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Abstract

The main purpose of this thesis is to study the state of the art lattice-based zero-knowledge protocol
that was given by Lyubashevsky, Nguyen and Plançon. We start by introducing the cryptographic
definitions and mathematical theory that we need. In order to fully understand the scheme, we look
at some of the previous lattice-based zero-knowledge schemes that lead up to it. All of these protocols
uses lattice-based commitment schemes, and we dedicate a chapter to look at two commitment
schemes for lattice elements and their opening proofs. In the final chapter we end up with a practical
protocol that can be used in a variety of lattice-based cryptographic systems.
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Sammendrag

Hovedform̊alet med denne oppgaven er å studere den nyeste lattice baserte zero-knowledge pro-
tokollen som ble introdusert av Lyubashevsky, Nguyen og Plançon. Vi starter med å introdusere
de kryptografiske definisjonene og den matematiske teorien vi trenger. For å oppn̊a full forst̊aelse
av protokollen, ser vi p̊a noen tidligere lattice baserte zero-knowledge protokoller som førte frem til
denne. Alle disse protokollene bruker lattice baserte commitment systemer, og vi vier ett kapittel
til å se p̊a to ulike commitment systemer for lattice elementer og tilhørende bevis av åpning. I det
siste kapittelet kommer vi frem til en praktisk protokoll som kan bli brukt i en mengde ulike lattice
baserte kryptografiske systemer.
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Chapter 1

Introduction

Public key cryptography bases its security on mathematical problems that are hard to solve. Tradi-
tionally, the factorization problem and the discrete logarithm problem have been used, as the best
known techniques for solving these problems would take so much time that the scheme is practically
secure. However, the field of quantum computing poses a huge threat to such public-key cryptogra-
phy, as it could rather easily break the security of these schemes. This is due to Shor’s algorithm,
developed by Peter Shor in 1994 [25], that when run on an efficient quantum computer, could solve
the factorization problem and the discrete logarithm problem in much less time.

Hence the need for post-quantum cryptography, cryptographic schemes that are secure even
with the existence of powerful quantum computers, arise. One of the currently strong candidates is
lattice-based cryptography. This is because there are lattice-problems believed to be hard to solve
even for a quantum computer, all the while lattices allow for the construction of practical schemes.

One cryptographic system that is important in many applications is zero-knowledge proofs. These
are schemes that allows a prover to prove that a given statement is true, or that it knows some secret
information, without revealing any additional information. Such schemes can be used for instance
to enforce honest behaviour while preserving privacy, or in verification. It is thus clear that we need
zero-knowledge proofs for lattice relations.

One of the fundamental hardness assumptions that lattice-based cryptography is built upon, is
that it is difficult to find vector s of low norm satisfying As = u over the ring Rq. Hence many
lattice-based protocols will have to be able to prove knowledge of such an s. But it turns out that
proving that ∥s∥ is small is hard to do practically. One of the first attempts in constructing such a
proof used Stern’s protocol [26] in a lattice setting. Due to a soundness error of 2/3 these protocols
had to be repeated so many times that the proofs reached several megabytes in size, and were hence
very unpractical.

When Baum et al. introduced a more efficient lattice-based commitment scheme for vectors
over Rq in [4], papers like [28, 6] soon used it to build lattice-based zero-knowledge proofs with
lower soundness error by exploiting the security properties of the commitment scheme. The proofs
consisted of a proof of linear relations and a product proof of committed values to show that the
secret has small coefficients, and were only several hundred kilobytes in size. These schemes were
significantly improved in terms of proof size in [3, 10, 17], each by optimizing parts of the scheme.
Attema et al. [3] introduced a more practical product proof of committed values, and Esgin et al.
introduced a more efficient proof of linear relations. Lyubashevsky et at. [17] further optimized
the schemes, for instance by using a new version of rejection sampling. At this point the main
obstacle in reducing the proof sizes were the size of the commitments and opening proofs. Recently
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Lyubashevsky, Nguyen and Plançon [16] further improved these schemes by using a new commit-
ment scheme, making the proof sizes even smaller.

The goal of this paper is to study the state of the art lattice-based zero-knowledge proof of knowledge
protocol that is given by Lyubashevsky Lyubashevsky, Nguyen and Plançon in [16]. We focus or
attention on proofs that uses commitment schemes, and we look at how such schemes have developed
over the past few years, in order to understand the complete picture of how the latest schemes are
constructed. In Chapters 2 and 3 we present the cryptographic and mathematical theory that is
necessary for this paper. We note that several subsections here are taken from, or very similar to,
the corresponding chapters of the Specialization Project [27], as this paper considered some of the
same topics. Further, we in Chapter 4 present the commitment schemes that we use in the paper,
accompanied by a full security analysis and proofs of opening.

In Chapter 5 we explain three different zero-knowledge proofs of lattice relations, that all are
important in understanding the latest one. We start with the scheme by Bootle et al. [6], that proves
knowledge of a s⃗ with coefficients in {0, 1, 2} satisfying As⃗ = u⃗ over Zq, by using commitments and
NTT coefficients. We note that this is a more general statement, but by choosing A to have a
certain structure, this is equivalent to proving knowledge of s satisfying As = u over Rq. Next, we
investigate the scheme by Attema et al. [3], which is a more efficient scheme for proving multiplicative
relations of committed values. Finally, we consider the scheme by Esgin et al. [10], which is a more
efficient scheme for proving linear relations.

We then look at the main building blocks for the final scheme in Chapter 6. The goal is to
understand how to construct schemes for proving many quadratic equations in s and that many
polynomial evaluations in s have no constant coefficients. Then, we explain how such a scheme can
be used to prove norm bounds on lattice elements, and give the final general state of the art protocol
in Chapter 7.
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Chapter 2

Cryptographic background

In this chapter we introduce the theory and definitions we need in order to build zero-knowledge
protocols and commitment schemes. We start in Section 2.1 by introducing the basic notation and
definitions that we need in order to define the cryptographic schemes and security properties that we
will use in this paper. In Section 2.2 we define commitment schemes, before we in Section 2.3 define
the notion of zero-knowledge proofs of knowledge. We note that Section 2.1 and parts of Section 2.3
are taken from [27].

2.1 Notation and definitions

If X is a set, we use the notation x
$← X to denote that x is chosen uniformly at random from X. If

U is a distribution, the notation x
$← U will denote that x is randomly chosen according to U . We

will also denote by a← b that a gets assigned the value b. We write i ∈ [n] to mean i = 1, . . . , n.

In order to formally define the security of cryptographic schemes, we use the concepts of negli-
gibility, statistical distance and indistinguishability. The term negligible is used to indicate that
something is ’too small to matter’. In this paper we will use the term negligible when something
very small, but we will also use the following asymptotic definition.

Definition 1 ([8]). ε(l) is negligible in l if for any polynomial p, ε(l) ≤ 1/p(l) for all large enough l.

In order to say something about how similar two probability distributions are, we need to define
statistical distance.

Definition 2 ([8]). For two probability distributions U and V , the statistical distance between them
is

∆(X,Y ) =
∑
y

|U(y)− V (y)|,

where U(y) and V (y) denotes the probabilities U and V assigns to y, respectively.

Let U be a probabilistic algorithm. We will now denote by Ux the probability distribution of U ’s
output when run on input x. We can now give a formal definition of indistinguishability.

Definition 3 ([8]). Given two probabilistic algorithms, or families of distributions, U and V , we
say that U and V are:
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– Perfectly indistinguishable if Ux and Vx have the same probability distribution, Ux = Vx, for
every x.

– Statistically indistinguishable if the statistical distance between Ux and Vx is negligible in the
length of x for every x.

– Computationally indistinguishable if for every algorithm D that can run in poly(n) time, the
advantage in determining which distribution an output x of length n is from, is negligible in n.
Namely that |pU,D(x)−pV,D(x)| = neg(n), where pU,D(x) and pV,D(x) denotes the probability
that D guesses U when x is from U and V when x is from V , respectively.

For two probabilistic algorithms U and V , we will denote by x
$← UV (y) the output of U on

input y, when U is given black-box access to V .

2.2 Commitment schemes

Commitment schemes are one of the fundamental cryptographic primitives, and can be used in a
variety of cryptographic protocols. Commitment schemes allows for one to commit to a value while
keeping it hidden, with the ability to reveal the committed value later. In this paper we will use such
schemes as a part of zero-knowledge protocols. We now give a formal definition of a commitment
scheme, which was first introduced by Blum [5].

Definition 4 ([4]). A commitment scheme consists of algorithms (KeyGen,Commit,Open) for key
generation, commitment and opening, respectively, such that

– KeyGen(1λ) is a probabilistic algorithm that on input a security parameter 1λ outputs the
public parameters pp ∈ {0, 1}poly(λ), including a randomness space χ

– Commit(pp,m, r) is a probabilistic algorithm that on input the public parameters pp and a

message m, draws r
$← χ and outputs a commitment c ∈ {0, 1}poly(λ) under the randomness

– Open(pp,m, r, c) is a deterministic algorithm that on input the public parameters pp, a message
m, a commitment and opening c, r ∈ {0, 1}poly(λ), outputs a bit b ∈ {0, 1}

We continue by defining the properties that we want our scheme to satisfy. It is important that
the message one commits to is the only message that the commitment can open to. This ensures
that a party cannot change the message after they have committed to it, and is called the binding
property. It is also crucial that the commitment does not reveal anything about the message. This
is called the hiding property. Also, we require that honestly generated commitments are accepted
by Open.

Definition 5. The commitment scheme (KeyGen,Commit,Open) is complete if

Pr
[
Open(pp,m, r, c) = 1

∣∣ pp $← KeyGen(1λ), c
$← Commit(pp,m, r)

]
= 1,

where the probability is taken over the randomness of KeyGen and Commit.

Definition 6. The commitment scheme (KeyGen,Commit,Open) is hiding if an algorithm A cannot
distinguish which of two chosen messages a commitment is to. We say that the advantage of an

4



algorithm A in breaking the hiding property is∣∣∣∣∣Pr
[
b′ = b

∣∣∣∣∣ pp
$← KeyGen(1λ), (m0,m1)

$← A(pp), b $← {0, 1},

c
$← Commit(pp,mb, r), b

′ $← A(c)

]
− 1

2

∣∣∣∣∣,
where the probability is taken over the randomness of KeyGen and Commit.

Definition 7. The commitment scheme (KeyGen,Commit,Open) is binding if an algorithm A cannot
find two valid openings to a commitment for different messages. We say that an algorithm A has
probability

Pr

[
m ̸= m′,Open(pp,m, r, c) = 1

Open(pp,m′, r′, c) = 1,

∣∣∣∣ pp $← KeyGen(1λ), (m,m′, r, r′, c)
$← A(pp)

]
,

in breaking the binding property, where the probability is taken over the randomness of KeyGen.

2.3 Zero-knowledge protocols

Zero-knowledge protocols are important cryptographic primitives that allows a party to prove that a
given statement is true, or that it knows some secret, without revealing anything other than that the
statement is true. Such schemes are used in many cryptographic protocols, for instance to enforce
honest behaviour, in digital voting and in verification.

In order to define zero-knowledge protocols, we start by introducing the concept of an interactive
proof system, as it is defined in [8]. Suppose that you have the interactive algorithms P (prover)
and V (verifier), and a language L ⊂ {0, 1}∗. (P,V) are now given the input x. Through interactions
between P and V, the prover will claim that x ∈ L and the verifier will try to determine whether this
is true or not. The interaction between the prover and the verifier ends with the verifier outputting
either accept or reject, indicating whether (P,V) accepts or rejects x. We will in this paper denote
by (P,V) honest algorithms that follow the protocol, and by (P∗,V∗) possibly dishonest algorithms.

Definition 8. (P,V) is an interactive proof system for the language L if the following properties
hold.

Completeness: for all x ∈ L, the probability that (P,V) accepts x is non-negligible.

Soundness: for all x ̸∈ L and for any prover P∗, the probability that (P∗,V) accepts x is negligible
in the length of x.

We can extend this definition to a situation where the prover tries to convince the verifier that
it has ’knowledge’ related to the publicly given x. For languages L ⊂ {0, 1}∗ and W ⊂ {0, 1}∗, we
can define a relation R ⊆ L ×W to be such that if (x,w) ∈ R for x ∈ L and w ∈ W , then w is
called a witness for x. Suppose now that the prover and the verifier are given a public x, and that
the prover is given a secret w. P now tries to convince V that w is a witness for x, and V either
accepts or rejects this fact. We now give the definition of a proof of knowledge, following the idea
in [20].

Definition 9. The interactive protocol (P,V) is a proof of knowledge for the relation R if it satisfies
the following properties

5



Completeness: for all (x,w) ∈ R, the probability that (P,V) accepts x when P has input w,
is non-negligible.

Knowledge soundness: there exists an algorithm K, called a knowledge extractor, such that
for any prover P∗ with non-negligible probability of making V accept, if K can interact with P∗,
then w

$← KP
∗
(x) is such that (x,w) ∈ R with non-negligible probability. If we for every x ∈ L

have that
Pr[(x,w) ∈ R | w $← KP

∗
(x)] ≥ Pr[(P∗,V) accepts x]− ε,

we say that the protocol has soundness error ε.

The knowledge soundness property ensures that the prover actually possesses the knowledge they
claim to have, by ensuring that it is hard to create proofs of incorrect statements. We note that
when a protocol has a large soundness error, the protocol can be repeated to reduce this error. This
will however increse the total proof size.

2.3.1 Zero-knowledge

Goldwasser, Micali and Rackoff introduced the concept of zero-knowledge in [11]. Zero-knowledge is
a property that guarantees that the prover does not reveal any additional information. We denote

by t
$← (P(x,w),V(x)) the transcript produced by the protocol (P,V) on respective inputs x and

w.

Definition 10. An interactive proof of knowledge (P,V) is zero-knowledge if for any verifier V∗ there
exists a probabilistic simulator S such that for an adversary A, the advantage in distinguishing the
output of (P,V∗) from the output of S,∣∣∣∣∣Pr [b′ = b

∣∣ b $← {0, 1}, t0
$← (P(x,w),V∗(x)), t1

$← S(x), b′ $← A(tb)
]
− 1

2

∣∣∣∣∣,
is negligible [20].

One is usually interested in computational zero-knowledge, but one can also achieve perfect or
statistical zero-knowledge, depending on the type of indistinguishability we have between (P,V∗)
and S [8]. This property can also be relaxed into the setting where we only consider an honest
verifier V, meaning that the verifier follows the protocol.

Definition 11. An interactive proof of knowledge (P,V) is honest-verifier zero-knowledge if there
exists a probabilistic simulator S such that for an adversary A, the advantage in distinguishing the
output of (P,V) from the output of S,∣∣∣∣∣Pr [b′ = b

∣∣ b $← {0, 1}, t0
$← (P(x,w),V(x)), t1

$← S(x), b′ $← A(tb)
]
− 1

2

∣∣∣∣∣,
is negligible.
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2.3.2 Σ-protocols

A common type of zero-knowledge proofs of knowledge is the Σ-protocol. These are interactive
protocols that work in the following three move manner [7].

1. P sends a message a to V

2. V sends a random string e to P

3. P sends a reply z, and V decides to accept or reject based on x, a, e, z

We require Σ-protocols to satisfy the same completeness and zero-knowledge properties as previous,
but we can define a special version of soundness.

Definition 12. The above proof of knowledge is a Σ-protocol for the relation R if it satisfies the
completeness and honest-verifier zero-knowledge properties as defined previously, and the following
soundness property.

Special soundness: There exists an algorithm E, called a special extractor, such that for any

x with accepting transcripts (a, e, z) and (a, e′, z′) with e ̸= e′, then w
$← E(x, (a, e, z), (a, e′, z′)) is

such that (x,w) ∈ R with overwhelming probability.

Many of the protocols presented in this paper will have this, or a very similar, structure. For
part two of the protocol, we will often call the random string e a challenge. We will also specify
beforehand a challenge space, a space for which the verifier can draw the challenge from. This space
have to be defined in such a manner that the protocol will satisfy the soundness property. We note
that we in this paper will not specify the relation the protocols are for, but rather state what the
protocols prove.

2.3.3 Commit-and-prove simulatability

When commitments are used as a part of zero-knowledge protocols, we have to be able to simulate
the commitments in order to achieve zero-knowledge. This is usually not a problem, since the hiding
property of commitment schemes makes sure that commitments look uniformly random. However,
in some protocols we wish to create intermediate commitments under the same randomness, and
this cannot be simulated in a zero-knoweldge manner.

We therefore introduce a new form of simulatability that was introduced by Lyubashevsky et al.
in [17], called commit-and-prove simulatability. This instead makes sure that the view of the com-
mitment and the protocol output is computationally indistinguishable for all committed messages.
In practice this means that one can no longer reuse the commitment, but this is not a problem for
applications, since commitments never needs to be reused in practice.

Definition 13 ([17]). An interactive proof of knowledge (P,V) is commit-and-prove simulatable for
the relation R if there exists simulators SimCom and SimProve such that for all adversaries A:

Pr

[
(x,m1, . . . ,mn)

$← A, r1, . . . , rn
$← χ, ∀i, ci = Commit(mi, ri),

t
$←
(
P
(
x, (m1, r1), . . . , (mn, rn)

)
,V(x)

)∣∣∣∣∣ (x, (m1, . . . ,mn)) ∈ R
∧ A(c1, . . . , cn, t) = 1

]

≈ Pr

[
(x,m1, . . . ,mn)

$← A, c1, . . . , cn
$← SimCom(x),

t
$← SimProve(x, c1, . . . , cn)

∣∣∣∣∣ (x, (m1, . . . ,mn)) ∈ R
∧ A(c1, . . . , cn, t) = 1

]
where χ is a probability distribution on the randomness space.

7



2.3.4 Proving knowledge soundness

There are many techniques for proving that a protocol is knowledge sound. In this paper we will
use one such technique for extracting transcripts, a collision game introduced by Attema et al. in
[2]. The strategy starts by letting H ∈ {0, 1}R×M be a binary matrix where the R rows correspond
to the prover’s randomness and the M columns corresponds to the verifier’s randomnes, when the
challenge space is of size M . We can denote the entry corresponding to randomness r and challenge
c ∈ C by H(r, c), and this entry is equal to 1 if and only if the corresponding protocol transcript is
accepting. One can now define the following extractor E .

1. First, E samples (r, i)
$← [R]× [M ]. It checks is H(r, i) = 1, and aborts if not.

2. If H(r, i) = 1, then it samples i∗
$← [M ] without replacement until it obtains distinct

i∗1, . . . , i
∗
k−1 such that H(r, i∗ℓ ) = 1 for ℓ = 1, . . . , k − 1.

We now give a result from [2] that states the expected run time and success probability of E .

Lemma 1. Let H ∈ {0, 1}R×M and define ε to be the fraction of 1-entries in H. Then, the
expected number of H-entries queried in the collision game defined above is at most k and the
success probability of the collision game is at least ε− k−1

M .

We can thus define such an extractor E in our soundness proofs to obtain a given number of valid
transcripts, with a given success probability.

Lastly, we will explain the heavy rows argument, which can be used in soundness proofs to de-
termine how likely it is and how long it will take to obtain accepting transcripts [7]. We say that a
row of H is heavy if it has a fraction of at least ε/2 1’s. By this definition, more than half of the 1’s
must lie in a heavy row. If we now let H ′ be the sub-matrix of all rows that are not heavy, we can
denote by h′ and h the number of entries in H ′ and H, respectively. The number of 1’s in H is by
assumption hε, and thus the number of 1’s in H ′ must be less that h′ε/2. We now denote by g the
number of 1’s in heavy rows, and see that it must satisfy

g > hε− h′ε/2 ≥ hε− hε/2 = hε/2.

If we assume that ε is such that this implies that a heavy row has at least two 1’s, we can find two
1’s in the same row as explained in the following.

We start by first randomly searching H for a 1-entry. The expected number of tries to get a 1
is 1/ε. There is now a probability of at least 1/2 that this 1 lies in a heavy row. If this is true, and
we continue searching in this row, we will find another 1-entry in one try with probability at least
ε/2− 1/|C|. Hence the expected number of tries it takes to find another 1-entry is

1

ε/2− 1/|C|
.

We can thus use this heavy rows argument in soundness proofs to say how likely it is to find accepting
transcripts by querying a prover, and how much time it is expected to take.
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Chapter 3

Mathematical background

In this chapter we present all the mathematical theory that we will use in this paper. We start by
introducing lattices and the hard lattice problems that are the foundation for lattice cryptography.
Then we introduce the rings that we will actually work over in the rest of this paper and its hard
problems, which looks very similar to the lattice problems. We then introduce rejection sampling in
Section 3.3, which is an important part of all the protocols in this paper. In Section 3.4 we explain
approximate range proofs, which will be used in proving norm bounds.

Section 3.5 introduces Galois automorphisms, and Section 3.6 explains the number theoretic trans-
form, which will both be used to construct more efficient zero-knowledge protocols. Finally, in
Section 3.7 we give the results that is used to construct the challenge spaces we use in this paper.
We note that Section 3.1 on lattices and parts of the Sections 3.2 and 3.3 are taken directly from
[27].

3.1 Lattice algebra

There are many ways to define a lattice, but we follow the definitions given in [12], and restrict our
analysis to Zn.

Definition 14. A lattice L is the set of all linear combinations with integer coefficients of a given
set of linearly independent points in Zn. Any such L is spanned by a basis B = {b1, ..., bd}, such

that L =
{ d∑
i=1

xibi | xi ∈ Z
}
. We then say that L has rank d, and that it is full rank if d = n.

For a lattice L ⊆ Zn we define the inner product ⟨·, ·⟩ and norms ∥ · ∥p as the usual vector inner
product and norms on Zn. For lattice vectors we mostly consider the ℓ2 norm, and denote this by
∥ · ∥ for the rest of this section.

Lattices L ⊆ Zn has the property that for every point in the lattice, there exist an open ball
around it in which there are no other points in the lattice. This is called the discreteness property,
and it implies that any lattices of rank at least 1 has a non-zero lattice point that is closest to the
origin [12]. The norm of this point is the smallest possible distance between two points in the lattice.

Definition 15. For a lattice L ⊆ Zn of rank d, the first successive minimum of the lattice is

λ1(L) = min{∥x∥ | x ∈ L,x ̸= 0}.
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We also define the i-th successive minimum, for i = 2, ..., d to be

λi(L) = min{max{∥x1∥, ..., ∥xi∥} | x1, ...,xi ∈ L are linearly independent }.

From now on we only consider full rank lattices L. We recall the first successive minimum
property, and notice that finding a non-zero lattice vector with norm equal to, or sufficiently close
to, the first successive minimum is a natural problem.

Definition 16. Given a basis of a lattice L, the shortest vector problem (SVP) is to find y ∈ L such
that ∥y∥ = λ1(L). If we are also given an approximation factor γ ≥ 1, the approximate shortest
vector problem (SVPγ) is to find y ∈ L such that 0 < ∥y∥ ≤ γλ1(L). Clearly SVP = SVP1.

The SVPγ problem is known to be NP-hard for γ ≈
√
d [12]. We now extend the SVPγ problem

to finding short sets of lattice vectors.

Definition 17. Given a basis of a lattice L and an approximation factor γ > 1, the shortest
independent vector problem (SIVPγ) is to find a linearly independent set {y1, ...,yd} such that
max
i
∥yi∥ ≤ γλd(L).

The SIVPγ problem is NP-hard for γ = d1/ log log d [12]. We now introduce some hard prob-
lems that were used to construct the first lattice-based schemes. The following problem was first
introduced by Ajtai [1].

Definition 18. Given an integer q, A ∈ Zm×nq , and a β < q, the small integer solutions problem
(SISq,n,β) is to find y ∈ Zn such that Ay ≡ 0 (mod q) and ∥y∥ ≤ ν.

The worst-case SIVPγ problem can be reduced to the SIS problem, and hence the SIS problem is
at least as hard as the worst-case SIVPγ problem [21].

In order to define the learning with errors problem, which was first introduced by Regev [23], we
must introduce some notation. For an integer q, s ∈ Znq and a probability distribution ψ on Zq, we
can define a new probability distribution As,ψ on Znq × Zq. This distribution is sampled by taking
a ∈ Znq uniformly at random, taking e according to ψ, and then returning (a, ⟨a, s⟩+ e) (mod q).

Definition 19. Given n, q, a probability distribution ψ on Zq, and any number of independent
samples from As,ψ, the learning with errors problem (LWEq,χ) is to find s.

The worst-case SIVPγ problem can be reduced to the LWE problem, which means that LWE
problem is at least as hard as the worst-case SIVPγ problem [23]. We are more interested in the
decision version of the LWE problem, which is to distinguish a sample from As,ψ from a truly uniform
(a, b) ∈ Znq×Zq. This problem is as hard as solving the LWE problem for appropriate choices of q [24].

There are many other hard lattice problems with respective reductions to the SIS and LWE problems,
but for this paper the ones presented in this section suffices to illustrate that these problems are
believed to be hard.

3.2 The rings R and Rq

Many of the early lattice-based cryptographic schemes were based on the SIS and LWE problems.
One disadvantage of cryptographic schemes that are based on these problems, is that their key sizes
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are very large. Lyubashevsky, Peikert and Regev introduced a new environment for which more
efficient variants of the LWE and SIS problems can be defined [18]. In this section we will explain
this environment, and give the hard problems corresponding to SIS and LWE, namely the MSIS and
MLWE problems.

Let f(X) = XN + 1 ∈ Z[X], for an N that is a power of 2. Let R = Z[X]/⟨f(X)⟩ and Rq =
Zq[X]/⟨f(X)⟩. The elements of these rings are polynomials of degree at most N − 1, and in Rq
all coefficients are restricted to [−(q − 1)/2, (q − 1)/2]. In these rings addition is defined to be
component-wise in the coefficients, and multiplication is defined as regular polynomial multiplica-
tion modulo f(X). We call R and Rq module lattices.

Since elements of these rings can be written as a =
N−1∑
i=0

aiX
i, for ai ∈ Z or ai ∈ Zq, respectively, we

can define the ℓ1, ℓ2 and ℓ∞ lengths as

∥a∥1 =

N−1∑
i=0

|ai|, ∥a∥2 =

√√√√N−1∑
i=0

a2i , and ∥a∥∞ = max
i∈0,...,N−1

|ai|.

For a vector of ring elements a = (a1, . . . , ak) ∈ Rk, we define the ℓ1, ℓ2 and ℓ∞ lengths as

∥a∥1 =

k∑
i=1

∥ai∥1, ∥a∥2 =

√√√√ k∑
i=1

∥ai∥22, and ∥a∥∞ = max
i∈1,...,k

∥ai∥∞.

We write ∥a∥ := ∥a∥2 throughout the rest of this paper. One useful relation between these norms is
that ∥a∥ ≤

√
kN∥a∥∞. For the hardness and correctness properties of cryptographic schemes based

on problems in this environment, it is often required to use elements of small norms. We therefore
introduce the sets Si and Ski of elements of R and Rk respectively, that has ℓ∞ length at most i.
We also use the notation R×q to denote the set of all elements of Rq that are invertible.

In this paper we will denote by a⃗ = (a0, . . . , aN−1) ∈ ZNq the coefficient vector of a ring element

a ∈ Rq, such that ai is the coefficient corresponding to Xi of a. We use the notation ã := a0 ∈ Zq
for the constant coefficient of a. We notice that the standard vector norms of a coefficient vector
a⃗ will be the same as the corresponding norm of the ring element a. Lastly, we define the inner
product of two vectors of ring elements to be the inner product of their corresponding coefficient
vectors, ⟨a, b⟩ := ⟨⃗a, b⃗⟩.

Throughout this paper we will use the following important result from [19] on how the polyno-
mial XN + 1 factors modulo q, and that shows how to choose q such that all elements with small
norms are invertible in Rq.

Lemma 2. Let N ≥ k > 1 be powers of 2 and let q = 2k + 1 (mod 4k) be a prime. Then the
polynomial XN + 1 factors as

XN + 1 ≡
k∏
j=1

(XN/k − ζj) (mod q)

where ζj ∈ Zq are the 2k-th roots of unity in Zq, and XN/k − ζj are irreducible in the ring Zq[X].

11



Furthermore, any y in Zq[X]/(XN + 1) that satisfies either

0 < ∥y∥∞ <
1√
k
q1/k

0 < ∥y∥ < q1/k

has an inverse in Zq[X]/(XN + 1).

We are now ready to define the problems that are the foundation for all the schemes we will
consider in this paper. It is clear that these problems are the equivalent problems to SIS and
decision LWE, only over the module lattice Rq instead.

