
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Christian Danh Nguyen

Deep Learning Based People
Estimation on 2D Ultra-Wideband
Radar Data

Master’s thesis in Electronic Systems Design
Supervisor: Pierluigi Salvo Rossi
July 2023

Christian Danh Nguyen

Deep Learning Based People
Estimation on 2D Ultra-Wideband
Radar Data

Master’s thesis in Electronic Systems Design
Supervisor: Pierluigi Salvo Rossi
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

This master’s thesis investigates the performance of three types of deep learning models, the
Simple Convolutional Neural Network (CNN), the Residual Network (ResNet), and the Convo-
lutional Neural Network with Gated Recurrent Units (CNN+GRU), in the task of detecting and
counting people using range-Doppler (RD) maps obtained from the novel NOVELDA Ultra-low
Power Presence Sensor. The dual-antenna of the sensor allowed for digital beamforming, creating
three beams pointing in ±20◦ and 0◦ azimuth angle. The results suggest that the CNN model,
with its aptitude for spatial feature extraction, performed well on the RD maps, which spatially
represent radar reflections from people in motion. This characteristic may not have been fully
exploited by the CNN+GRU model, despite its potential to capture temporal dependencies, or by
the ResNet model, which might have been too intricate for this dataset.

A significant limitation of this study was the inadequate training data for the multiclass classific-
ation of RD maps for people counting. Insufficient data might have led to overfitting, negatively
impacting the model’s ability to generalize, which was evident in the performances of the more
complex models, ResNet and CNN+GRU. To address this, data augmentation techniques were
used to enhance the diversity of the training set, although their effectiveness might be limited.

The height of the radar system, fixed at 1.5 m in the experiments, could significantly influence
the characteristics of the radar return signals, particularly under Non-Line-Of-Sight (NLOS) con-
ditions. Exploring the effects of radar height placement could be a future research direction.
Furthermore, minimal preprocessing to remove noise and clutter from the RD maps was conduc-
ted. In some cases, the presence of noise and clutter could potentially carry useful information
that aids the model in distinguishing between noise and target signals.

Despite the above challenges, the CNN model yielded promising results for the classification of
up to three targets in a 4 × 4 m grid, that are comparable to state-of-the-art methods. Utilizing
the NOVELDA Ultra-low Power Presence Sensor demonstrates the potential to implement radar
systems with lower power consumption and improved target localization and differentiation cap-
abilities, thanks to its dual-antenna configuration. Beamforming also provides insights into target
dynamics and helps to resolve issues of target occlusions and overlapping trajectories, offering more
accurate and reliable people counting results.

i

Sammendrag

Denne masteroppgaven undersøker ytelsen til tre typer maskinlæringsmodeller, Convolutional
Neural Network (CNN), Residual Network (ResNet), og Convolutional Neural Network med Gated
Recurrent Units (CNN+GRU), i oppgaven med å detektere og telle mennesker ved bruk av range-
Doppler (RD) kart hentet fra den nye NOVELDA Ultra-low Power Presence Sensoren. Sensorens
doble antenne tillot digital str̊aledannelse, som skaper tre str̊aler som peker i -20°, 0°, og +20°
asimutvinkel. Resultatene antyder at CNN-modellen, med sin dyktighet for romlige egenskaper,
presterte godt p̊a RD-kartene, som representerer radarrefleksjoner fra mennesker i bevegelse. Denne
egenskapen kan ikke ha blitt fullt utnyttet av CNN+GRU-modellen, til tross for dens potensiale
for å fange opp avhengigheter i tid, eller av ResNet-modellen, som kanskje har vært for intrikat
for dette datasettet.

En betydelig begrensning i denne studien var det utilstrekkelige treningsdatasettet for flerklassi-
fisering av RD-kart for mennesketelling. Utilstrekkelige data kan ha ført til overtilpasning, noe
som negativt p̊avirker modellens evne til å generalisere, noe som var tydelig i ytelsen til de mer
komplekse modellene, ResNet og CNN+GRU. For å løse dette, ble teknikker for dataforsterkning
brukt for å øke mangfoldet i treningssettet, selv om deres effektivitet kan være begrenset.

Høyden p̊a radarsystemet, fastsatt til 1,5 m i eksperimentene, kan p̊avirke egenskapene til radar-
retursignalene betydelig, spesielt under ikke-line-of-sight (NLOS) forhold. Å utforske effektene
av radarhøydeplassering kan være en fremtidig forskningsretning. Videre ble det utført minimal
forbehandling for å fjerne støy og clutter fra RD-kartene. I noen tilfeller kan tilstedeværelsen av
støy og clutter potensielt bære nyttig informasjon som hjelper modellen i å skille mellom støy og
m̊alsignaler.

Til tross for de ovennevnte utfordringene, ga CNN-modellen lovende resultater for klassifiseringen
av opptil tre m̊al i et 4x4 m rutenett, som er sammenlignbare med toppmoderne metoder. Bruken av
NOVELDA Ultra-low Power Presence Sensoren viser potensialet til å implementere radarsystemer
med lavere strømforbruk og forbedrede m̊allokalisering og differensieringsegenskaper, takket være
dens doble antennekonfigurasjon. Str̊aledannelse gir ogs̊a innsikt i m̊aldynamikk og bidrar til å
løse problemer med m̊alokklusjoner og overlappende baner, noe som gir mer nøyaktige og p̊alitelige
resultater for mennesketelling.

ii

Preface

I would like to dedicate my thesis to my friends, girlfriend and family, who have supported me
throughout my studies. I would also like to thank my supervisor at NTNU, Professor Pierluigi Salvo
Rossi, and my external supervisor at Novelda, Jan Roar Pleym, for their guidance and support
throughout the project. Furthermore I would like thank Sigurd Pleym, Benjamin Nedreg̊ard,
Shaurya Sharma, and the rest of the Novelda team for their help with the data collection and
annotation work.

Today is the 21st of July, 2023. I am currently sitting in a hotel in Saigon, Vietnam, five days
into the vacation with my high school friends, Felix Gia-Bao Hoang, Varshan Erik Shankar, and
Emil Gravningen Pilley. The vacation was planned together in November as a celebration of mine
and Varshan’s completion (hopefully) of a M.Sc. degree at NTNU, but I haven’t even gotten the
slightest tan and am mistaken for either a Korean, Chinese or Japanese here. I am Vietnamese.

In Türkiye, during our transit, a receptionist, who was incredibly well spoken in various languages,
tried to catch my attention by greeting me: ”Anyeong haseyo” (Korean). I told her calmly that
I was not korean, and told her that we say ”hei” to greet people where I am from (Norway). In
response she said: ”Hai, hajimemashite”.

I digress. I have been sitting inside the hotel room for days, finishing up this master’s thesis, and
today I am finally done. It has been a ride, and I am looking forward to start my last vacation.

-Christian Danh Nguyen

iii

Table of contents

List of figures vi

List of tables vii

List of abbreviations and symbols vii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Related work . 2

2 Theoretical Framework 4

2.1 Radar systems . 4

2.1.1 Radar range equation . 4

2.1.2 Pulse radar principles . 4

2.1.3 Pulse-Doppler signal processing . 5

2.1.4 Limitations of radar systems . 7

2.2 Machine Learning . 7

2.2.1 Learning problems . 7

2.2.2 Perceptron and multi-layer perceptron . 8

2.2.3 Activation functions . 9

2.2.4 Optimizers . 10

2.2.5 Performance metrics . 12

2.2.6 Convolutional neural networks . 13

2.2.7 Residual neural networks (ResNet) . 14

2.2.8 Recurrent neural networks (RNN) . 14

3 Methodology 17

3.1 Experimental setup . 17

3.1.1 NOVELDA Ultra-low Power Presence Sensor 17

3.1.2 Data collection . 18

3.2 Machine learning . 18

3.2.1 Baseline CNN . 18

3.2.2 ResNet . 18

3.2.3 CNN+RNN . 19

3.2.4 Model training and evaluation . 19

iv

4 Dataset and Preprocessing 20

4.1 Preprocessing . 20

4.2 Data augmentation . 23

4.3 Data labeling . 23

5 Results and Discussion 25

5.1 Predictions with CNN+GRU. 26

5.2 Predictions with ResNet . 29

5.3 Predictions with CNN . 31

6 Conclusion 36

6.1 Future Work . 36

References 38

A Recording manuscripts 40

v

List of figures

1 Illustration of the two-dimensional pulse-Doppler data. Reprinted from [20]. 5

2 Illustration of the range-Doppler matrix. Reprinted from [20]. 6

3 Illustration of an artificial neuron which the perceptron is based on. Reprinted from
[24]. 8

4 Illustration of a multi-layer perceptron with one hidden layer. Reprinted from [25] 9

5 Illustration of a confusion matrix for a binary classification problem. 12

6 Illustration of a convolutional operation with a 3× 3 filter and a stride of 1 over an
image of size 5× 5. 13

8 Illustration of a RNN with a single memory cell. 15

9 Illustration of a LSTM cell. 16

10 Illustration of a GRU cell. 16

11 Illustration of the experimental setup. 17

12 NOVELDA Ultra-low Power Presence Sensor. Reprinted from [28]. 17

14 Illustration of swapping channel 1 and channel 3. 23

15 GUI and visualization tool for manually labeling the radar data. 23

16 Depth field from the two Kinect RGB cameras showing the full scene being captured
by the two cameras. 24

17 Three participants in the stand still period of manuscript 6. 24

18 Performance metrics for the CNN+GRU model trained on fixed-length sequences. 26

19 Performance metrics for the CNN+GRU model trained on sliding window sequences. 27

20 Performance metrics for the CNN+GRU model. 28

21 CNN+GRU predictions on the test set for one target. 28

22 CNN+GRU predictions on the test set for two targets. 29

23 CNN+GRU predictions on the test set for three targets. 29

24 Performance metrics for the ResNet model. 30

25 ResNet predictions on the test set for one target. 30

26 ResNet predictions on the test set for two targets. 31

27 ResNet predictions on the test set for three targets. 31

28 Performance metrics for the baseline CNN model. 32

29 Baseline CNN predictions on the test set for one target. 32

30 Baseline CNN predictions on the test set for two targets. 33

31 Baseline CNN predictions on the test set for three targets. 33

vi

List of tables

1 Participant information. 20

2 People counting dataset. 20

3 Initial dataset for frame models. 21

4 Final dataset for frame models. 21

5 Processed dataset. 22

6 Best model performance on the validation set. 25

7 Best F1-score for each class based on manuscripts 1, 2, and 3. 25

8 Best F1-score for each class based on manuscripts 4, 5, and 6. 25

List of abbreviations and symbols

Abbreviations

1D One dimensional

2D Two dimensional

3D Three dimensional

CFAR Constant false alarm rate

CNN Convolutional neural network

CPI Coherent processing interval

DFT Discrete fourier transform

DSP Digital signal processing

FFT Fast fourier transform

GAN Generative adversarial network

IIR Infinite impulse response

IR Impulse radio

ML Machine learning

PRF Pulse repetition frequency

RAI Range-angle image

RDI Range-doppler image

Rx Receiver

Tx Transmitter

UWB Ultra-wideband

VAE Variational autoencoder

Symbols

θ3 3-dB beamwidth

vii

c0 Speed of light

fD Doppler frequency

Rmax Maximum unambiguous range

vr Unambiguous radial velocity

∆θ Azimuth angle resolution

∆R Range resolution

λ Wavelength

ϕ Elevation angle

θ Azimuth angle

B Bandwidth [Hz]

viii

1 Introduction

1.1 Background and motivation

In recent years, the emergence of Impulse Radio Ultra-Wideband (IR-UWB) technology has become
more apparent in various fields, including healthcare, robotics, and automotive applications [1]–
[5]. Its ability to offer high-precision, anonymous and non-contact sensing capabilities makes it
an attractive solution for a wide range of real-world problems. An example of this technology for
medical applications is UWB medical imaging, which benefits in providing low-risk imaging of the
internal organs and tissues of the human body [4]. UWB radars can also be used for non-contact
breathing monitoring [5], and to detect sleep stages [6].

