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Abstract

This thesis presents multiple novel Hyperspectral Anomaly Detectors (HAD), all incorporating
the Robust Graph Autoencoder (RGAE) as a backbone. The proposed HADs focus on enhancing
detection performance through preprocessing techniques and modifications to network architec-
ture. A new neural network architecture, the Interpolated Autoencoder, will also be introduced.
Preprocessing methods, such as PCA, KPCA, and RPCA, are evaluated for their effectiveness on
the input of the Autoencoder utilized by the RGAE.

The thesis introduces a Preprocessing based RGAE and the Multikernel RGAE (MK-RGAE)
that utilizes KPCA on the network inputs. Additionally, various layer setups are explored to check
if an increase in the complexity of the Robust Graph Autoencoder can result in better performance.
Furthermore, the Interpolated Autoencoder is employed for some of the proposed Hyperspectral
Anomaly Detectors, namely the Interpolated Graph Autoencoder (IGAE), the Kernel Interpolated
Graph Autoencoder (K-IGAE), and the Multikernel Interpolated Graph Autoencoder (MK-IGAE).
The two latter mentioned HADs employ KPCA with different configurations.

Evaluation and analysis of the proposed HADs are performed using the ABU datasets. These
datasets comprise diverse hyperspectral scenes, such as airports, beaches, and urban areas. The
comparative analysis of the proposed HADs highlights two standout methods, namely the Multiker-
nel RGAE and the Kernel Interpolated Graph Autoencoder. These HADs significantly improve
upon the baseline RGAE in terms of total average AUC scores. The MK-RGAE achieved a re-
markable total average AUC score of 0.9701, surpassing the RGAE score of 0.9551. Similarly, the
K-IGAE resulted in an impressive AUC score of 0.9632. However, the other proposed Hyperspectral
Anomaly Detectors, including the Preprocessing-based RGAE, RGAE with modified layers, IGAE,
and MK-IGAE, yielded less satisfactory results, failing to surpass the baseline RGAE’s detection
performance. Notably, the RGAE with additional layers demonstrated reduced computational
costs compared to other proposed HADs, making it a feasible option for time cost reduction.

Considering the primary objective of enhancing the detection performance of the RGAE, the
MK-RGAE and K-IGAE successfully achieved the desired results. Consequently, further refinement
and advancement of these approaches should be explored.
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Sammendrag

Denne masteroppgaven presenterer flere hyperspektrale anomali detektorer som alle baserer seg
p̊a en toppmoderne detektor ved navnet Robust Graph Autoencoder (RGAE). Alle foresl̊atte de-
tektorer i denne masteroppgaven vil ha som hovedm̊al å forbedre deteksjonsytelsen i sammenligning
med RGAEen. Nye implementasjoner og endringer vil innebære nye preprosesseringsmetoder som
PCA, KPCA og RPCA. Nye nettverksarkitekturer for det nevrale nettverket som er tatt i bruk
av RGAEen vil ogs̊a bli utforsket.

Masteroppgaven presenterer en preprosesseringsbasert RGAE og en hyperspektral anomali
detektor med to preprosesseringsmetoder kalt Multikernel RGAE. En ny versjon av RGAEen med
nye oppsett for lagene i det nevrale nettverket vil ogs̊a bli lagt frem. Sist, men ikke minst, vil et
nytt nettverk ved navn Interpolated Autoencoder erstatte Autoencoderen som er tatt i bruk av
RGAEen. Detektorene som bruker dette nye nettverket er kalt Interpolated Graph Autoencoder,
Kernel Interpolated Graph Autoencoder og Multikernel Interpolated Graph Autoencoder der de
to sistnevnte benytter seg av ulike metoder for preprosessering.

For å evaluere alle de hyperspektrale anomali detektorene vil ABU datasettet bli benyttet.
Dette best̊ar av flere hyperspektrale bilder av flyplasser, strender og urbane strøk. I sammen-
ligningen av alle detektorene som blir foresl̊att er det to detektorer som skiller seg ut. Multikernel
RGAEen viste seg å forbedre gjennomsnitts AUC verdien fra 0.9551 til 0.9701. En forbedring ble
ogs̊a lagt merke til for Kernel Interpolated Graph Autoencoderen, som oppn̊adde en gjennomsnit-
tlig AUC verdi p̊a 0.9632. De andre foresl̊atte detektorene viste seg å ikke forbedre deteksjonen av
anomalier like mye.

Med tanke p̊a masteroppgavens m̊al om å forbedre deteksjonsytelsen til RGAEen ved å forsl̊a
en rekke nye hyperspektrale anomali detektorer, kan det konkluderes at Multikernel RGAEen og
Kernel Interpolated Graph Autoencoderen n̊adde dette m̊alet. Det kan derfor være interessant å
videreutvikle disse to detektorene.
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Chapter 1
Introduction

This chapter presents the background needed to understand the thesis’s need, purpose and motiv-
ation. The background will be explained in more detail in Chapter 2. An introduction to what
the thesis will focus on and the contributions made will also be presented. The final section of the
introduction will provide an overview of the contents and structure of the entire thesis.

1.1 Background Information

Hyperspectral imaging is the process of capturing measurements of the emission/reflection of ob-
jects across hundreds of wavelengths within the electromagnetic spectrum. These measurements
can then be combined to construct a Hyperspectral Image (HSI) [1]. Since different materials have
different reflective properties, hyperspectral imaging can be used in several remote sensing applic-
ations. Satellites utilizing this technology can be used for environmental monitoring and target
detection [1].

Objects within an HSI that have spectral radiation that deviates from their surroundings
are considered anomalous [2]. Hyperspectral anomaly detection is the process of identifying and
locating these abnormal objects. As anomalies can often indicate the presence of certain materials
or objects, hyperspectral anomaly detection is a useful tool for various target and surveillance
applications [3]. A more detailed explanation of hyperspectral imagery and anomaly detection is
presented in Chapter 2.

1.2 Motivation

This thesis is dedicated to the HYPerspectral Smallsat for OCEAN Observation mission, commonly
called HYSPO, established under by the Norwegian University of Science and Technology. The
objective of the HYPSO satellite mission is to conduct oceanic monitoring, such as detecting
harmful algae blooms, phytoplankton and river plumes along the coast of Norway. A hyperspectral
imaging system is installed on the HYPSO satellite, making it possible to monitor the ocean. In
order to fulfil the objective, there is a need for an anomaly detection algorithm for the autonomous
detection of the mentioned occurrences [4].

In recent years, there has been a substantial surge of interest in applying neural networks
for hyperspectral anomaly detection. The utilization of Autoencoders (AE), Convolutional Neural
Networks (CNN) and Generative Adversarial Networks (GAN) are examples of network architec-
tures utilized for such tasks [2, 5]. The recently proposed Robust Graph Autoencoder (RGAE) is
a state-of-the-art Hyperspectral Anomaly Detector (HAD) that utilizes an Autoencoder, achieving
impressive detection performances across a wide variety of datasets. A critical factor that makes
Autoencoders excellent in hyperspectral anomaly detection is that it is an unsupervised method.
What separates the RGAE from other HADs utilizing Autoencoders is the addition of a graph
regularization term, giving it the possibility to obtain spatial information for a given Hyperspec-
tral Image [6]. Considering that the Robust Graph Autoencoder (RGAE) is a recently proposed
HAD, it holds significant promise for further exploration and development in terms of its detection
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performance.

1.3 Project Objective and Description

This thesis aims to propose novel methodologies for hyperspectral anomaly detection by enhancing
the existing Robust Graph Autoencoder method to realize the HYPSO mission. Furthermore, it is
essential to note that the methodologies investigated and proposed in this thesis have the potential
to address additional use cases within hyperspectral anomaly detection.

Multiple novel Hyperspectral Anomaly Detectors, all of which incorporate the RGAE as a
foundational component, will therefore be proposed. These new proposed Hyperspectral Anomaly
Detectors focus on adding preprocessing or modifying the network architecture of the state-of-the-
art detector with the ultimate goal of increasing the detection performance. The first proposed
method is the RGAE with the introduction of preprocessing for the neural network input. The pre-
processing methods tested are the Principal Component Analysis (PCA), the Kernel-PCA (KPCA)
and the Robust-PCA (RPCA) [7].

Preprocessing will also be utilized by the Multikernel RGAE. This is a HAD that utilizes two
conventional RGAEs in parallel with the addition of KPCA on the network inputs. The output
of each RGAE will then be combined using decision fusion. New layer setups will also be tested,
adding more complexity to the Robust Graph Autoencoder.

The last HADs that are proposed include the use of a new neural network architecture, being
the Interpolated Autoencoder. This neural network has not previously been used for hyperspectral
anomaly detection, but has resulted in better generalized Autoencoders [8]. The proposed HADs
that use this neural network are the Interpolated Graph Autoencoder, Kernel Interpolated Graph
Autoencoder and the Multikernel Interpolated Graph Autoencoder. The two latter mentioned
detectors utilize KPCA for the network inputs.

To measure and analyze the detection performance of new contributions and proposed enhance-
ments, the Airport-Beach-Urban (ABU) datasets will be utilized [9]. This is several hyperspectral
datasets from different scenery, being airports, beaches and urban areas. The dataset analysis that
is presented in this thesis is conducted in collaboration with Katinka Müller, Master’s student at
the Norwegian University of Science and Technology. She is also working with the same datasets
in her Master’s thesis, which is also about hyperspectral anomaly detection utilizing deep neural
networks.

Regarding limitations, this thesis will only focus on enhancing the Robust Graph Autoencoder
when it comes to preexisting Hyperspectral Anomaly Detectors. Optimization will not be a big
focus, as the goal of the thesis is to explore what methods that can result in higher detection
performances. If any implementations achieve desired performance but still have to be optimized,
the optimization problem will be addressed as a topic for future investigation.

Last but not least, it must be stated that some of the literature review performed for this
master thesis was done during the fall of 2022 as a semester project by the same author and
supervisors as this thesis [10]. The primary objective of the aforementioned semester project was
to prepare students with the necessary skills and knowledge in preparation for their Master’s thesis.

1.4 Structure of Thesis

The thesis comprises several chapters exploring various aspects of the research topic. This list
provides an overview of the thesis structure and the chapter’s contents.

• Chapter 1: This is the Introduction chapter, and it will provide information about the thesis
motivation, objective, description, limitations and structure.

• Chapter 2: This chapter focuses on the background theory and the related work to the
thesis in terms of satellites, technology and methods for hyperspectral anomaly detection.
This includes a description of hyperspectral imaging, a detailed description of hyperspectral
anomaly detection/detectors, and some preprocessing techniques. This chapter will also
describe the Robust Graph Autoencoder in detail.

• Chapter 3: In this chapter, a presentation of the proposed HADs/enhancements to the RGAE
are presented. How these changes or additions were implemented is explained as well. This
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chapter also provides a detailed presentation of the Interpolated Autoencoder.

• Chapter 4: This chapter presents an overview of the datasets used to measure detection
performance, results achieved during experimental testing, and a final comparison of the
proposed HADs. For the datasets, a detailed analysis is shown. The experimental testing
shows the different proposed HADs performances using various setups in terms of hyper-
parameters. In the final comparison of the proposed HADs, the different methods will be
compared using the optimal setups found during experimental testing. Here, all results will
be discussed.

• Chapter 5: The Conclusion and Future Directions chapter summarises the thesis’s main
findings, contributions, and outcomes. It provides an overview of the research, highlights key
points, and offers final remarks and conclusions. The final sections of the chapter will describe
the future work, such as what can lead to further improvement in detection performance to
the proposed HADs.
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Chapter 2
Background and Related Work

This Chapter provides an insight into what Hyperspectral Imaging is and the structural properties
of a Hyperspectral Image (HSI). Furthermore, some hyperspectral imaging satellites will be briefly
described, such as the HYPSO satellite. Hyperspectral anomaly detection will also be explained
with the inclusion of preprocessing techniques used to enhance an anomaly detector’s performance.
Several methods for hyperspectral anomaly detection will be explained in the latter parts of the
chapter. Some of these include the use of machine learning and neural networks. The final section
of the chapter will describe the Robust Graph Autoencoder in detail.

2.1 Hyperspectral Imaging

Conventional imaging methods capture information using three wavelengths corresponding to the
red, green and blue color channels. Hyperspectral Imaging is the process of measuring the spectral
information of an area or an object using a continuous range of wavelengths, also known as spectral
bands. These wavelengths can cover many parts of the electromagnetic spectrum, such as the
ultraviolet, visible and near-infrared regions. This technique can therefore capture several hundreds
of spectral bands of the same object or area [1]. The sensors used for hyperspectral imaging sample
hundreds of these electromagnetic waves from 0.4µm to 2.5µm. Spectral channels can be separated
to as little as 10nm [1, 11]. Each measurement for a specific wavelength can create an image of the
measured object or area. Combining each image created for every wavelength captured creates a
Hyperspectral Image (HSI). The HSI is composed of F spectral bands, with a spatial height H
and width W as shown in Figure 2.1. The total number of pixels within a HSI is N = H × W .
A pixel xn within a HSI will therefore contain not only one value, but a vector of F values, each
corresponding to a given spectral band. Here, n denotes the number of the pixel [1, 12].

Figure 2.1: Representation of a hyperspectral image.

Combining all the spectral bands within a HSI can be used to determine what objects are
located in the image based on each pixel’s spectral signature [13]. The spectral signature of
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a pixel refers to how a specific material responds to a particular wavelength in terms of emis-
sion/reflectance. An example of the spectral signature of a pixel x1 is shown in Figure 2.2. Here,
the x-axis represents the wavelength/spectral band captured, and the y-axis represents the emis-
sion intensity. Depending on the texture and molecular composition of the object within the pixel,
the spectral signature will vary [1]. This enables these images to be used in several target detection
applications within various areas and fields such as agriculture and medicine[13, 14]. Using Hyper-
spectral Images enables numerous remote sensing applications, such as environmental monitoring
and military target detection [1, 15]. Remote sensing refers to acquiring data without physical
contact with the object in question [16]. Since Hyperspectral Images can be taken from satellites,
it is possible to observe, detect and locate objects or environmental changes from orbit [1].

Figure 2.2: A pixels spectral signature.

2.1.1 Satellites and Technology

Multiple satellites aim to observe different properties remotely utilizing hyperspectral imagery.
The HYPSO, the PRISMA and EnMAP are examples of such satellites utilized to monitor the
environment of the Earth [4, 17, 18]. Systems such as the AVIRIS are also used for remote sensing
[19]. The goal of the HYPerspectral Smallsat for OCEAN Observation mission, known as HYPSO,
is to monitor the ocean for harmful algae blooms along the coast of Norway. If this is detected, it will
send a notification to its users. The satellite is controlled by the Norwegian University of Science
and Technology (NTNU). Regarding specifications, its camera can capture hyperspectral images
of up to 1936 × 1194 pixels with at least 215 spectral bands. The range of the electromagnetic
spectra used to capture the images is 220-967nm [4]. The HYPSO satellite orbits the Earth at an
altitude of 500km and obtains a Ground Sampling Distance (GSD) of about 100m [4]. Ultimately,
the research conducted in this thesis is intended to be valuable for the HYPSO satellite.

PRISMA, also known as PRecursore IperSpettrale della Missione Applicativa, is a satellite
maintained by Italian Space Agency. Its purpose is to observe the spectral signatures of different
materials [17]. Its exact electro-optical equipment allows it to analyze different materials’ spectral
fingerprints from a range of up to 615km. This equipment comprises an imaging spectrometer,
Short-Wave InfraRed products, and a panchromatic camera, offering a comprehensive imaging
solution with a GSD varying from 30m to 5m. The PRISMA satellite can take Hyperspectral
Images containing up to 237 spectral bands with a spectral coverage of 0.4µm-2.5µm, providing a
highly detailed image [1]. The satellite’s launch date was in March 2019, and it remains in service
to this day [17].

The German Space Agency maintains the Environmental Mapping Analysis Program satellite
(EnMAP). Its purpose is to characterize the environment of the Earth on a global scale. With a
spectral range from 0.42µm-2.45µm [1], the satellite can observe the environment’s geochemical,
biochemical and biophysical properties. This can then provide information on terrestrial and
aquatic ecosystem evolution [18]. The satellite orbits with an altitude of 653km, slightly above
that of the HYPSO and PRISMA satellites, whilst still achieving GSD of 30m.
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AVIRIS, short for Airborne Visible/Infrared Imaging Spectrometer, is an optical instrument
for remote sensing applications. The AVIRIS can capture Hyperspectral Images using spectral
bands with wavelengths ranging from 0.4-2.5µm [19]. This imaging spectrometer has been used to
capture all of the Airport-Beach-Urban (ABU) datasets except for the abu-beach-4 dataset [20].
More information about these datasets can be found in Chapter 4 as they will be utilized while
testing the thesis’ proposed Hyperspectral Anomaly Detectors.

As many of the properties these satellites aim to monitor deviate from their surroundings, such
as harmful algae, oil spills and man-made objects such as ships, there are needs for precise Hyper-
spectral Anomaly Detectors (HAD). With HADs, monitoring changes in environment, resources,
agriculture and targets such as vehicles autonomously [2, 3] is possible.