Definition 20. Given A
$← Rn×mq , the module small integer solutions problem (MSISn,m,B) is to

find z ∈ Rmq such that Az = 0 over Rq and 0 < ∥z∥ ≤ B. For an algorithm A we say that he
advantage in solving the problem is

Pr[0 < ∥z∥ ≤ B ∧Az = 0 | A $← Rn×mq , z
$← A(A)]

Definition 21. Themodule learning with errors problem with error distribution χ overR (MLWEm,n,χ)

is to distinguish (A,As mod q) for A
$← Rn×mq and secret s

$← χm from truly random (A, b)
$←

Rn×mq ×Rnq . For an algorithm A we say that he advantage in solving the problem is∣∣∣∣∣Pr [b = 1
∣∣ A $← Rn×mq , s

$← χm, b
$← A(A,As mod q)

]
− Pr

[
b = 1

∣∣ A $← Rn×mq , b
$← Rnq , b

$← A(A, b)
]∣∣∣∣∣

Langlois and Stehlé gives in [13] reductions from worst-case SIVPγ problems restricted to module
lattices to both the MSIS and MLWE problem. This illustrates the hardness of these problems.

We also give an extended version of the MLWE problem, that we need for the security analysis
of protocols that uses the subset rejection sampling method by Lyubashevsky et al. [17], which
is defined in the next section. This rejection sampling algorithm reveals the sign of ⟨z, cs⟩ when
applied to z = cs + y. Hence we need a problem that is still hard with this information given, for
simulation of such schemes.

Definition 22 ([17]). The extended module learning with errors problem (Extended-MLWEm,λ,χ,C,s)
with parameters m,λ > 0, probability distribution χ over Rq, challenge space C ⊆ Rq and the
standard deviation s, asks the adversary A to distinguish between the following two cases:

1.
(
B,Bs, c,z, sign(⟨z, cs⟩)

)
for B

$← R
m×(m+λ)
q , a secret vector s

$← χm+λ, z
$← DRm+λ,s and

c
$← C

2.
(
B,u, c,z, sign(⟨z, cs⟩)

)
for B

$← R
m×(m+λ)
q , u

$← Rmq , z
$← DRm+λ,s and c

$← C,

12



where sign(a) = 1 if a ≥ 0 and 0 otherwise. For an algorithm A we say that he advantage in solving
the problem is∣∣∣∣∣Pr [b = 1

∣∣ B $← Rm×(m+λ)
q , r

$← χm+λ, z
$← DRm+λ,s, c

$← C, b $← A(B,Br, z, c, s)
]

− Pr
[
b = 1

∣∣ B $← Rm×(m+λ)
q ,u

$← Rmq , z
$← DRm+λ,s, c

$← C, b $← A(B,u, z, c, s)
]∣∣∣∣∣,

where s = sign(⟨z, cr⟩).

It is shown in [17] that the hardness of this problem can be reduced to the LWE problem.

3.3 The Gaussian distribution and rejection sampling

In zero-knowledge protocols for lattice relations, one often wants to output a linear combination of
a secret s, say z = cs+ y. But then it is important to make z independent of s, to make sure that
no information is revealed. In order to achieve this, we use rejection sampling, a method that was
first introduced by Lyubashevsky in [14, 15]. We start by defining the Gaussian distribution that is
used for rejection sampling.

Definition 23. The discrete Gaussian distribution over the lattice Rk centered at some v ∈ Rk

with standard deviation s is defined as

DRk,v,s(z) = e
−∥z−v∥2

2s2

/ ∑
w∈Rk

e
−∥w∥2

2s2

For the rest of this paper we will use the notation y
$← DRk,s to indicate that y was chosen

according toDRk,0,s. We now introduce an important tail-bound lemma for this distribution, Lemma
4.4 in [15].

Lemma 3. For any δ > 1 we have that

1. Pr[|z| > δs | z $← DR,s] ≤ 2 exp(−δ
2

2 )

2. Pr[∥z∥ > δs
√
kN | z $← DRk,s] < δkN exp

(
kN
2 (1− δ2)

)
Rejection sampling is used in protocols where the prover draws a masking vector y

$← DRk,s, and
upon receiving a challenge c from the verifier, want so send z = cs+y to the verifier. By performing
the rejection sampling algorithm on z, the dependency of z on s is removed, or in other words z
will be statistically close toDRk,s, so that the prover can send z without revealing anything about s.

The standard Gaussian rejection sampling procedure from [15], Rej1, is shown in Algorithm 1. There
have been proposed several versions of rejection sampling after this algorithm was introduced. Such
new versions introduce some modifications to the original algorithm, with the goal of reducing the
standard deviation used in the protocols. This way we are able to achieve lower bounds on the
elements drawn from DRk,s.

One such version of rejection sampling was proposed by Lyubashevsky et al. in [17], and it modifies
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Algorithm 1 Rej1(z, cs, s)

1: u
$← [0, 1)

2: if u > 1
M exp(−2⟨z,s⟩+∥s∥

2

2s2 ) then
3: return 1 (reject)
4: else
5: return 0 (accept)
6: end if

Rej1 by forcing z to satisfy ⟨z, s⟩ ≥ 0. This has the effect that the standard deviation can be reduced
by more than a factor of 10, while keeping the expected number of rejections the same. We notice
that this rejection sampling algorithm will reveal one bit of the secret, but in cases where this does
not matter, one can use this algorithm. This rejection sampling variant, Rej2, is shown in Algorithm
2. We call this version subset rejection sampling.

Algorithm 2 Rej2(z, s, s)

1: if ⟨z, s⟩ < 0 then
2: return 1 (reject)
3: end if
4: u

$← [0, 1)

5: if u > 1
M exp(−2⟨z,s⟩+∥s∥

2

2s2 ) then
6: return 1 (reject)
7: else
8: return 0 (accept)
9: end if

The final rejection sampling variant we will use is the bimodal rejection sampling, which was first
introduced by Ducas et al. in [9]. The main difference of this variant, is that we sample a sign

β
$← {−1, 1} and compute z as z = y + βcs instead. This significantly reduces the standard devia-

tion. This rejection sampling variant, Rej0, is shown in Algorithm 3.

Algorithm 3 Rej0(z, s, s)

1: u
$← [0, 1)

2: if u > 1

M exp
(

−∥s∥2
2s2

)
cosh

(
⟨z,s⟩
s2

) then

3: return 1 (reject)
4: else
5: return 0 (accept)
6: end if

These algorithms have the properties stated in the following Lemma, which gives the repetition rates
M and rejection probabilities of the protocols, and states that the output z looks independent of s.

Lemma 4. Let V ⊆ Rk be such that all elements have ℓ2 norm less than T , s ∈ R such that s = γT
and h : V → [0, 1] be a probability distribution. Then, the following statements hold.
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1. Let M = exp(14/γ + 1/(2γ2)). Now, sample s
$← h and y

$← DRk,s, set z = y + s and
run b ← Rej1(z, s, s) as defined in Algorithm 1. Then, the probability that b = 0 is at least
(1−2−128)/M and the distribution of (s, z) conditioned on b = 0, is within statistical distance
of 2−128 of the product distribution h×DRk,s.

2. Let M = exp(1/(2γ2)). Now, sample s
$← h and y

$← DRk,s, set z = y + s and run
b ← Rej2(z, s, s) as defined in Algorithm 2. Then, the probability that b = 0 is at least
1/(2M) and the distribution of (s, z) conditioned on b = 0, is identical to the distribution of

F where F is defined as follows: sample s
$← h, z

$← DRkN ,s conditioned on ⟨s, z⟩ ≥ 0 and
output (s, z).

3. Let M = exp(1/(2γ2)). Now, sample s
$← h, β

$← {−1, 1} and y
$← DRk,s, set z = y+ βs and

run b ← Rej0(z, s, s) as defined in Algorithm 3. Then, the probability that b = 0 is at least
1/M and the distribution of (s, z) conditioned on b = 0, is identical to the product distribution
h×DRk,s.

3.4 The binomial distribution and approximate range proofs

One tool that we will use for both proving norm bounds, and that there are no overflow modulo q
in certain equations, are so called approximate range proofs. These say that if you draw a matrix
R from a binomial distribution, then the projection Rw⃗ + y⃗ has approximately the same norm as
w⃗, for some vector w⃗ and masking vector y⃗ over Zq. This applies both for the ℓ2 and the ℓ∞ norm.
We start by defining the binomial distribution that we will use.

Definition 24 ([16]). The binomial distribution with a positive integer parameter κ, written as

Binκ, is the distribution
κ∑
i=1

(ai − bi) where ai, bi
$← {0, 1}. The variance of the distribution is κ/2

and it holds that Binκ1
± Binκ2

= Binκ1+κ2
.

We now introduce a result that we will use in order to prove approximate shortness in the ℓ∞

norm. The idea is that if we choose a random matrix R
$← Bink×m1 and y⃗ ∈ Zkq , we can prove

approximate shortness of w⃗ ∈ Zm by proving that Rw⃗+ y⃗ is short in the ℓ∞ length. This is sufficient
by the following Lemma.

Lemma 5 ([17]). Let w⃗ ∈ Zmq and y⃗ ∈ Zkq . Then

Pr
R

$←Bink×m
1

[
∥Rw⃗ + y⃗∥∞ <

1

2
∥w⃗∥∞

]
≤ 2−k

We can use the same idea to prove approximate shortness in the ℓ2 norm, by utilizing the following
Lemma instead.

Lemma 6 ([17]). Fix m,P ∈ N and a bound b ≤ P/41m, and let w⃗ ∈ [±P/2]m with ∥w⃗∥ ≥ b, and
let y⃗ be an arbitrary vector in [±P/2]m. Then

Pr
R

$←Bin256×m
1

[
∥Rw⃗ + y⃗ mod P∥ < 1

2
b
√
26
]
< 2−128.
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When we use relations of the form Rw⃗ + y⃗ in zero-knowledge protocols, the upper bound on
∥Rw⃗∥ will determine the standard deviation we can use for rejection sampling. Hence we need a
way to bound the ℓ2 norm of Rw⃗. For this we will use the following result.

Lemma 7. For any w⃗ ∈ Zm we have

Pr
R

$←Bin256×m
κ

[∥Rw⃗∥2 > ∥w⃗∥2 · 337 · κ] ≤ 2−128

3.5 Galois automorphism

One of the tools that have been used to create more efficient lattice-based zero-knowledge protocols,
are Galois automorphisms. These automorphisms have properties that we can use to create protocols
with larger challenge spaces, and they can be used to reduce the soundness error of protocols. They
can also be used to construct functions whose constant coefficients equals desired inner products.

We let N ≥ k > 1 be powers of 2 and let q = 2k + 1 (mod 4k) be a prime. By Lemma 2 we
then have the factorization

XN + 1 = (XN/k − ζ1) · . . . · (XN/k − ζk),

where ζi are the primitive 2k-th roots of unity in Zq and all XN/k− ζi are irreducible modulo q. We
now consider the group of automorphisms of Rq, Aut(Rq), and note that this is isomorphic to Z×2N
by the isomorphism

i 7→ σi : Z×2N → Aut(Rq),

where σi is defined by σi(X) = Xi. We call these Galois automorphisms. We now consider the

prime ideal (XN/k−ζ), for some ζ ∈ Zq. In a suitable extension field of Zq, the roots of XN/k−ζi−1

will also be roots of XiN/k − ζ. Hence we get that for all i ∈ Z×2N

σi(X
N/k − ζ) = (XiN/k − ζ) = (XN/k − ζi

−1

).

This then implies that for f ∈ Rq,

σi

(
f mod (XN/k − ζ)

)
= σi(f) mod (XN/k − ζi

−1

).

We can now use Lemma 2.4 of [19] derive that the cyclic subgroup ⟨2k + 1⟩ ⊂ Z×2N has order N/k,
and thus stabilizes every prime ideal (XN/k − ζ) since ζ is a primitive 2k-th root of unity, and of
order 2k. Thus Z×2N/⟨2k+1⟩ has order k, and will act transitively on the k prime ideals (XN/k− ζ),
meaning that we can index the prime ideals by i ∈ Z×2N/⟨2k + 1⟩ and thus write

(XN + 1) =
∏

i∈Z×
2N/⟨2k+1⟩

(XN/k − ζi).

If we for l such that l|k let i run over ⟨2k/l + 1⟩/⟨2k + 1⟩, then the product of the l prime ideals
(XN/k − ζi) will be ∏

i∈⟨2k/l+1⟩/⟨2k+1⟩

(XN/k − ζi) = (X lN/k − ζl).
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Using this, we can partition the k prime ideals into k/l groups of l ideals,

(XN + 1) =
∏

j∈Z×
2N/⟨2k/l+1⟩

(X lN/k − ζjl) =
∏

j∈Z×
2N/⟨2k/l+1⟩

∏
i∈⟨2k/l+1⟩/⟨2k+1⟩

(XN/k − ζij).

We note that we have the isomorphism Z×2N/⟨2k/l+1⟩ ∼= Z×2k/l, and that
(
(2k/l+1)i

)
i=1,...,l−1 form

a complete set of representatives for ⟨2k/l + 1⟩/⟨2k + 1⟩. Hence for σ = σ2k/l+1 ∈ Aut(Rq), we can
instead instead write

(XN + 1) =
∏

j∈Z×
2k/l

l−1∏
i=0

σi
(
XN/k − ζj

)
.

We also present an important result that we get by using the automorphism σ−1 ∈ Aut(Rq). We
define the map T : ZkN × ZkN → R as

T(⃗a, b⃗) :=
k−1∑
i=0

σ−1

(N−1∑
j=0

aiN+jX
j
)
·
(N−1∑
j=0

biN+jX
j
)
∈ R,

given vectors a⃗ = (a0, . . . , akN−1) and b⃗ = (b0, . . . , bkN−1). We now have a simple and very useful
property of T, that we will use to prove inner products.

Lemma 8. Let a⃗, b⃗ ∈ ZkN for k ≥ 1. Then the constant coefficient of T
(
a⃗, b⃗
)
is equal to ⟨⃗a, b⃗⟩.

3.6 Number theoretic transform

Some of the first lattice-based zero-knowledge protocols that were constructed by using commitment
schemes, also relied on the number theoretic transform. Suppose we choose parameters such that
we by Lemma 2 have the isomorphism

Zq[X]/(XN + 1) ∼=
∏
i∈Z×

2k

Zq[X]/(XN/k − ζi).

We can then define the number theoretic transform (NTT) of polynomial a ∈ Rq, â, to be the image of
a under this isomorphism. Namely, â = NTT(a) = (âi)i∈Z×

2k
where âi = a mod (XN/k−ζi). Due to

the Chinese remainder theorem, the inverse of this map exists, and we denote this by ǎ = NTT−1(a).

We now give some of the very useful properties the NTT representation that we will use in this
paper.

– For any a, b, c ∈ Rq we have that ab = c if and only if â ◦ b̂ = ĉ, where ◦ denotes column-wise
multiplication.

– NTT(ab) = NTT(a) ◦ NTT(b)

– An element a ∈ Rq is invertible if an only if all its NTT coefficients are non-zero [3].

We also present a useful Lemma by Esgin et al. in [10] that states that the scaled sum of the NTT
coefficients of a polynomial is equal to its N/k first coefficients.

Lemma 9. Let a ∈ Rq. Then 1
k

∑
i∈Z×

2k

âi = a0 + a1X + . . . + aN/k−1X
N/k−1, when we lift the âi to

Zq[X].
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3.7 Challenge spaces

The zero-knowledge protocols we present in this paper need to have challenge spaces for which
the difference of any two challenges is invertible. This is crucial for the soundness property of the
protocols. The size of the challenge space will also determine the soundness error of the protocol,
and hence the total size of the proof. It is thus important to construct as large challenge spaces C
as possible, while also making sure that all elements in the set of differences of challenge elements,
C = {c − c′ | c, c′ ∈ C, c ̸= c′}, are invertible. In this section we present some results that can be
used in order to construct challenge spaces with the desired properties.

Lemma 10 ([6]). Let q be such that XN + 1 splits into linear factors. Then the polynomials
Xi −Xj ∈ Rq for i ̸≡ j (mod 2N) are invertible.

Proof. Let ζ ∈ Zq be one of the primitive 2N -th roots of unity such that XN + 1 ≡
N∏
j=1

(X − ζj).

Then Xi −Xj mod (X − ζ) = ζi − ζj . This is zero in Zq if and only if i ≡ j (mod 2N), and hence
Xi −Xj is invertible when i ̸≡ j (mod 2N).

We present an important result from [16] that builds upon Lemma 2 with k = 2.

Lemma 11 ([16]). Let q = 5 (mod 8) be a prime. Take any c ∈ Rq such that σ−1(c) = c. Then, c
is invertible over Rq if and only if c ̸= 0.

Proof. We get from Lemma 2 that

XN + 1 ≡ (XN/2 − r)(XN/2 + r) (mod q)

for some r ∈ Zq such that XN/2 ± r are irreducible modulo q. From the assumption that σ1(c) = c,
we get that c can be written as

c = c0 + c1X + . . .+ cN/2−1X
N/2−1 − cN/2−1XN/2+1 − . . .− c1XN−1.

Thus we get

c mod q mod (XN/2 ± r) = c0 +

N/2−1∑
i=1

(ci ± rcN/2−i)Xi, (3.1)

and so if c ̸= 0, then at least one of the coefficients c0, . . . , cN/2−1 ∈ Zq is non-zero. Suppose now
that ci ̸= 0. We now have two cases:

– if i = N/4, then ci ± rcN/2−i = cN/4 ± rcN/4 must be non-zero, since r ̸= ±1.

– if i ̸= N/4, then for any sign b ∈ {−1, 1}, either ci − brcN/2−i or cN/2−i − brci is non-zero.
We can see this by the fact that if we assume that both are zero, namely ci = brcN/2−i and
cN/2−i = brci, we get that

ci = brcN/2−i = b2r2ci = r2ci = −ci,

which is a contradiction, since ci ̸= 0.

Hence we get that both c mod q mod (XN/2−r) and c mod q mod (XN/2+r) are non-zero, and
by the Chinese Remainder Theorem, we get that c has an inverse in Rq.
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Since the zero-knowledge protocols in this paper uses rejection sampling algorithms with secrets
of the form cr for a challenge c ∈ C and r ∈ Rℓq, we need a way to bound ∥cr∥, so that we can set
the standard deviation for rejection sampling. We now introduce such a bound, that involves the
σ−1 automorphism.

Lemma 12 ([16]). Let r ∈ Rℓ and c ∈ R. Then, for any k that is a power of 2, we have that

∥cr∥ ≤ 2k

√
∥σ−1(ck)ck∥1∥r∥.

Proof. Let C ∈ Zd×d be the rotation matrix of c = c0 + c1X + . . .+ cd−1X
d−1:

C = Rot(c) =


c0 −cd−1 . . . −c1
c1 c0 . . . −c2
...

... . . .
...

cd−1 cd−2 . . . c0

 .
We now want to upper-bound the operator norm ∥C∥ of the matrix C. To achieve this, we will use
that ∥C∥ =

√
∥CTC∥ and that for any k that is a power of two we have ∥CTC∥k = ∥(CTC)k∥,

since CTC is symmetric. We also note that ∥Rot(u)∥ ≤ ∥(u)∥1 for all u ∈ R. We can now use the
observation that CT = Rot(σ−1(c)), to deduce that

∥C∥2k = ∥CTC∥k = ∥(CTC)k∥ = ∥Rot(σ−1(ck)ck)∥ ≤ ∥σ−1(ck)ck∥1.

Hence we have that ∥C∥ ≤ 2k
√
∥σ−1(ck)ck∥1, and hence the statement holds.

19



Chapter 4

Lattice based commitment schemes

The first lattice based commitment scheme that was used to construct cryptographic primitives was
the standard Ajtai commitment scheme [1]. This scheme was originally was defined over Zq, but is
easily expanded to Rq so that it bases its security on the MSIS and MLWE problems. We now give
an informal description of this scheme.

In order to commit to a vector s1 ∈ Rm1
q for which ∥s1∥ is small, we let A1

$← Rn×m1
q and

A2
$← Rn×m2

q be public parameters, such that m2 is much larger than n. We then sample random-

ness s2
$← Rm2

q such that s2 has small coefficients, and output the commitment vector

t = A1s1 +A2s2 ∈ Rnq . (4.1)

We notice that A2s2 is indistinguishable from a truly uniform vector if the MLWEm2−n,n problem is
hard. This ensures the hiding property of the scheme, since the whole commitment vector will then
be indistinguishable uniformly random. In order to see that the scheme is binding, we assume that
we are able to come up with (s1, s2) ̸= (s′1, s

′
2) such that

A1s1 +A2s2 = t = A1s
′
1 +A2s

′
2.

This implies that [
A1 A2

] [s1 − s′1
s2 − s′2

]
= 0

for a non-zero vector

[
s1 − s′1
s2 − s′2

]
that by construction has small coefficients. Hence we have a

MSISn,m1+m2 solution for the matrix
[
A1 A2

]
.

The main disadvantage of this commitment scheme is that it only allows for small message spaces,
since the messages must be of small norm. On the other hand, the size of the commitment does not
depend the size of the message m1. It depends on the parameter n, which has to be chosen large
enough so that the MSIS and MLWE problems are hard.

It is clear that more practical commitment schemes that can commit to arbitrary vectors are needed
for many applications. Baum et al. presented such a practical scheme with unbounded message
space in [4]. The disadvantage of this scheme is however that the commitment size is linear in the
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message size, which means that commitments potentially can be very large. We present this scheme
in Section 4.1, together with a zero-knowledge proof of opening knowledge.

In constructing zero-knowledge proofs of lattice elements using this commitment scheme, the com-
mitment size has eventually become the biggest obstacle in reducing the proof sizes. In response to
this Lyubashevsky et al. recently proposed a new commitment scheme in [16]. This new scheme
combines the commitment schemes by Ajtai and Baum et al., in order to exploit the advantages of
both schemes. We present this scheme, together with a zero-knowledge proof of opening knowledge,
in Section 4.2.

4.1 BDLOP commitment scheme

We present the commitment scheme of Baum et al. [4], which is a practical scheme that allows
one to commit to vectors over Rq. The main purpose of this commitment scheme is to be used
in zero-knowledge protocols, and so we need to define a suitable challenge space that will ensure
soundness of such protocols. We define the challenge space for the commitment scheme as

C = {c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = κ}

for a parameter κ that determines the size of C. We also assume that q is chosen such that all
elements of ℓ∞ norm at most 2 are invertible in Rq, as per Lemma 2. We can then define the set of
differences as C = {c− c′ | c, c′ ∈ C, c ̸= c′}, for which all elements will be invertible.

We also note that there is no efficient zero-knowledge protocol for simply proving knowledge of
the message and the randomness that was used to commit. Such protocols can only prove some-
thing weaker, and we will account for this in the the opening algorithm of the scheme, so that the
scheme will still be binding with respect to such relaxed openings. We now explain the algorithms
KeyGen, Commit and Open for this scheme.

BDLOP.KeyGen: In order to create the public parameters that can be used to commit to mes-

sages m ∈ Rℓq, we sample matrices A1
$← Rn×kq and A2

$← Rℓ×kq . We also select a constant β that

defines the randomness distribution χk, where χ is the uniform distribution on Sβ .

BDLOP.Commit: In order to commit to a message m ∈ Rℓq with the public parameters (A1,A2), we

start by sampling randomness r
$← χk and output the commitment

BDLOP.Commit(m; r) :=

[
t1
t2

]
=

[
A1

A2

]
r +

[
0n

m

]
. (4.2)

Since there are no efficient zero-knowledge proofs for proving knowledge of r and m that satisfies
(4.2), we let the opening algorithm also take a challenge f ∈ C as input. An honest prover will
simply just put f = 1.

BDLOP.Open: For a commitment t =

[
t1
t2

]
, (m, r, f) ∈ Rℓq ×Rkq × C is a valid opening if

f

[
t1
t2

]
=

[
A1

A2

]
r + f

[
0n

m

]
, (4.3)
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and ∥ri∥ ≤ 4s
√
N for all i. BDLOP.Open(m, r, f, t) outputs 1 if (m, r, f) is a valid opening of t,

and 0 if not.

We now explain how we can set the standard deviation. Since ∥r∥ ≤ β
√
kN , and ∥c∥1 = κ for

all c ∈ C, we have that ∥cr∥ ≤ κβ
√
kN . Hence, in accordance with Lemma 4, we use standard

deviation s = γκβ
√
kN for a γ > 0.

Variants of the scheme
We now explain two variants of this commitment scheme that we will use.

Variant 1. For randomly chosen polynomials bi,j ∈ Rq we define B ∈ R5×6
q as

B =


b0
b1
b2
b3
b4

 =


1 b0,2 b0,3 b0,4 b0,5 b0,6
0 1 0 0 0 b1,6
0 0 1 0 0 b2,6
0 0 0 1 0 b3,6
0 0 0 0 1 b4,6


We can now commit to messages m = (m1,m2,m3,m4)

T ∈ R4
q by sampling a random vector r

$← S6
β

and compute the commitment as

t =


t0
t1
t2
t3
t4

 = B · r +


0
m1

m2

m3

m4



Variant 2. In order to commit to a message vector m = (m1, . . . ,mℓ) ∈ Rℓq, we draw a uniformly

random matrix B0
$← R

µ×(λ+µ+ℓ)
q and vectors b1, . . . , bℓ

$← Rλ+µ+ℓq . We then sample randomness

r
$← χ(λ+µ+ℓ)N and compute the commitment as

t0 = B0r,

ti = ⟨bi, r⟩+mi for i = 1, . . . , ℓ.

4.1.1 Hiding and binding

We now prove that this scheme has the desired security properties.

Theorem 1. Suppose that s = γκβ
√
kN for some γ > 0. Then the BDLOP commitment scheme is

complete.

Proof. Given public parameters

[
A1

A2

]
$← BDLOP.KeyGen and a message m ∈ Rℓq, then an honestly

generated commitment

[
t1
t2

]
with randomness r will obviously satisfy (4.3) with f = 1. Since the

randomness r was sampled from Skβ , we have that ∥ri∥ ≤
√
N · ∥ri∥∞ ≤

√
Nβ for all i = 1, . . . , k.

Since s = γκβ
√
kN , β is clearly smaller than 4s, and so we must further have that ∥ri∥ ≤ 4s

√
N .

Hence BDLOP.Open(m,r, 1,BDLOP.Commit(m; r)) = 1, and the scheme is complete.
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We show now the the hiding property of the commitment scheme can be reduced to the MLWE
problem. This will imply that breaking the hiding property is at least as hard as solving the MLWE
problem, and so if we assume the the latter problem is hard, then the scheme must be hiding.

Theorem 2. If there exists an algorithm A that has advantage ε in breaking the hiding property
of the BDLOP commitment scheme, then there exists an algorithm A′ that runs in the same time
and has advantage ε in solving the MLWEk,n+ℓ,χ problem.

Proof. We now show how we can construct such an algorithm A′. Suppose that A′ is given a

MLWEk,n+ℓ,χ-instance A =

[
A1

A2

]
∈ R

(n+ℓ)×k
q , b ∈ Rn+ℓq . A′ now sets up for running the hiding

game with A, and outputs (A1,A2) as the public parameters.

If A′ now receives m0,m1 ∈ Rℓq form A, A′ samples b
$← {0, 1} and sends the commitment of

mb, [
t1
t2

]
= b+

[
0n

mb

]
,

to A. If A responds with b′ = b, then A′ outputs 1, and 0 if not. We now have two cases:

– If A′ was given a truly uniformly random b, then the output

[
t1
t2

]
is independent of mb, and

thus the probability that A outputs the correct b′ is exactly 1/2.

– If A′ was given b = Ar, for some r
$← χk, then the output commitment is[

t1
t2

]
=

[
A1

A2

]
r +

[
0n

mb

]
= BDLOP.Commit(mb; r),

and by assumption A outputs the correct b′ with probability 1/2 + ε.

Hence the advantage of A′ in solving the MLWEk,n+ℓ,χ problem is ε.

We now show that the binding property of the commitment scheme can be reduced to the MSIS
problem. Again, this will imply that breaking the binding property of the scheme is at least as hard
as the MSIS problem, and thus the scheme is binding if the problem is hard.

Theorem 3. If there is an algorithm A who can break the binding property of the BDLOP com-
mitment scheme with probability ε, then there is an algorithm A′ with advantage ε in solving the
MSISn,k,B problem, for B = 16s

√
κN .

Proof. We now show how we can construct such an algorithm A′. Suppose that A′ is given an
MSISn,k,B-instance A1 ∈ Rn×kq , for which it is supposed to find a vector y ∈ Rkq such that A1y = 0

and ∥y∥ ≤ B. A′ creates a random A2
$← Rℓ×kq and outputs (A1,A2) as public parameters. By

assumption, with probability ε, A is able to come up with a commitment

[
t1
t2

]
with two different

valid openings, (m, r, f) and (m′, r′, f ′) such that m ̸= m′. This then implies that

f

[
t1
t2

]
=

[
A1

A2

]
r + f

[
0n

m

]
,

f ′
[
t1
t2

]
=

[
A1

A2

]
r′ + f ′

[
0n

m′

]
.
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If we multiply the first equation by f ′ and the second by f , we get that the left hand sides are both
the same, and thus we get that[

A1

A2

]
f ′r + f ′f

[
0n

m

]
=

[
A1

A2

]
fr′ + ff ′

[
0n

m′

]
.

