
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Helene Sjøgren Bolkan
Jeanette Hue Nhu Tran

Security Analysis of the Mobile
Applications Used in the Pacemaker
Ecosystem

Master’s thesis in Communication Technology
Supervisor: Marie Moe
Co-supervisor: Guillaume Bour
June 2023

Helene Sjøgren Bolkan
Jeanette Hue Nhu Tran

Security Analysis of the Mobile
Applications Used in the Pacemaker
Ecosystem

Master’s thesis in Communication Technology
Supervisor: Marie Moe
Co-supervisor: Guillaume Bour
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Security Analysis of the Mobile Applications Used in the Pacemaker
Ecosystem

Students: Bolkan, Helene Sjøgren and Tran, Jeanette Hue Nhu

Problem description:

The domain of healthcare is constantly evolving, and the use of connected
technology is increasingly common. Within the field of Implantable Medical Devices
(IMDs), the use of mobile applications is an expansion of the ecosystem. This is
observed in several areas, also within this thesis’ focus field, namely the pacemaker
ecosystem. We aim to look into the new mobile applications connected to pacemakers.
In particular, we will focus on the data privacy and data security issues these might
bring.

Several vendors of pacemakers have incorporated mobile applications in various
forms, both as a substitute for a dedicated device for remote monitoring and as
an added benefit for the patient. The Home Monitoring Unit (HMU) is a device
responsible for gathering data from the pacemaker and forwarding it to the vendor’s
servers. The vendors who choose the substitute approach will now have a mobile
application to replace the HMU. The attack surface changes when this gateway is
switched to a mobile application. For other vendors, the mobile application is just
an addition to the service for the patient. Here, the mobile application does not
communicate directly with the pacemaker. In both cases, there are potentially new
security vulnerabilities introduced to the system.

To assess the security of the system, threat modeling will be performed. Addi-
tionally, we will conduct an analysis of the vendors’ mobile applications. The focus
throughout the thesis will be on the patient’s safety and privacy. We will compare
the security of the older system containing the hardware HMU with the new system
containing the mobile application. Additionally, to include more insight from a
patient’s point of view, a questionnaire study will be carried out. The combination
of patient insights and technical security analysis will give us valuable insight into
the potential security challenges of the new version of the pacemaker ecosystem.

Approved on: 2023-03-22
Main supervisor: Associate Professor Moe, Marie, NTNU
Co-supervisor: Bour, Guillaume, SINTEF

Abstract

Our increasing connectivity on the Internet has led to a technology de-
pendence, which is growing faster than our ability to secure it. This poses
significant risks for people using these devices. The pacemaker industry
connects its life-critical devices to the Internet to improve the quality of
life, which exposes new attack surfaces. Researchers have demonstrated
vulnerabilities and weak security measures in pacemakers, and companies
producing these devices have been exposed for not having good security
practices. The recent innovation within this field introduces mobile ap-
plications connected to the pacemaker to provide detailed insight to the
patients. The app offers benefits in terms of patient monitoring and data
accessibility. However, it also introduces new attack vectors that can
compromise the security and privacy of the patient. In this thesis, we
investigate the cyber security concerns connected to mobile applications
used in the pacemaker ecosystem focusing on patient safety and privacy.
We conduct a threat modeling of the ecosystem provided by two of the
main manufacturers to identify and analyze different threats that can
exist in the new ecosystem. Further, we perform a security analysis on
mobile applications to find potential vulnerabilities that can be exploited
by an attacker. The results describe new attack surfaces that affect the
patient’s privacy, such as outdated signature algorithms, weak password
policy, and the possibility of impersonating a mobile application. These
are compared with the old pacemaker ecosystem. This includes a hard-
ware device as the dedicated communication gateway. Another research
finding is gathering user insight by conducting a questionnaire study
sent out to patients with a pacemaker. It suggests that the respondents
were positive about the mobile applications, but that their habits and
awareness may decrease the security level. Our findings contribute to
the understanding of mobile apps connected to a medical device, offering
new and valuable insights in this area. In addition, we highlight the
importance of conducting comprehensive security testing of these mobile
apps and analyzing potential consequences before deploying them into
the world, as these mobile apps handle personal and sensitive data. Secu-
rity testing is therefore not just a recommended practice, but a critical
necessity.

Sammendrag

Vår økende tilkobling på internett har ført til en teknologiavhengighet,
som øker raskere enn vi er i stand til å sikre den. Dette medfører betydeli-
ge risikoer for personer som bruker disse enhetene. Pacemaker-industrien
kobler sine livskritiske enheter til internett for å forbedre livskvaliteten,
noe som resulterer i nye angrepsflater. Forskere har klart å finne sårbar-
heter og svake sikkerhetstiltak i pacemakere, og selskaper som produserer
disse enhetene har blitt avslørt for å ikke ha gode sikkerhetsrutiner. Den
nyeste innovasjonen innenfor dette feltet introduserer mobilapplikasjoner
som er koblet til pacemakeren, for å gi informasjon til pasienten. Appen
gir fordeler i form av pasientovervåking og tilgjengelighet til data. Imidler-
tid introduserer den også nye angrepsvektorer som kan true sikkerheten
og personvernet til pasienten. I denne oppgaven undersøker vi mobilappli-
kasjoner som brukes i pacemaker-økosystemet, med fokus på sikkerheten
til pasienten. Vi gjennomfører en trusselmodellering av økosystemet til
hver mobilapplikasjon for å identifisere og analysere forskjellige trusler
som potensielt kan eksistere i det nye økosystemet. Vi utfører deretter
en sikkerhetsanalyse av mobilapplikasjonene for å finne potensielle sår-
barheter som kan utnyttes av en angriper. Resultatene beskriver nye
angrepsflater som påvirker pasientens personvern, for eksempel utdaterte
signaturalgoritmer, svake regler for passord og muligheten for å utgi seg
for å være en mobilapplikasjon. Disse resultatene sammenlignes med det
gamle pacemaker-økosystemet, som inkluderer en maskinvareenhet som
den dedikerte kommunikasjonsporten. Vi har i tillegg utført innsamling
av brukerinnsikt. Dette er gjennomført med en spørreundersøkelse som er
sendt ut til pasienter med pacemaker. Det viser seg at at respondentene
var positive til mobil applikasjonene, men at deres vaner og bevissthet
kan redusere sikkerhetsnivået. Våre funn bidrar til økt forståelse av mobil-
applikasjoner som er koblet til medisinsk utstyr og det gis ny og verdifull
innsikt på dette området. I tillegg understreker vi viktigheten av å gjen-
nomføre omfattende sikkerhetstesting av disse mobilappene og analysere
potensielle konsekvenser før de tas i bruk, ettersom disse mobilappene
håndterer personlig og sensitiv informasjon. Sikkerhetstesting er derfor
ikke bare en anbefalt praksis, men en kritisk nødvendighet.

Preface

This Masters’s Thesis is the final deliverable of Helene Bolkan and
Jeanette Tran of their Master of Science degrees in Communication
Technology, with a specialization in Information Security. The thesis is
written at the Department of Information Security and Communication
Technology, Norwegian University of Science and Technology (NTNU).
The pre-project work is performed in the Autumn of 2022, while the
thesis is written in the Spring of 2023.

This thesis is a collaboration between NTNU and SINTEF, a research
organization in Trondheim. It is part of a series of master theses about
the security of medical devices, all led by Associate Professor Marie Moe.

Acknowledgments

First, we would like to give a big thanks to NTNU and SINTEF for
offering us equipment. Extra thanks to SINTEF for proposing us an
office and a good coffee machine with milk 80% of the time.

A big appreciation to our supervisor and responsible professor, Marie
Elisabeth Gaup Moe, for proposing such an exciting topic. It has been
an educational journey and we are grateful that you introduced us to the
security of medical devices and made us knowledgeable in this field. We
have enjoyed working with something that has such an impact on people
and must thank you for this opportunity.

Much appreciation to our co-supervisor Guillaume Nicholas Bour, for
guiding us through the thesis and always being available for questions and
motivational words when we were frustrated, especially at the beginning
of the process of pen-testing. Thank you for teaching us different methods
and techniques for security testing and how to report findings. We greatly
appreciate this knowledge as it will be highly valuable in our future cyber
security jobs.

Lastly, we are extremely thankful for our classmates. Every day
we went through this master period together with daily quizzes and
good coffee during lunch break. We truly appreciate your presence as it
improved our well-being during this period. Writing a master’s thesis
would not have been as fun without you.

Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Context . 1

1.1.1 Implantable Medical Devices 1
1.1.2 The Pacemaker Ecosystem 2

1.2 Motivation . 4
1.3 Scope of the Project . 5
1.4 Research Questions . 6
1.5 Structure of the Thesis . 6

2 Related Work 9
2.1 Previous Work on Mobile Application Security 9
2.2 Previous Work on Pacemaker Hacking 11

3 Technical Background 13
3.1 Relevant Guidelines . 13
3.2 Standards . 14
3.3 Security Terminology . 15
3.4 Android Applications . 18

4 Methodology 21
4.1 Threat Modeling . 21

4.1.1 Datagram Flow Diagrams . 22
4.1.2 STRIDE . 22
4.1.3 Mitigation Techniques . 24

4.2 Black Box Testing . 26
4.3 Analysis of Applications . 27

4.3.1 Extracting APK Files . 27

ix

4.3.2 Decompile APK File to JAR File 28
4.3.3 Tools for Security Analysis 28

4.4 Sending out Questionnaires . 31
4.4.1 Finding Questions . 32

4.5 Ethical Concerns . 33

5 Threat Modeling 35
5.1 Medtronic’s Ecosystem . 36

5.1.1 What Are We Working On? 36
5.1.2 What Can Go Wrong? . 37
5.1.3 What Are We Going to Do About It? 46

5.2 Biotronik’s Ecosystem . 52
5.2.1 What Are We Working On? 52
5.2.2 What Can Go Wrong? . 52
5.2.3 What Are We Going to Do About It? 57

6 Security Analysis of Applications 59
6.1 MyCareLink Heart App - Medtronic 60

6.1.1 Static Analysis . 60
6.1.2 Permissions . 70
6.1.3 Analysis of the APK . 71
6.1.4 Structure of the Mobile Application 75
6.1.5 Summary of our Findings . 77

6.2 Patient App - Biotronik . 78
6.2.1 Static Analysis . 79
6.2.2 Permissions . 83
6.2.3 Structure of the Mobile Application 85
6.2.4 Client Bypass Authentication 93
6.2.5 Application Authentication 94
6.2.6 Certificate Details . 98
6.2.7 Unverified Issues . 99
6.2.8 Summary of our Findings . 101

7 Questionnaire 103
7.1 Demographics and Clinical . 104
7.2 Mobile Phone Usage . 105
7.3 Perception of Applications Connected to IMDs and Cybersecurity . 108

8 Discussion 115
8.1 Security of the Mobile Application System 115

8.1.1 Discussion on Findings from Medtronic’s System 115
8.1.2 Discussion on Findings from Biotronik’s System 120

8.2 Benefits and Drawbacks of the Mobile Applications 125
8.2.1 Positive Aspects of Changing to an Application 125
8.2.2 Negative Aspects of Changing to an Application 126

8.3 Hardware HMU vs. Mobile Applications 127
8.3.1 Security of the HMU System 127
8.3.2 Comparison of the Systems 129

8.4 Actual Security vs. Perceived Security From Patients 133
8.5 Limitations of our Work . 136
8.6 Future work . 137

9 Conclusion 139

References 141

A Tools and Procedures 149
A.1 Decompiling an APK File to a JAR File 149
A.2 Create and Run an Emulator . 149
A.3 How to Install ADB . 150
A.4 Configure the Emulator to Work with Burp Suite 150
A.5 Configure the Emulator to Work with Mitmproxy 151
A.6 Intercept a Request with Burp Suite 152
A.7 Intercept a Request with Mitmproxy 152

A.7.1 The Script and Corresponding JSON Files 153
A.8 Setting Up Frida . 155

B Questionnaire 157
B.1 The Questions . 157

List of Figures

1.1 The pacemaker ecosystem . 3

5.1 Data flow diagram of Medtronic’s ecosystem 37
5.2 Impact matrix . 39
5.3 Data flow diagram of the Biotronik’s ecosystem 53

6.1 The Google API key and Google Crash Reporting API key in strings.xml 69
6.2 Fatal Exception error when using Frida 74
6.3 Certificate details of Medtronic . 76
6.4 TLS-traffic in Wireshark for PatientApp, the Biotronik mobile application 86
6.5 Authentication request in Burp Suite . 87
6.6 Logcat in Android Studio . 87
6.7 The mitmweb interface . 89
6.8 Logcat in Android Studio for PatientApp 90
6.9 One of the server’s websites displaying KeyCloak 91
6.10 IP WHOIS Lookup of one of the domain names of Biotronik 92
6.11 A sequence diagram showing a device trying to log in to the application,

with communication with the servers in Biotronik 93
6.12 The final process of registering a user 95
6.13 The requests in mitmproxy with 200 OK status responses 95
6.14 The ClientSecret and ClientId in strings.xml 96
6.15 Header of the request going to the authorization server 97
6.16 Decoding of a string with Base64 encoding 97
6.17 Certificate details of Biotronik . 99
6.18 The result from running Frida with the Biotronik app. 101

7.1 Graphs of Demographics . 105
7.2 The result of the Likert scale questions on mobile phone usage 107
7.3 Graph of how the respondents make their passwords 108
7.4 The result of the Likert scale questions on perception of application

connected to IMDs and cybersecurity 109
7.5 The respondents’ thoughts of an application connected to their pacemaker 110

xiii

7.6 The respondents answer on what would make them consider an application
connected to a pacemaker . 112

A.1 Emulator showing the option for Extended Controls 151
A.2 Toggle the intercept button . 152
A.3 How to respond to a request . 153

List of Tables

4.1 Data Flow Diagram (DFD) objects . 23
4.2 Description of the Spoofing, Tampering, Repudiation, Information dis-

closure, Denial of service and Elevation of privilege (STRIDE) elements
with the associated security properties 24

4.3 Available applications from different manufacturers 28

5.1 Identified pacemaker components and their description 38
5.2 Description of STRIDE threats against the pacemaker device and their

impact . 39
5.3 Description of STRIDE threats against the pacemaker app and the mobile

phone and their impact . 41
5.4 Description of STRIDE threats against the data server and their impact 42
5.5 Description of STRIDE threats against the doctor’s device and their impact 43
5.6 Description of STRIDE threats against the communication over the

Internet and their impact . 44
5.7 Description of STRIDE threats against the communication between the

pacemaker and phone and their impact in the Medtronic ecosystem . . . 45
5.8 Summary of STRIDE categories with identified threats against the pace-

maker’s components in the Medtronic ecosystem 45
5.9 Identified pacemaker components and their description in the Biotronik’s

ecosystem . 54
5.10 Description of STRIDE threats against the hardware HMU and their

impact in Biotronik . 56
5.11 Description of STRIDE threats against the communication between HMU

and pacemaker and their impact in Biotronik 56
5.12 Summary of STRIDE categories with identified threats against the pace-

maker’s components in the Biotronik ecosystem 57

6.1 The result of the code analysis by Mobile Security Framework (MobSF)
of MyCareLink Heart App and Biotronik 65

6.2 The result of the code analysis by BeVigil of MyCareLink Heart App . . 67
6.3 The summary of findings for MyCareLink Heart App 78
6.4 The result of the code analysis by BeVigil of Patient App 81

xv

6.5 The summary of findings for PatientApp 102

8.1 Comparison between the HMU and the mobile application from Medtronic 130
8.2 Comparison between the HMU and the combination of HMU and mobile

application from Biotronik . 132

List of Acronyms

ADB Android Debug Bridge.

AES Advanced Encryption Standard.

APK Android Package Kit.

AVD Android Virtual Device.

BLE Bluetooth Low Energy.

CIA Confidentiality, Integrity and Availability.

CRT Cardiac Resynchronization Therapy.

CWE Common Weakness Enumeration.

DES Data Encryption Standard.

DEX Dalvik EXecutable.

DFD Data Flow Diagram.

DNS Domain Name System.

DoS Denial of Service.

EoP Elevation of Privilege.

FIPS Federal Information Processing Standards.

FISMA Federal Information Security Management Act.

FLE Field-Level Encryption.

GUI Graphical User Interface.

HMU Home Monitoring Unit.

xvii

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IAM Identity Access Management.

ICD Implantable Cardioverter-Defibrillator.

IMD Implantable Medical Device.

IoMT Internet of Medical Things.

IoT Internet of Things.

JAR Java ARchive.

JWT JSON Web Token.

MASTG Mobile Application Security Testing Guide.

MASVS Mobile Application Security Verification Standard.

MICS Medical Implant Communication System.

MITM Man-in-the-middle.

MobSF Mobile Security Framework.

NIST National Institute of Standards and Technology.

NTNU Norwegian University of Science and Technology.

OIDC OpenID Connect.

OS Operating System.

OWASP Open Web Application Security Project.

RNG Random Number Generator.

SSL Secure Sockets Layer.

SSO Single Sign-On.

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service and Elevation of privilege.

TLS Transport Layer Security.

VPMN Virtual Private Mobile Network.

VPN Virtual Private Network.

WHO World Health Organization.

Chapter1Introduction

1.1 Context

To provide the necessary background knowledge for our thesis, we start by presenting
the context. This gives a short introduction to the field our thesis resides within, as
well as an introduction to important concepts that are used later on.

1.1.1 Implantable Medical Devices

In order to obtain an understanding of the term IMD, we start by defining what
a medical device implies. A concise definition of a medical device is the one given
by World Health Organization (WHO): “A medical device can be any instrument,
apparatus, implement, machine, appliance, implant, reagent for in vitro use, software,
material or another similar or related article, intended by the manufacturer to be
used, alone or in combination for a medical purpose. Such health technologies are
used to diagnose illness, monitor treatments, assist disabled people, and intervene and
treat illnesses, both acute and chronic”. According to WHO there are an estimated 2
million different kinds of medical devices on the market worldwide [49]. The definition
of a medical device is quite broad and can be summarized as any thing that is used
for a medical purpose, to help a patient.

A category within the umbrella of medical devices is IMD. According to the
Norwegian Medicines Agency, this is a device that is inserted either totally or partially
into the human body. The device can be implanted medically or surgically and is
intended to remain in the body after the procedure [41]. This means that an IMD is
a device that is permanently placed within the human body to help with different
medical conditions. These devices are quite intrusive, as they become a part of
the human body, and are thus often used to help with conditions and illnesses that
greatly impact the patient’s quality of life. Examples of medical conditions that an
IMD can help with are diabetes, heart arrhythmia, and sleep apnea.

1

2 1. INTRODUCTION

The main focus for this thesis is IMDs which is used for heart rate monitoring.
For this purpose, we have two devices, a pacemaker and an Implantable Cardioverter-
Defibrillator (ICD). These have many similarities, their main task is to keep the heart
rhythm of the patient consistent, which is done by giving small electrical simulations
to the heart. The ICD also has the option to give larger shocks of electricity, in the
case of life-threatening arrhythmia. As these devices are so similar from a security
perspective, we refer to them both as pacemakers in this thesis. A pacemaker is a
tool for patients that have different heart anomalies and helps with irregular heart
rhythms.

The pacemaker is inserted into the patient’s chest during surgery. The device
itself is only a few centimeters wide and weighs around 100 grams. It is equipped
with several wires that are attached to the heart, through which the electrical pulses
pass. In addition, the pacemaker has a battery and a tiny computer circuit [63]. The
pacemaker is able to communicate wirelessly with other devices in the pacemaker
ecosystem so that data can be sent to the responsible doctor, or changes can be made
without invasive surgery.

1.1.2 The Pacemaker Ecosystem

The pacemakers are not stand-alone devices, and there exists an entire ecosystem to
support these IMDs. This ecosystem exists in order to make the pacemaker function
efficiently as a wireless device. There are several devices that are of importance to
the pacemaker ecosystem, and these are described below:

The Pacemaker is the IMD itself. This is the device inside the patient’s body
and the most important part of the ecosystem.