2.2 Hyperspectral Anomaly Detection

As mentioned in the previous section (Section 2.1.1), there is a need for hyperspectral anomaly
detection to detect various anomalous objects and events. An explanation of these topics will
be presented in this section to understand hyperspectral anomalies and the detection of these
occurrences. Section 2.2.1 will introduce the concept of hyperspectral anomalies and Section 2.2.2
will describe the functionality of a general Hyperspectral Anomaly Detector.

2.2.1 Anomalies in Hyperspectral Images

A hyperspectral anomaly is classified as an object within a HSI whose spectral signature deviates
significantly from its surrounding environment. The occurrences of anomalies typically have a
lower probability than their surroundings, often referred to as the background, and are usually
small. It must also be noted that there is no general spectral signature for anomalies, as an object
or property is only determined to be anomalous relative to its surroundings [5, 3]. Figure 2.3 shows
an example of how an anomalous pixel xa, marked with blue, deviates from the background pixel
xa marked with red.

Figure 2.3: This figure highlights the difference in spectral signature of the
anomalous pixel xa in comparison to the background pixel x1.

2.2.2 Hyperspectral Anomaly Detector (HAD)

To detect a hyperspectral anomaly, there is a need for a HAD. These systems can detect and
locate entities and events such as man-made objects, hazardous materials and environmental phe-
nomenons where these targets deviate from their surroundings [2]. The input of a HAD is the HSI
in question, and the output is a detection map that showcases the locations of the anomalies [5].
An illustration of the framework of such a HAD is shown in Figure 2.4. Before the Hyperspectral
Image is sent into the detector itself, it is some cases exposed to preprocessing. This can be either
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the use of a filter or methods such as the Principal Component Analysis (PCA) [2]. Figure 2.5
showcases the framework of a HAD with added preprocessing.

Figure 2.4: A block diagram showcasing the detection of anomalies using a
hyperspectral anomaly detector.

Figure 2.5: A block diagram showcasing the detection of anomalies using a
hyperspectral anomaly detector with the addition of preprocessing.

A detection map, sometimes referred to as anomaly map, visualises the located anomalies
separated from the background. Typically, the anomalies are intended to have a higher intensity
than the background in the detection map, making it easier to locate them [2]. Figure 2.6 illustrates
the difference between the input Hyperspectral Image and the output of the Hyperspectral Anomaly
Detector, being the detection map. From the figure, it is much easier to locate the anomaly. In
some Hyperspectral Images where much noise is present in addition to the anomalies, the noise
can also be present in the detection map, making it harder to identify the anomalous pixels.

(a) Representation of
the input HSI.

(b) Representation of
the detection map of the
anomaly.

Figure 2.6: Visualizations of the input and output of a HAD. The HSI used
is the abu-beach-3 datset.

The two main performance metrics used to measure the performance of a HAD are the Area
Under Curve (AUC) score and time score. The time score is measured from timing the HAD from
input to output [6, 21]. An anomaly detector’s ability to detect an abnormality is determined by
its AUC score derived from the Receiver Operating Characteristic (ROC) curve. This curve tells
us True Positive Rate (TPR) rate versus the False Positive Rate (FPR) [22]. The TPR is the
rate of anomalous pixels that have been classified as anomalous. This measure is often known as
sensitivity. Mathematically, the TPR is expressed as

TPR =
TP

TP + FN
(2.1)

where TP (True Positive) is the number of correctly classified anomalous pixels, and FN (False
Negative) is the number of misclassified anomalous pixels [22]. The FPR is the rate of pixels that
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are not anomalous that have been classified as anomalous. This is known as specificity. The False
Positive Rate is expressed as

FPR =
FP

FP + TN
(2.2)

where FP (False Positive) is the number of non-anomalous pixels that have been misclassified, and
TN (True Negative) is the number of correctly classified non-anomalous pixels.

To obtain these rates, the detection map is compared with the ground truth of the given
dataset, which holds information about the location of each anomaly. A threshold is used to
convert the image to a binary image. This threshold determines when a pixel will be determined
as anomalous or background. The threshold is then varied to obtain a set of binary images. A TPR
and a FPR are calculated for each binary image. It is then possible to plot the TPR and the FPR
for each threshold resulting in the ROC curve, like the one illustrated in Figure 2.7. Calculating
the area under this curve gives us an AUC score [23].

Figure 2.7: An example of an ROC curve for a HAD.

2.3 Preprocessing and Image Segmentation

This section explains different preprocessing techniques that can be performed for hyperspectral
anomaly detection. Preprocessing can be a vital part of anomaly detection for many reasons.
As hyperspectral images often contain large amounts of data, reducing the size of an HSI before
analyzing it for anomalies can decrease the run time for a given HAD. Methods such as Principal
Component Analysis (PCA) and Kernel-PCA (KPCA) can be utilized for such problems [7]. Other
methods, such as image segmentation, can also benefit some applications. An example of such a
technique is the Simple Iterative Clustering (SLIC) method [24]. An important note on image
segmentation is that the term “pixel” is used to describe a singular numerical value in an image
of two dimensions. The term “pixel” used when describing image segmentation techniques must
not be confused with the “pixel” term in the Hyperspectral Images containing several numerical
values.

2.3.1 Data Matrix

When analyzing a given HSI, it can be beneficial to transform the image into two dimensions since
it enables easier manipulation. The transformed HSI, also known as the data matrix D, will have
the size F ×N where each row represents a pixel xn [7]. Here, F denotes the number of spectral
bands, and N denotes the number of pixels. Figure 2.8 illustrates the data matrix.
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N

F

x1

xN

Figure 2.8: Properties of a data matrix D.

2.3.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used method for dimensionality reduction [25].
The principal behind PCA is to extract the essential characteristics of a data set based on the
correlation within the given data. After performing PCA, the result should be that the input data
has a lower dimensionality, but with as much of the variation present in the original data. A note
on PCA is that the principal components are ranked from most to least essential components [26].
This means that the first dimensions of the lower dimensional output data after performing PCA
better represent the original data. In a hyperspectral imaging case, the number of spectral bands
can be reduced based on the higher correlation observed among certain bands. This can remove
the number of redundant spectral bands [26]. A zero mean image I = [I1, I2, ..., In, ] is generated
based on the data matrix D, where n is the numbered pixel among N number of pixels [7]. In can
be expressed as

In = xn −M = [In1, In2, ..., InF ]
T . (2.3)

where M is the mean image vector [7] calculated as

M =
1

N

N∑
n=1

xn. (2.4)

The covariance matrix is then calculated based of the zero mean image as

C =
1

N
IIT . (2.5)

From the covariance matrix C, the eigenvalues Ev and eigenvectors Vv [7] are calculated as

C = VvEvV
T
v . (2.6)

Using q number of eigenvectors, a F × q matrix is formed [7]. The value of q must be less
than or equal to F , but it is often much smaller. The aim is to obtain a 2D image with the most
effective features. To achieve this, the eigenvalues are arranged in descending order so that the
top and most significant principal components can be easily accessed [7]. Finally, the projection
matrix Y is computed like

Y = wT · I. (2.7)

A representation of a two-dimensional set of data with its principal components is illustrated
in Figure 2.9. Here, u1 contains the most information about the original data.
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x1

x2
u1

u2

Figure 2.9: Two-dimensional set of data with its principal components u1

and u2 [27].

2.3.3 Kernel-Principal Component Analysis (KPCA)

KPCA operates on most of the same principals as the PCA, but rather than doing it linearly, the
KPCA takes the data to a higher dimension using a kernel. This method has been observed to
extract features better than that of the PCA, according to a study by L. J. Cao et al [28]. Each
pixel xn is taken into a higher feature space by the non-linear function ϕ(xn) [26]. When this is
performed, the transformed data matrix D can be a subject of standard PCA. The kernel function,
expressed as

κ(xi,xj) = ϕ(xi)
Tϕ(xj). (2.8)

is used to create the kernel matrixK so thatKi,j = κ(xi,xj) [7]. The vector ak = [ak1, ak2, ..., akN ]
vector is then computed so that

Kak = EkFak (2.9)

where F is the amount of spectral bands. For the cases where there is no possibility to compute
the zero mean image, the approach is to calculate the Gram matrix K̃. This will then replace the
kernel matrix K [7], expressed as

K̃ = K− 1NK−K1N + 1NK1N (2.10)

where 1N are matrices of size N×N containing the value 1/N in each cell. The following procedure
is then to calculate the kernel principal component yk(x) as

yk(x) = ϕ(x)Tvk =

N∑
i=1

akiκ(x,xi). (2.11)

Several kernel functions can be utilized to calculate the KPCA of an HSI. Some of these
are Gaussian [26], Laplacian, Sigmoid [7] and Polynomial [29] functions, each expressed in the
equations (2.12), (2.13), (2.14) and (2.15) respectively. Here σ is a parameter that controls the
width of the kernel functions. The c parameter is a constant that determines the shape and position
of the curve of the kernel functions. For the polynomial kernel, the a parameter determines the
degree of the polynomial function.
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κ(xi,xj) = exp

(
−||xi − xj ||

2σ2

)
(2.12)

κ(xi,xj) = exp

(
−||xi − xj ||

σ

)
(2.13)

κ(xi,xj) = tanh

(
xix

T
j

2σ2
+ c

)
, c ≥ 0 (2.14)

κ(xi,xj) = (xi · xj + c)a, c ≥ 0, a ≥ 2 (2.15)

Multiple kernels can be utilized to reduce dimensionality whilst better characterizing the data
[30]. This has been observed to improve upon learning ability [31]. For multiple kernels, the final
kernel function will be a linear combination of multiple kernels, defined as

κ(xi,xj) =

M∑
m=1

βmκm(xi,xj), βm ≥ 0 (2.16)

where M is the number of kernels and βm is the weighting of each kernel [30]. The final kernel
matrix will therefore be calculated as

K =

M∑
m=1

βmKm, βm ≥ 0. (2.17)

2.3.4 Robust-PCA (RPCA)

Robust-PCA (RPCA) is based on the principal that a data matrix M can be modeled based on
its low-rank matrix L0 and its sparse matrix S0 [32], expressed as

M = L0 + S0. (2.18)

Here, the low-rank matrix describes the data matrix’s underlying structure, and the sparse matrix
represents the noise or outliers, illustrated in Figure 2.10. In the illustration, the data matrix M
contains four outliers seen in the sparse representation S0.

= +

L0 S0M

Figure 2.10: An illustration how a data matrix M can be expressed as a sum
of its low-rank matrix L0 and its sparse matrix S0.

To model M as a sum of the to matrices L0 and S0, it is necessary to solve the following
problem

min
L0,S0

||L0||∗ + λ||S0||1 subject to L0 + S0 = M (2.19)

where ||L0||∗ denotes the nuclear norm expressed as

||L0||∗ =

min{m,n}∑
i=1

σi. (2.20)

m and n represents the number of columns and rows in the given matrix and σi represents the
singular values of matrix L0 [33]. ||S0||1 denotes the ℓ1 norm of S0, expressed as
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||S0||1 =

m∑
i=1

n∑
j=1

|S0,(i,j)|. (2.21)

The expression in Equation 2.19 is known as Principal Component Pursuit (PCP). It can be
solved using the Augmented Lagrange Multiplier (ALM) algorithm or simpler procedures such as
the Alternating Directions Method (ADM) [33].

2.3.5 Simple Iterative Clustering (SLIC)

Simple Iterative Clustering is a method of image segmentation which relies on clustering an image
into K numbers of superpixels using the well-known K-means clustering approach. A superpixel is
a group or cluster of pixels with similar properties in a defined area. The first step in the process
is to define a K number of superpixels P = {Pk}Kk=1. These are initialized with an equal spacing
in the entire image so that each superpixel has roughly the same size [24]. The distance between
each superpixel is expressed as

dinterval =
√
N/K (2.22)

where N is the total number of pixels within the image. The superpixels position is chosen
by a 3 × three neighbourhood using the lowest gradient pixel. This is done to avoid placing a
superpixel on an edge or a noisy pixel. The initialization process is followed up by assigning each
pixel in the image to its corresponding superpixel. This is determined based on the lowest distance
from a given pixel to a given superpixel’s Pk center. To calculate this distance, the spatial and
color distances are computed and combined. The spatial distance is calculated using the Euclidean
distance between the superpixel center and the pixel in question. To find the color distance between
pixel xi in the superpixel center and pixel xj , the distance dc is expressed as

dc =
√
(lj − li)2 + (aj − ai)2 + (bj − bi)2 (2.23)

is calculated. Here, the color is represented in the CIELAB color space [24], being l for the
brightness, a for the color along the red-green axis and b for the color along the blue-yellow axis.
Each superpixel has an expected size of about dinterval × dinterval. However, the maximum size of
each superpixel is 2dinterval×2dinterval with the superpixel being located in the center. The search
for similar pixels is therefore only being done in this area. When all pixels have been assigned to
a superpixel, all centroids (centers of superpixels) will reposition themselves using the mean pixel
location for the pixels in the given superpixel Pk. After this is done, all pixels will search for their
corresponding superpixel again, which is a process that will continue until the positions of each
superpixel converge [24].

2.4 Existing Methods for HAD

Hyperspectral anomaly detection can be separated into several categories. The fundamental forms
of anomaly detection within this field are the statistical methods [2]. Other methods, such as
machine learning, can also be used to target hyperspectral anomalies. The machine learning
category can be segmented into traditional machine learning, also known as distance-based and
neural network-based methods [2].

Several approaches to hyperspectral anomaly detection exist in terms of statistical methods.
Several of these HADs rely on the Reed-Xiaoli (RX) method, such as Local-RX (LRX) and Global-
RX (GRX). The first occurrence of the RX-based HAD was in the early 90s [2]. RX-based methods
rely on modeling the background of an image as a Gaussian distribution [34]. Using the distance
from a pixel to the background will then reveal whether the pixel is anomalous. This algorithm
can be divided into two versions, being the global and local method later described in Section 2.5.

In terms of using traditional machine learning, several anomaly detection approaches exist.
One of these methods is clustering, utilized in the density-peak clustering approach [35] and in
the default Cluster-based Anomaly Detector (CBAD) [36]. One of the strengths of this approach
to hyperspectral anomaly detection is the fact that the clustering method is unsupervised [2].
Unsupervised methods can learn patterns and structures from a set of unlabeled data without
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any human interference. A different method is the support vector machine, which separates the
anomalies from the background using a hyperplane [37]. This method has shown good generaliza-
tion performance for various classification tasks, which makes it suitable for anomaly detection [2].
The Support Vector Data Description (SVDD) is a form of Support Vector Machine (SVM) which
has proven as an efficient and effective anomaly detection method [38]. The traditional machine
learning methods for HAD is explained in more detail in Section 2.6.

Utilizing deep neural networks for anomaly detection has proven to be a very powerful
technique in recent years. Examples of such models are the default Autoencoder (AE), the
Convolutional Neural Network (CNN), and the Generative Adversarial Network (GAN) [5]. The
advantage of the AE and the GAN is the fact that they are unsupervised methods, like the tra-
ditional clustering approach. More advanced methods, such as the Robust Graph Autoencoder
(RGAE), have recently been developed [6]. These HADs are based on simpler neural networks like
the AE with added modifications that provide either better feature extraction, preprocessing, a
regularization term, or other properties that enhance the performance of the given model. Other
methods, such as utilizing the CNN architecture, have also been utilized for state-of-the-art HADs.
The Denoising CNN regularized anomaly detection (DeCNN-AD) method, laid forth by X. Fu et
al. [39], resulted in a high-performing anomaly detector, in terms of detection accuracy, beating
several other Hyperspectral Anomaly Detectors utilizing deep neural networks [5]. A more detailed
description of how neural networks can be used for hyperspectral anomaly detection can be found
in Section 2.7.

2.5 Statistics Based Anomaly Detection

The Global-RX and the Local-RX methods for hyperspectral anomaly detection will be presented
in this section. Both of the two HADs are based on the RX algorithm [2]. This section is only
meant to give an insight into these methods, which is why they are not described in full detail.

2.5.1 Global Reed-Xiaoli

One Reed-Xiaoli-based method, previously mentioned, is the GRX detector. A big assumption
with this approach is that the background is homogeneous. That enables the background to be
modeled as a Gaussian distribution [34]. With the background modeled, it is possible to calculate
the distance from each pixel to the background using the following function

DGRX(xn) = (xn − µ̂b)
T Σ̂

−1

b (xn − µ̂b). (2.24)

The distance DGRX(xn) of pixel xn is calculated based on the mean µ̂b and covariance Σ̂b. Determ-
ining whether the given pixel is anomalous is by comparing the calculated distance to a threshold
[34].

2.5.2 Local Reed-Xiaoli

The Local-RX detector is a version of the GRX detector with a focus on local areas in the given
HSI. In this approach, the background model has been swapped with a local normal model. To
detect the anomalies, a double concentric window slides over each pixel. The largest window
contains the local background, and the inner window, also known as the guard band, is assumed to
be the size of the target in the image. This is illustrated in Figure 2.11. To calculate the distance,
the distance function DLRX(xn) is utilized and expressed as

DLRX(xn) = (xn − µ̂local)
T Σ̂−1

local(xn − µ̂local) (2.25)

where Σ̂local is the covariance matrix of the local background and µ̂local is the mean vector.
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Figure 2.11: The double concentric window of the LRX detector [34].