By subtracting and splitting this up, we get

A1(f
′r − fr′) = 0n

A2(f
′r − fr′) + (ff ′m− ff ′m′) = 0ℓ

We note that ff ′(m−m′) ̸= 0ℓ, since f and f ′ are invertible and m ̸= m′. Then the last equation
implies that (f ′r− fr′) ̸= 0k, which would imply that we have a solution to the MSISn,k,B problem
for matrix A1 if ∥(f ′r − fr′)i∥ ≤ B for all i.

By the definition of the challenge space we have that ∥f∥ ≤ 2
√
κ for every f ∈ C. We also have

that ∥ri∥ ≤ 4s
√
N for every polynomial of the vector r, since it is a valid opening. The same

holds for r′, and hence we get that ∥f ′ri∥, ∥fr′i∥ ≤ 8s
√
κN . This implies that we have the bound

∥(f ′r − fr′)i∥ ≤ 16s
√
κN for all i, and thus A′ has advantage ε in solving the MSISn,k,16s

√
κN

problem.

4.1.2 Opening proof

In order to be able to use commitments as a part of zero-knowledge protocols, we need a zero-
knowledge proof of knowledge of a valid opening to a commitment, in order to show that the
commitments are constructed correctly, without revealing anything about the message or the ran-
domness. We will now describe such a zero-knowledge proof of opening to a commitment. This
scheme will be almost identical to the ’Fiat-Shamir with aborts’ protocol from [15], and we note
that only non-aborting transcripts are honest-verifier zero-knowledge. This is however not a prob-
lem, since in most applications one uses non-interactive versions of the protocol. The opening proof
is given as Πopen in Figure 4.1.

Theorem 4. Suppose that s = γκβ
√
kN for a γ > 0. Then the protocol Πopen is complete, meaning

that the honest prover convinces the verifier with probability

≈ 1

exp(14/γ + 1/(2γ2))
.

Proof. An honest prover can answer correctly according to the protocol for every challenge c, since
it knows r. By Lemma 4, the probability that Rej1(z, cr, s) does not abort is at least

1

exp(14/γ + 1/(2γ2))
,

and z is within statistical distance of 2−128 from DRk,s. We can then use the tail-bound Lemma 3

with δ = 2 to deduce that, except with negligible probability 2N/2 exp(−3N/2), ∥zi∥ < 2s
√
N for

all components zi of z. Therefore, the verifier will with overwhelming probability accept when an
honest prover does not abort, and the theorem holds.
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Πopen

Public Information: A1 ∈ Rn×kq ,A2 ∈ Rℓ×kq

Prover’s Information: r ∈ Skβ
Commitment:

[
t1
t2

]
=

[
A1

A2

]
r +

[
0n

m

]
Prover Verifier

y
$← DRk,s

w := A1y
w−→

c
$← C

c←−
z = y + dr
If Rej1(z, dr, s) = 1
then abort

z−→

Write z =

z1...
zk


Accept iff:

1. ∥zi∥ ≤ 2s
√
N for all i ∈ [k]

2. A1z = w + ct1

Figure 4.1: Proof of knowledge Πopen of (m, r, f) ∈ Rℓq × Rkq × C satisfying ft1 = A1r, ft2 =

A2r + fm and ∥ri∥ ≤ 4s
√
N for all i ∈ [k].

Theorem 5. The protocol Πopen satisfies the honest-verifier zero-knowledge property, meaning that
there exists a simulator S, that without access to secret information outputs a simulation of a
non-aborting transcript of the protocol between an honest prover and verifier, which has statistical
distance at most 2−128 to the actual transcript.

Proof. We can construct this simulator S by letting it draw a random c from C and sample a random
z from DRk,s, and by setting w = A1z − dt1. Since the z in a real protocol is within statistical
distance of 2−128 from DRk,s according to Lemma 4, and z in independent of c, the simulated z will
be statistically indistinguishable from the one in the real protocol.

By construction of w, we get the desired relation A1z = w + dt1. By the tail bound in Lemma 3
with δ = 2, we also have, except with negligible probability 2N/2 exp(−3N/2), that ∥zi∥ < 2s

√
N

for all components zi of z. Hence the simulation is within statistical distance of 2−128 from a real
transcript, and ΠOPEN is honest-verifier zero-knowledge.

Theorem 6. The protocol Πopen satisfies the special soundness property, meaning that given a
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commitment t and a pair of different transcripts for Πopen, (w, c,z), (w, c
′, z′) where c ̸= c′, we can

extract a valid opening (m, r =

r1...
rk

 , f) of t, with ∥ri∥ ≤ 4s
√
N and f ∈ C.

Proof. If we have two different valid transcripts for different challenges c, c′, we can easily compute

f = (c− c′) ∈ C and r =

r1...
rk

 = z − z′, for which A1r = ft1. This will hold since A1z = w + ct1

and A1z
′ = w + c′t1. We can now define the message m = t2 − f−1A2r. Since the components of

z and z′ are bounded by 2s
√
N in the ℓ2 norm, we have that ∥ri∥ ≤ ∥zi∥+ ∥z′i∥ ≤ 4s

√
N . Because

we defined m by fm = ft2−A2r, we also have that

[
A1

A2

]
r+f

[
0n

m

]
= f

[
t1
t2

]
, and hence (m, r, f)

is a valid opening of t.

4.2 ABDLOP commitment scheme

We recall that the main disadvantage of the BDLOP commitment scheme is that the commitments
are much more expensive than the standard Ajtai commitments [1]. The new scheme presented by
Lyubashevsky et al. in [16] allows for using the much cheaper Ajtai commitment scheme for the parts
of the message that are small. This new commitment scheme, called ABDLOP, is a combination of
the Ajtai and the BDLOP commitment scheme. The complete description of the scheme is given by
Nguyen in [22].

This commitment scheme uses a more efficient challenge space, that is constructed by using Ga-
lois automorphisms σ. We remember that this determines the standard deviation we are able to use
for rejection sampling. For a fixed k that is a power of two, we define the challenge space for the
commitment scheme as

C = {c ∈ Sω | σ(c) = c, 2k

√
∥σ−1(ck)ck∥1 ≤ η},

where ω is chosen such that we by Lemma 2 ensure that all elements of C = {c− c′ | c, c′ ∈ C, c ̸= c′}
are invertible, and η is chosen such that for a c

$← Sω we have 2k
√
∥σ−1(ck)ck∥1 ≤ η with high prob-

ability. We can then bound multiplication by challenge elements according to Lemma 12. Another
advantage of this challenge space is that if we choose σ := σ−1, we can use Lemma 11 to ensure that
elements of C is invertible, instead of Lemma 2. This is a common choice, and it increases the size
of the challenge space.

We remember that we can commit to vectors s1 of small norm as in (4.1), and to vectors m of
larger norm as in (4.2). We now divide the vector s we want to commit to into a smaller Ajtai part
and a larger BDLOP part, namely s = (s1,m). This allows us to commit to s1 in the Ajtai part and
to m in the BDLOP part under the same randomness s2. We now explain the algorithms KeyGen,
Commit and Open for this scheme.

ABDLOP.KeyGen: In order to create public parameters that can be used to commit to messages

(s1,m) ∈ Rm1+ℓ
q , we sample matrices A1

$← Rn×m1
q , A2

$← Rn×m2
q , B

$← Rℓ×m2
q , Bext

$← Rℓext×m2
q .
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Here ℓext defines how many additional polynomials we can commit to later, under the same ran-
domness. We also select parameters ν, α that defines the message space SM = {s1 ∈ Rm1

q | ∥s1∥ ≤
α} × Rℓq, and the randomness distribution D = χm2 , where χ is the uniform distribution on Sν .
Lastly we choose the bounds B1 and B2.

ABDLOP.Commit: In order to commit to a message (s1,m) ∈ SM , we sample randomness s2
$← χm2 ,

and output the commitment

ABDLOP.Commit(s1,m; s2) :=

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
∈ Rn+ℓq .

ABDLOP.Open: For a commitment t ∈ Rn+ℓq , ((s1,m), s2, c) ∈ SM ×Rm2
q ×Rq is a valid opening if

– ABDLOP.Commit(s1,m; s2) = t

– c ∈ C

– ∥cs2∥ ≤ B2

– ∥cs1∥ ≤ B1

ABDLOP.Open((s1,m), s2, c, t) outputs 1 if ((s1,m), s2, c) is a valid opening of t, and 0 if not.

In some of the zero-knowledge protocols that will be constructed using this commitment scheme,
there will be a need for creating additional commitments under the same randomness, as a part of
the protocol. By using Bext, we can create such additions in the BDLOP part of the commitment
scheme. This can be done by computing text := Bexts2 +mext. Then (tA, tB∥text) is a commitment
to (s1,m∥mext). We note that it is also possible to do this separately for several messages, by
defining several such extension matrices Bext.

4.2.1 Hiding and binding

We now prove that the ABDLOP commitment scheme satisfies the desired security properties.

Theorem 7. Suppose that B1 ≥ α and B2 ≥ ν
√
m2N . Then the ABDLOP commitment scheme is

complete.

Proof. Let 1 ∈ C and take any (s1,m) ∈ SM . Then by the definition of SM and by assumption,

∥1s1∥ ≤ α ≤ B1. We also have that for s2
$← χm2 , ∥s2∥ ≤ ν

√
m2N since ∥s2∥∞ ≤ ν. Thus we also

have that
∥1s2∥ ≤ ν

√
m2N ≤ B2.

Hence ABDLOP.Open(s1,m, s2, 1;ABDLOP.Commit(s1,m; s2)) = 1, and the scheme is complete.

We now prove the hiding property of the commitment scheme can be reduced to the MLWE
problem, thus proving that the scheme is hiding.

Theorem 8. Suppose thatm2−n−ℓ ≥ 0. Then, if there exists an algorithm A that has advantage ε
in breaking the hiding property of the ABDLOP commitment scheme, then there exists an algorithm
A′ that has advantage ε in solving the MLWEm2,n+ℓ,χ problem.
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Proof. Suppose that A′ is given an MLWEm2,n+ℓ,χ instance

[
A2

B

]
∈ R(n+ℓ)×m2

q , b ∈ Rn+ℓq . Now A′

outputs public parameters A1
$← Rn×m1

q ,A2,B. Upon receiving (s1,0,m0), (s1,1,m1) from A, A′

samples b
$← {0, 1} sends the commitment of (s1,b,mb)[

tA
tB

]
=

[
A1

0

]
s1,b + b+

[
0
mb

]
.

If A responds with b′ = b, then A′ outputs 1, and 0 if not. We now have two cases:

– If A′ was given a randomly generated b, then the output

[
tA
tB

]
is independent of (s1,b,mb),

and the probability that A outputs the correct b′ is exactly 1/2.

– If A′ was given b =

[
A2

B

]
s2, for some s2

$← χm2 , then the output commitment is

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
= ABDLOP.Commit(s1,b,mb; s2)

and by assumption A outputs the correct b′ with probability 1/2 + ε.

Therefore A′ will have advantage ε in solving the MLWEm2,n+ℓ,χ problem.

We now prove that the binding property of the commitment scheme can be reduced to the MSIS
problem, thus proving that the scheme is binding.

Theorem 9. If there exists an algorithm A who can break the binding property of the ABDLOP
commitment scheme with probability ε, then there exists an algorithm A′ with advantage ε in solving
the MSISn,m1+m2,B problem, where B = 4η

√
B2

1 +B2
2 .

Proof. Suppose that A′ is given an MSISn,m1+m2,B instance
[
A1 A2

]
← R

n×(m1+m2)
q . A′ now

outputs A1,A2,B
$← Rℓ×m2

q as public parameters, according to the commitment scheme. By

assumption A is now, with probability ε, able to come up with a commitment t =

[
tA
tB

]
with two

valid openings (s2, s1,m, c), (s′2, s
′
1,m

′, c′), where m ̸= m′. This implies that

A1s1 +A2s2 = tA = A1s
′
1 +A2s

′
2.

We can now rearrange this equation to get that[
A1 A2

] [s1 − s′1
s2 − s′2

]
= 0,

for a non-zero matrix

[
s1 − s′1
s2 − s′2

]
. Thus, if the ℓ2 norm of

[
s1 − s′1
s2 − s′2

]
is bounded by B, we have a

solution to the MSISn,m1+m2,B problem for
[
A1 A2

]
. We will use Lemma 12 in order to obtain

the desired bound, so we start by using the triangle inequality to get∥∥∥∥∥cc′
[
s1 − s′1
s2 − s′2

] ∥∥∥∥∥ ≤
∥∥∥∥∥c′
[
cs1
cs2

] ∥∥∥∥∥+
∥∥∥∥∥c
[
c′s′1
c′s′2

] ∥∥∥∥∥.
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Since we have c, c′ ∈ C, we must have that c = c0 − c1 and c′ = c′0 − c′1 for some c0, c1, c
′
0, c
′
1 ∈ C.

By construction of the commitment scheme, we have that

∥∥∥∥∥
[
cs1
cs2

] ∥∥∥∥∥,
∥∥∥∥∥
[
c′s′1
c′s′2

] ∥∥∥∥∥ ≤ √B2
1 +B2

2 , and

by definition of the challenge space we have that 2k
√
∥σ−1(ck)ck∥1 ≤ η for all c ∈ C. We now use

Lemma 12 and obtain∥∥∥∥∥c′
[
cs1
cs2

] ∥∥∥∥∥ ≤
∥∥∥∥∥c′0

[
cs1
cs2

] ∥∥∥∥∥+
∥∥∥∥∥c′1

[
cs1
cs2

] ∥∥∥∥∥ ≤ 2η
√
B2

1 +B2
2∥∥∥∥∥c

[
c′s′1
c′s′2

] ∥∥∥∥∥ ≤
∥∥∥∥∥c0

[
c′s′1
c′s′2

] ∥∥∥∥∥+
∥∥∥∥∥c1

[
c′s′1
c′s′2

] ∥∥∥∥∥ ≤ 2η
√
B2

1 +B2
2

Hence we have that ∥∥∥∥∥cc′
[
s1 − s′1
s2 − s′2

] ∥∥∥∥∥ ≤ 4η
√
B2

1 +B2
2 = B,

and A′ has advantage ε in solving the MSISn,m1+m2,B problem, where B = 4η
√
B2

1 +B2
2 .

4.2.2 Opening proof

We need a proof of knowledge of a valid opening to a commitment also for this commitment scheme.
The idea for this scheme is to perform rejection sampling on both the randomness s2, and on the
message s1. This means that we draw two masking vectors y1 to mask s1 and y2 to mask s2, and
perform rejection sampling on both. This is so that the prover can send w := A1y1 +A2y2 to the
verifier, whom can check if A1z1 +A2z2 − ctA = w.

Since the commitment scheme and opening proof will mostly be used to prove that committed
values satisfies some relation, and then never using the commitment again, we can then use the
more efficient rejection sampling algorithm Rej2 on the randomness s2. This means that we will leak
one bit of the randomness, but this will not be a problem. If we however want to use the protocol
and not throw out the commitment, we can simply just use Rej1 on s2 as well.

We now explain how to set the standard deviations for this scheme. Since we know that ∥s1∥ ≤ α,
we get by the definition of C and Lemma 12, that ∥cs1∥ ≤ ηα for c ∈ C. Similarly, since ∥s2∥∞ ≤ ν,
we get that ∥cs2∥ ≤ ην

√
m2N for c ∈ C. So, according to Lemma 4 we set the standard deviations

s1 = γ1ηα and s2 = γ2ην
√
m2N for some γ1, γ2 > 0. The opening proof is given as Π′open in Figure

4.2.

Theorem 10. Suppose that s1 = γ1ηα and s2 = γ2ην
√
m2N for some γ1, γ2 > 0. Then the protocol

Π′open is complete, meaning that if m1,m2 > 640/N then the honest prover convinces the verifier
with probability

≈ 1

2 exp
(

14
γ1

+ 1
2γ2

1
+ 1

2γ2
2

) .
Proof. By the definition of C and Lemma 12, and since ∥s1∥ ≤ α, ∥s2∥ ≤ ν

√
m2N , we have the

bounds
∥cs1∥ ≤ ηα, ∥cs1∥ ≤ ην

√
m2N.
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Π′open

Public Information: A1 ∈ Rn×m1
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q .

Prover’s Information: (s1,m, s2) ∈ Rm1+ℓ+m2
q so that ∥s1∥ ≤ α and ∥s2∥∞ ≤ ν

Commitment: t =

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
Prover Verifier

y1
$← DRm1 ,s1

y2
$← DRm2 ,s2

w := A1y1 +A2y2
w−→

c
$← C

c←−
z1 = cs1 + y1

z2 = cs2 + y2

for i = 1, 2 :
if Reji(zi, csi, si) = 1
then abort

z1, z2−−−−→
Accept iff:
1. ∥z1∥ ≤ s1

√
2m1N

2. ∥z2∥ ≤ s2
√
2m2N

3. A1z1 +A2z2 − ctA = w

Figure 4.2: Proof of knowledge Π′open of (s1, s2, c) ∈ Rm1
q × Rm2

q × C such that A1s1 +A2s2 = tA,

Bs2 +m = tB and ∥csi∥ ≤ 2si
√
2miN for i = 1, 2.

We can use Lemma 4 to see that the probability that both Rej1(z1, cs1, s1) and Rej2(z2, cs2, s2) do
not abort is at least

1

2 exp
(
14
γ1

+ 1
2γ2

1

)
exp

(
1

2γ2
2

) .
We can now use the tail-bound in Lemma 3 with δ =

√
2 to see that ∥z1∥ ≤ s1

√
2m1N , ex-

cept with probability
√
2
m1N

exp(−m1N/2), and that ∥z2∥ ≤ s2
√
2m2N , except with probability√

2
m2N

exp(−m2N/2). Under the assumption that m1,m2 ≥ 640/N , these probabilities are negligi-
ble. The last verification equation follows from

A1z1 +A2z2 = A1y1 +A2y2 + cA1s1 + cA2s2

= w + ctA,

and hence the Theorem holds.
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Theorem 11. Suppose that s1 = γ1ηα and s2 = γ2νη
√
m2N for some γ1, γ2 > 0. Then the protocol

Π′open is honest-verifier zero-knowledge, meaning that there exists a simulator S that outputs a
simulation of a non-aborting transcript of the protocol between the honest prover and verifier, that
is indistinguishable from the real transcript.

Proof. According to Lemma 4, the zi’s in the real protocol is within statistical distance of 2−128

from DRmi ,si , and independent of c. So we can construct the simulator S in the following manner.

It samples z1
$← DRm1 ,s1 , z2

$← DRm2 ,s2 and c
$← C. It then computes w := A1z1 +A2z2 − ctA.

Finally it outputs the simulated transcript (w, c,z1, z2).

From construction of w we clearly get that A1z1+A2z2− ctA = w. We can now use the tail-bound
in Lemma 3 with δ =

√
2 to see that ∥z1∥ ≤ s1

√
2m1N and ∥z2∥ ≤ s2

√
2m2N with overwhelming

probability, by the same argumentation as in the proof of Theorem 10. Hence simulated transcript
is statistically close to a real non-aborted transcript, and Π′open is honest-verifier zero-knowledge.

Theorem 12. Suppose that B1 ≥ 2s1
√
2m1N and B2 ≥ 2s2

√
2m2N . Then the protocol Π′open

is knowledge sound, meaning that there is an extractor E with the following properties. When
given rewindable black-box access to a probabilistic prover P∗, which runs in time at most T and
convinces V with probability ε > 1/|C|, the extractor E with probability at least ε − 1/|C| out-
puts (s1, s2,m) ∈ Rm1+m2+ℓ

q and c ∈ C such that for t = ABDLOP.Commit(s1,m, s2), we have
ABDLOP.Open(s1,m, s2, c, t) = 1.

Proof. In order to prove knowledge soundness we use the collision game strategy introduced in
Section 2.3.4. We let H ∈ {0, 1}R×|C| be the binary matrix where the R rows correspond to the
prover’s randomness and |C| columns correspond to the different choices for the challenge c, and let
H(r, c) denote the entry corresponding to randomness r and challenge c ∈ C. By assumption there
are ε 1-entries in H. We define the following extractor:

1. E first samples fresh randomness r and challenge c(0)
$← C. Then it checks if H(r, c(0)) = 1,

and aborts if not.

2. Otherwise, E samples along row r without replacement until it finds a c(1) such thatH(r, c(0)) =
H(r, c(1)) = 1 and c(0), c(1) are distinct.

If we assume that E can check values of each entry in H in time most T , then Lemma 1 states that
the expected time of E is at most 2T and that E extracts two valid transcripts with probability at
least ε− 1/|C|. We denote the valid transcripts as

tri = (w, c(i), z
(i)
1 , z

(i)
2 ) for i = 0, 1.

We define c = c(1) − c(0) ∈ C, which by definition of the challenge space is invertible and such that
∥c∥∞ ≤ 2ω. We can now define

si :=
z
(1)
i − z

(0)
i

c
for i = 1, 2 and m := tB −Bs2

Since the transcripts are valid, we have that A1z
(i)
1 +A2z

(i)
2 = w + c(i)tA for i = 0, 1, and thus we

get

A1s1 +A2s2 = A1(z
(1)
1 /c− z

(0)
1 /c) +A2(z

(1)
2 /c− z

(0)
2 /c)

= c(1)tA/c− c(0)tA/c
= tA.
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And since tB = Bs2 +m by construction, we thus have that ABDLOP.Commit(s1,m, s2) = t.

By construction and Lemma 3 we have ∥cs1∥ ≤ 2s1
√
2m1N ≤ B1, ∥cs2∥ ≤ 2s2

√
2m2N ≤ B2.

Hence we will get that ABDLOP.Open(s1,m, s2, c, t) = 1.
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Chapter 5

Zero-knowledge schemes using
BDLOP commitments

Shortly after the introduction of the BDLOP commitment scheme, it was put into use to construct
zero-knowledge proofs of knowledge of a short vector s⃗ satisfying

As⃗ = u⃗ over Zq, (5.1)

for public A ∈ Zm×nq and u⃗ ∈ Zmq . This is in fact a more general statement, but if we let the matrix
A have a certain structure describing linear relations over Rq, then this is equivalent to As = u
over Rq, for a matrix A and vectors s,u over Rq. Schemes for proving (5.1) will consist of a proof
of knowledge of such an s⃗ and a proof showing that s⃗ is short.

In this chapter we will explain some of the main constructions that led to the state of the art
lattice-based zero-knowledge proofs. We start in Section 5.1 by explaining one of the very first
zero-knowledge schemes that used the BDLOP commitment scheme. This scheme uses a product
proof of committed values to prove that the coefficients of s⃗ are in {0, 1, 2}. In the next Section 5.2,
we explain a more efficient product proof for committed values. Lastly, in Section 5.3 we explain a
more efficient method for proving knowledge of an s⃗ satisfying (5.1). These can be used in the first
scheme to make it more efficient.

The state of the art schemes by Lyubashevsky et al. [16] uses ideas from all the schemes pre-
sented in this chapter. We omit the security analysis of the schemes in this chapter, because we
want to focus on the ideas and how they build upon each other, rather than the details of the
security. However for completeness, the full security analysis is given in the appendix.

5.1 Zero-knowledge using commitments and NTT coefficients

Bootle et. al. proposed in [6] the first lattice based proof system that significantly outperformed
the Stern type proofs for proving knowledge of a short s⃗ satisfying As⃗ = u⃗ over Zq. The idea behind
their protocol is to choose q such that q ≡ 1 (mod 2N), which by Lemma 2 implies that XN + 1
splits into linear factors modulo q. The NTT of a polynomial in Rq will then be a vector of dimension
N . We denote by 0, 1 and 2 the elements in Rq that are the inverse NTT of the N -dimensional
vectors of all 0’s, 1’s and 2’s, respectively.
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We notice that showing that a vector s⃗ has coefficients in {0, 1, 2}, is equivalent to showing that
s⃗◦ (s⃗− 1⃗)◦ (s⃗− 2⃗) = 0⃗. Thus we see that proving knowledge of a vector s⃗ with coefficients in {0, 1, 2}
that satisfies As⃗ = u⃗ over Zq, is equivalent to proving knowledge of a polynomial s ∈ Rq, possibly
with large coefficients, such that

s(s− 1)(s− 2) = 0 and Aŝ = u⃗ over Zq, (5.2)

because s(s− 1)(s− 2) = 0 if and only if ŝ ◦ (ŝ− 1̂) ◦ (ŝ− 2̂) = 0̂.

We now explain how the protocol for proving knowledge of such an s ∈ Rq satisfying (5.2) is

constructed. The prover starts by sampling a masking vector y
$← Rq and sends w⃗ = Aŷ mod q to

the verifier. Upon receiving a challenge c ∈ Zq ⊂ R from the verifier, it outputs z = y + cs. Since c
is an integer, this is equivalent to ẑ = ŷ + cŝ. The verifier can now check that

Aẑ = w⃗ + cu⃗.

However, if one rewinds and obtains for a challenge c′ ̸= c another equation, Aẑ′ = w⃗ + c′u⃗, we get
that

A(ẑ − ẑ′) = (c− c′)u⃗. (5.3)

There are two problems with this in order for it to prove (5.2). Firstly, we don’t know that ẑ − ẑ′
has coefficients in {0, 1, 2}, and secondly c − c′ is not necessarily equal to 1. The solution to both
of these problems involves committing to y and s. We note that since s might actually have large
coefficients, we cannot use the Ajtai commitment scheme, and so we use version 1 of the BDLOP
commitment scheme.

To solve the second problem, the prover in the first step also makes the commitments t1 = b1r + y
and t2 = b2r + s to y and s. We have for any challenge c ∈ R that

t1 + ct2 = (b1 + cb2)r + y + cs,

is a commitment to the message y+cs with vector b1+cb2. So upon receiving a challenge c ∈ Zq from
the verifier, the prover now proves that t1 + ct2 is a commitment to z. This implies that z = y+ cs,
because of the binding property of the commitment scheme. Hence the rewinding argument will
now yield another equation z′ = y + c′s, and we get that z − z′ = (c− c′)s. This implies that

ẑ − ẑ′ = (c− c′)ŝ.

Plugging this into Equation (5.3) gives A(c − c′)ŝ = (c − c′)u⃗. Since c, c′ ∈ Zq and c ̸= c′, we can
divide out c− c′, and this then implies that

Aŝ = u⃗,

as desired. The first problem is now reduced to showing that the coefficients of ŝ are in {0, 1, 2}.
The initial idea for this proof stems from the observation that

z(z − c)(z − 2c) = (y + cs)(y + c(s− 1))(y + c(s− 2))

= y3 + 3y2(s− 1)c+ y(3s2 − 6s+ 2)c2 + s(s− 1)(s− 2)c3.
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We notice that the last coefficient of the above polynomial in c is exactly what we want to prove
equals 0. So, if the prover in the first step also makes the commitments

t3 = b3r + y3,

t4 = b4r + 3y2(s− 1),

t5 = b5r + y(3s2 − 6s+ 2),

it can upon receiving the challenge c, prove that t3 + ct4 + c2t5 is indeed a commitment to z(z −
c)(z − 2c). This would imply that the above polynomial is quadratic in c, and therefore that
s(s − 1)(s − 2) = 0. However, this argument can be optimized in such a way that the prover can
commit to one less polynomial. If we instead consider the expression

(z − c)(z − 2c)s = ((y + cs)2 − 3c(y + cs) + 2c2)s

= y2s+ (2ys2 − 3ys)c+ (s3 − 3s2 + 2s)c2

= y2s+ (zy − y2)(2s− 3) + s(s− 1)(s− 2)c2

= zy(2s− 3)− y2(s− 3) + s(s− 1)(s− 2)c2,

where we used that cys = (z − y)y = zy − y2, we notice that the prover can instead make the
commitments

t3 = b3r + y(2s− 3)

t4 = b4r + y2(s− 3)

and prove that (z − c)(z − 2c)t2 − zt3 + t4 is a commitment to 0, to imply that s(s− 1)(s− 2) = 0.

We notice that the commitments are constructed as a part of the protocol, and we will sample
the coefficients of the randomness vector r from the distribution χ on {−1, 0, 1}, where ±1 have
probability 5/16, and 0 has probability 6/16. We will use the protocol Πopen to prove that all the

commitments are valid, by drawing a y′
$← DR6,s, computing w′ = b0y

′, and upon receiving a

challenge f
$← C from the verifier, output z′ = y′ + fr if the rejection sampling algorithm on z′

does not abort. The verifier can then check if z′ is small enough and if b0z
′ = w′ + ft0.

What remains now is to explain how we prove that t1 + ct2 and (z − c)(z − 2c)t2 − zt3 + t4 are
commitments to z and 0, respectively. This is done by the prover computing

x1 = (b1 + cb2)y
′ (5.4)

x2 = ((z − c)(z − 2c)b2 − zb3 + b4)y
′. (5.5)

The verifier can then check if

(b1 + cb2)z
′ + fz

?
= x1 + f(t1 + ct2), (5.6)

((z − c)(z − 2c)b2 − zb3 + b4)z
′ ?
= x2 + f((z − c)(z − 2c)t2 − zt3 + t4), (5.7)

which would only hold if the commitments actually are to z and 0.

