estimation procedure is evaluated
as a whole. To fully evaluate the estimation in terms of accuracy and computational cost, we
distinguish the two steps from each other and evaluate each step on its own. By separating the
steps, we hope to provide new insight into the properties of each method, determine where in the full
estimation procedure the error in the final approximation originates, and how the computational
cost is distributed between the steps. In this thesis, we consider the off-manifold and surrogate
estimates of the contribution function. In addition, fixing the estimate of the contribution function,
the KernelSHAP and FastSHAP estimates are evaluated. The surrogate model and FastSHAP are
recent methods, and in [3] and [4] the methods are tested on some real-world data sets. However,
as novelty work, we performed an in-depth study of the methods’ performance on simulated data
sets with varying empirical properties where the ground truth Shapley values are known.

As previously mentioned, in the off-manifold estimate, feature independence is assumed. Feature
independence is rarely observed in real-world problems, therefore, in many practical situations,
the assumption will not hold. To investigate the effect of falsely assuming independence, we test
the method on simulated data sets where we vary the degree of linear correlation between the
features. Moreover, the surrogate and FastSHAP models consist of neural networks which require
sufficiently large data sets to yield high-precision predictions. Therefore, in the simulated data
sets, the number of training observations is varied in order to investigate whether this affects the
accuracy of the models’ predictions. Moreover, the data generating distribution is varied in the
simulations to determine how the “difficulty” of the data affects the estimators. The Shapley
value estimators are most needed in high-dimensional problems since the computation of the exact
Shapley values is exponential in the number of features in the model. It is, therefore, interesting
to determine whether the accuracy of the estimators varies based on the number of features in
the black box model. Based on the empirical properties of the simulated data sets, we outline the
relative performance of the methods and present results that may indicate a priori which method
is to be preferred in real-world applications based on the properties of the data set. Finally, the
estimation methods are tested and evaluated on a real-world data set.

The outline of this thesis is as follows. Some concepts from machine learning and statistics are
presented as background material in Section 2. In Section 3, we describe the origin of the Shapley
values and the theory of the Shapley values as an explanation method. Moreover, the Shapley
value and contribution function estimation methods are described in detail. We outline the full
estimation procedures and discuss the computational cost of the methods. The methods are tested
on simulated data, and the results from this study are presented in Section 4. Then, the results of
applying the methods to a real-world data set are presented in Section 5. In all our experiments, we
use our implementation of the methods, which can be found on GitHub. The implementation of the
surrogate and FastSHAP models are adaptations of the FastSHAP implementation in TensorFlow
[4]. The results are summarized and discussed in Section 6 before we conclude and point out some
future work in Sections 7.1 and 7.2, respectively.

Some of the sections of this thesis are, with minor alterations, copied from my specialization

https://github.com/fridaaas/master
https://github.com/neiljethani/fastshap/tree/main

project, Aase [12]. In Chapter 2, Sections 2.1.1, 2.2.1 and 2.4 are taken from [12]. In Sections
2.2.1 and 2.4, some information has been added and minor alterations have been made e.g. to
improve the notation. In Chapter 3, Sections 3.1 to 3.3 and 3.5.1 have, with minor alterations,

been copied from [12]. Lastly, in Chapter 5, Sections 5.1 and 5.2 are copied from [12] with minor
modifications.

Rs
84 1 <8

Rs |
3 R | |
8 3

S Ry T2 < 89 1 < 83
f ﬁlﬁ ﬁlﬁ
R, Ry, Rs T2 < 84
s s —_—l
X1 R5 R5

Figure 1: An example of the splitting region of a CART with two features x; and z2 is shown on
the left. The corresponding tree representation is shown on the right. These illustrations are based
on similar illustrations in Chapter 9 of Hastie, Tibshirani and Friedman [13].

2 Background Material

This section will present some relevant topics from statistics and machine learning. A general
overview of the field of machine learning can be found in my specialization project [12] and is not
given in this report. The majority of Sections 2.1.1, 2.2.1 and 2.4 are taken from my specialization
project [12] and are included in this report for completion.

2.1 An Intrinsically Interpretable Machine Learning Model

In the following section, an intrinsically interpretable machine learning model is presented. The
model will also be an important building block in the XGBoost model that will be described in
Section 2.2.1.

2.1.1 Classification and Regression Tree (CART)

A tree is a model f that divides the feature space into disjoint (high-dimensional) rectangles or
boxes Ri, R, ..., Ry and predicts the same value ¢, for all instances in a rectangle. The splitting
rules can be represented by a tree, for an illustration see Figure 1. Mathematically, this can be
expressed as

M
flz) = Z eml{x € R},

where
1, xe€R,,

MwERm}:{o z ¢ R,

is the indicator function. There are several tree algorithms. The one that will be considered
here is the one presented by Lewis [14], known as CART, an abbreviation for Classification And
Regression Tree. As the name suggests, trees can be used for both regression and classification,
although the specifics of the algorithm are different in the two cases. In this section, we follow the
notation of Hastie, Tibshirani and Friedman [13].

Splitting the whole feature space in an optimal composition of rectangles is a complex problem.
Therefore, in practice, simplifying the search space into only considering recursive binary partitions
is necessary. This means that the only possible choice at each step is to split one of the existing
rectangles into two. For instance, adding a rectangle in the middle of one of the existing rectangles
is not allowed. The algorithm works by first splitting the feature space into two rectangles and
proceeds by dividing one of them into two, and so forth. To consider all possible combinations of

such splits is not feasible. Therefore, one greedily approaches the problem. This means that at
every split, one chooses the split giving the most improvement at the current time. One does not
consider whether it would be possible to achieve a better solution in e.g. ten steps from now. This
greedy search solves the problem of how to divide the feature space into disjoint rectangles.

It remains to find the feature and corresponding feature value for which splitting a currently
existing rectangle into two will give the largest improvement. To do this, a loss function is used.
In machine learning, a loss function usually measures the model’s fit to the data. The loss function
measures the amount by which the model’s predictions differ from the response variables in the
training data. This is also the case for determining the splits in CART. Given the loss function, one
can determine the best value to predict within each rectangle. There are many different choices of
loss functions. It depends on the nature of the problem, whether it is classification or regression. In
addition, some loss functions have analytical minimizers, whereas others can only be numerically
approximated. Non-convex functions are generally hard to optimize numerically. Thus, the loss
function must be chosen with care. The details of CART will be treated for one such choice, the
sum of squared losses in the regression setting.

The sum of squares loss is given as Y., (y; — f(=;))?, which is minimized by f(z;) = 1 Y7 | y;.
Thus, in each rectangle, the average value of the response variables (of the instances inside the
rectangle) is predicted, i.e. &, = i ZwieRm yi, form=1,2,..., M, where n,, is the number of
instances in rectangle R,,. Given the split of the feature space, determining the best value to predict
is easy. However, the problem of splitting the feature space is harder to solve. Mathematically, if
there are two rectangles Ry and R, the splitting problem can be expressed as

. . L 2 . L 2
mm{ngn > ime)dmin 3)(yz e2) }
72,8

J,s .
x;ER1(],s) x; €ER(

where the solutions of the inner two problems are the averages within each rectangle. Considering
a feature j, determining the point s to split is easy as we can scan through the values of the feature
and choose the optimal value as the one with the lowest loss. Then, to find the best split at a
certain time, it is possible to iterate through all the features and find the best splitting point for
each feature. Having the best splits for each feature, the final split is chosen as the split over the
feature reducing the loss the most.

One thing that remains is to choose how many splits to perform and thereby determine the tree’s
topology. If there are too many splits, for instance, if there is one rectangle for each instance in
the data, the model likely overfits the data. A common choice of stopping criteria is to stop when
the change in the loss is reduced by very little in each iteration. However, it is possible that the
current split leads to little improvement, whilst the next might have a big impact. Therefore, it
is necessary to use another strategy. The way CART does this is to build a large tree and then
simplify it, whilst maintaining a sufficiently high accuracy, rather than stopping the tree building
at a predefined point. The “simplification” that is performed is called cost-complexity-pruning. In
this procedure, one specifies a minimum number of instances that should be contained per node.
Thus, the feature space cannot be split into too small regions. The large tree T one starts with
is built until the next split divides the space into two regions where at least one contains fewer
instances than the predefined minimum number of allowed instances. Then, the idea is to consider
subtrees T of Ty found by joining some internal nodes of the tree and simultaneously minimizing
the complexity of the subtree and the error rate of the corresponding predictor. A hyperparameter
controls the amount of pruning and can be determined, for instance, by cross-validation. For more
details on cost-complexity-pruning and other details of the CART-algorithm, such as the treatment
of categorical variables, see Chapter 9 of Hastie, Tibshirani and Friedman [13].

2.1.1.1 Interpretability of Trees

To demonstrate the interpretability of trees, a practical example will be considered. Let’s say the
goal is to classify a person as having lung cancer or not. As features in the model, we include age
and smoking. Figure 2 shows a possible tree model for this example. Trees are thought to be good
at mimicking how humans make decisions. First, what is thought to be the most important feature

Smoker, yes or no?

No | Yes
No cancer Age less than 647
No Yes
No cancer Cancer

Figure 2: A simple tree where the first split is done based on whether or not an individual smokes.
If not, the model predicts that the individual does not have cancer. If yes, the model then considers
whether the person is above or below 64 years old. If so, the individual is predicted to have cancer;
if not, the model predicts no cancer. Note that this is a very simplified example not based on
real-world data. It is just meant as an illustration of the interpretation of a tree model.

is considered. Then, after evaluating this factor, the second most important factor is considered,
given the conclusion based on the first factor, and so on. Trees are often even easier for laypeople
to understand than linear regression models, which are generally considered interpretable when
there are few features in the model. To remain interpretable, the trees cannot be too deep. The
depth of the tree refers to how many levels of splits there are in the tree.

2.2 Some Examples of “Black Box” Machine Learning Models

In this section, two examples of non-interpretable, “black box” machine learning models are de-
scribed. We start by introducing boosting [15] and XGBoost [16] in the following section. Then,
in Section 2.2.2, feed-forward neural networks are described.

2.2.1 Gradient Boosting and XGBoost

Boosting is a machine learning method that composes weak learners to form a strong learner.
In classification settings, a weak learner is defined as a machine learning model with accuracy
slightly better than pure guessing. This weak learner can, for instance, be a decision tree. A
strong learner is defined as a model with high accuracy, where what is considered a “high”
accuracy depends on the problem. The idea of boosting is to “boost” or improve a set of weak
learners to form a strong learner. In practice, many boosting methods are based on training weak
learners iteratively on a training set weighted based on the accuracy of the weak learner in the
previous iteration. Instances that were misclassified in the previous iteration get a higher weight,
and the weak learner is then forced to focus on learning these instances. Since the weights are
adapted during the training, the method is referred to as “adaptive”. The final model, or strong
learner, is a weighted average of the weak learners, weighted by their accuracy. The first adaptive
boosting algorithm was the AdaBoost [15] algorithm that won the prestigious Godel prize.

This idea of boosting as a weighted average of weak learners trained on a data set adapted iteratively
to “force” the weak learners to focus on the misclassified points provides the intuition behind the
method and is how the first boosting algorithms worked. However, it was later discovered that these
boosting algorithms could be seen as a minimization problem. This point of view has allowed the
boosting method to be generalized and robustified. Specifically, boosting can be seen as performing
gradient descent, which is a numerical optimization method that will be treated in Section 2.2.2.3,

in function space. This procedure is known as gradient boosting and was discovered by Friedman
[17]. Tt has been important for the further development of the boosting method. The specifics of
formulating and proving the equivalence of boosting from both perspectives is quite tedious and
can, for instance, be found in Chapter 10 of Hastie, Tibshirani and Friedman [13]. In the following,
we focus on gradient boosting and specifically the implementation available in the open-source
XGBoost library [16], available in various programming languages. XGBoost is an abbreviation
for eXtreme Gradient Boosting. XGBoost has demonstrated state-of-the-art performance in many
machine learning competitions, especially for tabular data [16]. XGBoost can be used for both
regression and classification.

2.2.1.1 The Details of XGBoost

To express the mathematical details of the gradient boosting technique exploited by XGBoost, we
follow the notation of Chen and Guestrin [16]. This paper was published after the XGBoost-library
had become popular and gave the theoretical details of the method.

The XGBoost model is a composition, or ensemble, of trees and can be expressed as

K

i =Y fu(®a), (1)

k=1

where g; is the prediction of the model for a feature observation a; with corresponding true response
variable y;. The index ¢ is in {1,2,...n}, and n is the number of observations in the available data
set. Moreover, fi is a CART, which was described in Section 2.1.1, and K denotes the total number
of CARTSs. To improve upon other boosting versions, the XGBoost method not only considers the
model’s loss but also considers a regularization term w(f;) penalizing the complexity of the tree
fx. Then, the objective function used by XGBoost can be expressed as

n K
obi(0) = 3 Ly i) + 3 w(fe), (2)
i=1 k=1

where L(y;, ;) is a loss function measuring the similarity between the true response variable y;
and the prediction ¢;. The ensemble in XGBoost is trained iteratively, where at iteration ¢, the
ensemble model is given as

t

30 =3 i) =907 + fulm), 57 =0, (3)
k=1

(t=1)

where the tree f;(x;) is added to the previous model g; in iteration ¢. Thus, the objective

function at iteration ¢ is
n t n
obj® = Zﬁ (y,»,gf“) + Zw(fi) = Zﬁ (yi, g ft(mi)) + w(fi) + constant. (4)
i=1 i=1 i=1

One of the advantages of gradient boosting, in contrast to additive boosting algorithms such as
AdaBoost [15], is that any loss function, which has a defined gradient and Hessian, can be used,
which allows for generalizing the model. However, the objective in (4) cannot be analytically
minimized for any loss function. Therefore, Chen and Guestrin [16] proposes to use a second-order
Taylor expansion of the loss function as an approximation. Accordingly, at every iteration, the
approximate objective becomes

n

_ 1
obj = [ﬁ (0 3°77) + gifel@:) + 5haf2(@2)| +w(fi) + constant (5)

i=1

where the gradient g; and Hessian h; of the loss function are defined as

9 = 9yu-0 L(yi, gY), b= 8;*71)5(?]1’7@?71))' (6)

https://xgboost.readthedocs.io/en/stable/

The expression L(y;,; jt= 1)) i =1,2,...,n does not depend on the tree f; that is added to the
model. And since this is the quantity we minimize with respect to, the term acts as a constant in
the optimization problem, and we can equivalently minimize the objective

n

o~ 3 [gift(a;i) + %hiff(a:i) Fwlfe). (7)

i=1
This illustrates the advantage of XGBoost; the objective function only depends on the gradient

and the Hessian of the loss, allowing any loss function, that is two times differentiable, to be used.