2.6 Traditional Machine Learning for Anomaly Detection

This section will give an insight into two traditional machine learning methods of hyperspectral
anomaly detection. Traditional machine learning is a branch of artificial intelligence used in predic-
tion, regression, or classification problems [40]. This does not include the use of neural networks.

2.6.1 Support Vector Machine for HAD

The SVM is a well-known machine learning algorithm that works especially well in classification
problems. It has proven to be quite a sufficient algorithm within the field of anomaly detection as
well [37, 38]. According to A. Banerjee et al., their support vector method reduced false detections
compared to the more traditional HADs, such as the RX-based methods.

As this algorithm is not a focus point of the thesis, it will not be described in full detail. The
Support Vector Machine works by separating two or more classes in a given feature space by using
a hyperplane [41]. For a linear SVM, the following hyperplane

w · x+ b = 0 (2.26)

will separate two classes, where w is the normal vector and b is a bias. x is a point in the feature
space. Using nonlinear hyperplanes to separate two or more classes is also possible. Given that
the data is separable, the SVM can classify the data point.

x2

x1

Figure 2.12: This is how anomalies are detected using an SVM. The anomalies
are represented by the red dots, the background by the blue dots and the
hyperplance as the striped purple circle. x1 and x2 represents two features in
the feature space [2].
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The hyperplane, for a linear classifier, is generated by solving the optimization problem:

minimizew,b
1

2
||w||2

subject to yi·((w · xi) + b) ≥ 1, i = 1, ...,m
(2.27)

where yi is the label of data point xi and m is the number of data points. This can be solved
through its Lagrangian dual [41]. Figure 2.12 illustrates how an SVM can classify anomalies using
a hyperplane that ideally separates all background data from anomaly data.

2.6.2 Clustering for HAD

Clustering is within the branch of traditional machine learning and has been used for anomaly de-
tection in various instances [42, 43]. One method of clustering is the K-means clustering algorithm.
This approach relies on clustering data into K numbers of clusters Cc = {C1, ...,CK}. A pixel
is determined to be anomalous if the distance from its location to the center of its corresponding
cluster is above a certain threshold. This is illustrated in Figure 2.13.

The K-means clustering algorithm works by first initializing K number of cluster centers
µc = {µ1, ...,µK} in the data space, often referred to as centroids [44]. Each center can be
randomly chosen in the data space. The next step is to assign all data points to their closest
centroid. In a hyperspectral anomaly detection case, these points would be pixels in the HSI. To
determine what centroid is the closest to a given data point xn, the Euclidian distance between
the pixel and each centroid is calculated. The data point is then assigned to cluster µk, where k
is calculated as

k = argmin
j

(||xi − µj ||2). (2.28)

Each cluster center is reassigned after each data point has been assigned to a cluster. The
new location of each cluster is based on the mean position of all the data points assigned to the
corresponding cluster [44]. This can be expressed as

µj =
1

Nj

Nj∑
n=1

xn (2.29)

where, in this case, xn denotes data points in cluster Cj , where Nj is the total number of data
points in the cluster. After relocating all cluster centers, each data point will be assigned to its
closest cluster based on the Euclidean distance. This entire process is repeated several times or
until the cluster centers converge [44].

x2

x1

Figure 2.13: This is how anomalies look in a clustered set of data. Here,
the different colors represent which data points belong to which cluster. The
cross marked dots represent each centroid and the two data points which are
located the furthest away from their corresponding centroid are registered as
anomalous.
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2.7 Deep Learning for HAD

Deep learning has proven to be a powerful tool for hyperspectral anomaly detection due to the
remarkable ability of non-linear feature extraction [5]. The Autoencoder, generative, and convolu-
tional neural networks are examples of deep learning networks used for such tasks. In Section 2.7.1,
a general explanation of neural networks is presented, followed up by an explanation of the Au-
toencoder in Section 2.7.2. These sections are then followed up by a more specific instance of the
Autoencoder for HAD, being the Robust Graph Autoencoder.

2.7.1 Neural Networks

Neural networks are models composed of several layers of neurons that are utilized to solve re-
gression problems, classification problems, or similar issues based on input data. Standard neural
networks comprise several layers: the input, output, and hidden layers(s) connecting the two. Each
layer is built up as a set of nodes that are in some way connected to the previous and subsequent
layers. In each node, some mathematical operation is performed, such as multiplying the input
with a weight and adding a bias. If each node in a layer is connected to all of the nodes in a
previous layer, the layers are fully connected [45]. An illustration of a neural network can be seen
in Figure 2.14.

Figure 2.14: A fully connected neural network composed of an input layer,
an output layer and a singular hidden layer.

Many neural networks, including all networks described in this thesis, are feed-forward net-
works. In a feed-forward neural network, the data flows only from the input to the output in
one direction. These networks are also referred to as multi-layer perceptrons. After passing data
through the network, the weights and biases in all of the layers are adjusted through what is called
backpropagation. Through several iterations of this process, the network can learn and adjust to
the input data so that the output is satisfying [45]. A node in a given layer m will receive the
output of the previous layer m−1 as input. Here a mathematical operation is performed, expressed
by

h(m) = y

(
W(m)

(
h(m−1)

)T
+ b(m)

)T

, m = 1, ...,M (2.30)

where h(m) is the output of the node and h(m−1) is the input. W(m) and b(m) are the weight and
bias. In a network setup such as shown in Figure 2.14, each connection between two nodes has
its own weight, whereas the bias is applied equally for all inputs of a specific node. The function
y(·) is called an activation function, which is usually applied before sending the output to the next
layer in the network [6]. Commonly used activation functions are the Linear, Sigmoid, Tanh, and
ReLU functions [46]. These are illustrated in Figure 2.15.

The adjustment of weights and biases in a feed-forward neural network is done through
backpropagation. The goal is to minimize the network’s objective function J(Θ), which is of-
ten the same as the loss function. Θ, in this case, denotes the weights and biases in the network

Θ = {W(m)
t ,b

(m)
t }. A loss function gives an estimate of the error of a given network. The loss

is calculated and sent back through the network to adjust the weights and biases. Based on the
loss, the weights and biases are adjusted so that the objective function will minimize. This is done
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(a) Linear activation function. (b) Sigmoid activation function.

(c) tanh activation function. (d) ReLU activation function.

Figure 2.15: An illustration of different activation functions.

over several iterations, also known as epochs [45]. Examples of loss functions used to evaluate the
quality of a neural network are the Mean Square Error (MSE) loss, reconstruction loss, binary
cross-entropy loss, and Kullback-Leibler divergence [47, 48, 49]. To avoid over- or under-fitting,
an early stopping criterion is often utilized. This method stops the training when a criterion, such
as the loss, converges. Over-fitting occurs when a network is trained excessively on specific data,
causing it to perform well only on that particular training data. Under-fitting results from the
network being unable to capture the variability in the training data, in other words, the opposite
of over-fitting [50].

Gradient descent is a popular method used during the training of a neural network. This
method relies on using the gradient of the objective function J(Θ) to adjust the weights and biases
during backpropagation [51]. Batch Gradient Descent (BGD) is a common instance of this method,
utilizing the entire training data to optimize the network parameters (weights and biases). The

parameters Θ = {W(m)
t ,b

(m)
t } are updated as

W
(m)
t = W

(m)
t−1 − µ

∂J (m)(Θ)

∂W
(m)
t

(2.31a)

b
(m)
t = b

(m)
t−1 − µ

∂J (m)(Θ)

∂b
(m)
t

(2.31b)

where µ is the learning rate of the neural network, and t denotes the current iteration of the training
process. A common issue with the BGD is that it is slow due to utilizing the entire training dataset
during each epoch [51]. A solution to this problem is to utilize Stochastic Gradient Descent (SGD).
Using this method, only one sample of the training dataset is used during each training iteration.
This method is quicker and superior in terms of redundancy as BGD uses a massive amount of
data. A negative side with SGD is that it suffers from fluctuation due to the frequent calculation
of gradients [51].
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To fix both the slowness of BGD and the fluctuation using SGD, an approach is to use Mini
Batch Gradient Descent (MBGD). With this method, a small batch of the training data is used
to train the network during each epoch. This results in a training time lower than the BGD and
fewer fluctuations than the SGD. To avoid using the same data over and over again, the batch of
training samples are chosen at random by shuffling the training dataset [51].

To further improve a neural network’s performance, a common approach is to utilize an op-
timizer. Some of these are the momentum, the Root Mean Square Propagation (RMSP), and the
Adaptive Moment Estimation (ADAM) optimizers [51]. Momentum is a technique that focuses on
accelerating the learning process of a neural network while dampening the oscillations when trying
to locate the minima of the objective function [51]. The approach is to calculate the updated
parameters as

W
(m)
t = W

(m)
t−1 − µmw

t (2.32a)

b
(m)
t = b

(m)
t−1 − µmb

t (2.32b)

where the momentum variables mw
t and mb

t are expressed as

mw
t = β1m

w
t−1 + (1− β1)

∂Jt(Θ)

∂W
(m)
t

(2.33a)

mb
t = β1m

b
t−1 + (1− β1)

∂Jt(Θ)

∂b
(m)
t

. (2.33b)

β1 ∈ [0, 1] is a constant that controls the impact of the most recent momentum variables
compared to the previous ones. If β1 were to be set to 0, the network’s learning would be the same
as not using an optimizer [51]. A different optimizer that also aims to prevent oscillations when
locating the minima of the objective function is the Root Mean Square Propagation optimizer.
The updated weights and biases are given by

W
(m)
t = W

(m)
t−1 −

µ√
vwt + ϵr

∂Jt(Θ)

∂W
(m)
t

(2.34a)

b
(m)
t = b

(m)
t−1 −

µ√
vbt + ϵr

∂Jt(Θ)

∂b
(m)
t

. (2.34b)

ϵr is a small constant to prevent division by 0 and the variables vwt and vbt are the sum of the
squared gradients for the weights and biases in the network [51]. These are given by

vwt = β2v
w
t−1 + (1− β2)

(
∂Jt(Θ)

∂W
(m)
t

)2

(2.35a)

vbt = β2v
b
t−1 + (1− β2)

(
∂Jt(Θ)

∂b
(m)
t

)2

(2.35b)

where β2 ∈ [0, 1] is a constant, such as β1, which controls the impact of the current gradient
compared to the previous ones [51].

Using a combination of the momentum and RMSP optimizers will result in the Adaptive
Moment Estimation (ADAM) optimizer. This optimizer aims to speed up the network’s learning
and reduce the oscillations when minimizing the objective function. The network parameters are
updated as

W
(m)
t = W

(m)
t−1 − m̂w

t

(
µ√

v̂wt + ϵ

)
(2.36a)

b
(m)
t = b

(m)
t−1 − m̂b

t

(
µ√
v̂bt + ϵ

)
. (2.36b)
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The variables m̂w
t , m̂

b
t , v̂

w
t and v̂bt are expressed as

m̂w
t =

mw
t

1− βt
1

, v̂wt =
vwt

1− βt
2

(2.37a)

m̂b
t =

mb
t

1− βt
1

, v̂bt =
vbt

1− βt
2

(2.37b)

where mw
t and mb

t are computed as shown in Equation 2.33 and the variables vwt and vbt are
computed as shown in Equation 2.35 [51].

2.7.2 Autoencoder for HAD

Autoencoders are a type of neural network architecture specified in unsupervised learning. An
Autoencoder comprises both an encoder and a decoder. The purpose of the neural network archi-
tecture is to encode a set of data X into a compressed and meaningful representation. This is then
possible to decode using a decoder. The output of the encoder is called the latent-variable Z and
the output of the decoder X̂ is a reconstructed version of the input data X [52]. Figure 2.16 shows
an illustration of the process that occurs when sending data X through an Autoencoder. As with
other neural networks, the Autoencoders are composed of several layers of artificial neurons. Each
connection between two nodes has its corresponding weight, and every node has its corresponding
bias. An activation function is also applied before sending the output of a neuron further through
the network.

Encoder Decoder

Figure 2.16: An overview of the encoding and decoding process in an autoencoder [52].

The encoded output Z can be expressed as a learned representation of the input data using the
function fθ(·) [8]. This function is what transforms the input data to a lower-dimensional latent
space and is expressed as

Z = fθ(X). (2.38)

Decoding the latent-variable Z can be expressed as

X̂ = gϕ(Z) (2.39)

where gϕ(·) is the function describing the decoders operations [8].
To measure the performance of an Autoencoder, a common approach is to look at the re-

construction loss. This quantity describes how close the output X̂ is to the input X. A perfect
Autoencoder, in most cases, has 0 reconstruction loss. The reconstruction loss, in most cases the
Mean Square Error loss, is expressed as

LMSE =
1

N

N∑
i=1

||x̂i − xi||2 (2.40)

where N is the number of samples that are to be reconstructed. The number of samples N could
be the total number of pixels if one were to reconstruct an HSI.

Using Autoencoders for anomaly detection in hyperspectral images is utilizing the fact that the
Autoencoders struggle with reconstructing anomalies compared to the image’s background. This
is due to the significant deviation in spectral signature. As a result, anomalies will ideally look
just like the background in the reconstructed image. When subtracting the reconstructed image
from the original image, the anomalous pixels will leave residuals in the detection map. These
residuals are used to detect/locate the anomalies [6]. This process is illustrated in Figure 2.17.
The mathematical expression for creating the detection map Xdet would therefore be expressed as
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Xdet = X− X̂ (2.41)

where the matrix Xdet can be either summarized or sorted based on the spectral intensities so that
the final detection map Xdet is in two dimensions [6].

HSI Autoencoder
Recon-
structed
HSI

Calculate
Detection

Map

Detection
map

Figure 2.17: The hyperspectral anomaly detection process of an autoencoder.

2.7.3 Robust Graph Autoencoder

A new method for hyperspectral anomaly detection was proposed in 2022, called the Robust Graph
Autoencoder This anomaly detection method utilizes an Autoencoder with the combination of a
graph regularization term [6, 53]. As Autoencoders can lose all sense of spatial information during
training, this can cause a decrease in detection performance [6]. Autoencoders also suffer from
being able to reconstruct the input so well that they can reconstruct anomalies if there were
anomalies present in the training data. This will then cause a faulty detection map as there would
not be any residuals where the anomalous pixels are located [6]. A solution to these problems is
therefore to use a graph regularization term along with the Autoencoder. This term’s purpose is
to ensure that similar-looking pixels in the input are represented similarly in the latent space when
encoded by the Autoencoder [6].

The entire Robust Graph Autoencoders structure can be seen in Figure 2.18. It is composed
of two main segments, being the Autoencoder and the Graph Term Creation, as well as the
computation of the data matrix D (Explained in Section 2.3.1), the modified loss function and
the computation of the detection map in the Detection Map block. For the detection map Xdet

computation, each pixel is individually chosen to contain the highest spectral intensity from the
Xdet matrix (Calculated as shown in Section 2.7.2). The Autoencoders structure is relatively
simple, as it only comprises two sets of weights and biases. This is illustrated in Figure 2.19. From
the figure, it is possible to see that the encoding process takes place from the first layer to the
output of the second layer. For the decoder, the decoding process takes place from the middle
layer’s output to the last layer’s output. The output of the first layer is just the regular input X,
which is the data matrix computed for the Hyperspectral Image. The output of the middle layer,
however, is the encoded variable Z. This variable is then decoded, outputting the reconstructed
version of the input as X̂. It is also worth noting that this neural network utilizes the Adaptive
Moment Estimation optimizer to boost the training process.

Regarding activation functions, both the encoder and the decoder use the Sigmoid function.
The layer dimensionalities can be seen in Table 2.1. Here, F denotes the number of spectral bands
and n hid the number of neurons or hidden dimensions. Layer 1, 2, and 3 refer to the first, second,
and third layers in Figure 2.19. Mathematical expressions for the encoding and decoding process
can be expressed as

fθ(X) = ysigmoid (WencoderX+ bencoder) (2.42)

and

gϕ(X) = ysigmoid (WdecoderX+ bdecoder) . (2.43)

based on the network parameters.
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Figure 2.18: An overview of the RGAEs structure.

Encoder Decoder

ZX

Figure 2.19: An overview of the layer setup of the RGAE [6].

Table 2.1: Layer setup for the RGAE.