The Programmer is the device that is responsible for the configuration of the
pacemaker. Whenever a pacemaker is inserted for the first time, or there is
a need for a change in the configuration of the pacemaker, the programmer
is used. This communicates wirelessly with the IMD, without the need for
invasive surgery. The programmer is equipped with a programming head, as it
has to be in close proximity to the patient when making changes to the software
configuration.

The Home Monitoring Unit is the gateway that receives data from the pacemaker
before it is sent further to the patient’s doctor. This device simplifies the
patient’s life, as the data can be accessed remotely by the doctor, which
decreases the need for visits to the doctor’s office. This gateway can take two
different forms with the newest generation of pacemakers:

1.1. CONTEXT 3

1. The gateway is an application in the patient’s phone. This means that
the patient can bring the gateway with her, and can give easier access to
health data.

2. The gateway is dedicated hardware HMU, situated in the patient’s home.
This device is more stationary, and the patient will not necessarily have
any insight into their heart data.

These two versions of the system can be seen in Figure 1.1.

The Mobile Network is part of the ecosystem, as it is the HMUs way of sending
the data to the patient’s doctor. Usually, the HMU uses the mobile network to
send the data from the pacemaker to the backend servers of the doctor’s office,
which the doctor can access to get insight.

The Backend Servers are responsible for collecting and storing the patient data
sent from the HMU. The data is sent over the mobile network. Usually, these
servers can be accessed by doctors via an online platform.

(a) The new version of the pacemaker ecosystem with a phone

(b) The old version of the pacemaker ecosystem with an HMU

Figure 1.1: The pacemaker ecosystem

4 1. INTRODUCTION

1.2 Motivation

The evolution of medical devices has been considered a fundamental component of
the healthcare system. The primary medical device of our thesis, the pacemaker,
saves lives by monitoring and coordinating heartbeat and increases the patient’s
lifetime. The drive to investigate these medical devices grows when they affect people
to give them the possibility of healthier and longer lives.

As discussed in the pre-project, the safety of the patients is one important
motivation factor for this thesis. A concern is that the pacemaker can be remotely
controlled by unauthorized attackers, so it needs to be properly secured to maintain
vital security assets. St. Jude Medical is an example of a company producing
pacemakers that had bad practices regarding security. The company was exposed for
having severe vulnerabilities in its pacemaker products. The researchers revealed that
it was possible to do battery-draining and other tampering attacks on pacemakers by
this particular vendor [45]. Consequently, doing research work on the cybersecurity
part of the pacemaker is beneficial for society, which makes it highly motivating
to contribute to this field by searching for other potential attacks and securing the
medical device against them.

An article by VentureBeat, a website that provides tech news, announced that
Medtronic launched an application that connects to the patient’s phone to obtain
data from their pacemakers, which was published in 2019 [53]. Due to the change
in the pacemaker system recently happening in the last few years, the subject is
quite untouched. In other words, there has not been done much research work on
the healthcare applications connected to pacemakers. Hence, we are part of the early
stage of this research field which is motivating.

Lastly, Internet of Things (IoT) is developing and will have a greater influence
in the future. In the healthcare sector, we can see more and more medical devices
switching over to operating wirelessly. The pacemaker is an example of a wirelessly
medical device and is expected to increase in numbers in the next years. As discovered
in the pre-project assigned in autumn 2022, it was predicted an increase of over
25% in the global use of the embedded device from the year 2016 to 2023, with
1.14 million units vs. 1.43 million units.1 Similarly, the development of pacemakers
has also had an impact in Norway with thousands of users. Statistics demonstrate
that Norway’s number of patients with implantation or replacement of pacemakers
increased by 35% from 2012 to 2021, respectively 3519 units and 4788 units.2 To
summarize, the global use and the growth of the device are additional drives for the
thesis - the larger the group of people it helps, the bigger the motivation.

1https://www.statista.com/statistics/800794/pacemakers-market-volume-in-units-worldwide/
2https://www.statista.com/statistics/978925/number-of-patients-with-implantation-or-

replacement-of-pacemaker-in-norway/

1.3. SCOPE OF THE PROJECT 5

1.3 Scope of the Project

During our initial research, we noticed two distinct ways of incorporating a mobile
phone into the pacemaker ecosystem. Either as an additional device to the HMU
or as a replacement for the HMU. Therefore, we chose two different vendors for our
investigation, namely Medtronic and Biotronik. The application from Medtronic acts
as a substitute for the HMU. For Biotronik, the application is an additional device
besides the HMU. In addition, previous master theses on this aspect have already
discovered vulnerabilities on the HMU by Biotronik [12]. It has been proven that
the HMU can be used to threaten a patient’s safety and privacy. These results are
used to compare with the new versions of the system, still with a focus on patient
safety and privacy. They tested older versions of the system with the HMU, where
our focus is the system containing a mobile phone.

Our project explicitly investigates the security of the mobile application used in
the pacemaker ecosystem, which is a small part of the system. More specifically, we
analyze the mobile applications from the vendors Medtronic and Biotronik. The two
main surfaces outlined are:

Scope 1: The mobile application from Medtronic, which is a substitute for the HMU
Scope 2: The mobile application from Biotronik, which works in parallel with the
HMU

It is important to note any further analysis conducted outside the mobile appli-
cation, including the backend server and the communication link, falls outside the
scope. However, they are mentioned as potential areas for analysis and are briefly
discussed as part of our results. The other components of the pacemaker ecosystem,
such as the programmer and the pacemaker itself, are completely out of scope, and
will not be analyzed nor mentioned.

In addition to changing from a hardware HMU to a mobile application, there is a
change in the communication protocol used by the vendors. Given the complexity of
transitioning from the old proprietary protocol to a new Bluetooth protocol, focusing
on both the mobile applications and the switch of the protocol is not possible.
Therefore, we choose only to do mobile application security testing, more specifically
Android application testing. The goal is to analyze mobile applications and find
potential security vulnerabilities that can affect the patient’s life.

6 1. INTRODUCTION

1.4 Research Questions

One research question is defined for our contribution to the research field concerning
the security of the pacemaker ecosystem.

What are the main cyber security concerns for mobile applications in the pacemaker
ecosystem when it comes to patient safety and privacy?

With this research question as the foundation, we can derive these research objectives:

O1: Analyzing the mobile healthcare applications to see if they have an adequate
level of security regarding patient data and privacy.

O2: Identifying and analyzing different threats to this new version of the pacemaker
ecosystem.

O3: Gathering information about the patient’s perspective by executing a survey
and analyzing the results.

These objectives are elaborated in further detail in the upcoming chapters.

1.5 Structure of the Thesis

The remaining chapters are structured in the following manner:

Chapter 2 presents related work to provide the reader with necessary and related
studies that have been performed on medical devices. Both previous works on mobile
application security and pacemaker hacking are supplied to give the foundation of
our research.

Chapter 3 provides the reader with a technical background that is useful to under-
stand the thesis. In this chapter, multiple security concepts, guidelines, standards,
and terminologies are presented.

Chapter 4 gives a further understanding of our work by presenting the methodologies
and how they are used in general. In addition, we provide motivations and arguments
for why we chose these particular methodologies.

Chapter 5 is the start of the analysis, where we perform threat modeling. In this
chapter, we perform a threat modeling containing the system models for two vendors,
the vulnerabilities and potential attacks, and the applicable mitigation techniques.
There is one threat modeling for the Medtronic mobile application and another one
for the Biotronik mobile application.

1.5. STRUCTURE OF THE THESIS 7

Chapter 6 contains the security analysis of mobile applications. Here, the two
different apps are divided into their own sections. Different analyses are performed
in this chapter, utilizing several tools, and the results are presented.

Chapter 7 sheds light on the patients, as we perform a questionnaire and present
the results in this chapter. This gives insight into the patient’s perspective on these
mobile applications.

Chapter 8 provides a discussion on the results from chapters 6 and 7. The research
question is answered in this chapter. We look into the implications of our work, and
the perceived security from patients, and make a comparison of the older version of
the ecosystem with the newer mobile application version.

Chapter 9 gives a short conclusion of our work in total. Here we summarize our
findings and the implications of our work.

To enhance clarity and readability, appendix A provides additional information
about the tools utilized during the security analysis and a detailed explanation of
the procedure. The second appendix B provides the complete list of questions and
the alternatives used in chapter 7.

Chapter2Related Work

Within the fields of healthcare technology and application security, there have been
several contributions before our thesis. The following sections address some of the
previous work that is done within the pacemaker ecosystem and validations of its
security, and some previous work on mobile application security analysis. We present
in more detail some of the work already covered in our project work [84].

2.1 Previous Work on Mobile Application Security

As mentioned, the new addition to the pacemaker ecosystem is the ability to use a
mobile application as the gateway between the pacemaker and the doctor. When it
comes to mobile applications, there are several research angles one could focus on.
In order to limit the scope of this thesis, we decided to focus on either applications
targeted towards Android phones or Apple phones. These two Operating Systems
(OSs) have the majority of the market share. In January of 2023, they were together
responsible for about 99% of the available market.1

To decide between mobile applications for Android or iOS (by Apple) we took
several aspects into consideration. As discussed in the pre-project [84], we found that
the Android OS has about 73% of the market share within mobile devices today [32].
In addition, there are more security issues related to the Android system than the
iOS system. This is particularly regarding application permissions, as these are more
easily manipulated in Android applications. An attacker can force the user to accept
invasive permissions when opening an app on an Android device. These applications
can also interact with the entire operating system in a more widespread way than in
iOS, which leads to an attacker having the possibility to do more damage [32].

For our thesis, it was most relevant to look into previous work done within the
field of medical application security. These applications contain features such as

1https://gs.statcounter.com/os-market-share/mobile/worldwide

9

10 2. RELATED WORK

disease prevention, treatment, diagnosis, and patient monitoring. In addition, there
exist multiple applications that are dedicated to maintaining good health for the
general public. An example is mobile applications connected to smartwatches, that
can give activity level, sleep information, and other general health facts to the user
based on the sensor data from the watch. Within IMDs there seems to be a focus on
the devices themselves, and not on the applications, within the existing literature.
This relates to the articles discussed in the section about previous work on pacemaker
hacking in section 2.2.

Previous research in the field of medical application security has also explored
applications connected to other healthcare devices. In our pre-project, we mentioned
two relevant articles on this topic, which both discussed security and privacy issues
for mobile healthcare applications [84]. The first article composed a set of rules to
follow when developing secure healthcare applications [44], while the second focused
the discussion on possible attacks on healthcare applications, and the consequences
these would have [56].

Another relevant article is the one from Sun et al. [78], discussing the security
and privacy of the Internet of Medical Things (IoMT) enabled healthcare system.
This article gives an overview of the security and privacy challenges and requirements
for IoMT. Particularly, the security requirements part relates to our thesis, as it
deals with conditions for both the data, the device itself, and the personal gateway.

Balapour et al. wrote an article on the role of perceived privacy as the predictor
of security perceptions within mobile applications [9]. The focus was on the possible
mitigation of security violations, through the improvement of the security behavior
of users. They looked at the difference between the perception of privacy and the
perception of security. In particular, the authors studied how the perceived security
of a mobile application was influenced by the users’ perception of privacy risks.
They found that the perceived privacy of an application directly impacts the users’
perception of the security of that application. This is valuable for us when we are
looking into the mobile applications for IMDs.

The paper by Weichbroth and Lysik identified and analyzed existing threats and
best practices within the domain of mobile security [86]. The authors used their
collected data to perform a survey among mobile application users, regarding their
awareness of threats and personal countermeasures. After a run-through of several
different threats to today’s mobile devices, the paper introduces concrete mitigation
suggestions and discusses best practices. The study conducted concluded that the
respondents had good knowledge of the risks and potential threats connected to
mobile applications, but the personal countermeasures among the users were lacking.

Within the field of applications related to healthcare, the article by Llorens-

2.2. PREVIOUS WORK ON PACEMAKER HACKING 11

Vernet and Miró addressed the available standards and their criteria [46]. From
there, a guide was developed with important criteria for designing a health-related
application. In addition, this guide can be used when measuring the quality of a
healthcare mobile application. The contribution of the paper was collecting criteria
from several different sources, analyzing these, and making a common set of criteria
and categories to be used by medical personnel, developers, and testers of mobile
applications. This guide is relevant for us in our analysis of mobile applications.

2.2 Previous Work on Pacemaker Hacking

There is a growing awareness of security breaches within the field of IMD. Since
these medical devices can be life-critical for the users, they can be a target for
different groups of attackers. An exploration of the previous work within this field
was conducted in our pre-project [84]. No new findings were discovered in this thesis,
so the findings from the pre-project are presented in the following sections.

Researchers have written several papers regarding the security vulnerabilities in
IMDs, where the first paper investigating the cybersecurity of an IMD was published
already back in 2008 by Halperin et al. [33]. This research included an investigation
of the exploitation of vulnerabilities of ICD, with a software radio-based attack to
impact the patient’s safety and privacy. It showed that the ICD was vulnerable
to unauthorized tampering and could be threatened by attackers with low-cost
equipment. This security breach was found by using reverse engineering, which was
executed on the protocols on the communication link between the ICD and the ICD
programmer [33]. Since its release, this paper has been the foundation for later
contributions within IMD security.

In 2010, Denning et al. conducted a study to gain insights into the patient’s
perspective regarding embedded devices. The researchers conducted interviews with
patients who had an implanted wireless IMD [24]. The interviews highlighted the
importance of involving both patients and doctors in developing security mechanisms
for future IMDs. During the study, participants were told to use mockups of the IMD
security systems to envision future systems. Through interviews, they were able to
identify the advantages and disadvantages of these systems. Their contribution was
to highlight how the patient’s perspective can interact with the technical properties
when designing new and improved versions and systems. Furthermore, they discussed
multiple approaches to increase the security of the IMDs.

In 2017, Zheng et. al analyzes security issues in IMD, which covered security
trade-offs and the lack of security in the design of these devices [94]. It exists two
different access modes, one for emergencies, and another for normal functioning,
which results in a challenge in the security of the medical device. One of the trade-offs

12 2. RELATED WORK

demonstrates the importance of security vs. accessibility. The IMD should have
a security mechanism implemented, while at the same time providing authorized
personnel the possibility to access the system in case of emergency incidents or regular
health check-ups. The emergency mode should not hinder the doctor to access the
device in case of check-ups. The researchers also contribute with a security design, a
biometric-based security scheme to secure the IMDs and to give access to doctors by
using the patient’s biometrics.

In the following years, different parts of the pacemaker ecosystem have been
researched individually. According to a 2016 report by Muddy Waters Capital
LLC, conducted in collaboration with the cybersecurity research company MedSec,
pacemakers and heart monitoring equipment produced by St. Jude Medical have
been found to be susceptible to attacks [45]. The pacemakers made by St. Jude
Medical were vulnerable to cyber attacks due to security flaws in the software and
hardware design. More specifically, the pacemakers had security vulnerabilities that
could allow hackers to remotely control the devices, cause them to malfunction, drain
the battery, or deliver inappropriate shocks to the patient’s heart. The vulnerabilities
were believed to be a result of poor design choices and insufficient security testing. An
attack was performed and caused a significant risk to the patient’s life, compromising
both encryption and authentication in the communication link.

Kristiansen and Wilhelmsen’s 2018 master thesis [93] addressed the pacemaker
programmer from Biotronik. Their contribution was discovering violations against
the CIA triad, particularly the lack of authentication for the programmer and other
users, leading to security breaches compromising patient data confidentiality. This
thesis was the first one published at NTNU in collaboration with SINTEF within
the research field of the pacemaker ecosystem by Biotronik. Since, there have been
five master theses from 2018 to 2022, all with slightly different focus areas.

In 2019, Bour [13] and Lie [43] investigated Biotronik’s versions of the HMU in
the pacemaker ecosystem. They both analyzed the security of the Cardiomessenger
II-S, but different parts of the ecosystem. They successfully detected vulnerabilities
impacting the patient’s safety and privacy. Bour confirmed the hypothesis that an
attacker having physical access impacts the security of an HMU device.

Later, a newer version of the HMU by Biotronik was tested by Kok and Markussen
in 2020 to see if the security had improved from the previous versions and to uncover
potential security vulnerabilities. The research resulted in finding breaches in the
HMU by developing their own fuzzing framework targeting the SMS interface of the
device [39]. The confirmed hypothesis on the old version of the HMU in Bour’s thesis
was to some extent also applicable to the latest version. The findings from the HMU
analyses were later used to compare with the new system of the pacemaker ecosystem.

Chapter3Technical Background

This section presents technical background that is useful for the understanding of the
rest of the thesis. We introduce guidelines and standards that form the foundation for
our analysis further on. In addition, we present some security terminology to provide
definitions of applicable terms. Lastly, we discuss how an Android application is
constructed.

3.1 Relevant Guidelines

For our thesis, we have looked into two different guides, the OWASP Mobile Applica-
tion Security Testing Guide (MASTG) and MITRE’s Playbook for Threat Modeling
Medical Devices. These are relevant to reach the goals of the analysis and to find
risk mitigation strategies. These guides have helped us acquire knowledge to execute
the threat modeling and analysis of mobile applications. We use both of them as a
basis for our further work.

OWASP MASTG is the first guide, and this concerns the testing of applications.
This guide covers the processes, techniques, and tools used during the analysis
of mobile application security. It is based on verification of the requirements in
OWASP Mobile Application Security Verification Standard (MASVS) and includes
test cases for these. The aim is to provide a baseline for complete and consistent
security tests [68]. The MASVS defines a security model and a list of generic security
requirements for mobile apps.

The MASTG is split in several parts. First, they discuss some key princi-
ples of mobile testing; going through the terminology, different types of testing,
and strategies. The guide focuses both on the security of the application and the
privacy protection of the user. In addition, it includes dedicated chapters for mobile
application testing for Android. These include an overview of Android, as well as
useful tools and starting points for security analysis.

13

14 3. TECHNICAL BACKGROUND

MITRE’s Playbook for Threat Modeling Medical Devices is the next
helpful resource for our thesis. It offers insights into how threat modeling is applied
in organizations in the medical device industry. It presents a definition of threat
modeling and how the analysis works, which is also described in chapter 4. A general
approach to a threat model of a fictional medical device is included, presented with
its threats and corresponding mitigations [14]. This playbook is used as a starting
point in the development of a threat model for the new version of the pacemaker.

3.2 Standards

Some standards for security vulnerabilities were necessary for our security analysis.
These are collections of vulnerabilities that are used by developers to increase the
security of their applications. The three standards we discuss in this part are widely
recognized among the security community. In the threat modeling part of the thesis,
some flaws are connected to these standards.

OWASP Top 10 is an awareness document for web and mobile application security.
This standard represents a broad consensus about the most critical security risks
to web applications [30]. The Top 10 mobile risks from 2016 are considered in our
investigation and are taken from OWASP’s webpage [83]:

M1: Improper Platform Usage: focuses on the misuse of features or failure of
the platform. This can lead to accessing security controls like Android intents,
permissions, misuse of TouchId, the Keychain, etc.

M2: Insecure Data Storage: includes accessing the device’s filesystem and data
storage. This can for instance result in data loss, accessing sensitive data, fraud,
and reputation damage.

M3: Insecure Communication: means exposing sensitive data on the device’s
network traffic when transmitting it. This happens when SSL/TLS is only used
during authentication and not elsewhere and therefore risks phishing and Man-
in-the-middle (MITM) attacks. This violates the user’s confidentiality resulting
in theft, fraud, or reputational damage.

M4: Insecure Authentication: can give an adversary the possibility to fake or
bypass authentication or other interactions with the mobile application. Poor
authentication leads to an inability to detect the identity of the user performing
an action, the source of an attack, and prevent attacks in the future.

M5: Insufficient Cryptography: focus on improper encryption which can lead to
sensitive data exposure or system compromise.

M6: Insecure Authorization: can cause an adversary to understand the autho-
rization scheme and pass the authentication scheme, resulting in accessing an

3.3. SECURITY TERMINOLOGY 15

application as a legitimate user. This weakness can also lead to obtaining sensitive
information or compromising the system.