To fully write down the explicit formula for the iterative updates, we need to define the complexity
penalty term in the objective. First, we explicitly write down the definition of the tree model as
fie(x) = wy(q), w € RT q:R*— {1,2,--- T}, where w is the vector containing scores on leaves, T
is the number of leaves in the tree and q is a function assigning each data point to the corresponding
leaf. Then, the definition of the complexity term used in XGBoost is

1 T
w(f) :7T+§)\wa», (8)

J=1

where 7 is a penalty parameter on the number of leaves in the tree and A is an L2-regularization
penalty parameter on the scores vector w. Denoting by I; = {i|g(x;) = j} the set of indices of
data points assigned to the jth leaf, the objective function in (7) can be written as

n

T
—.(t) 1 1
1" =3 atatan + ghiian | 97 + 5332
j=1

i=1
1 2
Z > i wj + 5 > i+ X)w?| +9T,
j=1 i€l i€l
where the second equality is possible because all instances in the same leaf get the same score.
Defining G; = Zielj gi and H; = Zielj h;i, the objective takes the form

T
—.(t) 1
obj =) {ijj + 5 (H; +)\)wf} +4T. (10)
j=1
The score in each leaf w; does not depend on any other w;,¢ # j, so each term in the sum can
be optimized for the corresponding w; while keeping the structure g(zx) constant. This yields the

Inserting this in the objective gives the corresponding best objective

optimal scores w* = G
P J — T Hj +,\

reduction as

T
obj =-5Y_ i, jr/\ +AT. (11)

Jj=1

l\D\»—l

Now it remains to find the best tree structure. Because the space of all possible tree structures
is very large, it is infeasible to search through the whole space in practice. Therefore, XGBoost
greedily optimizes one level of the tree at a time by splitting one leaf into two leaves and evaluating
the score improvement to decide if the split is sufficiently good to proceed with it. At each level,
the algorithm searches through the space of all possible splits of one leaf into two and proceeds
with the one with the biggest improvement in the overall score. To evaluate the gain of the split,
consider)))
gain — 11 6G; Gr _ (GL+Gr)
2|H+X Hpr+)X Hp+Hrp+ A
The term in brackets is the combined score of the proposed leaves and the original leaf. Specifically,
the first term inside the brackets is the score of the new leaf to the left, indexed by L. The second
term is the score of the new leaf to the right, indexed by R. The score of the original leaf is
the third term in the brackets. The last term in the gain of the split is a regularizing term —-y
corresponding to the penalty of adding a single leaf node to the tree. Accordingly, this expression

(12)

is positive only if the gain of adding the leaf is greater than . Thus, this objective penalizes
too complex tree structures, thereby preventing overfitting. The splitting procedure that has been
described here, will at any time enumerate all possible such splits on all features and choose the
best one. Chen and Guestrin [16] refer to this as an “exact greedy” splitting procedure. This is one
of the splitting procedures that can be chosen in the XGBoost library. It is expensive to consider
all possible splits over all the features when the features are continuous. Therefore, several other,
less computationally expensive, approximative algorithms for splitting are presented in [16] and
implemented in the corresponding library.

Splitting over Categorical Features

As of version 1.5, XGBoost has support for categorical features. Moreover, from version 1.6, the
optimal partitioning technique, which optimality was proven by Fisher [18], has been incorporated
in the XGBoost library to handle splitting for categorical variables. In our experiments, XGBoost
version 1.7.3 is used, meaning that support for categorical variables is available.

2.2.1.2 XGBoost in the Context of XAI

Since the models built by boosting methods are a composition of weak learners, their interpretabil-
ity is very low. With CART models as the underlying weak learners, the final model will typically
be a combination of hundreds of CARTs. Therefore, the transparency of calculating each prediction
is low. However, due to their state-of-the-art performance on many machine learning problems,
it is desirable to use XGBoost models. This makes such models a good example to illustrate the
use of XAI. Although some techniques are specifically designed to explain the predictions of an
XGBoost model, as seen in e.g. [19], one might also use model-agnostic methods, in which the role
of the XGBoost-model is to act as a black box model. This is the theme of Chapter 3, where two
model-agnostic explanation methods will be presented. In the following section, another example
of a machine learning black box model is presented.

2.2.2 Feed-Forward Neural Networks

Deep learning models such as feed-forward neural networks are perhaps the most famous example
of non-interpretable machine learning models. Deep learning models can consist of millions of
parameters and are very complex. They have a high representation capacity and therefore perform
well for many real-world problems. In this section, feed-forward neural networks are reviewed.
Generally, neural networks are a very flexible and complex type of machine learning model. In
this section, we try to give a brief outline of the method and provide some detail on topics that
are especially relevant to this thesis. Neural networks are building blocks in the FastSHAP and
surrogate methods, which are investigated in this thesis and will be presented in Sections 3.4
and 3.5.2, respectively. Deep neural networks are examples of non-interpretable machine learning
black box models and, therefore, also illustrate the need for XAI. The outline of this section is as
follows. Firstly, the general feed-forward neural networks are presented. Then, some choices of
loss functions, activation functions, and optimization methods for neural networks are explained
in more detail. Moreover, some other aspects of neural network training are described. Lastly, the
universal approximation theorem is presented, which gives a theoretical foundation for why the
class of neural networks is useful for finding good approximators in a wide range of applications.
To start, some mathematical details of a feed-forward neural network are given.

To train a neural network, a training data set is necessary. In this thesis, tabular data is con-
sidered, therefore consider a training data set {(x;,v;)}7, of feature observations x; € R? and
corresponding response variables y;. It is assumed that the response variables were generated by a
function f(x) and that the response variables are noisy observations of this function evaluated at
the features. In machine learning the goal is to approximate f(x) by a function that is commonly
denoted f(z). The function f(z) is learned from the data. A neural network is an example of such
a function.

The components of a deep neural network can be visualized using a graph. Each input in the model,

https://xgboost.readthedocs.io/en/stable/index.html
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html

input hidden layers output
layer layer

Figure 3: An illustration of a fully connected feed-forward neural network with three hidden layers.
The illustration has been adapted from here [20]. In this example, each observation consists of
q features represented by the input layer. The hidden layers consist of My, M>, and Mj3 nodes,
and the output layer consists of K nodes, where each node represents one of the K classes in
a classification problem. In a regression problem, K = 1, and the output node represents the
predicted value of the response variable.

corresponding to a feature, and output, corresponding to the response variable, can be represented
by a node in the graph. The inputs make up a “layer” in the network, and likewise, so do the
outputs. Between the layer of inputs and the layer of outputs, there are layers of nodes called
hidden layers. The nodes in the hidden layers receive information from the previous layer and send
information to the next layer. More details on this will follow. An illustration of a feed-forward
neural network is seen in Figure 3. The information contained in a neural network is propagated
through the layers. In a feed-forward neural network, a layer uses information only from previous
layers. The information contained in one layer is transferred to the next by applying a non-linear
function, called an activation function, commonly denoted by o(-), to an affine transformation of
the elements in each layer. Some examples of activation functions will be given in Section 2.2.2.1.

To mathematically express the information flow between the layers in a neural network, some
notation must be introduced. Let the total number of layers in the deep neural network be denoted
L+1, where layer 0 is the input layer, and layer L is the output layer. In the input layer, there are
q nodes corresponding to the ¢ components of the feature vector @, and in the output layer, there
are K nodes, where K is the number of classes in a classification problem. In a regression setting
K =1, and there is only one output node. Let the number of nodes in the Ith layer be denoted M;.
Then My = q and My, = K. In the most elementary structure of feed-forward neural networks,
all the nodes in the previous layers are connected to all nodes in the next layer. An illustration of
this is shown in Figure 3. Let z§l_1) denote the jth node in the [— 1th layer and zfql@) the mth node
in the lth layer. The nodes are connected by weight and bias terms. The weight connecting the
nodes zj(.lfl) and zfylL) is denoted wé—m. In total, there are M;_; - M; weights connecting these two
layers. In addition per node in the [th layer, there is a bias term b,,. We introduce the following
matrix and vectors,

l l I
w1 15 Wi, ...y Wyag_, bl1 Z%
l l 1 1
Wy 1, Wy 9, --+y Wonpg by Z2
W, =)) .) , b=| . |, zi=1 . |. (13)
l I l I l
Wi 1s Whar2o -0 War My b, ZM,

10

https://tikz.net/neural_networks/

Moreover, let the activation function between layer [— 1 and layer [be denoted ;. Using the
values of the nodes in the previous layer, the values of the nodes in the next are computed as
01(Wiz;—1 + b;). The neural network model f can then be expressed as a composition of the
activation functions applied to affine transformations of the inputs of each layer as

f(@) =0, (Wrop_1(...00(Wao (Wi +by) + by)...) + by), (14)

where evaluating the activation functions at a vector means element-wise evaluation. It is common
to use the symbol @ to denote a vector that contains all the parameters of the neural network
model. This includes all weights and bias terms. Then, the neural network model can be expressed
as f (x; 0) where it is emphasized that the model is parametric and that it is the parameters 6
of the model that are learned during training. As mentioned, there are many possible activation
functions that can be used in a neural network. In the following section, some examples of activation
functions are given.

2.2.2.1 Activation Functions

One on the most popular activation function is the Rectified Linear Unit (ReLU) activation

function, which is given as
otV (2) = max{0, z}. (15)

The function is evaluated element-wise on the vector z. The ReLU activation function is mostly
used between the input and hidden layers, or between two hidden layers. The activation function
that acts between the last hidden layer and the output layer must be chosen with care taking into
account the nature of the response variable. Some activation functions are suited for classification
problems and others for regression problems. For regression problems, it is common to use the
identity function as the activation between the last hidden layer and the output layer. An
activation function that is common for classification functions is the softmax activation function.
For class k =1,2,..., K, the kth element of the softmax function is given as

ek

o =—
Zlﬁl et

softmax (Z)

k=1,...,K, (16)
for z € RE.

2.2.2.2 Loss Functions

The loss function is a function that takes in the model’s prediction ¢; and compares it to the true
response variable y;. The loss function encaptures the similarity between the predictions of the
model and the truth. If g; deviates a lot from y;, the loss assigned by the loss function will be
large, and if ¢; is similar to y;, the assigned loss will be small. In the training of a neural network,
the loss function is used to steer the training in the right direction. More formally, the goal of the
training procedure is to minimize the expected value of the loss function. In practice, it is common
to train the model on a data set and use another data set to evaluate how well the model performs
on unseen data. This is done in order to prevent overfitting. The choice of loss function depends
on the nature of the problem. Typically, different loss functions will be used for classification and
regression problems. In regression problems, a common loss function is the mean squared error

n

EMSE — %Z(yl _ gi)Q’ (17)

i=1

where n is the number of observations in the data set that the loss is evaluated over. In classification
problems with K classes, a typical loss function is the categorical cross-entropy, which is defined
as

n K
L = =3 "y log(iik) (18)
i=1 k=1

where the true response variables are one-hot-encoded such that y;; € {0,1} and the predicted
probabilities §;;, € (0, 1) for all K classes. This loss function evaluates the loss over all the classes

11

for each observation. As mentioned, the goal of the training procedure is to minimize the expected
value of the loss function. In general, the loss function will be a complex function. Therefore, it
is necessary to use approximative optimization strategies to search for the minimizer(s) of the loss
function. Some commonly used optimizers are presented in the following section.

2.2.2.3 Optimizers

Precisely, the goal of training a neural network is to find the parameters of the model that minimizes
the loss function and generalizes well across other samples from the same distribution. In general,
neural networks are used to approximate non-convex functions, and therefore, it will generally be
infeasible to find the global minimizer of the loss function. It should be noted that based on the
training data, it is undesirable to find the global optimum of the loss function since this is likely to
produce a model that overfits the training data set and performs poorly on observations that are
not in the training data set. As a consequence, when training a neural network, algorithms that
approach a local minimum of the loss function are used.

Gradient Descent

A commonly used optimization strategy is the gradient descent algorithm. Given the current best
estimates of the model, the gradient descent method moves in the direction of the steepest descent,
given by the negative gradient of the loss function, in order to move towards the local minimizer
of the loss function. Let @P™Y denote the previous parameter estimates of the model. Then, the
next parameter estimate of the gradient descent method is

chrrent — eprev _ avgre\l£7 (19)

where the parameter « is called the learning rate and the notation V5™V L means the gradient of £
with respect to the parameters 6 evaluated at the previous parameter estimates @P*V. A large value
of the learning rate @ means that the updates will be large, which could lead to faster convergence,
but it may also result in updates that overshoot the minimizer by moving too far, and thereby the
estimates will not converge to the local minimizer. On the other hand, a small value of a ensures
that the updates will not overshoot the minimizer, however, it can lead to small updates which
cause the convergence of the method to be too slow. Since generally the loss function will consist
of a composition of many functions, the computation of its gradient VgL is complicated. The
method that is commonly used for handling this computation is called backpropagation, details on
backpropagation can be seen in e.g. Guilhoto [21].