One particularly promising application is people counting (PC), which can have significant implic-
ations in various domains such as smart buildings by saving energy based on inefficient lighting
and heating of unoccupied spaces, privacy by not being intrusive compared to cameras, and crowd
management by redirecting crowds in public areas and transport. PC using IR-UWB radar have
given promising results [7]–[10]. However, they are still not robust enough to be reliably deployed
in the real world.

This master’s thesis explores the use of machine learning (ML) techniques on range-Doppler (RD)
maps obtained from IR-UWB radar for accurate PC in order to cover the limitations of traditional
approaches.

At the core of this study lies NOVELDA’s new Ultra-low Power Presence Sensor, a cutting-edge
IR-UWB radar sensor designed for low-power operation of below 100 microwatts and accurate
sensing. The sensor offers a dual-antenna radar system, which allows for two-dimensional spatial
information: range and direction-of-arrival in azimuth angle. Leveraging this state-of-the-art radar
sensor, we aim to develop and evaluate a robust and efficient ML model for precise PC.

To achieve accurate PC results, extensive data preprocessing is essential. As part of this study, we
will investigate various preprocessing steps for the RD maps, with a particular focus on minimal
noise filtering. By allowing the model to learn the noise and clutter floor inherent in real-world
radar data, we seek to improve the robustness of our ML approach.

Data collection plays a pivotal role in training and evaluating ML models. In this study, we will
also conduct our data collection using NOVELDA’s Ultra-low Power Presence Sensor and design
specific scenarios to generate diverse RD maps reflecting real-world and challenging conditions.
Ground truth labels for the number of people in each scenario will be collected, and we will
present the methods employed for accurate annotation.

The research questions addressed in the thesis are as follows:

• IR-UWB technology be utilized for people counting, and what are its unique advantages and
limitations in this context?

• What are the optimal preprocessing steps for RD maps derived from IR-UWB radar data,
particularly in terms of minimal noise filtering and clutter floor management, to improve the
accuracy and generalization of the machine learning model?

• How can the Ultra-low Power Presence Sensor by NOVELDA be effectively integrated with
machine learning techniques to create a reliable PC model, and how does its performance
compare to traditional approaches?

• What data collection methods can be employed to generate diverse and representative RD
maps, and what are the implications of data quality and quantity on the performance of the
machine learning model?

Through this thesis, we envision contributing valuable insights into the application of IR-UWB
radar technology and its seamless integration with ML for PC. The combination of cutting-edge

1

radar sensors, data preprocessing techniques, and novel data collection methods will be instru-
mental in developing an efficient and reliable solution for PC in a variety of dynamic settings. The
findings of this research hold the potential to impact numerous domains, advancing the field of
human presence detection and facilitating more intelligent and responsive environments.

The remainder of this thesis is structured as follows: Section 2 provides a theoretical framework
for the study, including the fundamentals of radar and IR-UWB technology, and fundamental ML
concepts. Section 3 presents the methodology employed for the study, including the experimental
setup, data collection, ML architectures deployed, and performance evaluation. Section 4 describes
the preprocessing steps and the final dataset used for training and evaluation, including the data
collection process and the labeling procedure. Section 5 presents the findings of the experiments,
including discussions about the performance of the ML models and the impact of different prepro-
cessing steps. Section 6 concludes the thesis and discusses potential future work.

1.2 Related work

Little literature was found on the use of a dual-antenna IR-UWB radar sensor for PC aside from
the work of Nguyen et al. for localization and detection [8]. But this work did not include the
use of ML models for PC. Thus, we will be reviewing the literature on the use of a single-antenna
IR-UWB radar sensor for PC. In almost all the papers reviewed, NOVELDA’s X4M03 low-power
UWB radar [11] has been used.

Radar-based PC using ML is a relatively new field of research, but it has already shown promising
results compared to early radar-based PC approaches [7]–[10]. Choi et al. proposed an algorithm
based on a strategy of understanding the pattern of the received signal according to the number of
people [7]. They generated a probability-density function (PDF) based on the amplitudes of the
main pulses from the major clusters found and derived a maximum likelihood equation resulting in
a mean absolute error (MAE) of 0.68 for PC up to nine people. Nguyen et al. proposed a filtering
method using a Kalman filter followed by a modified CLEAN algorithm and a target localization
and tracking step [8]. For a two-person localization and tracking scenario, they achieved detection
rates of 73% and 87% for each person respectively.

Recent studies have attempted to apply ML-based approaches to radar-based PC [12]–[18]. Such
efforts differed from the traditional use of scattering center extractions (SCE) algorithms, which
involves identifying and extracting information about the scattering centers present in the radar
return signal, and rather consisted of a set of handcrafted features which a data-driven classifier
uses for predicting the correct class, for example the number of people present.

Bao et al. utilized handcrafted features from multi-scale range-time maps and used these to classify
the number of people using a CNN model [18]. Their proposed features and prediction on a number
of people from zero to 10 people resulted in an average of 61.5%, where the lowest accuracy of
7.6% was for the class of seven people in the detection zone, and their highest of 100% was for
zero people present in the detection zone. This study was conducted using a single-antenna radar
sensor. Whereas in our research, we will be using a dual-antenna radar sensor.

Choi et al. have done significant research in robust detection of presence of individuals in indoor
environments, and radar-based PC both with and without using deep learning (DL) [7], [13]–[17].
In a more recent paper [17], they proposed a preprocessing pipeline to transform the raw return
radar signals into a better matched form for a DNN. Furthermore a novel ML architecture that
reflected the spatiotemporal characteristics of the signals was designed. The MAE for both indoor
and outdoor environments were 0.011 and 0.088 respectively for a multi-class classification problem
from zero to 10 people. The study was conducted using the same single-antenna radar sensor as
Bao et al. [18]. The results from the paper indicates that their proposed preprocessing pipeline
and ML architecture is robust to both indoor and outdoor environments.

Stephan et al. [19] applies ML models for PC, but uses the frequency-modulated continuous wave
(FMCW) radar consisting of one transmitter antenna and three receiver antennas. The proposed
method involves training the model on supervised RD maps and knowledge distillation for data
from a different radar sensor with different position and orientation. But during evaluation, only

2

the RD maps were used. The results from the paper, where the classification problem was from
zero to six people, scored an average accuracy of 0.7143. However, for the predictions from two to
six people, their model scored an average accuracy 0.6476.

The reviewed literature shows that the use of ML for PC on IR-UWB radar sensors is a promising
approach, and that it has the potential for use in real-world applications. However, the power
consumption provided by the single-antenna radar sensors used in the reviewed offered typically
20 mW. With the new Ultra-low Power Presence Sensor by NOVELDA, the power consumption is
reduced to below 100 µW, which is a significant improvement. The sensor also offers a dual-antenna
radar system, which allows for two-dimensional spatial information: range and direction-of-arrival
in azimuth angle. This opens up for new possibilities in the field of radar-based PC and tracking.

3

2 Theoretical Framework

The theoretical framework in this section will explain the relevant theory behind different concepts
and methods used in this research project. More specifically, this section will be divided into two
sections: the first section provides the framework for radar systems, more specifically IR-UWB
radars, while the last section covers relevant topics within deep learning.

2.1 Radar systems

The radio detection and ranging, also known as radar, is a radiolocation system that involves
emitting electromagnetic (EM) waves and measuring the time it takes for the waves to reflect back
from any surrounding objects. By analyzing the time delay and characteristics of the reflected
waves, radar systems can determine the range, angle, and velocity of the objects.

2.1.1 Radar range equation

The radar range equation is a fundamental equation in radar systems that describes the relationship
between the transmitted power, the received power, and the range of the target. The radar range
equation is given by Equation 1 and the derivation can be found in Chapter 2 from Principles of
Modern Radar: Basic Principles [20].

Pr =
PtGtGrλ

2σ

(4π)3R4
(1)

From Equation 1, we can see that the received power Pr is inversely proportional to the fourth
power of the range R. This means that the received power Pr decreases rapidly with increasing
range R. This is known as the radar range loss, and is the main reason why radar systems are
limited in range.

2.1.2 Pulse radar principles

The radar system used in this research project is an IR-UWB radar system, which is a type of
radar system that utilizes ultra-short and low energy pulses to accurately determine the range and
velocity of objects. Combined with the high range resolution, low power consumption, and low
cost, IR-UWB technology provides a cost-effective and reliable solution for a wide range of indoor
applications, such as room occupation detection, object tracking and security systems.

The basic principle of IR-UWB is based on the measurement of time of flight τ between the
transmission of the impulse signal and the reception of the reflected signal from the target. If d is
the distance to the target and c is the speed of light, τ is given by:

τ =
2d

c
(2)

Thus, the distance d between the radar and the target can easily be found by solving Equation 2
for d.

The high range resolution was previously mentioned as one of the advantages of IR-UWB radars.
The range resolution ∆R of a radar is the minimum separation between two targets that can be
distinguished and is given by the speed of light c multiplied by the pulse width τp of the signal
divided by two as shown in Equation 3:

∆R =
cτp
2

(3)

4

where τp is the pulse width of the signal. From Equation 3, we can see that the range resolution
∆R is inversely proportional to the pulse width τp, meaning that the smaller the pulse width,
the higher the range resolution. Typical range resolutions for IR-UWB radars are in the order of
centimeters.

2.1.3 Pulse-Doppler signal processing

In Pulse-Doppler signal processing, measurements and processing of Doppler data can be divided
into two domains: ”fast-time” and ”slow-time”, which can be considered to be the range dimension
and the pulse number dimension. The fast-time/slow-time matrix of coherent, complex baseband
data is shown in Figure 1.

Figure 1: Illustration of the two-dimensional pulse-Doppler data. Reprinted from [20].

Fast-time is associated with the time scale over which a single radar pulse and its corresponding
echo are transmitted and received, and is used for capturing range measurements. It is important
that the sampling rate in fast-time is high enough to capture the full bandwidth of the signal,
which is at least equal to the fast-time signal bandwidth B. B is given by the reciprocal of τp as
shown in Equation 4. Each sample corresponds to a range bin, and the index of the sample can
be directly related to the range of the target from the radar.

B =
1

τp
(4)

Slow-time is associated with the time scale over which a series of pulses are transmitted and received
and is used for capturing Doppler measurements. The slow-time is sampled at the pulse repetition
interval (PRI) T , which is the time between the start of one pulse and the start of the next pulse.
Thus, the sampling rate in slow-time is given by 1

T , also known as the pulse repetition frequency
(PRF). Each row in the matrix of Figure 1 corresponds to a series of measurements from the same
range bin over M successive pulses.

In the context of slow-time, the Doppler shift fd is the change in frequency of the reflected signal
from the target due to the relative motion between the radar and the target. fd is given by
Equation 5:

5

fd =
2v

c
f =

2v

λ
(5)

where f and λ are the transmitted frequency and wavelength, v is the radial velocity of the target,
and c is the speed of light. From Equation 5, we can see that fd is directly proportional to v. This
means that a positive value of v indicates a positive Doppler shift.

Pulse-Doppler processing analyzises the spectrum of the slow-time data for each range bin, resulting
in a two-dimensional matrix of range-frequency-power referred to as range-Doppler matrices. These
are generated by applying a discrete fourier transform (DFT) to each range bin. Figure 2 shows
an example of a fast-time/slow-time matrix converted to a range-Doppler matrix. In practice,
the range-Doppler matrix is generated by applying a fast-fourier transform (FFT) as it is more
computationally efficient.

Figure 2: Illustration of the range-Doppler matrix. Reprinted from [20].

In the new two-dimensional data matrix, the range bins are represented by the rows and the
Doppler bins are represented by the columns. The value at a specific cell in the matrix represents
the power of the signal at a specific range and Doppler frequency, making it possible to distinguish
between different targets at different ranges and velocities. One of the advantages of using range-
Doppler matrices is that it is possible to distinguish between stationary and moving targets given
that stationary targets result in a Doppler frequency of zero.