M7: Client Code Quality: relates to poor code quality and can be exploited by
static analysis or fuzzing. The adversary can identify, for instance, memory leaks,
and buffer overflows. Even low-skilled hackers can exploit these vulnerabilities.

M8: Code Tampering: involves code modification in a way that an adversary
changes the intended use of the application. This results in a malicious, unau-
thorized mobile application either from a third-party app store or via phishing
attacks, on the user’s device.

M9: Reverse Engineering: involves an attacker analyzing the targeted application
and deconstructing it to uncover its functionality and underlying mechanisms.
This may result in exposing information about back-end servers and performing
attacks against them, or gaining necessary information to do code modifications.

M10: Extraneous Functionality: includes an attacker looking for extra features on
the mobile application to find potential hidden functions in the backend systems
to perform an attack. This can give the attacker unauthorized privileges or
knowledge of how the backend systems operate.

OWASP MASVS is another standard for mobile application security. It can be
used either by developers to produce secure apps, or by security testers to ensure
completeness of tests. This is used when we test mobile applications on Android to
ensure that the test results are accurate, consistent, and comprehensive [62]. We
evaluate and compare the security of mobile applications against this standard.

CWE stands for Common Weakness Enumeration and provides a list of weaknesses
and vulnerabilities concerning both software and hardware. The standard is operated
by the MITRE Corporation [20]. In addition, it includes mitigation and prevention
methods. It consists of over 600 categories, divided into different weaknesses classes,
like permission issues, random number issues, key management errors, authentication
errors, etc.

3.3 Security Terminology

This section defines the necessary terms in cybersecurity to give a comprehensive
understanding of the rest of the thesis. The well-known information security model
used for guiding and development includes the triad Confidentiality, Integrity and
Availability (CIA). This was the core foundation of security systems and organizations,
and they interlink with both Authentication and Non-repudiation. In our pre-project
[84], we already discussed the terms and are repeating them below for clarity. All
the definitions were gathered from National Institute of Standards and Technology
(NIST) Computer Security Resource Center [57]. More specifically they are gathered

16 3. TECHNICAL BACKGROUND

from FIPS 200, based on 44 U.S.C., Section 3542, where the differnt terms have
their own sections.

Confidentiality in security is defined as “preserving authorized restrictions on
access and disclosure, including means for protecting personal privacy and
proprietary information” by Federal Information Security Management Act
(FISMA). In other words, the term’s meaning is to ensure that data is kept
private. This implies that it should not be possible for unauthorized people to
access the data of the application.

Integrity is defined as “guarding against improper information modification or
destruction and includes ensuring information nonrepudiation and authenticity”
according to FISMA. This is often related to the data of the application and
concerns its correctness. This means that is not possible for someone to alter,
delete or add data without this being discovered.

Availability means “ensuring timely and reliable access to and use of information”,
also defined by FISMA. It concerns the service as a whole, where the application
should be possible to access for authorized users whenever they wish to do so.

Authentication is described as “verifying the identity of a user, process, or device,
often as a prerequisite to allowing access to resources in an information system”
in Federal Information Processing Standards (FIPS) developed by NIST. Thus,
it is the process of making sure that a user of the service is who they claim to
be and that this authenticated user is allowed to access the service.

Non-Repudiation is the “assurance that the sender of information is provided
with proof of delivery and the recipient is provided with proof of the sender’s
identity, so neither can later deny having processed the information” specified
by NIST. The definition implies making sure that it is not possible to deny the
validity. For example, it should not be possible for a sender to deny that he is
the source of a packet.

These concepts were applied in the context of the pacemaker ecosystem. Here
are some examples of security breaches for each of these terms, where an unautho-
rized and/or non-medical third party and/or malicious actor are referred to as an
unauthorized entity using the Playbook [14] as a guide:

Confidentiality: when private patient information or data is disclosed by an
unauthorized entity without the patient’s knowledge.

Integrity: when an unauthorized entity tampered with and modified the patient
data into incorrect information, which is later used for a healthcare check-up.

3.3. SECURITY TERMINOLOGY 17

Availability: when blocking access in the communication link between the HMU
and the backend server which prevents legitimate activity, resulting in patient
data information being unavailable for a time period.

Authentication: when an unauthorized entity finds a way to cheat into the system
as a medical professional, which can be done by stealing login credentials from
authorized personnel.

Non-Repudiation: when logging into the system as an unauthorized entity, but
pretending to be a medical professional, and later denying having done this
malicious event.

In the healthcare system, one of the main stakeholders is the patients. This group
is highly considered in this thesis’ analysis, focusing on protecting the patient’s privacy
and safety. As a consequence, it is essential to clarify the difference between Security,
Safety, and Privacy which are terms with similar meanings but used differently. The
definitions are gathered from the Computer Security Resource Center by NIST [57].

Security has a wide meaning and has plenty of definitions presented. NIST defines
the term as “freedom from those conditions that can cause a loss of assets with
unacceptable consequences.”1 An additional, and more informative definition of
security is “protecting information and information systems from unauthorized
access, use, disclosure, disruption, modification, or destruction in order to pro-
vide integrity (guarding against improper information modification/destruction,
includes ensuring information non-repudiation and authenticity), confidentiality
(preserving authorized restrictions on access and disclosure, including protecting
the privacy and proprietary information), and availability (ensuring timely and
reliable access to and use of information).”2

Safety is described with two definitions, where the first states “freedom from
conditions that can cause death, injury, occupational illness, damage to or loss
of equipment or property, or damage to the environment.”1 The next definition
says “expectation that a system does not, under defined conditions, lead to a
state in which human life, health, property, or the environment is endangered”.2

Privacy is defined as “the assurance that the confidentiality of, and access to,
certain information about an entity is protected.”3 Further, privacy is also
defined as “freedom from intrusion into the private life or affairs of an individual
when that intrusion results from undue or illegal gathering and use of data
about that individual.”4

1NIST SP 800-160 Vol. 2 Rev. 1
2NIST SP 800-66 Rev. 1 under Security from 44 U.S.C., Sec. 3542
3NIST SP 1800-10B under Privacy from NIST SP 800-130
4NISTIR 8053 from ISO/IEC 2382

18 3. TECHNICAL BACKGROUND

Other significant terms in the cybersecurity field that are vital to make sure are
defined correctly are Risk, Threat, and Vulnerablity. Despite the fact that the terms
are used interchangeably and often blend together, they have different definitions.
These were used in the process of threat modeling in section 4.1, to give a better
and deeper understanding of how an organization can optimize security. These
definitions are proposed, similar to the definitions described above, in the glossary
from NIST’s cybersecurity- and privacy-related publications [57]. More specifically
they are gathered from NIST SP 1800-15B, where the terms have their own sections.

Risk is defined as “a measure of the extent to which an entity is threatened by
a potential circumstance or event, and typically a function of (i) the adverse
impacts that would arise if the circumstance or event occurs; and (ii) the
likelihood of occurrence.”

Threat is described as “any circumstance or event with the potential to adversely
impact organizational operations (including mission, functions, image, or repu-
tation), organizational assets, or individuals through an information system
via unauthorized access, destruction, disclosure, modification of information,
and/or denial of service. Also, the potential for a threat source to successfully
exploit a particular information system vulnerability”.

Vulnerability is defined as “a weakness in an information system, system security
procedures, internal controls, or implementation that could be exploited or
triggered by a threat source”. Further, vulnerability is also defined as “a flaw
or weakness that may allow harm to occur to an IT system or activity”.

3.4 Android Applications

The analysis of applications performed in this thesis was based on applications
for the Android operating system. In order to understand how the analysis took
place, we need to look into how Android applications are built. For our analysis, we
used Android Package Kit (APK) files, which is a file format used by the Android
operating system to install and distribute applications. Every application that a
user has on their Android phone can be downloaded as an APK file. This APK file
is a version of a ZIP format and contains all the elements and files necessary for a
correct installation on the device. Some of the files contained in these APK files were
relevant to our analysis, and we introduce their purpose here.

One of the most important files in the APK, is the AndroidManifest.xml. This is
an obligatory file for all Android applications, and it includes important information
about the app. First, the manifest includes all the different components of the
application, such as activities, services, broadcast receivers, and content providers.

3.4. ANDROID APPLICATIONS 19

Each component must declare the name of its class, and can also declare capabilities.
In addition, this file includes the different permissions the application needs from the
OS of the phone to access protected parts of the system. The permissions needed for
other apps to access the content from this application are also declared. Lastly, the
manifest file includes information about which hardware and software feature the
app supports, which can limit which devices that can download and use it.

In addition to the manifest file, an APK file consists of other parts. There is
a directory called assets containing all the applications assets, a lib directory that
includes compiled native libraries used by the app, and a META-INF directory with
APK metadata, such as the signature. In addition, there is a resources.arsc file
with precompiled resources, such as strings and styles, and a res directory with all
resources that are not compiled into the file. Lastly, the APK contains a classes.dex
file with all the application code in Dex file format, which is a Dalvik executable
format, used to enable the execution of the code in a virtual machine [79]. For our
analysis, we look into both the code itself, the shared libraries used in the application,
and the certificates in use. In particular, the classes.dex file is important, as we need
it to gain an understanding of the source code of the application.

Chapter4Methodology

The primary objective of this thesis is to do a security assessment of the new evolution
of the pacemaker ecosystem, with the aim of comparing its security measures with
those of previous versions. To develop an understanding of the threat landscape
and risks, we perform a threat modeling of the system. Similarly, to identify the
technical vulnerabilities of a mobile application, black box testing was applied to
analyze relevant healthcare mobile applications. Different tools were used to analyze
the security level of these. In addition, we conducted a survey to gain insight into a
patient’s perspective.

4.1 Threat Modeling

The threat modeling method was applied to discover the security threats concerning
the patient’s safety and privacy. The method was used to identify potential threats
that could have an impact on the pacemaker ecosystem, targeted by a malicious
attacker in order to demand a high ransom, harm, or kill patients if the system
is compromised. Attackers are aware of the value of patient data, thus exploiting
vulnerabilities in these systems can be highly profitable. Another motivation can
be targeting a specific person. To protect the security of the pacemaker’s new
digital solution, it is important to have a threat model that provides a structured
representation of relevant information. This model provides information and helps
make educated decisions regarding application security. This also identifies and
improves countermeasures to prevent or mitigate potential threats.

A threat model includes a description of the system to be modeled and potential
threats to the system. In addition, mitigation techniques and actions related to the
threats were discussed. To organize the threat modeling and to provide different
insights into the pacemaker system, four key questions are presented, provided by
MITRE Playbook for Threat Modeling [14]:

21

22 4. METHODOLOGY

1. What are we working on?

2. What can go wrong?

3. What are we going to do about it?

4. Did we do a good enough job?

In this thesis, the main focus was questions 1 and 2. To answer question 3 we provided
potential solutions, while the last question was barely touched. This was because
the process of threat modeling is a continuous activity, whereas we only analyzed
this system without applying any of the proposed improvements from question 3.
This meant that it would be difficult to assess if the improved system was adequately
secure, as we would not reiterate over a new version of the system.

4.1.1 Datagram Flow Diagrams

The first step of threat modeling required visualization of the system before we
could dive further into the process. To answer question one, what are we working
on?, we needed a good understanding of the system and build a model to get a
structured approach. We adopted this approach to achieve an overview of the security
gaps in the system and for easier knowledge sharing for the system’s stakeholders.
To structure and visualize the pacemaker system, we decided to use DFDs that
represent the entities and their interactions and relations. The modeling with DFD
included DFD objects, where icons were used to represent different elements, shown
in Table 4.1.

To start with developing the diagram, an identification of the major components
of the pacemaker ecosystem was needed to get a high-level overview of the system.
Then, a deep dive into the system was done to add more detailed and relevant entities
to the diagram, resulting in a mid-level diagram of the system. The external entity
describes the entities that are outside of our control, the processes represent any
running code, the database symbolizes where data is stored, and the communication
is in the data flows. In contrast to these physical components, the trust boundaries
represent the trust levels between different objects and describe the interaction
between them. By defining these, we achieve a clear picture of which parts of the
system needs to be studied further.

4.1.2 STRIDE

There exist multiple approaches to find out what can go wrong in the system. This
stage focused on identifying and documenting any mitigation controls associated
with the threats. Additionally, we had to brainstorm what could go wrong if these

4.1. THREAT MODELING 23

Table 4.1: DFD objects

Element Symbol Decription

External entity A sharp-cornered rectangle

Process A round-cornered rectangle

Database A drum

Data flow Double-headed arrows. Empty
arrow-head means that the commu-
nication is only initiated by one side

Trust boundaries A dashed rectangle

controls were to fail. Despite the fact that control mechanisms exist and were present,
it does not mean automatically that the system was not vulnerable. Therefore, it was
crucial when threat modeling to develop an understanding of the potential threats
to enhance resilience.

STRIDE stands for Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege. This methodology was used for iden-
tifying security threats and provided a foundation for identifying threats. It is a
mnemonic for six categories of threats. Each category is mapped to a description and
one security property described in Table 4.2 with guidance by the MITRE Playbook
[14].

Applying this method in the pacemaker system could help us find an answer
to the second question in the threat modeling, what can go wrong?, within these
categories. A table with brief information about each STRIDE element with an
associated description and an example within the pacemaker ecosystem was provided.
Subsequently, the STRIDE model was applied to the ecosystem’s components. We
used DFD to see which elements were affected by which threats and document these
to possibly find mitigation methods against these later on. To do this, a method called

24 4. METHODOLOGY

Table 4.2: Description of the STRIDE elements with the associated security
properties

Element Description Property
Spoofing Tricking a system into believing a falsi-

fied entity is a true entity and gaining
illegal access to privileged data

Authentication

Tampering Intentional malicious modification of in-
formation and resources of a system in
an unauthorized way

Integrity

Repudiation Disputing the authenticity of an action
taken without other parties having a
possibility to prove otherwise

Non repudiation

Information Disclo-
sure

Exposure and illegitimate availability of
information to malicious and unautho-
rized users intended to have restricted
access levels

Confidentiality

Denial of Service
(DoS)

Blocking legitimate access or functional-
ity of a system by malicious process(es)
causing service unavailability for autho-
rized, legitimate users or programs

Availability

Elevation of Privi-
lege (EoP)

Gaining access to functions to which an
attacker should not normally have ac-
cess according to the intended security
policy of the product, and thereby hav-
ing sufficient access to compromise or
destroy the system

Authorization

“STRIDE per Element” was executed to pair a threat to a particular DFD element to
investigate threats that cross trust boundaries in the pacemaker ecosystem. A more
detailed summary table was provided in this step, which connected the components
in the pacemaker with one or more identified threats.

4.1.3 Mitigation Techniques

When we discovered a threat, we focused on how to manage it by finding defensive
techniques. In threat modeling, there are four strategies for addressing threats
- eliminating, mitigating, accepting, or transferring. When using the eliminate
approach, the goal is to identify and eliminate features that the threat is applicable
to. An example is stopping the collection of specific patient data that is not necessary,
so it can not possibly be stolen. When accepting the risk of a discovered threat,
the organization accepts and acknowledges the potential loss that is not necessary
to spend more resources and money on. It is difficult for us to decide which risks

4.1. THREAT MODELING 25

that are acceptable according to the organization’s values. The transfer approach
means that the risk is transferred to a third party, usually the manufacturer. This is
typically achieved through license agreements and terms of service, which outline the
responsibilities of both parties with regard to the product’s potential risks and any
harm that may result from its use.

In the next section, we focused on the mitigating approach which helped us
answer the third question of threat modeling, what are we going to do about it?.
According to the MITRE Playbook for Threat Modeling, a threat is a possibility of a
negative event happening, while a risk is more complex and includes the probability
of that event happening, as well as the potential impact if it does happen [14]. As
explained in section 3.3, to clarify the terms threat and risk regarding question 3,
what are we going to do about it? can be better understood as “how do we manage
the risk from the threats we have identified?” [14].

The goals of mitigating threats were to identify which control mechanisms to add
with the purpose of stopping potential attacks and also to improve these mechanisms.
The system is evolving continuously which makes it necessary to control the system
against vulnerabilities when different configurations and features are changed or
added. In consequence, having the documentation of fundamental information about
threats and associated mitigation techniques was essential for future threat modeling
of the system. The mitigation controls are often divided into functions which are
primary pillars to guide organizations to manage security risks at a high level and
do proper risk management decisions. The controls are divided into four categories
according to Cybersecurity Framework by NIST [22]:

Protect includes developing and implementing safeguards to limit the impact.
Protection control has the intention of protecting patients’ safety and privacy,
to ensure that critical services for a patient are safely delivered.

Detect is described as identifying and detecting unnatural and unwanted behavior of
the system. This includes developing relevant activities to discover occurrences
like these. Detection control has the ability to perform immediate action to
prevent and minimize the impact of an attacker.

Respond is to take action when a security incident is detected and react as soon
as possible. In the process of responding and knowing how to react to different
scenarios, there is a need for activities showing how to take action in case of a
security breach.

Recover controls have the purpose of maintaining resilience. The intention is to
return back to a state where additional security mechanisms are not necessary
to be added to counteract the threats. Afterward, checking if the system is

26 4. METHODOLOGY

working correctly may be needed for further service to the patients as a part of
the recovery controls.

4.2 Black Box Testing

After the execution of the threat modeling of the system, two medical healthcare
applications were chosen, and we performed an analysis of these. When it comes to
testing mobile applications, there were several methods available, depending on the
amount of information the tester has about the system.

To describe different versions of software testing, the imagery used is often a box.
This box has different colors depending on the amount of knowledge the tester has of
the internal workings of the system. Firstly, there is white box testing, which is when
the tester has full transparency of the system. This means that the tester has access
to the source code and all other documentation associated with the software. This
leads to better test coverage since all the code can be tested. This type of testing is
often executed before the software is published or used. White box testing can be
conducted by the authors of the software, or others within the same organization,
or the company can bring in external testers to gain a more objective look at the
security.

On the other side of the spectrum is black box testing. In this case, the software
is seen as a black box, which means it is unknown to the tester. In practice,
this means that the tester must rely on publically available information to gain
knowledge of the app. The tester does not know the internals of the software and
interacts with the application to validate how it works and whether it meets some
requirements. The tester defines test cases and uses the application as a user, to see
if the software behaves as expected. This type of test can lead to some vulnerabilities
going unnoticed, as the tester cannot access all the source code. Black box testing
can also be more time-consuming to execute, as the tester does not know how things
are connected, which can lead to a tedious job of setting up the tests. On the other
hand, the black box approach is very valuable as a test method, as it is the most
similar to real-life scenarios with actual attackers.

In addition, grey box testing also exists, which is a common name for all types
of testing that falls between white and black box. This means that the tester has
some knowledge of the system’s internal workings. For example, the tester can be
given access to an authenticated user profile and, therefore, is able to explore all
the features of the application. This can help to guide the evaluation of the system.
Usually, the tester does not have access to the source code in this case but can have
little knowledge, such as how the application is structured. The internals relevant to
the testing can be given to the tester. This can provide a better variety of test cases

4.3. ANALYSIS OF APPLICATIONS 27

and is less time-consuming to execute for the tester.

In this thesis, the type of testing performed was black-box testing. Our primary
goal was to find the security vulnerabilities in mobile applications and utilize these.
We had no prior knowledge of the applications’ internal workings, hence black-box.
On the other hand, testing an Android application with access to its APK file and
its source code can be considered a form of gray-box testing. We had a limited
understanding of the applications’ code structure, design, and architecture. However,
as testers, we did not have completely authorized access to the internal processes and
development of the application. To conclude, the testing executed was a combination
of both gray- and black-boxing in our opinion. The details of how we performed the
analysis of the applications are further explained in the next section.