Stochastic Gradient Descent

To both reduce the computational complexity of updating the parameters of the model and to
improve the convergence of the optimizer, more sophisticated optimization techniques are used. In
gradient descent, the gradient of the loss function is computed using the whole training data set.
If the training data set is large, this may be very computationally expensive. Therefore, it makes
sense to consider estimates of the gradient of the loss function computed using a subset of the full
training data set. One optimization method that does this is stochastic gradient descent, which
is based on the Robbins-Monro algorithm [22], where a stochastic estimate of the gradient is used
instead of the full gradient. Typically, the loss function that is used is such that the full loss can
be expressed as a sum over the loss of each observation in the training data set, i.e.,

£O)= 3" Li(0),

where the total number of observations in the training data set is n and £; is the loss associated
with observation i. If the loss function is of this form, its gradient also satisfies this property, i.e.,

VoL(0) = % > VoLi(0).

The stochastic gradient descent estimate of the gradient is to consider the gradient evaluated at a
randomly drawn observation from the training data set as an approximation of the full gradient,

12

which is expressed as

VBE(O) ~ VGEi(g)v (Y {172,...777,}7 (20)
where the notation i ~ {1,2,...,n} means that the index ¢ was randomly drawn from the full set
of indices {1,2,...,n} and the probability of drawing each observation is uniform over the set.

The stochastic gradient descent update is similar to the gradient descent update (19), but with
the gradient approximation (20).

A compromise between gradient descent, where all the n training observations are considered,
and stochastic gradient descent where a single observation is considered, is to consider a batch
consisting of B randomly drawn observations in each update of the gradient. The strategy of
using batches often performs better than stochastic gradient descent. Therefore, this is a popular
technique used in neural network training. When using stochastic gradient descent or batches of
observations, one can also specify the number of times to iterate through the whole training data
set. This is referred to as the number of epochs.

Adam

Kingma and Ba [23] introduced the “Adam”-method (Adaptive Moment Estimation) which is a
more sophisticated stochastic optimization method than stochastic gradient descent. Adam has
been very successful and is commonly used for minimizing stochastic loss functions, such as the
loss in a deep learning model. Adam builds on the idea of stochastic gradient descent by utilizing
a subsample of the full training data set to update the gradient of the loss function. In addition,
Adam considers the running averages of both the gradient and second-order moments of the loss
function in the previous iteration. The resulting update is a combination of the gradient approx-
imation and these moments. Empirical results have shown that Adam performs well compared
with other optimization methods [23].

Algorithm 1: Adam Optimization

Input: Step size «
Input: Exponential decay rates for the moment estimates 1,32 € [0, 1)
Input: Stochastic objective function with parameters 8: f(0)
Input: Initial parameter values 6
Input: A small positive constant to prevent division by 0: €. A typical value is ¢ = 1078
Output: Resulting parameter estimates 0
1 Initialize first moment vector: mg < 0
2 Initialize second moment vector: vy < 0
3 Initialize timestep: ¢ < 0
4 while not converged do
5 t—t+1
6 Calculate the gradient of the objective w.r.t. current parameter values:
gt < Vo fi(0:-1)
7 Update the biased first moment estimate: my; < 1 - my—1 + (1 — 1) - g¢

8 Update the biased second moment estimate: v; < fo - vi—1 + (1 — B2) - 9: © gt

9 Compute the bias-corrected first moment estimate: 1M, < —17115,,
1
10 Compute the bias-corrected second moment estimate: v; < 1?@
2
my
11 Update parameters 6; + 6, _1 — « - \/thii-e

12 end

We follow the notation of Kingma and Ba [23] and denote the stochastic scalar objective function
as f(@) where 0 are the parameters of the function. In the neural network setting, f is the loss
function £. The goal is to minimize the expected value of this function. The objective function must

13

be differentiable with respect to the parameters 8. Denote the gradient of f at time step ¢ in the
iteration scheme by g, = Vg f;(0) evaluated at the current parameter estimates 6,. The algorithm
considers exponential moving averages m; of the gradient, and the element-wise squared gradient,
vy, which are estimates of the mean, the first moment, and the uncentered variance, the second
moment, of the gradient. The method uses hyperparameters 51, 32 € [0, 1) in order to control the
rate of the exponential decay of the moving averages. The outline of the Adam procedure is given
in Algorithm 1. The algorithm takes as inputs a step size «, the exponential decay rates 31, B2, the
objective function f(8), initial values of the parameters 8y, and a hyperparameter ¢ that prevents
division by 0. According to Kingma and Ba [23], the method requires little hyperparameter tuning,
and good default values for the hyperparameters are o = 0.001, $; = 0.9, fo = 0.99, and ¢ = 1078,
The algorithm’s output is the final parameter estimates 6;. In Steps 1-2 the first and second
moments, denoted mg and vg, respectively, are initialized to 0. The counter of the current time
step is set to 0 in Step 3. Then, Steps 5-11 are repeated until convergence. In Step 5, the iteration
index is increased. Next, the gradient of the objective function g; at the previous values of the
parameters 6;_; is computed. Then, in Steps 7 and 8, respectively, the biased estimates of the
first and second moments are updated. Steps 9 and 10 compute the bias-corrected first and second
moment, respectively. The final step of the current iteration is to update the current estimate
of the parameters 6; according to the update rule in Line 11 of the algorithm. In Step 11, the
notation ,/v; means element-wise square root. After this step, the algorithm either proceeds to the
next iteration or finishes and returns the current parameter estimates if the convergence criterion
is met. The convergence criteria can e.g. be to end the iterations if the update has stagnated and
the parameter estimates change (very) little between iterations. In Algorithm 1, it has not been
specified what the batch size is. However, in the iterative scheme, Steps 5-11 are repeated for each
sample in the batch that is considered.

2.2.2.4 Validation Sets, Adaptive Learning Rates, and Early Stopping

In this section, some other topics related to training neural networks are considered.
Validation Sets and Batches

To avoid overfitting, it is common to evaluate the loss of the model during training on another data
set than the training data set. This data set is called the validation data set. In some settings,
evaluating the loss on the whole validation data set can be too computationally expensive. Then
it is common to consider only a batch of the validation data set each time the loss is evaluated. A
batch means that only a subset of the validation set is used when evaluating the loss at a current
time point during training. The deep learning model uses the loss evaluated on the validation data
set/batch to guide the learning of the parameters of the model. Typically, the validation loss is
calculated at the end of an epoch to evaluate if the model has improved. This steers the model to
learn parameter values that generalize well over unseen samples.

Adaptive Learning Rates

In the update of the parameters in the optimizers in Section 2.2.2.3, the learning rate or step
size « is important for determining the convergence rate of the methods. Intuitively, considering
the simplified setting of minimizing a convex loss function with a unique global minimizer, if the
current estimates of the parameters are far from the minimizer of the loss function, it makes sense
to use a large value of the learning rate to allow for fast convergence. If the parameters are close
to the minimizer, it makes sense to use a low learning rate in order to avoid overshooting the
minimizer. This illustrates that the learning rate should not be kept constant during the whole
training process. It should be adapted. A common adaptation scheme is to reduce the learning
rate by a certain factor, e.g. 0.5, if there has been no improvement in the loss for the last few
epochs, e.g. five epochs. Often this is combined with the validation batch strategy previously
discussed.

Early Stopping

Another common strategy used in the training of deep learning models is early stopping. This
is used to avoid overfitting and unnecessary training resulting in no improvement of the model.

14

Rather than specifying a low number of epochs, which could lead to underfitting, one can use early
stopping. The idea of early stopping is to monitor a metric, such as the validation loss, and stop
training the model if this metric no longer improves. At a given time, it could be that the metric
does not improve, but if the training were continued, there would be significant improvements
after a few iterations. Therefore, an option is to specify several that there should have been no
improvement for several epochs before stopping.

There exists a wide range of methods related to the training, architecture, optimization, and so
forth of neural networks that have not been discussed here. In the previous sections, the focus
has been to provide an overview of the techniques that will be relevant to this thesis. To close
off this section about neural networks, a brief insight into the universal approximation theorem is
provided, which gives insight into why neural networks can provide good approximations of a wide
range of functions.

2.2.2.5 The Universal Approximation Theorem

Neural networks have been very successful in many machine learning competitions. This is due to
the expressive power of deep neural networks. The expressive power of artificial neural networks
is rooted in the universal approximation theorem. The universal approximation theorem states
that a sufficiently large neural network can represent a wide range of interesting functions if the
weights of the neural network are chosen correctly [24, 25]. The theorem does not provide a way
to choose the weights but gives a theoretical foundation for the potential power of neural networks
as function approximators. In practice, the training of neural networks relies on e.g. successful
optimization strategies to find good parameter estimates, such as Adam, which was discussed in
Section 2.2.2.3. This finishes the section on neural networks, and in the following section, the focus
is multivariate probability distributions with analytically known conditional distributions. These
will be useful in the simulation study that will be presented in Section 4.

2.3 Some Multivariate Probability Distributions with Known Condi-
tional Distributions

The methods that will be introduced in Section 3 will be tested on simulated data because the
true Shapley values are rarely known for real-world data sets and complex black box machine
learning models. In the simulation study, we need to simulate data from a distribution where the
conditional distribution of some of the features in the model, given the observation of the others,
is known. Therefore, two multivariate distributions which have this property will be presented.

2.3.1 The Multivariate Normal Distribution

Let & € RY denote a random vector with ¢ components that follows a multivariate normal distribu-
tion with expected value g € R? and covariance matrix 3 € R7%9. This is denoted as ~ N (u,).
The probability density function of x is then

1
Ve

where || denotes the determinant of 3 and =1 denotes the inverse of ¥. Let &; € R% denote the

first g1 components of x and let s € R% denote the last g; components of &, such that ¢; +¢2 = g.

. e T "
This corresponds to the partitioning x = (.’I;lT, Tq) . Moreover, partition the vector of expected

values p and covariance matrix 3 in accordance with the partitioning of « as follows

ni, Y Y
= E p— .
a (Nz) ’ (221 222)

fifa) - (-5@-w= e w), (1)

15

Then the conditional distribution of ; given the observation xs = x5 is also multivariate normally

distributed, (z1 | 2 = x3) ~ N (@&, X), where

= p1 + T12355) (@5 — po), (22)
=3 135 . (23)
The multivariate normal distribution is fully determined by its expected value and covariance
matrix. Therefore, knowing these two quantities is sufficient for determining the conditional distri-
bution. By computing (22) and (23), the conditional distributions are known and can be simulated

from by using e.g. the available functionality for generating numbers from a multivariate normal
distribution in the NumPy [26] library in Python.

2.3.2 The Multivariate Burr Distribution

The probability density function of the ¢g-dimensional Burr distribution [27] is given as

bj—1
I'¢+q) [T =1)
fo(x) = T IEE — TR (24)
j=1 (1 + 25:1 rjxjj)
where ¢, b1,b2,...,bq and 11,79, ...,74 are the parameters of the distribution. The distribution is

defined for z; > 0,5 =1,2,...,¢. The multivariate Burr is a compound Weibull distribution with
the Gamma distribution as a compounder [27]. Tt can be regarded as a special case of the Pareto
IV distribution [28].

The multivariate Burr distribution, like the normal distribution, has the desirable property that any
marginal and conditional distribution of it is also a (multivariate) Burr distribution, a proof is given

in Takahasi [27]. The conditional density f(z1,2,...,24Tq41 = T3 1, Tgre = T5i0,- -+, Tg = Ty)
is a ¢-dimensional Burr density with parameters (N, 51, 527 e Z)q and 71, 7a,...7; where
b; = bj, for j=1,2,...,4, (25)
r
T = J , for 7=1,2,...,4.

L+ 3 g ()"

The Burr distribution allows for heavy-tailed, skewed marginal distributions, in addition to non-
linear correlation structures [29] between the variables in . These properties are often found in
real-world data, and the normal distribution often behaves “too nicely” compared to real-world
data. Therefore, the Burr distribution is useful to check the accuracy of a method on more realistic
simulated data. There are preexisting R-packages [30] where the random generation of samples
from the multivariate Burr distribution is implemented. We omit details of the simulation as this
goes beyond the scope of this thesis, but have replicated the simulation procedure in Python based
on the R-package [30].

2.4 Monte Carlo Integration

Many statistical applications involve computing a possibly high-dimensional integral. Some ex-
amples are computing a posterior probability in Bayesian statistics, marginalizing over a joint
density in frequentist statistics, and computing moments, like the expected value and variance,
of a probability distribution. Many high-dimensional integrals are analytically intractable and
must therefore be approximated. One way to approximate such integrals when the integrand is a
function of random variables is Monte Carlo integration.

The idea behind Monte Carlo integration is to use samples x7, x5, ..., 2}, € R? obtained from a
distribution f(x). The samples are obtained independently. Let & denote a random variable and
let © ~ f(x). Moreover, define h : R? — R as a function of . The goal is to estimate the expected

16

https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html
https://search.r-project.org/CRAN/refmans/NonNorMvtDist/html/MvtBurr.html
https://search.r-project.org/CRAN/refmans/NonNorMvtDist/html/MvtBurr.html

value of h(x). The strong law of large numbers states that the Monte Carlo approximation fiync of
E[h(x)] converges towards E[h(x)]. For the Monte Carlo integral, the strong law of large numbers
can be written as

M
fnvic = % Z h(zh,) 22 | hz)f(x)de = Elh(x)] = p as M — oo, (26)

m=1

where 2 means “converges almost surely”, which is the strongest type of convergence in probabil-
ity theory. Mathematically, an infinite sequence of random variables {y,, } men, ym € R converges
almost surely to the random variable y € R if P (lim,,— 00 Yym = y) = 1, i.e. the event that the
sequence converges to y has probability one.