Since q is chosen such that XN + 1 splits into linear factors modulo q, the largest challenge space
that can be used for the commitment opening proof is

C = {0, Xi | 0 ≤ i < 2N}.
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It is guaranteed by Lemma 10 that all elements in the set of differences C are invertible. We therefore
use the standard deviation s = γ

√
6N , as explained in Section 4.1, since κ = 1 for this challenge

space, and β = 1, k = 6 for the randomness space.

This means that the largest challenge space one can use for the commitment validity proof is of
size 2N +1, and that the largest challenge space one can use for proving knowledge of s is of size q.
Hence the commitment validity proof would need to be repeated 128/ log(2N) times order achieve
128-bit security, which increases the total proof size.

ΠNTT

Public Information: A ∈ Zm×Nq , u⃗ = Aŝ ∈ Zmq , b0, . . . , b4 ∈ R6
q

Prover’s Information: ŝ ∈ {0, 1, 2}N

Prover Verifier

y
$← Rq

r
$← χ6N

t =


t0
t1
t2
t3
t4

 =


b0
b1
b2
b3
b4

 r +


0
y
s

y(2s− 3)
y2(s− 3)


w⃗ = Aŷ

t, w⃗−−−→
c←− c

$← Zq
z = y + cs

y′
$← DR6,s

w′ = b0y
′

Define x1 and x2 as in (5.4) and (5.5)
z,w′,x1,x2−−−−−−−−−→

f←− f
$← C

z′ = y′ + fr

If Rej1(z
′, fr, s) = 1, abort

z′−→
Accept iff:

1. ∥z′∥ ≤ B = s
√
12n

2. Aẑ
?
= w⃗ + cu⃗

3. b0z
′ ?
= w′ + ft0

4. (5.6) and (5.7) holds

Figure 5.1: Proof of knowledge ΠNTT of s⃗ ∈ ZNq with coefficients in {0, 1, 2} satisfying As⃗ = u⃗ over
Zq.
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The protocol is given as ΠNTT in Figure 5.1. We give the full security analysis of the protocol
in Appendix A.

5.2 Automorphism opening and product proof

One key observation to get around the problem with small challenge space that we encountered in
the previous section, is that we don’t always need c ∈ C to be invertible. It is actually sufficient
that the probability that c is not invertible, is less than the targeted soundness error. If we then use
the fact that an element in Rq is invertible if and only if all its NTT coefficients are non-zero, we
notice that in order to determine the probability that c ∈ C is invertible, one can just determine the
probability that a random c ∈ C hits a given NTT coefficient. We now explain how we can construct
challenge spaces for which we can compute this probability.

We start by choosing parameters according to Lemma 2 such that

Rq = Zq[X]/(XN + 1) ∼=
∏
i∈Z×

2k

Zq[X]/(XN/k − ζi),

where ζ ∈ Zq is a 2k-th root of unity. We can now define the challenge space to be all polynomials
of degree N with coefficients in {−1, 0, 1}. We let C be the distribution over C = {−1, 0, 1}N ⊂ Rq
such that the coefficients of a challenge c ∈ C are independently identically distributed, with 0 having
probability p and ±1 having probability (1− p)/2 each.

For a challenge c
$← C and i ∈ Z×2k, we can now study the distribution of c mod (XN/k − ζi).

The following Lemma, that is proved by Attema et al. in [3], states that this distribution is inde-
pendent of i.

Lemma 13 ([3]). Let a ∈ Rq be a random polynomial with coefficients independently and identically
distributed. Then Rq/(X

N/k−ζi) ∼= Rq/(X
N/k−ζj), and a mod (XN/k−ζi) and a mod (XN/k−

ζj) are identically distributed for all i, j ∈ Z×2k.

Hence we can focus on the case where i = 1. It is obvious that for c
$← C, all coefficients

follow the same distribution over Zq. Attema et al. also proves the following upper bound on the
probability of the coefficients.

Lemma 14 ([3]). Let the random variable Y over Zq be defined as above. Then for all x ∈ Zq,

Pr[Y = x] ≤M :=
1

q
+

2k

q

∑
j∈Z×

q /⟨ζ⟩

k−1∏
l=0

|p+ (1− p) cos(2πjyζl/q)|

5.2.1 Opening proof

Attema et al. [3] explains how a new opening proof for commitments can be constructed with
this challenge space, using the automorphism from Section 3.5. Suppose that the prover knows an
opening to the commitment

t0 = B0r,

t1 = ⟨b1, r⟩+m.
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for B0 ∈ Rµ×(λ+µ+1)
q , b1 ∈ Rλ+µ+1

q and r ∈ Rλ+µ+1
q . The idea is the same as in Πopen, but the

initial problem is that when we no longer require c − c′ to be invertible, we can no longer use the
prover replies z, z′ for different challenges c, c′ to obtain ye and re such that

z = ye + cre and z′ = ye + c′re.

Here we by subscript e mean to indicate extracted values. What we can do instead is to make
sure that for every i ∈ Z×2k, we have an accepting transcript pair with a challenge difference that is
non-zero modulo XN/k − ζi. So suppose one can rewind and obtain k pairs of prover replies (zi, z

′
i)

for challenge pairs (ci, c
′
i), that satisfy

ci = ci − c′i ̸≡ 0 (mod (XN/k − ζi)).

Then, if we have that all these transcripts have the same prover commitment w and are accepting,
meaning that B0zi = w + cit0 and B0z

′
i = w + c′it0 for all i, we can compute

zi ≡ (ye)i + ci(re)i and z′i ≡ (ye)i + c′i(re)i (mod (XN/k − ζi)).

From this we can define

(re)i =
zi − z′i
ci

(mod (XN/k − ζi)), and

(ye)i =
ciz
′
i − c′izi
ci

(mod (XN/k − ζi)).

If we let re and ye over Rq be the inverse NTT of the (re)i and (ye)i, meaning that re ≡ (re)i
mod (XN/k − ζi) and ye ≡ (ye)i mod (XN/k − ζi) for all i ∈ Z×2k, then it must hold that

zi = ye + cire and z′i = ye + c′ire

for all i, and that B0re = t0 and B0ye = w. We prove this in the following Lemma.

Lemma 15. If we have obtained k pairs of accepting transcripts with commitment w as in the
preceding paragraph, then every accepting transcript (w, c,z) must be such that z = ye+ cre where
ye and re are the vectors computed above independently from c, or we obtain an MSISµ,λ+µ+1,8κB

solution for B0 where κ is a bound on the ℓ1 norm of the challenges. Moreover, we have B0re = t0
and B0ye = w.

Proof. We define y′e by z = y′e + cre and fix some i ∈ {1, . . . , k}. From the verification equations we
get that

B0(zi − z′i) = cit0 and B0(z − zi) = (c− ci)t0
since all transcripts are accepting. This implies that (c − ci)B0(zi − z′i) = ciB0(z − zi). Since we
have that ∥ci∥1 ≤ 2κ and ∥ciz∥ ≤ 2B, we get that ∥((c − ci)(zi − z′i) − ci(z − zi))∥ ≤ 8κB. Thus
we either have that ((c − ci)(zi − z′i) − ci(z − zi)) is an MSISµ,λ+µ+1,8κB solution for B0 or that
(c− ci)(zi − z′i) = ci(z − zi). We focus on the latter case.

We now use z = y′e + cre, zi = (ye)i + ci(re)i and z′i = (ye)i + c′i(re)i in the above equality,
and get that

(c− ci)ci(re)i ≡ ci(y′e − (ye)i + (c− ci)(re)i) (mod XN/k − ζi)
⇔ ci(ye − (ye)i) ≡ 0 (mod XN/k − ζi)
⇔ y′e ≡ (ye)i ≡ ye (mod XN/k − ζi)
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since ci mod (XN/k − ζi) ̸= 0. Since this holds for all i, we hence have that y′e = ye and the first
part of the lemma holds.

From the construction of re and ye, and from the verification equations it follows that

B0re ≡ B0(re)i ≡ B0
zi − z′i
ci

≡ t0 (mod XN/k − ζi), and

B0ye ≡ B0(ye)i ≡ B0
ciz
′
i − c′izi
ci

≡ w (mod XN/k − ζi).

Hence the lemma holds by the Chinese remainder theorem.

The extracted re can be used to define me such that t1 = ⟨b1, re⟩+me. Then we have found a
weak opening, which is defined as below, for the commitment t = t0∥t1.

Definition 25. A weak opening for the commitment t = t0∥t1 consists of k polynomials ci ∈ Rq, a
randomness vector r over Rq, and a message m ∈ Rq such that

∥ci∥1 ≤ 2κ and ci mod (XN/k − ζi) ̸= 0 for all 1 ≤ i ≤ k,
∥cir∥ ≤ 2B for all 1 ≤ i ≤ k,
B0r = t0,

⟨b1, r⟩+m = t1.

We now prove that the scheme is still binding with respect to weak openings.

Theorem 13. If there is an algorithm A who can break the binding property of the BDLOP
commitment scheme with respect to weak openings with probability ε, then there is an algorithm
A′ with advantage ε in solving the MSISµ,λ+µ+1,8κB problem.

Proof. Suppose that A′ is given a MSISµ,λ+µ+1,8κB-instance B0 ∈ R
µ×(λ+µ+1)
q , for which it is

supposed to find a vector z ∈ Rλ+µ+1
q such that B0z = 0 and ∥z∥ ≤ 8κB. A′ creates a random

b1 ∈ Rλ+µ+1
q , and outputs B0, b1 as public parameters. With probability ε, A is able to come up

with two weak openings ((ci), re,me) and ((c′i), r
′
e,m

′
e) such that me ̸= m′e. This implies that

⟨b1, re⟩+me = t1 = ⟨b1, r′e⟩+m′e,

which then implies that re ̸= r′e. Hence there must exists an i ∈ {1, . . . , k} for which re ̸≡
r′e (mod XN/k − ζi). Since the polynomials ci and c′i are non-zero modulo XN/k − ζi, this im-
plies that

cic
′
i(re − r′e) = c′icire − cic′ir′e ̸= 0.

This in turn implies that
B0cic

′
i(re − r′e) = 0

for a non-zero cic
′
i(re−r′e). Since we have that ∥ci∥1 ≤ 2κ and ∥cire∥ ≤ 2B for weak openings, we get

that ∥cic′i(re− r′e)∥ ≤ 8κB. Hence A′ has advantage ε in solving the MSISµ,λ+µ+1,8κB problem.

We choose parameters such that the maximum probability over Zq of each of the N/k coefficients
of c mod XN/k − ζi is not much bigger than 1/q, by the upper bound in Lemma 14. Then the
protocol has a cheating probability of about q−N/k. If this is not negligible, we can run l copies of
the protocol in parallel to reduce the cheating probability to q−lN/k.
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Πσopen

Public Information: B0 ∈ Rµ×(λ+µ+1)
q , b1 ∈ Rλ+µ+1

q , t0 = B0r, t1 = ⟨b1, r⟩+m

Prover’s Information: r ∈ {−1, 0, 1}(λ+µ+1)N ⊂ Rλ+µ+1
q ,m ∈ Rq

Prover Verifier

For i = 0, . . . , l − 1 :

yi
$← DRλ+µ+1,s

wi = B0yi
wi−−→
c←− c

$← C
For i = 0, . . . , l − 1 :
zi = yi + σi(c)r

If Rej1((zi), (σ
i(c)r), s) = 1, abort

zi−→
Accept iff:
For i = 0, . . . , l − 1 :

∥zi∥
?
≤ B = s

√
2(λ+ µ+ 1)N

B0zi
?
= wi + σi(c)t0

Figure 5.2: Proof of knowledge Πσopen of (m, r, σi(c)) ∈ Rq × Rλ+µ+1
q × Rkq such that B0r = t0,

⟨b1, r⟩+m = t1 and ∥σi(c)r∥ ≤ 2B for all i ∈ [k].

Instead of sampling the challenges independently, we let the challenges in the l parallel execu-
tions be the images σj(c), j = 0, . . . , l − 1, of a single polynomial c ∈ C. We use the automorphism
of order lN/k, σ = σ2k/l+1 ∈ Aut(Rq), that stabilizes the ideals(

X lN/k − ζil
)
=

∏
j=0,...,l−1

σj
(
XN/k − ζi

)
=

∏
j∈⟨2k/l+1⟩/⟨2k+1⟩

(
XN/k − ζij

)
for i ∈ ⟨−1, 5⟩/⟨2k/l + 1⟩ ∼= Z×2k/l.

Now the maximum probability of c mod (X lN/k−ζil) is essentially q−lN/k, which is negligible. This
way we can assure that the prover must answer two challenges c, c′ that differ modulo X lN/k − ζil,
and c = c− c′ must be non-zero modulo at least one of the divisors, say XN/k − ζi. For every other
divisor σi(XN/k − ζi), we then have

σj(c) mod σj
(
XN/k − ζi

)
= σj

(
c mod (XN/k − ζi)

)
̸= 0.

This means that we have an accepting transcript pair with non-zero c modulo every prime divisor of
(X lN/k − ζil). By repeating the argument for every i ∈ Z×2k/l, we get that we can get an accepting

transcript pair with non-zero c modulo every prime divisor of XN + 1.
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The resulting opening proof looks like Πopen, only that it is run in l parallels and uses Galois
automorphisms. We set the standard deviation, in accordance with the commitment scheme, as
s = γκ

√
(λ+ µ+ 1)N , since β = 1.

The protocol is given as Πσopen in Figure 5.2. We give the full security analysis of the protocol
in Appendix B.1.

5.2.2 Product proof

We now explain how we can use Galois automorphisms to construct a more efficient protocol for
proving multiplicative relations among committed values. Suppose that the prover knows an opening
of a commitment t to the secret polynomials m1,m2,m3 ∈ Rq

t0 = B0r,

t1 = ⟨b1, r⟩+m1,

t2 = ⟨b2, r⟩+m2,

t3 = ⟨b3, r⟩+m3,

(5.8)

and want to prove that m1m2 = m3 in Rq. If we were to follow the idea from Section 5.1, we would
commit to random masking polynomials a1, a2, a3 ∈ Rq, and upon receiving a challenge c from the
verifier, compute the masked openings fi = ai + cmi for i = 1, 2, 3 and prove their well-formedness.

But now we instead let the verifier compute the masked openings as fi = ⟨bi, z⟩ − cti, where
z = y+cr is from the commitment opening proof. This is made possible by the results we discussed
in the previous section, namely that the verifier will be convinced that the z in the opening proof
is of the form z = ye + cre, where ye, re are independent of c, and that ti = ⟨bi, re⟩+ (mi)e. Thus
the verifier will be convinced that

fi = ⟨bi, z⟩ − cti = ⟨bi,ye⟩ − c(mi)e,

which is exactly a masked opening of (mi)e with challenge c and masking polynomial (ai)e = ⟨bi,ye⟩.

We observe that

f1f2 − cf3 = c2(m1m2 −m3) + c(a1m2 + a2m1 − a3) + a1a2.

In order to get rid of garbage terms in this equation, we make the commitment t4 = ⟨b4, r⟩+ a3 −
a1m2−a2m1, take the masked opening f4 = ⟨b4, z⟩−ct4, and instead use the relation f1f2+cf3+f4.
In this expression the coefficient for c vanishes, and so this polynomial is constant in c, with constant
coefficient v = ⟨b4,y⟩ + a1a2. Thus the prover can send this polynomial before seeing c. Since we
use the masking polynomials ai = ⟨bi,y⟩, we get that the commitment to the garbage term is

t4 = ⟨b4, r⟩+ ⟨b3,y⟩ −m1⟨b2,y⟩ −m2⟨b1,y⟩.

This means that the verifier can just check that f1f2 + cf3 + f4 = v for v = ⟨b4,y⟩+ ⟨b1,y⟩⟨b2,y⟩.

We also for this protocol need to be able to run several copies in parallel to reduce the sound-
ness error, and will then use the automorphism opening proof from Section 5.2.1. So instead of
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proving m1m2 ≡ m3 (mod σi(XN/k − ζj)), we linear combine all the permutations σi(m1m2 −m3)
with independently uniformly random challenge polynomials αi, and set out to prove that

l−1∑
i=0

αiσ
i(m1m2 −m3) ≡ 0 (mod σi

′
(XN/k − ζj))

for i′ = 0, . . . , l − 1. For each i′ the prover has independent cheating probability, and the above
equation proves that

σi(m1m2 −m3) ≡ 0 (mod σi
′
(XN/k − ζj))

⇒ m1m2 −m3 ≡ 0 (mod σi
′−i(XN/k − ζj))

for all i = 0, . . . , l − 1. This way the probability that a cheating prover succeeds is significantly
reduced. Further, the l masked openings are now computed as

f
(i)
j = ⟨bj , zi⟩ − σi(c)tj for j = 1, 2, 3,

where zi = yi + σi(c)r are from the automorphism opening proof. This gives the extracted expres-
sions

f
(i)
j = ⟨bj , (yi)e⟩ − σi(c)(mj)e for j = 1, 2, 3.

In order to apply the previously explained method in this situation, we observe that

l−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 +σi(c)f

(i)
3

)
=

l−1∑
i=0

αiσ
−i
(
⟨b1,y∗i ⟩⟨b2,y∗i ⟩

)
+ c

l−1∑
i=0

αiσ
−i
(
⟨b3, (yi)e⟩

− (m1)e⟨b2, (yi)e⟩ − (m2)e⟨b1, (yi)e⟩
)
+ c2

(
l−1∑
i=0

αiσ
−i((m1)e(m2)e − (m3)e

))
.

In order to make this polynomial constant in c we add the term f4 = ⟨b4, z0⟩ − ct4 stemming from
the garbage commitment

t4 = ⟨b4, r⟩+
l−1∑
i=0

αiσ
−i
(
⟨b3,yi⟩ −m1⟨b2,yi⟩ −m2⟨b1,yi⟩

)
. (5.9)

The verifier can now check that the new polynomial equals

v = ⟨b4,y0⟩+
l−1∑
i=0

αiσ
−i
(
⟨b1,yi⟩⟨b2,yi⟩

)
. (5.10)

We note that the distribution χ on R that we use to sample randomness, can be any of the
standard choices. We set the standard deviation, in accordance with the commitment scheme,
as s = γκβ

√
(λ+ µ+ 4)N .

The protocol is given as Πσprod in Figure 5.3. We give the full security analysis of the protocol
in Appendix B.2.
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Πσprod

Public Information: B0 ∈ Rµ×(λ+µ+4)
q , b1, . . . , b4 ∈ Rλ+µ+4

q

Prover’s Information: m1,m2,m3 ∈ Rq

Prover Verifier

r
$← χ(λ+µ+4)N

t0 = B0r
t1 = ⟨b1, r⟩+m1

t2 = ⟨b2, r⟩+m2

t3 = ⟨b3, r⟩+m3

t = t0∥t1∥t2∥t3
For i = 0, . . . , l − 1 :

yi
$← DRλ+µ+4

q ,s

wi = B0yi
t,wi−−−→

α0, . . . , αl−1←−−−−−−−−− α0, . . . , αl−1
$← Rq

Define t4 as in (5.9)
Define v as in (5.10)

t4,v−−−→
c←− c

$← C
For i = 0, . . . , l − 1 :
zi = yi + σi(c)r

If Rej1((zi), (σ
i(c)r), s) = 1, abort

zi−→ f4 = ⟨b4, z0⟩ − ct4
Accept iff:
For i = 0, . . . , l − 1 :

∥zi∥
?
≤ B = s

√
2(λ+ µ+ 4)N

B0zi
?
= wi + σi(c)t0

f
(i)
1 = ⟨b1, zi⟩ − σi(c)t1

f
(i)
2 = ⟨b2, zi⟩ − σi(c)t2

f
(i)
3 = ⟨b3, zi⟩ − σi(c)t3

k−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
+ f4

?
= v

Figure 5.3: Proof of knowledge Πσprod of m1,m2,m3 ∈ Rq such that m1m2 = m3.
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5.3 Proof of linear relations using inner products

The scheme from Section 5.1 uses a challenge space of size q for proving knowledge of s⃗, and is thus
restricted to a soundness error of 1/q. Esgin et al. introduced in [10] a new approach for proving
knowledge of s⃗ with much lower soundness error. We assume in this section that q ≡ 1 (mod 2N),
such that

XN + 1 ≡
∏

j∈Z×
2N

(X − ζj) mod q

for a primitive 2N -th root of unity ζ, according to Lemma 2.

The idea behind the protocol is that if As⃗ = u⃗, then for all γ⃗ ∈ Zmq we have that ⟨As⃗ − u⃗, γ⃗⟩ = 0,
whilst if As⃗ ̸= u⃗ then this holds true only with probability 1/q. Suppose that s⃗ = NTT(š) for some
š ∈ Rq. We then use Lemma 9 and the inverse NTT to derive that

⟨As⃗− u⃗, γ⃗⟩ = ⟨As⃗, γ⃗⟩ − ⟨u⃗, γ⃗⟩ = ⟨s⃗, AT γ⃗⟩ − ⟨u⃗, γ⃗⟩

=
∑
j∈Z×

2N

š(ζj)(NTT−1(AT γ⃗))(ζj)− ⟨u⃗, γ⃗⟩

=
1

N

∑
j∈Z×

2N

f(ζj) = f0,

where we have defined f := NTT−1(NAT γ⃗)š − ⟨u⃗, γ⃗⟩ ∈ Rq, and f0 ∈ Zq is the constant coefficient
of f . So, in order to show that ⟨As⃗ − u⃗, γ⃗⟩ = 0, one can show that the constant coefficient of f is
zero. Suppose that the prover knows an opening of a commitment to š

t0 = B0r,

t1 = ⟨b1, r⟩+ š.

In order to prove that the constant coefficient of f is zero, the prover samples a masking polynomial
g with a zero constant coefficient. Upon receiving γ⃗ from the verifier, it sends h := f + g. The
verifier can now just check if h0 = 0.

We must also prove that h was constructed correctly. In order to do this, the prover sends a
commitment t2 = ⟨b1, r⟩+ g to g. We notice that

NTT−1(NAT γ⃗)t1 − ⟨u⃗, γ⃗⟩ = ⟨NTT−1(NAT γ⃗)b1, r⟩+ f

is a commitment to f . Hence the verifier can compute the commitment τ = NTT−1(NAT γ⃗)t1−⟨u⃗, γ⃗⟩
to f . For well-formedness, the prover can now prove that τ + t2 − h is a commitment to 0.

In order to do this, we use the masking polynomial y and corresponding z = y + cr from the
opening proof for the commitments. If we let v = ⟨NTT−1(NAT γ)b1+b2,y⟩, it suffices that verifier
can check that

⟨NTT−1(NAT γ)b1 + b2, z⟩ = v + c(τ + t2 − h).

This protocol has a cheating probability of 1/q, but it is possible to make the soundness error neg-
ligible with little additional cost. We now explain how.

Suppose we were to have the l functions L0, . . . , Ll−1, such that for any 0 ≤ µ < l and γ⃗µ ∈ Zmq ,
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we have that all coefficients of Lµ(γ⃗µ) ∈ Rq are zero, except for the µ-th one which is equal to
⟨As⃗− u⃗, γ⃗µ⟩. Then we could instead define the polynomial

f = L0(γ⃗0) + · · ·+ Ll−1(γ⃗l−1),

which has the property that for all 0 ≤ µ < l, the coefficient of Xµ is equal to ⟨As⃗ − u⃗, γ⃗µ⟩. This
implies that if As⃗ = u⃗, then f0 = f1 = · · · = fl−1 = 0, and if As⃗ ̸= u⃗ this holds true only with
probability 1/ql. Thus we can let the verifier send l independently uniform vectors γ⃗0, . . . , γ⃗l−1,
and then prove that the l first coefficients of f are zero in order to reduce the soundness error. In
accordance with this new approach, the prover will also use the automorphism opening proof with
soundness error 1/ql from Section 5.2.1, to prove that the commitments are valid.

We leave the details of how to construct these functions Lµ to [10], but

Lµ(γ⃗) =
1

l
Xµ

l−1∑
ν=0

σν(NTT−1(NAT γ⃗)š− ⟨u⃗, γ⃗⟩)

has this property when σ = σ2N/l+1 ∈ Aut(Rq). This is the same automorphism that was used in
the automorphism opening proof. The new function f is now

f =

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν(NTT−1(NAT γ⃗)š− ⟨u⃗, γ⃗⟩). (5.11)

The prover will now have to draw a masking polynomial g with g0 = · · · = gl−1 = 0 instead, set
h := g + f , and let the verifier check if h0 = · · · = hl−1 = 0.

In order to prove that h was constructed correctly, the prover sends the commitment t2 = ⟨b2, r⟩+g
to g. We also note that the verifier will have to compute a commitment to this new f from t1 and
γ⃗0, . . . , γ⃗l−1, and this is achieved via

τ =

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν(NTT−1(NAT γ⃗µ)t1 − ⟨u⃗, γ⃗µ⟩)

=

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1, r⟩

)
+ f.

In order to prove that τ+t2−h is a commitment to 0, we use the yi and corresponding zi = yi+σ
i(c)r

for i = 0, . . . , l − 1 from the automorphism opening proof. We now let

vi =

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1,yi−ν mod l⟩

)
+ ⟨b2,yi⟩ (5.12)

for i = 0, . . . , l − 1. To prove well-formedness of h, it now suffices that the verifier can check if

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1, zi−ν mod l⟩

)
+ ⟨b2, zi⟩ = vi + σi(c)(τ + t2 − h),

which implies that τ + t2 − h is a commitment to zero.

We set the standard deviation, in accordance with the commitment scheme, as s = γκβ
√

(λ+ µ+ 2)N .
The complete protocol is given as Πinner in Figure 5.4, and all the verification equations are gathered
in Algorithm 4. We give the full security analysis of the protocol in Appendix C.
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Πinner

Public Information: A ∈ Zm×nq , u⃗ = As⃗ ∈ Zmq B0 ∈ Rµ×(λ+µ+2)
q , b1, b2 ∈ Rλ+µ+2

q

Prover’s Information: š ∈ Rq, s⃗ = NTT(š)

Prover Verifier

g
$← {g ∈ Rq|g0 = · · · = gl−1 = 0}

r
$← χ(λ+µ+2)N

t0 = B0r
t1 = ⟨b1, r⟩+ š
t2 = ⟨b2, r⟩+ g
t = t0∥t1∥t2
For i = 0, . . . , l − 1 :

yi
$← DRλ+µ+2

q ,s

wi = B0yi
t,wi−−−→

γ⃗0, . . . , γ⃗l−1←−−−−−−−−− γ⃗0, . . . , γ⃗l−1
$← Zmq

h = g + f, where f is defined as in (5.11)
For i = 0, . . . , l − 1 :
Define vi as in (5.12)

h,vi−−−→
c←− c

$← C
For i = 0, . . . , l − 1 :
zi = yi + σi(c)r
If Rej1((zi), (σ

i(c)r), s) = 1, abort
zi−→ Verify(t,wi, γ⃗i, h,vi, c,zi)

Figure 5.4: Proof of knowledge Πinner of s⃗ ∈ ZNq satisfying As⃗ = u⃗ over Zq.

Algorithm 4 Verify(t,wi, γ⃗i, h,vi, c,zi)

1: For i = 0, . . . , l − 1 :

2: ∥zi∥∞
?
≤ B = s

√
2(λ+ µ+ 2)N

3: B0zi
?
= wi + σi(c)t0

4: h0
?
= . . .

?
= hl−1

?
= 0

5: τ =
l−1∑
µ=0

1
lX

µ
l−1∑
ν=0

σν(NTT−1(NAT γ⃗µ)t1 − ⟨u⃗, γ⃗µ⟩)

6: For i = 0, . . . , l − 1 :

7:
l−1∑
µ=0

1
lX

µ
l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1, zi−ν mod l⟩

)
+ ⟨b2, zi⟩

?
= vi + σi(c)(τ + t2 − h)
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5.4 Putting everything together

We can now construct a zero-knowledge protocol for proving knowledge of a small s⃗ satisfying As⃗ = u⃗
over Zq by proving knowledge of s⃗ using the protocol from Section 5.3, and proving that s⃗ is short
by using the linear proof from Section 5.1 with the product proof from Section 5.2.2. This protocol
produces proofs that are shorter than the ones by the protocol from Section 5.1 alone, by a factor 8.
The biggest obstacle in reducing the proof size even more at this point, is the size of the commitments
and commitment opening proofs.
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Chapter 6

Proof of quadratic relations based
on ABDLOP commitments

Lyubashevsky et al. presented in [16] a new proof technique for proving quadratic relations between
committed values, that no longer uses the NTT coefficients. Hence there is no need to commit to a
large polynomial whose NTT coefficients are the coefficients of the secret s, and committing to the
small secret can now be done with the Ajtai commitment scheme. There is still the need to commit
to polynomials with larger coefficients, for instance the garbage polynomials, and so the ABDLOP
commitment scheme is used in order to optimize the total commitment size.