4.3 Analysis of Applications

The first step in executing the analysis of healthcare applications was to search
for suitable apps. The goal was to stay within the field of applications connected
to pacemakers. Therefore, we looked into several manufacturers of pacemakers to
see if they provided the option to choose an IMDs with a connected application.
We visited the manufacturers’ websites and looked for public information here, as
well as searched through application stores for Apple and Android. Applications
discovered are represented in Table 4.3. There were applications offered by Medtronic,
Biotronik, Boston Scientific, and Abbott. For our study, we focused on two of these
applications, as we did not have the time to analyze them all. To make the analysis
encompass as much as possible, we chose one application of each type - one that
substitutes the HMU and one that is an addition to the system for patients. The
previous master theses written on the topic of the pacemaker ecosystem, presented in
section 2.2, had focused on Biotronik’s ecosystem. Therefore, we found it logical to
study their application for our analysis, to make the comparison between the older
and newer version of the system more accurate. When it comes to the application
that substitutes the HMU, we decided to base our analysis on Medtronic, as it is
an industry leader within the field of pacemakers. These two applications were the
basis for our security analysis.

4.3.1 Extracting APK Files

After deciding which applications to use, APK files of these had to be extracted.
Mobile applications for use on Android devices have publically available APK files.
They are usually downloaded via Google Play Store but are also available on other
websites. If we wish to open the application on our desktop, we would need to use
an emulator as it is not possible to open an APK file directly. We chose the Android
Emulator that came with Android Studio. To find out how to create and run an

28 4. METHODOLOGY

Table 4.3: Available applications from different manufacturers

Manufacturer App name Role App Store Google Play
Medtronic MyCareLink

Heart App
Substitute
for hardware
HMU

Yes Yes

Biotronik Patient App Addition for
patients

Yes Yes

Boston Scien-
tific

MyLATITUDE
Patient App

Addition for
patients

Yes Yes

Abbott MyMerlin
App

Substitute
for hardware
HMU

Yes Yes

emulator, see appendix A.2. The APK was dragged directly into the emulator to
be downloaded on the emulator. The APK file itself can be extracted from the
application on an Android phone, by using a program such as APK Extractor.1 After
extraction, the content of the APK folder can be shown by unzipping the file.

4.3.2 Decompile APK File to JAR File

To further understand how the application worked, a tool called apktool [5] was used
to decompile the APK file. This made a folder with different files and directories,
which we described in more detail in section 3.4. For the code analysis, it is the
classes.dex file that was of the most importance. Since this file was in a Dalvik
EXecutable (DEX) format, suitable for the Dalvik machine, we had to export this
file into a more readable format. This could be done by the dex2jar [64] tool, which
transformed DEX files into Java ARchive (JAR). This was a collection of Java files
and the code that was used to build the application. We used this to identify potential
security vulnerabilities.

When the file was transformed into a JAR file, it was possible to look through
the code. To open the file, we used the program jd-gui[37]. This is a Java decompiler,
an editor that allows us to see through the code, observe its structure, and make
changes. Further instructions on how to use the tools can be found in appendix A.1.

4.3.3 Tools for Security Analysis

After extracting the APK file and opening this on our computers, we used several
different tools for the analysis of the applications. Our goal with the analysis was
to use publically available tools to discover unexpected findings without using very

1APK Extractor: https://play.google.com/store/apps/details?id=com.ext.ui&hl=en_US&gl=US&pli=1

4.3. ANALYSIS OF APPLICATIONS 29

advanced instruments. The reason for this was to study how a low- to medium-
skilled attacker could be able to gain insight into the applications. In order to
accomplish this, relevant tools were searched for, that offered an off-the-shelf analysis
of applications and were free to use or low-cost. This gave the most realistic view of
the vulnerabilities that exist within the applications.

We used the reverse engineering technique, which covers a broad range of areas.
This included decompiling and disassembling executable files and libraries, and
analysis of system data. The primary goal of reverse engineering is to understand
how a system works, its vulnerabilities, and the protection mechanisms against them.
In the context of mobile applications, reverse engineering includes deconstructing,
analyzing, and observing compiled applications. This gave an understanding of
the application’s code, logic, and functions. There are two main types of reverse
engineering, namely Static Analysis and Dynamic Analysis.

First off, we executed a static analysis of the applications to obtain an initial,
general, and high-level understanding. With static analysis, the application is
inspected without running it. Next, a dynamic analysis was performed to achieve a
more detailed application knowledge. In this process, the application was analyzed
during runtime. In this type of code analysis, we could obtain actual values at runtime
and a network traffic overview. As a result, some additional security vulnerabilities
may be available in dynamic analysis vs. static analysis. In addition, running the
program in dynamic analysis can cause overhead in terms of time and resources
and can slow down the execution. These are just a few pros and cons of each code
analysis.

Static Analysis

To perform the static analysis of the mobile applications, we used two different tools,
available for free. The first one was MobSF, which is an automated framework for
executing penetration testing, malware analysis, and security assessments of Android
or iOS applications. MobSF worked well for executing quick security tests of the
application, especially during development. The framework has a Graphical User
Interface (GUI) that represent and visualizes the results, which made it easier for us
as researchers to have a clear overview of the information displayed. This included
permissions, APIs used, and multiple analyses concerning certificates, the manifest,
the code, potential malicious behavior, etc. MobSF provided us with an initial
overview of potential vulnerabilities in the application and gave us a starting point
for further investigation.

MobSF gives an overall security score to the applications that are analyzed. This
score is calculated by giving each app an ideal score of 100, to begin with, and then
reducing or adding to the score depending on the findings. For a finding with severity

30 4. METHODOLOGY

high the score is reduced by 15, while for a finding with severity medium the score
is reduced by 10. On the other hand, if there are findings with severity good, 5
points are added to the score. Based on the summation of these calculations, the
applications are assigned a risk category. This is distributed as follows, given by
[Risk category: Security score range]:

– Low: 71-100

– Medium: 41-70

– High: 16-40

– Critical: 0-15

A MobSF analysis divides the result into sections, and the threats were labeled
in different categories, depending on the severity level. The severity levels are
Secure, Info, Warning, and High depending on the grade of the threat’s malicious
behavior. The level High is given to issues that are a direct threat and can imply
malicious behavior, while Warning is associated with issues that can be a vulnerability,
depending on the implementation. Issues within the Info category are things that the
developer should be aware of, but that do not pose a direct threat to the application.
The category Secure is given to issues that have no connected security vulnerabilities.
Moreover, the permissions do not have severity levels, but rather a status. These
are distinguished between Normal, Dangerous, Signature, and Special. The type of
permission depends on the extent to which the application accesses restricted data
and performs restricted actions.

The other tool we used for the static analysis was BeVigil. This is a free static
analyzer available online [11]. BeVigil gave a report for each app and the analysis
consisted of many of the same categories as the MobSF analysis. BeVigil additionally
provided the ability to see which files in the application were affected by an issue, and
in some cases also looked into the specific code that the issue was gathered from. The
website offered the ability to search for different applications, as well as upload your
own APKs for analysis. Similarly, as for MobSF, the report had an initial security
score and an elaboration of different issues within the categories of analysis. The
score was given on a scale from 0 to 10. There was no specific information about the
exact calculations of the score as it was only stated that the scores were calculated
via a CVSS-based logic. In addition to giving a current score for the application,
BeVigil provided three issues that the application could fix to improve its score in
the most prominent way.

The BeVigil worked in a similar way as MobSF, where the vulnerabilities were
split into different sections, with different severity level categories. The permissions

4.4. SENDING OUT QUESTIONNAIRES 31

are ranged from Normal to Risky to Dangerous. Other issues in the analysis have
severity levels in the range from Low to Medium, and further to High. We can
thus see that the severity categories are a bit different from MobSF. However, these
analysis tools are quite comparable.

Intercepting HTTP and HTTPS Traffic

Two proxy tools were used to act as HTTP/HTTPS proxies connected to an emulator.
The first one was a proxy configured in Burp Suite. Burp Suite is a tool used for
penetration testing of mobile applications [89]. The Burp Proxy was used to study and
modify the content in the requests and responses while in transit, see appendix A.4
to figure out how to configure the emulator to an intercepting proxy. Mitmproxy
was the next proxy for HTTPS. This is a man-in-the-middle proxy for debugging,
testing, and penetration testing [54]. Appendix A.5 demonstrates how to configure
the emulator to use a mitmproxy. With mitmproxy, you can create and execute a
Python script to modify and send the responses back to the mobile to affect the
behavior of the application. Both appendix A.6 and appendix A.7 illustrates how to
intercept a request with the different tools. Additionally, in order to make a proxy
work properly, it was essential that we could communicate with the emulator by
using Android Debug Bridge (ADB) commands. See appendix A.3 for instructions
on how to download ADB.

Frida

Frida is a tool for dynamic code instrumentation. It allows you to inject JavaScript
into native applications during runtime. The tool can be used on applications running
on Windows, macOS, Linux, iOs, Android, and others. It consists of a collection of
built-in methods, to trace different functions being called during runtime, listing the
available processes on the device, and discovering internal functions of a program. In
addition, it provides a possibility to attach custom Python scripts to the running
application, in order to override the functionality of the application dynamically.
Frida can inspect functions as they are called, modify their arguments, and do
custom calls to functions inside a target process [31]. We used the tool to attempt
dynamically bypassing the authentication mechanism of the mobile applications in
real-time. The process of setting up Frida is described in detail in appendix A.8.

4.4 Sending out Questionnaires

In order to gain valuable insight into the patient’s perspective, we wanted to send out
a questionnaire to patients with a pacemaker implanted. To find relevant respondents,
we reached out to Facebook groups for pacemaker patients and asked the participants
to answer our questionnaire. We wanted a patient group containing patients who

32 4. METHODOLOGY

both used mobile applications as the gateway for pacemaker communication and
patients who used the dedicated hardware HMU. This questionnaire resulted in a
quantitative insight into the patient’s viewpoint.

A questionnaire is a valuable tool to conduct surveys. The goal was to understand
the topic from the respondent’s perspective. For our thesis, questions regarding
the patient’s habits with security, their perception of privacy with regard to mobile
applications, and other relevant behavioral questions were included. The questionnaire
contained a variation of close-ended and open-ended questions, where the open-ended
asked for short, written answers. In addition, we had to include some questions
that asked the patients to answer along a Likert scale, from “strongly disagree” to
“strongly agree”.

4.4.1 Finding Questions

To keep the questionnaire anonymous, it was important to not collect personally
identifiable information. The aim was to get some demographic information about
the respondents, such as age and sex, in order to be able to compare the different
demographic groups without getting enough data to identify individuals. These
questions were the first part of the questionnaire. Further, we added some questions
about which vendor the patient used and the type of device they had, before we moved
on to more behavioral questions. For these, we used a combination of multiple-choice,
closed questions with several answer options, and open-ended questions where the
respondent was asked to write a short answer.

After some general questions, we asked some questions about their mobile phone
use. This included what operative system they had, their habits regarding updates,
and the security of their passwords. In this section, we asked whether the user
was mindful of their presence online, and gained insight into how they secured
their accounts. Thereafter, we moved on to questions about their perception of the
applications connected to their device. First, we asked whether the patient used any
app connected to their device, and asked for insight into what they perceived as
benefits and disadvantages connected to the apps. We also asked for some information
regarding how much the patients paid attention to the security of the applications
they had on their phones.

The purpose of the questionnaire was to gather information about whether the
patients used their mobile phones securely and their thoughts on the security of the
healthcare applications they used. The patients’ habits were gathered in order to
see if there were added vulnerabilities to the system based on the routines of the
respondents, for instance, if they rarely updated their phones or applications. The
perceived security of the applications was gathered in order to see if there were any
deviations between the actual security level of the applications and the perception of

4.5. ETHICAL CONCERNS 33

the users, addressed in section 8.4. The full questionnaire sent to patients can be
found in appendix B.

4.5 Ethical Concerns

There were a few ethical concerns that we needed to take into consideration for our
master thesis. When it came to the questionnaire, we ensured the anonymity of the
respondents by not collecting any personally identifiable information. Even though
we ensured the non-collection of personal information, there are still important ethical
aspects we considered in the questionnaire.

First, we obtained informed consent from the participants, explained who the
questionnaire was meant for, its purpose, and what the responses will be used
for. Furthermore, we used a survey platform that allows respondents to answer
anonymously, ensuring that we, as collectors, were unable to associate the responses
with specific individuals. The respondents participated voluntarily and none of the
questions were mandatory. The alternative “Prefer not to answer” was provided in
some questions. Lastly, the data is deleted at the end of the project. By addressing
these ethical concerns, we aim to follow the principles of privacy, confidentiality, and
respect for the participants involved in the questionnaire.

When it comes to our security analysis there were also potential ethical concerns.
Before starting the thesis, we wanted to make sure to inform the vendors if any
vulnerabilities were found. However, even though we found some issues in the security
analysis of the applications, we did not find anything that introduced a high risk
to the patient’s safety or privacy. Therefore, there are not any ethical issues with
posting the results from this analysis before reporting them to the vendors. This
also means that we do not need to postpone the publication of our thesis, as it is
not necessary to give the vendors the opportunity to react to our findings and make
improvements.

We also want to specify that during our security analysis, we performed ethical
hacking. This means that we never interacted with the infrastructure from either
Medtronic or Biotronik. We set up an emulator in order to facilitate the analysis of
the application without communicating with the servers. Therefore, we intercepted
all requests going out of the application. It was of high importance for us to make
sure that the underlying infrastructure of the vendors was in no way harmed during
our analysis.

Chapter5Threat Modeling

This chapter presents a threat modeling analysis of the updated pacemaker ecosystem.
This helps us with answering our research question, described in section 1.4, by
addressing research objective number 2 saying “Identifying and analyzing different
threats to this new version of the pacemaker ecosystem”. The MITRE Playbook [14]
served as a key tool in accomplishing this. The two versions of the current ecosystem
can introduce different threats, and thus we perform threat modeling for each of
these versions of the system separately. We take into consideration two ecosystems,
the Medtronic ecosystem, and thereafter the Biotronik ecosystem. The Medtronic
mobile app substitutes the HMU, while the Biotronik mobile app is an addition to
the ecosystem and works in tandem with the HMU. As mentioned in section 4.1,
there are four fundamental questions for this procedure, where the three first are
the most relevant for us. Thus, these three are addressed in their own dedicated
subsection for each vendor.

The attacks described in the threat modeling can be divided into active and
passive attacks. A passive attack is an attack where the intruder simply observes the
content of messages or stored information. On the other hand, an active attack is
when the intruder tries to modify the content of a message or stored information [25].
A passive attack is a threat to confidentiality and the patient’s privacy, while an
active attack exploits an integrity or availability vulnerability. This classification is
important when it comes to the impact of the different threats, as active attacks can
do more harm to the system, and thus can have larger consequences in contrast to
passive attacks.

To clarify, our key focus is on the mobile application and the mobile phone. In
other words, the remaining parts of the system are not as discussed, analyzed, and
prioritized in the threat modeling process, but we still cover them briefly in order to
get a more comprehensive look at the threats.

35

36 5. THREAT MODELING

5.1 Medtronic’s Ecosystem

We performed a threat modeling of Medtronic’s pacemaker ecosystem. The goal was
to identify potential vulnerabilities and threats, mitigate these, and protect patient
safety. Firstly, it was important to understand the architecture and the design of the
system. When the network components were defined, we could analyze the potential
threats that could arise from these. Lastly, we provided several mitigation techniques
to address the identified vulnerabilities.

5.1.1 What Are We Working On?

In order to obtain a comprehensive understanding of the system, the initial step was
to create a system model of the pacemaker ecosystem. As stated in section 4.1, DFD
was used for constructing the system model. To start off, we identified the major
objects of the ecosystem and continued to build out the DFD with more information
on each individual object. We created a system model where the mobile application
replaced the HMU. The system model for the Medtronic ecosystem can be seen at a
high- and medium-level in Figure 5.1. For clarity, we referred to the device names
under which Medtronic operates themselves.

The high-level model includes the known devices that are part of the ecosystem.
This model gives a brief overview of the different components, and how they are
related. This high-level system model is presented in Figure 5.1a. Further, the
medium-level model gives more insight into the inner workings of the different
objects, illustrated in Figure 5.1b. All the information that is entered into the model
has been found on Medtronic’s own websites, in the descriptions of their available
products.1 Therefore, there are some uncertainties on especially the backend of the
system.

For the medium-level model, we have marked the infrastructure box in a grey
color, representing a black box. Our understanding of its structure and functionality
is limited. In fact, we only know that within this system there is some infrastructure
that collects all patient data and that both the healthcare personnel and the mobile
phone must be able to communicate with this infrastructure. The model also includes
some trust boundaries, marked by the red dotted squares. These boundaries are
meant to show which parts of the system reside within different levels of trust. In
particular, the devices and services that Medtronic has control over have a different
level of trust than external entities. All the devices within a red-dotted square should
have control mechanisms that limit the interactions with the devices outside of the
squares. The communication between the pacemaker and mobile phone within the

1Medtronic Product Information. Available at: https://www.medtronic.com/us-en/healthcare-
professionals/products/cardiac-rhythm/managing-patients/bringing-it-all-together.html

5.1. MEDTRONIC’S ECOSYSTEM 37

(a) High-level data flow diagram

(b) Mid-level data flow diagram

Figure 5.1: Data flow diagram of Medtronic’s ecosystem

Medtronic trust boundary uses BlueSync, which is a protocol running on top of
regular Bluetooth Low Energy (BLE). This protocol has enhanced security features,
to ensure secure communication between the devices [50].

The DFD objects included in Medtronic’s system model, and a short description
of each, is illustrated in Table 5.1. Here we have both the physical components of
the ecosystem, as well as the most important dataflows.

5.1.2 What Can Go Wrong?

To address question 2 in threat analysis, the STRIDE approach is applied to identify
security threats to the pacemaker ecosystem, proposed by MITRE Playbook [14].
To start, a brainstorming session was executed, where all identified threats and
attacks were written down. After this first round, we did a short literature study
to fill the gap of missing threats. Further, a classification of threats was needed for
clarity. Therefore, the DFD objects in the ecosystem received their own table with a
description of each identified threat divided into one of the categories of threats in
the STRIDE model. A summary of all the threats is presented in Table 5.8.

38 5. THREAT MODELING

Table 5.1: Identified pacemaker components and their description

DFD Object Description
Pacemaker
device

This is the device situated inside the patient’s chest, responsible
for giving small electrical pulses to keep the heart functioning as
normal

App This is an Android application on the patient’s phone. The app is
responsible for collecting data from the pacemaker, showing some
statistics to the user, and forwarding the data to the data server

Programmer This is the device responsible for programming the pacemaker to
function for each patient’s specific needs. Resides at the hospital
and is operated by healthcare personnel

Backend
server

The server of the vendor collects and exports the data coming
from the mobile phones of the patient. The data is accessible to
healthcare personnel

Doctor’s
tablet

The computer/tablet belongs to the healthcare personnel. The
tablet has an application with information about the different
patients the doctor is responsible for. Can gather data from the
programmer and the data server

Dataflow:
Cellular/Wi-
Fi Network

The data flow goes from the mobile phone of the patient to the
data server, containing all the data from the pacemaker. The
doctor can also gather data from the data server to their local
computer/tablet over cellular/WiFi

Dataflow:
Bluetooth

The dataflow going from the pacemaker to the phone. In addition,
the data flow between the pacemaker and the programmer. Uses
a protocol called BlueSync, running on top of the BLE protocol

Each threat is associated with an impact, which is noted as low, medium, or
high. The impact depends on the potential harmfulness to the functions, processes,
and patients, and the number of patients affected. This is illustrated as a matrix
in Figure 5.2. The green boxes represent low impact, where the threat has low
consequences in which one or few patients are involved, and the threat causes little
to no harm. Next, the yellow boxes indicate medium impact, where the threat has
moderate consequences. These threats are more significant than low-impact threats
but not as severe as high-impact threats. They are not urgent but are important and
require attention. Lastly, the red boxes denote high impact, where the outcome has a
high effect on a large group of patients or is life-threatening to a patient. Additionally,
each threat was categorized as resulting in a passive or active attack, based on the
required approach from an attacker. In the tables, we are listing the threats as either
P, for Passive, or A, for Active.