Layer
Weight
size

Bias
size

Activation
function

Number of
parameters

Layer 1 (Input) - - - -
Layer 2 n hid× F n hid Sigmoid n hid(F + 1)
Layer 3 F × n hid F Sigmoid n hid(F + 1)

The Graph Creation segment illustrated in Figure 2.18 comprises three main blocks, the Spec-
tral Band Reduction, Image Segmentation, and Graph Creation Blocks. The first step to creating
the graph is to compute the principal component of the HSI in the Spectral Band Reduction block.
It is then possible to segment the first principal component of the HSI using SLIC (Explained in
Section 2.3.5) in the Image Segmentation block. Following the segmentation process, the next step
is to construct a graph term based on the superpixels P = {Pk}Kk=1 created. The loss function will

use this term along with the input variable X, the latent variable Z, and the output variable X̂ of
the autoencoder. A description of the loss function will be presented later in this section. The first
step of creating the graph term is to compute the adjacency matrix Ŵ. This matrix represents
the similarity between pixels xi and xj in the Hyperspectral Image. To construct this matrix, each
row within it is formed by
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ŵij =

{
exp

(
− ||xi−xj||22

σ2

)
u = v

0 u ̸= v
, 1 ≤ u and v ≤ K (2.44)

where the two pixels xi and xj belong to the superpixels Pu and Pv respectively. In this setting,

σ is a scalar parameter. The next step of the process is then to calculate the degree matrix D̂ [6],
where each diagonal element dii is expressed as

dii =

N∑
j=1

ŵij (2.45)

where N is the number of pixels. The last step of the process is to compute the Laplacian matrix
L̂, which will be used in the graph regularization term. To calculate the matrix, both the degree
matrix D̂ and the adjacency matrix Ŵ are needed [6]. It is the possible to calculate L̂ as

L̂ = D̂− Ŵ. (2.46)

The graph term can then be constructed as

Lg(Θ) =
λ

N
Tr
[
ZT L̂Z

]
. (2.47)

where Θ denotes the weights and biases in the network. The λ parameter is a weighting of the
graph term, and N is the number of pixels. This term can then be used in the loss function.
Figure 2.20 illustrates the process that was just explained. The loss function of the RGAE can be
created using a combination of the ℓ2,1 norm and the graph regularization term. The ℓ2,1 norm is
expressed as

ℓ2,1 = ||X̂−X||2,1 =

√√√√ H∑
h=1

W∑
j=W

(Xh,w − X̂h,w)2 (2.48)

so that the entire loss is expressed as

LRGAE(X̂,X,Z) =
1

2N
||X̂−X||2,1 +

λ

N
Tr[ZTL̂Z]. (2.49)

Using the ℓ2,1 norm rather than the MSE loss makes the RGAE more robust to noise and
anomalies as it is less sensitive to outliers [6]. The objective function of the model is the same as
the loss so that the goal is to minimize J(Θ) [53] expressed as

J(Θ) = min
Θ

(
1

2N
||X̂−X||2,1 +

λ

N
Tr
[
ZT L̂Z

])
. (2.50)

Principle Component of HSI Segmented Image

Figure 2.20: The creation of the Laplacian matrix L̂ [6].

All input parameters for the Robust Graph Autoencoder are listed in Table 2.2. λ, K, n hid,
and µ are parameters that must be optimized for each dataset. As the table explains, the µ
parameter is the learning rate of the Autoencoder utilized by the RGAE.
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Table 2.2: Input parameters for the RGAE.

Parameter Denotation
Image The HSI
λ The representation of the two terms in the objective function
K The number of superpixels
n hid The number of hidden layers
µ The learning rate
n epochs The number of maximum epochs
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Chapter 3
Proposed Enhanced Graph
Autoencoders for HAD

The Robust Graph Autoencoder has proven to be a powerful anomaly detector in terms of doc-
umented performance Since it is a relatively recently proposed HAD, it might have room for
improvement. This chapter will introduce the proposed HADs based on the Robust Graph Autoen-
coder with the goal of boosting the detection performance. These changes are to the preprocessing
aspect, as shown in Section 3.1. Section 3.2 propose a more significant change, using multiple
preprocessing methods for two RGAEs in parallel. An RGAE with a change of layer setup is
presented in Section 3.3. Other changes regarding the network architecture are also investigated.
This is done by replacing the Autoencoder with an Interpolated Autoencoder. The Hyperspectral
Anomaly Detectors utilizing this architecture are described in detail in Section 3.4, Section 3.5 and
Section 3.6. The difference between the three proposed models in these sections is the additions of
preprocessing presented for some of the proposed HADs. A detailed explanation of the Interpol-
ated Autoencoder will be presented in Section 3.4 before the description of the Interpolated Graph
Autoencoder.

A note for all of the proposed methods is that they are isolated, meaning that each change
is implemented and tested without adding other changes. In a later chapter, each proposed HAD
will also be compared to the conventional Robust Graph Autoencoder. Finally, all proposed
HADs and the conventional RGAE are implemented with early stopping, the ADAM optimizer
and normalization of the HSIs.

3.1 Preprocessing based RGAE for HAD

The conventional RGAE lacks preprocessing. Adding preprocessing has the potential to boost
detection performance. We propose a preprocessing based RGAE, wich will be tested out with
several methods of preprocessing. A new block called Preprocessing has therefore been added.
In this block, different methods of preprocessing are utilized. This new Hyperspectral Anomaly
Detector is illustrated in Figure 3.1 where the red block highlights the new addition to the existing
RGAE. Preprocessing methods that will be tested are default PCA, KPCA, and RPCA. For
the KPCA, several kernels will be tested out, being the Sigmoid, Laplacian, Polynomial, and
Exponential kernels. In terms of utilizing RPCA, both the signal space and the sparse signal will
be tested.

For every method of preprocessing, except the RPCA, the first component of the output data
from the Preprocessing block is chosen in the Spectral Band Reduction block. In the RPCA case,
all components are summarized. The difference in approaches is due to the PCA and KPCA
outputting the best features in the first component, which is not the case for RPCA.

With some exceptions, this preprocessing implementation uses a Matlab implementation of
the Robust Graph Autoencoder [6]. To compute the PCA, the pre-existing code from the creators
of the RGAE is utilized. For the KPCA, the Matlab code created by X. Song et al. is utilized
[54]. In terms of RPCA implementation, the decomposition package from the sklearn toolbox in
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Figure 3.1: Representation of a RGAE with modified preprocessing.

Python is used [55]. The RPCA components are then loaded in Matlab for further use. Each
preprocessing method will be tested using a dimensionality of [50, 100, 300] to check whether this
makes a difference in detection performance.

3.2 PCA Based Multikernel RGAE for HAD

The Multikernel RGAE (MK-RGAE) utilize multiple kernels for the KPCA using two parallel
RGAEs. In Figure 3.2, an overview of the entire HAD is presented. The Hyperspectral Image is
first sent as input to both RGAE blocks. These blocks are each a fully functional RGAE that uses
KPCA as preprocessing as input for both the graph creation and the Autoencoder. The difference
between the RGAE 1 and RGAE 2 is that they use different kernels for preprocessing. After the
two RGAEs finish their output, their detection maps are combined using decision fusion to produce
the final detection map. Combining the two detection maps is expressed as

Xdet = αMK-RGAEXdet,1 + (1− αMK-RGAE)Xdet,2 (3.1)

where Xdet,1 is the detection map of the RGAE 1 and Xdet,2 is the detection map of the RGAE
2. To optimize the αMK-RGAE parameter, it will be chosen from a grid search from 0 to 1 using an
increase of 0.01 for each optimization test.

HSI

RGAE 1

RGAE 2

Detection Map
Decision
Fusion

Figure 3.2: The multikernel RGAE.

Figure 3.3 shows an overview of how each of the RGAE blocks in the previous figure is
designed (They follow the same design). Regarding the difference to the conventional RGAE,
preprocessing is the only deviance. PCA is no longer performed for the dimensionality reduction
in the Spectral Band Reduction block, as it has been fully replaced by KPCA. As with the
Preprocessing based RGAE for HAD, the first component of the KPCA output is used and sent
to the Image Segmentation block. The input of the Autoencoder itself has also been changed from
the default HSI to using KPCA. As shown in the figure, the final output Xdet,i of the network is
sent to the decision fusion of the two detection maps.

This Hyperspectral Anomaly Detector is implemented using the Matlab version of the Robust
Graph Autoencoder as a backbone [6]. Everything regarding the implementation of KPCA utilizes
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the code by X. Song et al. [54].
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Figure 3.3: The RGAE blocks in the Multikernel RGAE.

3.3 RGAE with Additional Layers

This proposed HAD will add complexity to the neural network of the conventional Robust Graph
Autoencoder. With this alteration, more layers are added to the encoder and the decoder of the
Autoencoder. The number of layers in the encoder and decoder is increased from one to two layers
as more layers can increase the learning capacity of the neural network [56].

Table 3.1 informs about the dimensionality of the new layer setup and the activation functions
used. Layer 1, as with the conventional RGAE, acts as a standard input layer without applying
weight or adding bias. Layer 2 and layer 3 act as the encoding part of the network, while layers
3 and 4 decode the latent variable. The parameter n hid2 has half the size of n hid1, so that
n hid2 = 1

2n hid1. The number of hidden dimensions n hid1 is chosen on a grid search among the
values [50, 100, 200]. Regarding activation functions, the last encoding layer and the last decoding
layer utilize the Sigmoid function. The other two layers will be tested with the Sigmoid and
the ReLU activation functions. The layer setup using ReLU-Sigmoid for the encoder and ReLU-
Sigmoid for the decoder will be referred to as the ReLU/Sigmoid setup, while the setup using
Sigmoid-Sigmoid for both the encoder and the decoder will be referred to as the Sigmoid/Sigmoid
setup. A final note for this Hyperspectral Anomaly Detector is that it is implemented using Matlab.
The preexisting code of the Robust Graph Autoencoder is used as a backbone [6].

Table 3.1: Layer setup for the RGAE utilizing multiple layers in the encoder
and the decoder.

Layer
Weight
size

Bias
size

Activation
function

Number of
parameters

Layer 1 (Input) - - - -
Layer 2 n hid1 × F n hid1 ReLU/Sigmoid n hid1(F + 1)
Layer 3 n hid2 × F n hid2 Sigmoid n hid2(F + 1)
Layer 4 F × n hid2 F ReLU/Sigmoid n hid2(F + 1)
Layer 5 F × n hid1 F Sigmoid n hid1(F + 1)

3.4 Interpolated Graph Autoencoder for HAD

As mentioned in the introduction of the chapter, the implementation of an Interpolated Autoen-
coder (IAE) will be tested. This neural network architecture replaces the AE, which is utilized
by the Robust Graph Autoencoder. Interpolated Autoencoders are based on interpolating several
encoded latent variables before decoding the interpolated result. Interpreting latent variables can

26



Chapter 3 Proposed Enhanced Graph Autoencoders for HAD

result in semantically meaningful data and better generalization than using a conventional AE [8].
This is due to the Interpolated Autoencoder (IAE) working with a more varied set of data. An
IAE uses two (or more) inputs. Since data from the two inputs X1 and X2 are randomly sampled
during training, the inputs often contain different features. This makes the IAE adapt to a more
varied set of data rather than memorizing the expected input [8]. Figure 3.4 shows the process
of encoding and decoding the multiple inputs to a singular interpolated output. In this case, the
inputs represent the data matricesD (Explained in Section 2.3.1) of the same Hyperspectral Image.

Encoder

Decoder

Encoder

Figure 3.4: An overview of an Interpolated Autoencoder utilizing two en-
coders and decision fusion to interpolate the latent-variables Z1 and Z2.

The encoder works like with a normal Autoencoder except for encoding several inputs in
parallel [8]. Encoding an input Xi could therefore be expressed as

Zi = fθ(Xi). (3.2)

where i denotes the numbered input. In terms of the decoding process, the multiple latent variables
have to be interpolated using decision fusion [8] so that

Z = αZ1 + (1− α)Z2, α ∈ [0, 1]. (3.3)

This is valid for an Interpolating Autoencoder utilizing two encoders in parallel. The expression
for the output of the decoder [8] is then

X̂α = gϕ(Z). (3.4)

As the interpolated autoencoder relies on a weighting of the two latent variables, the loss
has to use the same weighting if reconstruction loss is to be utilized. The reconstruction loss is
based on the difference between the interpolation of the two inputs and the output of the entire
autoencoder. The MSE loss of an interpolated autoencoder can therefore be expressed as

LI-MSE =
1

N

N∑
i=1

||x̂α,i − xα,i||2 (3.5)

where x̂α,i is the reconstructed version of xα,i, where the latter is expressed as

xα,i = αx1,i + (1− α)x2,i (3.6)

where x1,i and x2,i are pixels within the inputs X1 and X2 respectively. N represents the number
of pixels.

One of the proposed HADs using this network topology is illustrated in Figure 3.5 with the
red colors highlighting the new implementations. This new setup will, from now on, be referred to
as the Interpolated Graph Autoencoder (IGAE). Here, the HSI is used for both inputs and fused
after being encoded. Each input is still denoted as X1 and X2. As the data is chosen randomly
from each input when training, there are hopes of obtaining some semantically meaningful data
from the fusion. The parallel encoders share their weights and biases.

In terms of parameters, the Interpolated Graph Autoencoder (IGAE) has all the same para-
meters as the conventional RGAE (Table 2.2), as well as the α parameter determining the balance
of the decision fusion. For the loss, it is calculated as with the conventional Robust Graph Autoen-
coder using the ℓ2,1 norm rather than the Mean Square Error loss, and the graph regularization
term. The loss is therefore expressed as
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Figure 3.5: Representation of the Interpolated Autoencoder.

LIGAE =
1

2N
||X̂α −Xα||2,1 +

λ

N
Tr[ZTL̂Z] (3.7)

where

Xα = αX1 + (1− α)X2. (3.8)

The detection map is calculated using Xα and X̂α. This is also illustrated in Figure 3.5 as the
inputs X1 and X2 are passed into the Detection Map block along with the network output X̂α.
To optimize the α value, a grid search from 0 to 1 using 0.1 increments is used. Since the entire
neural network needs to be trained for each test of a specific α parameter value, the grid search
for the parameter is not the same incremental value as the MK-RGAE since it would be highly
time-consuming.

To ease with implementing this Hyperspectral Anomaly Detector, the PyTorch package in
Python is utilized [57]. Since the RGAE is intended to be a backbone, it is translated from Matlab
to Python using the preexisting code [6].

3.5 PCA Based Kernel Interpolated Graph Autoencoder
for HAD

The Interpolated Graph Autoencoder does not include the use of preprocessing. This proposed
HAD therefore introduces preprocessing to the IGAE in the previous section. The modified Inter-
polated Graph Autoencoder is named the Kernel Interpolated Graph Autoencoder (K-IGAE) due
to the use of KPCA. Figure 3.6 illustrates the new setup with the red block highlighting the new
implementation to the IGAE. In the Preprocessing block, KPCA is performed. This setup is tested
to check if the combination of latent variables from a HSI that has been subject to preprocessing
and a default HSI can provide a better detection map. As the inputs X1 and X2 for the Encoder
need to share the same dimensionality, the output of the Preprocessing block has the same number
of spectral dimensions as the original HSI (F ). X1 is the KPCA output and X2 is the original
HSI. For the graph creation, PCA is still performed in the Spectral Band Reduction block.

As with the conventional RGAE, the decoder takes Z as input and computes X̂. The encoder
and the decoder are composed of the same number of layers, weights and biases, as with the
conventional RGAE. The loss function LK-IGAE is a combination of both the graph regularization
term and the ℓ2,1 norm, expressed as shown in Equation 3.7.
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Figure 3.6: Representation of the Interpolated Autoencoder utilizing KPCA.

Like implementing the IGAE, the K-IGAE utilizes the PyTorch package to define the neural
network [57]. The Python translation of the Matlab implementation of the Robust Graph Autoen-
coder is used as a backbone [6]. In terms of KPCA computation, the code created by X. Song et
al. is also used [54].

3.6 PCA Based Multikernel Interpolated Graph Autoen-
coder for HAD

This proposed HAD also utilizes the Interpolated Autoencoder explained in Section 3.4. What
makes this HAD different from the IGAE and the K-IGAE is the fact that it utilizes KPCA for both
of the inputs of the parallel encoders, which is why it is named the Multikernel Interpolated Graph
Autoencoder (MK-IGAE). Figure 3.7 illustrates the new design of the Hyperspectral Anomaly
Detector.
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Figure 3.7: Representation of the Interpolated Autoencoder utilizing multiple kernels for KPCA.
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The red blocks indicate the new additions that separate it from the IGAE. Two inputs, X1

and X2, are sent into the encoders and then combined using decision fusion of the latent variables
Z1 and Z2. Each of the inputs results from performing KPCA using two different kernels on the
HSI. For the layer setups, the encoder and decoder share the same dimensionalities as the RGAE
as shown in Table 2.1. In terms of loss, it is calculated the same way as for the IGAE and the
K-IGAE, shown in Equation 3.7.

The Preprocessing blocks are implemented using Matlab using the library described in Sec-
tion 3.1 [54]. The Spectral Band Reduction and the entire Graph term creation segment are
performed in Matlab. To accomplish this, the preexisting code for the RGAE is utilized. The
neural network is implemented in Python using the PyTorch package [57]. Here, the inputs X1,

X2, the Laplacian matrix L̂ and the ground truth of the Hyperspectral Image are loaded from
saved Matlab data files (.mat). They are then sent into the neural network.
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Results

This Chapter provides an analysis of the datasets used to measure the detection performance of
each proposed Hyperspectral Anomaly Detector. Following the dataset analysis, a description of
the test setup utilized to obtain the results achieved in this thesis is provided. Experimental testing
results are then shown, illustrating the performance of the HADs for different test setups. Each
HAD will be compared with the conventional RGAE, but not with each other. The chapter’s final
section compares the different proposed HADs detection performance and time score. This will
highlight what proposed HADs worked the best in terms of the goal of the thesis.