Since the NTT technique is no longer used, the requirement to choose q such that XN +1 splits into
linear, or almost linear, factors modulo q no longer applies. Hence we can rather choose q such that
the challenge space is larger, which reduces the soundness error. For the rest of this paper we will
actually assume that q is a product of n odd primes, q = q1 · · · qn such that q1 < . . . < qn. Usually
we choose n = 1, which would be the same ring as previously, or n = 2. Further, we also assume
that each qi is such that qi ≡ 5 (mod 8). Then Zq contains a primitive 4-th root of unity ζi, and no
elements with order a higher power of two. By Lemma 2 we then have that XN +1 factors into two
irreducible factors modulo each qi, namely

XN + 1 ≡ (XN/2 − ζi)(XN/2 − ζ3i ) (mod qi).

The goal of this chapter is to give a protocol that proves many quadratic relations in s and proves
that many polynomial evaluations in s have zero constant coefficients, for an s that we define below.
Such a protocol can be used for instance to prove norms bounds on s, which we will see in Chapter
7. Suppose that we have the message vectors s1 ∈ Rm1

q and m ∈ Rℓq with ∥s1∥ ≤ α, for which the
prover knows a ABDLOP commitment (tA, tB) to under randomness s2.

For an automorphism σ ∈ Aut(Rq) of degree k over R, we for notation define

(σi(x))i∈[k] := (x, σ(x), . . . , σk−1(x)) ∈ Rkaq , for an arbitrary x ∈ Raq .

We can now define s to be

s :=

[
(σi(s1))i∈[k]
(σi(m))i∈[k]

]
∈ Rk(m1+ℓ)

q .

The reason that we want to construct protocols for this s with automorphisms, is that it allows
for a greater variety of applications. For instance we can set σ = σ−1, and prove inner products
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by using Lemma 8. The resulting protocol is quite complex, and so we break it down into smaller
building blocks in order to understand it properly. We have three types of statements that we want
to construct proofs of knowledge of s satisfying.

– Single quadratic equation with automorphisms: for a public k(m1+ℓ)-variate quadratic function
f over Rq:

f(s) = 0.

– Many quadratic equations with automorphisms: for d public k(m1 + ℓ)-variate quadratic func-
tions f1, . . . , fd over Rq:

fj(s) = 0 for j = 1, . . . , d.

– Many quadratic equations with automorphisms and that polynomial evaluations have no con-
stant coefficients: for d + D public k(m1 + ℓ)-variate quadratic functions f1, . . . , fd and
F1, . . . , FD over Rq:

– fj(s) = 0 for j = 1, . . . , d,

– let xj := Fj(s) ∈ Rq for j = 1, . . . , D. Then x̃1 = · · · = x̃D = 0.

In Section 6.1 we explain how to construct a proof of knowledge of s satisfying a single quadratic
relation. Some of the ideas from Sections 5.1 and 5.2 are used here. We also give the full security
analysis of the scheme. In the next Section 6.2 we explain how the first protocol can be used
to efficiently prove knowledge of s satisfying many quadratic relations. For this protocol we only
prove knowledge soundness, as the remaining security properties are implicitly included in the final
protocol. Lastly we in Section 6.3 show how we can extend the previous protocol to also prove that
many polynomials evaluated in s have constant coefficient equal to zero, using ideas from Section
5.3. We give the full security analysis of this scheme.

6.1 Single quadratic equation

We now want to prove a quadratic relation in s, namely that f(s) = 0 for a k(m1 + ℓ)-variate
quadratic function f over Rq. We want to do this using the same idea as for the product proof in
Section 5.2.2, by constructing a polynomial in c with f(s) as the quadratic term, and then prove
that the quadratic term vanishes.

We start with the observation that each such quadratic function f evaluated in s can be written
explicitly as

f(s) = sTR2s+ rT1 s+ r0 = 0,

where r0 ∈ Rq, r1 ∈ R
k(m1+ℓ)
q and R2 ∈ R

k(m1+ℓ)×k(m1+ℓ)
q . Before we start, we recall that the

prover knows a commitment (tA, tB) to (s1,m), and that the protocol Π′open is used to prove that
the commitments are valid.

We recall that we use the masked openings to construct the desired function in c. In the open-
ing proof for the commitment, the prover sends the masked openings zi = csi+yi of si for i = 1, 2.
This is though not the case for m, so we construct a masked opening of m as

zm := ctB −Bz2 = cm−By2,
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which is of the desired form and can be computed by the verifier. By the definition of the challenge
space we for c ∈ C have that σ(c) = c. We can then define the following two vectors y and z

y :=

[
(σi(y1))i∈[k]
−(σi(By2))i∈[k]

]
, z :=

[
(σi(z1))i∈[k]
(σi(zm)i∈[k]

]
∈ Rk(m1+ℓ)

q .

These vectors satisfies z = cs+ y, since

z =

[
(σi(z1))i∈[k]
(σi(zm)i∈[k]

]
=

[
(σi(cs1))i∈[k]
(σi(cm))i∈[k]

]
+

[
(σi(y1))i∈[k]
−(σi(By2))i∈[k]

]
= c

[
(σi(s1))i∈[k]
(σi(m))i∈[k]

]
+

[
(σi(y1))i∈[k]
−(σi(By2))i∈[k]

]
= cs+ y,

by the homomorphic properties of σ. We can now use this to obtain the expressions

zTR2z = c2sTR2s+ c(sTR2y + yTR2s) + yTR2y,

crT1 z = c2rT1 s+ crT1 y.

Using this, we can now derive the desired polynomial in c with f(s) as the quadratic term, in the
following manner:

zTR2z + crT1 z + c2r0 = c2(sTR2s+ rT1 s+ r0) + cg1 + g0, (6.1)

where the polynomials g1 and g0 are defined as

g1 = sTR2y + yTR2s+ rT1 y, g0 = yTR2y. (6.2)

We recall from Section 5.2.2 that the idea for proving that the quadratic term of this polynomial
vanishes, is to commit to the polynomial g1, remove the masked opening of this commitment from
the polynomial, and let the verifier check if the resulting polynomial equals only its constant term.
Concretely, the prover commits to g1 by t = BT

exts2 + g1, and we let the verifier check if for f =
ct−BT

extz2 = cg1 +BT
exty2, we have

zTR2z + crT1 z + c2r0 − f
?
= v,

where v := g0+BT
exty2 is the resulting constant term of the polynomial. This would then prove that

f(s) = sTR2s + rT1 s + r0 = 0. The complete proof of knowledge of s satisfying a single quadratic
equation, with commitment opening proof, is given as Π(2) in Figure 6.1.

We note here that the commitment to g1 is constructed as an additional commitment under the
same randomness using Bext. This means that the protocol is not zero-knowledge, but better mod-
eled as a commit-and-prove protocol. We now give the complete security analysis.

Theorem 14. Suppose that s1 = γ1αη and s2 = γ2νη
√
m2N for some γ1, γ2 > 0. Then the protocol

Π(2) is complete, in the sense that if m1,m2 ≥ 640/N then the honest prover convinces the honest
verifier with probability

≈ 1

2 exp
(

14
γ1

+ 1
2γ2

1
+ 1

2γ2
2

) .
Proof. This Theorem follows directly from Theorem 10, and that the final verification equation will
hold for an honest prover, by the discussion above.
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Π(2)

Public Information: A1 ∈ Rn×m1
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q ,Bext ∈ Rm2

q .

r0 ∈ Rq, r1 ∈ Rk(m1+ℓ)
q ,R2 ∈ Rk(m1+ℓ)×k(m1+ℓ)

q such that f(s) = sTR2s+rT1 s+r0 = 0, σ ∈ Aut(Rq)

Prover’s Information: (s1,m) ∈ Rm1+ℓ
q so that ∥s1∥ ≤ α, s2

$← χm2

Commitment: t =

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
Prover Verifier

s :=

[
(σi(s1))i∈[k]
(σi(m))i∈[k]

]
y1

$← DRm1 ,s1

y2
$← DRm2 ,s2

w := A1y1 +A2y2

y :=

[
(σi(y1))i∈[k]
−(σi(By2))i∈[k]

]
g1 := sTR2y + yTR2s+ rT1 y
t := BT

exts2 + g1
v := yTR2y +BT

exty2

w, t, v−−−−−→
c

$← C
c←−

z1 = cs1 + y1

z2 = cs2 + y2

for i = 1, 2 :
if Reji(zi, csi, si) = 1
then abort

z1, z2−−−−→

z :=

[
(σi(z1))i∈[k]

(σi(ctB −Bz2))i∈[k]

]
f := ct−BT

extz2
Accept iff:
1. ∥z1∥ ≤ s1

√
2m1N

2. ∥z2∥ ≤ s2
√
2m2N

3. A1z1 +A2z2 − ctA = w
4. zTR2z + crT1 z + c2r0 − f = v

Figure 6.1: Proof of knowledge Π(2)((s2, s1,m), σ, f) of ((s1,m), s2, c) ∈ Rm1+ℓ
q × Rm2

q × C
that satisfy A1s1 + A2s2 = tA, Bs2 + m = tB , ∥csi∥ ≤ 2si

√
2miN for i = 1, 2 and

f
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0.
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Theorem 15. Let s1 = γ1αη and s2 = γ2νη
√
m2N for some γ1, γ2 > 0. Then the protocol Π(2) is

commit-and-prove simulatable, meaning that there exists a simulator S that, without access to pri-
vate information (s1,m), outputs a simulation of a commitment (tA, tB) along with a non-aborting
transcript of the protocol between the prover and verifier such that for every algorithm A that has
advantage ε in distinguishing the simulated commitment and transcript from the real commitment
and transcript, whenever the prover does not abort, there is an algorithm A′ with the same running
time that has advantage ε/2− 2−128 in solving the Extended-MLWEn+ℓ+1,m2−n−ℓ−1,χ,C,s2 problem.

Proof. In order to construct such a simulator S, we start by defining a simulator S0 that knows

the secret information s1,m. It operates in the following manner. When given a challenge c
$← C,

it honestly computes the commitment (tA, tB , t) under randomness s2
$← χm2 . In order to sim-

ulate the rest of the transcript, it samples masked openings z1
$← DRm1N ,s1 , z2

$← DRN ,s2 con-
ditioned on ⟨s2, z2⟩, otherwise Rej2 would abort, and computes w := A1z1 + A2z2 − ctA and
v := zTR2z + crT1 z + c2r0 − ct+BT

extz2. Hence the verification equations will hold, and according
to Lemma 4 the distribution of the commitment and a transcript output by S0 is within a statistical
distance of 2−128 to the one in the actual non-aborting protocol.

We also define the simulator S1 that knows the secret information s1,m as follows. It runs identically

as S0, but samples u
$← Rn+ℓ+1

q and setstAtB
t

 = u+

A1s1
m
g1

 ,
instead of computing the commitment honestly. We can now show that if there is an adversary A
that can distinguish between the outputs of S0 and S1 with probability ε, then we can construct an
adversary B with advantage at least ε/2 in solving the Extended-MLWEn+ℓ+1,m2−n−ℓ−1,χ,C,s2 prob-
lem.

B is constructed as follows. Given an Extended-MLWE instance (C,u, z2, s), where

C :=

 A2

B
Bext

 ,
it runs identically as S1, and outputs the commitment and transcript to A. We notice that if
u = Cs2, then the output of B is the same as the one from S0, but if u was uniformly random, then
the output of B is the same as the one from S1. So conditioned on s = 1, which has probability at
least 1/2, B solves the Extended-MLWE problem with probability ε.

The commit-and-prove simulator S, without access to private information, can now be defined to

run identically to S1, but by directly sampling (tA, tB , t)
$← Rn+ℓ+1

q instead. Since the commitment
computed by S1 looks uniformly random, the output distributions of S and S1 are identical. Hence if
there an adversary A that can distinguish between the outputs of S and the real protocol, there is an
adversaryA′ that that has advantage ε/2−2−128 in solving the Extended-MLWEn+ℓ+1,m2−n−ℓ−1,χ,C,s2
problem.

Theorem 16. The protocol Π(2) is knowledge sound, meaning that there is an extractor E with the
following properties. When given rewindable black-box access to a probabilistic prover P∗, which
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convinces V with probability ε ≥ 2/|C|, the extractor E with probability at least ε − 2/|C| either
outputs (s2, s1,m) ∈ Rm1+m2+ℓ

q and c ∈ R×q such that

–

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
– ∥c∥∞ ≤ 2ω

– ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

– f
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

or an MSISn,m1+m2,B solution for
[
A1 A2

]
in expected time at most 3T where running P∗ once is

assumed to take at most T time and B = 8η
√

(s1
√
2m1N)2 + (s2

√
2m2N)2.

Proof. In order to prove knowledge soundness we use the collision game strategy introduced in
Section 2.3.4. We let H ∈ {0, 1}R×|C| be the binary matrix where the R rows correspond to the
prover’s randomness and |C| columns correspond to the different choices for the challenge c, and let
H(r, c) denote the entry corresponding to randomness r and challenge c ∈ C. By assumption there
is a fraction of ε 1-entries in H. We define the following extractor.

1. E first samples fresh randomness r and challenge c(0)
$← C. Then it checks if H(r, c(0)) = 1,

and aborts if not.

2. Otherwise, E samples along row r without replacement until it finds two c(1), c(2) such that
H(r, c(0)) = H(r, c(1)) = H(r, c(2)) = 1 and c(0), c(1), c(2) are pairwise distinct.

If we assume that E can check values of each entry in H in time most T , then Lemma 1 states that
the expected time of E is at most 3T and that E extracts three valid transcripts with probability at
least ε− 2/|C|. We denote the valid transcripts as

tr(i) = (w, t, v, c(i), z
(i)
1 , z

(i)
2 ) for i = 0, 1, 2.

We start by focusing on tr(0) and tr(1), and define

c = c(1) − c(0) and si =
z
(i)
i − z

(0)
i

c(1) − c(0)
for i = 1, 2.

By definition of the challenge space we have ∥c∥∞ ≤ 2ω, and by construction we then have ∥cs1∥ ≤
2s1
√
2m1N , ∥cs2∥ ≤ 2s2

√
2m2N , since ∥zi∥ ≤ si

√
2miN for accepting transcripts. From the

verification equations we get that A1z
(i)
1 +A2z

(i)
2 = w + c(i)tA for i = 0, 1, and thus we get

A1s1 +A2s2 = A1(z
(1)
1 /c− z

(0)
1 /c) +A2(z

(1)
2 /c− z

(0)
2 /c)

= c(1)tA/c− c(0)tA/c
= tA.

We also define the extracted values m := tB −Bs2 and g1 := t−BT
exts2, so that we gettAtB

t

 =

A1

0
0

 s1 +

 A2

B
BT

ext

 s2 +

 0
m
g1

 .
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We can now let yi := z
(1)
i − c(1)si = z

(0)
i − c(0)si for i = 1, 2. Considering the third transcript tr(2)

we can define y
(2)
i := z

(2)
i −c(2)si for i = 1, 2. We then have (z

(1)
i −yi)/c

(1) = si = (z
(2)
i −y

(2)
i )/c(2).

We assume that (y1,y2) ̸= (y
(2)
1 ,y

(2)
2 ), and see that we must then have

A1(z
(1)
1 − y1)/c

(1) +A2(z
(1)
2 − y2)/c

(1) = A1(z
(2)
1 − y

(2)
1 )/c(2) +A2(z

(2)
2 − y

(2)
2 )/c(2).

We multiply this equation by c(1)c(2) and get

A1((z
(1)
1 − y1) +A2(z

(1)
2 − y2))c

(2) = A1((z
(2)
1 − y

(2)
1 ) +A2(z

(2)
2 − y

(2)
2 ))c(1),

which can now be rearranged into

A1

(
(z

(1)
1 − y1)c

(2) − (z
(2)
1 − y

(2)
1 )c(1)

)
+A2

(
(z

(1)
2 − y2)c

(2) − (z
(2)
2 − y

(2)
2 )c(1)

)
= 0.

We know that ∥(z(1)
1 − y1)c

(2) − (z
(2)
1 − y

(2)
1 )c(1)∥ ≤ 8ηs1

√
2m1N and ∥(z(1)

2 − y2)c
(2) − (z

(2)
2 −

y
(2)
2 )c(1)∥ ≤ 8ηs2

√
2m2N , since ∥z(j)

i ∥ ≤ 2si
√
2miN and multiplication by c increases the norm by

at most a factor 2η, by Lemma 12. Hence we either have an MSISn,m1+m1,B solution for
[
A1 A2

]
with B = 8η

√
(s1
√
2m1N)2 + (s2

√
2m2N)2, or we have that (y1,y2) = (y

(2)
1 ,y

(2)
2 ). The former

case is as in the statement of the Theorem, and so we focus on the latter case.

We define, as in the protocol

s :=

[
(σi(s1))i∈[k]
(σi(m))i∈[k]

]
and y :=

[
(σi(y1))i∈[k]
−(σi(By2))i∈[k]

]
Since tr(0), tr(1) and tr(2) are valid transcripts, we get from the verification equations that

z(i)TR2z
(i) + c(i)rT1 z

(i) + c(i)
2

r0 − (c(i)t−Bextz
(i)
2 ) = v for i = 0, 1, 2, (6.3)

where

z(i) :=

[
(σi(z

(i)
1 ))i∈[k]

(σi(c(i)tB −Bz
(i)
2 ))i∈[k]

]
= c(i)s+ y.

We can now expand Equation (6.3) in the equivalent manner as we did in (6.1) and (6.2), and obtain

c(i)
2

(sTR2s+ rT1 s+ r0) + c(i)g′1 + g′0 = 0 for i = 0, 1, 2,

where the polynomials g′1 and g′0 are defined as

g′1 = sTR2y + yTR2s+ rT1 y − g1,
g′0 = yTR2y +Bexty2 − v.

The system of these three equations can be written in matrix form as follows1 c(0) c(0)
2

1 c(1) c(1)
2

1 c(2) c(2)
2


 g′0

g′1
sTR2s+ rT1 s+ r0

 =

00
0

 .
Since the difference of each two of the challenges c(0), c(1), c(2) is invertible over Rq, the matrix of
challenges is invertible. This implies that f(s) = sTR2s+ rT1 s+ r0 = 0. Hence we have proved the
Theorem.
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6.2 Many quadratic equations

We can use the protocol Π(2) to prove that fj(s) = 0 for d public k(m1 + ℓ)-variate quadratic func-
tions f1, . . . , fd over Rq. The obvious approach would be to use the protocol Π(2) directly on each
individual function. Then one would end up committing to d garbage polynomials, which makes the
total proof size large. We instead present a method that allows us to commit to only one garbage
polynomial, thus significantly reducing the total proof size. The idea is that the linear combination
of the functions is with high probability only zero in s if each of the functions fj are zero in s.

We start the protocol by letting the verifier send challenges µ1, . . . , µd
$← Rq. From this we can

construct the linear combination

f =

d∑
j=1

µjfj ,

which has the property that if one of the fj is such that fj(s) ̸= 0, then f(s) = 0 only with prob-

ability q
−N/2
1 , since XN + 1 splits into two irreducible factors modulo q1. So we can now run Π(2)

with the function f , and prove that fj(s) = 0 for all j = 1, . . . , d with great certainty.

The protocol is given as Π
(2)
many in Figure 6.2. It is mainly used as a building block for the more

general protocol in the next section, and so we do not present the full security analysis here, since
it will be implicitly included in the next chapter. We do however consider the knowledge soundness
of the protocol.

Π(2)
many

Public Information: A1 ∈ Rn×m1
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q ,Bext ∈ Rm2

q .

f1, . . . , fd : R
k(m1+ℓ)
q → Rq, σ ∈ Aut(Rq)

Prover’s Information: (s1,m) ∈ Rm1+ℓ
q so that ∥s1∥ ≤ α, s2

$← χm2

Commitment: t =

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
Prover Verifier

µ1, . . . , µd
$← Rq

µ1, . . . , µd←−−−−−−−−

f :=
d∑
j=1

µjfj

Run Π(2)((s2, s1,m), σ, f)

Figure 6.2: Proof of knowledge Π
(2)
many((s2, s1,m), σ, (f1, . . . , fd)) of ((s1,m), s2, c) ∈ Rm1+ℓ

q ×Rm2
q ×C

that satisfy A1s1 + A2s2 = tA, Bs2 + m = tB , ∥csi∥ ≤ 2si
√
2miN for i = 1, 2 and

fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 for j ∈ [d].
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Theorem 17. The protocol Π
(2)
many is knowledge sound, meaning that there exists an extractor E

with the following properties. When given rewindable black-box access to a probabilistic prover P∗,
which convinces V with probability ε ≥ 2/|C| + q

−N/2
1 , the extractor E with probability at least

ε− 2/|C| − q−N/21 either outputs (s2, s1,m) ∈ Rm1+m2+ℓ
q and c ∈ R×q such that

–

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
– ∥c∥∞ ≤ 2ω

– ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

– for all j ∈ [d], fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

or an MSISn,m1+m2,B solution for
[
A1 A2

]
in expected time at most 6T where running P∗ once is

assumed to take at most T time and B = 8η
√

(s1
√
2m1N)2 + (s2

√
2m2N)2.

Proof. We let P∗ be such a probabilistic prover as described in the Theorem, that convinces the

verifier with probability ε ≥ 2/|C| + q
−N/2
1 and runs in time at most T . In order to construct the

desired extractor E we first define a deterministic algorithm A that utilize the Π(2)-extractor from
Theorem 16. It is defined as follows. Given randomness ρ ∈ R and challenge µ ∈ Rdq , A(ρ,µ) runs
the extractor E∗(ρ) from Theorem 16 with randomness ρ. E∗(ρ) will then call P∗(µ) in a black-box
manner, and will according to Theorem 16 with a certain probability either extract a valid MSIS
solution or output (s2, s1,m, c) such that

–

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
– ∥c∥∞ ≤ 2ω

– ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

–
d∑
j=1

µjfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

We say that A succeeds if the latter holds true. We also know from Theorem 16 that the expected

run time of A for any µ and ρ
$← R is at most 3T and the probability that A succeeds is at least

ε− 2/|C|, when we assume that extraction of a valid MSIS solution never occurs.

In order to define the extractor E we need some definitions and results. We define H ⊆ R× Rdq to
be the set of pairs (ρ,µ) such that A(ρ,µ) succeeds. Then we can define H(ρ) to be the set of all
µ for which (ρ,µ) ∈ H. When A(ρ,µ) succeeds for a fixed (ρ,µ) ∈ H, we denote the output as

(s
(ρ,µ)
2 , s

(ρ,µ)
1 ,m(ρ,µ)). We can then define, in the same manner as previous,

s(ρ,µ) :=

[
(σi(s

(ρ,µ)
1 ))i∈[k]

(σi(m(ρ,µ)))i∈[k]

]
∈ Rk(m1+ℓ)

q .

Finally, we can define the set of (ρ,µ) ∈ H for which at least one of the fj are non-zero in s(ρ,µ),

H ′ :=
{
(ρ,µ) ∈ H | ∃ j ∈ [d] s.t. fj(s

(ρ,µ)) ̸= 0
}
.

Before we define E , we present a Lemma on the probability that f(s) = 0 if one of the fj are non-zero
in s:
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Lemma 16. If (ρ,µ) ∈ H then Pr
µ′ $←Rd

q

[(ρ,µ′) ∈ H] > 0. Moreover, if (ρ,µ) ∈ H ′ then

Pr
µ′ $←Rd

q

[
d∑
j=1

µ′jfj
(
s(ρ,µ)

)
= 0

]
≤ q−N/21 .

Proof. For the first part, we observe that if (ρ,µ) ∈ H, then we have

Pr
µ′ $←Rd

q

[(ρ,µ′) ∈ H] ≥ Pr
µ′ $←Rd

q

[µ′ = µ] > 0.

For the second part, if we assume that fj(s
(ρ,µ)) ̸= 0 for some j, then the probability over µ′j

$← Rq

that µ′jfj(s
(ρ,µ)) = a for any fixed a ∈ Rq is at most q

−N/2
1 , since XN +1 splits into two irreducible

factors modulo q1. Hence the claim follows.

We are now ready to define the extractor E , and it is constructed in the following manner.

1. Sample ρ
$← R and µ ∈ Rdq , run A(ρ,µ), and abort if A(ρ,µ) does not succeed.

2. If A(ρ,µ) does succeed, run A(ρ′,µ′) with fresh ρ′
$← R and µ′ ∈ Rdq until A succeeds.

When E does not abort, this procedure will yield two extracted tuples x = (s2, s1,m, c) and x′ =
(s′2, s

′
1,m

′, c′) since it runs until A succeeds, twice. We say that E succeeds if it extracts two such
tuples such that one of the below conditions holds.

– (s1, s2) ̸= (s′1, s
′
2), max(∥c∥∞, ∥c′∥∞) ≤ 2ω and max(∥csi∥, ∥c′s′i∥) ≤ 2si

√
2miN for i = 1, 2,

and [
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
=

[
tA
tB

]
=

[
A1

0

]
s′1 +

[
A2

B

]
s′2 +

[
0
m′

]
.

– For all j ∈ [d], fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 and ∥c∥∞ ≤ 2ω and ∥cs1∥ ≤ 2s1

√
2m1N and

∥cs2∥ ≤ 2s2
√
2m2N and [

tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
.

If the first case holds true, we break the binding property of the commitment scheme, which gives us
the relevant MSIS solution. If the second case holds true, we have extracted the desired (s2, s1,m, c).
We will now present and prove two claims about E , which completes the proof.

Claim. The expected number of calls to A is 2.

Proof. Let X be the expected number of calls to A, and let ε be the probability that A(ρ,µ) succeeds
for random ρ and µ. We define the event E that A succeeds in the first step. We then get, by the
law of total expectation, that

Exp[X] = Exp[X|E] · ε+ Exp[X|¬E] · (1− ε) =
(
1 +

1

ε

)
· ε+ 1 · (1− ε) = 2.

Hence the claim holds.
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So the expected run time of E is thus at most 6T , twice the expected run time of A.

Claim. The probability that E succeeds is at least ε− 2/|C| − q−N/21 .

Proof. As we discussed, E terminates with probability at least ε−2/|C|. So, we assume E terminates
and let (µ, s2, s1,m, c) and (µ′, s′2, s

′
1,m

′, c′) be the respective outputs of A in the first and second
step of E . We can divide the possible such outputs into three disjoint cases. The first case stems
from the first of the success conditions for E , as described above. The two final cases stems from
the second success condition for E , one of them such that all fj are zero in s and the other one such
that at least one of the fj are non-zero in s.

Case 1 :

– (s1,m, s2) ̸= (s′1,m
′, s′2)

–
d∑
j=1

µjfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 and

d∑
j=1

µ′jfj
(
(σi(s′1))i∈[k], (σ

i(m′))i∈[k]
)
= 0

– max(∥c∥∞, ∥c′∥∞) ≤ 2ω and max(∥csi∥, ∥c′s′i∥) ≤ 2si
√
2miN for i = 1, 2

–

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
=

[
tA
tB

]
=

[
A1

0

]
s′1 +

[
A2

B

]
s′2 +

[
0
m′

]
Case 2 :

– (s1,m, s2) = (s′1,m
′, s′2)

–
d∑
j=1

µjfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 and

d∑
j=1

µ′jfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

– ∥c∥∞ ≤ 2ω and ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

–

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
– for all j ∈ [d], fj

(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

Case 3:

– (s1,m, s2) = (s′1,m
′, s′2)

–
d∑
j=1

µjfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 and

d∑
j=1

µ′jfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

– ∥c∥∞ ≤ 2ω and ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

–

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
– there exists j ∈ [d] so that fj

(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
̸= 0
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We now define the event Ei that E terminates and the output satisfies case i. We can then express
the probability that E terminates as

Pr[E terminates] = Pr[E1 ∨ E2 ∨ E3] ≥ ε− 2/|C|

We also have
Pr[E succeeds] ≥ Pr[E1 ∨ E2].

Hence, we need to upper bound the probability of E3. We do this by counting the number of tuples
in R×RNq that can give outputs belonging to case 3, and by using Lemma 16, as follows.

Pr[E3] ≤ Pr

[
(A(ρ,µ) succeeds) ∧ (

d∑
j=1

µ′jfj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0)

∧ (∃j ∈ [d] : fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
̸= 0)

]

≤ 1

|R| · qdN
∑

(ρ,µ)∈H′

Pr
µ′

[
d∑
j=1

µ′jfj
(
s(ρ,µ)

)
= 0

]

≤ 1

|R| · qdN
∑

(ρ,µ)∈H′

q
−N/2
1

≤ 1

|R| · qdN
∑

(ρ,µ)∈R×Rd
q

q
−N/2
1

≤ q−N/21 .

We used that the total size of R × RNq is |R| · qdN . Hence the probability that E succeeds is

Pr[E terminates]− Pr[E3] ≥ ε− 2/|C| − q−N/21 .

From the construction and the above claims, we see that E has the desired properties.