Table 5.2 summarizes the brainstormed threats related to the pacemaker device,

5.1. MEDTRONIC’S ECOSYSTEM 39

Figure 5.2: Impact matrix

Table 5.2: Description of STRIDE threats against the pacemaker device and their
impact

ID STRIDE Description Impact P/A
1 Information

Disclosure
An attacker connects to the pace-
maker unauthorized and collects
data from the pacemaker

Low A

2 Tampering An attacker connects to the pace-
maker and tries to make reconfigura-
tions

Medium A

3 DoS An attacker can send a signal to the
pacemaker to ask for data continu-
ously, which leads to the battery of
the pacemaker draining rapidly

Medium A

4 DoS An attacker can jam the pacemaker
with signals that the patient’s heart
is not beating as it should, which can
lead to several unnecessary electrical
pulses

Medium A

40 5. THREAT MODELING

which had threats in the categories of information disclosure, tampering, and DoS.
The reason why the threat with ID 1 has a low impact is that an attacker connecting to
a pacemaker and collecting data can potentially harm that one individual patient. If a
low-skilled malicious attacker is able to obtain patient data and has the goal of harming
the patient, the attacker requires additional medical knowledge to comprehend the
information. On the other hand, the impact increases on ID 2 as the attacker
can do configurations that result in wrong and unsuitable treatment from both the
pacemaker and healthcare personnel. This type of reasoning was practiced throughout
to complete the tables of each component of the ecosystem.

The pacemaker app and the mobile phone’s threats are handled in Table 5.3. This
table includes the highest number of threats. It considers all vulnerabilities regard-
ing both the application downloaded from Google Play Store and also weaknesses
potentially found on the mobile phone itself. In addition, this part of the system is
our focus area, and thus we studied these components in more detail. In contrast to
threats in other parts of the ecosystem, these threats also depend on the behavior of
the patient. For instance, the patient updating the phone and application to patch
security gaps affects the level of security. If the patient lacks security knowledge or
is unaware of having an outdated version of the software, the software can become
vulnerable, which again can pose a risk to the safety and privacy of the patient.

5.1. MEDTRONIC’S ECOSYSTEM 41

Table 5.3: Description of STRIDE threats against the pacemaker app and the
mobile phone and their impact

ID STRIDE Description Impact P/A
5 Spoofing An attacker can pretend to be an au-

thorized application that the patient
downloads, then the attacker obtains
health data from the device

Low A

6 Spoofing An attacker can bypass authentica-
tion with physical access to the mo-
bile device and gain the view of a
logged-in user in the app. This gives
insight into the health data of the
patient

Low A

7 Tampering An attacker can hijack the applica-
tion and send wrongful data to the
doctor or show false data to the pa-
tient, leading them to believe some-
thing is wrong

Medium A

8 Spoofing and
EoP

An attacker can exploit a known vul-
nerability in the OS of the patient’s
phone because the user has not up-
dated their phone

Low A

9 EoP An attacker can brute force the pass-
word of the user with physical access
to the mobile device, and is thus able
to gain authorized access to the ap-
plication

Low A

10 Information
Disclosure

The patient loses their login creden-
tials, or shares them with someone
else

Low -

11 EoP The patient’s phone can be stolen,
which makes it possible to gain phys-
ical access to the phone

Low A

12 Spoofing and
EoP

The attacker can exploit a bug re-
sulting from a missing update of the
application from the patient

Low P

13 EoP The attacker can gain access to other
parts of the patient’s mobile phone
after hijacking the application, be-
cause of app permissions

Low P

14 Information
Disclosure

The attacker can use the app’s lo-
gin site to perform an SQL injection
and gain access to data from one or
multiple patients

Medium A

15 Spoofing and
Tampering

The attacker can gain access to the
application and send instructions to
the pacemaker to cause harm to the
patient

Medium A

42 5. THREAT MODELING

Table 5.4: Description of STRIDE threats against the data server and their impact

ID STRIDE Description Impact P/A
16 Tampering An attacker can forge packets and

send them to the server to corrupt
the real data and trick the doctor
into thinking something is wrong, po-
tentially resulting in incorrect treat-
ment

High A

17 Information
Disclosure

The patient data is not securely
stored, and it is thus vulnerable to
theft or misuse

High -

18 DoS The attacker repeatedly sends re-
quests to the data server, making
the server unavailable to access for
healthcare personnel

High A

The data server has a few threats addressed in Table 5.4, which cover how patient
data is handled and stored. The most common attacks against data storage were
tampering, DoS attacks, and disclosure of information. This is because the data
server is responsible for data at rest. All these threats could affect a large number
of patients if they are realized, and therefore the level of impact is either high or
medium for these threats.

When it comes to threats regarding the doctor’s tablet in Table 5.5, there is a
potential to affect more than one singular patient if an attacker is able to connect,
authenticate, or log in to one of the personnel’s tablets/computers. As a consequence,
the impact is either medium or high for all the threats against this component. The
threats classified as having a medium impact are the ones where there is no direct
threat against the patients. On the other hand, for those classified as a high impact,
the threat directly causes harm to the patients. We can observe that the doctor’s
tablet has threats within several different categories of STRIDE.

5.1. MEDTRONIC’S ECOSYSTEM 43

Table 5.5: Description of STRIDE threats against the doctor’s device and their
impact

ID STRIDE Description Impact P/A
19 EoP An attacker finds a way to gain unau-

thorized access to the system by
stealing login credentials from autho-
rized personnel

High A

20 Spoofing The attacker can bypass authentica-
tion on the doctor’s computer appli-
cation, and gain insight into several
patients’ data

High A

21 Information
Disclosure

The doctor/nurse loses their login
credentials

Medium -

22 Spoofing Employees or other insiders who have
access to the ecosystem could cause
harm by misusing patient data or
manipulating device settings

High A

23 Repudiation An attacker is logged into the system,
pretending to be a medical profes-
sional, and later denies having done
this malicious event

Medium A

Table 5.6 covers the data flow over the Wi-Fi network from the patient’s mobile
phone to where the patient data is stored and handled, and further to the doctor’s
tablet. The threats describe attacks concerning intercepting, blocking, and jamming
signals, in addition to sniffing packets. We observe that the threats are ranging from
medium to high, depending on the consequences they have for the patients. The
other part of the data flow of the pacemaker ecosystem is in Table 5.7, which is the
communication link between the pacemaker and the patient’s mobile phone. The
attacker can limit the availability of the service between the phone and pacemaker,
as well as intercept the communication. In addition, the attacker can exploit
vulnerabilities of BLE, which is the basis for the communication protocol between
the pacemaker and phone. Both the data flow tables include attacks concerning
tampering, information disclosure, and DoS only since the analysis focuses on the
data being transmitted, not how the data is interpreted [14].

44 5. THREAT MODELING

Table 5.6: Description of STRIDE threats against the communication over the
Internet and their impact

ID STRIDE Description Impact P/A
24 DoS An attacker can jam the signal from

the doctor to the data server
Medium A

25 Information
Disclosure

An attacker can intercept the data on
the interface between HMU/phone
and the server

Medium P

26 Tampering An attacker can gain access to the
communication flowing between the
two devices, and alter the data dur-
ing transit

High A

27 Information
Disclosure

The phone interacting with the pace-
maker connects to an unsecured Wi-
Fi network, making sensitive data
vulnerable to interception/theft

Medium P

28 DoS An attacker can block or interrupt
the transmission of the data going
from the HMU/mobile phone to the
data storage, so the doctor is un-
aware of the status of the patient

Medium A

29 Tampering An attacker can do a replay attack of
the packets, and sniff health data on
the communication link by getting
unauthorized access

Medium P

To summarize, all identified threats against each individual DFD object in
Medtronic’s pacemaker ecosystem is represented in Table 5.8. The table displays a
mapping where a specific DFD element is associated with one of the categories of
STRIDE, where each identified threat is stated in the table with an ID.

5.1. MEDTRONIC’S ECOSYSTEM 45

Table 5.7: Description of STRIDE threats against the communication between the
pacemaker and phone and their impact in the Medtronic ecosystem

ID STRIDE Description Impact P/A
30 DoS An attacker can jam the signal from

the pacemaker device to the mobile
phone

Low A

31 Tampering An attacker can alter the traffic go-
ing from the pacemaker to the mobile
phone, which can make the data sent
to the doctor incorrect

High A

32 Information
Disclosure

An attacker can intercept the data
on its way from the pacemaker to
the phone

Low P

33 DoS An attacker can block the communi-
cation link between the phone and
the pacemaker which prevents legiti-
mate activity and results in patient
data information being unavailable
for a time period

Medium A

34 Information
Disclosure

An attacker can exploit known vul-
nerabilities in BLE, which could al-
low attackers to access sensitive pa-
tient data

Low P&A

Table 5.8: Summary of STRIDE categories with identified threats against the
pacemaker’s components in the Medtronic ecosystem

Component Spoof Tamper Repudiate Info Disc DoS EoP
Pacemaker
device

1 2 3, 4

App and Mo-
bile Phone

5, 6, 8,
12, 15

7, 15 10, 14 8, 9,
11, 12,
13

Data server 16 17 18
Doctor’s
tablet

20, 22 23 21 19

Dataflow:
Cell/Wi-Fi
Network

26, 29 25, 27 24, 28

Dataflow:
Bluetooth

31 32, 34 30, 33

46 5. THREAT MODELING

5.1.3 What Are We Going to Do About It?

For question 3, we looked at what kind of measures Medtronic could do to manage
the threats found in the threat modeling. Referring to subsection 4.1.3, there are
four different ways to deal with the risk associated with these threats - eliminating,
accepting, mitigating, or transferring. As mentioned in the mitigation section, it was
hard for us as third parties to determine which risks are acceptable for Medtronic. In
addition, we had little knowledge of their ability to transfer the risk to other parties
in the manufacturing chain. Lastly, it is often hard to eliminate risk completely while
still keeping all functionality intact. Therefore, our proposed countermeasures in
this section focus only on mitigating the risks. In this way, we made sure that the
system could remain as it currently is, but that the security was heightened. We
provide an overview of the mitigation techniques for each component divided into
the categories in STRIDE. The threats presented in the lists are clickable if there is
a need to refresh on their wording.

Mitigation Techniques for Threats Against the Pacemaker Device

The following threats with IDs 1, 2, 3, and 4 can be found in Table 5.2.

– Tampering (ID 2):

◦ Use intrusion and prevention systems to monitor and block suspicious
activities in real-time

◦ Implement access control to the functions of the pacemaker to restrict
unauthorized modifications

◦ Make sure that the pacemaker has closed all unnecessary interfaces to
limit the connectivity to the real world

– Information Disclosure (ID 1):

◦ Make sure that data at rest is encrypted, to prevent unauthorized people
from gaining any knowledge from accessing the data

◦ Implement access control to the data, to make sure that only authorized
people can read the data stored in the database

– DoS (ID 3, 4):

◦ Limit the number of requests sent to the pacemaker for a given time period
◦ Implement authentication and access controls to ensure that authorized

personnel can access the pacemaker
◦ Implement only one-way communication between the pacemaker and

mobile device

5.1. MEDTRONIC’S ECOSYSTEM 47

◦ Implement shielding material in the pacemaker to protect it from electro-
magnetic interference. The shield material should be designed to block
radio waves or microwave radiation. Typical materials for this are metals,
carbons, ceramics, and cement [16]

Mitigation Techniques for Threats Against the Pacemaker App and the
Mobile Phone

In the next section, IDs from Table 5.3 are presented.

– Spoofing (ID 5, 6, 8, 12, 15):

◦ Require password-based authentication with strong password criteria.
Make sure that the patient has a limited number of attempts to log into
the application, to prevent an attacker from brute forcing access

◦ Require biometric or two-factor authentication to ensure only authorized
users can access

◦ Use intrusion and prevention systems to monitor and block suspicious
activities in real-time

◦ Give the patient sufficient knowledge on where they can find the correct
application for their device

◦ Give the user reminders to update the application whenever there is a
new update available and ask the user to update their mobile phone when
the SDK version is below a certain threshold

◦ Educate patients about the importance of regularly updating the devices
and applications. Also, encourage the patients to enable automatic updates

◦ Give the patient sufficient knowledge on where they can find the correct
application for their device

◦ Provide the patient with a step-by-step guide on how to download the ap-
plication when they receive a new pacemaker where the mobile application
is substituting the HMU

◦ Implement access controls to restrict access to health data stored in the
device, which makes it unavailable for unauthorized attackers even if they
manage to obtain it

– Tampering (ID 7, 15):

◦ Apply strict integrity checks to the data being transferred between the
server and the patient

◦ Implement stronger authentication measures to the application to prevent
unauthorized access

48 5. THREAT MODELING

◦ Implement end-to-end encryption of the data to prevent altering of the
information during transit. This can prevent someone from eavesdropping
on the communication

– Information Disclosure (ID 10, 14):

◦ Teach the patients about the importance of keeping their login credentials
secure

◦ Educate patients on the importance of changing their login credentials
immediately if they notice that they are missing

◦ Teach patients about secure ways to store their login credentials

◦ Make it mandatory for users to change their password after a specific
amount of time, to ensure that the same password is not in circulation for
too long

◦ Make sure that there is proper input validation in place, to prevent SQL
injections

◦ Parameterize the SQL queries, to separate the input data from the SQL
code. Then the user input cannot be interpreted as a query from the
database

– EoP (ID 8, 9, 11, 12, 13):

◦ Make sure to always remind the patient to update their application
whenever a new version is released

◦ Teach the patients about the risks of not updating their applications and
phone

◦ Apply strong rules for passwords, to make it harder for an attacker to
brute force the password

◦ Give information to patients about the importance of keeping their devices
secure, with login mechanisms to access their device

◦ Keep strict control over which permissions the app asks of the user, to
limit the amount of access a person gets to the rest of the system

◦ Educate the patients on app permissions to make the user aware of what
the app has access to on their phone and that they deny permissions if
they do not wish to share certain items

Mitigation Techniques for Threats Against the Data Server

Table 5.4 contain the threats 16, 17, and 18. Their mitigation techniques are presented
here.

5.1. MEDTRONIC’S ECOSYSTEM 49

– Tampering (ID 16):

◦ Apply strict integrity checks to the data being transferred between the
server and the patient/doctor

◦ Implement end-to-end encryption of the data to prevent altering of the
information during transit. This can prevent someone from eavesdropping
on the communication

◦ Enforce server-side validation so that the server validates the authenticity
and integrity of the incoming data

– Information Disclosure (ID 17):

◦ Make sure that data at rest is encrypted, to prevent unauthorized people
from gaining any knowledge from accessing the data

◦ Implement access control to the data, to make sure that only authorized
people can read the data stored in the database

◦ Perform regular backup of patient data so that in the case of theft it could
be possible to recover the data

– DoS (ID 18):

◦ Limit the number of requests sent to the data server for a given time
period

◦ Prevent a single point of failure by distributing and balancing the load of
the data server

Mitigation Techniques for Threats Against the Doctor’s Device

Table 5.5 shows threats against the device belonging to the doctor and mitigation
techniques are the following:

– Spoofing (ID 20):

◦ Require biometric or two-factor authentication to ensure only authorized
personnel can access

◦ Use intrusion and prevention systems to monitor and block suspicious
activities in real-time

– Repudiation (ID 23):

◦ Implement access control to the system, based on roles. This gives
personnel only access to relevant information for their role, which can
mitigate the amount of damage an attacker can execute

50 5. THREAT MODELING

◦ Introduce a system that logs all users’ activity in the system, to recognize
suspicious activity faster

◦ Add digital signatures to the actions performed by healthcare personnel.
Thus it is not possible to deny having executed a task

– Information Disclosure (ID 21):

◦ Teach the personnel about the importance of keeping their login credentials
secure

◦ Educate personnel on the importance of changing their login credentials
immediately if they notice that they are missing

◦ Teach personnel about secure ways to store their login credentials

◦ Make it mandatory for users to change their password after a specific
amount of time, to ensure that the same password is not in circulation for
too long

– EoP (ID 19):

◦ Give information to personnel about the importance of keeping their
devices secure, with login mechanisms to access their device

◦ Teach personnel about routines when noticing that their device has been
used by someone else

Mitigation Techniques For Threats Against Communication Over the
Internet

Communication over the internet has several threats, as seen in Table 5.6, and we
present the mitigation techniques for them.

– Tampering (ID 26, 29):

◦ Apply strict integrity checks to the data being transferred between the
server and the patient/doctor

◦ Implement end-to-end encryption of the data to prevent altering of the
information during transit. This can prevent someone from eavesdropping
on the communication

◦ Add a Message Authentication Code (MAC) to the messages being sent
over the communication link, to prevent replay attacks

◦ Use timestamps on the messages to prevent replay attacks

◦ Implement strong access control to prevent unauthorized access to the
system

5.1. MEDTRONIC’S ECOSYSTEM 51

– Information Disclosure (ID 25, 27):

◦ Make sure that all data is encrypted during communication, to prevent
eavesdropping and protect confidentiality

– DoS (ID 24, 28):

◦ Implement frequency hopping or spread spectrum techniques to spread
the signal over a wider range of frequencies at the same time period

◦ Implement redundant communication channels, such as multiple wireless,
resulting in a backup communication path

◦ Make sure that all data is encrypted during communication, to prevent
tampering or interception

Mitigation Techniques For Threats Against Communication Between the
Pacemaker and Phone

Table 5.7 is the final table with threats for Medtronic, and their mitigation techniques
are:

– Tampering (ID 31):

◦ Apply strict integrity checks to the data being transferred between the
pacemaker and the phone

◦ Implement end-to-end encryption of the data to prevent altering of the
information during transit. This can prevent someone from eavesdropping
on the communication

– Information Disclosure (ID 32, 34):

◦ Make sure that all data is encrypted during communication, to prevent
eavesdropping and protect confidentiality

◦ Keep up to date on known vulnerabilities in BLE and take appropriate
measures to mitigate the impact of these vulnerabilities

– DoS (ID 30, 33):

◦ Implement shielding material in the pacemaker to protect it from electro-
magnetic interference. The shield material should be designed to block
radio waves or microwave radiation. Typical materials for this are metals,
carbons, ceramics, and cement [16]

◦ Implement frequency hopping or spread spectrum techniques to spread
the signal over a wider range of frequencies at the same time period

◦ Implement redundant communication channels, such as multiple wireless,
resulting in a backup communication path

52 5. THREAT MODELING

5.2 Biotronik’s Ecosystem

We conducted a threat modeling of Biotronik’s pacemaker system. The objective was
to identify potential threats and vulnerabilities within the system and take measures
to mitigate them in order to ensure the security of the patient. The initial step
was to gain a comprehensive understanding of the architecture and design of the
Biotronik system. Thereafter, we discussed the network components and analyzed
potential threats that could occur. Finally, we proposed mitigation options as well.

5.2.1 What Are We Working On?

The first step in the threat modeling of the Biotronik system was to get an un-
derstanding of the system model. The threat model included a full breakdown of
processes, data stores, data flows, and trust boundaries to answer this section’s title.
This was used as a foundation to find out what can go wrong in Biotronik’s system.
The models in Figure 5.3 illustrate the data flow diagram both in the high- and
mid-level of the vendor’s pacemaker ecosystem. DFD was used to structure the
system models. Additional elements used in Biotronik’s pacemaker ecosystem are a
Virtual Private Network (VPN). Also in this figure, the backend infrastructure is
displayed as a black box, representing a system that can be viewed by its inputs and
outputs. The black box is incorporated into the system model since we have limited
knowledge and understanding of its internal workings. As for the VPN, we know
that the communication between the HMU and the infrastructure is done securely
over a VPN connection.

Table 5.9 includes a summary of the different components in the Biotronik
ecosystem. We observed that there were some differences between the Medtronic
system and this one. In particular, the Biotronik ecosystem used a different protocol,
Medical Implant Communication System (MICS), for the communication between
the pacemaker and the HMU. Additionally, communication over the internet between
the HMU and the backend was behind a VPN connection.

5.2.2 What Can Go Wrong?

The STRIDE model was used in the Biotronik system as well. We constructed
different tables for the different DFD objects of the ecosystem, the threats associated
with the element, and the impact of these threats. To avoid unnecessary repetition, we
refer to the previous tables from the Medtronic STRIDE analysis in subsection 5.1.2
when the threats appear to be identical. The threats uncovered were classified into
one of the six STRIDE categories, and given an impact level of low, medium, or
high. The definition of the categories and the impact levels used in subsection 5.1.2
remains the same. A summary of all the threats found is presented in Table 5.12.