With an IR-UWB radar, the resolution in range and Doppler are fine enough to capture the
movements of the human body both when walking or standing still. This is due to the fact that it
is almost impossible for the human body to stand still [21]. In the context of people counting, this
means that it is possible to distinguish between people and stationary objects such as furniture
and walls. However, a limitation arises from the fact that a single antenna typically has a broad
beamwidth, and therefore, multiple targets at different azimuth and elevation but same range
might be represented as a single combined target.

A method of overcoming this problem is to employ multiple receiver antennas in an array, which
can be used to form a narrow beam in a desired direction. This is known as beamforming. Digital
beamforming is a method of combining the signals from multiple receivers digitally to form a
narrow beam that is pointed in a desired direction. This is done by adjusting the phase shift
∆ϕ and summing the signals from each receiver channel such that the signals are in phase in the
desired angle and out of phase in others. This effectively sums the signals constructively in the
desired angle and destructively at other angles. The narrowness of the beam is determined by
the number of receiver channels and the distance between the antennas, indicating that a better
angular resolution comes at the cost of a larger antenna array.

6

2.1.4 Limitations of radar systems

In Section 2.1.1 it was mentioned that the received power Pr decreases rapidly with increasing
range R. This is only one of the limitations of radar systems. Other limitations include clutter
and noise from unwanted echoes due to i.e. stationary objects and walls. In environments with
many reflective surfaces, such as indoor environments, the radar signals can reflect multiple times
before reaching the receiver, resulting in a phenomenon known as multipath effects. This can
cause ghost targets to appear at incorrect positions, due to the time of flight delay, which can be
difficult to distinguish from real targets. Lastly, if a small moving object is located behind a larger
stationary or moving object, where there is non-line-of-sight (NLOS) between the radar and the
smaller object, the radar might be unable to detect the smaller object.

The limitations mentioned above are all challenges that must be taken into account when designing
a radar system, i.e. in terms of the antenna arrangement, the location of the radar system, and
the environment in which the radar system is used.

2.2 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that focuses on the development
of algorithms that can learn from data such as numbers, images, and text, and make predictions
on new data. This gives the computer the ability to learn how to solve a problem without being
explicitly programmed to do so. A research brief from the Massachussetts Institute of Technology
(MIT) [22] breaks down the functions of a ML system into three categories: descriptive, predictive
and prescriptive. Descriptive analytics is the most basic form of ML, where the system is used
to describe what has happened in the past. Predictive analytics is a more advanced form of ML,
where the system is used to predict what will happen in the future. Prescriptive analytics is the
most advanced form of ML, where the system is used to prescribe what action should be taken in
the future.

2.2.1 Learning problems

Machine learning algorithms can broadly be categorized into three groups of problems: supervised,
unsupervised, and reinforcement learning.

Supervised learning. Supervised learning is a class of machine learning where during training,
the algorithm is training on a tuple of (X, y), where X are the input data and y are the corres-
ponding labels. The goal of the algorithm is to learn a mapping function f : X → y such that
when introduced to only X, the algorithm can correctly map it to the output y. This is done by
minimizing a loss function L(y, f(x)) that measures the difference between the predicted output
f(x) and the true output y.

There are two main types of supervised learning problems: regression and classification. In regres-
sion problems, the output y is a continuous value, while in classification problems, the output y
is a discrete value representing a certain class. Supervised ML requires labeled input data during
the training phase, which means that the data must be annotated with the corresponding labels
for the algorithm to train correctly. Such work is often done manually by a human, which can be
a time-consuming and expensive process.

Unsupervised learning. Unsupervised learning does not use labeled data during training, but
instead, the algorithm is solely dependant on the input data X. The goal of the algorithm is
to learn the underlying structure of the data, such as patterns and relationships, without any
prior knowledge of the data. Unsupervised learning is typically used for clustering, which involves
grouping data points into clusters based on their similarities, dimensionality reduction, which
involves reducing the number of features in the data based on their importance, and anomaly

7

detection, which involves identifying data points that are significantly different from the rest of
the data.

Reinforcement learning. Reinforcement learning is a class of machine learning where the al-
gorithm learns by interacting with its environment. The algorithm is rewarded for performing
the correct action and penalized for performing the wrong action. The goal of the algorithm is
to learn the optimal policy, which is a mapping from the state of the environment to the action
that maximizes the reward. Reinforcement learning is typically used for robotics, gaming, and
navigation.

To decide for which algorithms to use requires a thorough understanding of the problem at hand.
This involves understanding the data that is available, the desired output, and the desired perform-
ance. Real life problems are often complex and the data is not annotated or correctly formatted,
which means that it is often necessary to apply different preprocessing techniques before the data
can be used for its intended purpose.

2.2.2 Perceptron and multi-layer perceptron

Neural networks are a subset of machine learning that are inspired by the structure and function
of how the human brain processes information. The basic building block of a neural network is
the perceptron, which is a mathematical model of a biological neuron first proposed by Frank
Rosenblatt in 1958 [23]. Figure 3 shows the proposed model of a perceptron.

Figure 3: Illustration of an artificial neuron which the perceptron is based on. Reprinted from [24].

Perceptron. The perceptron takes a set of inputs x1, x2, ..., xn and multiplies each input with
their respective weights w1, w2, ..., wn. The weighted inputs are then summed together with a bias
b (denoted as θ in the figure), and passed through a unit step activation function f(z) to produce
an output ŷ based on the threshold Θ. In mathematical terms, the perceptron can be described
by Equation 6:

z =

n∑
i=1

wixi + b and ŷ = f(z) =

{
1 if z ≥ Θ

0 otherwise
(6)

A learning algorithm for the perceptron was proposed by Rosenblatt [23] for a binary classifica-
tion problem. This algorithm is a supervised learning algorithm that adjusts the weights of the
perceptron based on the error of the output. The weights are adjusted according to Equation 7:

wi ← wi +∆wi (7)

where ∆wi is given by Equation 8:

∆wi = η(y − ŷ)xi (8)

8

where η is the learning rate, y is the true label, and ŷ is the predicted label. The learning rate η
is a hyperparameter that controls how much the weights are adjusted during each iteration. The
learning rate is typically set to a small value, such as 0.01, to ensure that the weights are not
adjusted too much during each iteration.

In short, we can summarize the simplest form of the perceptron as follows: The weights wi are ini-
tialized to small random numbers, for given inputs of an example from the training data, the output
ŷ is computed, the weights are updated according to Equation 7, and the process of computing ŷ
and updating the weights are repeated until the algorithm converges and makes no mistakes. The
perceptron algorithm is a linear classifier, which means that it can only classify linearly separable
data.

The perceptron algorithm was a breakthrough in the field of machine learning, but it was limited
to linearly separable data. This limitation has later been overcome by the introduction of the
multi-layer perceptron (MLP). The MLP is a feedforward neural network (FFNN) that consists of
an input layer, one or more hidden layers in the middle, and an output layer. Figure 4 depicts an
example of an MLP with two hidden layers. The outputs of each neuron in a layer i− 1 is fed as
input to all the neurons in layer i.

Figure 4: Illustration of a multi-layer perceptron with one hidden layer. Reprinted from [25]

MLP. The MLP is a universal function approximator, which means that it can approximate
any function given a sufficiently large number of hidden layers and neurons. The MLP is trained
using the backpropagation algorithm, which is an algorithm for supervised learning of MLPs. The
backpropagation algorithm is a generalization of the delta rule for the perceptron, and is used
to calculate the gradient of the loss function with respect to the weights. The weights are then
updated using gradient descent. With the backpropagation algorithm, the requirements for the
activation function is that it must be differentiable, which the unit step function is not. Hence,
the introduction to many more popular activation functions which are commonly used in modern
neural networks.

2.2.3 Activation functions

Activation functions are used to introduce non-linearity into the neural network. Without activa-
tion functions, the neural network would be a linear regression model, which is a linear classifier.
This means that the neural network would not be able to learn complex patterns in the data. As we
say for the perceptron, Rosenblatt proposed the unit step activation function, but this activation
function was limited to binary classification problems and was not differentiable. Since then, many
different activation functions have been proposed. The most popular ones are sigmoid, tanh, and

9

rectified linear unit (ReLU)

Sigmoid. The sigmoid squashes the input into the range [0, 1] and is given by Equation 9:

σ(z) =
1

1 + e−z
(9)

where z is the input to the sigmoid function. Although the sigmoid is differentiable, the activation
function is prone to the vanishing gradient problem, which is a problem that occurs when the
gradient of the loss function approaches zero. This causes the weights to be updated very slowly,
which can lead to the neural network not learning anything at all.

Tanh. The tanh squashes the input into the range [-1, 1], making it zero-centered. The tanh
function is given by Equation 10:

tanh(z) =
ez − e−z

ez + e−z
(10)

where z is the input to the tanh function. The tanh is often prefered over the sigmoid function in
practice. However, the tanh function is also prone to the vanishing gradient problem.

ReLU. The ReLU is the most commonly used activation function and is defined as the positive
part of its argument:

ReLU(z) = max(0, z) (11)

From Equation 11, z is the input to the ReLU function. The ReLU function is not prone to the
vanishing gradient problem, but it is prone to the dying neuron problem, which is a problem that
occurs when the gradient of the loss function is zero. This causes the neuron to be stuck in a
state where it does not activate and does not contribute to the learning process. Although the
ReLU function is not differentiable at z = 0, in practice, it is differentiable at all other points,
which is sufficient for the backpropagation algorithm to work. In addition, the activation function
is computationally efficient, which makes it a popular choice for many neural networks.

Softmax. The softmax is a generalization of the sigmoid function that is used for multi-class
classification problems. It calculates the probabilities of each class over all possible classes and is
used as the final layer in a neural network to output the probabilities of each class.

2.2.4 Optimizers

Optimization algorithms are used to minimize a loss function L(θ) by iteratively moving in the
direction of the negative gradient. There are many different optimization algorithms, and the
choice of algorithm depends on the problem at hand. The most popular ones are gradient descent,
stochastic gradient descent (SGD), momentum, Adaptive gradient algorithm (AdaGrad), Root
mean square propagation (RMSProp), and adaptive moment estimator (Adam).

Gradient descent. The gradient descent is the first and simplest optimization algorithm for ML
and neural networks training. The gradient is the vector of partial derivatives of the loss function
with respect to the parameters θ. The parameters θ are updated according to Equation 12:

θ ← θ − η∇θL(θ) (12)

10

where η is the learning rate, which is a hyperparameter that controls how much the parameters
are adjusted during each iteration. The learning rate is typically set to a small value, such as 0.01,
to ensure that the parameters are not adjusted too much during each iteration.

SGD. The SGD is a variant of the gradient descent algorithm. The difference between gradient
descent and SGD is that in SGD, the gradient is computed for a single example at a time, while
in gradient descent, the gradient is computed for the entire training set. This makes SGD much
faster than gradient descent, but also prone to noise and diverging from the optimal path to the
global minimum. The parameters θ are updated according to Equation 13:

θ ← θ − η∇θL(θ;x
(i); y(i)) (13)

where x(i) and y(i) are the input and output of the ith example in the training set.

Momentum. The Momentum accelerates the convergence of the algorithm by adding a fraction
γ of the update vector of the past time step to the current update vector. The parameters θ are
updated according to Equation 14:

vt ← γvt−1 + η∇θL(θ)

θ ← θ − vt
(14)

where vt is the velocity vector at time step t, γ is the momentum term, and η is the learning rate.

AdaGrad. The AdaGrad optimizer adapts the learning rate η for each parameter θi at time
step t based on the past gradients that have been computed for θi. The parameters θ are updated
according to Equation 15:

θ ← θ − η√
Gt + ϵ

⊙ gt (15)

where Gt is the sum of the squares of the gradients up to time step t, and ϵ is a small constant to
prevent division by zero.

RMSProp. The RMSProp optimizer adapts the learning rate η for each parameter θi at time
step t based on the past gradients that have been computed for θi. The parameters θ are updated
according to Equation 16:

θ ← θ − η√
E[g2]t + ϵ

⊙ gt (16)

where E[g2]t is the exponentially decaying average of past squared gradients, and ϵ is a small
constant to prevent division by zero.