Under the assumption that the second moment is finite E[h(z)?] < oo, the variance of the Monte
Carlo estimator [31] is

1 o 2 o?
~Bl(h(w) - p)?) = T

M
Then, using a similar Monte Carlo estimate, the variance 0° can be estimated by

Var[ﬂMC] =

2

M

. 1 o A
e = V1 > (h(x}) = fnac)?.
i=1

By the central limit theorem, fiyc is approximately normally distributed: VM — 1(fimc — p) ~
N(0,0?) =~ N(0,6%), where the approximate distribution still holds when replacing the variance
0? by the maximum likelihood estimator 63;.. This shows that the error dyic in the Monte Carlo
estimate grows as

duc = O(M~?), (27)

which is quite slow compared to the best deterministic quadrature methods [31]. However, as the
number of dimensions grows, the number of nodes required in the deterministic quadrature methods
grows exponentially. The Monte Carlo sampling, on the other hand, does not systematically explore
the whole support of the integrand. Therefore, it is less affected by the dimensionality increasing
[31]. The increasing number of dimensions means that it might be necessary to increase the number
of samples M, and hence, the computational cost. However, the increase is not as severe as the
exponential growth in the number of quadrature nodes in the deterministic methods. Moreover,
quadrature methods often make assumptions about the smoothness of the integrand, limiting their
area of use. No smoothness assumptions are made about the function h in the Monte Carlo integral
(26). Therefore, it can be applied to also non-smooth functions.

2.4.1 Monte Carlo Integration Using the Empirical Distribution Function

Let 3,23, ..., 23, € R be observations that are assumed to have been obtained independently of
each other from the same distribution. Let the observations be realizations of the random variable
@ that follows the cumulative distribution function (cdf) Fy (&), where Fr(€) = P(x < &) =
P(r1 <&,x2 <&o,...,24 <&;). In many practical situations, the cdf is unknown, and therefore
it is desirable to estimate it. An appropriate estimator of the cdf is the empricial distribution
function (edf) defined as

L xy <&,
0, otherwise,

M
F(&) = Z]].a,rgg, where]].wrgm = {

i=1

is the indicator function. By the vector inequalities &} < &, it is meant that =} < &1,z) <
§2,. ., wi, < &g

In machine learning we typically have many observations assumed to be drawn independently from
the same cdf. Thus, we can estimate the edf using this data set. Having estimated the edf from the
data set, we can draw new samples from it. These samples can be used to estimate the expected
value of a function of the samples using Monte Carlo integration defined in (26). In practice, one

17

does not have to estimate the edf and then sample from this distribution. Drawing samples from
the data set, with an equal probability of drawing each instance, will yield samples that implicitly
follow the edf because more frequently observed values will be drawn more often as there are more
observations containing these values.

18

3 The Shapley Value and Shapley Value Estimators

Shapley value is a term that originates from game theory. It was introduced by Shapley [7]. In
the context of game theory, its purpose is to find each player’s contribution to the total payoff in
a cooperative game. How does this translate to the interpretable machine learning setting? The
idea is to consider the prediction for an instance as a game where the features are the players
and the prediction is the payoff. The outline of this chapter is as follows. In the next section,
Section 3.1, the Shapley value will be defined, and it will be argued why the Shapley value can
be seen as a fair evaluation of the contribution of each player. Then, in Section 3.2, we will
describe how the Shapley value can be used as a local model-agnostic explanation method. As
will be explained, the computation of the Shapley values is expensive. Therefore, in practice, it
is necessary to consider estimators of it. Two approximation methods for estimating the Shapley
values will be presented in Sections 3.3 and 3.4. An important step in estimating the Shapley
values is estimating the contribution function, discussed in Section 3.5. Combining the two steps
of the estimation procedure, the full estimation methods are summarized in Section 3.6. The
computational cost of the estimation procedures is discussed in Section 3.7. Lastly, we end the
chapter by briefly discussing how Shapley values can be used for global interpretability in Section
3.8. In this chapter, the majority of Sections 3.1, 3.2, 3.3 and 3.5.1 are taken from my specialization
project [12].

3.1 The Shapley Value and Cooperative Game Theory

The Shapley value originates from cooperative game theory. Assume that there are ¢ players
participating in a cooperative game, all with the goal of maximizing their profits. As the players are
allowed to collaborate, their contribution to the different coalitions of players must be determined
in order to decide on the payout of each player. The Shapley value is one way of assigning the
payout among the players. Denote the set of all ¢ players by @ = {1,2,...,¢}. Consider now a
subset S C Q consisting of |S| players. A contribution function v(S) is used to calculate the gain
earned by a coalition. To find the gain for each player in a coalition, the Shapley value compares the
gain of coalitions including and excluding the player. If two coalitions, where the only difference is
that player j is included in one of them and not the other, have different gains, then the difference
in the gain is the contribution of that player. Considering all the possible coalitions of the players,
the Shapley value is the weighted average of the difference in gain between all coalitions including
and excluding player j. Since the permutation of players in a set S does not matter, the weights
account for this, and the Shapley value for player j = 1,2,...,q is calculated as

o)== Y D o sugh - us)). (28)
SCo\{j} '

The Shapley value assigns to player j the weighted average of the difference between the contribu-
tion function of sets including and excluding player j. The empty set () is also included in the sum.
This means that the case where the player chooses not to collaborate with anyone is also included.
A fixed payout that is not associated with any of the players is defined as ¢g(v) = ¢o = v(0).
Although this is often zero in collaborative games, it can in general be non-zero.

The Shapley value is “fair” in the sense that it is the only distribution of the payout satisfying the
following four properties. Proof of this can be found in [7].

Property 1: Efficiency. The total worth of the game is distributed over the players, which
mathematically means that
> 65 =0(Q).

Property 2: Symmetry. If two players i € Q and j € Q, contribute equally to all possible
coalitions, meaning that v(SU {i}) = v(S U {j}) for all S where neither of the two players
participates, then they must have same Shapley value:

¢i = ¢;.

19

Property 3: Dummy player. If a player j does not change the worth of the payout for any
coalition S C @\ {j}, meaning v(SU {j}) = v(S), then the value distributed to the player
must be zero, i.e.

¢; = 0.

Property 4: Linearity. Consider two coalition games that are described, respectively, by the
contribution functions v and w. Then, if the two games are combined, the distributed
gain of each player in the combined game equals the sum of the game from the two games
individually:

(v +w) = ¢;(v) + ¢j(w), j=12,...,q
In addition, if the contribution function is scaled by a real number a, then so is the Shapley
value of each player, expressed mathematically as

¢j(av) = ag;(v).

3.2 The Shapley Value in the Context of Explainable Artificial Intelli-
gence

In the context of XAI, the Shapley value is used to explain the prediction of a machine learning
model for an instance of interest. In their paper introducing the Shapley value as an explanation
method, Strumbelj and Kononenko [1] write that “its advantage over existing general methods is
that all subsets of input features are perturbed, so interactions and redundancies between features
are taken into account”. This is a very desirable property because features will often interact in
practice.

In order to compute the Shapley values, the contribution function must be specified. The contribu-
tion function of a subset S of the features should calculate the expected prediction for the instance
of interest (*, y*) when only the features in the subset S are known to the model. Denote by the
black box model fy(:c) If the underlying problem is a regression problem, fy(w) is the model’s
predicted value. Whereas in the classification setting, fy(w) is the predicted probability of belong-
ing to class y. One choice of contribution function v(S) is then to use the expected prediction of
the model, conditional on the feature values of the instance of interest in the subset S. Denote the
set of features that are not included in & by §¢, where superscript ¢ denotes the complement of
the set S, then a common choice of contribution function is

V(S) = var - (S) = E_ [fy(@)|zs =5, (29)

p(xsclrs=xy)
where the notation vz 4+ is used to emphasize that this is the value of the contribution function
for the subset S for the instance of interest (z*,y*). Moreover, throughout this thesis the notation

J(E)[f(z)] means the expectation of f(x) with respect to the probability density function p(x)
p(x
Analytical computation of (29) involves computing an integral in ¢ — |S| dimensions for each

subset S. In situations with a high number of features g, this is generally intractable.

When applying the Shapley value to explain the prediction of a black box machine learning model,
the features are considered as the players in the game. The “prize” that will be distributed among
the players is the prediction of the black box model for the instance of interest. In other words,
the final prediction is distributed among the players. In accordance with the first property from
above, the “Efficiency”-property, the distribution is additive. That is, the gain of each feature sums
up to the prediction and we can interpret each Shapley value as the contribution of the feature
value to the final prediction. This gives us a way to explain the prediction of the model. The
“Efficiency”-property with contribution function (29) then takes the concrete form

q
fy@®) =do+>_ 9%, (30)

j=1
where ¢g = E[fy (z)], v(Q) = fy (xz*) and ¢ is the Shapley value of feature j for the prediction of
the instance of interest (x*,y*). Since ¢ is the mean prediction of the model, it does not depend

20

on the instance of interest, and therefore it is denoted as ¢g, without the asterisk superscript. That
is, the Shapley values of the features add up to the difference between the global average prediction
and the prediction of the instance. Or in other words, the features explain the deviation of that
particular prediction from the global average prediction, and the explanation is the Shapley values.

The Shapley values are here expressed as an additive feature attribution method. It is the only
additive attribution method that satisfies the above four properties. These properties are also
desirable for an explanation, and the resulting explanation can be seen as correct. To provide
an understanding of why the Shapley values provide a fair and correct explanation, each of the
four properties given in 3.1 will be interpreted in the setting where the Shapley value is used
to explain a prediction of a black box model. The interpretation of the “Efficiency”-property is
that this property ensures that the part of the prediction that cannot be explained by the global
mean prediction is fully distributed and explained by the features. In addition, it ensures that
the Shapley values can be compared across predictions of different instances of interest. The
interpretation of the “Symmetry”-property is that if two features when combined with any other
subset of features, contribute equally to the resulting prediction of the black box model, they
will have the same Shapley value. If the Shapley values did not satisfy this property, then the
explanation would be inconsistent and untrustworthy. The interpretation of the third property,
the “Dummy Player”-property, is that if a feature never affects a prediction, regardless of which
feature subset it is combined with, it has a Shapley value of 0. That a feature that does not
contribute to the prediction is assigned no contribution to the final explanation is reasonable, and
therefore an explanation method should satisfy this property. If a black box model consists of a
sum of simple ensemble models, e.g. a random forest, then the simple models can be interpreted
and explained individually, and the explanation of the black box model is the combined explanation
of the ensemble methods. This is ensured by the “Linearity”-property of the Shapley values. It
is sensible that any explanation should satisfy these four properties. Since the Shapley values
are the only additive distribution method that satisfies all these four properties [7], the resulting
explanations from the Shapley values are the only truthful additive explanation method [2, 1, §].

The computation of the Shapley values (28) grows exponentially in the number of features, as 29,
and it is, therefore, generally infeasible to compute for a high number of features. Therefore, in
practice, it is necessary to use approximations that can be computed in polynomial rather than
exponential time. The estimation of the Shapley values can be divided into two steps. The first
step is to estimate the contribution function (29). This will be denoted as contribution function
estimation. Given the estimate of the contribution function, the next step is to estimate the
Shapley values (28). In order to separate the two steps from each other, we refer to this simply as
Shapley value estimation, although the precise term would be “Shapley value estimation for a
given contribution function estimate”. Because the estimation is performed in two steps, different
combinations of contribution function estimators and Shapley values estimators are possible. In
Section 3.3 and Section 3.4, two Shapley value estimators are presented. In these sections, it is
assumed that the contribution function, or an estimate thereof, is given. Then, two methods for
estimating the contribution function are presented in Section 3.5.

3.3 KernelSHAP

The KernelSHAP method was proposed by Lundberg and Lee [2]. Because some detail was missing
in the original paper, Aas, Jullum and Lgland [8] published a more detailed explanation of the
method. The description of the KernelSHAP method given here closely follows that given by
Aas, Jullum and Lgland [8] in their paper. In the original paper on KernelSHAP, Lundberg and
Lee [2] propose methods both for estimating the Shapley values (28) for a given contribution
function v(S) and for estimating the contribution function as defined in (29). In this section, the
Shapley value estimation for a given contribution function estimate is treated. Accordingly, by
the “KernelSHAP” estimate, this is what will be referred to. In Section 3.5, the estimation of the
contribution function (29) is treated, meanwhile it is assumed that this is given.