5.2. BIOTRONIK’S ECOSYSTEM 53

(a) High-level data flow diagram

(b) Mid-level data flow diagram

Figure 5.3: Data flow diagram of the Biotronik’s ecosystem

54 5. THREAT MODELING

Table 5.9: Identified pacemaker components and their description in the Biotronik’s
ecosystem

DFD Object Description
Pacemaker
device

This is the device situated inside the patient’s chest, responsible for
giving small electrical pulses to keep the heart functioning as normal

App This is an Android application on the patient’s phone. The app is
showing some statistics to the user, that it has received from the data
server

Programmer This is the device responsible for programming the pacemaker to fit
each patient’s specific needs. Resides at the hospital, and is operated
by healthcare personnel

HMU This is a small computer receiving medical information from a pace-
maker. It is placed in the patient’s home and it makes it possible for
healthcare personnel to receive the data. This simplifies monitoring
for the patient as she does not need to visit the doctor as often

Data
server

The server of the vendor collects and exports the data coming from the
HMU of the patient. The data is accessible to healthcare personnel,
and a part of the data is accessible to the patient

Service
Center

The computer/tablet belongs to the healthcare personnel. The tablet
has an application with information about the different patients the
doctor is responsible for. Can gather data from the data server

Dataflow:
Cellular/Wi-
Fi Net-
work

The data flow goes from the HMU to the data server, containing all
the data from the pacemaker. The doctor can gather data from the
data server to their local computer/tablet over cellular/WiFi

Dataflow:
MICS

The dataflow going from the pacemaker to the HMU and between
the pacemaker and the programmer. A proprietary protocol made
specifically for IMDs communication

The two ecosystems are somewhat similar, thus some of the tables from Medtronic
were directly equivalent for Biotronik. However, there were some differences. The
tables not applicable to the Biotronik ecosystem were the one detailing communication
between pacemaker and phone (Table 5.7), and parts of the table on mobile phone
threats (Table 5.3). This was mainly a result of the ecosystem’s use of different
protocols for communication and the mobile application’s lack of communication
with the pacemaker. Therefore, two additional tables are included in this section, one
for the HMU device itself, and another for the communication between HMU and
the pacemaker. In addition, necessary adjustments were made to the other tables to
reflect this version of the ecosystem.

5.2. BIOTRONIK’S ECOSYSTEM 55

There exist tables that can be directly used for the Biotronik system. The threats
regarding the pacemaker device, presented in Table 5.2 are applicable as they are,
and we are not making any adjustments to this system. Further, Table 5.4, and
Table 5.5, the tables regarding threats to the servers in the backend infrastructure
and the threats against the hospital personnel are directly applicable to the Biotronik
system. It is worth noting that the device used by doctors and personnel at the
hospital has different names in the two models. For Medtronic, they refer to it as
the doctor’s tablet, containing two different applications for communication with
the programmer and the data server. In Biotronik’s case, the device is called a
Service Center, and this contains a web-based application for communication with
the backend. Despite that these systems are named differently, their function in the
ecosystem is the same and therefore have identical threats.

When it comes to communication over Wi-Fi, between the HMU, backend in-
frastructure, the hospital’s devices, and the patient’s phone, we can use Table 5.6
with some modifications. As mentioned earlier, the communication between the
HMU and the infrastructure goes through a VPN. Thus, communication should
be more secure than an open connection over the internet. Therefore, the threats
with ID 25 (intercepting data on the interface) and ID 28 (blocking or interrupting
the transmission) are not necessarily applicable to Biotronik’s system. However,
we are aware that the use of VPN does not make the communication completely
secure against all attacks. This means the threats in question are becoming harder
to execute, but not impossible. We include these in the threat model for Biotronik
as well, even though the chances of these attacks succeeding are significantly lower
than for Medtronic’s case.

The table that describes the threats against the mobile phone and the application,
Table 5.3, is most relevant for Biotronik as well. Since the application does not
communicate directly with the pacemaker, some threats are simply not plausible
for this system. In particular, ID 15 (sending instructions to the pacemaker) is not
applicable to Biotronik. In addition, the threat with ID 7 (hijacking the application)
is only partly relevant, as an attacker is not able to send data to the doctor directly.
However, the attacker can show wrongful data to the patient, which can lead to
them thinking something is wrong, or they can withhold information about an issue.
Otherwise, the threats presented in Table 5.3 are also present in the Biotronik system.

As mentioned above, we made two new tables, one for the HMU itself (Table 5.10),
and one for the communication between the pacemaker and the HMU (Table 5.11).
These are the components that are not present in Medronic’s system and are thus
unique threats to Biotronik.

56 5. THREAT MODELING

Table 5.10: Description of STRIDE threats against the hardware HMU and their
impact in Biotronik

ID STRIDE Description Impact P/A
35 DoS An attacker can jam the HMU with

signals in order to overwhelm the
device, and prevent normal operation

Medium A

36 EoP An attacker can gain physical access
to the device and obtain patient data

Low A

Table 5.11: Description of STRIDE threats against the communication between
HMU and pacemaker and their impact in Biotronik

ID STRIDE Description Impact P/A
37 DoS An attacker can block the commu-

nication link between the HMU and
the pacemaker, which prevents legit-
imate activity, resulting in patient
data being unavailable

Medium A

38 Tampering An attacker can alter the packets
going between the pacemaker and
HMU, which can make data stored
at the server untrue

Medium A

39 DoS An attacker can jam the signal from
the pacemaker device to the HMU

Low A

As we observe in Table 5.10, there are two threats against the hardware HMU,
and these have a low to medium impact. All the attacks against an HMU only affect
one single patient, as it is connected to their personal pacemaker. In addition, the
threats can affect the operation of the HMU, but this is not life-threatening for the
patient. We also observe in Table 5.11 that the communication link between the
pacemaker and the HMU is subject to threats ranging from low to medium. It can
be quite harmful to the patient if the doctor does not receive the correct information
about the patient’s health, but it still affects only one patient at a time.

For the summary of all the threats applicable to Biotronik’s system, we combined
the threats taken from the tables in subsection 5.1.2 with the unique threats for
Biotronik presented in this section, illustrated in Table 5.12.

5.2. BIOTRONIK’S ECOSYSTEM 57

Table 5.12: Summary of STRIDE categories with identified threats against the
pacemaker’s components in the Biotronik ecosystem

Component Spoof Tamper Repudiate Info Disc DoS EoP
Pacemaker
device

1 2 3, 4

App and Mo-
bile Phone

5, 6, 8,
12

7, 15 10, 14 8, 9,
11, 12,
13

HMU 35 36
Data server 16 17 18
Service Cen-
ter

20, 22 23 21 19

Dataflow:
Cell/Wi-Fi
Network

26, 29 25, 27 24, 28

Dataflow:
MICS

38 37, 39

5.2.3 What Are We Going to Do About It?

We answered question 3 by finding mitigation techniques for the risks associated
with the threats found. As a lot of the threats for the system are the same as the
ones for Medtronic’s system, we went through solely the ones that are unique for
Biotronik for this section. For the common threats, we refer to subsection 5.1.3.
We divided the threats into components where the list has categories based on the
STRIDE model.

Mitigation Techniques for Threats Against the Hardware HMU

The next section presents the countermeasures for the threat with ID 35 and 36 from
Table 5.11.

– DoS (ID 35):

◦ Implement shielding material in the design of the HMU to protect it from
electromagnetic interference

◦ Implement frequency hopping or spread spectrum techniques to spread
the signal over a wider range of frequencies at the same time period

◦ Implement monitoring to detect signal interference and alert personnel to
take proper action

58 5. THREAT MODELING

◦ Use signal filtering to filter out unwanted signals and prevent the HMU
from becoming overwhelmed

– EoP (ID 36):

◦ Implement encryption techniques to protect the data stored on the device.
Makes it unavailable for unauthorized attackers even if they manage to
obtain it

◦ Ensure that the HMU is regularly updated with up-to-date software and
firmware to fix known vulnerabilities

◦ Implement access control to the data on the HMU to ensure that only
authorized people will have access to the information

Mitigation Techniques for Threats Against the Communication Between
the HMU and Pacemaker

For the final techniques, we present threats 37, 38, and 39, revisit ?? for the threats.

– Tampering (ID 38):

◦ Make sure that the communication going between the HMU and pacemaker
is encrypted securely, to prevent eavesdropping

◦ Implement integrity checks on the communication, to prevent alterations
from going unnoticed

◦ Add server-side validation, to make sure that the server validates the
authenticity of the communicating parties

– DoS (ID 37, 39):

◦ Implement shielding material in the design of the HMU to protect it from
electromagnetic interference

◦ Implement frequency hopping or spread spectrum techniques to spread
the signal over a wider range of frequencies at the same time period

◦ Implement monitoring to detect signal interference and alert personnel to
take proper action

◦ Use signal filtering to filter out unwanted signals and prevent the HMU
from becoming overwhelmed

◦ Implement redundant communication channels, such as multiple wireless,
resulting in a backup communication path

◦ Use intrusion and prevention systems to monitor and block suspicious
activities in real-time

◦ Make sure that all data is encrypted during communication, to prevent
tampering or intercept

Chapter6Security Analysis of Applications

We research the mobile applications launched by Medtronic and Biotronik. The
applications have the important goal of improving the quality of communication
between a patient and a doctor. For the security analysis, we utilize several different
tools for static analysis and a reverse engineering process. As mentioned in the
analysis of the application section of our methodology, subsection 4.3.3, the tools
are used to assess the security level of the apps and search for vulnerabilities. The
overall goal of this security analysis is to gain insight into what vulnerabilities might
be present in the applications, and how these can be exploited by an attacker. We
try to gain access to the applications and see if we are able to access information
that was not meant for us. This analysis is the foundation for answering our research
question, and it helped us execute research objective number 1, “Analyzing the mobile
healthcare applications to see if they have an adequate level of security in regard to
patient data and privacy.”

Firstly, MobSF gave the foundation of the static analysis. In addition, we used an
online tool called BeVigil for another perspective on static analysis. The reason for
this was that we wanted to make sure that we were not bound by the results given
from one tool, and thus stuck in these findings. By using two tools we were able to
broaden the range of results to further investigate and increase overall effectiveness.
Additionally, this could be used to detect potential false positives. A false positive is
when one of the tools flags a part of the code as a potential vulnerability or issue, but
in reality, it is not. By using two different tools, we compared and cross-validated the
potential vulnerabilities, and used this to highlight genuine problems. For the static
analysis, we used the results from MobSF as the basis and then supplemented them
with information from BeVigil to give a more comprehensive view of the existing
vulnerabilities.

After the results from the static analysis had been presented, we looked into the
code more actively, by using different tools for reverse engineering the application.
Our overall goal was to gain as much understanding of the application as possible.

59

60 6. SECURITY ANALYSIS OF APPLICATIONS

Thus, we explored whether the vulnerabilities found in the static analysis were real
issues for the application and checked if the existing vulnerabilities could be exploited.
Two important tools for the more dynamic part of the analysis were mitmproxy and
Burp Suite. Both of these were used as HTTP proxies that connected to our Android
Emulator, in order to intercept the traffic going between the device and the backend
servers. We used both of these tools as they had some different attributes. Burp
Suite has a more interactive interface, which made it easy for us to understand how
the communication is connected (appendix A.6). On the other hand, mitmproxy is
useful for making fake responses to the requests coming from the device much easier
and sending these automatically. This was because we could attach custom Python
scripts to mitmproxy while it was running (appendix A.7). The usage of these two
tools is explained further in the upcoming sections.

6.1 MyCareLink Heart App - Medtronic

MyCareLink Heart is a mobile application for pacemaker patients with a device
supporting BlueSync technology. The purpose of the application is to enable patients
with a Medtronic heart device with Bluetooth to download and use the application
for remote monitoring. The app can send health data automatically and directly to
the doctor. It also allows patients to conveniently access the data from their own
implanted devices. The application requires the availability of a mobile phone or
tablet, Bluetooth connectivity, and Wi-Fi to pull data from their pacemakers [51].

For the analysis of the MyCareLink Heart application, we began by presenting
the results from the static analysis, performed by MobSF and BeVigil, as presented in
section 4.3.3. Afterward, we looked further into the permissions that the application
requested from the user. We performed an analysis of the APK for the application,
where we looked at the code base and other files in the APK. There is a brief
explanation of the structure of the application, found by analyzing the code base.
Lastly, we provide a summary of the most important findings from the analysis.

6.1.1 Static Analysis

To start, we performed a static analysis of the mobile application. The result of the
security assessment executed by MobSF gave an overall score of 41 points out of 100
for Medtronic’s healthcare application. On the other hand, the BeVigil analysis gave
a score of 8.7 out of 10, i.e. 87 out of 100 [35]. We could observe that these two
tools presented significantly different results for the analysis, and a further look into
what the two analyses focused on was necessary. The categorization of risk given
by MobSF, shown in section 4.3.3, indicated that the application was on the verge
of belonging to the high-risk category with an upper limit of 40 points, but was

6.1. MYCARELINK HEART APP - MEDTRONIC 61

assigned to medium risk. Following the same categorization, the BeVigil analysis
gave the application a low risk.

The two analyses had quite different categories on which they based their score,
even though the content was quite similar. The BeVigil analysis had a few extra
categories, and thus we added the extra information from these at the end. We used
the categorization from MobSF as a base and added the corresponding results from
the BeVigil analysis. All the results for the BeVigil analysis were collected from [35].

Application Permissions

The two analyses did not agree on the level of severity of some of the permissions used
in the application. They had both marked the location permissions as non-safe, with
the MobSF analysis marking these as Dangerous, and BeVigil saying they were Risky,
the level below Dangerous. In addition, the BeVigil included another permission that
they considered troublesome, which has the level Dangerous. We look further into
these:

– android.permission.ACCESS_BACKGROUND_LOCATION allows the appli-
cation to access location in the background,

– android.permission.ACCESS_COARSE_LOCATION allows the application
to access coarse location sources, the approximate phone location

– android.permission.ACCESS_FINE_LOCATION allows the application to
access fine location sources, giving the most precise location

– android.permission.BATTERY_STATS allows an application to collect battery
statistics (only in BeVigil analysis)

The majority of these permissions concern the application’s ability to access the
location, either approximately or precisely, at any time. These can have privacy
consequences in that a malicious app can track the patient’s location. To access coarse
location, the mobile network database can be utilized to receive the approximate
location. For the fine location, the available location providers, including GPS, Wi-Fi,
and mobile cell data, obtain the precise location of the device [47]. Furthermore, the
third-mentioned permission regarding fine location requires more capacity, naturally
resulting in additional battery consumption.

When looking through the documentation for Bluetooth permissions on the
Android Developer pages, [74], it was clear that some of these location permissions
were associated with the use of Bluetooth as the communication medium. In
particular, there was a need for location permissions when using Bluetooth and

62 6. SECURITY ANALYSIS OF APPLICATIONS

supporting older Android versions. There are different needs for location permission
based on the version of Android OS. Therefore, as this application is intended to
support multiple Android versions, there is a necessity to ask permission for all
of these location services This is because it would be difficult to request different
permissions based on which version of the Android OS a specific phone supports, as
the permissions must be stated in the manifest file. We discuss further how these
permissions are used in the upcoming sections.

When it comes to the battery statistic permission, this allows the application
to collect different statistics about the phone’s battery. This includes reading the
current low-level battery use data. The issue with this permission is that it may also
allow the application to find out detailed information about which apps are used the
most on the device [3]. The reason is that the low-level battery data can include
how much of the battery is consumed by the different applications on the phone. By
allowing this permission, the user is to some extent allowing the application to gain
access to data of their phone usage.

Users must grant dangerous permissions to the application when it is running.
Therefore, the above-mentioned permissions are Runtime permissions, which means
that the user has to take explicit action to approve the permissions. Upon the first
use of the application, the user is prompted with a question to allow the application
to access these parts of your system, often with the option to “allow while using the
app”. The permissions are retained, but the users have the possibility to change
them [67]. Android applications need to request these permissions since security
measures are implemented by Android OS to protect the user’s privacy and their
sensitive data. Runtime permissions give the user a choice to access or deny them
and thus have more control over the information they share. This ensures that the
user is aware of what the application can access and grant. If the user wishes to
deny, the applications might not work as intended, or some functionality might not
be accessible anymore.

Certificate Analysis

One category that was only present in MobSF was the certificate analysis. This is
an analysis of the certificates associated with the application, and there were two
different warnings presented. The first one was that the application was vulnerable
to Janus Vulnerability, as it was signed with a v1 signature scheme. In other terms,
the signature algorithm was SHA-1 with RSA, a weak algorithm that is explained in
the next paragraph. This is a vulnerability that makes it possible for an attacker
to modify an application undetected. This is done by adding a malicious Dalvik
executable (DEX) file to an APK file. This addition goes unnoticed because when the
signature is checked for alterations, only the APK file is detected, not the malicious

6.1. MYCARELINK HEART APP - MEDTRONIC 63

DEX file [26]. If the application runs on Android 5.0-7.0 it is vulnerable to this
whether it is signed with a v1, v2, or v3 scheme. If the application is signed with a
v2 or v3 signature scheme, then the signature algorithm is SHA-256 with RSA or
SHA512 with RSA, respectively. For applications running on Android 7.0-8.0 the
vulnerability is present only if the signature scheme used is v1.

The other vulnerability presented in the application was that the certificate
algorithm might be vulnerable to a hash collision. The reason for this was that the
application was signed with SHA-1 with RSA, as mentioned above. SHA-1 algorithms
are known to have collision issues, which means that it is possible for an attacker to
create a fake certificate with the same hash value as the original one. This can lead
to potential security vulnerabilities, such as impersonation and data tampering. This
hash function was theoretically broken back in 2005, and the first successful collision
attack occurred in 2017. In 2019 there was proof of a chosen-prefix collision, making
it possible for the attacker to choose the prefix for two colliding messages [17]. Thus,
it is possible to have collisions with important data inside, not just arbitrary collisions.
In practice, this makes SHA-1 very vulnerable to collision attacks. However, MobSF
stated that the manifest file suggested that the application used SHA-256 with RSA.
This indicated that the app used a different certificate for signing. This was a more
secure algorithm, which could mean that the overall security impact on the app was
not that severe. Further analysis of the certificate algorithm is performed later, see
section 6.1.3.

Manifest Analysis

For the analysis of the manifest file associated with the application, the two analyses
reported different findings. The MobSF analysis found some issues, while BeVigil did
not report any findings. For MobSF there was one finding with a severity level of high,
and some warnings. The issue with the severity high was that clear text traffic is
enabled for the application. This can be seen in the android:usesCleartextTraffic=True
in the manifest.xml file. The app could use cleartext network traffic, such as cleartext
HTTP and FTP. This issue was of high severity as cleartext traffic meant that it
could be possible for an attacker to eavesdrop on the communication and also modify
it without being detected. This is a clear violation of confidentiality and authenticity,
and it does not protect against tampering. The default value for this field for apps
that target API level 27 or lower is “true”, while it is “false” for those targeting API
level 28 or higher [1].

In addition to this issue, there were several warnings present in the manifest
analysis. These are issues that could be a vulnerability, depending on the implemen-
tation. The first warning was that the application could be installed on a vulnerable
Android version. If the app was installed on an older version of Android with unfixed

64 6. SECURITY ANALYSIS OF APPLICATIONS

vulnerabilities, this also made the application itself more exposed to threats. The
application was likely made to have opportunities to support several Android versions,
as it was in use by a large patient group with several different cell phones.

The next warning was that a broadcast receiver in the application was protected
by a permission, but the protection level of the permission should be checked. A
broadcast receiver is a component in the Android system that makes the device
receive and respond to system-wide broadcast announcements, such as low-battery
notifications or incoming calls. This issue could be a problem because the broadcast
receiver is accessible to any other application on the phone, as these receivers
are shared with other apps. If the permission was not strict enough, a malicious
application could request and obtain permission and interact with the component.
The reason for this only being a warning was that the permission was not defined in
the analyzed application, and thus MobSF did not know the level of the permission.