6.3 Many quadratic equations and that polynomial evalua-
tions have no constant coefficients

We now want to expand the protocol Π
(2)
many to also prove that for D quadratic k(m1 + ℓ)-variate

polynomials F1, . . . , FD, the evaluations Fj(s) have constant coefficients equal to zero. In order to
achieve this, we use ideas from Section 5.3.

The basic idea is to let the prover draw a masking polynomial g with constant coefficient equal
to zero, and upon receiving challenges γ1, . . . , γD from the verifier, let the verifier check that

h := g +

D∑
j=1

γjFj(s)

has constant coefficient equal to zero. This would imply that Fj(s) = 0 for all j, except with prob-
ability 1/q1. We will decrease the soundness error by doing this in parallel repetitions.
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In order to obtain a soundness error of q−λ1 , we instead start by drawing λ masking polynomi-

als with constant coefficients equal to zero, g = (g1, . . . , gλ)
$← {x ∈ Rq | x̃ = 0}λ. We then make

an additional commitment to g under the same randomness,

tg := Bgs2 + g,

for a matrix Bg ∈ Rλ×m2
q , and send tg to the verifier. The verifier then sends a challenge matrix

(γi,j)i∈[λ],j∈[D]
$← Zλ×Dq , where the λ rows corresponds to the challenges for which we can compute

the polynomial

hi := gi +

D∑
j=1

γi,jFj(s).

The goal is to prove that all the polynomials hi have constant coefficients equal to zero, and this is
simply done by sending them to the verifier, and the verifier can check if h̃i = 0 for all i ∈ [λ]. We
also need to prove that h = (h1, . . . , hλ) was constructed correctly, which can be reduced to proving

quadratic relations as follows. If we let x1 ∈ Rkm1
q , x2 = (x2,1, . . . ,x2,k) ∈ Rk(ℓ+λ)q and

x2,j :=
(
x
(m)
2,j ,x

(g)
2,j

)
∈ Rℓ+λq for j ∈ [k],

x
(m)
2 :=

(
x
(m)
2,1 , . . . ,x

(m)
2,k

)
, x

(g)
2,1 :=

(
x
(g)
2,1,1, . . . , x

(g)
2,1,λ

)
,

then we can define polynomials fd+1, . . . , fd+λ : R
k(m1+ℓ+λ)
q → Rq as follows.

fd+i(x1,x2) := x
(g)
2,1,i +

D∑
j=1

γi,jFj
(
x1,x

(m)
2

)
− hi for i ∈ [λ]. (6.4)

We do this because if we now were to set (x1,x2) =
(
(σi(s1))i∈[k], (σ

i(m∥g))i∈[k]
)
, we would get

x1 = (σi(s1))i∈[k], x
(m)
2 = (σi(m))i∈[k] and x

(g)
2,1,i = gi.

This means that hi = gi +
D∑
j=1

γi,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
if and only if

fd+i
(
(σi(s1))i∈[k], (σ

i(m∥g))i∈[k]
)
= 0.

So since proving that h was correctly constructed is now reduced to proving many quadratic equa-

tions in s, we for convenience also define the polynomials f1, . . . , fd : R
k(m1+ℓ+λ)
q → Rq as

fj(x1,x2) := fj
(
x2,x

(m)
2

)
for j ∈ [d]. (6.5)

This is so that we can simply run Π
(2)
many on all the polynomials f1, . . . , fd, fd+1, . . . , fd+λ at the same

time. The protocol is given as Π
(2)
eval in Figure 6.3, and we now give the full security analysis of the

protocol.

Theorem 18. Suppose that s1 = γ1αη and s2 = γ2νη
√
m2N for some γ1, γ2 > 0. Then the protocol

Π
(2)
eval is complete, in the sense that if m1,m2 ≥ 640/N then the honest prover convinces the honest

verifier with probability

≈ 1

2 exp
(

14
γ1

+ 1
2γ2

1
+ 1

2γ2
2

) .
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Π
(2)
eval

Public Information: A1 ∈ Rn×m1
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q ,Bext ∈ Rm2

q ,Bg ∈ Rλ×m2
q .

f1, . . . , fd, F1, . . . , FD : R
k(m1+ℓ)
q → Rq, σ ∈ Aut(Rq)

Prover’s Information: (s1,m) ∈ Rm1+ℓ
q so that ∥s1∥ ≤ α, s2

$← χm2

Commitment:

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
Prover Verifier

s :=

[
(σi(s1))i∈[k]
(σi(m))i∈[k]

]
g := (g1, . . . , gλ)

$← {x ∈ Rq | x̃ = 0}λ
tg := Bgs2 + g

tg−→
(γi,j)

$← Zλ×Dq

(γi,j)i∈[λ],j∈[D]←−−−−−−−−−−−
For i ∈ [λ] :

hi := gi +
D∑
j=1

γi,jFj(s)

h1, . . . , hλ−−−−−−−−→
Define f1, . . . , fd+λ as in (6.4) and (6.5)

run Π
(2)
many((s2, s1,m∥g), σ, (fi)i∈[d+λ])

Accept iff:

1. Π
(2)
many verifies

2. h̃1 = · · · = h̃λ = 0

Figure 6.3: Proof of knowledge Π
(2)
eval((s2, s1,m), σ, (f1, . . . , fd), (F1, . . . , FD)) of ((s1,m), s2, c) ∈

Rm1+ℓ
q × Rm2

q × C that satisfy A1s1 +A2s2 = tA, Bs2 +m = tB , ∥csi∥ ≤ 2si
√
2miN for i = 1, 2,

fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 for j ∈ [d] and all the evaluations Fj

(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

for j ∈ [D] have constant coefficient equal to zero .
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Proof. This follows directly from Theorem 14 and that for an honest prover, the remaining verifica-
tion equations holds by construction.

Theorem 19. Let s1 = γ1αη and s2 = γ2νη
√
m2N for some γ1, γ2 > 0. Then the protocol Π

(2)
eval is

commit-and-prove simulatable, meaning that there exists a simulator S that, without access to pri-
vate information (s1,m), outputs a simulation of a commitment (tA, tB) along with a non-aborting
transcript of the protocol between the prover and verifier such that for every algorithm A that has
advantage ε in distinguishing the simulated commitment and transcript from the real commitment
and transcript, whenever the prover does not abort, there is an algorithm A′ with the same run-
ning time that has advantage ε/2− 2−128 in solving the Extended-MLWEn+ℓ+λ+1,m2−n−ℓ−λ−1,χ,C,s2
problem.

Proof. We simulate the commitment and the transcript identically as in the proof of Theorem 15
with two additional steps.

1. We simulate the commitment tg to g by setting tg
$← Rλq to be a uniformly random vector.

2. We simulate the polynomials h1, . . . , hλ by choosing then uniformly random from X := {x ∈
Rq | x̃ = 0}.

Each hi is simulated perfectly since the gi’s are also sampled uniformly from X in the real execution

and
D∑
j=1

γi,jFj(s) ∈ X. The total additional commitment is now of dimension λ + 1, and hence by

the same argument as in the proof of Theorem 15, if there is an algorithm A with advantage ε in
distinguishing this transcript from a real one, there is an algorithm A′ with advantage ε/2− 2−128

in solving the Extended-MLWEn+ℓ+λ+1,m2−n−ℓ−λ−1,χ,C,s2 problem.

Theorem 20. The protocol Π
(2)
eval is knowledge sound, meaning that there is an extractor E with the

following properties. When given rewindable black-box access to a probabilistic prover P∗, which
convinces V with probability ε ≥ 2/|C| + q

−N/2
1 + q−λ1 , the extractor E with probability at least

ε− 2/|C| − q−N/21 − q−λ1 either outputs (s2, s1,m) ∈ Rm1+m2+ℓ
q and c ∈ R×q such that

–

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
– fj

(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 for j ∈ [d]

– each Fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
∈ Rq where j ∈ [D], has constant coefficient equal to zero

– ∥c∥∞ ≤ 2ω

– ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

or an MSISn,m1+m2,B solution for
[
A1 A2

]
in expected time at most 12T where running P∗ once

is assumed to take at most T time and B = 8η
√

(s1
√
2m1N)2 + (s2

√
2m2N)2.

Proof. We let P∗ be such a probabilistic prover as described in the Theorem, that convinces the

verifier with probability ε ≥ 2/|C|+ q
−N/2
1 + q−λ1 and runs in time at most T . In order to construct

the desired extractor E we first define a deterministic algorithm A that uses the Π
(2)
many-extractor E∗

from Theorem 17. It is defined as follows. Given randomness ρ = (ρP , ρE) ∈ RP ×RE and challenge
matrix Γ ∈ Zλ×Dq , A(ρP , ρE ,Γ) runs P∗(ρP ) on randomness ρP with challenge Γ and stops after

62



the third round. We let tg and h be the output of P∗(ρP ) in the first and third round, respectively.
Then it runs the extractor E∗(ρE) from Theorem 17 with randomness ρE . Hence P∗(ρP ,Γ) is run
in a black-box manner, and according to Theorem 17 we know that E∗(ρE) will with a certain
probability either extract a valid MSIS solution or output (s2, s1,m, c). We say that A succeeds if
it outputs (tg,Γ,h, s1,m, g, s2, c) such that

–

tAtB
tg

 =

A1

0
0

 · s1 +
A2

B
Bg

 · s2 +
 0
m
g


– h̃1 = · · · = h̃λ = 0

– fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 for j ∈ [d]

– for all i ∈ [λ], hi = gi +
D∑
j=1

γi,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

– ∥c∥∞ ≤ 2ω

– ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

If we assume that E∗ does not extract a valid MSIS solution, then Theorem 17 gives that the prob-

ability that A succeeds for a random ρ and Γ is at least ε − 2/|C| − q−N/21 , and that the expected

run time of A for any fixed ρP ,Γ and ρE
$← RE is at most 6T .

In order to define the extractor E we need some definitions and results. We define H ⊆ RP ×
RE × Zλ×Dq to be the set of triples (ρ,Γ) = (ρP , ρE ,Γ) such that A(ρ,Γ) succeeds. Then we can
define H(ρP ) to be the set of all (ρE ,Γ) for which (ρP , ρE ,Γ) ∈ H. When A(ρ,Γ) succeeds for a

fixed (ρ,Γ) ∈ H, we denote the output as (s
(ρ,Γ)
2 , s

(ρ,Γ)
1 ,m(ρ,Γ)). We can then define, in the same

manner as previous,

s(ρ,Γ) :=

[
(σi(s

(ρ,Γ)
1 ))i∈[k]

(σi(m(ρ,Γ)))i∈[k]

]
∈ Rk(m1+ℓ)

q .

Finally, we can define the set of (ρ,Γ) ∈ H for which at least one of the Fj(s
(ρ,Γ)) has non-zero

constant coefficient,

H ′ :=
{
(ρ,Γ) ∈ H | ∃j ∈ [D] : xj = Fj(s

(ρ,Γ)), x̃j ̸= 0
}
.

Before we define E , we present a Lemma on the probability that all the Fj(s
(ρ,Γ))’s have zero constant

coefficients when (ρ,Γ) ∈ H ′.

Lemma 17. If (ρP , ρE ,Γ) ∈ H then Pr
(ρ′E ,Γ

′)
$←RE×Zλ×D

q

[(ρP , ρ
′
E ,Γ

′) ∈ H] > 0. Moreover, if (ρp, ρE ,Γ) ∈

H ′ then

Pr
Γ′ $←Zλ×D

q

[
∀i ∈ [λ], x̃i = 0

∣∣ xi := g
(ρ,Γ)
i +

D∑
j=1

γ′i,jFj
(
s(ρ,Γ)

)]
≤ q−λ1 .

Proof. For the first part, we observe that if (ρP , ρE ,Γ) ∈ H, then we have

Pr
(ρ′E ,Γ

′)
$←RE×Zλ×D

q

[(ρP , ρ
′
E ,Γ

′) ∈ H] ≥ Pr
(ρ′E ,Γ

′)
$←RE×Zλ×D

q

[(ρ′E ,Γ
′) = (ρE ,Γ)] > 0.
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For the second part, if we assume that for some j, x̃j ̸= 0 when xj = Fj(s
(ρ,Γ)), then the probability

that x̃i = 0 for xi := g
(ρ,Γ)
i +

D∑
j=1

γ′i,jFj
(
s(ρ,Γ)

)
, i.e. the probability over γ′i,j

$← Zq that γ′i,jFj
(
s(ρ,Γ)

)
=

0, is at most q−11 . Hence the probability that x̃i = 0 for all i ∈ [λ] is at most q−λ1 .

We are now ready to define the extractor E , and it is constructed in the following manner:

1. Sample ρ = (ρR, ρE)
$← RP ×RE and Γ ∈ Zλ×D, run A(ρ,Γ), and abort if A(ρ,Γ) does not

succeed.

2. If A(ρ,Γ) does succeed, run A(ρP , ρ′E ,Γ′) with fresh ρ′E
$← RE and Γ′

$← Zλ×Dq until A
succeeds.

When E does not abort, this procedure will yield two extracted tuples x = (s1,m, s2, c) and x′ =
(s′1,m

′, s′2, c
′) since it runs until A succeeds twice. We say that E succeeds if it extracts two such

tuples such that one of the below conditions holds.

– (s1, s2) ̸= (s′1, s
′
2), max(∥c∥∞, ∥c′∥∞) ≤ 2ω and max(∥csi∥, ∥c′s′i∥) ≤ 2si

√
2miN for i = 1, 2,

and [
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
=

[
tA
tB

]
=

[
A1

0

]
s′1 +

[
A2

B

]
s′2 +

[
0
m′

]
.

– For all j ∈ [d], fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 and for all j ∈ [D], the constant coefficient

of Fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
equals zero, and ∥c∥∞ ≤ 2ω and ∥cs1∥ ≤ 2s1

√
2m1N and

∥cs2∥ ≤ 2s2
√
2m2N and [

tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
.

If the first case holds true, we break the binding property of the commitment scheme, which gives us
the relevant MSIS solution. If the second case holds true, we have extracted the desired (s2, s1,m, c).
We will now present and prove two claims about E , which completes the proof.

Claim. The expected number of calls to A is 2.

The proof of this claim is identical to the proof of the equivalent claim in Theorem 17. We can
therefore conclude that the expected run time of E is at most 12T , twice the expected run time of
A.

Claim. The probability that E succeeds is at least ε− 2/|C| − q−N/21 − q−λ1 .

Proof. As we discussed, E terminates with probability at least ε− 2/|C| − q−N/21 . So, we assume E
terminates and let (tg,Γ,h, s1,m, g, s2, c) and (tg,Γ

′,h′, s′1,m
′, g′, s′2, c

′) be the respective outputs
of A in the first and second step of E . We can divide the possible such outputs into three disjoint
cases. The first case stems from the first of the success conditions for E , as described above. The
two final cases stems from the second success condition for E , one of them such that all the Fj(s)’s
have constant coefficient zero, and the other one such that at least one of the Fj(s) have non-zero
constant coefficient.

Case 1 :
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– (s1,m, g, s2) ̸= (s′1,m
′, g′, s′2)

– for i ∈ [λ], h̃i = h̃′i = 0

– for i ∈ [λ], hi = gi +
D∑
j=1

γi,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

– for i ∈ [λ], h′i = g′i +
D∑
j=1

γ′i,jFj
(
(σi(s′1))i∈[k], (σ

i(m′))i∈[k]
)

– for j ∈ [d], fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0 and fj

(
(σi(s′1))i∈[k], (σ

i(m′))i∈[k]
)
= 0

– max(∥c∥∞, ∥c′∥∞) ≤ 2ω and max(∥csi∥, ∥c′s′i∥) ≤ 2si
√
2miN for i = 1, 2

–

A1

0
0

 · s1 +
A2

B
Bg

 · s2 +
 0
m
g

 =

tAtB
tg

 =

A1

0
0

 · s′1 +
A2

B
Bg

 · s′2 +
 0
m′

g′


Case 2 :

– (s1,m, g, s2) = (s′1,m
′, g′, s′2)

– for i ∈ [λ], h̃i = h̃′i = 0

– for i ∈ [λ], hi = gi +
D∑
j=1

γi,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

– for i ∈ [λ], h′i = gi +
D∑
j=1

γ′i,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

– for j ∈ [d], fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0

– ∥c∥∞ ≤ 2ω and ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

–

tAtB
tg

 =

A1

0
0

 · s1 +
A2

B
Bg

 · s2 +
 0
m
g


– for j ∈ [D], the constant coefficient of Fj

(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
is zero.

Case 3:

– (s1,m, g, s2) = (s′1,m
′, g′, s′2)

– for i ∈ [λ], h̃i = h̃′i = 0

– for i ∈ [λ], hi = gi +
D∑
j=1

γi,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

– for i ∈ [λ], h′i = gi +
D∑
j=1

γ′i,jFj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)

– for j ∈ [d], fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
= 0
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– ∥c∥∞ ≤ 2ω and ∥cs1∥ ≤ 2s1
√
2m1N and ∥cs2∥ ≤ 2s2

√
2m2N

–

tAtB
tg

 =

A1

0
0

 · s1 +
A2

B
Bg

 · s2 +
 0
m
g


– there exists j ∈ [D], so that the constant coefficient of Fj

(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
is non-

zero.

We now define the event Ei that E terminates and the output satisfies case i. We can then express
the probability that E terminates as

Pr[E terminates] = Pr[E1 ∨ E2 ∨ E3] ≥ ε− 2/|C| − q−N/21 .

We also have
Pr[E succeeds] ≥ Pr[E1 ∨ E2].

Hence, we need to upper bound the probability of E3. By using Lemma 17, and the same idea as
for the corresponding claim in the proof of Theorem 17, we get the bound

Pr[E3] ≤ Pr

[ (A(ρ,Γ) succeeds) ∧ (∃j ∈ [D] : the const. coeff. of Fj
(
(σi(s1))i∈[k], (σ

i(m))i∈[k]
)
is non-zero)

∧ (∀i ∈ [λ] : const. coeff. of g
(ρ,Γ)
i +

D∑
j=1

γ′i,jFj((σ
i(s1))i∈[k], (σ

i(m))i∈[k]
)
is zero)

]

≤ 1

|RP | · |RE | · qλM
∑

(ρ,Γ)∈H′

Pr
(ρ′E ,Γ

′)
$←H(ρP )

[
∀i ∈ [λ] : const. coeff. of g

(ρ,Γ)
i +

D∑
j=1

γ′i,jFj
(
s(ρ,Γ)

)
is zero

]

≤ 1

|RP | · |RE | · qλM
∑

(ρ,Γ)∈H′

Pr
Γ′ $←Zλ×M

q

[
∀i ∈ [λ] : const. coeff. of g

(ρ,Γ)
i +

D∑
j=1

γ′i,jFj
(
s(ρ,Γ)

)
is zero

]
Pr

(ρ′E ,Γ
′)

$←RE×Zλ×M
q

[(ρ′E ,Γ
′) ∈ H(ρP )]

≤ 1

|RP | · |RE | · qλM
∑

(ρ,Γ)∈H′

q−λ1 · qλM · |RE |
|H(ρP )|

≤ 1

|RP | · |RE | · qλM
∑

(ρ,Γ)∈H

q−λ1 · qλM · |RE |
|H(ρP )|

≤ 1

|RP | · |RE | · qλM
∑

ρP∈RP

∑
(ρE ,Γ)∈H(ρP )

q−λ1 · qλM · |RE |
|H(ρP )|

≤ 1

|RP | · |RE | · qλM
∑

ρP∈RP

|H(ρP )| ·
q−λ1 · qλM · |RE |
|H(ρP )|

≤ 1

|RP | · |RE | · qλM
· (|RP | · q−λ1 · qλM · |RE |)

≤ q−λ1 .

Hence the probability that E succeeds is Pr[E terminates]− Pr[E3] ≥ ε− 2/|C| − q−N/21 − q−λ1 .

From the construction and the above claims, we see that E has the desired properties.
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Chapter 7

General protocol

Lyubashevsky et al. explains in [16] how the protocol Π
(2)
eval can be used to construct a more general

protocol that can be used to prove a variety of lattice statements, amongst others how to prove norm
bounds on lattice elements. This final protocol is constructed such that applications to cryptographic
primitives result in a single instantiation of the protocol. In this chapter we use σ := σ−1 ∈ Aut(Rq),
which is of order 1, such that s = (s1,m, σ(s1), σ(m)). The reason for this choice of σ is that we
then can, according to Lemma 8, use the function T to prove inner products modulo q.

In addition to proving quadratic relations on s and proving that quadratic polynomials evaluated
in s have zero constant coefficients, this general protocol will also allow one to prove approximate
ℓ∞ norm bounds and exact ℓ2 norm bounds on linear relations in s, and that linear combinations
of s have binary coefficients. Proving exact ℓ2 norm bounds is important in many lattice based
protocols. Approximate ℓ∞ norm proofs can be used to assure that there is no overflow modulo q,
and for instance lift equations from Zq to Z.

Concretely, this general protocol is a proof of knowledge of s = (s1,m, σ(s1), σ(m)) ∈ R2m1
q ×R2ℓ

q ,
when the prover knows a ABDLOP commitment to (s1,m), that satisfies

∀i ∈ [ρ], fi(s) = 0, (7.1)

∀i ∈ [ρeval], F̃i(s) = 0, (7.2)

∀i ∈ [vd], ∥Dis− ui∥∞ ≤ β(d)
i , (7.3)

∀i ∈ [ve], ∥Eis− vi∥ ≤ β(e)
i , (7.4)

Ebins− vbin ∈ {0, 1}Nkbin , (7.5)

for the following public parameters.

– Quadratic functions for i ∈ [ρ], fi : R
2(m1+ℓ)
q → Rq.

– Evaluation functions for i ∈ [ρeval], Fi : R
2(m1+ℓ)
q → Rq.

– For i ∈ [vd], Di ∈ Rki×2(m1+ℓ)
q , ui ∈ Rkiq .

– For i ∈ [ve], Ei ∈ Rpi×2(m1+ℓ)
q , vi ∈ Rpiq .
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– Bounds (β
(d)
i )i∈[vd], (β

(e)
i )i∈[ve].

– Ebin ∈ Rkbin×2(m1+ℓ)
q , vbin ∈ Rkbinq .

Here β
(d)
i is an approximate bound on ∥Dis− ui∥∞, β

(e)
i is a tight bound on ∥Eis− vi∥, and the

matrix Ebin and vector vbin are such that Ebins− vbin is binary.

In order to prove (7.1) and (7.2) we can use Π
(2)
eval in a straight forward manner. The remaining

equations (7.3) to (7.5) can also be proven using this protocol, but in a less obvious manner. In the
following subsections we will explain how, before we put it all together in the final protocol that is
presented in Section 7.3. Section 7.1 explains how we can construct approximate norm proofs, in
both ℓ2 and ℓ∞ norms, before we explain how to prove that a vector is binary and how to prove
exact norm bounds in Section 7.2.

7.1 Proving approximate norms

Suppose that for s = (s1,m) such that ∥s∥ ≤ B, we want to prove that ∥s∥p ≤ ψB, for p ∈ {2,∞}
and some public constant ψ > 1. In this section we will provide a method for proving such a looser
bound. The idea behind this proof is to use Lemmas 5 and 6, which states that the norm of Rs⃗+ y⃗
is approximately the same as the norm of s, in the ℓ∞ and ℓ2 norms respectively, when R is drawn
from a binomial distribution. Then we can shrink a possibly very long vector s into the much shorter

one Rs⃗ + y⃗ with approximately the same norm, where R
$← Bin

k×(m1+ℓ)N
1 and y⃗ ∈ Zkq for a k such

that N |k.

So the verifier has to check the norm of Rs⃗ + y⃗. In order for the prover to be able to send this
vector to the verifier without revealing anything about s⃗, y⃗ is drawn as a masking vector, and rejec-
tion sampling is performed on z⃗ = Rs⃗ + y⃗. The protocol is now constructed by letting the prover

sample a masking vector y
$← DRk/N ,s3 and committing to it. The verifier sends a challenge matrix

R
$← Bin

k×(m1+ℓ)N
1 , for which the prover computes z⃗ = Rs⃗ + y⃗. It then uses rejection sampling on

z⃗, and the verifier accepts if the norm of z⃗ is small enough according to Lemma 5 or 6, depending
on which norm we use. What remains now, is to prove the well-formedness of z⃗.

We note that this z⃗ is well suited for bimodal rejection sampling, since when b is a sign, bR is
still from the binomial distribution. This reduces the standard deviation s3, which also reduces the

norm bound we are able to prove. In order to do this, we sample a sign b
$← {−1, 1}, compute the

masking z⃗ = bRs⃗+ y⃗ and run the rejection sampling algorithm Rej0(z⃗, bRs⃗, s3) instead. In addition
to this, we must now also commit to b and prove that b ∈ {−1, 1}. The commitment to b is added
in the BDLOP part of the commitment to s, and the zero-knowledge proof that b is a sign can be
added as a part of the well-formedness proof of z⃗. Hence this is not expensive.

We now explain how to prove that b is a sign. This is done in two steps. We first prove that b
is an integer, and then we prove that (b − 1)(b + 1) = 0. This is sufficient, since Zq is a field,
and thus (b − 1)(b + 1) = 0 implies that b ∈ {−1, 1}. In order to prove that b is an integer, we
define δi := Xi ∈ Rq, and prove that the inner products ⟨δi, b⟩ = 0 for all i = 1, . . . , N − 1. Since
⟨δi, b⟩ maps b to its i-th coefficient, this proves that b is zero in every coefficient except the constant

coefficient. Finally, we can prove that (b− 1)(b+1) = 0 by using the protocol Π
(2)
eval, where we input
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f(b) := (b− 1)(b+ 1) as a quadratic function.

We now explain how we can instantiate Π
(2)
eval to prove well-formedness of z⃗, that b is a sign and

that f(b) = 0, in a single instance of the protocol. For each of the k rows of z⃗, we define the function
Fi,

Fi(s,y, b) = zi − T(br⃗i, s⃗)− yi,∀i ∈ [k],

where r⃗i ∈ ZN(m1+ℓ)
q is the i-th row of R, and T is the function defined in Section 3.5. We can now

use Lemma 8 to see that if we are able to prove that F̃i = 0, then we have proved zi = b⟨r⃗i, s⃗⟩+ yi.
So if we prove that F̃i = 0 for all 1 ≤ i ≤ k, then we must have that z⃗ = bRs⃗ + y⃗, and thus that z⃗
was formed correctly. Using the same idea, we can define the functions Gj ,

Gj(b) := T(δj , b),∀j ∈ [N ].

If we now are able to prove that G̃j = 0, this implies that ⟨δj , b⟩ = 0. We therefore define Ψ :=

{F1, . . . , Fk, G1, . . . , GN−1}, which will be the evaluation functions. Thus we can run Π
(2)
many((s2, s1,

(m, b)), σ, f,Ψ) to achieve the desired proof.

We now set k = 256. As in Lemma 4 we let s3 = γ3T for a γ3 > 0, where T is an upper bound
on ∥bRs⃗∥. By Lemma 7 we get that ∥Rs∥ ≤

√
337B, except with probability 2−128, since we have

∥s∥ ≤ B. We thus set s3 := γ3
√
337B.

If we want to do the proof in the ℓ∞ norm, we can use Lemma 3 to see that for each 1 ≤ i ≤ 256 we
have |z⃗i| < δs3 with probability at least 1 − 2e−δ

2/2. Thus if we set κ = δ2/2, the probability that
∥z⃗∥∞ ≤

√
2κs3 is at least 1−256 ·2e−κ. We now use Lemma 5 and see that if ∥bRs⃗+ y⃗∥∞ ≤

√
2κs3,

then we have ∥s∥∞ ≤ 2
√
2κs3, except with negligible probability 2−256. So if we let the verifier

check that ∥z⃗∥∞ ≤
√
2κs3, this protocol convinces the verifier that ∥s∥∞ ≤ 2γ3

√
2κ · 337B. We

present the protocol for the ℓ∞ norm below, with κ = 128.

If we instead want to do the proof in the ℓ2 norm, we also have by Lemma 3 that the proba-

bility that ∥z⃗∥ ≤ δs3
√
256 is at least 1 − δ256 exp(128(1 − δ2)) when z

$← DR256/N ,s3 . We now use

Lemma 6 and see that if ∥bRs⃗+y⃗ mod q∥ ≤ δs3
√
256, then we have ∥s∥ ≤ 2√

26
δs3
√
256, except with

negligible probability 2−128 if there is no overflow modulo q. We get δ256 exp(128(1 − δ2)) = 2−128

by choosing δ = 1.64. So if we instead let the verifier check if ∥z⃗∥ ≤ 1.64s3
√
256, we have a protocol

Π2
arp that convinces the verifier that ∥s∥ ≤ 2

√
337·256

26 1.64γ3B. We note that in order to achieve no

overflow modulo q, we must require that

q ≥ 41(m1 + ℓ)N
2√
26

1.64s3
√
256,

as explained in Lemma 6, since in our case m = (m1 + ℓ)N and b = 2√
26
1.64s3

√
256.