4.1 Dataset analysis

The datasets used to measure the performances of the proposed HADs are the ABU datasets [58].
These datasets can be sectioned into three categories, airport images, beach images, and images
of urban areas. There are four datasets of airports, 4 of beaches, and 5 of urban scenarios. In
terms of analysis, data size, numerical properties, spectral and spatial analysis’ are presented. The
first section, being Section 4.1.1, focuses on the numerical properties of each dataset. Section 4.1.2
analyzes the spectral signatures for a handful of datasets. Following that section, a spatial analysis
is shown (Section 4.1.3) with an exploration of how the preprocessing affects the data.

4.1.1 Numerical Properties of the Datasets

Table 4.1 shows the specifications of each dataset in terms of size. The table shows that the number
of spectral bands varies from 102-207 bands. Regarding spatial resolution, all images except abu-
beach-1 and abu-beach-4 are 100 × 100 pixels. The two mentioned datasets are larger in spatial
resolution, being 150 × 150 pixels. For the preprocessing methods, the larger datasets will likely
demand more processing power resulting in longer computational time. The worst datasets in
terms of this are the abu-beach-1 and the abu-beach-4 datasets, as their number of pixels are over
two times as many as any other dataset.

Table 4.2 shows an overview of other numerical properties of each dataset. As seen from the
table, the number of anomalies varies greatly from dataset to dataset. The abu-beach-3 dataset only
contains one single anomaly, while abu-beach-2 contains 58. However, this does not paint the entire
picture, as the number of anomalous pixels to all pixels ratio will affect an Autoencoder’s ability
to replicate anomalies. The more anomalies present in the dataset, given that they have similar
spectral properties, the more likely the autoencoder is to be able to reproduce the anomalies. This
could be a problem for datasets such as abu-airport-3, abu-beach-2, and abu-urban-3, assuming
the spectral properties of the anomalies are similar. Datasets that could prove easier to detect
anomalies based on the numerical properties are likely to be abu-beach-1 and abu-beach-3 as these
contain a low percentage of anomalous pixels that could cause the autoencoders severe problems
to replicate.
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Table 4.1: The height, width, number of spectral dimensions and the size of
each dataset.

Dataset H W F Size
abu-airport-1 100 100 205 2050000
abu-airport-2 100 100 205 2050000
abu-airport-3 100 100 205 2050000
abu-airport-4 100 100 191 1910000
abu-beach-1 150 150 188 4230000
abu-beach-2 100 100 193 1930000
abu-beach-3 100 100 188 1880000
abu-beach-4 150 150 102 2295000
abu-urban-1 100 100 204 2040000
abu-urban-2 100 100 207 2070000
abu-urban-3 100 100 191 1910000
abu-urban-4 100 100 205 2050000
abu-urban-5 100 100 205 2050000

Table 4.2: This table shows the anomaly pixels to all pixels ratio, the number
of anomalies, the number of anomalous pixels and the minimal and maximal
anomaly size (in pixels) for each dataset.

Dataset
Anomaly
Ratio

Number of
Anomalies

Number of
Anomalous
Pixels

Minimal
Anomaly
Size

Maximal
Anomaly
Size

abu-airport-1 0.0144 13 144 2 19
abu-airport-2 0.0087 2 87 43 44
abu-airport-3 0.0170 16 170 2 49
abu-airport-4 0.0060 3 60 10 39
abu-beach-1 0.0008 1 19 19 19
abu-beach-2 0.0202 58 202 1 7
abu-beach-3 0.0011 1 11 11 11
abu-beach-4 0.0030 7 68 3 18
abu-urban-1 0.0067 9 67 3 14
abu-urban-2 0.0155 20 155 4 16
abu-urban-3 0.0052 11 52 2 10
abu-urban-4 0.0272 25 272 4 34
abu-urban-5 0.0232 30 232 2 13

Table 4.3: This table shows the range of spectral values in each dataset.

Dataset Minimal Value Maximal Value
abu-airport-1 0 6604
abu-airport-2 0 6644
abu-airport-3 -1 5651
abu-airport-4 -1 5061
abu-beach-1 -32 6593
abu-beach-2 -19 4100
abu-beach-3 -34 5404
abu-beach-4 0 1
abu-urban-1 -50 6534
abu-urban-2 -50 14060
abu-urban-3 0 7208
abu-urban-4 -2 19492
abu-urban-5 -1 7120
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Table 4.3 shows each dataset’s minimal and maximal value. Regarding the range of values
within each dataset, the wide spread of spectral intensities proves the need for normalization. This
is therefore done for all of the proposed HADs and the conventional RGAE.

4.1.2 Spectral Analysis

Two datasets from each of the three scenarios have been chosen for the spectral analysis. This is
done to highlight the difference between the best and worst anomalies to background separability
for each scenario. Each dataset has its corresponding plot illustrating the mean value of the
two categories, background and anomalous pixels. The standard deviation for both categories is
also included in these plots. Low overlap between the two categories does not necessarily mean
that the dataset contains anomalies that are easy to classify. This is due to the background and
the anomalies possibly deviating from their respective mean graphs. However, this analysis can
indicate which datasets are easier to separate the anomalies from the background. Finally, all data
has been normalized before calculating the mean and standard deviation for the anomalies and the
background.

Figure 4.1 illustrates spectral plots for the datasets abu-airport-2 and abu-airport-4. For abu-
airport-2, the first 50 spectral bands show a gap between the anomalies’ mean and the background’s
mean. This is seen in Figure 4.1a. However, the standard deviation of each category shows that
there is an overlap between the intensities of the anomalies and the background. On the other
hand, it shows slightly better separability than the abu-airport-4 dataset when looking at the
first 50 spectral bands. It is worth noting that this does not apply to the other spectral bands.
When looking at spectral band 60 and onwards, the abu-airport-4 dataset shows slightly better
separability, although the relative spectral intensity difference between the mean anomaly and the
mean background is minimal.

(a) abu-airport-2 (b) abu-airport-4

Figure 4.1: Spectral analysis plot of mean and standard deviation of anom-
alies and background pixels for abu-airport-2 and abu-airport-4.

In Figure 4.2, an overview of the spectral plots for the abu-beach-2 and abu-beach-4 can be
seen. The first noticeable difference is that the overlap between the anomalies and background
pixels in the spectral signature is far worse for the abu-beach-2 dataset. This could indicate
that separating the anomalies from the background in the abu-beach-4 dataset will be easier.
Regarding the standard deviation for the abu-beach-2 dataset, there is a relatively big span of
spectral intensity for almost all of the bands. This could be a result of noise within the image.

For the urban scenarios, the spectral plots of abu-urban-1 and abu-urban-3 can be seen in
Figure 4.3. As seen in Figure 4.3a, there is no overlap between the mean and standard deviation of
the two categories in the first 40-45 spectral bands. This indicates high separability and potentially
an easy dataset to identify anomalies. Although not bad, the abu-urban-3 dataset shows a slight
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(a) abu-beach-2 (b) abu-beach-4

Figure 4.2: Spectral analysis plot of mean and standard deviation of anom-
alies and background pixels for abu-beach-2 and abu-beach-4.

overlap in the same first spectral bands. The mean spectral signature of the background swaps
from being lower than that of the anomaly mean to higher for the abu-urban-3 dataset from about
the 60th spectral band and onwards. This is not the case for the abu-urban-1 dataset, as the mean
of the anomaly is constantly higher than that of the background.

(a) abu-urban-1 (b) abu-urban-3

Figure 4.3: Spectral analysis plot of mean and standard deviation of anom-
alies and background pixels for abu-urban-1 and abu-urban-3.

4.1.3 Spatial Analysis

For the spatial analysis, the three datasets abu-airport-2, abu-beach-2, and abu-urban-1 have been
chosen for a qualitative analysis of the preprocessing methods. These datasets have been chosen
as they vary in anomaly to background separability, as described in the previous section. Each
preprocessing method, along with the default HSI image, has been compressed into one spectral
dimension to compare the different methods better. This is done by summarizing all spectral
bands. To help locate each anomaly in the given dataset, Figure 4.4 has been included. This figure
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illustrates the location and size of the anomalies in each of the three datasets.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.4: Ground truth overview of three datasets.

Figure 4.5 illustrates the default HSI. Although visible to the human eye, the anomalies are
weak in overall intensity. In Figure 4.5a, the planes (which are the anomalies) are noticeable,
but only the central parts of them. As seen in the abu-urban-1 plot, the anomalies are very easy
to locate, which was also suggested by the spectral analysis of the dataset. Noise is a potential
problem as both the object in the lower left of Figure 4.5a, the curve in Figure 4.5b, and the large
object in Figure 4.5c are not considered to be anomalies. The noise in the abu-beach-2 dataset
was also indicated in the spectral analysis.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.5: Spatial overview of three of the default (unprocessed) datasets.

Some visible improvements upon the anomalies visibility have been achieved using PCA, as
seen in Figure 4.6. In Figure 4.6a, the planes have a larger area of high spectral intensity compared
with the default image in Figure 4.5a. Noise is still an issue, but the curve in Figure 4.6b and the
object in Figure 4.6c have slightly reduced intensity. The background of the abu-beach-2 dataset
has also seen a reduction in intensity, which highlights the anomalies even more. With the slight
noise reduction, this could be an improvement upon just using the default HSI as input.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.6: Spatial overview of PCA performed on three of the datasets.

The results are harder to interpret with the appliance of KPCA utilizing the Sigmoid kernel.
This can be seen in Figure 4.7. The intensity levels for the noise objects mentioned earlier have
seen a significant reduction in comparison to the default HSI image. However, the occurrence and
intensity of other noise has increased. A result of this is a more unclear image. This is most
noticeable for the abu-urban-1 dataset in Figure 4.7c. In terms of the anomalies, they are almost
identical in intensity compared to not using any form of preprocessing. On the other hand, it
seems like more of the actual anomalies have been highlighted. Since the noisy objects have seen
a considerable decrease in intensity without negatively affecting the anomalies, this could prove to
be a good preprocessing method.
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(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.7: Spatial overview of KPCA utilizing the Sigmoid kernel performed
on three of the datasets.

Figure 4.8 shows the use of KPCA with the Laplacian kernel on the default dataset. The first
notable change is the inversion of overall intensity as most of the anomalies’ spectral intensity has
been lowered and the background increased. That said, the anomalies for the abu-airport-2 dataset
have a somewhat clear outline. However, this can not be said for the abu-beach-2 and abu-urban-1
datasets, as both seem very noisy. It is also unclear whether an autoencoder can pick up upon the
anomalies when their intensity has been lowered. As the images are inverted and the intensity of
the anomalies are reduced by a large margin, it is hard to believe that this form of preprocessing
will achieve better results than that of not using any form of preprocessing methods.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.8: Spatial overview of KPCA utilizing the Laplacian kernel per-
formed on three of the datasets.

With the use of KPCA using the Polynomial kernel, as seen in Figure 4.9, the intensity of
the anomalies has been reduced. Some anomalies have even disappeared entirely, indicating that
this kernel should not result in better detection performance when used as preprocessing for a
Hyperspectral Anomaly Detector. On the other hand, the background seems more uniform, which
could result in the opposite effect.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.9: Spatial overview of KPCA utilizing the Polynomial kernel per-
formed on three of the datasets.

As with the Laplacian kernel, the Exponential kernel produces an inverted image when using
KPCA on the default datasets. When looking at the abu-beach-2 dataset, the highlight around
the anomalies has a high intensity, while the center of the anomalies is pretty dark. This could
potentially confuse a HAD. For the abu-airport-2 and abu-urban-1, both datasets have reasonably
well-defined anomalies. There is, however, a lot of noise in the urban scenario and it is hard to say
whether the autoencoders can output a relevant reconstruction of the HSI given the inverted anom-
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alies. Therefore, It should not be expected to see an improvement when utilizing the Exponential
kernel for KPCA as preprocessing.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.10: Spatial overview of KPCA utilizing the Exponential kernel per-
formed on three of the datasets.

Figure 4.11 represents the low rank representation when performing RPCA on each dataset.
As expected with this method, the anomalies have been reduced in intensity. A lot of the noise
has been reduced as well. On the other hand, this means that the noise will be included in the
sparse representation.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.11: Spatial overview of the low rank representation of RPCA per-
formed on three of the datasets.

Figure 4.12 shows an overview of the sparse representation when performing RPCA on the
datasets. It is very close to the original dataset regarding the intensity of the anomalies and the
noise, but the background has been slightly reduced. As this preprocessing method hasn’t proven
to be that adequate to the human eye, a huge performance boost is not likely utilizing this method.

(a) abu-airport-2 (b) abu-beach-2 (c) abu-urban-1

Figure 4.12: Spatial overview of the sparse representation of RPCA per-
formed on three of the datasets.

4.2 Results From Testing

This section will go through all the experimental testing performed on the different proposed
changes and implementations done to the Robust Graph Autoencoder. The first two subsections
describe the test setup and the optimization of the conventional RGAE, respectively. The RGAE
had to be optimized as all the proposed HADs utilize some, if not all, of the RGAEs parameters.
Section 4.2.3 goes over the tests done to the preprocessing additions as well as the change in
layers while Section 4.2.4 goes over the testing of the Interpolated Autoencoder implementation.
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Each section will give a presentation of the detection performance achieved from each setup and
a parameter description for the best-performing implementation where it needs to be specified.
ROC curves and detection maps are presented to help visualize the detection performances.

4.2.1 Test Setup

Table 4.4 showcases the system specifications of the computer utilized for training models imple-
mented using Python to define the neural network. The setup includes an AMD Ryzen 5 5600X
processor. It is accompanied by an NVIDIA GeForce RTX 3060 graphics card with 12GB of video
memory. The computer also has 16GB of DDR4 RAM, ensuring efficient memory management
during model training.

Table 4.4: System specifications for the computer used when training the
different models.

Item Specification
Processor AMD Ryzen 5 5600X, 3.7GHz, 6 cores, 12 Logical processors
Graphics Card NVIDIA Geforce RTX 3060 12GB
RAM 16GB DDR4
Storage 512GB M.2 SSD
OS Microsoft Windows 10 Pro
System manufacturer Multicom

4.2.2 Optimizing the Conventional RGAE

As every proposed HAD will use the conventional RGAE for comparison and as a backbone, it
needed to be optimized. The parameters this concern are the λ, K, n hid and µ parameters. A
grid search chose each parameter among values specified by the original creators [6]. These values
are [10−1, 10−2, 10−3, 10−4] for the λ parameter, [50, 100, 150, 300, 500] for K and [0.1, 0.01, 0.001]
for the learning rate µ. The number of hidden dimensions used is 100 as it was proven to be the
most efficient, as stated by G. Fan et al. [6]. The number of epochs n epochs were set to 500.

Table 4.5 show all of these optimized parameters. All parameters, with n epochs as an ex-
ception, are tuned to each dataset using the grid search. n epochs is not tuned as early stopping
prevented the model’s training from ever reaching the limit of epochs if the loss were to ever
converge.

Table 4.5: Parameter settings for each dataset.

Dataset λ K n hid µ n epochs
abu-airport-1 0.01 300 100 0.01 500
abu-airport-2 0.001 50 100 0.01 500
abu-airport-3 0.01 150 100 0.01 500
abu-airport-4 0.0001 150 100 0.01 500
abu-beach-1 0.0001 300 100 0.01 500
abu-beach-2 0.0001 500 100 0.01 500
abu-beach-3 0.0001 200 100 0.01 500
abu-beach-4 0.0001 150 100 0.01 500
abu-urban-1 0.001 100 100 0.01 500
abu-urban-2 0.1 150 100 0.01 500
abu-urban-3 0.01 500 100 0.001 500
abu-urban-4 0.1 50 100 0.001 500
abu-urban-5 0.01 100 100 0.01 500

4.2.3 Testing of RGAE Using Preprocessing and Modified Layer Setup

This section presents all results achieved by testing the HADs utilizing the conventional Autoen-
coder. First, the Preprocessing based RGAE for HAD is in focus. Table 4.6 shows the results of
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the different preprocessing methods used for the network and graph input. The spectral dimen-
sionality of the output for each preprocessing technique is also specified in the table. As mentioned
in Section 3.1, the PCA and KPCA methods use the first spectral dimension as input for the image
segmentation. With the RPCA methods, all spectral bands were summed into an image of two
dimensions.