Adam. The Adam optimizer combines the advantages of two other extensions of stochastic gradi-
ent descent: AdaGrad and RMSProp. The parameters θ are updated according to Equation 17:

θ ← θ − η
m̂t√
v̂t + ϵ

(17)

where m̂t and v̂t are the first and second moment estimates of the gradients, and ϵ is a small
constant to prevent division by zero.

11

2.2.5 Performance metrics

Performance metrics are used to evaluate the performance of a ML model. The choice of perform-
ance metric depends on the specific task one is trying to solve. For our case, we have a multi-class
classification problem, and for these classification problems, the most common performance metrics
are confusion matrix, accuracy, precision, recall, and F1-score. Although confusion matrices are
not a metric, it is still a fundamental tool for computing the other metrics and for visualization.

Confusion matrix. The confusion matrix is a table that is used to visualize the performance of
a classification model. For a n-class classification problem, the confusion matrix is a n× n matrix
that contains the number of true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). Figure 5 shows an example of a confusion matrix for a binary classification
problem.

Figure 5: Illustration of a confusion matrix for a binary classification problem.

Accuracy. The accuracy is the most common performance metric for classification problems.
It is defined as the ratio of the number of correct predictions to the total number of predictions.
Although widely used, accuracy is not always the best metric, especially when the data is imbal-
anced. For example, if the data contains 90% of class A and 10% of class B, a model that always
predicts class A will have an accuracy of 90%, even though the model is not able to predict class
B at all. In such cases, accuracy is not a reliable indicator of the model’s performance. This is
where precision and recall offer more insight into the model’s performance.

Precision. The precision is used as a metric when the goal is to minimize the number of FP. It
is defined as the ratio of the number of TP to the total number of positive predictions:

Precision =
TP

TP + FP
(18)

Precision is useful in scenarios where the cost of FP is high and the cost of a FN is low. From
Figure 5 the precision can be seen as the ratio of the number of TP to the sum of TP and FP.
The weakness of the precision metric is that it does not take into account the number of FN. For
example, given the confusion matrix in Figure 5, the precision will give a value of 1.0. This means
that 100% of the predicted positives were correct. However, the metric gives no insight into how
many of the TP that were correctly classified.

12

Recall. The recall is used when the goal is to minimize the number of FN. It is defined as the
ratio of the number of TP to the total number of actual positives:

Recall =
TP

TP + FN
(19)

From the same confusion matrix, the recall would result in a value of 0.14. This means that only
14% of the actual positives were predicted correctly. It is possible to train a model to focus entirely
on precision or recall, but in cases where you want the model to both have a high recall and a high
precision, the F1-score is a good metric to use.

F1-score. The F1-score is the harmonic mean of precision and recall, and optimizing for the
F1-score is equivalent to optimizing for both precision and recall. The F1-score is defined as the
ratio of the product of precision and recall to the sum of precision and recall:

F1 = 2 · Precision · Recall
Precision + Recall

(20)

2.2.6 Convolutional neural networks

Convolutional neural networks (CNN) are a type of artificial neural networks (ANN) that are
commonly used for image classification and object detection. The architecture make use of con-
volutional layers, which is a layer that applies a convolution to the input. The convolution is a
mathematical operation that is specifically designed for processing pixel data. Convolutions involve
using a small matrix with learnable weights, known as kernels or filters, these filters are usually
a square matrix with odd dimensions. The filter is convolved with the input by sliding the filter
over the input and computing the dot product between the filter and the input at each position.
The filter is then shifted by a certain number of pixels, known as the stride, and the process is
repeated until the entire input has been covered. The stride is a hyperparameter that must be
specified before training the model. The stride is typically set to 1, which means that the filter
is shifted by one pixel at a time. Figure 6 shows an example of a convolutional operation with a
3 × 3 filter and a stride of 1 over an input of size 5 × 5 for the first row, effectively shrinking the
input to a feature map of size 3× 3.

Figure 6: Illustration of a convolutional operation with a 3×3 filter and a stride of 1 over an image
of size 5× 5.

The feature map is a matrix of values that represents the presence of certain features in the input.
The size of the feature map is determined by the size of the input, the size of the filter, and the
stride, where in this case we get a 3 × 3 feature map as an output after the convolution. After
a convolution, an activation function, often a ReLU, is applied to the feature map to introduce
non-linearity. The output of the activation function is then passed on to the next layer.

Usually for a convolutional layer, multiple filters are used to produce multiple feature maps. The
number of filters is a hyperparameter that must be specified before training the mode and determ-
ines the depth of the layer. Each of these filters have learnable weights, which means that the

13

filters are learned during training to locally look for different features such as edges, textures or
colors. By stacking convolutional layers, the network can learn to detect more complex patterns
and features.

2.2.7 Residual neural networks (ResNet)

ResNets are a type of CNN that are designed to be deeper than previous CNNs. The architecture
was introduced to address the problem of vanishing gradients, which usually hinders the training
of very deep networks.

One of the key properties of ResNets is that they use residual connections, also known as skip
connections, that allow the network to directly propagate information from earlier layers to later
layers. These skip connections allows the ResNet to learn residual mappings, which capture the
difference between the desired mapping and the current representation. The skip connections act
as a bypass mechanism, allowing the network to preserve and reuse information from earlier layers.
Figure 7a illustrates how the output of layer 1 propagates to layer 2, and Figure 7b illustrates how
the skip connection works by adding the input of layer 1 to the output of layer 2.

layer 1

layer 2

x

F(x) relu

relu

...

(a) Weight propagation in a CNN model.

layer 1

layer 2

+

x

F(x)

F(x) + x

xrelu

relu

(b) Weight propagation with residual blocks in a ResNet
model.

2.2.8 Recurrent neural networks (RNN)

RNNs are a type of ANN that are commonly used for sequential data, such as time series data,
videos and audio. In contrast to traditional feedforward neural networks, RNNs have feedback loops
that allows information to persist within the network, also known as hidden states or memory cells.
This makes it possible for the network to maintain a memory of previous inputs when processing
the current input. The simplest RNN can be seen as a repetition of a single memory cell where a
cell combines the current input xt and the previous input state ht−1, applies an activation function
(usually tanh), and produces the output ht. This output is then fed back into the cell as the input
state for the next iteration, but also as the output of the cell. Figure 8 shows an illustration of
a RNN with a single memory cell while Equation 21 shows the mathematical formulation of the
RNN for the current timestep.

14

Figure 8: Illustration of a RNN with a single memory cell.

ht = tanh(Whht−1 +Wxxt + b) (21)

When training a RNN, a variant of backpropagation, known as backpropagation through time
(BPTT), is used. BPTT calculates the loss at every timestep and accumulates the gradients over
all timesteps. The gradients are then used to update the weights of the network at every timestep
using an optimizer. Due to the activation function used, RNNs are also prone to the vanishing
gradient problem. This is often a problem when training RNNs on long sequences, where the
gradients either become too big (exploding gradient), or too small (vanishing vanish). This makes
it difficult for the network to learn long-term dependencies. New architectures have been proposed
to improve the performance and counter these problems. The most popular variants is the long
short-term memory (LSTM) cell and the gated recurrent unit (GRU) cell.

LSTM is a variant of the RNN where the LSTM cell has a cell state and three types of gates:
input gate, forget gate, and output gate. The cell state is passed from the input to the output of
the cell which allows the LSTM to learn long-term dependencies. The input gate controls which
information should be added to the cell state, the forget gate controls how much of the long-term
memory should be forgotten or discarded from the cell, and the output gate determines which
part of the cell state builds the output. All three gates are controlled by their respective sigmoid
activation functions along with their respective weights and biases.

These gating units are Figure 9 shows an illustration of a LSTM cell.

15

Figure 9: Illustration of a LSTM cell.

GRU is a variant of the RNN where the GRU cell consists of only two gates: reset gate and up-
date gate. The reset gate controls how much of the past information that should be forgotten, and
the update gate, similar to the input and forget gate of the LSTM cell, controls what information
to forget, and what new information to add. Figure 10 shows an illustration of a GRU cell.

Figure 10: Illustration of a GRU cell.

Both LSTM and GRU are both popular types of RNNs used for processing sequential data. They
are both designed to tackle the vanishing gradient problem that the basic RNN was suffering from.
However, there is no clear winner between the two, as they both have been reported in the literature
to perform equally well in most cases, or one outperforming the other in other cases. As GRU
has a less complex structure than LSTM, it is often faster to train and performs better on smaller
datasets [26]. However, LSTM have the advantage of having a cell state that allows the network to
learn long-term dependencies, making it more suitable for long sequences. It is often recommended
to try both LSTM and GRU when training a RNN, and choose the one that performs best.

16

3 Methodology

3.1 Experimental setup

In this section we describe the experimental environment and setup used for recording the dataset
and labeling for our People Estimation (PE) efforts. We will also explore the dataset and describe
the data processing pipeline used to extract the features from the dataset.

The experiments are carried out in a controlled indoors environment at NOVELDA’s main office
in Oslo. The area of interest is a 4× 4 m square, which is further divided into a grid of 16 squares
of 1 m2. The experimental setup consists of NOVELDA’s novel Ultra-low Power Presence Sensor,
which is a dual-antenna IR-UWB radar module, mounted on an ’Adam’ ArUco box 1.5 m above
the ground, two Kinect RGB cameras mounted to the ceiling for validation and labeling, a laptop
for recording and storage, and duct tape for marking the areas of interest. The experimental setup
is illustrated in Figure 11.

Figure 11: Illustration of the experimental setup.

3.1.1 NOVELDA Ultra-low Power Presence Sensor

The radar used for this study is the newly showcased NOVELDA Ultra-low Power Presence Sensor
[27]. This radar sensor is a high-performance, low-power, dual-antenna IR-UWB radar with the
world’s lowest power consumption of below 100 µW. The radar sensor features a complete sensor
module with antennas and on-chip processing within 5×30 mm, and is capable of reliably detecting
breathing motion at 10 m from the sensor.

Figure 12: NOVELDA Ultra-low Power Presence Sensor. Reprinted from [28].

17

3.1.2 Data collection

The participants in every recording are following a manuscript, describing the activity performed.
These manuscripts are provided such that participants in every recording follows the same proced-
ures, making the recordings reproducible, identifiable and comparable. Additionally, the manu-
scripts aim to address worst-case scenarios where radars are known to have difficulties in correctly
detecting the targets as mentioned in Section 2.1.4. Such cases happen for instance when two or
more subjects are walking at the same speed and range from the radar, which makes the radar
unable to distinguish between the subjects in the RD domain. Every recording is provided with a
unique ID. The manuscripts are provided in Appendix A.

After a completed recording, the Kinect RGB camera recordings and raw radar sensor data are
stored in a cloud database and are available for download and further preprocessing. The files are
stored in a folder with the ID of the recording along with metadata such as the date and time of
the recording, the duration of the recording, the settings of the sensor, the number of subjects in
the recording, and the manuscript of the recording.

3.2 Machine learning

For our model architecture, it will be optimal to take advantage of the spatio-temporal information
from the recordings, given our sequential RD maps. A common approach to take advantage of
the spatio-temporal information is to use CNN for feature extraction, followed by a RNN layer,
typically GRU or LSTM, for classification on the sequences. Further, we explore the ResNet and
the ResNet+RNN architecture.

3.2.1 Baseline CNN

We will employ a CNN model for the task of multi-class classification in our people counting
problem using RD maps. The CNN architecture is well-suited for extracting hierarchical repres-
entations and capturing spatial dependencies within image-like data, making it an ideal choice for
analyzing RD maps. Additionally, due to our three-channel RD maps, we can use the basic 2D
CNN architecture for feature extraction, as opposed to the more complex 3D CNN architecture.

The CNN model consists of several key components, including convolutional layers, activation
functions, pooling layers, and fully connected layers. These components collectively enable the
model to learn discriminative features from the RD maps and make accurate predictions.