The protocol for p ∈ {2,∞} is given as Πparp in Figure 7.1. We omit the commit-and-prove sim-
ulatability of this protocol, since it will be implicit in the security analysis of the complete protocol.
We do however consider the correctness and knowledge soundness of the protocol.

Theorem 21. Suppose that s3 = γ3
√
337B for some γ3 > 0. Then the protocol Πparp is complete,
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Πparp

Public Information: A1 ∈ Rn×m1
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q ,B2 ∈ R256×m2

q , b2 ∈ Rm2
q .

σ ∈ Aut(Rq).
Prover’s Information: s = (s1,m) ∈ Rm1+ℓ

q so that ∥s∥ ≤ B, s2 ∈ Rm2
q

Commitment:

[
tA
tB

]
=

[
A1

0

]
s1 +

[
A2

B

]
s2 +

[
0
m

]
Prover Verifier

b
$← {−1, 1} ⊂ Rq

y3
$← DR256/N ,s3

tb = b1s2 + b
ty = B2s2 + y3

tb, ty−−−−→
R

$← Bin
256×(m1+ℓ)N
1

R←−
z⃗ := bRs⃗+ y⃗3
If Rej0(z⃗, bRs⃗, s3) = 1, abort

z⃗−→
Run Π := Π

(2)
eval((s2, s1, (m, b)), σ, f,Ψ)

Accept iff:
1. Π verifies
2. If p = 2 :

∥z⃗∥ ≤ 1.64
√
256s3

If p =∞ :

∥z⃗∥∞ ≤
√
256s3

Figure 7.1: Proof of knowledge Πparp((s2, s1,m), σ) of ((s1,m), s2, c) ∈ Rm1+ℓ
q ×Rm2

q ×C that satisfy

A1s1 +A2s2 = tA, Bs2 +m = tB , ∥csi∥ ≤ 2si
√
2miN for i = 1, 2, and ∥s∥ ≤ 2

√
337·256

26 1.64γ3B if

we use p = 2, or ∥s∥∞ ≤ 2γ3
√
256 · 337B if we use p =∞.

70



meaning that an honest prover will convince an honest verifier with probability

≈ Peval

exp
(

1
2γ2

3

) ,
where Peval is the success probability of Π.

Proof. By Lemma 8, we have for an honest prover that

F̃i(s,y, b) = zi − b⟨r⃗i, s⃗⟩ − y1 = b⟨r⃗i, s⃗⟩ − b⟨r⃗i, s⃗⟩ = 0,

for all i ∈ [256] since z⃗ = Rs⃗+ y⃗. f(b) = 0 will clearly hold since b ∈ {−1, 1}. Also by using Lemma
8, we get that G̃j(b) = 0 for all j ∈ [N ], since b is a sign. By the discussion above, Π is correctly
instantiated, and has success probability Peval. According to Lemma 4, the probability that the
protocol does not reject is 1/ exp(1/(2γ23)).

If we now consider p = 2, we get by Lemma 3 that ∥z∥ ≤ 1.64
√
256s3, except with negligible

probability 2−128. If we consider p = ∞, we get by Lemma 3 that ∥z∥∞ ≤
√
256s3, except with

negligible probability 256 · 2 · 2−128. Hence the theorem holds.

Theorem 22. Let s3 = γ3
√
337B for some γ3 > 0, and assume that q ≥ 41(m1+ℓ)N

2√
26
1.64s3

√
256.

Let PE′ and TE′ be the success probability and run time of the extractor E ′ from Theorem 20. Then
the protocol Πparp is knowledge sound, meaning that there exists an extractor E with the following
properties. When given rewindable black-box access to a probabilistic prover P∗, which convinces
the verifier with probability ε ≥ 2/|C|+q−N/2+q−λ+2−128, the extractor E either breaks the binding
of the commitment or recovers a valid opening (s2, s1,y,m, b, c) to the commitment (t, tb, ty) with

either ∥(s1,m)∥ ≤ 2
√

337·256
26 1.64γ3B for p = 2 or ∥(s1,m)∥∞ ≤ 2γ3

√
256 · 337B for p = ∞, with

probability PE(1− 2−128) in expected time 2TE .

Proof. We let E ′ be the extractor from Theorem 20, and define E as follows.

1. We let E run until the third round on an honestly generated challenge R, and then let it run
E ′. It aborts if E ′ does not obtain a valid opening (s,y, b), where s = (s1,m), that satisfies
the relations in Ψ.

2. E rewinds the prover until the third round, and new honestly generated challenge R′ and

then run E ′ until it obtains a valid opening (s′,y′, b
′
), where s′ = (s′1,m

′), that satisfies the
relations in Ψ.

By the same argumentation as in Theorem 17, the expected run time of E is twice the expected run
time of E ′, and E has the same success probability as E ′. Since ε ≥ 2/|C| + q−N/2 + q−λ + 2−128

and the success probability of the prover at producing a valid Π is at least 2/|C|+ q−N/2 + q−λ, we
therefore have PE′ ≥ ε− 2/|C| − q−N/2 − q−λ ≥ 2−128.

If the extracted openings are such that (s,y) ̸= (s′,y′), then E breaks the binding property of
the commitment scheme. So we assume that (s,y) = (s′,y′) and that E finds (s2, s1,y,m, b) ∈
R
m2+m1+256/N+ℓ+1
q and c ∈ R×q such that (s1,y,m, b) are valid ABDLOP messages for the random-

ness s2 and

1. f(b) = 0 and f(b
′
) = 0,
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2. For i ∈ [256], F̃i(s,y, b) = 0 and F̃i(s,y, b
′
) = 0

3. For j ∈ [N ], G̃j(b) = 0 and G̃j(b
′
) = 0.

Using Lemma 8 we get that 3) implies that every coefficient of b is zero, except the constant one.

Hence b ∈ Zq, and then 1) implies that b is a sign. The same holds for b
′
. 2) implies, by using

Lemma 8, that z⃗ = bRs⃗ + y⃗ has correct form. It also implies that z⃗ = b
′
R′⃗s
′
+ y⃗
′
, where b

′
, R′ are

independent of (s,y) = (s′,y′). Since b
′
and R′ are independent of s⃗, the verification equations now

give

– For p = 2:

∥z⃗∥ = ∥bR′⃗s+ y⃗ mod q∥ ≤ 1.64
√
256s3 = 1.64

√
256γ3

√
337B

=
1

2

√
26
(
2

√
337 · 256

26
1.64γ3B

)
.

Lemma 6 now states that if ∥s∥ ≥ 2
√

337·256
26 1.64γ3B, then this is true only with probability

2−128, because of the assumption on q. Hence we have that ∥s∥ ≤ 2
√

337·256
26 1.64γ3B with

probability 1− 2−128.

– For p =∞:

∥z⃗∥∞ = ∥bR′⃗s+ y⃗∥∞ ≤
√
256s3 =

√
256γ3

√
337B,

which by Lemma 5 implies that ∥s∥∞ ≤ 2γ3
√
2 · 256 · 337B with probability 1− 2−128.

Hence the theorem holds.

7.2 Proving exact norm bounds and that a vector is binary

Both for proving Equation (7.5), and as we soon will see, for proving Equation (7.4), we need to
be able to prove that a vector is binary. So, suppose that we want to prove that a vector x⃗ ∈ Zn
has binary coefficients, meaning that x⃗ ∈ {0, 1}n. Since we have efficient schemes for proving inner
product relations, efficient proof schemes for proving that a vector is binary can be constructed by
using the following result.

Lemma 18. Let n ∈ N and x⃗ ∈ Zn. If ⟨x⃗, x⃗− 1⃗n⟩ = 0, then x⃗ ∈ {0, 1}n.

Proof. If we let x = (x1 . . . xn), then every term in the inner product ⟨x⃗, x⃗ − 1⃗n⟩ is of the form
xi(xi − 1). We can now use the fact that

∀a ∈ Z, a(a− 1) ≥ 0

and a(a − 1) = 0 only if a ∈ {0, 1}. Hence if ⟨x⃗, x⃗ − 1⃗n⟩ = 0, then xi ∈ {0, 1} for all i = 1, . . . , n,
and we thus have x⃗ ∈ {0, 1}n.

So in order to prove that a vector x⃗ ∈ Zn has binary coefficients, we can just prove that ⟨x⃗, x⃗−
1⃗n⟩ = 0. This can be achieved by first proving that ⟨x⃗, x⃗ − 1⃗n⟩ = 0 mod q, and then by proving
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that ∥x⃗∥ ≤ B for some bound B. The first part can effectively be done by using the protocol Π
(2)
eval,

with the function
T(x⃗, x⃗− 1⃗n)

as evaluation function, since proving that the constant coefficient of this function is equal to zero,
implies that ⟨x⃗, x⃗ − 1⃗n⟩ = 0. The second part can be proved by using the protocol Π2

arp. This will
suffice if B is such that B2 +

√
nB < q, since∣∣∣∣∣

n∑
i=1

xi(xi − 1)

∣∣∣∣∣ ≤
n∑
i=1

x2i +

n∑
i=1

|xi| ≤
n∑
i=1

x2i + n

√∑n
i=1 x

2
i

n
≤ B2 +B

√
n,

and this would then imply that ⟨x⃗, x⃗− 1⃗n⟩ = 0 also over the integers, since there will be no overflow
modulo q. Thus we have proved that x⃗ is binary.

7.2.1 Proving exact norm bounds

We are now ready to explain how we can construct proofs of exact ℓ2 norm, which we need in order
to prove Equation (7.4). So, suppose that we want to prove that ∥s∥ ≤ B for the true bound B.

We remember that we can use the protocol Π
(2)
eval to effectively prove that the inner product of two

commitments modulo q is some constant, and that ∥s∥2 = ⟨s⃗, s⃗⟩. Hence in the case that ∥s∥ = B,

we could prove the norm exactly by using Π
(2)
eval to prove that ∥s∥2 = B2 mod q, and by using Π2

arp

to show that there is no overflow modulo q.

The problem with this method is that we then give away the exact norm of s, thus revealing infor-
mation about s. So we instead set out to prove that the difference between the bound and the norm
is a positive integer. In order to do this, we prove that B2−⟨s⃗, s⃗⟩ can be written with a binary repre-
sentation x⃗ of length 2 log(B) ≤ N . More precisely, we define p⃗ :=

(
1 2 . . . 22 logB 0 . . . 0

)
,

and let x⃗ be the binary vector such that

⟨p⃗, x⃗⟩ = B2 − ∥s⃗∥2.

We then commit to x⃗ and prove that it is binary with the technique from the previous section, and
prove that the above equation holds over the integers by using Π2

arp.

7.3 The complete protocol

We are now ready explain how we can construct a protocol for proving knowledge of s = (s1,m, σ(s1),

σ(m)) satisfying equations (7.1) to (7.5) using a single instantiation of Π
(2)
eval. As we have seen, the

first two equations are straight forward, and we can just pass the functions fi, Fi to Π
(2)
eval as quadratic

functions and evaluation functions, respectively. Equation (7.3) is now a direct application of Π∞arp
with vector input

e(d) :=

 D1s− u1

...
Dvds− uvd

 . (7.6)

This means that we, as per Section 7.1, let the prover draw the masking vector y(d) $← DR256/N ,s(d)

and a sign b(d)
$← {−1, 1}, and append commitments to them in the BDLOP part. We set the
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challenge dimension as c(d) = N
∑vd
i=1 ki, which is the dimension of e⃗(d). Upon receiving the challenge

matrix R(d) $← Bin256×c
(d)

1 from the verifier, the prover will perform bimodal rejection sampling on
z⃗(d) := b(d)R(d)e⃗(d) + y⃗(d). The verifier can now check that ∥z⃗(d)∥∞ ≤

√
256s(d). In order to prove

that z⃗(d) was formed correctly, and that b(d) indeed is a sign, we define the functions

H
(d)
j (s,y(d), b(d)) := z

(d)
j − T(b(d)r⃗

(d)
j , e⃗(d))− y(d)j ,∀j ∈ [256],

g(d)(b(d)) := (b(d) − 1)(b(d) + 1),

J
(d)
j (b(d)) := T(δj , b

(d)),∀j ∈ [N ],

which we will pass to Π
(2)
eval as quadratic and evaluation functions.

As we saw in the previous section, in order to prove equation (7.4), we prove that (β
(e)
i )2−∥Eis−vi∥2

can be written with a binary representation x⃗i of length 2 log(β
(e)
i ) for all 1 ≤ i ≤ ve. So at

the start of the protocol, the prover appends a commitment to the binary representation vector
x = (x1∥ . . . ∥xve) in the Ajtai part of the commitment, since it is small. We can now define x′ to
be the concatenation of x and Ebins − vbin, such that x′ contains everything we want to prove is
binary. Hence in order to prove Equations (7.4) and (7.5), we define

e(e) :=


E1s− v1

...
Eves− vve

x′

 and p⃗i :=
(
1 2 . . . 22 log(β

(e)
i ) 0 . . . 0

)
∀i ∈ [ve], (7.7)

and set out to prove the following.

⟨x′,x′ − 1(ve+kbin)N ⟩ = 0 mod q,

⟨Eis− vi,Eis− vi⟩+ ⟨p⃗i, x⃗i⟩ = (β
(e)
i )2 mod q,∀i ∈ [ve],

∥e(e)∥ is small enough so that the above equations hold over Z.

According to Section 7.2 this is sufficient for proving both (7.4) and (7.5).

We now explain how we can construct functions to initialize Π
(2)
eval to prove the above. We re-

call that the constant coefficient of T equals the inner product of its inputs, and we can therefore
define the following functions

G(x′) := T(x′,x′ − 1(ve+kbin)N ),

Ii(s,x) := T(Eis− vi,Eis− vi) + T(p⃗i, x⃗i)− (β
(e)
i )2,∀i ∈ [ve],

to pass to Π
(2)
eval as evaluation function in order to prove the above inner product relations.

In order to prove that the ℓ2 norm of e(e) is small, we run Π2
arp on e(e). So, the prover will draw the

masking vector y(e) $← DR256/N ,s(e) and a sign b(e)
$← {−1, 1}, and append commitments to them

in the BDLOP part. We set the challenge dimension as c(e) = N(kbin +
∑ve
i=1(pi + 1)), which is

the dimension of e⃗(e). Upon receiving the challenge matrix R(e) $← Bin256×c
(e)

1 from the verifier, the
prover will perform bimodal rejection sampling on z⃗(e) := b(e)R(e)e⃗(e) + y⃗(e). The verifier can now
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check that ∥z⃗(e)∥ ≤ 1.64
√
256s(e). In order to prove that z⃗(e) was formed correctly, and that b(e)

indeed is a sign, we define the functions

H
(e)
j (x′, s,y(e), b(e)) := z

(e)
j − T(b(e)r⃗

(e)
j , e⃗(e))− y(e)j ,∀j ∈ [256],

g(e)(b(e)) := (b(e) − 1)(b(e) + 1),

J
(e)
j (b(e)) := T(δj , b

(e)),∀j ∈ [N ],

which we will pass to Π
(2)
eval as quadratic and evaluation functions. We now define the set of all the

quadratic functions and all the evaluation functions that we will pass to Π
(2)
eval, respectively, as

ϕ := (f1, . . . , fρ, g
(d), g(e)), (7.8)

Ψ :=
(
Fi, . . . , Fρeval , G, (H

(d)
j )j∈[256], (H

(e)
j )j∈[256], (Ii)i∈ve , (J

(d)
j )j∈[N ], (J

(e)
j )j∈[N ]

)
. (7.9)

The complete protocol is given as Π in Figure 7.2.

Theorem 23. Suppose that s(d) = γ(d)
√
337α(d) and s(e) = γ(e)

√
337α(e) for some γ(d), γ(e) > 0.

Let B(e) := 2
√

256
26 1.64γ(e)

√
337α(e), the bound on b(e) that we are able to prove with Π2

arp, and

assume that
2(max
i∈[ve]

β
(e)
i )2 + (B(e))2 − 1 < q

Then the protocol Π is complete, meaning that an honest prover will convince an honest verifier
with probability

≈ Peval

exp
(

1
2(γ(d))2

)
exp

(
1

2(γ(e))2

) ,
where Peval is the success probability of Π∗.

Proof. The probability that the honest prover succeeds is at least the probability that

1. Both rejection sampling steps on z⃗(d) and z⃗(e) do not abort. According to Lemma 4 each

rejection sampling have independent probability of respectively exp
(
− 1

2(γ(d))2

)
and exp

(
−

1
2(γ(e))2

)
to not abort.

2. Both norm checks are satisfied. As we discussed in Theorem 21, the probability that the ℓ∞
norm check is verified is 1− 512 · 2−128, and the probability that the ℓ2 norm check is verified
is 1− 2−128.

3. The protocol Π∗ successfully convinces the verifier.

We must therefore show that Π∗ is a valid instantiation of Π
(2)
eval, and that it therefore convinces

the verifier with probability Peval. We assume that s satisfies Equations (7.1) to (7.5), since
the prover is honest. We start by considering the quadratic functions ϕ, and see that for all
1 ≤ i ≤ ρ, Equation (7.1) then implies that fi(s) = 0. Since both b(d) are signs, we also have
that g(d)(b(d)) = g(e)(b(e)) = 0.

We then consider the evaluation functions Ψ, and see that Equation (7.2) implies that F̃i(s) = 0 for
all 1 ≤ i ≤ ρeval. By construction and Equation (7.5), the vector x′ is binary. Hence by Lemma 8
G(x′) = ⟨x′,x′ − 1⟩ mod q, since all the non-constant coefficients of T(x′,x′ − 1) will then vanish,
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Π

Public Information: A1 ∈ Rn×(m1+ve)
q , A2 ∈ Rn×m2

q , B ∈ Rℓ×m2
q ,B(d),B(e) ∈ R256/N×m2

q ,

b(d), b(e) ∈ Rm2
q . σ := σ−1 ∈ Aut(Rq)

Public parameters as defined in the start of Chapter 7.
Bounds α(d), α(e) such that ∥e(d)∥ ≤ α(d), ∥e(e)∥ ≤ α(e)

ϕ and Ψ as defined in (7.8) and (7.9).
Prover’s Information: s = (s1,m) ∈ Rm1+ℓ

q and randomness s2 ∈ Rm2
q so that Equations (7.1) to

(7.5) holds. Binary decomposition xi ∈ Rq of (β
(e)
i )2 − ∥Eis− vi∥2. Vectors e(d), e(e) as defined in

(7.6) and (7.7).

Commitment: t =

[
A1

0

] [
s1
x

]
+

[
A2

B

]
s2 +

[
0
m

]
Prover Verifier

b(d), b(e)
$← {−1, 1} ⊂ Rq

y(d) $← DR256/N ,s(d)

y(e) $← DR256/N ,s(e)

t(d) = B(d)s2 + y(d)

t(e) = B(e)s2 + y(e)

t(d) = b(d)s2 + b(d)

t(e) = b(e)s2 + b(e)

t(d), t(d), t(e), t(e)−−−−−−−−−−−−−→
R(d) $← Bin256×c

(d)

1

R(e) $← Bin256×c
(e)

1

R(d), R(e)

←−−−−−−−
z⃗(d) := b(d)R(d)e⃗(d) + y⃗(d)

z⃗(e) := b(e)R(e)e⃗(e) + y⃗(e)

If Rej0(z⃗
(d), b(d)R(d)e⃗(d), s(d)) = 1 or

Rej0(z⃗
(e), b(e)R(e)e⃗(e), s(e)) = 1, abort

s∗ := (s2, (s1,x), (m,y(d),y(e), b(d), b(e)))

z⃗(d), z⃗(e)−−−−−−→
Run Π∗ := Π

(2)
eval(s

∗, σ, ϕ,Ψ)
Accept iff:
1. Π∗ verifies

2. ∥z⃗(d)∥∞ ≤
√
256s(d)

3. ∥z⃗(e)∥ ≤ 1.64
√
256s(e)

Figure 7.2: Proof of knowledge Π((s2, s1,m), σ) of ((s1,m), s2, c) ∈ Rm1+ℓ
q × Rm2

q × C that satisfy

A1s1 +A2s2 = tA, Bs2 +m = tB , ∥csi∥ ≤ 2si
√
2miN for i = 1, 2, and s := (s1,m, σ(s1), σ(m))

verifies Equations (7.1) to (7.5).
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by the way T is constructed. Then by Lemma 18 we have G̃(x′) = 0.

We also have by Lemma 8 that if z⃗(d) and z⃗(e) are constructed honestly, then H̃
(d)
j = z

(d)
j − y

(d)
j −

⟨b(d)r⃗(d)j , e⃗(d)⟩ = z
(d)
j − z(d)j = 0, and similarly H̃

(e)
j = 0. Since x⃗i is the binary decomposition of

(β
(e)
i )2 − ∥Eis− vi∥2, it has support at most 2 log β

(e)
i ≤ N . Since p⃗i is defined defined as a vector

of powers of two until 2 log β
(e)
i , followed by zeros, we have

⟨p⃗i, x⃗i⟩ = (β
(e)
i )2 − ⟨Eis− vi,Eis− vi⟩

for all i ∈ [ve]. We can again use Lemma 8 combined with this, to see that Ĩi(s,x) = ⟨Eis−vi,Eis−
vi⟩+ ⟨p⃗i, x⃗i⟩ − (β

(e)
i )2 = 0 for all i ∈ [ve] when the inner products are taken modulo q. But this will

also hold over the integers, since we assumed that 2(max
i∈[ve]

β
(e)
i )2 + (B(e))2 − 1 < q. Lastly, Lemma 8

implies that J̃
(d)
j = ⟨δj , b(d)⟩ = 0 for 1 ≤ j ≤ N − 1, since b(d) is a constant. Similarly, J̃

(e)
j = 0.

Hence we have showed that Π∗ indeed is a valid instantiation of Π
(2)
eval, and it therefore convinces the

verifier with probability Peval. So the success probability of Π is then at least Peval(1 − 2−128)(1 −
512 · 2−128) exp

(
− 1

2(γ(d))2

)
exp

(
− 1

2(γ(e))2

)
, and the Lemma follows.

Theorem 24. The protocol Π is commit-and-prove simulatable, meaning that there exists a simu-
lator S that, without access to private information (s1,m), outputs a simulation of a commitment
(t, t(d), t(d), t(e), t(e)) along with a non-aborting transcript of the protocol between the prover and
the verifier such that for every algorithm A that has advantage ε in distinguishing the simulated
commitment and transcript from the real commitment and transcript, whenever the prover does not
abort, there is an algorithm B with the same running time that has advantage ε/2−2−128 in solving
the Extended-MLWEn+ℓ+λ+(256/N+1)+(256/N+1),m2−n−ℓ−λ−(256/N+1)−(256/N+1),χ,C,s2 .

Proof. According to Lemma 4, z(d) and z(e) are within statistical distance of 2−128 from DR256/N ,s(d)

and DR256/N ,s(e) , and are independent of R(d) and R(e). Hence the simulator can just sample

z(d) $← DR256/N ,s(d) , z
(e) $← DR256/N ,s(e) , R

(d) $← Bin256×c
(d)

1 and R(e) $← Bin256×c
(e)

1 .

We simulate the appended commitments and the protocol Π∗ with the commit-and-prove simu-
lator from the proof of in Theorem 19. Since the appended commitments have total dimension
λ + (256/N + 1) + (256/N + 1), we get that if there is an algorithm A with advantage ε in distin-
guishing this transcript from a real one, there is an algorithmA′ with advantage ε/2−2−128 in solving
the Extended-MLWEn+ℓ+λ+(256/N+1)+(256/N+1),m2−n−ℓ−λ−(256/N+1)−(256/N+1),χ,C,s2 problem.

Theorem 25. Let B(d) := 2
√
256
√
337γ(d)α(d), B(e) := 2

√
256
26 1.64γ(e)

√
337α(e), the norm bounds

we are able to prove with Πparp for e(d) and e(e), and assume that

B(e) <
q

41c(e)
,

(B(e))2 +
√
(ve + kbin)NB

(e) < q,

2(max
i∈[ve]

β
(e)
i )2 + (B(e))2 − 1 < q.

Then the protocol Π is knowledge sound, meaning that there exists an extractor E with the following
properties. When given rewindable black-box access to a probabilistic prover P, which convinces
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the verifier V with probability ε ≥ 2/|C| + q−N/2 + q−λ + 2−128, the extractor E either breaks the
binding of the commitment or recovers a valid opening

(s2, (s1,x), (m,y(d),y(e), b
(d)
, b

(e)
), c) ∈ Rm1+m2+ℓ+vd·256/N+ve·256/N+1+1

q ×R×q

for the commitment (t, t(d), t(d), t(e), t(e)) with probability Peval(1−2−256)(1−2−128) and in expected
time 2Teval, where Peval and Teval are success probability and the expected run time of the extractor
from Theorem 19, satisfying Equations (7.1) to (7.5).

Proof. We let E ′ be the extractor from Π
(2)
eval, and define the extractor E for this soundness proof in

the following manner.

1. Run the prover until the third round on honestly generated challenges R(d), R(e), and then

run E ′. Abort if E ′ does not obtain a valid opening (s2, (s1,x), (m,y(d),y(e), b
(d)
, b

(e)
), c) ∈

R
m1+m2+ℓ+vd·256/N+ve·256/N+1+1
q ×R×q satisfying Equations (7.1) to (7.5).

2. Rewind the prover until the third round, send new honestly generated challenges R(d)′, R(e)′

and run E ′ until it obtains a valid opening (s′2, (s
′
1,x
′), (m′,y(d)′,y(e)′, b

(d)′, b
(e)′), c′) satisfying

Equations (7.1) to (7.5).

By the same argumentation as in Theorem 20, the expected run time of E it twice the expected run
time of E ′, and E has the same success probability as E ′. Since ε ≥ 2/|C| + q−N/2 + q−λ + 2−128

and the success probability of the prover at producing a valid Π∗ is at least 2/|C|+ q−N/2 + q−λ, we
therefore have PE′ ≥ ε− 2/|C| − q−N/2 − q−λ ≥ 2−128.

By the same argumentation as in the proof of Theorem 22, E will either find two valid openings to
different messages and break the binding property of the commitment scheme, or the messages in
both transcripts are the same. We focus on the latter case, which would imply that the challenge
matrices R(d) and R(e) are independent of those messages. We must now show that this common
message satisfies Equations (7.1) to (7.5).

Since (s2, (s1,x), (m,y(d),y(e), b
(d)
, b

(e)
), c) is a valid opening, given how we initialized Π

(2)
eval, we

have that it satisfies the following:

1. For i ∈ [ρ], fi(s, σ(s)) = 0

2. For i ∈ [ρeval], F̃i(s, σ(s)) = 0

3. g(d)(b
(d)

) = 0, g(e)(b
(e)

) = 0

4. G(x′) = 0

5. For j ∈ [256], H̃
(d)
j (s,y(d), b

(d)
) = 0

6. For j ∈ [256], H̃
(e)
j (s,y(e), b

(e)
) = 0

7. For i ∈ [ve], Ĩi(s,x) = 0

8. For j ∈ [N ], J̃
(d)
j (b(d)) = 0, J̃

(e)
j (b(e)) = 0
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It is obvious that 1) and 2) implies that this opening satisfies Equations (7.1) and (7.2). Now, 3)

implies that both b
(d)

and b
(e)

are roots of (X + 1)(X − 1), and 8) implies that all coefficients of

b
(d)

and b
(e)

are zero, except for the constant coefficients. Since we are working over Zq, this implies

that b
(d)

and b
(e)

are signs.

5) implies that z⃗(d) = b
(d)
R(d)e⃗

(d)
+ y⃗

(d)
is well-formed, where e(d) is defined as previous but with the

extracted messages. We also have that ∥z⃗(d)∥∞ = ∥b(d)R(d)e⃗
(d)

+ y⃗
(d)∥∞ ≤

√
256s(d), from the norm

verification on z⃗(d). We notice that since b
(d)

is a sign, the distribution of b
(d)
R(d) is also Bin256×c

(d)

1 ,

and therefore, since e⃗
(d)

is fixed, we can use Lemma 5 to derive that the probability over R(d) that

∥z⃗(d)∥∞ ≤ 1
2 ∥⃗e

(d)∥∞ is less than 2−256. Hence we have that ∥e⃗(d)∥∞ ≤ 32s(d) with probability at
least 1− 2−256, and this opening satisfies equation (7.3).

Similarly, 6) implies that z⃗(e) = b
(e)
R(e)e⃗

(e)
+ y⃗

(e)
is well-formed, where e(e) is defined as previous

but with the extracted messages. Since b
(e)

is a sign, the distribution of b
(e)
R(e) is also Bin256×c

(e)

1 ,

and is independent of e⃗
(e)

. Since we assumed B(e) < q
41c(e)

, we can use Lemma 6 to derive that if

∥⃗e(e)∥ ≥ B(e), then the probability that ∥z⃗(e)∥ ≤ 1
2B

(e)
√
26 is less than 2−128. Hence the probability

that ∥⃗e(e)∥ ≤ B(e) is at least 1− 2−128.