Table 4.6: AUC score for different kernels and dimensions for each data-
set. The numbers in the Method column denotes the number of dimensions
utilized.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551
PCA 50 0.5796 0.9119 0.8562 0.7882
PCA 100 0.5898 0.9427 0.9089 0.8211
PCA 300 0.7458 0.7714 0.6067 0.7002
Sigmoid 50 0.9245 0.9576 0.9392 0.9403
Sigmoid 100 0.9256 0.9583 0.9451 0.9432
Sigmoid 300 0.9319 0.9595 0.9466 0.9460
Laplace 50 0.0521 0.2814 0.1814 0.1724
Laplace 100 0.0648 0.2509 0.2485 0.1927
Laplace 300 0.1517 0.3403 0.3726 0.2947
Exponential 50 0.1873 0.5456 0.3848 0.3735
Exponential 100 0.2797 0.5045 0.4342 0.4083
Exponential 300 0.5016 0.5874 0.6065 0.5684
Polynomial 50 0.8106 0.9483 0.8980 0.8866
Polynomial 100 0.8273 0.9458 0.8975 0.8907
Polynomial 300 0.8315 0.9426 0.8931 0.8894
RPCA Sparse Rank F 0.7859 0.9114 0.7982 0.8293
RPCA Low Rank F 0.7451 0.8832 0.6809 0.7629

As is clear from the table, the preprocessing method that worked the best was the Sigmoid
kernel for the KPCA utilizing 300 spectral dimensions. However, no method was better than the
default RGAE. The results from the Exponential and Laplacian kernels were registered as terrible,
but an observation was made when plotting the detection maps. These two kernels invert the
intensities of the anomalies and the background, causing a terrible detection performance. This
was also a concern, as stated in the dataset analysis (Section 4.1.3). The PCA method also proved
to result in bad performances. Using RPCA was not expected to provide good results, as stated
in the dataset analysis, due to the substantial presence of noise in the sparse representation. This
proved to be a correct expectation as seen from the results achieved using the RPCA preprocessing
method. All preprocessing methods except for the Sigmoid KPCA utilizing 300 dimensions will
therefore be excluded from the comparison of the best performing proposed HADs in Section 4.3.

Figure 4.13 shows an overview of the detection maps for some of the most successful methods
of preprocessing methods utilized by the RGAE. The detection maps are all for the abu-airport-2
dataset. From the figure, it is clear that the use of the Laplacian kernel causes a bad AUC score
due to the inversion of the data. This was also expressed as a potential issue in the dataset analysis.
Using the Polynomial kernel, there is slightly more noise in the detection map compared to the
default RGAE, but far less noise than using the Sigmoid kernel. However, using the Sigmoid kernel
resulted in the best performance, likely due to the anomalies increasing in size, although at the
cost of added noise.

Some ROC curves for the abu-airport-2 and the abu-beach-2 datasets have been plotted and
illustrated in Figure 4.14. These plots show what was evident in the overall AUC scores and the
detection map, being that the Sigmoid kernel is superior to the other preprocessing methods. The
ROC curve for the Sigmoid-based preprocessing HAD in Figure 4.14a is steeper than the others,
indicating a higher sensitivity. It is also evident that the abu-beach-2 dataset proved to be a
problematic HSI to locate the anomalies for the HADs, as predicted in the spectral analysis.
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(a) Dataset (b) Ground Truth (c) Default RGAE

(d) Laplace 50 (e) Poly 100 (f) Sigmoid 300

Figure 4.13: Overview of the Detection Maps for the RGAE using different
preprocessing techniques on the abu-airport-2 dataset.

(a) abu-airport-2 (b) abu-beach-2

Figure 4.14: Overview of the ROC curves for the RGAE using different
preprocessing techniques.

Results of the tests conducted using the Multiple Kernel setup with RGAEs in parallel are
shown in Table 4.7. The kernels used for the KPCA were based on what kernels proved to give
meaningful results when testing the different KPCA methods as preprocessing for the conventional
RGAE. The Sigmoid and Polynomial kernels were chosen as they had the highest performances,
as shown in Table 4.6. The Laplacian kernel was also chosen for testing to check if the inversion
of intensity could prove meaningful in a detection map fusion. This kernel is also quite different
regarding the mathematical operation performed on the input compared to the Sigmoid kernel.

As seen in Table 4.7, the use of multiple KPCA kernels for two RGAEs in parallel resulted
in an overall higher detection when utilizing 100 dimensions with the combination of the Sigmoid
and Laplacian kernel. The conventional RGAE beat the multikernel method when utilizing all
other combinations except for the MK-RGAE Sigmoid/Laplace 300 setup. Since the multikernel
method using 100 dimensions (Lapl/Sigm) had the best detection performance, it will be brought
for further comparison in Section 4.3.
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Table 4.7: AUC score for different MK-RGAE setups. Method column
denotes the kernel setup and the number of spectral dimensions used.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

MK-RGAE
Sigmoid/Laplace 50

0.9313 0.9341 0.8918 0.9170

MK-RGAE
Sigmoid/Laplace 100

0.9686 0.9510 0.9865 0.9701

MK-RGAE
Sigmoid/Laplace 300

0.9719 0.9373 0.9691 0.9602

MK-RGAE
Sigmoid/Polynomial 50

0.9299 0.9355 0.8914 0.9168

MK-RGAE
Sigmoid/Polynomial 100

0.9301 0.9309 0.8943 0.9165

MK-RGAE
Sigmoid/Polynomial 300

0.8481 0.9103 0.8935 0.8847

Detection maps for some of the different MK-RGAE setups are shown Figure 4.15 for the
abu-airport-2 dataset. It is evident that the reason why the detection performance on the airport
datasets were higher for these MK-RGAE setups is due to the more noticeable anomalies when
compared to the conventional RGAE. A side effect of this is, sadly, the addition of more noise as
we also saw with just using a single kernel for preprocessing. It is difficult for the human eye to
determine the best detection map among the two proposed MK-RGAEs in the figure. However, the
actual AUC score reveals that the MK-RGAE with the combination of the Sigmoid and Laplacian
kernel is the best.

(a) Dataset (b) Ground Truth (c) Default RGAE (d) Sigm/Lapl 100 (e) Sigm/Poly 50

Figure 4.15: Overview of the Detection Maps for the best performing MK-
RGAE setups on the abu-airport-2 dataset.

The ROC plots in Figure 4.16 also show that the two best performing MK-RGAEs are very
similar in terms of performance on the abu-airport-2 dataset. Both of the proposed models con-
fidently beat the conventional RGAE in terms of AUC score on the two datasets that are used
for the ROC plots, although the performance gap is marginal for the beach scene. The curves in
the ROC plot for the abu-beach-2 dataset also indicate a higher sensitivity for the MK-RGAEs,
as their ROC curves are steeper than the curve for the conventional RGAE.
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(a) abu-airport-2 (b) abu-beach-2

Figure 4.16: Overview of the ROC curves for the MK-RGAE setups. The
MK-RGAE Sigm/Lapl uses 100 spectral dimensions whilst the MK-RGAE
Sigm/Poly uses 50.

Table 4.8 shows the optimal α parameters for the decision fusion of the MK-RGAE for the
best performing combinations of the two kernels. Here, the input X1 is the HSI with the KPCA
with the Sigmoid kernel performed, and X2 has been subject to either the Polynomial or Laplacian
kernel.

Table 4.8: Alpha parameter setting for each dataset for the MK-RGAE Sig-
moid/Laplace 100 and the MK-RGAE Sigmoid/Polynomial 50.

Dataset
MK-RGAE (Sigm/Lapl)

100 αMK-RGAE,1

MK-RGAE (Sigm/Poly)
50 αMK-RGAE,2

abu-airport-1 0.00 1.00
abu-airport-2 0.93 1.00
abu-airport-3 0.84 0.00
abu-airport-4 0.03 0.92
abu-beach-1 0.99 0.99
abu-beach-2 0.97 0.00
abu-beach-3 0.02 1.00
abu-beach-4 1.00 0.00
abu-urban-1 0.01 0.21
abu-urban-2 0.86 0.04
abu-urban-3 0.00 0.52
abu-urban-4 0.99 0.00
abu-urban-5 0.01 0.14

The results achieved by testing the RGAE with additional layers can be seen in Table 4.9.
Although it is evident from the table that the conventional RGAE method resulted in overall better
detection performance, the additional layers utilizing both the ReLU/Sigmoid activation functions,
as specified in Section 3.3, were better in both the airport and in the urban scenarios. The method
utilizing Sigmoid/Sigmoid proved to be better than the default method in the urban scene, but not
anywhere else. It is also clear that the Sigmoid/Sigmoid network failed to achieve better detection
performance than the ReLU/Sigmoid version. With these results, the ReLU/Sigmoid network will
be discussed and further analyzed in Section 4.3.
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Table 4.9: AUC score for different layer setups. Method column denotes the
layer setup in terms of activation functions used.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

RGAE
Sigmoid/Sigmoid

0.9225 0.9433 0.9802 0.9511

RGAE
ReLU/Sigmoid

0.9373 0.9399 0.9812 0.9550

A figure illustrating the detection maps for the different layer setups is shown in Figure 4.17.
From the figures, it is possible to see that the modified layer setups have resulted in a less noisy
detection map than that of the conventional RGAE except for the noisy block in the lower left
corner of the dataset. One could also argue that the anomalies have slightly increased in size and
intensity for the new proposed layer setups.

(a) Dataset (b) Ground Truth (c) Default RGAE (d) Sigm/Sigm (e) ReLU/Sigm

Figure 4.17: Overview of the Detection Maps for the different layer setups
on the abu-airport-2 dataset.

From the ROC curves in Figure 4.18, there is an indication of a slight increase in performance
for the new layer setups for both of the datasets abu-airport-2 and abu-beach-2. As with the
MK-RGAE setups in Figure 4.16, the ROC curves for the proposed changes are steeper than that
of the conventional RGAE. Again, this indicates a higher sensitivity.

(a) abu-airport-2 (b) abu-beach-2

Figure 4.18: Overview of the ROC curves for the different layer setups.

The layer dimensions in Table 4.10 show both the dimensionality of the first and second layer
in the encoder and decoder. n hid1 and n hid2 are described in more detail in Section 3.3.
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Table 4.10: Parameter settings for each dataset in terms of layer dimension-
ality.

RGAE Sigmoid/Sigmoid RGAE ReLU/Sigmoid
Dataset n hid1 n hid2 n hid1 n hid2
abu-airport-1 50 25 200 100
abu-airport-2 200 100 100 50
abu-airport-3 50 25 50 25
abu-airport-4 200 100 100 50
abu-beach-1 200 100 200 100
abu-beach-2 200 100 200 100
abu-beach-3 100 50 50 25
abu-beach-4 200 100 100 50
abu-urban-1 50 25 100 50
abu-urban-2 50 25 50 25
abu-urban-3 50 25 50 25
abu-urban-4 200 100 50 25
abu-urban-5 100 50 100 50

4.2.4 Testing of New Architecture

This section will show the results of all the HADs utilizing the Interpolated Autoencoder. With the
Interpolated Graph Autoencoder, the detection performance achieved through testing can be seen
in Table 4.11. This HAD achieved underwhelming results compared to the conventional RGAE, as
seen from the table. Here, the IGAE was beaten on every dataset type in terms of average AUC
scores.

Table 4.11: AUC score for the IGAE in comparison with the RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

Interpolated Graph
Autoencoder

0.9174 0.9642 0.9708 0.9523

Figure 4.19 shows the detection maps for the abu-airport-2 dataset for both the conventional
RGAE and the IGAE. From the detection maps, it is clear that the Interpolated Graph Autoen-
coder has added a lot more noise than that of the conventional RGAE. On the other hand, the
anomalies themselves are more significant in size, covering more of the actual anomalous pixels.

(a) Dataset (b) Ground Truth (c) Default RGAE (d) IGAE

Figure 4.19: Overview of the Detection Maps for the IGAE on the abu-
airport-2 dataset.

From the ROC graphs in Figure 4.20, it is possible to see that the more prominent anomalies
in the detection map of the IGAE proved to result in higher detection performance. This is also
the case for the abu-beach-2 dataset. On the other hand, these results are not truly representative
as the average AUC scores were lower than that of the conventional RGAE.
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(a) abu-airport-2 (b) abu-beach-2

Figure 4.20: Overview of the ROC curves for the RGAE and the IGAE.

The optimal α parameter for each dataset for the IGAE can be seen in Table 4.12. As especially
seen in the beach scene, the interpolated autoencoder struggled to pick up upon any semantically
meaningful data when interpolating, giving an α value of 0.

Table 4.12: Alpha parameter setting for each dataset.

Dataset IGAE αIGAE

abu-airport-1 0.0
abu-airport-2 0.4
abu-airport-3 0.3
abu-airport-4 0.1
abu-beach-1 0.0
abu-beach-2 0.0
abu-beach-3 0.0
abu-beach-4 0.0
abu-urban-1 0.2
abu-urban-2 0.0
abu-urban-3 0.0
abu-urban-4 0.5
abu-urban-5 0.1

The kernels utilized for the K-IGAE were the Sigmoid kernel, as it proved to be the most
efficient in terms of performance when testing the different preprocessing techniques, as well as the
Polynomial and the Laplacian kernel. Table 4.13 show that this interpolation method improves
the average detection performance in every scenario when utilizing the Sigmoid kernel. The use
of the Laplacian and Polynomial kernels for KPCA proved to be not so effective. Using the
Laplacian kernel reduced the overall average AUC score significantly, but actually increased the
detection performance on the beach datasets. Using the Polynomial kernel improved the detection
performance slightly from the RGAE in terms of overall average AUC score. On the other hand,
it only improved upon the urban average AUC score.

Figure 4.21 shows the detection map for the three different K-IGAEs along with the con-
ventional Robust Graph Autoencoder. As many of the other detection maps have shown, larger
anomalies tend to result in a higher detection performance even with the addition of more noise.
This seems to be the case again as the K-IGAE utilizing the Sigmoid kernel has a detection map
containing more noise but larger anomalies, resulting in a higher AUC score. The use of the Poly-
nomial and the Laplacian kernels does not increase the size of the anomalies as much as with the
Sigmoid kernel, which is likely why the K-IGAEs utilizing the Polynomial and Laplacian kernels
does not result in as good performances.
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Table 4.13: AUC score for the K-IGAE in comparison with the RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

Kernel Interpolated
Graph Autoencoder (Sigm)

0.9337 0.9675 0.9834 0.9632

Kernel Interpolated
Graph Autoencoder (Poly)

0.9121 0.9635 0.9853 0.9560

Kernel Interpolated
Graph Autoencoder (Lapl)

0.9039 0.9697 0.9709 0.9499

(a) Dataset (b) Ground Truth (c) Default RGAE

(d) K-IGAE (Lapl) (e) K-IGAE (Poly) (f) K-IGAE (Sigm)

Figure 4.21: Overview of the Detection Maps for the different K-IGAE setups
on the abu-airport-2 dataset..

(a) abu-airport-2 (b) abu-beach-2

Figure 4.22: Overview of the ROC curves for the different K-IGAE setups.

The ROC curves shown in Figure 4.22 show the same indications as seen in the detection maps.
Larger anomalies, such as when using the Sigmoid kernel, result in better detection performance,
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although not by a large margin in all cases. In the airport scenery, only the K-IGAE using the
Sigmoid kernel beats the conventional RGAE, while it is beaten by all of the proposed K-IGAEs
on the beach dataset. Each dataset’s α values can be seen in Table 4.14.

Table 4.14: Alpha parameter setting for the Interpolated Autoencoder util-
izing KPCA for each dataset.

Dataset
K-IGAE (Sigm)

αK-IGAE,1

K-IGAE (Poly)
αK-IGAE,2

K-IGAE (Lapl)
αK-IGAE,3

abu-airport-1 0.5 0.0 0.0
abu-airport-2 0.7 0.0 0.0
abu-airport-3 0.4 1.0 0.2
abu-airport-4 0.4 0.0 0.1
abu-beach-1 0.5 0.0 0.0
abu-beach-2 0.5 1.0 0.1
abu-beach-3 0.4 0.3 0.0
abu-beach-4 0.1 0.0 0.0
abu-urban-1 0.2 0.1 0.0
abu-urban-2 0.4 0.2 0.0
abu-urban-3 0.6 0.0 0.0
abu-urban-4 0.4 0.5 0.2
abu-urban-5 0.8 0.9 0.0

As with the Multikernel RGAE, the Multikernel Interpolated Graph Autoencoder was tested
using the Sigmoid kernel in combination with the Polynomial and the Laplacian kernel. The Sig-
moid kernel was used in both combinations as it gave the overall best results when just performing
KPCA on the input of the RGAE. Another reason for using the Sigmoid kernel for both setups
is that it provided the best performance for the Kernel Interpolated Graph Autoencoder. Some
results from this testing are shown in Table 4.15. These tests used 50, 100, and 300 spectral
dimensions when performing the KPCA. From the table, it is clear that the MK-IGAE utiliz-
ing the Polynomial and Sigmoid kernels with 50 and 300 spectral dimensions resulted in the best
performing HAD in terms of total average AUC score. The utilization of the Laplacian kernel in
combination with the Sigmoid kernel proved to be a bad mix, as seen from the results. In the
coming figures, the HAD utilizing the Polynomial and Sigmoid kernels with 300 dimensions will be
used for comparison. This is due to it having the best detection performance on the airport data-
sets and the fact that it beat the conventional RGAE on the total AUC average. The MK-IGAE
using the Laplacian and Sigmoid kernels with 300 spectral dimensions will also be used as it was
the best-performing method using this kernel combination.