The convolutional layers play a crucial role in capturing local patterns and features from the input
RD maps. By applying a set of learnable filters to small local regions of the maps, the convolutional
layers extract relevant features that are important for classification. The depth and width of the
convolutional layers can be adjusted based on the complexity and variability of the RD maps.

Following the convolutional layers, activation functions such as ReLU are applied element-wise to
introduce non-linearity into the model. This non-linearity allows the model to capture complex
relationships between features and enhance its capacity to learn intricate patterns from the RD
maps.

Pooling layers, typically in the form of max pooling or average pooling, are used to downsample
the feature maps and reduce the spatial dimensions. These layers help to extract the most salient
features while reducing computational complexity and preventing overfitting.

3.2.2 ResNet

ResNet is a popular architecture that has shown great performance in various computer vision
tasks, including image classification. By employing ResNet, we can leverage its inherent ability to
effectively learn deep representations, enabling the extraction of meaningful features from the RD

18

maps. The depth of the ResNet architecture allows it to capture intricate patterns and nuances in
the data, which is essential for accurately classifying the RD maps. Moreover, ResNet addresses
the challenge of vanishing gradients through the use of residual connections, enabling the smooth
propagation of gradients during training and enabling the successful training of deep networks.
By using ResNet, we aim to exploit its advantages in terms of feature learning, model depth,
and training stability, with the expectation that it will enhance the accuracy and robustness of
our multiclass classification task. Although, it is worth noting that the increased depth of the
ResNet architecture also increases the computational complexity and training time, which could
be a potential drawback. Furthermore, the increased depth of the model could also increase the
risk of overfitting, which would require us to utilize regularization techniques and ensure there is
enough training data.

3.2.3 CNN+RNN

The combination of a CNN and a RNN offers unique advantages for capturing the spatiotemporal
information in the radar recordings. Each RD frame in the recording could be seen as a time step
in a video where each frame is an RGB image with three channels, representing the different beams
of the radar. By using a CNN for feature extraction, we can extract relevant features from each RD
frame and capture the spatial dependencies between the different beams. The extracted features
can then be fed into a RNN layer, which can recognize the sequential patterns between the RD
frames. This combination of CNN and RNN enables the model to learn complex spatiotemporal
representations from the RD maps. Whether the RNN layer should be a GRU or LSTM layer is
something we will explore in our experiments. The CNN+RNN model has demonstrated success
in various sequential data tasks, making it a promising choice for analyzing time-series radar data.

3.2.4 Model training and evaluation

For training the model, the data is split into training, validation, and test set. A data generator
is used to load the data in batches, which is then fed to the model. The training is performed
using the Adam optimizer with a learning rate of 0.001, and a suitable batch size. The models are
initially trained for 100 epochs but may train with less epochs as we will add an early stopping
with a patience of 15 epochs. The early stopping ensures that the model will stop training if the
performance stagnates. The model weights from the best performance with regards to the lowest
validation loss and accuracy is saved. To prevent overfitting of the models, dropout layers are
used during training. The models are trained on an NVIDIA A100 Tensor Core GPU provided by
Google Colab.

For evaluating the performance of the models, the test set is used. At this stage, we evaluate the
performance of the models on the test set using the classification report from sklearn. The most
representative metric will be the F1-score as it is a weighted average of the precision and recall,
which is suitable for our multiclass classification problem.

19

4 Dataset and Preprocessing

In this section we detail the preprocessing done to the dataset before training the models. NOV-
ELDA has provided us with 361 raw radar recordings ranging from zero to seven participants
following a manuscript in a 4× 4m grid. The information about the height, weight and gender of
the participants in the recordings are provided in Table 1.

Table 1: Participant information.

Participant Height (cm) Weight (kg) Gender
1 200 105 Male
2 183 86 Male
3 175 74 Male
4 175 70 Female
5 168 59 Female
6 168 65 Female
7 173 55 Female

The number of recordings can further be split into 9 different cases, where each case is a combination
of the number of participants and the manuscript. The number of recordings for each case is shown
in Table 2.

Table 2: People counting dataset.

Manuscript Number of samples
1 187
2 39
3 27
4 62
5 15
6 7
7 8
8 4
9 12

Total samples 361

4.1 Preprocessing

Using NOVELDA’s in-house signal processing pipelines, digital beamforming creates three beams
from the raw radar sensor data, where one beam is directed in 0◦, and two beams in ±20◦ azimuth
respectively.

Due to the significantly high frame rate of the radar sensor, the frame rate was reduced from 250
frames per second (FPS) to 4 FPS by decimating the frame rate. The frame rate reduction is done
because of the redundant information presented with regards to the application of PC, where a
very high frame rate is not necessarily important.

The range resolution will also be reduced under the same principle, where the original range bin size
is decimated by a factor of 4, corresponding to 0.0714m

4 = 0.2856m. This reduces the computational
complexity of the model. Further, as the area of interest is a 4 × 4m square, the range bins are
cropped to the number of bins corresponding to 4 meters, 4m

0.2856m = 14 range bins, and then
rounded up to the closest factor of 16.

Pulse-Doppler signal processing with a FFT size of 128 on each beam for each range bin creates
three RD maps, where each map is a 2D matrix of size 16× 128. The value in each cell represents
the reflected absolute power of the target in the corresponding range and Doppler bin.

20

To address the range loss from the reflected signal from a target, we multiply the received signal
power by the inverse of the range loss factor given by Equation 1. We also convert the RD maps
from power values to a logarithmic scale as it is beneficial when the dynamic range of the power
values are large. Such a conversion compresses the values, making the values easier to interpret.
The RD map may contain zero-values, which is why we also add a pseudocount to the signal values
as shown in Equation 22. Further we propose to standardize or normalize the RD maps before
training.

Standardizing or normalizing the RD maps have been known to reduce the variance in the data and
to make the model converge faster. We will be trying both the techniques on a frame-by-frame basis
and on a global basis to see which method works better. The standardization is done by subtracting
the mean and dividing by the standard deviation of the RD maps, while the normalization is done
by subtracting the minimum value of the RD maps, and then divide the difference of the maximum
and minimum value.

dB = 10log10(Power) (22)

Frame models

For the baseline CNN and ResNet, which works on batches of frames, the three RD maps for each
frame are stacked in the last dimension to form a 3D matrix of shape (16, 128, 3). The frames from
all the recordings are then stored as a single tfrecord file, which is a binary file format for storing
sequences of records. The tfrecord file is randomly shuffled and split into a train, validation and
test set with a ratio of 80%, 10% and 10% respectively with a fixed random seed for training and
testing. The total size of the tfrecord file is 6.5 GB and contains 284,043 frames split as shown in
Table 3.

Table 3: Initial dataset for frame models.

People count Number of frames
– Train Validation Test Total
0 99,585 12,449 12,449 124,483
1 94,050 11,756 11,756 117,562
2 22,524 2,816 2,816 28,156
3 11,074 1,384 1,384 13,842

There is a high chance that the frame models would suffer from the class imbalance in the dataset
due to the much higher number frames with values of zero and one. To overcome this problem, we
propose to balance the training data by undersampling the majority classes such that the number
of frames for all classes are equal. The undersampling is done by randomly selecting the same
number of frames for each class. The final dataset for training, validation and testing is shown in
Table 4.

Table 4: Final dataset for frame models.

People count Number of frames
– Train Validation Test Total
0 11,074 12,449 12,449 35,972
1 11,074 11,756 11,756 34,582
2 11,074 2,816 2,816 16,706
3 11,074 1,384 1,384 13,842

21

Sequence models

For the sequence model, all three beams for each recording are stored as a separate NumPy array
of shape (N , 16, 128), where N is the number of frames in the recording. The recordings with
more than three participants are discarded due the lack of data for training the models, giving us
337 recordings for the final dataset.

Further, we extract the number of frames for each recording for trimming or padding due to the
variance in recording lengths. Because all recordings start with a 30 second silence period, and
end with a 15 second silence period, and knowing that we have approximately four FPS, we have
around 180 frames with silence. Thus, trimming and padding is done by removing or adding the
first or last N frames from the recordings because valuable information will not be lost. The
trimming and padding of the recordings has been done to make the recordings match in length and
form batches for training. The fixed lengths have been chosen to be multiples of 50. The decision
of whether to trim or pad the recordings is based on the option that results in the least amount
of frames being removed or added to the recording. A scatter plot before and after the trimming
and padding is shown in Figure 13a and Figure 13b respectively.

(a) Scatter plot of the recording length for each
recording.

(b) Scatter plot of the recording length for each
recording after trimming or padding.

The processed NumPy arrays are stored in a folder for the processed recordings, where the folder
name is the ID of the recording. From Table 2, we can observe that our dataset is suffering from
class imbalance even after removing the recordings with more than three participants. Manuscript
one and four are drastically more frequent in the dataset than the other manuscripts. To over-
come this problem, we decided to balance the dataset by randomly selecting the same number of
recordings for each case, which in this case means that the recordings from manuscript one and
two are reduced to match the number of recordings from manuscript three. The same is done
for manuscripts four, five and six. The final dataset is split in a stratified manner into training,
validation and test set with a ratio of 80%, 10% and 10% respectively. The dataset is split such
that the recordings from the same manuscript are not split between the sets. The final dataset is
summarized in Table 5.

Table 5: Processed dataset.

Manuscript Number of recordings
– Train Validation Test
1 21 3 3
2 21 3 3
3 21 3 3
4 5 1 1
5 5 1 1
6 5 1 1

Total samples 78 12 12

22

4.2 Data augmentation

The efforts in creating the dataset is still ongoing and quite recent, thus the size of the dataset
is yet not ideal for model training but still holds great value. Given that we are working with
RD maps with three channels where each channel represents a ”left”, ”center” and ”right” angled
beam in azimuth, we propose to swap the ”left” and ”right” channel. Doing so would give us a
new data example with the same label as the original frame, thus augmenting our training data
by a factor of two. This technique is illustrated in Figure 14.

Figure 14: Illustration of swapping channel 1 and channel 3.

4.3 Data labeling

The data labeling was performed by creating a GUI and visualization tool for labeling the radar
data. The GUI was created using the PyQt5 framework, which is a Python binding of the cross-
platform GUI toolkit Qt. The GUI is used to visualize the radar data as three RD maps, one frame
at the time. Using the GUI, the user can load a recording, navigate through the RD frames, and
label the radar data by choosing the number of subjects in the frames. The GUI will also show
the relative timestamp of each frame in the recording, which is used to synchronize the radar data
with the Kinect RGB camera video recordings for validation and ground truth. Figure 15 shows
the GUI and visualization tool for labeling the radar data manually.

Figure 15: GUI and visualization tool for manually labeling the radar data.

At a later stage, an effort in making an automatic labeling process using the Kinect RGB cameras

23

for ground truth was completed by NOVELDA’s software team. The depth map and position of
skeletons from the two cameras were used to extract the position of the subjects in the scene,
shown in Figure 16, which was then used to label the radar data. Two cameras were necessary to
capture the full scene. Each recording thus had a corresponding label file with the same name as
the recording ID. The label file is a JSON file containing a dictionary with metadata, and a list
of segments and its value. The value is an integer describing the number of subjects in the scene,
while the segments indicates the duration the value is true in milliseconds.

Figure 16: Depth field from the two Kinect RGB cameras showing the full scene being captured
by the two cameras.

Furthermore, Figure 17 shows the depth field from the two Kinect RGB cameras showing three
participants in the scene. The participants are standing still in the scene, which is the stand still
period of manuscript 6. In conventional PC using SCE algorithms, the peaks in the would be
overlapping making it difficult to resolve the number of subjects in the scene.

Figure 17: Three participants in the stand still period of manuscript 6.

The people counting software provided from the Kinect cameras were imprecise, because the cam-
eras often lost the skeleton track of the subjects for a quick second or tracked the same skeleton
as two different subjects. This resulted in incorrect labeling of the radar data in the form of quick
changes in values and segments of less than a second. We created a script for correcting the label
files. The script filters out the segments whose duration is less than 1 second, and closes the gap
of the segment by setting the end of the previous segment to the start of the next segment. The
script also limits the number of subjects to a maximum of the total number of subjects given by
the manuscript. The script was run on all the label files, and the corrected label files were stored
as NumPy files of shape (N , 1) in the same folder as the corresponding RD maps.