4) implies that x′, which is defined as previous but with the extracted messages, satisfies ⟨x′,x′−1⟩ =
0 mod q. This also holds over the integers, since we assumed that (B(e))2+

√
(ve + kbin)NB

(e) < q.
Lemma 18 then implies that x′ is binary. Hence the opening satisfies Equation (7.5).

7) implies that ⟨p⃗i, x⃗i⟩ = (β
(e)
i )2 − ∥⃗e(e)∥2 mod q. This also holds over the integers, since we

assumed that 2(max
i∈[ve]

β
(e)
i )2 + (B(e))2 − 1 < q. This then implies that (β

(e)
i )2 − ∥⃗e(e)∥2 is a positive

integer. Hence the opening also satisfies Equation (7.4).

So, either E will break the hiding property of the commitment, or it finds a valid opening to messages
satisfying Equations (7.1) to (7.5) with probability PE′(1− 2−256)(1− 2−128) in time 2TE′ .

7.3.1 Example instantiation

We now have a protocol that can be used to prove various lattice statement. We will give the
overview of one simple example. Suppose that we want to prove knowledge of a MSIS secret with
error, specifically that we want to prove knowledge of (s, e) ∈ Rm+n

q such that ∥(s, e)∥ ≤ B and

As+ e = u over Rq,

for public A ∈ Rn×mq and u ∈ Rnq . We can then commit to s in the Ajtai part, and prove with Π
that ∥∥∥∥∥

[
s

As− u

] ∥∥∥∥∥ =

∥∥∥∥∥
[
Im
A

]
s−

[
0
u

] ∥∥∥∥∥ ≤ B.
This is achieved by setting public parameters E1 =

[
Im
A

]
, v1 =

[
0
u

]
and β1 = B, and running Π

to only prove (7.4). This proof will be approximately 2.5 times smaller than in the previous works
[16].
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Appendix A

Security analysis of ΠNTT

Theorem 26. Let s = γ
√
6N for some γ > 0. Then the protocol ΠNTT is complete, meaning that

the honest prover P convinces the honest verifier V with probability

≈ 1

exp(14/γ + 1/(2γ2))
.

Proof. According to Lemma 4, the probability that P does not abort is at least

1

exp(14/γ + 1/(2γ2))
.

The tail-bound in Lemma 3 with δ =
√
2 implies that, ∥z∥ ≤ s

√
12N , except with negligible

probability
√
2
6N

exp(−3N)2−128, since z has statistical distance at most 2−128 from DR6 . For an
honest prover, the rest of the verification equations follow from construction. Hence the theorem
holds.

Theorem 27. Let s = γ
√
6N for some γ > 0. Then the protocol ΠNTT is zero-knowledge, meaning

that there exists a simulator S, that without access to secret information outputs a simulation of
a non-aborting transcript of the protocol, such that for every algorithm A that has advantage ε in
distinguishing the simulated transcript from the actual transcript, there is an algorithm A′ with the
same running time that has advantage ε− 2−128 in solving the MLWE1,5,χ problem.

Proof. We start by noting that z looks uniformly random in Rq and that z′ is within statistical

distance of 2−128 from DR6,s, according to Lemma 4. Thus the simulator can simply draw z
$← Rq

and z′
$← DR6,s. We also know that since y was drawn uniformly at random and from the rejection

sampling that the challenges c and f are independent of z and z′, respectively, and so these can also

just be drawn at random, c
$← Zq, f

$← C.

Since the commitment t is computationally indistinguishable from a dummy commitment if the
MLWE1,5,χ problem is hard, by the hiding property, the simulator can also just draw a uniformly
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random t
$← R5

q . The remaining messages can now be computed as

w⃗ = Aẑ − cu⃗
w′ = b0z

′ − ft0
x1 = (b1 + cb2)z

′ + fz − f(t1 + ct2)

x2 = ((z − c)(z − 2c)b2 − zb3 + b4)z
′ − f((z − c)(z − 2c)t2 − zt3 + t4)

Now all the verification equations will hold, and hence the simulated transcript has a statistical
distance of at most 2−128 from the honest one. Since the transcripts only differ in that t is distributed
differently, any algorithm A that has advantage ε in distinguishing these transcripts, must have
advantage ε− 2−128 in solving the RLWE5 problem.

Theorem 28. The protocol ΠNTT is knowledge sound, meaning that there is an extractor E with
the following properties. When given rewindable access to a deterministic prover P∗ that convinces
V with probability ε > 2/q + 1/N , E either outputs a solution s⃗∗ ∈ {0, 1, 2}N to As⃗∗ = u⃗, or a
MSIS1,6,8B solution for b0 in expected time at most 144/(ε − 2/q − 1/N) when running P∗ once is
assumed to take unit time.

Proof. We construct the extractor E by letting it run P∗ until it obtains six accepting transcripts,
for three different first challenges c1, c2 and c3 such that there are two valid transcripts for different
second challenges fi,1 ̸= fi,2, for each of the ci’s. The expected time it takes in order to obtain
the first accepting transcript with challenges c1 and f1,1 is clearly 1/ε. We can now use the heavy
rows argument, to see that conditioned on the first challenge c1, E will with probability 1/2 be able
obtain a valid transcript for a uniformly random second challenge f1,2 with probability ε/2. In this
case E obtains the second accepting transcript for first challenge c1 and second challenge f1,2 ̸= f1,1
with probability at least ε/2− 1/(2N), since the challenge space for the second challenges is of size
2N . This has expected time (ε/2− 1/(2N))−1.

For the third transcript with challenges c2 ̸= c1 and f2,1, the extractor now succeeds with probability
at least ε− 1/q, and hence in expected time at most (ε− 1/q)−1, since the size of the first challenge
space is q. Again by the heavy rows argument, with probability 1/2, E obtains another valid tran-
script conditioned on c2 with a uniformly random second challenge with probability ε/2 − 1/(2q).
In this case E obtains the fourth accepting transcript for c2 and f2,2 ̸= f2,1 in conditioned expected
time at most (ε/2− 1/(2q)− 1/(2N))−1.

For the fifth transcript with first challenge c3 ̸= c2 and uniformly random f3,1, E succeeds in
expected time at most (ε− 2/q)−1. For the sixth transcript with f3,2 ̸= f3,1, E with probability 1/2
succeeds in conditioned expected time at most (ε/2− 1/q − 1/(2N))−1.

Thus we can say that with probability 1/2, E is able to obtain two valid transcripts for each of
the ci’s in expected time at most

1

ε− 2/q
+

1

ε/2− 1/(2q)− 1/(2N)
≤ 3

ε− 2/q − 1/N
.

So in total, with probability 1/8, E obtains the six accepting transcripts in expected time at most

T =
9

ε− 2/q − 1/N
.

85



We limit the run time of E to 2T , so that if the extractor does not obtain these six transcripts within
reasonable time, which happens with probability 7/8, it will just terminate. With this new condi-
tion, we can use Markov’s inequality to get that the extractor now obtains the six valid transcripts
in expected time at most 2T with probability 1/16. So in total, when we account for restarting in
case of failure, the extractor will obtain the valid transcripts in expected time at most 16T .

We now denote the last messages by P∗ in the accepting protocols by z′i,j for i = 1, 2, 3 and j = 1, 2.
For the pairs of transcripts with the same first challenge, we define the differences z′i = z′i,1 − z′i,2
and f i = fi,1 − fi,2. From the verification equations we get that b0z

′
i,j = w′ + fi,jt0, which implies

that
b0z
′
i = f it0.

For each i = 1, 2, 3 we can now define the openings of t as

mk = tk − bk
z′i
f i
, for k = 1, . . . , 4

All of these are valid relaxed openings, and we have that ∥z′i∥ ≤ 2B, since the z′i,j are such that
∥z′i,j∥ ≤ B. If we now were to obtain different openings mk ̸= m′k for two different i, we would get,
for instance, that

tk − bk
z′1
f1
̸= tk − bk

z′2
f2
.

This implies that b0(f2z
′
1−f1z′2) = 0, which since f2z

′
1−f1z′2 ̸= 0 and ∥f iz′i∥ ≤ 2∥z′i∥ ≤ 4B, gives

us an MSIS1,6,8B solution.

So we assume that the openings are the same for i = 1, 2, 3, and denote by zi the message z
that is sent by the prover in the two transcripts for challenge ci. The verification equations now
implies that

(b1 + cib2)z
′
i,j + fi,jzi = x1,i + fi,j(t1 + cit2).

By subtracting for j = 2 from j = 1 for the same i, we get that

(b1 + cib2)
z′i
f i

+ zi = t1 + cit2.

If we define the opening m1 = y∗, m2 = s∗, we get the following opening corresponding to t1 + cit2:

y∗ + cis
∗ = m1 + cim2 = t1 + cit2 − (b1 + cib2)

z′i
f i
.

Hence we have that zi = y∗+cis
∗, and the messages zi are of the expected form. From the verification

equations we further also get that

((zi − ci)(zi − 2ci)b2 − zib3 + b4)z
′
i,j = x2,i + fi,j((zi − ci)(zi − 2ci)t2 − zit3 + t4).

We can now use the opening (zi− ci)(zi−2ci)s
∗− zim3+m4 corresponding to (zi− ci)(zi−2ci)t2−

zit3 + t4 and that zi = y∗ + cis
∗, to get the following:

(zi − ci)(zi − 2ci)s
∗ − zim3 +m4

= (y∗ + ci(s
∗ − 1))(y∗ + ci(s

∗ − 2))s∗ − y∗m3 − cis∗m3 +m4

= ((y∗)2s∗ − y∗m3 +m4) + (y∗(2s∗ − 3)−m3)s
∗ci + (s∗ − 1)(s∗ − 2)s∗c2i

= 0.
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So we have a quadratic polynomial that is zero in c1, c2 and c3, which can be expressed in the
following matrix-equation over Rq:1 c1 c21

1 c2 c22
1 c3 c23

((y∗)2s∗ − y∗m3 +m4)
(y∗(2s∗ − 3)−m3)s

∗

(s∗ − 1)(s∗ − 2)s∗

 =

00
0

 .
Since the difference of each of two of the challenges c1, c2, c3 is invertible over Rq, the first matrix is
invertible. Hence this implies that (s∗ − 1)(s∗ − 2)s∗ = 0. We can take the NTT transformation of
this equation, to get that

ŝ∗ ◦ (ŝ∗ − 1⃗) ◦ (ŝ∗ − 2⃗) = 0⃗

in ZNq . This implies that the coefficients if ŝ∗ are in {0, 1, 2}.

Finally, we can use the second verification equation, Aẑi = w⃗+ciu⃗, to obtain A(ẑ1− ẑ2) = (c1−c2)u⃗.
But since

ẑ1 − ẑ2
c1 − c2

= ŝ∗,

and ŝ∗ has coefficients in {0, 1, 2}, this is the desired solution to the linear equation with A.
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Appendix B

Security analysis of Πσ
open and Πσ

prod

B.1 Opening proof

Theorem 29. Suppose that s = γκ
√
(λ+ µ+ 1)N for some γ > 0. Then the protocol Πσopen is

complete, meaning that the honest prover P convinces the honest verifier V with probability

≈ 1

exp(14/γ + 1/(2γ2))
.

Proof. According to Lemma 4, the probability that P does not abort is at least

1

exp(14/γ + 1/(2γ2))
,

and the zi has statistical distance at most 2−128 fromDRλ+µ+1,s. According to Lemma 3 with δ =
√
2

we have ∥zi∥ ≤ B = s
√
2(λ+ µ+ 1)N , except with negligible probability

√
2
(λ+µ+1)N

exp(−(λ +
µ + 1)N/2). For an honest prover, the remaining verification equation holds by construction, and
hence the theorem holds.

Theorem 30. Suppose that s = γκ
√
(λ+ µ+ 1)N for some γ > 0. Then the protocol Πσopen is

zero-knowledge, meaning that there exists a simulator S, that without access to secret information
outputs a simulation of a non-aborting transcript of the protocol which has statistical distance at
most 2−128 to the actual transcript.

Proof. By Lemma 4 the zi are within a statistical distance of 2−128 from DRλ+µ+1,s in non-aborting

honest transcripts. Hence the simulator can just sample zi
$← DRλ+µ+1,s. Also from the rejection

sampling, we get that the challenge c is independent of the zi, and so the simulator can simply draw

a random c
$← C. We can now define wi = B0zi − σi(c)t0, and thus the verification equations will

hold. Hence the simulated transcript has statistical distance at most 2−128 from the honest one.

Theorem 31. Let p be the maximum probability over Zq of the coefficients of c mod X lN/k − ζl
as in Lemma 14. Then the protocol Πσopen is knowledge sound, meaning that there is an extractor
E with the following properties. When given rewindable access to a deterministic prover P∗ that
convinces V with probability ε > plN/k, E either outputs a weak opening for the commitment t or an
MSISµ,λ+µ+1,8κB solution for B0 in expected time at most 1/ε + (k/l)(ε − pNl/k)−1 when running
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P∗ is assumed to take one unit time.

Moreover, the weak opening can be extended to also include k vectors (ye)i ∈ Rλ+µ+1
q such that

B0(ye)i = wi, where wi are the prover commitments sent by P∗ in the first round. Further-
more, for every accepting transcript of an interaction with P∗, the prover replies are given by
zi = (ye)i + σi(c)re.

Proof. We construct the extractor E by letting it repeatedly run P∗ with freshly sampled challenges
until it obtains an accepting transcript, (wi, c,zi). Next, for each j ∈ Z×2k/l, E rewinds the prover to

just after the first round and sends a random challenge that differ from c mod (X lN/k − ζjl), until
it obtains an accepting transcript (wi, cj , zij). In this manner, E obtains k/l more accepting tran-
scripts such that for each of the k/l ideals (X lN/k − ζjl), there is a transcript whose challenge differ
modulo (X lN/k−ζjl). We can now write cj = c−cj , and by construction cj mod (X lN/k−ζjl) ̸= 0.

We can now fix e ∈ {0, . . . , l− 1} and f ∈ Z×2k/l, and focus on the prime ideal sef = σe(XN/k − ζf ),
that is a divisor of (X lN/k − ζfl). We know that there must exist an e′ ∈ {0, . . . , l − 1} such that
σe

′
(cf ) mod pef ̸= 0. Hence we can define

(ref )e =
ze′ − ze′f
σe′(cf )

mod pef .

Next, we define re ∈ Rλ+µ+1
q to be the vector for which re ≡ (ref )e (mod pef ) for all e ∈ {0, . . . , l−1}

and f ∈ Z×2k/l. We now show that either σi(cj)re = zi − zij for all i ∈ {0, . . . , l − 1} and j ∈ Z×2k/l,
or we find a MSIS solution for B0. From the verification equations we have that

B0(zi − zij) = σi(cj)t0 (B.1)

for all i ∈ {0, . . . , l− 1} and j ∈ Z×2k/l. This implies that we either have a MSISµ,λ+µ+1,8κB solution

for B0, or that
σe

′
(cf )(zi − zij) = σi(cj)(ze′ − ze′f ).

We assume that the latter is true, for which we get that

σi(cj)re ≡ σi(cj)(ref )e

≡ σi(cj)
ze′ − ze′f
σe′(cf )

≡ zi − zij (mod pef ).

Our claim now follows from the Chinese remainder theorem. We can plug this into (B.1), and get
that for all i ∈ {0, . . . , l − 1} and j ∈ Z×2k/l, it must hold that B0σ

i(cj)re = σi(cj)t0. This in turn

implies that
B0re = t0.

We can now define the extracted message me to be such that

t1 = ⟨b1, re⟩+me.

Hence the extractor has obtained a weak opening (σi(cj), re,me) for the commitment t, for which
∥σi(cj)re∥ ≤ 2B.
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We now investigate the run time for the extractor. Obtaining the first transcript is expected to
take time 1/ε. When we put our restriction on the challenges, the success probability is reduced to
at least ε − plN/k. Thus the total expected time for the extractor to obtain the 1 + k/l accepting
transcripts is at most

1

ε
+
k

l

1

ε− plN/k
.

We now consider the (ye)i, and set them to be the vectors defined by

zi = (yi)e + σi(c)re.

Clearly it must hold that B0(ye)i = B0(zi − σi(c)re) = wi. Suppose now that there is another
accepting transcript with the same wi, (wi, c

′, z′i), and write z′i = (y′e)i + σi(c′)re. From the
verification equations for zi and z′i we get

B0(zi − z′i) = σi(c)t0

for all i ∈ {0, . . . , l − 1}, where c = c− c′. Using the same argumentation as for (B.1), we get that
we either have a MSIS solution or that

σe
′
(cf )(zi − z′i) = σi(c)(ze′ − ze′f ).

Since ze′ − ze′f = σe
′
(cf )re, this implies that

σe
′
(cf )((ye)i − (y′e)i) = 0.

But since σe
′
(cf ) ̸≡ 0 (mod pef ), this implies that (ye)i ≡ (y′e)i (mod pef ). Thus (ye)i = (y′e)i, and

hence the theorem holds.

B.2 Product proof

Theorem 32. Suppose that s = γκβ
√

(λ+ µ+ 4)N for some γ > 0. Then the protocol Πσprod is
complete, meaning that the honest prover P convinces the honest verifier V with with probability

≈ 1

exp(14/γ + 1/(2γ2))
.

Proof. According to Lemma 4, the probability that P does not abort is at least

1

exp(14/γ + 1/(2γ2))
,

and the zi has statistical distance at most 2−128 fromDRλ+µ+4,s. According to Lemma 3 with δ =
√
2

we have ∥zi∥ ≤ β = s
√
2(λ+ µ+ 4)N , except with negligible probability

√
2
(λ+µ+4)N

exp(−(λ +
µ + 4)N/2). For an honest prover, the remaining verification equation holds by construction, and
hence the theorem holds.

Theorem 33. Suppose that s = γκβ
√
(λ+ µ+ 4)N for some γ > 0. Then the protocol Πσprod

is zero-knowledge, meaning that there exists a simulator S, that without access to secret informa-
tion outputs a simulation of a non-aborting transcript of the protocol, such that for every algo-
rithm A that has advantage ε in distinguishing the simulated transcript from the actual transcript,
there is an algorithm A′ with the same running time that has advantage ε − 2−128 in solving the
MLWEλ+µ+4,µ+4,χ problem.
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Proof. By Lemma 4, the zi are within a statistically distance of 2−128 to DRλ+µ+4,s in non-aborting

transcripts. Hence the simulator can just sample zi
$← DRλ+µ+4,s. Also from the rejection sampling,

we get that the challenge c is independent of the zi, and so the simulator can simply draw a random

c
$← C.

By the hiding property of the commitment scheme, the commitments are indistinguishable from
truly random if the MLWEλ+µ+4,µ+4,χ problem is hard. Hence the simulator can also just sample

random t0
$← Rµq and t1, t2, t3, t4

$← Rq. The remaining messages can then be defined as

wi = B0zi − σi(c)t0
f4 = ⟨b4, z0⟩ − ct4

v =

k−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
+ f4

Thus the verification equations will hold. Hence an adversary that has has advantage ε in distin-
guishing the simulated transcript from the real one, must have advantage ε−2−128 in distinguishing
the MLWEλ+µ+4,µ+4,χ samples in the commitments from uniform.

Theorem 34. Let p be the maximum probability over Zq of the coefficients of c mod X lN/k − ζl
as in Lemma 14. Then the protocol Πσprod is knowledge sound, meaning that there is an extractor
E with the following properties. When given rewindable access to a deterministic prover P∗ that
convinces V with probability ε > (3pN/k)l, E either outputs a weak opening for the commitment
t with messages (m1)e, (m2)e and (m3)e such that (m1)e(m2)e = (m3)e, or a MSISµ,λ+µ+4,8κB

solution for B0 in expected time at most 1/ε+ (k/l)(ε− pNl/k)−1 when running P∗ is assumed to
take one unit time.

Proof. The extractor E is constructed by first letting it open the commitments t1, . . . , t4. We can
then use Theorem 31 to see that either E finds a MSISµ,λ+µ+4,8κB solution for B0, or that it can
compute vectors ye and re such that for ever accepting transcript with first messages t and wi, we
have that

zi = (ye)i + σi(c)re.

From this we can then define the extracted messages (m1)e, . . . , (m4)e to satisfy

t1 = ⟨b1, re⟩+ (m1)e

t2 = ⟨b2, r⟩+ (m2)e

t3 = ⟨b3, re⟩+ (m3)e

t4 = ⟨b4, re⟩+ (m4)e

The first three messages will be independent of the challenges αi, since their corresponding commit-
ment was sent before the challenges were chosen, but (m4)e can depend on the αi’s. We can now
use the expression for zi and input the commitments into the expressions for the fj ’s to obtain

f
(i)
j = ⟨bj , (ye)i⟩ − σi(c)(mj)e for j = 1, 2, 3

f4 = ⟨b4, (ye)0⟩ − c(m4)e
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We can now substitute these expressions into the last verification and get that

⟨b4, (ye)0⟩+
l−1∑
i=0

αiσ
−i
(
⟨b1, (ye)i⟩⟨b2, (ye)i⟩

)
+ c

l−1∑
i=0

αiσ
−i
(
⟨b3, (ye)i⟩ − (m1)e⟨b2, (ye)i⟩ − (m2)e⟨b1, (ye)i⟩ − (m4)e

)
+ c2

(
l−1∑
i=0

αiσ
−i((m1)e(m2)e − (m3)e

))
− v = 0.

For any accepting transcripts it is important that this holds, and that this polynomial in c has
coefficients that are independent from c. As we recall, (m4)e and v are the only terms that can
depend on the αi’s.

We now assume that (m1)e(m2)e ̸= (m3)e, and bound the success probability conditioned on this
assumption. We must in this case have that (m1)e(m2)e − (m3)e is non-zero modulo at least one of
the prime ideals:

(m1)e(m2)e − (m3)e ̸≡ 0 (mod σi(XN/k − ζj))

for some i ∈ {0, . . . , l − 1} and j ∈ Z×2k/l. Then we have that the following polynomial

p =

l−1∑
i=0

αiσ
−i((m1)e(m2)e − (m3)e) mod (X lN/k − ζj l)

is uniformly random for uniformly random αi. The probability then that it is non-zero modulo all
l prime ideals that divide (X lN/k − ζj l), is (1 − 1

qN/k )
l. Also, modulo each prime ideal, there can

be at most two points that make the evaluation of the previous verification polynomial zero. Hence
there are only 2l possible elements modulo X lN/k − ζj l. So, if we assume that the probability of c
mod (X lN/k − ζj l) hitting an element is at most plN/k, the success probability of the prover must
be bounded by 2lplN/k.

But if p is zero in one of the l prime ideals, which has probability l
qN/k (1− 1

qN/k )
l−1 of happening,

then there are at most 2l−1qN/k possible values for c mod (X lN/k − ζj l). Hence the success prob-
ability in this case is bounded by 2l−1qN/kplN/k. We can continue this argument for each of the
cases, and we can see that the total success probability must be bounded by

ε ≤
l∑
i=0

(
l

i

)( 1

qN/k

)i(
1− 1

qN/k

)l−i
2l−iqiN/kplN/k <

(
3pN/k

)l
.

This is a contradiction to the bound in the theorem, and thus we must have that (m1)e(m2)e = (m3)e.
We notice that the running time for the extractor is the same as the running time for the extractor
in Theorem 31, and hence the theorem holds.
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Appendix C

Security analysis of Πinner

Theorem 35. Suppose that s = γκβ
√
(λ+ µ+ 2)N for some γ > 0. Then the protocol Πinner is

complete, meaning that the honest prover P convinces the honest verifier V with with probability

≈ 1

exp(14/γ + 1/(2γ2))
.

Proof. According to Lemma 4, the probability that P does not abort is at least

1

exp(14/γ + 1/(2γ2))
,

and the zi has statistical distance at most 2−128 fromDRλ+µ+2,s. According to Lemma 3 with δ =
√
2

we have ∥zi∥ ≤ β = s
√
2(λ+ µ+ 2)N , except with negligible probability

√
2
(λ+µ+2)N

exp(−(λ +
µ + 2)N/2). For an honest prover, the remaining verification equation holds by construction, and
hence the theorem holds.

Theorem 36. Suppose that s = γκβ
√
(λ+ µ+ 2)N for some γ > 0. Then the protocol Πinner

is zero-knowledge, meaning that there exists a simulator S, that without access to secret informa-
tion outputs a simulation of a non-aborting transcript of the protocol, such that for every algo-
rithm A that has advantage ε in distinguishing the simulated transcript from the actual transcript,
there is an algorithm A′ with the same running time that has advantage ε − 2−128 in solving the
MLWEλ+µ+2,µ+2,χ problem.

Proof. By Lemma 4, the zi are within a statistically distance of 2−128 to DRλ+µ+2,s in non-aborting

transcripts. Hence the simulator can just sample zi
$← DRλ+µ+2,s. Also from the rejection sampling,

we get that the challenge c is independent of the zi, and so the simulator can simply draw a random

c
$← C. Since the polynomial h is such that h0 = · · · = hℓ−1 = 0 and the other coefficients are

uniformly random, the simulator can also just sample h
$← {h ∈ Rq : h0 = · · · = hℓ−1 = 0}. The

simulator also just draws the independently uniformly random challenges γ⃗µ
$← Zmq .

In honest protocols, r is statistically independent of the zi’s, c, h, the γ⃗µ’s, š and g, and thus the
commitment t is indistinguishable from uniform if the MLWEλ+µ+2,µ+2,χ problem is hard, by the
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hiding property of the commitment scheme. Hence the simulator can also simply sample t
$← Rµ+2

q .
The remaining messages are now constructed as

wi = B0zi − σi(c)t0,

vi =

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1, zi−ν mod l⟩

)
+ ⟨b2, zi⟩ − σi(c)(τ + t2 − h),

so that the verification equations will hold. Now the simulated transcript is indistinguishable from
the real one, in the sense that if there is an algorithm that can distinguish between these transcripts
with advantage ε, then it has advantage ε− 2−128 in distinguishing the MLWEλ+µ+2,µ+2,χ samples
in t from uniform.

Theorem 37. Let p be the maximum probability over Zq of the coefficients of c mod X lN/k − ζl
as in Lemma 14. Then the protocol Πinner is knowledge sound, meaning that there is an extractor
E with the following properties. When given rewindable access to a deterministic prover P∗ that
sends the commitment t in the first round and convinces V with probability ε > q−ℓ + pℓ, E either
outputs a weak opening for the commitment t with message se such that ANTT(še) = u⃗, or an
MSISµ,λ+µ+2,8κB solution for B0 in expected time at most 1/ε+ (N/l)(ε− pl)−1 when running P∗
is assumed to take one unit time.

Proof. The extractor starts by opening the commitments t1 and t2. Since the Πσopen protocol was
used for the commitment opening proof, we can use Theorem 31 to see that unless E finds a
MSISµ,λ+µ+2,8κB solution, it can compute ye and re such that for every accepting transcript we
have

zi = ye + σi(c)re.

Next, we let še ∈ Rq and ge ∈ Rq be the extracted messages defined by

t1 = ⟨b1, re⟩+ še and t2 = ⟨b2, re⟩+ ge.

If we substitute these expression into the commitment τ to f , we get

τ =

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1, r⟩

)
+ fe

where

fe =

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν(NTT−1(NAT γ⃗µ)še − ⟨u⃗, γ⃗µ⟩).

From construction we know that for all µ = 0, . . . , l − 1 we have (fe)µ = ⟨As⃗e − u⃗, γ⃗µ⟩, where
s⃗e = NTT(še). We also get from the last verification equation that

l−1∑
µ=0

1

l
Xµ

l−1∑
ν=0

σν
(
⟨NTT−1(NAT γ⃗µ)b1, (ye)i−ν mod l⟩

)
+ ⟨b2,ye⟩ − vi = σi(c)(fe + ge − h) (C.1)

for all i = 0, . . . , l − 1. All coefficients of these linear polynomials in σi(c) are independent of c in
an accepting transcript.
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We now investigate the success probability ε of a prover, conditioned on As⃗e ̸= u⃗. In this case,
for all µ = 0, . . . , l − 1 we have that (fe)µ are uniformly random elements in Zq, and hence also
(fe)µ+ (ge)µ is uniformly random. But since hµ = 0 for all µ = 0, . . . , l− 1 in accepting transcripts,
we can only get that (fe)µ + (ge)µ − (he)µ = (fe)µ + (ge)µ ̸= 0 if there exists some j ∈ Z×2N with
fe + ge − h mod (X − ζj) ̸= 0. This means the in order for (C.1) to hold for all i, there is only one
possible value modulo (X l − ζjl) for the challenge c. And since we bounded the probability of each
coefficient of c mod (X l − ζjl) by p, we thus get

ε = Pr[accepting] <

(
1

q

)l
+ Pr[accepting |(fe)µ + (ge)µ ̸= 0 for some µ]

≤
(
1

q

)l
+ pl.

This is a contradiction to the bound in the theorem, and hence it must hold that As⃗e = u⃗.
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