In their paper, Lundberg and Lee [2] define the Shapley values as the optimal solution of a weighted
least squares (WLS) problem. Before introducing the KernelSHAP method, the WLS problem
with the Shapley values as the minimizer will be presented, which will lead to a new formula for

21

computing the Shapley values. This will make it more clear where the idea of the KernelSHAP
method originated. To find the Shapley values ¢, ¢7,. .., ¢, of the instance of interest (z*,y*) for
a contribution function v, one can minimize the following weighted least squares problem

> k(Q.S) [um*7y*(5) ~ (60 + zq:aﬁf;)r, (31)

§CQ JES

with respect to ¢o, ¢7, ..., ¢;, where the Shapley kernel weights are defined as

_ qg—1
M9 = (st — 1) #2)

The WLS problem can further be rewritten using matrix-vector notation. Denote by Z the 27 x
(¢ + 1) matrix representing all combinations of inclusion/exclusion of the features and an extra
column which is necessary for the computation of the Shapley value ¢¢ that is not associated with
any of the features. The first column of this matrix has 1 in all rows, and element j+1 of row [is 1 if
feature j is included in the combination the row represents, and 0 otherwise. Let the vector vz« -
contain vg-« 4+ (S) for all subsets S C Q. Note that we also consider the sets @ and Q for which the
Shapley kernel weights (32) are infinite. This can in practice be solved by setting them equal to a
large positive constant ¢, e.g. ¢ = 105 [8]. Moreover, let W be the 27 x 2¢ matrix with the Shapley
kernel weights k(Q,S) on the diagonal. In both vz« .+« and W the element in each row must

*

correspond to the same subset S as in that row in Z. Lastly, let ¢z« = (qﬁo, o1, ..., gbq)—r.
Then the weighted least squares problem in (31) can be expressed as

(vm*7y* - Z¢m*,y*>TW('Um*7y* - Z¢m*,y*>v

which has minimizer
Qo = (ZTWZ) ' Z T Wog . (33)

These are the exact Shapley values, equivalent to (28). As previously mentioned, the number of
inclusions/exclusions of features 29 grows exponentially in the number of features ¢q. This makes
the computation of the Shapley values expensive, and an approximation desirable. We now present
an approximator that is based on the Shapley values as the minimizer (33) of the WLS problem.

3.3.1 The KernelSHAP Approximation

To reduce the computational complexity, the KernelSHAP method [2] is introduced. Lundberg and
Lee [2] propose to use the probability distribution following the Shapley kernel weights to select
a subset D of the rows of Z and use only these to approximate the minimizer (33). By drawing
from this distribution, with replacement, the rows with the highest kernel Shapley weight, which
contribute most to the computation of the Shapley values, are used. The probability distribution
is calculated by dividing each weight by the sum of all the weights such that they sum to one and
are normalized. To do this in practice, it is necessary to assume that all weights are finite, i.e. the
weights corresponding to the empty set and the full set Q cannot be included. Thus, the sampling
occurs first while omitting these rows, and the rows corresponding to the empty set and full set are
manually included since they have infinite weight. Let Zp, va*7y*, and Wp be the rows/elements
of Z, v, and W respectively, that corresponds to the subset D. In addition, the rows and elements
corresponding to the coalition of all the features @ and the coalition of no features () are added to
Zp, va*}y*, and Wp. We will refer to D as the subset of all feature combinations including () and
Q. As before, the value of the Shapley kernel weights can be set to a large constant ¢ for these
two rows. Thus, an approximation to the minimizer in (33) is

ey = (ZpWpZp) ' ZLWpvl. . = Rpvl. ., (34)
where the matrix Rp = (Z,WpZp) 1 Z),Wp does not depend on the instance of interest. It can
therefore be used to generate explanations for several instances of interest. Only va*,y* depends
on the instance of interest and must be recomputed for every instance that one wishes to explain
the prediction for. It should be noted that the computation of U5*7y* with contribution function

22

as defined in (29) is often analytically intractable and in many practical situations expensive to
approximate, something we will get back to in Section 3.5. Therefore, even though Rp does not
have to be recomputed for each instance, explaining the prediction for a new instance will be
computationally expensive in general.

Covert and Lee [32] find evidence of variance reduction in the KernelSHAP estimate when using
paired sampling. For each coalition S in D that is considered, the compliment S¢ is also used.
Covert and Lee [32] find that in some cases paired sampling will reduce the computational time
of KernelSHAP by as much as nine times compared to without paired sampling. Therefore, this
is a possible improvement of the method that we have incorporated as a hyperparameter in our
implementation of the method.

To summarize, the KernelSHAP method reduces the computational cost of computing the Shapley
values from exponential 22 in the total number of features g to considering only |D| terms. To give
more details on the computational cost of the full Shapley value estimation method, the cost of
computing the contribution function (29) must also be considered. Therefore, we consider this in
Section 3.7 after the full estimation procedures have been presented. In the following section, we
present an alternative Shapley value estimator. The method amortizes the computational cost of
estimating the Shapley values over the instances to be explained.

3.4 FastSHAP

Jethani et al. [4] presents an alternative estimation method to KernelSHAP, which they call Fast-
SHAP. The idea of the method is to train a machine learning model to predict the Shapley values.
The model is trained on the data set the black box model is trained on. This model can then be
used to calculate the Shapley values for any instance, without requiring any additional estimation.
This amortizes the cost of estimating the Shapley value over the instances to be explained; even
though the initial training of the machine learning model is expensive, it is made up for because
explaining a new instance simply requires the evaluation of the machine learning model, a neural
network, in a forward pass. In this section, we focus on introducing the theoretical foundation
of the FastSHAP method and present both an algorithmic overview of the method and a more
in-depth algorithm of the method.

The intuitive idea when the goal is to train a machine learning model to learn the Shapley values is
that it would require a large data set of true Shapley values in order to train the machine learning
model. This is not possible, since the estimation of the Shapley values is still an ongoing problem
in research, and exactly the topic we are considering. Thus, it is unrealistic to require a data
set of exact Shapley values or good approximations thereof. However, Jethani et al. [4] present a
loss function with global optimizer that converges almost surely to the true Shapley values in the
joint distribution of @ and y. Therefore, one can train a machine learning model on the feature
observations in the original data set with this loss function, and given a large enough sample and
a complex enough model, one can obtain a good estimate of the true contribution function. Thus,
the training of this model does not require access to the true Shapley values. In general, in XAI,
the explanations can be calculated on the training data set, the test data set, or a combination of
the two. However, since the FastSHAP model is a machine learning model, it makes sense to train
the model on the training data set and evaluate it on the validation and test data sets in order to
prevent overfitting the training data set.

Jethani et al. [4] introduce FastSHAP in the classification setting, therefore, like the authors, we
present FastSHAP as a method to explain a classification machine learning model. Let the possible
classes the response variable y can belong to be denoted by 1,2,..., K. Let f (x) denote a machine
learning model that outputs a probability distribution over the K classes. As in the previous
section, let fy(:c) denote the predicted probability of a single class y € {1,2,..., K}. The full
model f (z) gives a prediction for all K classes, and the model fy(x) only gives the prediction
for a single class y. For now, it is assumed that the contribution function vg ,(S) is given. In
Section 3.5.2, the details of how the contribution function is estimated in the original version of
the FastSHAP method are given. Like with KernelSHAP, we refer to “FastSHAP” as an estimator
of the Shapley values for a given estimate of the contribution function. As a starting point, Jethani

23

et al. [4] exploit that the weighted least squares characterization of the Shapley values (31) can
be rewritten by defining a probability distribution over the subsets &, which will be denoted by
p(S). The probability distribution is the Shapley kernel weights (32) normalized to sum to 1 so
that they are a true probability distribution. Thus, the distribution p(S) is proportional to the
Shapley kernel weights k(Q,S) defined in (32), which is denoted by p(S) x k(Q,S). It should be
noted that Jethani et al. [4] does not define the probability distribution for S = §) and S = Q,
therefore there is not a problem related to infinite weights. Thus, for a given contribution function
Vg, the Shapley values of the instance of interest ¢* = ¢z y« = P(vz+ 4-) are the solution to the
optimization problem

@ (Vg y+) = argmin E [(U:c*,y* (S8) = vax - (0) — zq: ¢;)2] (35)

Gy P(S)

Recalling that vg« - (0) = ¢o, and because p(S) o k(Q,S) it is clear that this optimization problem
is equivalent to the weighted least squares optimization problem (31).

As briefly mentioned, the idea of FastSHAP is to train a machine learning model on the feature
observations {x;}? ; from the original training data set with a specific loss function which ensures
that the machlne learnlng model learns the Shapley values rather than predicting the response
variables y, which is the most common predictive task in machine learning. We follow the notation
of Jethani et al. [4] and denote the machine learning model by ¢t (x,y;0) : X x J + R?, where 6
are the parameters of the model. The model outputs the Shapley values for all 1,2, ..., q features
and all 1,2, ..., K classes, not only the true class. Therefore, to get the predicted Shapley values for
feature j of an observation (x*,y*), one has to evaluate the model at the true value of the response
variable y* and take the jth element of the output. Let now & and y be random variables, and let
the instance of interest (z*,y*) be an observation of and y. Jethani et al. [4] prove that if the
predictions of the model ¢5*(x, y; 6) are forced to satisfy the “Efficiency”-constraint (30), and if
@'t (x, y; 8) belongs to a sufficiently expressive class of functions, then the global optimizer of the
loss function they introduce converges almost surely in the joint distribution of « and y to the true
Shapley values of («*,y*). The loss function they present is

Le9)=E B E [(vm,y@s‘)—vm,ym)—iasﬁast(m,y;e)ﬂ, (36)

p(x) Unif(y) p(S) jes

where Unif(y) denotes a uniform distribution over the K classes of y. In practice, this means
assuming that our data set is sufficiently large and that all the observations are from the same
distribution, a sufficiently large neural network, which can approximate any continuous function
by the universal approximation theorem, can learn to approximate the Shapley value function.
Note that the innermost expectation in (36) is the loss function (35), which has the exact Shapley
values as the minimizer. Thus, the loss function (36) in FastSHAP is the expectation of (35) over
x and y. Now that the loss function of the FastSHAP model ¢™(x,y;0) has been introduced,
we proceed in the following section by describing how the efficiency property (30) is enforced in
the FastSHAP framework. Then, the algorithm for training the FastSHAP model, including the
efficiency enforcement, will be described in Section 3.4.2.

3.4.1 Enforcing the “Efficiency”-Property of the Shapley Values

Jethani et al. [4] present two methods for ensuring that the Shapley values estimated by the
FastSHAP model satisfy the “Efficiency”-property (30). The first is to adjust the estimates by
using additive efficiency normalization [33], which corresponds to adding a term to the estimated
values:

. 1 1 2
P (2, y";0) = 72",y 0) + q(vw*,y*@)—vw,y 0) - Y ¢t y0) . (67)
j=1

The term that is added to the estimate ¢*(x*, y*; 0) is called the efficiency gap. The efficiency
gap can be added to the Shapley value estimates both during the training of the neural network

24

and during inference, i.e., the term can be added any time the network makes a prediction. The
efficiency gap is zero if the current estimates satisfy the “Efficiency”-property and positive if they
don’t. Jethani et al. [4] prove that adding this term is guaranteed to make the estimates closer
to the true Shapley values. The other proposed strategy is to alter the loss function (36) with a
penalty v > 0 on the efficiency gap. As v — oo, the “Efficiency”-property is guaranteed to hold
[4]. The loss function (36) with the efficiency gap added as a regularizing term is

g 2
LE(8) = L7(0) + 7+ (var - (Q) = vy (0) = D #1™ (@",y":6)) (38)

=1

where the penalty parameter v must be specified by the user, and can therefore be seen as a
hyperparameter of the method.

In their empirical studies, Jethani et al. [4] explore the effect of different combinations of how
to enforce the efficiency constraint. In summary, they find that enforcing the additive efficiency
normalization both during training and inference results in more accurate Shapley value estimates
than either not enforcing it at all or only enforcing it during inference. Moreover, adding the
regularizing term to the loss function, like in (38), with penalty parameter v = 0.1, yields less
accurate estimates of the Shapley values. Therefore, in their experiments, the authors use additive
efficiency normalization both during training and inference and no regularization term. These are
also the default choices in the implementations of FastSHAP in PyTorch and TensorFlow [4].

3.4.2 Training the Shapley Value Estimator

In this section, the algorithm for training the Shapley value estimator ¢s*(z,y; 8) is given. Two
versions of this algorithm are given. Algorithm 2 gives an overview of the training process, and
Algorithm 3 gives more details, including techniques guaranteed to reduce the variance of the
estimate [4].

The feature observations {z;}?_, from the data set the black box model was trained on are given
as inputs to Algorithm 2. Moreover, a given contribution function v ,, or an estimate thereof,
is required in the algorithm. Recall that the FastSHAP model ¢t (x, y;) is a neural network.
Therefore, a learning rate « to use in the update of the neural network’s parameters is required and
input in the algorithm. By default, in the FastSHAP implementations in PyTorch and TensorFlow,
the optimizer in the neural network is the Adam-optimizer that was described in Section 2.2.2.3,
thus « is the learning rate that will be used in the Adam-algorithm 1. Algorithm 2 outputs the
Shapley value estimator ¢s*(z,y; 0), that predicts the Shapley values of an instance (x*,y*) for
all features j =1,2,...,q and all classes y =1,2,..., K.

The first step of Algorithm 2 is to initialize a value of the machine learning model that will predict
the Shapley values ¢™(x,y;0). Then, until the neural network training converges, Steps 3-13 of
the algorithm are repeated. The convergence criterion of training a neural network can be specified
in different ways. In the FastSHAP implementations in PyTorch and TensorFlow, an adaptive
learning rate is used in addition to early stopping based on a validation batch. In Appendix A,
the implementation details of the method are given, including the convergence criteria. Until
convergence is met the following steps are repeated.