Table 4.15: AUC score for the Multikernel Interpolated Graph Autoencoder
in comparison with the conventional RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

MKIGAE 300 (Sigm/Poly) 0.9284 0.9567 0.9785 0.9564

MKIGAE 100 (Sigm/Poly) 0.9247 0.9567 0.9798 0.9557

MKIGAE 50 (Sigm/Poly) 0.9270 0.9622 0.9753 0.9564

MKIGAE 300 (Sigm/Lapl) 0.9233 0.9548 0.9777 0.9539

MKIGAE 100 (Sigm/Lapl) 0.9154 0.9608 0.9770 0.9531

MKIGAE 50 (Sigm/Lapl) 0.9194 0.9656 0.9699 0.9530

From Figure 4.23, it is evident that the detection maps for the MK-IGAEs are far noisier
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than the conventional RGAE. As mentioned several times with other proposed modifications, the
good side of this is that more of the anomalies have been marked as anomalous in the detection
maps. This time, however, it proved overly noisy for the abu-airport-2 dataset, resulting in worse
detection performance for both proposed architectures.

(a) Dataset (b) Ground Truth (c) Default RGAE (d) MK-IGAE 300
(Poly/Sigm)

(e) MK-IGAE 300
(Lapl/Sigm)

Figure 4.23: Overview of the Detection Maps for the different MK-IGAE
setups on the abu-airport-2 dataset.

Figure 4.24 show some of the ROC curves for the conventional RGAE and the proposed
MK-IGAEs. For the datasets in question, all the HADs performances are very similar. The RGAE
just about beats the proposed MK-IGAEs on the abu-airport-2 dataset while being slightly worse
on the abu-beach-2 dataset. Among the two Multikernel Interpolated Graph Autoencoders, the
one utilizing the Polynomial and the Sigmoid kernels proved to be best overall. On the other hand,
it seemed to under-perform on these datasets compared to its rivaling MK-IGAE setup.

(a) abu-airport-2 (b) abu-beach-2

Figure 4.24: Overview of the ROC curves for the different MK-IGAE setups.

Table 4.16 show the optimal α parameters for the Multikernel Interpolated Graph Autoencoder
utilizing the Polynomial and the Sigmoid kernels as well as the MK-IGAE utilizing the Sigmoid
and Laplacian kernels. Here, X1 is the output when performing KPCA using the Sigmoid kernel,
and X2 is the output when using the Polynomial or Laplacian kernel.
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Table 4.16: Alpha parameter setting for the Multikernel Interpolated Graph
Autoencoder.

Dataset
MK-IGAE 300

(Sigm/Poly) αMK-IGAE,1

MK-IGAE 300
(Sigm/Lapl) αMK-IGAE,2

abu-airport-1 0.0 0.0
abu-airport-2 0.0 0.0
abu-airport-3 0.9 0.3
abu-airport-4 0.0 0.1
abu-beach-1 0.0 0.0
abu-beach-2 0.0 0.5
abu-beach-3 0.3 0.1
abu-beach-4 0.9 0.3
abu-urban-1 0.4 0.1
abu-urban-2 0.4 0.1
abu-urban-3 0.0 0.0
abu-urban-4 0.6 0.2
abu-urban-5 0.4 0.0

4.3 Final Performance Comparison of Proposed HADs

This section will compare the different proposed HADs with each other in terms of AUC and
time scores. All parameters used for each proposed HAD will be specified in Section 4.3.1. The
following subsection, being Section 4.3.2, compares the detection performances in the form of AUC
score for all proposed HADs. Detection maps and ROC plots are also presented to compare the
different methods. Although not a focus point of the thesis, Section 4.3.3 describes the time scores
of all the proposed HADs with the inclusion of the conventional RGAE. Here, scatter plots of the
time score and the average AUC scores are shown to help visualize the results. Each subsection
compares the preprocessing changes and the layer changes, then the architecture changes. The
best performing HAD, concerning AUC score, utilizing a conventional AE will then be compared
to the best performing HAD utilizing an IAE.

4.3.1 Parameters of HADs

The results presented in the coming sections are for the specified HADs in the following list. The
parameters for each HAD have been optimized to a degree during the experimental testing. For a
more detailed explanation of this process, please read Section 4.2 explaining the results from the
experimental testing.

• RGAE using KPCA: This setup is the Preprocessing based RGAE using the conventional
RGAE network parameters specified in Table 4.5. The KPCA performed on the input of the
AE uses the Sigmoid kernel with 300 principal components regarding spectral bands.

• MK-RGAE: As with the RGAE using KPCA, the MK-RGAE utilizes the conventional RGAE
parameters specified in Table 4.5. The kernels used are the Sigmoid and Laplacian kernels
with 100 spectral dimensions. For the decision fusion, the αMK-RGAE,1 parameter shown in
Table 4.8 is used.

• RGAE with Additional Layers: The layer setup used with the addition of layers is the
ReLU/Sigmoid setup. This implementation utilizes all of the parameters shown in Table 4.5,
except for the dimensionality of the layers. For the layer dimensionality, the n hid1 and
n hid2 parameters use the optimized values shown in Table 4.10.

• IGAE: The Interpolated Graph Autoencoder keeps all of the default parameters from the
conventional RGAE, shown in Table 4.5, with the addition of the αIGAE shown in Table 4.12.

• K-IGAE: The Kernel Interpolated Graph Autoencoder utilizes the Sigmoid kernel. As with
the IGAE, all of the conventional RGAE parameters from Table 4.5 are used with the addition
of the αK-IGAE,1 shown in Table 4.14.

49



Chapter 4 Results

• MK-IGAE: For the Multikernel Interpolated Graph Autoencoder, the Sigmoid and Polyno-
mial kernels are used with a spectral dimensionality of 300. The default optimized parameters
for the conventional RGAE, shown in Table 4.5, are also used. Finally, the parameter used
for the decision fusion is the αMK-IGAE,1 presented in Table 4.16.

4.3.2 Detection Performance

This section compares the detection performances of all the proposed HADs with the inclusion
of the conventional RGAE. Table 4.17 show the results of the most successful implementation
among the proposed changes to the RGAE in terms of added preprocessing and changed layer
setup. It is clear from the table that the use of multiple KPCA methods for preprocessing, being
the MK-RGAE, resulted in a higher detection performance beating the conventional RGAE in
total average. For the airport datasets, the increase in average AUC score is almost 0.05, which
is an enormous improvement. The only scenario where the average of the Multikernel RGAE was
worse than the default is the beach scene. Here, the overall difference is about 0.005 in AUC score.
These results show that even though the two preprocessing methods do not improve detection
performance when used separately, semantically meaningful data can still be derived from their
combined use. This might be because the Laplacian kernel highlighted the anomalies with a clear
outline, as noticed in the dataset analysis (Section 4.1.3), as well as the Sigmoid kernel increasing
the anomaly size and slightly the anomaly intensity. It is however somewhat surprising that the
Laplacian kernel proved to be the best combination with the Sigmoid kernel due to the inversion
of spectral intensity.

Table 4.17: Results from changes to the RGAE and the addition of prepro-
cessing compared with the conventional RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

RGAE using KPCA 0.9319 0.9595 0.9466 0.9460

MK-RGAE 0.9686 0.9510 0.9865 0.9701

RGAE with
Additional Layers

0.9373 0.9399 0.9812 0.9550

Using one preprocessing technique, such as the RGAE with KPCA, proved to achieve dis-
appointing results except for the airport scene. In that scenery, using a singular KPCA kernel
resulted in a detection performance almost 0.01 higher in average AUC score. As already seen in
Section 4.1, none of the preprocessing techniques worked that great by themselves, which could be
a result of the problems such as clarity, noise, and the inversion of intensity for some of the kernels
used with KPCA. Comparing this method to the MK-RGAE, it is truly disappointing.

The addition of more layers was a well-performing method, outperforming the default RGAE
in the airport and urban scenario. The most significant improvement of this HAD was for the
average AUC score in the airport scenery, with an increase of almost 0.014, which is a significant
improvement. Conversely, it proved to be slightly worse in terms of overall detection performance
due to the worse performance in the beach scenery. Compared to the MK-RGAE, the addition of
layers was beaten in every scenario, with the most significant gap in AUC being for the airport
datasets.

Figure 4.25 shows some ROC plots for the different preprocessing setups and the addition
of layers. The datasets used for this were the abu-airport-2 and the abu-beach-2 datasets. From
the curves, all of the proposed implementations seem to outperform the conventional RGAE with
the MK-RGAE achieving an impressive AUC score of approximately 0.98. The other proposed
implementations, such as using a singular kernel for preprocessing, are a couple of steps behind
while still achieving satisfactory results. It must be noted that the AUC scores for the airport
dataset is not surprising as all of these setups proved to beat the conventional RGAE in overall
AUC average for the airport datasets. When looking at the ROC curves for the abu-beach-2
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dataset, the MK-RGAE shows its weakness that was spotted by the average AUC score on the
beach datasets. Although achieving a better AUC score than the conventional RGAE, it still
underperforms compared to the less complex implementations. The use of KPCA for preprocessing
shows that it can sometimes be beneficial even though it mostly underperforms compared to the
conventional RGAE and the other proposed HADs.

(a) abu-airport-2 (b) abu-beach-2

Figure 4.25: Overview of the ROC curves for the proposed changes in pre-
processing and layer setups for a set of selected datasets.

The detection maps for all of the proposed additions of preprocessing and in the layer setup
for the abu-airport-2 dataset can be seen in Figure 4.26. Here, the use of KPCA shows that
the anomalies increase in size whilst adding a small quantity of noise. The broader coverage of
the anomalies is likely the reason for the higher detection performance. When looking at the
Multikernel RGAE detection map, the anomaly coverage is much better than for the RGAE, and
the intensity of the anomalies has also increased. This comes at the cost of more noise, but the
higher intensity is probably the reason for the impressive AUC score seen from the ROC curve.
All of this was somewhat expected as the Sigmoid kernel increased the size and intensity of the
anomalies at the cost of increasing the occurrence of noise within the HSI. For the Preprocessing
based RGAE utilizing the Sigmoid kernel for KPCA, we also see that the object in the lower left
has decreased in intensity. There has also been an increase in the occurrence of different noise, as
predicted in the dataset analysis. Finally, the addition of layers seems to have lowered the intensity
of noise whilst slightly increasing the intensity of the anomalies. An exception to the decrease in
noise is the noisy box in the lower left of the detection map. Among all proposed HADs, it is far
easier to see the anomalies in the MK-RGAEs detection map.

(a) Ground Truth (b) RGAE (c) RGAE using
KPCA

(d) MK-RGAE (e) RGAE with Ad-
ditional Layers

Figure 4.26: Overview of the Detection Maps for abu-airport-2 for each of
the models in Table 4.17.

The detection maps for the abu-beach-2 datasets can be seen in Figure 4.27. For the RGAE
utilizing KPCA and the MK-RGAE, their detection maps show similar habits as with the abu-
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airport-2 dataset. This refers to the larger anomaly size with the addition of more noise. The
anomalies for the MK-RGAEs detection map are very hard to locate, likely due to the Laplacian
kernel inverting the intensity of the anomalies. Adding more layers increased the noise, which
is the opposite of what happened with the airport dataset. On the other hand, the anomalies
intensity slightly increased, which is likely the reason for the higher AUC score than that of the
conventional RGAE.

(a) Ground Truth (b) RGAE (c) RGAE using
KPCA

(d) MK-RGAE (e) RGAE with Ad-
ditional Layers

Figure 4.27: Overview of the Detection Maps for abu-beach-2 for each of the
models in Table 4.17.

In Table 4.18, all of the best results from using the Interpolated Autoencoder can be seen.
From the table, it is clear that the Kernel Interpolated Graph Autoencoder results in a better
HAD in terms of detection performance in comparison to the conventional RGAE and the other
proposed HADs. It performs the best on 6 out of the 13 datasets when all proposed architectures
are considered. The most significant leap in AUC score is with the urban datasets, where the total
average increased by slightly more than 0.01. In terms of overall AUC average, it increased by
almost 0.01.

Table 4.18: Results different implementations of the Interpolated Autoen-
coder compared with the conventional RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 0.9237 0.9643 0.9728 0.9551

IGAE 0.9174 0.9642 0.9708 0.9523

K-IGAE 0.9337 0.9675 0.9834 0.9632

MK-IGAE 0.9284 0.9567 0.9785 0.9564

With the Interpolated Graph Autoencoder, the performance is slightly worse than that of the
conventional RGAE. Although almost matching the conventional RGAE on the beach scene, the
addition of the Interpolated Autoencoder without preprocessing proved to be underwhelming on
the airport and urban datasets. The overall AUC score fell by about 0.03.

Finally, the Multikernel Interpolated Graph Autoencoder did increase the overall detection
performance. The total average AUC score increased with slightly more than 0.001 compared to
the conventional RGAE. While this is not a significant increase, the increase of AUC score for
the airport and urban datasets is about 0.005. This came at the cost of worse performance on the
beach scenery. On the other hand, the MK-IGAE underperformed compared to the slightly less
complex K-IGAE, which is an unsatisfactory result.

Some ROC curves are shown in Figure 4.28, illustrating the performance difference between
the different HADs utilizing the Interpolated Autoencoder. Surprisingly, given the lower average
AUC score for the airport scene, the IGAE is the best-performing model on the abu-airport-2
scene, with the K-IGAE a solid step behind. However, the MK-IGAE proved to under-perform
on this dataset, being beaten by the conventional RGAE. For the abu-beach-2 dataset, all of the
proposed models using the Interpolated Autoencoder proved to result in a higher AUC score. The
ROC curves for these models are also steeper than that of the conventional RGAE, indicating a
higher sensitivity.
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(a) abu-airport-2 (b) abu-beach-2

Figure 4.28: Overview of the ROC curves for the proposed changes in archi-
tecture for a set of selected datasets.

The detection maps of the abu-airport-2 dataset from the proposed new architectures can be
seen in Figure 4.29. As we see from the conventional RGAE, there is some noise in the bottom
right, as predicted to be a problem in the dataset analysis. The anomalies are small but still
possible to identify by the human eye. In terms of noise, the IGAE has slightly improved upon the
issue at the cost of the anomalies being slightly lowered in intensity. Their overall size, however,
has increased, which is likely the reason for the higher detection performance for that specific
dataset.

(a) Ground Truth (b) RGAE (c) IGAE (d) K-IGAE (e) MK-IGAE

Figure 4.29: Overview of the Detection Maps for abu-airport-2 for each of
the models in Table 4.18.

With the Kernel Interpolated Graph Autoencoder, there is a lot of added noise. On the other
hand, the anomalies have both increased in size and intensity. This most likely compensates for
the added noise, leading to a higher AUC score than the conventional RGAE. It is also possible to
see that the object in the lower left has decreased in intensity for the K-IGAEs detection map. As
mentioned in the dataset analysis (Section 4.1.3), the Sigmoid kernel was predicted to result in such
a detection map. The final detection map, being for the MK-IGAE, shows the same tendencies
as with the K-IGAE, although this time not resulting in a higher detection performance than the
conventional RGAE. Most likely, this is due to the addition of even more noise within the detection
map than with the K-IGAE.

Figure 4.30 shows the detection maps of the abu-beach-2 dataset. As with the abu-airport-2
dataset, there is some noise in the conventional RGAE’s detection map. This is again improved
with the IGAE, which lowers the intensity of the noise. However, the most significant difference
is that this does not come at the cost of the anomalies’ intensity, as the Interpolated Graph
Autoencoder highlights more of the anomalies than the RGAE. The K-IGAE highlights even more
anomalies than that of the IGAE. In terms of noise, it is a fair bit worse than both the conventional
RGAE and the IGAE, but the added visibility of the anomalies compensates for this resulting in
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the better AUC score. The detection map for the MK-IGAE shows the same tendencies as with the
abu-airport-2 dataset, being the addition of even more noise than the other HADs. Even though
the Multikernel Interpolated Graph Autoencoder beats the RGAE on this dataset, the noise issue
is still a substantial problem that causes it to underperform in comparison to the IGAE and the
K-IGAE.

(a) Ground Truth (b) RGAE (c) IGAE (d) K-IGAE (e) MK-IGAE

Figure 4.30: Overview of the Detection Maps for abu-beach-2 for each of the
models in Table 4.18.

Table 4.19 shows the best results from the addition of preprocessing to the conventional RGAE
and the change of neural network architecture, being the MK-RGAE and the K-IGAE respectively.
As the table show, the overall accuracy for the MK-RGAE beats the K-IGAE by approximately
0.007 in average AUC score. This is primarily due to the vast difference in the airport datasets.
Here, the difference in average AUC score is almost 0.035 in favor of the MK-RGAE. With
the beach datasets, however, the K-IGAE comfortably beats the MK-RGAE with a AUC score
difference of about 0.017. In the urban scenery, the average AUC scores for the two proposed
HADs are a lot closer, only being separated by approximately 0.003 in AUC score. On a final
note, the K-IGAE is the only setup beating the conventional RGAE in every scenery, which is also
something to be considered.