The last warning of the manifest analysis was that TaskAffinity was set for activity.
TaskAffinity is an attribute that is defined in each <activity> in the Manifest. It
describes which task an activity prefers to join. Activities in the same task share
the same back stack, which allows the user to navigate between them using the back
button. The default is to set the task as the package name, to prevent information
from being leaked. If this is not done, other applications could read the intents,
which are the actions to be performed, that are sent to activities belonging to another
task. This means that if there is any sensitive information, such as user data, being
sent with the intent, this can be read by another application. In addition, there is
an attack known as Task Hijacking that can be performed on the application’s back
stack. This is done by making a malicious application that is automatically pushed
to the back stack of a vulnerable app, by setting the task of the application’s activity
to the same as the task of the vulnerable app. Whenever the user tries to open the
vulnerable app, the malicious app is present in the back stack, and therefore the user
is met by the malicious app’s activity when he presses the back button [38].

Code Analysis

For the code analysis of the MyCareLink Heart App by MobSF, threats with severity
categorized as info and warning are covered. To achieve a clear overview of the
obtained outcome of the code analysis, see Table 6.1. It was divided into four columns;
the threat ID, the severity, information about the issue, and the related standards
discussed in section 3.2. The table highlights possible vulnerabilities within a static
source code. Each potential vulnerability is connected to one or more standards
informing about a security verification requirement or a security breach.

There were three issues from the Table 6.1 that have the severity of Info. This
means that they are not necessarily a threat to the system, and thus we explain

6.1. MYCARELINK HEART APP - MEDTRONIC 65

Table 6.1: The result of the code analysis by MobSF of MyCareLink Heart App
and Biotronik

ID Severity Info Standards
1 Info The app logs information.

Sensitive information should
never be logged.

CWE: CWE-532: Insertion
of Sensitive Information into
Log File
OWASP MASVS: MSTG-
STORAGE-3

2 Info This app uses SQL Cipher.
Ensure that secrets are not
hardcoded in code

OWASP MASVS: MSTG-
CRYPTO-1

3 Warning App uses SQLite Database
and executes raw SQL query.
Untrusted user input in raw
SQL queries can cause SQL
Injection. Also, sensitive data
should be encrypted and writ-
ten to the database.

CWE: CWE-89: Improper
Neutralization of Special El-
ements used in an SQL Com-
mand (’SQL Injection’)
OWASP Top 10: M7:
Client Code Quality

4 Info This app listens to Clipboard
changes. Some malware also
listens to Clipboard changes.

OWASP MASVS: MSTG-
PLATFORM-4

5 Warning The app uses an insecure Ran-
dom Number Generator

CWE: CWE-330: Use of In-
sufficiently Random Values
OWASP Top 10: M5: Insuf-
ficient Cryptography
OWASP MASVS: MSTG-
CRYPTO-6

6 Warning Files may contain hardcoded
sensitive information like user-
names, passwords, keys, etc

CWE: CWE-312: Cleartext
Storage of Sensitive Informa-
tion
OWASP Top 10: M9: Re-
verse Engineering
OWASP MASVS: MSTG-
STORAGE 14

them briefly. ID 1 is regarding the fact that the application logs information, with a
reminder that sensitive information should never be logged. If sensitive data is logged,
this is a violation of CWE-532 regarding the opportunity to expose sensitive user
information through information written to log files. This problem is also addressed
in OWASP MASVS. ID 2 gives details about the cipher used in the application,
which is SQLCipher. This extends the normal SQLite database library to improve
security and facilitate encrypted local storage [71]. Here as well it is recommended

66 6. SECURITY ANALYSIS OF APPLICATIONS

to make sure that there are no hardcoded secrets in the code. This kind of issue is
only mentioned in the OWASP MASVS. The last issue with severity Info is ID 4,
related to the app listening to clipboard changes. This issue is mostly related to the
fact that malicious applications also could listen to these changes. This means that
if a user were to copy something from the application, this can be read by another
application on the device [7]. This issue is also mentioned in the OWASP MASVS.

ID 3 in the Table 6.1 is the first issue with a severity Warning. This issue is related
to the use of SQLite databases, with the execution of raw SQL queries. Because of
the raw query, there can be an opportunity for SQL injection from untrusted user
inputs. This issue is mentioned in CWE-89, which is about SQL injections. The CWE
definition is that a product constructs a SQL command with an externally-influenced
input, but does not execute proper sanitization of special elements, before sending
this to another component [21]. This issue is also represented on the Top 10 from
OWASP, under M7: Client Code Quality. This risk relates to the fact that bad code
quality can introduce opportunities for an attacker to exploit weaknesses in the code,
without needing many skills.

Referring to Table 6.1, we take a closer look at the application’s issue with ID
5. It reports an insecure use of the Random Number Generator. The issue belongs
under CWE-330 regarding the insufficient use of random numbers and values in a
security context that relies on unpredictable numbers. Besides, the issue relates to
one of the OWASP’s Top 10 Mobile Risks from 2016, in fact, M5 about insufficient
cryptography. The applications may pose the risk of improper encryption if the
Random Number Generator is insecure. Additionally, the threat falls within the third
standard OWASP MASVS. This security requirement concerns data storage and
privacy by encrypting sensitive data and use of authentication. The applications may
not meet this requirement. The standards reveal the importance of the vulnerability’s
potential impact and the need to address it.

The last issue in the list, ID 6, also has a severity of Warning. This issue is
related to the fact that files might contain hardcoded sensitive information, such as
usernames and passwords. This issue told us that we might find hardcoded secrets
if we look for these in the application source code, as there were several hardcoded
strings available. This issue is related to CWE-312, regarding cleartext storage of
sensitive information within a resource that can be accessible to another controller.
This issue is also listed in the OWASP Top 10, under M9: Reverse Engineering.
This is because hardcoded strings are one of the first things one looks for during a
reverse engineering process. Thus, if sensitive information is stored in a hardcoded
way, this can even be found by attackers with low skills. This particular issue is also
found in OWASP MASVS under the storage category, stating that if sensitive data is
required to be stored locally, this information should be encrypted with a key stored

6.1. MYCARELINK HEART APP - MEDTRONIC 67

in hardware that requires authentication to access.

Table 6.2: The result of the code analysis by BeVigil of MyCareLink Heart App

ID Severity Info Standards
7 Medium The app uses Non-

Parameterized SQL queries,
which makes the application
vulnerable to SQL injection
where the attacker can inject
malicious SQL statements to
exfiltrate the data from the
database

CWE: CWE-89: Improper
Neutralization of Special El-
ements used in an SQL Com-
mand (’SQL Injection’)

8 Medium The app uses implicit intent
for broadcast. Applications
that send broadcasts without
specifying the target may have
these intercepted by malicious
apps on the same device.

CWE: CWE-927: Use of Im-
plicit Intent for Sensitive Com-
munication

9 Medium Storage of sensitive infor-
mation in shared preference.
Anyone with root access to the
device can be able to read the
information stored in shared
preference, and can thus com-
promise this information.

CWE: CWE-312: Cleartext
Storage of Sensitive Informa-
tion

The BeVigil analysis highlighted some other vulnerabilities in the code. We
collected the findings from the BeVigil analysis in Table 6.2. All the issues presented
have the severity “Medium”. Some of the issues are related to things that were
brought up in Table 6.1, for example, we can see that ID 3 is related to ID 7, and
ID 6 is related to ID 9. These are also connected to the same Common Weakness
Enumeration (CWE) definitions.

The vulnerability with ID 7 is regarding the SQL database in use in the applica-
tion. An extra feature of the BeVigil analysis which is not present in the MobSF is
the possibility to see which files the issues are coming from. This particular issue,
with the non-parameterized SQL queries, is related to a file within the Google folder
of the application. Specifically, it is a SQLiteEventStore file, within a datatrans-
port/runtime/scheduling folder. Within this file, there is a rawQuery(), that sends a
non-parameterized SQL query. To parameterize a query means to place a parameter
in the query instead of a constant value. This allows the query to be reused with
different values for different purposes. When the fields do not get parameterized, the
user can insert a string directly into the query. This makes it possible to add SQL

68 6. SECURITY ANALYSIS OF APPLICATIONS

phrases into the field, and thus the user can try to collect more information from the
database, e.g. by asking the query to dump all the content of the table. When the
field uses parameters, the user input is added to a pre-prepared query, which makes
it harder to insert SQL expressions.

The second issue discussed in the analysis regards the use of implicit broadcasts.
If the broadcast does not specify a target, it is possible for all the other applications
on the device to listen to the broadcast. This means that if a user has an application
on their device that is malicious, the app can gain access to the information being
sent over the broadcast from other applications. Any application can register to
an implicit broadcast by using an IntentFilter and declaring it in the manifest.
This issue was connected to 4 different files, two of which were situated within the
Google folder, and two within the Urbanairship1 folder. In all these files there is an
Intent((...)).sendBrodcast(x) method.

The last issue in the BeVigil analysis has ID 9 and is related to the storage
of sensitive information in shared preference. This issue is only connected to one
file in the application, situated within the Firebase folder. The file in question is
called Store.java and it includes a getSharedPreference() method. This can become a
vulnerability, as shared preference is a storage that is shared with other applications
on the device. If an attacker gains root access to the device, he can be able to read
everything that is stored in shared preference. In this particular case, the method
seems to be putting a token key in the storage, which would be possible to read
outside of the application.

Shared Library Binary Analysis

For the shared library analysis, MobSF went through all the libraries used in the
application and checked if these have any issues associated with them. For the
Medtronic application, there was only one issue associated with shared library
binaries in the MobSF analysis, while BeVigil did not report on any issues. The issue
found by the analysis had high severity. The issue was connected to stack canaries,
where the library lib/x86_64/libxamarin-app.so did not have a stack canary value
added to the stack. Stack canaries are used to detect and prevent a stack buffer
overflow before malicious code can replace return addresses. If an incorrect canary is
detected during critical parts of the flow, the application will be terminated when
stack canaries are present [73]. It could pose a significant issue since the library did
not have a canary value. Therefore, it is recommended to enable stack canaries for
best security practices. Although a stack canary was used as a mitigation technique,
the absence of a stack canary did not automatically make the mobile application

1UrbanAirship is a US-based company offering marketing and branding

6.1. MYCARELINK HEART APP - MEDTRONIC 69

Figure 6.1: The Google API key and Google Crash Reporting API key in strings.xml

vulnerable. However, it is important to notice that the absence increases the risk if
there exists a stack-based buffer overflow vulnerability.

Additional Information from BeVigil

The analysis done by BeVigil had a larger amount of categories being checked for
vulnerabilities. We briefly run through the findings that have not been discussed
previously. First, the analysis found an issue with severity medium in the analysis of
strings, which was “Possible Secret Detected” in three different files, similar to the
warning 6 in Table 6.1. All of these were found within the same file, which was a
strings.xml file within the resources folder.

Two of the three strings in question are API keys for Google; google_api_key
and google_crash_reporting_api_key, see Figure 6.1. The first-mentioned is used
for the authentication and authorization of several Google APIs. Further, the second
API key associated with crash reporting is integrating Google Crash Reporting into
the mobile application. It is used to authenticate and authorize access to the Crash
Reporting API. On Google’s own documentation site, it says that it is not necessary
to hide your Firebase API keys [40]. These values are identifiers for Firebase and
Google services that the client needs to know to access those services. However,
Google provides general guidance on API security best practices. Here, it recommends
taking action to protect your project against API key misuse [4]. The last string is
a password_toggle_content_description that says “Show password”. This did not
seem to have a large security impact.

BeVigil also analyzed the associated assets to the application and found an issue
connected to the Firebase URL. This had a severity medium, and was connected to
CWE-200: “Exposure of Sensitive Information to an Unauthorized Actor”. The URL
for the cloud service was detected. It is important to ensure that this cloud service
has proper authentication and authorization mechanisms in place. When visiting
this URL address, it was not possible for us to access the contents, so it seems as
though there are some access restrictions in place.

In addition, the analysis gave some information about what kind of trackers are
present in the application. This gave insight into which companies gained access to
analytical data and where the crash reports were sent. For the Medtronic application

70 6. SECURITY ANALYSIS OF APPLICATIONS

both Google, Microsoft, and Urbanairship were used for analytics, while Microsoft
and Google Firebase received the crash reports. The crash reporting key for Google
is already discussed, and Microsoft relies on its App Center Crashes API for Android
to receive crash information. Lastly, the analysis gave some general knowledge on
the classes.dex file, such as whether it used an obfuscator, what kind of compiler
it used, and if it contained any anti-VM measures. These findings are discussed in
more detail in subsection 6.1.3.

6.1.2 Permissions

For the Medtronic application, there were several permissions that were marked
as suspicious from the static analyses we performed. First of all, the application
asked for all the different levels of location permissions, namely “fine”, “coarse”,
and “background” location. In addition, the application asked to access the battery
statistics of the device. In this section we dive a bit deeper into why the application
asked for these permissions, and whether they could be an issue for the user.

We looked at the location permissions first. As stated in the Android Developer
pages, an application must ask permission to access “fine” or “coarse” location, if they
wish to run location services in the foreground [47]. This means that the application
asks to use the location of the user for an activity that is present when the app is in
active use by the patient. The developer only needs to ask for the “fine” location, if
the application is in need of a precise location access. This level of location accuracy
is usually within 50 meters and can be as little as within a few meters. For access
to background location, the application needs to specifically ask for this, as long as
it supports devices that use Android 10 (API level 29) and higher. Access to the
location in the background means that as long as the application is running on the
device, the app is able to collect the location of the user. The precision of the location
is the same as for the foreground location, which means that in Medtronic’s case,
the application keeps track of the precise location of the user, even if it is running in
the background [47].

A potential reason for the need to access the user’s location is the use of Bluetooth
as a communication method in the Medtronic application. When looking through the
manifest file of the Medtronic application, we observed that within the permissions,
the app asks to access “bluetooth” and “bluetooth_admin”. Both of these permissions
are needed to request legacy Bluetooth on older devices, according to Android
Developer pages [74]. However, the application does not ask for any of the other
permissions associated with the usage of Bluetooth and an API level of 31 or higher.
These permissions are “bluetooth_scan” used for looking for Bluetooth devices,
“bluetooth_advertise” to make the device discoverable to other devices via Bluetooth,
and “bluetooth_connect” if the device communicates with Bluetooth devices. The

6.1. MYCARELINK HEART APP - MEDTRONIC 71

“fine_location” permission is associated with Bluetooth, and it is needed if the
application uses Bluetooth scan results to derive the physical location of the device.
Therefore, we observed that it seems like the application was targeting API levels
below 31, as you then only need the “bluetooth” permission and “fine_location”.
These are needed to perform any type of Bluetooth or BLE communication for
Android 11 or lower [74]. The “bluetooth_admin” permission is needed to discover
other Bluetooth devices, but it can also be used to manipulate Bluetooth settings. For
apps that can run on Android 10 or 11, the “background_location” is also required
for discovering Bluetooth devices. This means that if the application targets devices
that run on Android 11 and lower, they will ask for both “fine” and “background”
locations in order to use the BLE communication on the device.

When it comes to the permission related to battery statistics, this allows the
application to see the battery level of the device. In addition, the application is
allowed to access information about which applications utilize a large amount of the
battery capacity. This again implies that the application can gain access to which
application the user spends the most time using [3]. When looking at the capabilities
of the Medtronic application on the Play store, it was stated that the application
can “ask to ignore battery optimization”. This could mean that the performance of
the application will not be affected by the battery preservation mechanisms that the
phone uses. However, this capability was related to another permission that the app
asked from the user, namely “request_ignore_battery_optimization”. There did
not seem to be any specific capability of the application that was directly associated
with the “battery_stats” permission that they asked for. This is not a permission
that is directly asked of the application user either, as the protection level for this
permission is “signature|privileged”. This permission is only granted by the system
if the requesting application is situated in a dedicated folder on the Android system
image, or if it is signed with the same certificate as the application that declared the
permission [2].

6.1.3 Analysis of the APK

After the static analysis of the Medtronic application was performed, we wanted to
look further into some of the issues presented by the automated tools. Therefore,
we wanted to look into some of the previous findings, to see if these vulnerabilities
really are present in the application.

Obfuscation

We wanted to take a look at the code, hoping it would give us information about how
the application is structured and give further insight into the potential vulnerabilities
found in the static analysis. When downloading the APK file to our computer, this
had little value on its own. Therefore, we decompiled the APK file to JAR file, as

72 6. SECURITY ANALYSIS OF APPLICATIONS

described in subsection 4.3.2. When opening the code file inside jd-gui we quickly
realized that the codebase was obfuscated. This is a common technique used in order
to make the code more difficult to understand for a third-party actor. The goal of
obfuscating is to make reverse engineering of the application hard to perform.

For Medtronic’s case, the names of the files themselves, as well as the function
and method names, were changed to strip them of their meaning. The changed names
had received non-alphanumeric characters, which made them hard to understand.
In addition, it seemed like the control flow is obfuscated, so it is harder to follow.
This can be done by adding loops or conditional statements or changing the order of
execution of the functions. Both of these techniques are common when obfuscating
code. We discovered that the MyCareLinkHeart app uses Arxan Technologies for its
code obfuscation, by looking at the BeVigil analysis. Arxan was an industry leader in
the field of application protection solutions and has recently joined forces with other
businesses within the security field to create the company Digital.ai [61]. They shield
applications from reverse engineering and tampering by using patented technologies.
In addition, they provide cryptography solutions to make sure that the keys of the
applications remain secure [6].

Digital.ai offers several different products, with some specifically aimed at appli-
cation security. Applications that are protected by their security measures contain
obfuscated machine code that aims to be not understandable by threat actors. In
addition, the technology detects when the app is run in an environment that allows
it to be tampered with, such as on an emulator, a rooted device, or with a debugger
attached. Lastly, it is possible to detect when the code in the application has been
modified. Digital.ai also offers the developers visibility into attacks on the application
and attempts to run the app in unsafe environments. Their products also provide
automatic responses to threats in real-time by forcing a higher level of authentication,
changing app features, or shutting down the application under attack.

Restrictions

An attempt to open the application in an emulator was done to see if there were any
vulnerabilities despite our problems with the obfuscation of the code. After installing
the app on our Android Studio emulator, it was not possible to open the application.
It shut down automatically upon trying to open it. We consulted the Medtronic
web pages and found that the list of supported devices only consisted of Samsung
phones. We had tried with a Nexus phone, and this was assumably the reason for
our struggles. It was not possible to emulate a Samsung phone in Android Studio,
and thus we had to search for a different emulator.

For the different options we found for Samsung emulators online, there were free
trials that lasted from 30 mins to one hour. This was too short of a time limit for us

6.1. MYCARELINK HEART APP - MEDTRONIC 73

to be able to execute the analysis we wanted on the Medtronic application. There
was also a possibility to pay for access to the emulators, but one of the goals of our
thesis was to see what was possible to achieve with free tools. Therefore, we chose
not to pay for access to one of these emulators. As we were able to root our emulator,
there was a possibility to trick the phone to think it was a Samsung, by exploiting
the settings of the phone. This was however not helpful for opening the application
either.

After looking further into the information about the application security measures
of Digital.ai, an additional reason for us not being able to open the application could
be that we tried to run it on an emulator. Combining this with the phone not being a
Samsung could be the reason it stopped automatically whenever we opened it. In the
BeVigil analysis, it was stated that the application checks both Build.MODEL and
Build.PRODUCT to see if the application was opened on a suitable device. There
was also a possible VM check present. In order to gain our understanding of how
these checks were used, we had to try to find them in the code.

We tried to find where the check for whether the phone was a Samsung or not
was put into play by looking into the code. In addition, we wanted to check if the
app had implemented any checks for the use of an emulator or a debugger. The
reason for only supporting some device types could be that the manufacturer relies
on some specifications that are not implemented in all devices, that are needed to
certify the device or application. On the other hand, if there are checks for emulators
or debuggers then it is considered a security mechanism. This can be put into place
to make sure that it is hard to gain access for alternative purposes than a “normal”
patient, for example, to analyze the app. Therefore, the check for whether a device
is a Samsung can be related to the functionality of the device, while checks for
emulators/debuggers are more present for security.