In Step 3, a feature observation @’ is sampled from the data set of feature observations {x; }" ,, given
as input to the algorithm. Next, a feature coalition &’ is drawn from the probability distribution
p(S) x k(Q,S) that is defined via the Shapley kernel weights (32). In Step 5, the loss £ is
initialized to 0. Then, iterating through the classes y = 1,2,..., K in the for-loop in lines 6-11,
facilitates the learning of the Shapley values for all K classes. In Step 7, using the current model
estimate ¢*(zx,y;), the Shapley values of the sample &’ corresponding to class y is predicted.
If the boolean indicator corresponding to additive efficiency normalization is set to true (this is
checked in Step 8), the current estimate q@ is updated by adding the term corresponding to the
efficiency gap defined in (37) in Step 9. Next, in Step 11, the loss function (36) evaluated at the
current estimate for class y is added to the previous value of the loss. This is done to evaluate
the total loss over all the classes y = 1,2,..., K. After Steps 7-11 have been repeated for all K

25

https://github.com/iancovert/fastshap
https://github.com/neiljethani/fastshap
https://github.com/iancovert/fastshap
https://github.com/neiljethani/fastshap
https://github.com/iancovert/fastshap
https://github.com/neiljethani/fastshap

Algorithm 2: FastSHAP training
Input: Data set {x;}],, consisting of feature observations only

Input: Contribution function (estimator) vy,

Input: Learning rate a

Output: Shapley value predictor ¢t (z, y; 6)
1 initialize @t (x, y; @)

2 while not converged do

3 sample ' ~ {x;}_,

4 sample &’ ~ p(S) x k(Q,S)

5 L0

6 fory=1,2 ..., K do

7 predict ¢ « ¢t (', y; 0)

8 if additive efficiency normalization then

. set e b 1 (v01,(Q) — vy (0) - 0, &)
10 end
11 calculate £ < L + (vw/}y(S’) — Vg y(0) — Zjes’ (lgj)Q
12 end
13 update 6 < ADAM Update (L)

14 end

classes, the parameters @ of the neural network are updated according to the Adam scheme given
in Algorithm 1. This is the final step performed before starting the next iteration, or if the training
has converged, the algorithm finishes and returns the current model ¢™(x,y;0).

Notice that in the definition of the loss function £%%%(8) in (36), the expectation is taken over
the probability distribution of @, a uniform distribution of y and the Shapley kernel distribution
p(S) x k(Q,S) over S. In practice, this is approximated by using the empirical distribution over
x, which is standard procedure in machine learning. Moreover, all the K classes are considered in
each iteration of the training, thus, the consideration of all the classes is deterministic. Lastly, the
expectation over the distribution p(S) « k(Q,S) is imitated by considering a randomly selected
subset of all the coalitions drawn with probability p(S) « k(Q,S).

The full training procedure of FastSHAP is more complicated and involves several variance-reducing
techniques that are common in deep learning and some that are specific to the Shapley value estim-
ation problem. The full algorithm is given in Algorithm 3. Some of the steps in the algorithm are
strictly necessary parts of the FastSHAP method, however, others are hyperparameters/variations
of the neural network that can be tuned like in any other deep learning task. Throughout the de-
scription of the algorithm, it will be clarified which parts are standard techniques in deep learning,
and which are FastSHAP specific. However, it should be mentioned that the FastSHAP-specific
parts are built into the neural network, so the whole procedure is performed through the neural
network.

The first three inputs of Algorithm 3 are the same as the inputs of Algorithm 2. These three inputs
are the training data set of feature observations {@;}?_,, the contribution function, or an estimate
thereof, v ,(S), and the learning rate « of the optimizer in the neural network. As additional
input parameters, Algorithm 3 takes the batch size B to use in the neural network, details about
using batches in the training of a neural network can be found in Section 2.2.2.4. The FastSHAP
method allows for considering several feature coalitions S per instance x in a batch. In the exact
Shapley values, all possible feature coalitions are considered per instance. Therefore, it is sensible
that considering several coalitions per instance should better enable the model to learn to estimate

26

Algorithm 3: FastSHAP training in-depth

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Input:
Input:
Input:
Input:
Input:
Input:

Data set {z;}7; consisting of feature observations only
Contribution function (estimator) vg ,

Learning rate «

Batch size B

Number of different coalitions to consider per instance ncoals

Penalty parameter

Output: Shapley value predictor ¢ (x, y; 6)
1 initialize ¢™(z, y; @)

2 while not converged do

set R+ 0, L+ 0
forb=1,2, ...Bdo // B is the batch size
sample &' ~ {x;}7 , // Randomly draw an instance from data set
fory=1,2 ..., Kdo // K is the number of classes
predict ¢ < @™t (x’ y; 0)
calculate R + R + (vw/}y(Q) — vy (0) = 30, q@j)Q // Pre-normalization
by adding regularizing term to the loss
if additive efficiency normalization then
et b (v (Q) — vy 0) ~ 20, 8,)
end
for m =1, 2, ..., Neoals A0 // Neoals i the number of coalitions S to
consider per sample '
if paired sampling and b mod 2 = 0 then
‘ set &' + (§)°
else
‘ sample &’ ~ p(S) x k(Q,S)
end
calculate £ < L + (vw/yy(S’) vy (0) = X e (Zgj)Q
end
end
end
update 6 + ADAM Update (ﬁ + 7%)
end

27

the Shapley values. Therefore, the desired number of coalitions to consider per instance n¢oas is
given as an input to the algorithm. Thus, within each batch, nqas coalitions S are considered per
observation x. Lastly, the penalty parameter « in the regularized loss (38) must be provided as
input. As mentioned, v = 0 by default in the algorithm because Jethani et al. [4] provide empirical
evidence that using the regularized loss (38) reduces the accuracy of the predictions. The output
of Algorithm 3 is the neural network that predicts Shapley values ¢t (x, y; 9).

The first step of Algorithm 3 is to initialize the value of ¢t (x, y;). Next, Steps 3-22 are repeated
until convergence. The first step per iteration is to set the current value of the loss (36) and
regularizing term, which is the efficiency gap defined in (38), to zero. Then the training procedure
is performed batch-wise by iterating through the batches that the training data has been divided
into. The for-loop in lines 4-21 of the algorithm contains the steps that are repeated per sample in
a batch. Using batches is a common neural network strategy and not specific to FastSHAP. The
size of the batches can be seen as a hyperparameter of the neural network. The first step performed
within a batch is to sample a training observation from the data set, as seen in step 5. The samples
are drawn without replacement. Thus, in the span of an epoch, all the samples in the training data
set are considered once. For each sample, the algorithm considers the predictions of the Shapley
values for each of the K classes by iterating through the classes in the for-loop in Steps 6-20.
The first step of the for-loop, Step 7 of the algorithm, is to predict the Shapley values using the
current model ¢ (x, y; 8). Then, the regularizing term for that prediction is added to the current
value of the regularizing term in Step 8. Step 8 is FastSHAP specific, however, as mentioned in
Section 3.4.1, Jethani et al. [4] generally find that efficiency regularization decreases the accuracy
of the estimated Shapley. Therefore, by default, the penalty parameter v that controls the degree
of regularization is set to zero, and no regularization is performed. However, Jethani et al. [4]
find that additive efficiency normalization (37) yields more accurate estimates, and therefore, by
default, this is applied in Step 10 of Algorithm 3. In the implementations, however, the user can
choose to omit it if desired. The additive efficiency normalization is also a FastSHAP-specific step.

The for-loop in Lines 12-19 handles the sampling of coalitions S. Per feature observation x’, a
total of ncoas different coalitions are randomly drawn according to the Shapley kernel probability
distribution p(S) x k(Q,S) where k(Q,S) are as in (32). Since paired sampling has been found
to improve the accuracy of other Shapley value estimators [32], it is included in FastSHAP as
well. Jethani et al. [4] provide results showing that this improves the accuracy of the estimates. If
paired sampling is desired, rather than drawing a new coalition in each iteration, at every second
iteration, the complement of the previous coalition §¢ will be used in the following iteration. The
loss per coalition for sample ' and class y is added to the total loss in Step 18 of the algorithm.
Thus, the loss that is considered for each sample ' will be over all classes y = 1,2,..., K and
all neoars coalitions. The full for-loop in Steps 12-19 is FastSHAP-specific since the loss function
(36) that is used is chosen because its global minimizer is the Shapley values. Therefore, this
is the key step to ensuring that the neural network will learn the Shapley values rather than
predicting the response variables, which is the most common task in machine learning. Moreover,
the coalition sampling that is performed in the if-else statement in Lines 13-17, a total of ncoals
times, is FastSHAP specific. To empirically learn the minimizer of the loss function (36), taking the
expectation over p(S) « k(Q, S) must be approximated. Therefore, for all instances in a batch and
all K classes, the loss over n¢qa1s coalitions S is considered as an approximation of the expectation.
After all y = 1,2,..., K classes have been considered, the iteration for that sample ends, and the
next sample in the current batch is processed. After a whole batch has been processed in this
manner, the parameters 8 of the FastSHAP predictive model ¢™(x,y;) are updated in Step 22
by using the Adam optimizer, which is given in Algorithm 1. By default, FastSHAP uses the Adam
optimization scheme given in Algorithm 1. In general, the choice of an optimization strategy is
a hyperparameter of the neural network and can be changed. However, the specific loss that is
numerically minimized in Step 22 is FastSHAP specific.

The algorithm either continues by considering a new batch, repeating steps 4-22, either until the
total number of epochs has been reached or until the convergence criterion is met. By default in the
Python implementations of FastSHAP in PyTorch and TensorFlow, an adaptive learning rate and
early stopping based on the loss of a validation batch is used. However, there are other strategies
that can be used to evaluate the convergence of a neural network. Therefore, the convergence
criteria can be seen as a hyperparameter of the neural network.

28

https://github.com/iancovert/fastshap
https://github.com/neiljethani/fastshap

This completes the description of training the Shapley value prediction model ¢t (x,y;8) and
the FastSHAP method. As previously mentioned, estimating the contribution function (29) is an
important part of estimating the Shapley values (28). Therefore, two methods for estimating the
contribution function (29) are presented in the following section.

3.5 Estimating the Contribution Function

To be able to estimate the Shapley values (28), it is necessary to compute the contribution function
Vg o+ (S) defined in (29) for all feature coalitions S C Q. In this section, two estimators of the
contribution function are presented. The first method is based on Monte Carlo integration (26)
and assumes feature independence, an assumption that rarely holds in practice. This estimator was
originally used in the KernelSHAP method [2] that was presented in Section 3.3. This estimate will
be called the “off-manifold” estimate like in [3] to make it easier to distinguish the two methods
from each other. It is called the off-manifold estimate because the Monte Carlo samples generated
when falsely assuming independence will generally be far from the true distribution of the data and
lie off the data manifold. The other estimation method trains a surrogate machine learning model
to predict the value of the contribution function. The surrogate model is a supervised machine
learning method. We follow the supervised procedure of Frye et al. [3], which is the proposed
default contribution function estimator in the FastSHAP method [4]. The estimate resulting from
the predictions of the surrogate model will be referred to as the “on-manifold” estimate because
they generally will lay on the data manifold [3]. Throughout the whole section, we estimate the
contribution function (29). It should be noted that there are two problems with computing (29) in
practice. First, the conditional distributions p(zsc|xs = 5)VS C Q are generally unknown and
analytically intractable in most real-world situations. Moreover, given a conditional distribution,
or an estimate thereof, for many interesting machine learning models, calculating the expected
value in (29) is not generally feasible, especially when the number of features ¢ is high since
this corresponds to a ¢ — |S| dimensional integral of a complex expression. Therefore, estimation
procedures are necessary.

3.5.1 The Off-Manifold Estimate via Monte Carlo Integration

As mentioned, the off-manifold estimate is to estimate the contribution function (29) by Monte
Carlo integration (26) under the assumption of feature independence [2, 1]. Under the assumption
of feature independence, the following rewrite of the contribution function (29) holds

Var g+ (S) = E_ [fy(@)es =25 = E_ [fy(@se,@s)les =]

p(escles=x%) p(escles=x%)
= / fy (e, x5 p(@se |ws = a)dase PRI / fose, w5)p(xse)dzs.,

where the independence assumption leads to the assumption that the conditional distribution
p(se|rs = x%) = p(xse), where p(xsc) is the marginal distribution of the features in S¢. Under
this assumption, the contribution function can be estimated by Monte Carlo integration with
respect to the empirical distribution of the features, discussed in Section 2.4. This yields the
off-manifold estimate

M
o 1 R m *
Uwa,y*(S) M Z fy(zse, x5), (39)
m=1

where ™ for m = 1,2,..., M is a randomly drawn instance from the data set and M is the total
number of Monte Carlo samples. The feature values in . are sampled from the data set. In
practice, we randomly choose an instance in the data set and extract the features in S¢ from it.
This sampling will implicitly follow the empirical distribution of the features in S¢ since more
common feature values are more likely to be drawn because there are more instances in the data
with these feature values. If the independence assumption were not made, then we would have to
sample in a way that considers how the features in S§¢ depend on the features in S. By simply
sampling a point in the data and extracting the values of some of the features, no such relationship
is considered, and only the empirical distribution of the feature in S¢ is taken into account. The

29

=

Digit Coalition Splice 1 Splice 2 Splice 3 Splice 4 Splice 5

Figure 4: Some examples of unrealistic digits that were generated by splicing observations together,
creating the Monte Carlo samples in the off-manifold estimate. The examples of Monte Carlo
samples are captioned “Splice 17-“Splice 5” and the original instance is the observation of the digit
7 at the left-hand side of the figure. The coalition S used to create the splices is shown in the
second position from the left. This figure is taken from [3].

Monte Carlo samples can be drawn from the training data set, the test data set, or both of these
data sets combined. In our experiments that are presented in Section 4 and 5, it is ensured that
the same data set is used in all estimates to ensure that the conditions of the experiments are as
similar as possible.

For S = Q since Q¢ = (), the estimate is
L M L M X
87, (Q = 57 X fulaf @) = 57 Y fuled) = fy(@"),
m=1 m=1

which is the black box model’s prediction for the instance of interest. Thus, this can be computed
separately by evaluating the black box model instead of estimating it using Monte Carlo integration.
For S = {), note that v(f)) = E[f,(x)]. This is the global average prediction of the model. Thus, it
can be estimated as the mean prediction in the data set and only has to be computed once, since
it does not depend on the instance of interest. For the other |Q| — 2 subsets, M samples are used.
Thus in total, to estimate the contribution function for all feature coalitions, (|Q| — 2) - M Monte
Carlo samples are used in the off-manifold estimate. To simplify, we round the total number of
samples off to |Q| - M. This corresponds to |Q| evaluations of the black box model per instance
of interest. The number of model evaluations is typically the size that is used to characterize the
computational cost of the different estimates. Examples of this can be found in among others [2,
4, 3.