24

5 Results and Discussion

In this section we will show the predictions on the test set, for each of the models, that gave the
best performance on the validation set, we will then compare and discuss their performance and
viability for solving the problem of people estimation.

For each model, many hyperparameters were tuned in terms of kernel size, number of filters and
convolutional layers. Table 6 shows the best performing models on the validation set. The Res-
Net+LSTM model performed the worst in terms of every performance metric. After the Res-
Net+LSTM model, the CNN+GRU model exhibited better performance, followed by the ResNet,
and finally the baseline CNN model, which achieved the highest overall performance among the
four models. It is worth noting that the validation accuracy for the baseline CNN and ResNet
was achieved on an imbalanced validation set as seen in Table 4. The validation accuracy for the
CNN+GRU model was achieved on a validation set with a balanced number of recordings for each
recording, but does not take into account that the frequency of the classes in recordings with two
and three people, also consists of zero and one person. This means that the models might overfit
towards predicting class zero and one during training.

Table 6: Best model performance on the validation set.

Model Accuracy Loss Precision Recall F1-Score
Baseline CNN 0.9258 0.2138 0.9297 0.9216 0.9256

ResNet 0.9192 0.2392 0.9285 0.9101 0.9192
CNN+GRU 0.8870 0.3813 0.9000 0.8270 0.8620

ResNet+LSTM 0.8187 0.5127 0.8190 0.8187 0.8188

After having found the best performing model for each architecture, we used the test set for
model predictions and compared the results. From the test set, we used one recording from each
manuscript to ensure that the model was not overfitting on the validation set. Due to the lacking
performance of the ResNet+LSTM model compared to the CNN+GRU, we did not include the
former in the comparison.

From the model predictions we have summarized the best F1-score for each class in Table 7 and
Table 8 where the former table’s F1-scores are based on the recordings from manuscripts 1, 2, and
3, and the latter table’s F1-scores are based on the recordings from manuscripts 4, 5, and 6. The
decision to split them as such is due to the similarities in recordings for the two batches, giving a
more representative comparison between the models and their performance.

Table 7: Best F1-score for each class based on manuscripts 1, 2, and 3.

Model Best F1-score
– 0 1 2 3

CNN+GRU 1.0 0.99 0.93 0.36
ResNet 1.0 1.0 0.42 0.60

Baseline CNN 1.0 0.99 0.75 0.75

Table 8: Best F1-score for each class based on manuscripts 4, 5, and 6.

Model Best F1-score
– 0 1 2 3

CNN+GRU 1.0 0.94 0.24 0.00
ResNet 1.0 1.0 0.78 0.70

Baseline CNN 1.0 1.0 0.96 0.95

25

5.1 Predictions with CNN+GRU.

For the CNN+GRU models, we experimented with different frame models and temporal model hy-
perparameters. The frame model that worked best was the 2D CNN model with four convolutional
layers where the filter size was (1, 5), (3, 3), (1, 3), and (3, 3) respectively. After every convolution,
a normalization layer followed, and a max pooling layer was added after the last two normalization
layers. The number of filters in the convolutional layers was 32, 64, 128, and 256 respectively. The
activation function used was ReLU. The total number of learnable parameters is 5,129,220. For
the recurrent layer, GRU was chosen as it outperformed the LSTM in terms of generalization and
stability during training.

For the temporal model, the sequence length that was found to give the best training and validation
accuracy was 50. We trained the model using both a sliding window and fixed-length sequences
to evaluate their performances. For the sliding window approach, stride lengths ranging from
10 to 40 were tested. The sliding window approach was found to converge faster and achieve a
higher accuracy than the fixed window approach on the training data, but was outperformed by
the fixed-length sequences method on the validation data. This clearly indicates overfitting on the
training data using the sliding window approach. Although the sliding window approach could
capture temporal dynamics of the data more effectively, and could generate a larger amount of
training data compared to fixed-length sequences, the introduction of redundant data in the sliding
window approach could have caused the model to converge faster and to overfit on the training
data. The fixed-length sequences approach, on the other hand, was found to take longer for the
model to converge, but in return managed to generalize better on the validation data, and was
therefore chosen as the temporal model for the CNN+GRU model. Figure 18 and 19 are plots
of the performance metrics of a CNN+RNN model trained on fixed-length sequences and sliding
window sequences respectively.

(a) Precision, recall and F1-score on the train
set.

(b) Precision, recall and F1-score on the valida-
tion set.

Figure 18: Performance metrics for the CNN+GRU model trained on fixed-length sequences.

26

(a) Precision, recall and F1-score on the train
set.

(b) Precision, recall and F1-score on the valida-
tion set.

Figure 19: Performance metrics for the CNN+GRU model trained on sliding window sequences.

Converting the RD maps from power scale to the dB scale was found to improve the performance
of the models. The reason for this could stem from the wide dynamic range of the power scale,
making it difficult for ML models to effectively learn patterns and discriminate between different
features. By converting the RD maps to the dB scale, the dynamic range is compressed, and
variations in signal power become more discernible, allowing the model to capture more features.
The dB scale also makes the identification of the noise floor easier, which the model in turn can
learn to ignore. Further, the signal power becomes linearly related to the dB values, making them
more responsive to standardization or normalization techniques.

For standardization or normalization, it was found that standardizing the RD maps resulted in
better model performance. This could be due to the fact that the transformation of the data to
have a mean of 0 and a standard deviation of 1 preserves the distribution characteristics of the RD
maps, ensuring that the information contained in the relative differences between the pixel values
is maintained. Normalization, on the other hand, transforms the data to a range between 0 and 1,
which could result in the loss of information contained in the relative differences between the pixel
values.

Figure 20 shows the results of training and validation F1-score and loss for the CNN+GRU model.
The model was trained for 100 epochs with an early stopping to prevent overfitting, and a batch
size of 64. From the plots, the early training epochs had significant spikes and drops in validation
loss. This could be due to large weight updates given our learning rate. It seems that the model
was training well, but a sudden drop in the validation loss occurred during training at epoch 26.
The sharp drop in validation loss followed by a slower decrease and failure of the validation loss to
reach its lowest point again could be the result of our learning rate scheduling. Due to the learning
rate decay, it is possible that the learning rate decay caused slower convergence, preventing the
model from reaching its previous low validation loss before the early stopping criterion was met.

27

(a) Training and validation F1-score. (b) Training and validation loss.

Figure 20: Performance metrics for the CNN+GRU model.

The results from predicting on the test set for one, two, and three targets have been plotted
alongside the ground truth. The blue line is the ground truth, the red circles indicate wrong
predictions, while the green circles indicate correct predictions. The results for the CNN+GRU
model can be seen in Figures 21, 22, and 23.

(a) Predictions on manuscript 1 (b) Predictions on manuscript 4

Figure 21: CNN+GRU predictions on the test set for one target.

The model seems to predict correctly for one person but occasionally classifies incorrectly around
when the person is either completely still or in movement. The classification of no target could be
due to the model not being able to distinguish between the target and the noise floor when the
target is standing completely still with movements only from breathing. The incorrect predictions
of two and three targets happened close to the end of the recording, where the target is walking
out of the scene, which in the RD maps could be hard to distinguish from other cases of similar
movement patterns.

28

(a) Predictions on manuscript 2 (b) Predictions on manuscript 5

Figure 22: CNN+GRU predictions on the test set for two targets.

The model shows promising performance in accurately predicting the number of people for ma-
nuscript 2 cases in Figure 22a. However, for the case of manuscript 5 in Figure 22b the model
performed poorly, this could stem from the fact that the model was trained on more cases of
manuscript 2 than manuscript 5. The model could also be overfitting on the manuscript 2 cases,
which could explain the poor performance for the other. Manuscript 5 is also a challenging scenario
for the model, as the targets are difficult to distinguish in the RD maps due to overlapping radar
returns in both range and Doppler dimension. This ambiguity makes it a harder pattern to learn
for the model, especially considering the limited amount of training samples.

(a) Predictions on manuscript 3 (b) Predictions on manuscript 6

Figure 23: CNN+GRU predictions on the test set for three targets.

Figure 23a and 22b show the predictions for three targets in manuscripts 3 and 6. The model
performs poorly for manuscript 3, showing that the model have problems distinguishing multiple
targets in the RD maps. The model performs even worse for manuscript 6, where it did not manage
to predict any of the targets correctly. The model is likely overfitting on the training data, as the
inherent nature of the recording process results in more samples of class 0 and 1 than class 2 and
3.

5.2 Predictions with ResNet

The ResNet starts with an initial convolutional layer that applies a 5x5 kernel to the input maps.
Batch normalization and activation functions (ReLU) are then applied to enhance the model’s
ability to learn important features. Max pooling is utilized to reduce the spatial dimensions while
preserving essential information.

29

The core of the model consists of residual blocks, which are responsible for learning deep repres-
entations. These blocks enable the model to capture intricate patterns and features by utilizing
shortcut connections and skip connections. The residual blocks are stacked in a hierarchical man-
ner, with increasing filter sizes (64, 128, 256, 512) to extract increasingly complex features.

Global average pooling is applied to obtain a condensed representation of the features learned by
the previous layers. This reduces the spatial dimensions while preserving the important information
required for classification. A fully connected dense layer with 256 units and ReLU activation is
added to further capture high-level representations.

To mitigate overfitting, dropout regularization is applied, randomly disabling a fraction of neurons
during training. This promotes generalization and prevents the model from relying too heavily
on specific features. Finally, a dense layer with softmax activation is used as the output layer to
produce class probabilities.

The model is trained using the Adam optimizer with a learning rate of 0.001. The loss function
employed is categorical cross-entropy, suitable for multiclass classification tasks. Additionally,
precision, recall, and accuracy metrics are utilized to evaluate the model’s performance. The total
number of learnable parameters in the model is 12,494,532.

(a) Training and validation F1-score. (b) Training and validation loss.

Figure 24: Performance metrics for the ResNet model.

From Figure 24a and 24b, we can see that the model starts to overfit after only five epochs. This is
likely due to the limited amount of training data and the deep architecture of the model, indicating
that a simpler model architecture would be more suitable, or that more training data is needed.

(a) Predictions on manuscript 1 (b) Predictions on manuscript 4

Figure 25: ResNet predictions on the test set for one target.

30

As expected, the model performs well on the test set for one target, as seen in Figure 25a and 25b.

(a) Predictions on manuscript 2 (b) Predictions on manuscript 5

Figure 26: ResNet predictions on the test set for two targets.

(a) Predictions on manuscript 3 (b) Predictions on manuscript 6

Figure 27: ResNet predictions on the test set for three targets.

From the plots of the predictions Figures 26 and 27, we can observe that the model is having issues
when more than one person is present in the scene. The model predicts better for manuscripts
5 and 6 than for manuscripts 2 and 3, but is still not consistent in its predictions. The complex
architecture might have caused the model to overfit on the training data.

5.3 Predictions with CNN

The model starts with an input layer that takes in data of shape (16, 128, 3). It then applies several
convolutional layers with different filter sizes and kernel sizes, each followed by a ReLU activation
function. The first convolutional layer has 16 filters with a kernel size of (1, 1), the second has 32
filters with a kernel size of (1, 3), the third has 64 filters with a kernel size of (3, 3), the fourth has
128 filters with a kernel size of (3, 3), and the fifth has 256 filters with a kernel size of (3, 3).

Max pooling layers are applied after some of the convolutional layers to reduce the spatial dimen-
sions of the feature maps. The model also includes dropout layers to help prevent overfitting. After
the final convolutional layer, a global average pooling layer is applied to further reduce the spatial
dimensions.

Next, the model includes a dense layer with 128 units and a ReLU activation function. A dropout
layer is added with a dropout rate of 0.5 to further regularize the model. The output layer

31

consists of a dense layer with num classes units and a softmax activation function for multiclass
classification.