Table 4.19: Top AUC scores from the addition of preprocessing and the new
proposed architecture.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

MK-RGAE 0.9686 0.9510 0.9865 0.9701

K-IGAE 0.9337 0.9675 0.9834 0.9632

A comparison of the ROC curves for the MK-RGAE, the K-IGAE, and the RGAE can be seen
in Figure 4.31. Again, the chosen datasets are the abu-airport-2 and the abu-beach-2 datasets. As
also seen in Table 4.19, the MK-RGAE is far greater than the K-IGAE on the airport dataset with
an AUC score difference of approximately 0.07. The ROC curve for the Multikernel RGAE also
seems to be steeper, indicating slightly more sensitivity. On the beach dataset, however, this is
not the case as the Kernel Interpolated Graph Autoencoder outperforms the MK-RGAE by 0.02
in terms of AUC score. Regarding steepness, the MK-RGAEs ROC curve still indicates a higher
sensitivity in the beach scene.

The detection maps of the MK-RGAE and the K-IGAE for the abu-airport-2 datasets has
been shown for comparison in Figure 4.32. The figures show that the detection maps of the two
proposed enhancements to the RGAE have similar properties. These are broader anomaly coverage
than for the conventional RGAE at the cost of added noise. The main difference between the two
HADs is that the Multikernel RGAE increases the anomalies intensity significantly in comparison
to both the RGAE and the K-IGAE. This is presumably the reason for the much higher AUC score
for this dataset and the other airport datasets. It is also worth noting that the noisy block in the
lower left of the detection maps is far less noticeable for the K-IGAE compared to the MK-RGAE.

Figure 4.33 shows the detection maps for the abu-beach-2 datset. Like seen from the previous
detection maps, the MK-RGAE and the K-IGAE both increase the anomaly coverage at the cost of
added noise when compared to the conventional RGAE. The most significant difference between the
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(a) abu-airport-2 (b) abu-beach-2

Figure 4.31: Overview of some ROC curves for the best preprocessing addi-
tion and the best architecture modification to the conventional RGAE.

(a) Ground Truth (b) RGAE (c) MK-RGAE (d) K-IGAE

Figure 4.32: Overview of the Detection Maps for abu-airport-2 for the best
performing.

two HADs for this dataset is that the MK-RGAE struggles with highlighting all of the anomalies,
like with the RGAE. In the detection map of the Kernel Interpolated Graph Autoencoder, however,
practically all anomalies are highlighted. Regarding noise, the MK-RGAE is far worse than the
K-IGAE. This is seen by the high intensity of the non-anomalous area within the detection map
of the Multikernel RGAE. With the detection map of the K-IGAE, most of the noise has a lower
intensity than the anomalies, with some exceptions. Given the noise, it is conceivable that this is
why the Kernel Interpolated Graph Autoencoder outperforms the MK-RGAE on the abu-beach-2
datasets and the beach datasets in general.

(a) Ground Truth (b) RGAE (c) MK-RGAE (d) K-IGAE

Figure 4.33: Overview of the Detection Maps for abu-beach-2 for the best
performing.
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4.3.3 Time Performance

This section will compare the different proposed HADs time performances. Firstly, the time to
perform the preprocessing methods will be described. Then, all HADs utilizing the conventional
AE will be compared, followed up by a comparison of the HADs utilizing the IAE. In the final
comparison of time scores, there will be a focus on the MK-RGAE and the K-IGAE. This is due
to the two HADs demonstrating the greatest improvement in detection performance compared to
the RGAE, which was the main objective of the thesis.

In terms of time performance, several implementations and changes to the conventional RGAE
utilize some preprocessing. Table 4.20 is added to give an indication of this cost for the KPCA ker-
nels used for the proposed models. These times were achieved by running KPCA with the specified
kernels on all datasets except the abu-beach-1 and the abu-beach-4 since these were calculated on
different machinery due to the high spatial resolution. These datasets were predicted to have a
higher time cost in the dataset analysis (Section 4.1.1). As the table indicates, the appliance of
the Laplacian kernel proved to be the most costly in every scenery, with the Polynomial kernel
being the most efficient in terms of time score. The Sigmoid kernel was close to the Polynomial
one, only a few seconds slower on average.

Table 4.20: Time scores for the use of KPCA with different kernels.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Sigmoid 134.5 137.9 137.3 136.4

Polynomial 131.9 132.5 133.8 132.9

Laplacian 274.8 275.7 281.9 278.2

All of the total time scores for the additions of preprocessing and changes in layer setup can
be seen in Table 4.21. The preprocessing times are included for the HADs utilizing preprocessing.
It is not a surprise that the inclusion of preprocessing increased the time score for the RGAE
using KPCA and the MK-RGAE, as clearly seen from the table. For the MK-RGAE, the added
time score is the cost of the substantial increase in detection performance. The average time cost
increase for the MK-RGAE was about 2.5 times that of the conventional RGAE. It could be
worse however, as the MK-RGAE only utilized 100 spectral dimensions and not 300, which would
increase the time score even more. For the RGAE using KPCA, it was slightly quicker than that of
the RGAE in the urban scenery, indicating a quicker convergence in terms of learning. The overall
time cost, however, increased by approximately 30%.

Table 4.21: Time scores from added preprocessing and changes in layer setup
compared with the conventional RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 80.9 226.3 233.3 184.2

RGAE using KPCA 222.5 287.2 205.7 235.7

MK-RGAE 454.0 515.3 489.2 486.5

RGAE with
Additional Layers

98.6 67.8 37.6 65.7

Something slightly surprising is the fact that the RGAE with additional layers results in a
lower time score than that of the conventional RGAE. Although the addition of more layers added
complexity to the RGAE, the Autoencoder converged faster on average, except for the airport
scenery. In total, the average time cost for the conventional RGAE is almost 3 times as large as
using the modified layers. For the urban scenery, the additional layers shortened the average time
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cost by almost 85%, which is astonishing. Compared to the other proposed HADs, the RGAE
using a new layer setup has a clear advantage in terms of the time score.

The scatter plot in 4.34 displays the average time scores achieved for each scenery using the
different setups and their corresponding average AUC scores. In this figure, the x-axis (representing
the AUC score) is constrained within the range of 0.9 to 1.0. By analyzing the plot, one could
argue that the addition of layers is the more efficient among the changes done to the conventional
RGAE if one were to exclude the detection performance on the beach datasets. This is due to the
relative detection performance increase to the time cost increase.

Figure 4.34: A scatter plot illustrating the time score and the AUC score for
each scenery for every proposed change in either preprocessing or layer setup.

Looking at the airport scenery for the RGAE utilizing KPCA and the RGAE with additional
layers, it is evident that the latter proved to be more efficient as both the time score is lower and
the increase in detection performance is larger. For the RGAE utilizing KPCA, Figure 4.34 only
highlights the poor performances, such as the fact that the beach average time score increased
while decreasing the performance. In the MK-RGAEs case, this plot illustrates that using multiple
RGAEs in parallel, although adding performance, is not the most efficient implementation if time
or processing is a limiting factor. This is especially noticeable for the beach datasets.

The time scores for the changes in network architecture can be seen in Table 4.22. In terms
of overall average, the conventional RGAE beat every proposed architecture change. Time time
scores were terrible for the Interpolated Graph Autoencoder not even utilizing any preprocessing
techniques. On the other hand, it is not that surprising considering that the amount of data being
handled by the encoders is twice the amount compared to the conventional RGAE.

Table 4.22: Time scores from the different implementations of the Interpol-
ated Autoencoder compared with the conventional RGAE.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

Conventional RGAE 80.9 226.3 233.3 184.2

IGAE 632.7 230.0 528.9 468.8

K-IGAE 374.7 737.7 665.9 598.1

MK-IGAE 352.0 479.5 473.5 437.8

For the Kernel Interpolated Graph Autoencoder, the time score is not all that bad compared
to the IGAE, considering the added preprocessing time. However, the time score on the airport
datasets is a bit peculiar, as it is almost half the score of the IGAE. This is not the case for the
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average time scores on the other datasets. This indicates a difference in how fast the Interpolated
Autoencoder converges for the different scenery. A slight surprise is the fact that the MK-IGAE
is the quickest of the proposed HADs using a new architecture even though it utilizes twice the
amount of preprocessing than the K-IGAE. This indicates that the MK-IGAE converges faster
than the proposed HADs that utilize the Interpolated Autoencoder.

Figure 4.35 shows a scatter plot of the time and AUC scores for the proposed HADs utilizing
the Interpolated Autoencoder. The first thing to look at is the fact that the IGAE is neither
efficient nor effective in terms of the detection of anomalies. This highlights that the introduction
of the IAE without preprocessing is not the way to go if one wishes for a better performing Robust
Graph Autoencoder. When looking at the beach scenery for the K-IGAE, it is evident that this
method is not the most efficient either. On the other hand, it still increases the AUC score and is
more efficient for the airport and urban datasets. The Multikernel Interpolated Graph Autoencoder
is not as efficient, nor as effective, as the K-IGAE in the airport scenery. In terms of the urban
datasets, the increase in AUC score compared to the increase in time score is very similar between
the two mentioned HADs.

Figure 4.35: A scatter plot illustrating the time score and the AUC score for
each scenery for every proposed change in neural network architecture.

The time score for the two best performing HADs based on AUC score, being the MK-RGAE
and the K-IGAE, are shown in Table 4.23. Neither of these HADs improves upon the time score of
the conventional RGAE. On total average, the MK-RGAE is about 100 seconds quicker than that
of the K-IGAE. As seen from the table, the Kernel Interpolated Graph Autoencoder is considerably
slower than the MK-RGAE in the beach and urban scenery while being slightly quicker on the
airport scenery. It is, however, worth noting that the purpose of this thesis is not to lower the
time cost, but to improve upon the detection performance of the RGAE. That being said, the
MK-RGAE still beats the K-IGAE in every scenario except for the time score of the airport scenery
and the AUC score on the beach scenery.

Table 4.23: Time scores from the best performing preprocessing implementa-
tion and the best performing implementation of the Interpolated Autoencoder
based on AUC score.

Method
Airport
Average

Beach
Average

Urban
Average

Total
Average

MK-RGAE 454.0 515.3 489.2 486.5

K-IGAE 374.7 737.7 665.9 598.1

The scatter plot in Figure 4.36 shows the time scores against the AUC scores for the MK-RGAE
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and the K-IGAE, with the inclusion of the conventional RGAE. Focusing on the airport scenery,
the use of the K-IGAE compared to the MK-RGAE costs more in terms of increased time to
increased AUC score. The same can be said for the urban scenery. The only true advantage the
K-IGAE has to that of the MK-RGAE is the fact that it can achieve a higher AUC score on the
beach datasets. On the other hand, the increased time is far higher than for the MK-RGAE,
making this advantage questionable. Therefore, the question of what method is best boils down
to what scenery is of the question for the user and the processing power available.

Figure 4.36: A scatter plot illustrating the time score and the AUC score for
the best proposed models.

59



Chapter 5
Conclusions and Future Directions

This chapter provides an overview of the most important findings of the Results chapter (Chapter 4).
The summary and conclusion of the entire thesis will be presented in Section 5.1. Following up
on the summary and conclusion, there will be presented several topics that needs to be further
investigated. These topics focus on new areas that could uncover a performance boost for some
of the proposed HADs, as well as making the work of the thesis more relevant for the HYPSO
mission.

5.1 Summary of Findings and Conclusion

The objective of this Master’s thesis was to improve upon a preexisting state-of-the-art HAD to
help the HYPSO mission to detect anomalous objects and occurrences. In this thesis, various
different HADs have been proposed, which all use the Robust Graph Autoencoder as a backbone.
These HADs have brought the additions of preprocessing, layer setups, and new neural network
architectures. Preprocessing methods that have been tested are the PCA, KPCA, and RPCA
using various number of spectral dimensions. Among the HADs utilizing these changes were
the preprocessing based RGAE and the MK-RGAE. Adding more layers to the encoder and
decoder was also tested. The new architecture implemented to replace the Autoencoder was the
Interpolated Autoencoder. This neural network was implemented for the IGAE, K-IGAE, and the
MK-IGAE where the last two mentioned HADs utilized preprocessing.

From the comparison of the proposed Hyperspectral Anomaly Detectors, it is evident that
there were two proposed HADs that outshine the others. These were the Multikernel RGAE and
the Kernel Interpolated Graph Autoencoder. The two HADs achieved the goal of enhancing the
preexisting Robust Graph Autoencoder as their total average AUC score increased significantly.
For the MK-RGAE, a total average AUC score of 0.9701 was achieved, beating the RGAE, wich
had a score of 0.9551. Although not beating the MK-RGAE, the K-IGAE achieved an impressive
AUC score of 0.9632 in total average. On the other hand, the K-IGAE had the upper hand on the
beach datasets. It is also worth noting that both of the these proposed HADs outperformed the
RGAE on the airport and urban datasets, while only the K-IGAE improved upon the detection
performance for the beach datasets. A similarity between these two HADs in terms of the detection
maps was that the anomaly coverage was larger and the intensities of the anomalies were stronger
than that of the conventional RGAE. This came at the cost of added noise in both of the proposed
HADs’ detection maps.

The other HADs, being the Preprocessing based RGAE, the RGAE with modified layers,
the IGAE and the MK-IGAE, showed disappointing results. None of the methods, except for the
MK-IGAE, proved to result in overall higher detection performance. However, since the MK-IGAE
added such a slight increase in performance at such high computational cost, it is not considered
an excellent upgrade to the preexisting RGAE. An exception to the bad results from these HADs
is the time score of RGAE with additional layers. This time score is considered substantially
lower than that of the other proposed HADs and the conventional RGAE, making it a viable
implementation to reduce time cost.

Since the primary objective of the thesis revolved around enhancing the detection performance
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of the Robust Graph Autoencoder, several of the proposed HADs failed to achieve the wanted
results. Given that the MK-RGAE and the K-IGAE emerged as the methodologies that genuinely
accomplished the objective of the thesis, it is inherent that these approaches warrant further
refinement and advancement. Adding preprocessing and utilizing the Interpolated Autoencoder is,
therefore, viable methods to increase the detection performance of the Robust Graph Autoencoder
at the expense of added time cost.

5.2 Future Work

This section will go through the future work of the thesis regarding areas such as new configurations
of the neural network (Section 5.2.1), optimization (Section 5.2.2), and testing on other datasets
more relevant to the HYPSO project (Section 5.2.3).

5.2.1 New Configurations

As we saw from the results in Chapter 4, the modification of layer setup proved to increase detection
performance in the airport and urban scenery and reduce the time cost drastically in terms of
total average on all datasets. Implementing that layer setup with other HADs, such as with the
Multikernel RGAE, could further boost detection performance. This could also be done for the
Kernel Interpolated Graph Autoencoder. An exploration of new and more complex layer setups
could also be performed to investigate if such changes could lead to better detection performance
or a lower time score.

Although highly computationally heavy, checking the use of multiple K-IGAEs in parallel
using different preprocessing techniques, such as with the MK-RGAE, could also be explored.
This would likely achieve time scores around double that of the standard K-IGAE, but it would
be interesting to see if such a setup would obtain a higher detection performance than that of the
MK-RGAE.

Utilizing optimizers is a well-known method to boost neural networks learning and convergence
speed, as explained in Section 2.7.1. Optimizers such as the Alternating Direction Method of
Multipliers (ADMM) optimizer could potentially further boost an Autoencoders performance and
should therefore be considered for further investigation [59].

5.2.2 Optimization

In terms of optimization, several topics should be investigated further. One of these is the spectral
dimensionality of and preprocessing methods output. For the optimization in this thesis, the
dimensionalities were only tested using 50, 100 and 300 spectral bands. A more detailed range of
dimensionalities should therefore be tested to solidify the results achieved in this thesis.

Ideally, the parameters optimized for the conventional RGAE and used by other modifications
to the HAD should be optimized again for the new setups. In the case of the RGAE using a new
layer setup, there is still much optimization to do. For simplicity’s sake, the n hid2 was chosen to
be half the size of n hid1. Other relationships could be tested, such as n hid2 being 3/4 the size of
n hid1. The values chosen for the grid search of n hid1 were amongst the following values [50, 100,
200]. These values can be increased to the same list of values used for the dimensionality of the
conventional RGAE’s parameter n hid. If this improves the performance, it can be further tested
on the MK-RGAE and the K-IGAE.

Finally, the decision fusion variables, being the α... parameters, for the HADs utilizing the
Interpolated Autoencoder could be tested for the same range as with the similar parameter for the
MK-RGAE. To do this, though, using a powerful computer is imperative as HADs such as the
K-IGAE needs to be trained for each of the following parameters.

5.2.3 Datasets

To check whether the MK-RGAE or the K-IGAE works well for the HYPSO satellite, it would be
beneficial to test the HADs on some of the HSIs taken by the satellite. To do this, a couple of
requirements need to be fulfilled. The first requirement is that the data must be labeled, which
can be a tedious task. A powerful computer would also be needed to handle the extensive data for
the Hyperspectral Images taken by the HYPSO satellite as the spatial resolution is much larger
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than that of the ABU datasets. A different approach could be to segment each HSI into smaller
images containing less data.
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