As previously mentioned, in the off-manifold estimate (39) of the contribution function (29), the
features in S are assumed independent of the features in S¢. In practice, the features are often
correlated (and thus not independent), and this assumption can lead to unrealistic Monte Carlo
samples with feature combinations that in reality could not have occurred. A good example of this
is given for the MNIST data set [34] in Frye et al. [3], which can be seen in Figure 4. The MNIST
data set consists of images of the handwritten digits 0 to 9. By combining the observations together
under the assumption of feature independence, here resulting in the assumption of independent
pixels, to create Monte Carlo samples, unrealistic digits are created. Although this thesis does
not treat image data, this example is included because it serves as a good visual illustration of
how incorrectly assuming feature independence can result in unrealistic Monte Carlo samples. For
samples like these, the off-manifold method may “evaluate the [black box] model outside its domain
of validity, where it is untrained and potentially wildly misbehaved. This garbage-in-garbage-out
problem is the clearest reason to avoid the off-manifold approach” [3]. Especially deep learning
models are known to be sensitive to distributional shifts [3], which means that evaluating the models
outside the region they are trained on can lead to spurious and misleading final explanations.

Recall from Section 2.4 that the variance of the Monte Carlo integral decreases as M increases. By

reducing the variance, the error (27) in the Monte Carlo integral decreases. However, in our case,
a.s.,M 2 N 2 . .
because vl . “T=5T B[(x5, 25)] # E [fy(z& ®5)] = var -, in general, there
(zse) p(zsc|zs=z5)
is a bias in the estimate. Therefore, even though the variance of the estimate can be reduced by
increasing the number of Monte Carlo samples, the bias term remains, which corresponds to an

error in the estimate.

In general, it is desirable to calculate the Shapley value for dependent features. The exact Shapley

30

value incorporates the dependence structure between features. Therefore, to maintain this, it is
necessary to use another estimation method to approximate the contribution function, that takes
into account the dependence structure of the features. For instance, Aas, Jullum and Lgland [8]
propose several methods for estimating the contribution function (29) without the assumption
of independent features. However, these methods do not scale to higher dimensional problems.
Another contribution function estimation method that does assume feature independence and
scales to higher dimensional problems is the surrogate model [3], which will be presented in the
following section. Similar to the FastSHAP model, the method trains a machine learning model to
learn the contribution function and amortizes the estimation of the contribution function across
the number of instances to explain. Therefore, it can provide estimates fast by evaluating the
surrogate model after the initial computationally costly phase has been performed. This makes
the surrogate model useful in many practical situations.

3.5.2 The On-Manifold Estimate via a Supervised Surrogate Model

As a default choice of an estimator of the contribution function (29) in FastSHAP, Jethani et al.
[4] consider a surrogate model. The surrogate model is a supervised machine learning model that
is trained to learn the contribution function (29). This results in a method with a high initial
computational cost, but after the initial model training, a new explanation can be given with a
simple model evaluation. Thus, the method amortizes the computational cost of estimating the
contribution function over the number of instances to explain. Training a predictive model to either
directly learn the contribution function (29) or learn the conditional distributions p(xse|zs = x%)
has been done previously by Frye et al. [3] and Jethani et al. [9]. In this thesis, the surrogate
model is trained in accordance with the supervised method of Frye et al. [3] like in the FastSHAP
method [4], that was introduced in Section 3.4. The surrogate model is a machine learning model,
a neural network, which has high representation abilities. Details on neural networks can be found
in Section 2.2.2. Unlike the off-manifold estimate from the previous section that assumes feature
independence, a sufficiently large neural network can learn interactions between the features. The
estimate of the surrogate model will, therefore, more closely follow the correct distribution and lie
on the data manifold [3]. Frye et al. [3] provide evidence that the surrogate model outperforms the
off-manifold estimator for some real-world data sets. We now present the details of the method.

Frye et al. [3] introduce their surrogate model in the classification setting. Although the method
can be generalized to the regression setting [3], we here give the details for the classification
setting. Recall that FastSHAP [4] also was introduced in the classification setting, which makes
the surrogate model and FastSHAP compatible. KernelSHAP, as presented in Section 3.3, can
be used both in the classification and regression setting. The combination of KernelSHAP and
the surrogate model is therefore also possible. The surrogate model aims at learning the expected
value of the black box machine learning model conditional on having observed some of the feature
values (29). To replicate the evaluation of the black box model on a subset of the features S, the
idea is to replace the feature values in §¢ with a [mask]-value. Supervised by the black box model’s
predictions for the unmasked, original feature observations, the surrogate model tries to learn
to replicate these predictions accurately, but it only observes the masked vector of features. The
minimizer of the loss function that is used in the training of the surrogate model is the contribution
function (29). Therefore, the surrogate model can learn the contribution function if provided with
a sufficiently large data set to train on. This is the intuition behind the method, and the details
will be given in the following sections.

We use similar notation to Jethani et al. [4] in the description of the surrogate model. The surrogate
model takes as input a masking m(x,S) of the features such that for j € S¢ the feature value x;
is replaced by a value that is not in the support of f (z). Recall that the full black box model
that makes predictions for all K classes is denoted f (z), and as before, fy (z) denotes the model
that makes prediction for a single class y € {1,2,..., K}. Specifically, the jth component of the
masking is defined as

le, j S S,

[mask|, j ¢&S. (40)

mj(mvS) = {

The [mask]-value must be chosen by the user, and can therefore be seen as a hyperparameter of

31

the method, Frye et al. [3] use a value that has not been observed in the data set. We stick to
the notation of Jethani et al. [4] and denote the surrogate model as 0°"(y|m(z,S);3), where 3
are the parameters of the surrogate model. According to Jethani et al. [4], the parameters of the
surrogate model are learned by minimizing

LU(E)= E B

p(x)p

| (F@)ie | i 5):0)) (41)

where the Kullback—Leibler divergence Dkr,(p1||p2) between two probability distributions p; and po

is defined as
sutnin=, g e (212)]

Since the surrogate model 4°*(y | m(x, S); B) was introduced for classification problems, f(z) is a
probability density function, accordingly so is 9°*(y | m(x, S); 3), and using the Kullback-Leibler
divergence is unproblematic. Keeping the probability density function p; fixed, minimizing the
Kullback—Leibler divergence (42) is equivalent to minimizing the categorical cross-entropy between
the distributions. The categorical cross-entropy is defined as

H(p1,p2) = —p}(Ew)[log(pz(w))] = Dxw(p1llp2) — pl](Ew)[log(pl(w))], (43)

where the second term only depends on p;. Therefore, minimization with respect to ps of the
categorical cross-entropy and the Kullback-Leibler divergence is equivalent. As cited in [4], Covert,
Lundberg and Lee [35] show that the global optimizer of (41), which is the surrogate model, is
equivalent to marginalizing out features from f(2) with their conditional distribution, thus,

" (y | m(z",5);8) = E_[f(@)es ==3], (44)

p(zscles=x})
which is exactly the contribution function (29).

Note that in Frye et al. [3], where the supervised surrogate model was introduced, the proposed
loss function was the mean squared error, rather than the Kullback-Leibler divergence as in (41).
However, both loss functions have (44) as the minimizer, which is the contribution function (29).
However, for classification problems, it is more common to use the categorical cross-entropy loss
than the mean squared error, therefore we stick to the practice of Jethani et al. [4] and use the
loss function (41). This also makes it easier to compare our results to those of Jethani et al. [4]
since we use the same loss function as them.

In summary, to estimate the contribution function, a machine learning model can be trained on
masked feature observations from the original data set with (41) as the loss function. The response
variables used in the training are the predictions of the black box model, not the response variables
in the original data set. In practice, it is necessary to randomly sample subsets S determining
which features to mask according to (40) and samples x from the data set to train the model
on, in order to simulate taking the expectation over p(z) and p(S) in (41). The samples of & are
drawn from the available data set, and therefore, follow the empirical distribution of the features in
the data set. Moreover, the subsets S are drawn from the Shapley kernel probability distribution
p(Q,8) x k(Q,S) where k(Q,S) is defined in (32).

The details of training the surrogate model are given in Algorithm 4. The [mask]-value used to fill
in the missing feature values should not be in the support of the black box model f(x). In addition,
for the surrogate model to learn that some features have been masked, the masking locations can
be provided to the model. This is done by providing a masking net which for each observation is
the same dimension as . The elements of the mask net are 0 if the corresponding feature is in S°¢
and 1 if the feature is in §. Whether to append this to the observations the model is trained on is
determined by a boolean parameter append mask, which is given as an input in Algorithm 4. The
other input parameters of the algorithm are the [mask]-value, the feature observations from the
original data set {&}? ; that will be used to train the model on, and the corresponding predictions
of the black box model for these feature observations {y””}" ;. These are used as the response
variables in the training. The algorithm outputs the surrogate model that predicts the value of
the contribution function for a masked feature vector 9°"(y|m(x,S);3). The first step of the

32

Algorithm 4: Surrogate model training

=

10

11

12

13

14

15

Input: Mask value: [mask]
Input: Boolean determining whether to append masking to the data set that the
surrogate model is trained on: append mask

Input: Feature observations: {z;}"

Input: Black box model’s predictions, which are denoted {y:?b};‘zl in the algorithm

Output: Contribution function estimator: ¢°"(y|m(x,S); 8)

Initialize 0°"(y|m(z,S); 3)

while not converged do

' ~ {x;}"_ | sample a feature observation from the training data given as input with
corresponding response yy

sample &’ ~ p(S) x k(Q,S)

'l jeds’,

[mask], j ¢S

create masked vector @y, with elements (z%,); =

if append mask then // If specified, the model is also given the coalition
&’ as an input to train on
| @l e (2. &)
end
L+0
fory=1,2 ..., K do
predict 0 < °"(y|xs,; B)
calculate £ < L+ H (0, y,)
end

update 3 < Adam Update(L)

end

33

algorithm is to initialize the surrogate model 9°"(y|m(x,S);3). Then, until convergence, Steps
3-14 are repeated. In Step 3, a sample ' is drawn randomly from the data set given as input to
the model. It is paired with the corresponding prediction of the black box model y; ;. In addition,
in Step 4, a feature coalition S is drawn according to p(Q,S) x k(Q,S) defined in (32). In Step 5,
a masked vector based on the sample &’ and coalition S is created in accordance with (40). Then,
if the user has specified to append the mask net to the training data, this is done in Step 7 of the
algorithm. Then, the loss is initialized to 0 in Step 9. Next, for the K classes y = 1,2,..., K, the
current estimate of the model is predicted in Step 11. The categorical cross-entropy loss H (43) of
the prediction is added to the loss in Step 12. The loss is added because the loss over all K classes
must be considered. After the loss over all K classes has been computed, the parameters 3 of the
surrogate model are updated according to the Adam optimization scheme given in Algorithm 1 in
Step 14.

3.6 Full Procedures for Estimating the Shapley Values

In the previous sections, two contribution function estimators and two Shapley value estimators
have been presented. The results of investigating the accuracy of both the contribution function
estimates and the Shapley value estimates on simulated data will be presented in Section 4. Since
there are two methods for performing each of the two steps in the estimation procedure, there are
in total four ways to finally estimate the Shapley values. These are as follows.

(A) KernelSHAP-Off-Manifold: The original KernelSHAP version involves estimating the
contribution function by the off-manifold estimate (39). Then, estimating the Shapley values
by the KernelSHAP approximation (34).

(B) KernelSHAP-Surrogate: Estimating the contribution function by a surrogate model
trained according to Algorithm 4, and estimating the Shapley values by the KernelSHAP
approximation (34).

(C) FastSHAP-Off-Manifold: Combining the off-manifold estimate of the contribution func-
tion (39) with a machine learning model ¢™*(x,y;) trained to predict the Shapley values
according to Algorithm 2. The FastSHAP model ¢t (x, y; 0) is trained with the off-manifold
estimate as the input of the contribution function estimator in Algorithm 2.

(D) FastSHAP-Surrogate: The original version of FastSHAP, using the surrogate model trained
according to Algorithm 4 to predict the value of contribution function, and the FastSHAP
model ¢ (x,y;0) to predict the Shapley values. The FastSHAP model ¢®t(z,y;8) is
trained with the surrogate model as the input of the contribution function estimator in
Algorithm 2.

3.7 The Computational Cost of the Estimators

In many practical applications, the computational cost related to an estimation method is an
important factor in choosing a method. We will first consider the computational cost of the off-
manifold method, the surrogate model, the KernelSHAP estimate, and the FastSHAP separately.
Then, based on the individual cost of each estimator, we outline the cost of the full estimation
procedures, defined in Section 3.6. For the estimators we consider, it is difficult to give exact
expressions for the computational cost, therefore, we give a simplified overview.

e Off-manifold estimate: To calculate the off-manifold estimate (39), one must create
M -|Q] = M - 27 Monte Carlo samples if all Q feature coalitions are considered. In addition,
one must evaluate the black box model |Q| = 27 times. This computation must be repeated
for each instance we want to explain.

e Surrogate model: The cost of the surrogate model can be split into two parts. These are
as follows:

34

— Training: the surrogate model must be trained according to Algorithm 4. The training
corresponds to a high initial cost that amortizes across the instances to be explained.