The model is compiled with the Adam optimizer using a learning rate of 0.001. The loss function
is categorical cross-entropy, and the metrics used for evaluation are precision, recall, and accuracy.
The total number of learnable parameters is 422,564.

For the preprocessing of the RD maps, the same methods as described in Section 3.2.3 were used.
It was found that the range compensation method did not improve the performance of the model,
and was therefore not used. The model was trained for 100 epochs with a batch size of 64, and the
model with the lowest validation loss and highest validation accuracy was saved. The model was
trained on an NVIDIA A100 Tensor Core GPU provided by Google Colab with an early stopping
of 15 epochs to stop the model from overfitting. The results from the training can be seen in
Figure 28.

(a) Training and validation F1-score. (b) Training and validation loss.

Figure 28: Performance metrics for the baseline CNN model.

Below, we have plotted the results from predicting on the test set for one, two, and three targets
alongside the ground truth.

(a) Predictions on manuscript 1. (b) Predictions on manuscript 4.

Figure 29: Baseline CNN predictions on the test set for one target.

Just like the previous two models, the classification task for one person is satisfactory and proves
that the model manages to reject clutter from multipath, objects, and noise.

32

(a) Predictions on manuscript 2. (b) Predictions on manuscript 5.

Figure 30: Baseline CNN predictions on the test set for two targets.

Moving on to two targets, we can observe that the model is having issues with predicting con-
sistently for manuscript 2, but predicts incredibly well for manuscript 5. Manuscript 5 should
theoretically be the more challenging case as the two targets walk synchronously at the same angle
towards the radar. The RD map from such a scenario would only show as one target, but the
model manages to distinguish between the two targets and predict correctly.

(a) Predictions on manuscript 3. (b) Predictions on manuscript 6.

Figure 31: Baseline CNN predictions on the test set for three targets.

Finally, for three targets, the model suffers from the same issues as for two targets, where it has
difficulties predicting correctly for manuscript 3, but predicts correctly for manuscript 6.

One possible explanation for the superior performance of the simple CNN model could be its ability
to effectively capture and extract relevant features from the RD maps. The simple CNN model,
with its series of convolutional layers followed by pooling and dense layers, demonstrated strong
feature extraction capabilities. The convolutional layers with small filter sizes were able to capture
local patterns and structures within the RD maps. The subsequent pooling layers helped to reduce
the spatial dimensions and retain the most salient features. These extracted features were then
processed by the dense layers to make accurate predictions. The simplicity of the CNN architecture
might have enabled better generalization and avoidance of overfitting on the given dataset.

On the other hand, the ResNet and CNN+GRU models, despite their more complex architectures
and the inclusion of recurrent layers, did not exhibit the same level of performance as the simple
CNN model. The ResNet model, known for its deep residual connections and skip connections,
was expected to capture more complex patterns and improve the flow of gradients during training.
However, the deeper architecture might have introduced additional complexity and increased the
risk of overfitting, leading to poorer generalization performance. Furthermore, a pretrained ResNet

33

would have been ideal to use as they already are trained for object detection, but due to the shape
of the RD maps, it was not possible to implement. The CNN+GRU model, which combines
CNN and GRU layers, aimed to leverage both spatial and temporal information in the RD maps.
However, the model’s ability to effectively capture the temporal dependencies might have been
compromised by the limited temporal context provided by the relatively small number of frames
used.

It is also worth considering the nature of the dataset and the characteristics of the RD maps.
The simple CNN model, with its straightforward architecture, might have been better suited for
this particular dataset. The RD maps, representing the radar reflections from people moving
within a scene, are inherently spatial in nature. Therefore, a model that excels at spatial feature
extraction, such as the simple CNN model, is likely to perform well. The CNN+GRU models, while
incorporating recurrent layers to capture temporal dependencies, might not have fully exploited
the spatial characteristics of the data, while the ResNet model, with its deep architecture, might
have been too complex for the dataset.

One notable limitation of our study is the scarcity of training data available for the multiclass
classification task of RD maps for people counting. The success of deep learning models, such as
CNNs and recurrent models, heavily relies on a large and diverse dataset to learn representative
features and patterns. However, due to the fact that the data collection started during the project
study, the size of our dataset was limited.

The limited training data can have a significant impact on the model’s performance and general-
ization ability. Insufficient data can lead to overfitting, where the model memorizes the training
examples without truly understanding the underlying patterns. As a result, the model may struggle
to generalize well to unseen data, leading to suboptimal performance on the validation or test sets.

In our case, the scarcity of training data might have affected the performance of the more complex
models, such as ResNet and CNN+GRU. These models typically have a higher number of learnable
parameters and require a larger amount of data to effectively optimize and generalize. With a
limited dataset, these models might not have had enough diverse examples to capture the complex
variations and relationships present in the RD maps.

To mitigate the impact of the limited training data, we employed techniques such as data augmenta-
tion, which involved generating additional synthetic examples by applying random transformations
and perturbations to the existing data. This helped to artificially increase the size and diversity of
the training set and encouraged the model to generalize better. However, the augmentation process
might not fully capture the true variability of the data, and its effectiveness might be limited.

The height placement of a radar system can play a significant role in the characteristics of the
radar return signals, particularly in scenarios involving NLOS conditions. In our study, the radar
was placed at a height of 1.5 meters, which is relatively low compared to the typical height of a
person. This could have affected the characteristics of the radar return signals, and consequently
the performance of the models. Higher radar placements may provide better line-of-sight visibility
and reduced signal blockage, resulting in stronger and more reliable radar returns. On the other
hand, lower radar placements may increase the likelihood of NLOS conditions, leading to weaker
and more distorted signals. Therefore, it would be interesting to explore the impact of radar height
on the performance of the models in future studies.

For the preprocessing, minimal steps were taken to remove noise and clutter from the RD maps
before training. Noise and clutter, arising from sources such as instrumentation imperfections or
environmental factors, can introduce unwanted artifacts and distortions in the RD maps. However,
in some cases, there may be benefits to retaining noise and clutter in the training process. Noise,
despite being typically considered as unwanted interference, can contain complex patterns that
may carry valuable information. By allowing the model to learn and adapt to the noise patterns,
it may be able to better distinguish between noise and the target signals. Clutter, which refers to
unwanted reflections from objects in the scene, can also contain useful information.

The results our model have achieved are promising and compares well against the state-of-the-art
methods, where only the handcrafted feature and novel ML architecture proposed by Choi et al.

34

[17] outperformed our model.

NOVELDA Ultra-low Power Presence Sensor opens up the possibility to implement radar systems
that provides both range and azimuth angle resolution with an even lower power consumption than
the current radar systems utilizing a single antenna. The spatial information provided by the dual-
antenna configuration allows for better localization and differentiation of multiple targets within
the detection zone. By utilizing beamforming to steer the radar beam, the radar can discern, to an
extent, the direction from which the targets approach. This additional spatial information not only
enhances the accuracy of target localization but also provides crucial insights into target dynamics,
leading to more precise and reliable people counting results. Moreover, the dual-antenna’s ability
to resolve multiple targets with distinct azimuth angles contributes to mitigating the issue of target
occlusions and overlapping trajectories, which is often encountered in crowded environments.

35

6 Conclusion

This study explored the use of range-Doppler (RD) maps from the NOVELDA Ultra-low Power
Presencec Sensor as features for machine learning (ML) classification of how many people there
are in a 4 × 4m grid. We have created a People Counting (PC) dataset containing RD maps, of
three beams pointing in 0◦, 20◦, and -20◦ azimuth angle, of one to three targets in a 4×4m grid for
people counting. Two versions of the dataset were created: one for training on individual frames
of RD maps, and one for training on sequential data. We created a GUI for manually labeling the
recordings, which were based on six different manuscripts describing the activity performed. The
manuscript can be found in Appendix A. The dataset is not publicly available. Further, a script
was developed during the study to automatically label the recordings, which saved significant time
and resources. The RD maps were extracted from the radar sensor, where each cell in the RD map
represents the absolute target return signal power. The sensor was placed 1.50 meters above the
ground towards the grid making classifications more difficult as the radar is more prone to NLOS
targets.

The high dimensions of the RD maps, and the high sample frequency from the radar with regards
to sequential models, presented a problem due to memory issues during training. We decimated
the range bins by a factor of four, removed the excess range bins that were further away than four
meters, and applied a 128 point FFT such that each RD map was reduced to a size of 16 × 128
matrix. Further, for the sequential dataset we downsampled the recordings to four frames per
second (FPS). The high dynamic range of the power values in the RD maps were compressed using
a dB conversion, and the values were standardized using the mean and standard deviation of the
training set. It was found that the dB conversion and standardization stabilized the training and
improved the performance of the models. Range compensation was applied, but it was found that
it neither improved nor significantly reduced the performance of the models. The two final datasets
are presented in Table 5 and Table 4.

We investigated the performance of three different models, namely a CNN model, ResNet, and
CNN+GRU, for the task of multiclass classification of three-channel RD maps, each channel rep-
resenting angles in 0◦, 20◦, and -20◦ azimuth, for people counting. The final shape for each time
step was (16, 128, 3). Surprisingly, we observed that the simple CNN model outperformed both
the ResNet and CNN+GRU models in terms of overall performance as presented in Table 6. The
simple architecture of the CNN might have enabled better generalization and avoidance of over-
fitting on the dataset, while the other two models were much more complex in architecture. The
deep residual connections and inclusion of recurrent layers for the ResNet and CNN+GRU model
might have introduced additional complexity, leading to an increased risk of overfitting on a sparse
training set and a poorer generalization to unseen data.

Despite the constraint of limited training data in our study, we believe our findings provide valuable
insights into the performance of different models for the multi-class classification of RD maps for
people counting in difficult scenarios. The results of our experiments suggest that the three RD
maps from the radar sensor can be used as features for the people counting task. The results also
suggest that even with a challenging setup where the radar mount is placed at a height of 1.50
meters, making the radar more prone to NLOS targets, the radar data is still useful. The CNN
performed very well for the challenging classification cases of manuscripts 5 and 6. It would be
almost impossible to resolve such targets for a single-antenna radar because the targets would be
presented as a single peak in the RD map. Future studies with larger and more diverse datasets
would be necessary to validate and extend our findings, ultimately leading to more reliable and
robust models in real-world scenarios.

6.1 Future Work

In future studies, it is essential to address the issue of limited training data by exploring strategies
to collect or generate more labeled examples. This could involve acquiring additional RD maps
through extended data collection efforts or leveraging techniques such as semi-supervised learn-
ing or transfer learning to make the most of available data. Increasing the size and diversity

36

of the dataset would enable the models to learn more robust representations and improve their
performance and generalization capabilities.

It is important to note that the need for more training data is a common challenge in many real-
world machine learning applications, particularly in fields where data collection is time-consuming,
costly, or subject to limitations. Addressing this limitation requires careful consideration of data
collection strategies, and exploring alternative approaches to make the most of the available data.

We focused on utilizing RD maps as the primary input for training our models for the task of
multi-class classification of people counting. However, it is worth considering the potential benefits
and challenges of using other types of input data, such as raw signals from the radar. The use
of raw signals would enable the models to learn more complex representations and potentially
improve their performance. However, it would also require more complex preprocessing and feature
extraction steps, which could be challenging to implement and optimize. Promising results have
already been achieved using raw signals from Novelda’s X4 sensor with a single antenna [17], and
it would be interesting to explore the use of raw signals from their dual-antenna IR-UWB radar in
future studies.

37

References

[1] S. Parameswari and C. Chitra, ‘Compact textile uwb antenna with hexagonal for biomedical
communication’, Journal of Ambient Intelligence and Humanized Computing, pp. 1–8, 2021.

[2] J. Bourqui and E. C. Fear, ‘Shielded uwb sensor for biomedical applications’, IEEE Antennas
and Wireless Propagation Letters, vol. 11, pp. 1614–1617, 2012.

[3] R. Liu, C. Yuen, T.-N. Do, D. Jiao, X. Liu and U.-X. Tan, ‘Cooperative relative positioning of
mobile users by fusing imu inertial and uwb ranging information’, in 2017 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 5623–5629.