— Providing an estimate: In order to compute the value of the contribution function for
all feature coalitions S in Q for an instance of interest, the surrogate model must be
evaluated once for all the |Q| = 29 coalitions. This must be repeated for all instances
to be explained.

o KernelSHAP: The KernelSHAP estimate (34) needs access to the value of the contribution
function, or an estimate thereof, for all feature coalitions & in D. We assume here that it
already has been computed and stored in a vector 'uf*’y*. Then, the computational cost of

KernelSHAP can be divided into two parts as follows:

— Initialization: The matrix Rp in (34) does not depend on the instance of interest and
can therefore be precomputed and stored. It must only be computed once. Hence, the
initialization cost is amortized over the instances to be explained.

— Providing an estimate: To provide the explanation for an instance, one must compute
the matrix-vector product Rp'vf*,y*. This must be repeated for all instances to be
explained.

e FastSHAP: The computational cost of the FastSHAP model is similar to that of the sur-
rogate model. It divides into two parts as follows:

— Training: The FastSHAP model must be trained according to Algorithm 2. This is an
initial cost that amortizes over the instances to be explained. The model can be used to
explain any number of instances after the initial training. In the training, a contribution
function estimator must be provided as input in Algorithm 2. It is assumed that this is
given.

— Providing an estimate: To provide an explanation with FastSHAP, the FastSHAP model
@'t (x, y; @) must be evaluated once for every instance of interest x*.

Correspondingly, the outline of the computational cost of the full estimation procedures is as
follows:

e KernelSHAP-Off-Manifold: The cost divides into two parts, which are:

— Initialization: The initialization corresponds to that of KernelSHAP, which means that
the matrix Rp in (34) must be computed.

— Providing an estimate: To provide an explanation for an instance of interest one must
first compute the off-manifold estimate for all feature coalitions in D, which is stored
in the vector va*’y*. This corresponds to generating M - |D| Monte Carlo samples and
evaluating the black box model |D| times. Then, one must compute the matrix-vector
product RpvZ. ..

e KernelSHAP-Surrogate: The computation of the KernelSHAP-Surrogate method is as
follows:

— Initialization: The surrogate model must be trained according to Algorithm 4. In
addition, the matrix Rp in (34) must be computed.

— Providing an estimate: Firstly, the surrogate model must be evaluated once for all
feature coalitions in D. The values of the surrogate model’s predictions are stored in

the vector vf*yy*. Then, the matrix-vector product vaf*7y* must be computed.

o FastSHAP-Off-Manifold: The cost divides as follows:

— Initialization: The FastSHAP model must be trained according to Algorithm 2. The
off-manifold estimator is given as the input of the contribution function estimator in
Algorithm 2. When training the model, the off-manifold estimate must be computed
for all feature coalitions S that are considered per instance in a batch.

35

— Providing an estimate: The FastSHAP-Off-Manifold model must be evaluated for each
instance of interest x*.

e FastSHAP-Surrogate: The cost is divided into two parts as follows:

— The surrogate model must be trained according to Algorithm 4. Then, with the sur-
rogate model as input, the FastSHAP model must be trained according to Algorithm
3. The surrogate model is evaluated for all feature coalitions per instance in a batch
during the training of the model.

— Providing an estimate: The FastSHAP-Surrogate model must be evaluated for each
instance of interest x*.

In the experiments that will be presented in Sections 4 and 5, for the different estimation methods,
the central processing unit (CPU) time it takes to provide an estimate will be given. The
CPU time is the usage time of a central processing unit to complete a computation. It provides a
more accurate estimate of the computation time than a wall clock because it will not be influenced
by other processes running simultaneously. In Python, the function process_time in the time
library [36] can be used to get the CPU time of a process. All experiments presented in Sections
4 and 5 have been run on the same laptop with an Intel(R) Core(TM) i7-8550U CPU. The CPU
time reported in the experiments is the total for the eight threads in the CPU.

3.8 Shapley Values for Global Interpretability

In the theoretical description of the Shapley values, we have described the method as a local
explanation method. Local refers to the method explaining the prediction of the black box model
for a single instance of interest. The Shapley values attribute the prediction of the black box model
to its features. Therefore, if the Shapley values for all observations in a data set are computed,
these can be aggregated to provide global Shapley values. The global Shapley value of a feature is
the average of the absolute Shapley values of that feature over the instances in the data set. The
global Shapley values indicate which variable is the most important for the model’s predictions
overall. If a feature has a high global Shapley value, it has been assigned a high, in absolute value,
attribution on average for the observations in the data set. It has, therefore, on average, been
important for the black box model’s predictions. In practice, because the computational cost of
the Shapley values is high, the global Shapley values can be approximated by considering a subset
of the full data set rather than the whole data set.

36

https://docs.python.org/3.8/library/time.html#time.process_time
https://docs.python.org/3.8/library/time.html#time.process_time

4 Simulation Study

In many real-world problems, the exact Shapley values are unknown due to the contribution
function (29) being analytically intractable and the computational complexity of computing the
Shapley values (28) that is exponential 27 in the number of features ¢. Since the exact Shapley
values are generally unknown in practical situations, checking the accuracy of the Shapley value
estimates is difficult. Therefore, it is necessary to simulate data where either the Shapley values
are known, or a good estimate thereof can be computed using a preexisting method known to be
accurate. The Shapley value estimates can then be compared to this estimate. In the simulations
that will be presented in this section, we will not have access to the exact Shapley values. However,
we will be able to estimate them accurately. Therefore, we can evaluate the accuracy of the
Shapley value estimators presented in Sections 3.3 and 3.4 and the contribution function estimators
presented in Section 3.5.

Recall that the computation of the Shapley values can be seen as a two step estimation procedure.
The first step is to estimate the contribution function, and the second is to estimate the Shapley
values for a given contribution function. In Section 3.5, two estimators of the contribution func-
tion were presented. To evaluate these, it is necessary to be able to compute the true value of
the contribution function (29). If the conditional distributions p(xsc|xs = x¥%) are known, the
Monte Carlo integral (26) using the black box model evaluated at samples from this distribution
is an unbiased estimator of the contribution function. Therefore, this estimate can be used as the
true value, or more precisely, a sufficiently good estimate, of the contribution function. To invest-
igate the accuracy of the estimation methods, simulated data where the conditional distributions
p(x|es = %) are analytically given is used. Then, fixing an estimate of the contribution function,
the exact weighted least squares formulation (33) of the Shapley values can be used to obtain a
ground truth estimate of the Shapley values. The Shapley value estimators from Sections 3.3 and
3.4 will be evaluated against this.

In Section 2.3, two multivariate distributions where the conditional densities p(x|zs = x¥%) are
known were introduced. These are the multivariate normal distribution and the multivariate Burr
distribution. Both distributions will be used to simulate data, and the performance of the methods
will be evaluated for these simulated data sets. In general, the multivariate normal distribution has
many desirable properties, but it “behaves too nicely” to replicate real-world data in many cases.
Therefore, the Burr distribution is also used because it can have heavier tails, be skewed, and have
non-linear correlation structures. Hence, it more accurately represents a complex real-world data
set.

The outline of this chapter is as follows. In Section 4.1, the procedure we follow in the experiments
is described in detail. Then, in Section 4.2, the evaluation metrics that we will use to measure the
accuracy of our method are presented. Next, the simulation models that we use are presented in
Section 4.3. Finally, the evaluation of the contribution function estimators is presented in Section
4.4, and in Section 4.5, the Shapley value estimators are evaluated. In all the experiments, we
use our own implementation of the estimation methods. The implementation can be found on
GitHub. Some details on the hyperparameters of the estimation methods used in the simulation
experiments are given in Appendix A.

4.1 Experimental Design

We perform experiments using several simulated data sets. In each simulation experiment, the
following steps are repeated.

1. Generate n observations of feature variables & € RY according to one of the models that will
be described in Section 4.3. Set 20 % aside to form a test data set.! Then, of the remaining 80
% of the observations, let 80 % be the training data set, and the other 20 % be the validation
data set. To investigate the effect of the size of the available data set, this is performed for

n the experiments, we only used 100 test observations from the test data set. It was, therefore, unnecessary to
generate additional observations in the test data set.

37

https://github.com/fridaaas/master

data set sizes n = 2,000, 10,000 and 100,000, which corresponds to training data sets of sizes
Ntrain = 1,280, 6,400 and 64,000, respectively. In addition, for one of the simulation models,
the experiments are also performed for n = 200,000, corresponding to nain = 128,000. It
will later be argued why this is only done for one of the simulation models.

All estimates, both of the contribution function and the Shapley values, are calculated using
the training data set. This is to make the conditions of each experiment as equal as possible.
In addition, since a machine learning model is trained both to estimate the contribution
function using the surrogate model and to predict the Shapley values using the FastSHAP
predictor ¢™t(z,y;0), it makes sense to stick to the machine learning practice of using
separate training, validation, and test data sets. This is to avoid typical machine learning
problems like overfitting to the training data set. The surrogate model and FastSHAP model
o™t (x, ;) are trained on the training data set, and the validation data set is used to
evaluate the model at the end of an epoch, as is common when training neural networks, see
Section 2.2.2.4 for details on this.

It is interesting to investigate if the performance of the estimators varies depending on the
size of the data set because, in real-world applications, the number of available observations
can vary greatly. Therefore, empirical results ranking the methods in different situations can
make it easier to decide which method to use based on the properties of the available data
set.

2. For all simulated feature observations, compute the corresponding response variables. We
will return to this in Section 4.3, where the details of the simulation models are given. The
response variable is either 0 or 1, corresponding to a classification data set.

3. In all experiments, an XGBoost classifier with default hyperparameter settings is used as the
black box machine learning model that will be explained. The XGBoost model is trained
on the training data set. It outputs the predicted probabilities of belonging to class 0 and
class 1. For reproducibility, the most important hyperparameters in the XGBoost model
are listed. They are as follows. The number of boosted trees n_estimators is set to 100,
the learning rate eta is set to 0.3, the maximum depth max_depth of each tree is set to
6, and the L2-regularization penalty parameter A is set to 1. Moreover, the minimum loss
reduction required to proceed with a new partition on a leaf of the tree gamma is set to 0, i.e.,
the model will keep building trees even if there was no improvement in the last step. The
hyperparameter min_child weight, determining the minimum weight needed inside a child
to keep partitioning, is set to 1. This parameter corresponds to the minimum number of
instances needed in each node if linear regression mode is used. In the theoretical description
of the XGBoost model in Section 2.2.1, we outlined the method and its working mechanisms.
However, the full XGBoost library has more hyperparameters and functionality than we
covered. In this thesis, we use the XGBoost model as an example of a complex black box
model. The focus of this thesis is the contribution function and Shapley value estimators.
Therefore, we do not provide more details on XGBoost and its hyperparameters here, but
refer to the documentation of the XGBoost Python package [16] for more details.

4. Draw 100 test observations from the test data set. The contribution function and Shapley
value estimates will be computed for these observations.

5. Perform either step (a) or step (b) below:

(a) Evaluate the contribution function estimators: When evaluating the contribution
function estimators, the number of features in the simulation model ¢ is kept constant
and equal to 10. The contribution function estimates will be computed for all 2¢ =
210 = 1024 feature coalition S, and the accuracy of the estimates is calculated over all
the coalitions. For each simulated data set, the following steps are performed.

e Train the surrogate model using the training and validation data sets according to
Algorithm 4. Next, for the 100 test observations, use the surrogate model to predict
the contribution function estimate for all coalitions §. The hyperparameters and
architecture of the surrogate model are given in Appendix A.

38

https://xgboost.readthedocs.io/en/stable/python/python_api.html

e Compute the off-manifold estimate (39) with the number of Monte Carlo samples
M equal to 100, 300, and 1,000. The number of Monte Carlo samples used in the
off-manifold estimate is varied to investigate how this affects the method’s accuracy.
Repeat this for all coalitions S of the features for all 100 test observations.

e Compute the unbiased Monte Carlo estimate (26) of the contribution function using
the analytical formula for the conditional probability distributions p(z|zs = x%)
of the simulation models. This will be used as the ground truth value of the con-
tribution function. Repeat this for all coalitions S for the 100 test observations.

(b) Evaluate the Shapley value estimators: When evaluating the Shapley value es-
timates, the contribution function estimate is kept fized for all Shapley value estimation
methods, as well as for estimating the ground truth Shapley values. In our experiments,
the number of features to consider must be sufficiently high to replicate a real-world
data set, but sufficiently low such that the exact Shapley values (33) can be computed
for a given estimate of the contribution function. To investigate how the number of
features ¢ affects the performance of the methods, the experiments are performed for
q = 10,11,...,16 feature variables. Since the KernelSHAP estimate (34) uses only a
subset of size |D| out of the total of 27 feature coalitions, it is especially interesting to
investigate the effect of the number of features on the estimate. In each experiment, we
perform the following steps.

e Train the FastSHAP prediction model ¢'*(x,y;#) using the training and valida-
tion data sets according to Algorithm 2. Use ¢™t(x,y;0) to predict the Shapley
values of the 100 test observations. Repeat this for ncoas = 4,32, and 64, where
Necoals 1S the hyperparameter of the model that determines the number of feature
coalitions S to consider per observation in a batch, as outlined in the more detailed
Algorithm 3. The other hyperparameters and architecture of the FastSHAP model
are given in Appendix A.

e Compute the KernelSHAP estimate (39) with the number of coalitions |D| equal to
50,60, 70,...,1,000 for the 100 test observations. We do not use paired sampling
in KernelSHAP.?

e Compute the exact Shapley values (33) for the 100 test observations and use this
as the ground truth to evaluate all the estimates against.

4.2 Evaluation Metric

To evaluate the accuracy of the estimation methods, an evaluation metric must be specified. Here,
we specify both the evaluation metric that will be used to evaluate the contribution function
estimates and the evaluation metric that will be used to evaluate the Shapley value estimates.

The me