[4] G. Tiberi and M. Ghavami, ‘Ultra-wideband (UWB) systems in biomedical sensing’, Sensors,
vol. 22, no. 12, p. 4403, Jun. 2022. doi: 10 . 3390 / s22124403. [Online]. Available: https :
//doi.org/10.3390/s22124403.

[5] M. Husaini, L. M. Kamarudin, A. Zakaria et al., ‘Non-contact breathing monitoring using
sleep breathing detection algorithm (SBDA) based on UWB radar sensors’, Sensors, vol. 22,
no. 14, p. 5249, Jul. 2022. doi: 10.3390/s22145249. [Online]. Available: https://doi.org/10.
3390/s22145249.

[6] R. de Goederen, S. Pu, M. S. Viu et al., ‘Radar-based sleep stage classification in children
undergoing polysomnography: A pilot-study’, Sleep Medicine, vol. 82, pp. 1–8, Jun. 2021. doi:
10.1016/j.sleep.2021.03.022. [Online]. Available: https://doi.org/10.1016/j.sleep.2021.03.022.

[7] J. Choi, D. Yim and S. Cho, ‘People counting based on ir-uwb radar sensor’, IEEE Sensors
Journal, vol. 17, no. 17, pp. 5717–5727, Sep. 2017.

[8] Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System —
doi.org, https://doi.org/10.3390/s150306740, [Accessed 21-Jul-2023].

[9] S. Chang, N. Mitsumoto and J. Burdick, ‘An algorithm for uwb radar-based human detec-
tion’, Jun. 2009, pp. 1–6. doi: 10.1109/RADAR.2009.4976999.

[10] S. Chang, M. Wolf and J. W. Burdick, ‘Human detection and tracking via ultra-wideband
(uwb) radar’, in 2010 IEEE International Conference on Robotics and Automation, 2010,
pp. 452–457. doi: 10.1109/ROBOT.2010.5509451.

[11] NOVELDA – The heart of our innovation is the unique UWB radar System on Chip —
novelda.com, https://novelda.com/technology/datasheets, [Accessed 21-Jul-2023].

[12] A. Santra and S. Hazra, Deep Learning Applications, Volume 2. Artech House Publishers,
2021.

[13] J.-H. Choi, J.-E. Kim and K.-T. Kim, ‘People counting using ir-uwb radar sensor in a wide
area’, IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5806–5821, 2020.

[14] J.-H. Choi, J.-E. Kim, K.-T. Kim et al., ‘Learning-based people counting system using an
ir-uwb radar sensor’, The Journal of Korean Institute of Electromagnetic Engineering and
Science, vol. 30, no. 1, pp. 28–37, 2019.

[15] J.-E. Kim, J.-H. Choi and K.-T. Kim, ‘Robust detection of presence of individuals in an
indoor environment using ir-uwb radar’, IEEE Access, vol. 8, pp. 108 133–108 147, 2020.

[16] J.-H. Choi, J.-E. Kim, N.-H. Jeong, K.-T. Kim and S.-H. Jin, ‘Accurate people counting
based on radar: Deep learning approach’, in 2020 IEEE Radar Conference (RadarConf20),
2020, pp. 1–5. doi: 10.1109/RadarConf2043947.2020.9266496.

[17] J.-H. Choi, J.-E. Kim and K.-T. Kim, ‘Deep learning approach for radar-based people count-
ing’, IEEE Internet of Things Journal, vol. PP, pp. 1–1, Sep. 2021. doi: 10.1109/JIOT.2021.
3113671.

[18] R. Bao and Z. Yang, ‘Cnn-based regional people counting algorithm exploiting multi-scale
range-time maps with an ir-uwb radar’, IEEE Sensors Journal, vol. 21, no. 12, pp. 13 704–
13 713, 2021. doi: 10.1109/JSEN.2021.3071941.

[19] M. Stephan, S. Hazra, A. Santra, R. Weigel and G. Fischer, ‘People counting solution using
an fmcw radar with knowledge distillation from camera data’, in 2021 IEEE Sensors, IEEE,
2021, pp. 1–4.

38

https://doi.org/10.3390/s22124403
https://doi.org/10.3390/s22124403
https://doi.org/10.3390/s22124403
https://doi.org/10.3390/s22145249
https://doi.org/10.3390/s22145249
https://doi.org/10.3390/s22145249
https://doi.org/10.1016/j.sleep.2021.03.022
https://doi.org/10.1016/j.sleep.2021.03.022
https://doi.org/10.3390/s150306740
https://doi.org/10.1109/RADAR.2009.4976999
https://doi.org/10.1109/ROBOT.2010.5509451
https://novelda.com/technology/datasheets
https://doi.org/10.1109/RadarConf2043947.2020.9266496
https://doi.org/10.1109/JIOT.2021.3113671
https://doi.org/10.1109/JIOT.2021.3113671
https://doi.org/10.1109/JSEN.2021.3071941

[20] M. Richards, J. Scheer and W. Holm, Principles of Modern Radar: Basic Principles. SciTech
Publishing, 2010.

[21] D. Winter, ‘Human balance and posture control during standing and walking’, Gait and
Posture, vol. 3, no. 4, pp. 193–214, Dec. 1995.

[22] T. Malone, D. Rus and R. Laubacher, ‘Artificial intelligence and the future of work’, Mas-
sachusetts Institute of Technology, Tech. Rep., 2020.

[23] F. Rosenblatt, ‘The perceptron: A probabilistic model for information storage and organiz-
ation in the brain’, Psychological Review, vol. 65, no. 6, pp. 386–408, Nov. 1958.

[24] Mayranna, Perceptron, From Wikimedia Community, the free media repository, 2013.

[25] FRANCKE PEIXOTO — analyticsvidhya.com, https : / /www . analyticsvidhya . com/blog /
author/franckepeixoto/, [Accessed 21-Jul-2023].

[26] S. Yang, X. Yu and Y. Zhou, ‘Lstm and gru neural network performance comparison study:
Taking yelp review dataset as an example’, Jun. 2020, pp. 98–101. doi: 10.1109/IWECAI50956.
2020.00027.

[27] NOVELDA Introduces New Ultra-Low Power UWB Sensor — novelda.com, https://novelda.
com/news/ultra-low-power-presence-sensor, [Accessed 21-Jul-2023].

[28] Novelda UWB Ultra-low power sensor — novelda.com, https://novelda.com/ultra-low-power-
sensor, [Accessed 21-Jul-2023].

39

https://www.analyticsvidhya.com/blog/author/franckepeixoto/
https://www.analyticsvidhya.com/blog/author/franckepeixoto/
https://doi.org/10.1109/IWECAI50956.2020.00027
https://doi.org/10.1109/IWECAI50956.2020.00027
https://novelda.com/news/ultra-low-power-presence-sensor
https://novelda.com/news/ultra-low-power-presence-sensor
https://novelda.com/ultra-low-power-sensor
https://novelda.com/ultra-low-power-sensor

A Recording manuscripts

Manuscript 1: Chessboard one person. The recording starts with 30 seconds of no target in
the detection zone, silence. After the silence period, one participant walks into the detection zone
from one of the four squares furthest away from the radar. The participant walks in a straight
line towards a random square in the grid, and either stands still, or sits (upright with minimal
movement or relaxed) in a preplaced chair facing towards or away from the sensor. The participant
stays in the square for one minute. After the one minute period, the participant walks out of the
detection zone exiting from the same square as they entered.

Manuscript 2: Chessboard two person. The recording starts with 30 seconds of no target in
the detection zone, silence. After the silence period, the first participant walks into the detection
zone from one of the four squares furthest away from the radar. The participant walks in a straight
line towards a random square in the grid, and either stands still, or sits (upright with minimal
movement or relaxed) in a preplaced chair facing towards or away from the sensor. The first
participant stays in the square for one minute. 10 seconds after the first participant enters, the
second participant walks into the detection zone from one of the four squares furthest away from
the radar. The second participant walks in a straight line towards a random square which is not
occupied in the grid, and either stands still, or sits (upright with minimal movement or relaxed)
in a preplaced chair facing towards or away from the sensor. The second participant stays in the
square for one minute. After the first one minute period, the first participant walks out of the
detection zone exiting from the same square as they entered. After the second one minute period,
the second participant walks out of the detection zone exiting from the same square as they entered.

Manuscript 3: Chessboard three person. The recording starts with 30 seconds of no target
in the detection zone, silence. After the silence period, the first participant walks into the detection
zone from one of the four squares furthest away from the radar. The participant walks in a straight
line towards a random square in the grid, and either stands still, or sits (upright with minimal
movement or relaxed) in a preplaced chair facing towards or away from the sensor. The first
participant stays in the square for one minute. 10 seconds after the first participant enters, the
second participant walks into the detection zone from one of the four squares furthest away from
the radar. The second participant walks in a straight line towards a random square which is not
occupied in the grid, and either stands still, or sits (upright with minimal movement or relaxed)
in a preplaced chair facing towards or away from the sensor. The second participant stays in the
square for one minute. 10 seconds after the second participant enters, the third participant walks
into the detection zone from one of the four squares furthest away from the radar. The third
participant walks in a straight line towards a random square which is not occupied in the grid, and
either stands still, or sits (upright with minimal movement or relaxed) in a preplaced chair facing
towards or away from the sensor. The third participant stays in the square for one minute. After
the first one minute period, the first participant walks out of the detection zone exiting from the
same square as they entered. After the second one minute period, the second participant walks
out of the detection zone exiting from the same square as they entered. After the third one minute
period, the third participant walks out of the detection zone exiting from the same square as they
entered.

Manuscript 4: Walk in angle one person. The recording starts with 30 seconds of no target
in the detection zone, silence. After the silence period, one participant walks in along one of the
tape lines (-30◦, -20◦, -10◦, 0◦, +10◦, +20◦, +30◦ seen from the radar) from five meters to one
meters within 10 seconds. The participant stands still for 15 seconds. After the 15 second period,
the participant walks out of the detection zone along the same tape line as they entered within 10
seconds.

Manuscript 5: Walk in angles two person, synchronized. The recording starts with 30
seconds of no target in the detection zone, silence. After the silence period, two participants walks

40

in simultaneously along one of the tape lines in mirrored angles (±30◦, ±20◦, ±10◦ seen from
the radar) from five meters to one meters within 10 seconds. The participants stands still for 15
seconds. After the 15 second period, the participants walks out of the detection zone along the
same tape line as they entered within 10 seconds.

Manuscript 6: Walk in angles three person, synchronized. The recording starts with
30 seconds of no target in the detection zone, silence. After the silence period, two participants
walks in simultaneously along one of the tape lines in mirrored angles (±30◦, ±20◦, ±10◦ seen
from the radar) from five meters to one meters within 10 seconds. The third participant walks in
simultaneously with the other two participants along the middle tape line (0◦ seen from the radar)
from five meters to one meters within 10 seconds. The participants stands still for 15 seconds.
After the 15 second period, the participants walks out of the detection zone along the same tape
line as they entered within 10 seconds.

41

	List of figures
	List of tables
	List of abbreviations and symbols
	Introduction
	Background and motivation
	Related work

	Theoretical Framework
	Radar systems
	Radar range equation
	Pulse radar principles
	Pulse-Doppler signal processing
	Limitations of radar systems

	Machine Learning
	Learning problems
	Perceptron and multi-layer perceptron
	Activation functions
	Optimizers
	Performance metrics
	Convolutional neural networks
	Residual neural networks (ResNet)
	Recurrent neural networks (RNN)

	Methodology
	Experimental setup
	NOVELDA Ultra-low Power Presence Sensor
	Data collection

	Machine learning
	Baseline CNN
	ResNet
	CNN+RNN
	Model training and evaluation

	Dataset and Preprocessing
	Preprocessing
	Data augmentation
	Data labeling

	Results and Discussion
	Predictions with CNN+GRU.
	Predictions with ResNet
	Predictions with CNN

	Conclusion
	Future Work

	References
	Recording manuscripts