In the file ManufacturerUtils, located within com/google/android/material/inter-
nal, there is a method called isSamsungDevice. This method checks if the phone is a
Samsung phone, by reviewing the Build.Manufacturer and returns a boolean value
depending on whether this value is equal to a predefined string. We were not able to
find anywhere in the code where this method is called upon. The isSamsungDevice
method is using a support function, with a obfuscated function name. Due to the
obfuscation of the application and the unusual characters used for the function names,
it was not possible for us to search through the code base to see if this support
function was called upon anywhere else. Therefore, we were not sure if this function
is called otherwise in the code, although we assumed that this is the case.

74 6. SECURITY ANALYSIS OF APPLICATIONS

Figure 6.2: Fatal Exception error when using Frida

Frida

We also wanted to try to open the application while using the tool Frida, as described
in section 4.3.3. By utilizing Frida, we could achieve a better understanding of how
the application looks for the different checks before opening the app on the device.
If we understood the flow of the opening process of the application, we could try
to dynamically bypass these checks. With Frida, you can pass a Python script to
the running application, that can change the normal control flow by overriding the
response whenever you arrive at a particular function or method. Seeing as we know
that the “isSamsungDevice” function exists, we wanted to try to see if this was called,
and thereafter change the response to “True” to override the check. To perform this,
we wanted to first run the application with the following command:

1 frida - trace -U -i " isSamsungDevice " com. medtronic .crhf.mclh

Here, the -U means that we connect to a remote device, the -i specifies the function
to look for, and the last argument is the name of the APK for the application.
After executing this we wanted to write a script that changed the response of the
function, to pass through this check on the device. However, as mentioned, the
Arxan obfuscation of the application also includes checks to see if the application
is run in an unsafe environment. This also includes a code instrumentation toolkit
such as Frida. Whenever we tried to run the application with the Frida functionality
attached, we received a Fatal Exception message, with a NoSuchMethodException.
We assumed the reason for this was that there were checks in place to prevent the
application to be run with Frida attached. We tried to follow the function order
included in the error description, without being able to figure out what caused the
exception. A screenshot of the exception can be found in Figure 6.2. We were thus
not able to run the application with Frida and attempt to bypass the checks for
Samsung and the usage of an emulator, despite multiple endeavors.

6.1. MYCARELINK HEART APP - MEDTRONIC 75

Certificate Details

As discussed in section 6.1.1, the certificate uses the SHA-1 and SHA-256 algorithms.
SHA stands for Secure Hashing Algorithm and has two primary use cases in Android
applications; data integrity and digital signatures. For data integrity, the hash value
behaves as a fingerprint for the data to ensure integrity. This way it is possible
to discover tampering attempts on the sensitive data. The SHA-1 hash function
generates a 160-bit hash value from the input value, while SHA-256 generates a
256-bit hash value [58].

SHA-1 is a cryptographically broken hash function and is no longer considered
secure, but it is still used to this day. It is vulnerable to so-called collision attacks.
A collision occurs when two input values, such as two distinct documents, generate
the exact same hash value. In practice, a secure hash function would never produce
a collision, but the SHA-1 algorithm has this security pitfall [58]. It has been
demonstrated a collision attack with SHA-1, known as “SHAttered” [70]. This
vulnerability can be exploited to compromise the principles of a cryptographic hash
function, namely integrity, and authenticity. As the SHA-256 has a much larger
output space, it is more resistant to collision attacks.

To confirm the use of SHA-1 and SHA-256, we used the keytool command which
prints out certificate details of the APK, check Figure 6.3 for the result. As seen, the
certificate shows both SHA-1 and SHA-256 fingerprints. It includes two alerts, where
the first warning is identical to the one found in the MobSF analysis. The second
warning related to “Subject Public Key Algorithm” informs about the algorithm used
to generate the public key associated with the certificate [88], which says 1024-bit
RSA key. NIST recommends an RSA key size of a minimum of 2048 bits [10]. The
computing power has increased which means that it has become easier for an attacker
to break encryption faster and more efficiently. Therefore, it is recommended to use
a key with larger size, such as 2048-bit or higher, to ensure a high level of security.
Additionally, it is crucial that the industry should migrate to SHA-256 or stronger
hash functions for safer hashing as soon as possible.

6.1.4 Structure of the Mobile Application

Even though we were not able to analyze the code directly in Medtronic’s application,
we were still able to make some observations on how the application is structured.
This gave us some insight into possible vulnerabilities within the app, by looking at
common pitfalls within the components that Medtronic uses.

76 6. SECURITY ANALYSIS OF APPLICATIONS

Figure 6.3: Certificate details of Medtronic

Dagger

Dagger is an automatic tool that helps with managing dependencies in the application.
It automatically generates code that imitates the dependency code that otherwise
would have been handwritten by the developer. At build time, Dagger builds and
validates dependency graphs throughout the whole application. In order to do this,
Dagger makes sure that every object’s dependencies can be satisfied, to avoid runtime
exceptions, and checks for dependency cycles, to avoid infinite loops [23]. In order to
use Dagger correctly, you need to add keywords to the constructor of the different
objects, so it knows how to create the instances and what their dependencies are. One
potential issue with using Dagger is that you need to pay extra attention to whether
your external modules are secure, as Dagger automates the process of dependency
handling. This is because if the application uses any untrusted modules, these can
inject dependencies that give access to injecting code into the application or accessing
unauthorized data.

UrbanAirship

UrbanAirship is a US-based company that provides its clients with marketing and
branding. They specialize in Mobile App Experience (MAX), where they help
companies with increasing app engagement with users of the application. Their goal
is to help brands with keeping their customers throughout the whole life-cycle of MAX
[55]. For the Medtronic application, UrbanAirship is stated as one of the Analytics
Trackers of the device. When we looked at the files associated with UrbanAirship in
the code base, we observed that they seem to offer a broad range of services, such as
analytics, remote data handling, logging of events, and information about application
metrics. UrbanAirship was also mentioned several times during the static analysis,
most importantly the analysis highlighted the use of an implicit broadcast in these
files.

6.1. MYCARELINK HEART APP - MEDTRONIC 77

Communication Protocol

According to Medtronic’s websites, the application has the possibility to request a
connection to the pacemaker, if the connection is lost [52]. This suggests that there
is a two-way communication channel between the application and the pacemaker.
Consequently, this implies that the pacemaker is able to accept incoming messages
from the application. If this is the case, it could allow an attacker to adjust settings
or perform remote monitoring of the pacemaker. However, Medtronic’s web pages
do specify that it is not possible for any non-BlueSync device to connect with the
pacemaker [52]. This means that if a device wants to connect to the pacemaker, it
must support BlueSync. In addition, it remains unclear whether a connected device
is able to send commands other than connection requests to the pacemaker. To
understand the likelihood and possibilities of such a connection occurring, we had to
understand the BlueSync protocol.

On Medtronic’s own website, they have stated that the BlueSync technology
consists of three components. The basis for the communication protocol is BLE, in
order to communicate with phones or tablets that are BLE compatible. In addition,
to make communication more secure, BlueSync uses an encryption module where the
data is encrypted using NIST standard encryption. There is no additional information
about specifically which type of encryption is being used, but they assure end-to-end
encryption by encrypting the data before it is sent from the pacemaker. Lastly,
the protocol uses a high-density integrated circuit to reduce the current drain for
increased longevity of the device [50]. Further, there exists some supplementary
information about the security measures put in use to protect the device and the
data. The pacemakers do not have any IP addresses and are thus not connected to
the internet. One reason for this might be to increase the security of the devices, to
make it harder for an attacker to connect to the IMD.

There was no specific information available about the details surrounding BlueSync
on the website of Medtronic. For example, there was no information regarding whether
the BlueSync is continuously on for the pacemaker, or if it is a periodic type of
communication. In addition, there was no concrete information about what type
of encryption was used for the communication. Therefore, it could be hard for an
arbitrary device to be able to connect to the pacemaker. However, as the pacemaker
must be able to accept new connections, it is not impossible for an attacker to connect
to the device, if they are able to use BlueSync in the correct way.

6.1.5 Summary of our Findings

After performing the analysis for the MyCareLink Heart application, we had been
able to get some findings. The analysis of this application had been characterized by
the obfuscation tool used by Medtronic. Seeing as this obfuscation made it impossible

78 6. SECURITY ANALYSIS OF APPLICATIONS

for us to open the application with the tools we had available, it was very difficult for
us to further look into the things that were found in the static analysis, performed by
MobSF and BeVigil. In addition, the obfuscation made it more difficult to understand
the code base of the application and identify vulnerabilities in this way. Although the
obfuscation made it difficult, we still made some discoveries that are be summarized
in the table below.

Table 6.3: The summary of findings for MyCareLink Heart App

Discovery Explanation Covered In
SHA-1 for certifi-
cate signing

The application uses SHA-1 with a 1024-
bit RSA key for signing the certificate for
the application. This is a weak signature
algorithm and a weak key length.

6.1.3

Dangerous Per-
missions

The application asks for the battery statis-
tics of the device, seemingly without any
proper reason.

6.1.2

Dagger for man-
aging dependen-
cies

Using Dagger requires the developer to be
sure of the security of external modules,
as these modules can inject untrusted de-
pendencies into the application without the
developers’ knowledge.

6.1.4

Arxan for obfus-
cation

The app’s obfuscation methods include:
changing method and function names, en-
crypting strings in clear text, increasing the
complexity of control flow, checking to see
if the app is run in an unsafe environment,
and probably inserting arbitrary code.

6.1.3

6.2 Patient App - Biotronik

The Patient App for Biotronik is an addition to the existing ecosystem, designed
to give patients more insight into their own health. The application does not
communicate directly with the pacemaker or the HMU. The application gives the
patient information about the status of their device and its battery, as well as
information about their heart rhythm. In addition, the patient can log their own
symptoms, which can help the responsible doctor keep track of the overall health of
the patient [65].

In the analysis of the Patient App by Biotronik we first present the results from
the static analysis, performed by MobSF and BeVigil. Afterward, we dive deeper into
the permissions requested from the user by the application, before we look further at
the details of the certificate for the application. Thirdly, we go through the structure

6.2. PATIENT APP - BIOTRONIK 79

of the application, which we found by looking through the APK and dynamically
running the application. The next section includes bypassing the authentication of
the application, both for registering a new user and for the login of an existing user.
Lastly, we present some unverified issues, before we summarize the most important
findings of our analysis.

6.2.1 Static Analysis

For the static analysis of the Patient App from Biotronik, we used two tools, MobSF
and BeVigil. The Patient App received an overall security score of 50 of 100 from
MobSF. This meant that the application was within the Medium risk level, described
in the section 4.3.3. For the analysis performed by BeVigil however, the application
gained a score of 9.1 out of 10, i.e. 91 out of 100 [36]. Again, we observed an
enormous difference between the two analyses, and we needed to look further into
these. There were quite a few security issues with this application found in both
analyses, which we run through in the following sections. The categorization from
MobSF is used as the basis for our analysis, and we add information from BeVigil to
the categories, as well as additional information at the end. The results from the
BeVigil analysis are gathered from [36].

Application Permissions

Several permissions were categorized as Dangerous by MobSF in the analysis. The
same permissions were marked as unsafe by BeVigil, but here with the level of Risky,
which is the level below on the scale. Both analyses agreed on which permissions
they found troublesome. These permissions are:

– android.permission.ACCESS_FINE_LOCATION allows the application to
access fine location sources, giving the most precise location

– android.permission.CAMERA allows the application to take both photos and
videos with the phone’s camera.

– android.permission.READ_EXTERNAL_STORAGE allows the application
to read from the external storage of the phone

– android.permission.WRITE_EXTERNAL_STORAGE allows the application
to write to the external storage

The location permission makes it possible for the application to receive the most
accurate location information about the phone, and is a runtime permission, as in
the case of Medtronic. Next, the permission to use the camera of the phone makes it
possible for an application to collect images through the camera at all times. This

80 6. SECURITY ANALYSIS OF APPLICATIONS

means that the application can access the camera without the user’s knowledge.
The permission asked for in this application is actually a deprecated version of the
Camera permission. This gives the application permission to use the phone’s camera
for pictures and videos [75].

When it comes to the permissions regarding the external storage, these imply
that the application has access to read and modify other parts of the mobile phone’s
storage. On older versions of Android, both READ and WRITE_EXTERNAL
were required to access any file outside of the app-specific directories [76]. These
permissions can be connected to the Camera permission, as it is common to ask for
the WRITE_EXTERNAL_STORAGE permission in order to be able to save the
images taken by the application to the regular folder for pictures. There could also be
a connection to the location permission, as the location is required in order to be able
to tag the images taken by the application with the GPS location information [75].

Certificate Analysis

There was only one warning present in the certificate analysis of the application
done by MobSF. This warning was the same as the one for Medtronic, that the
application is vulnerable to Janus Vulnerability. As mentioned above, for the analysis
of the Medtronic application, this was a warning as it is only applicable for some
versions of the Android OS, and for some signature schemes. More details about this
vulnerability are already discussed in section 6.1.1. Similar to Medtronic, some of
these threats are analyzed and discussed afterward in subsection 6.2.6.

Manifest Analysis

The analysis of the application’s manifest resulted in only warnings for the Biotronik
application. In total, there were four warnings in the analysis by MobSF, while there
are two warnings in the BeVigil analysis. For the MobSF, two of the issues were
related to shared broadcast receivers. As for the Medtronic application, the receivers
are protected by permissions, but it is not clear in the analysis of the application
which level of permission is enforced. This specific issue was discussed in more detail
previously, in section 6.1.1. A similar type of issue was also highlighted in another
warning, involving a service shared with other applications on the device. As similar,
there was a permission for protection with an unknown level, potentially allowing
access to the service by other apps. Once again the permission for the service was
not known for the analysis, indicating that it may have already been adequate. The
permissions for this service should be checked.

In addition, MobSF focused on the possibility to back up application data. This
is seen in the manifest.xml file through android:allowBackup=true. This was a
warning because this allows an attacker to back up the application data via the

6.2. PATIENT APP - BIOTRONIK 81

ADB. This means that users who have enabled USB debugging are able to copy the
application data of the device. This permission can be positive, as it allows backup
and restoration of the application data by the ADB, for example in the case of a
full-system backup. On the other hand, it allows for the backup of application data
to malicious devices through a USB.

The BeVigil analysis had a bit of a different focus area, and the two reported
issues with severity medium for this analysis were both related to exported activities.
This means that there are two different activities in the manifest file that has
android:exported=true. This can be dangerous as exported activities can be run
by third parties, by directly prompting this activity to open when running the
application. This can possibly result in bypassing authentication mechanisms that
are in place in the application. This can happen by calling the activity with the
exported option during the opening process of the application, so it never goes
through the authentication page.

Code Analysis

The code analysis in Medtronic in MobSF is equivalent to the Biotronik one. There-
fore, we refer to Table 6.1 for Biotronik. The explanation of the different issues
is given in section 6.1.1. There were some extra vulnerabilities mentioned in the
BeVigil analysis for Biotronik. Most of them are similar to the ones mentioned for
the Medtronic analysis, which have been discussed in Table 6.2. There was one
additional vulnerability in the analysis of the Biotronik application, which can be
seen in Table 6.4.

Table 6.4: The result of the code analysis by BeVigil of Patient App

ID Severity Info Standards
10 Medium The app uses weak crypto al-

gorithms, which can allow an
attacker to break the ciphered
communication and gain ac-
cess to plain text content.

CWE: CWE-327: Use of
a Broken or Risky Crypto-
graphic Algorithm

The new issue is related to the usage of a weak cryptography algorithm. This
issue is found in four different files in the application, all within the Google folder.
The crypto algorithm in use is MD5, which is not recommended to be used for
cryptographic authentication, according to IETF [85]. MD5 is a cryptographic hash
algorithm that takes an input of any length and changes it into a fixed-length message
of 16 bytes. MD is an abbreviation for “message digest”. It has been considered
insecure for a number of years, due to the hash collisions it causes as well as how easy
it is to reverse the encryption [91]. This implies that the app uses the MD5 algorithm

82 6. SECURITY ANALYSIS OF APPLICATIONS

and that the algorithm is utilized within the app. Using the MD5 algorithm for
cryptographic purposes makes the app vulnerable to various attacks, such as collision
attacks and rainbow table attacks. This is further discussed under Unverified Issues
in section 6.2.7.

Shared Library Binary Analysis

For the shared library binary analysis of the Biotronik application, BeVigil did
not find any issues that were noted. MobSF found two issues with a severity high
and two issues with a severity of warning. The two warnings with severity high
concerned canary stack values and the setting of the NX bit. For the canary stack,
this was relevant to about half of the shared libraries used in the application. As
mentioned in the analysis of the Medtronic app, stack canaries are used to detect
and prevent exploits from overwriting return addresses. The NX bit stands for a Non
eXecutable bit, and the issue was that the library did not set the NX bit. This bit
offers protection against memory corruption vulnerabilities. These exploitations can
be avoided by marking a memory page as non-executable, which is done by setting
the NX bit to true [59]. This issue was also relevant to around half of the libraries,
and no shared library had both of these issues simultaneously.

For the two warnings with severity medium in the shared library analysis, the
issue was regarding the fortification of functions and the stripping of symbols. Both
of these are relevant for all the shared libraries of the application. The fortification
issue is regarding the lack of fortified functions, which are functions that provide
buffer overflow checks against common insecure functions. The functions are part
of glibc, which is an acronym for GNU C libraries, the core libraries for the GNU
system [82]. The issue of stripping symbols is related to the fact that there are
symbols available, but these are not stripped. This means that the symbol table and
debugging information contained in the native libraries are not removed. Stripping
of code libraries results in significant size savings. On the other hand, stripping
makes it impossible to diagnose crashes on the Google Play Console, as too much
information is missing [77]. As mentioned these issues are present in all the shared
libraries in the analysis, which can indicate that this is something that should be
looked further into.

Additional Information from BeVigil

We introduce some of the findings from the categories that have not yet been
discussed. The BeVigil analysis reported a string issue with the severity medium.
The vulnerability was regarding a possible secret being detected, with sensitive
credential information. The issue can also be found in Table 6.1 with ID 6. This issue
was found in four different files, where three of them were situated in the strings.xml
file in the resources folder, and the last one was present in the Configuration.json file

6.2. PATIENT APP - BIOTRONIK 83

in the same folder. As similar to the analysis in Medtronic in section 6.1.1, two of
the three strings within strings.xml are associated with Google API keys, while the
last concerns a password content description. One particular string issue with the
description “Sensitive credentials information detected” caught our attention. The
string is a ClientSecret found in the Configuration.json file. The implications of this
string are discussed further in subsection 6.2.5.

BeVigil also analyzed the assets associated with the application, without finding
any vulnerabilities here. There was no detected malware in the application either.
When it comes to the trackers present in the application, there were four results. Two
trackers were used for analytics, Google Firebase and Microsoft Analytics, and one
was used for crash reporting, Microsoft Crashes, and lastly, we had one tracker used
for advertisement, which is Google AdMob. This gave us some indication on which
companies receive the data from the application, and how much data was collected.

In addition, the BeVigil analysis gave some information about the classes.dex
file, which in Biotronik’s case was split into classes.dex and classes2.dex. There
was no information present about obfuscators used on the code, which we also
noticed when opening the code to study it. The analysis also revealed that the
application had included several checks that go into the anti-VM category, such as
Build.FINGERPRINT, Build.MODEL, Build.MANUFACTURER, Build.PRODUCT,
Build.HARDWARE, as well as checks on the SIM operator and network operator
name. This indicates that the application pays attention to what kind of device it is
run on, and that performance of the application can be influenced accordingly. We
look into where these checks are being used, to determine the purpose.

6.2.2 Permissions

We discovered information about some dangerous permissions in the static analysis
performed by MobSF and BeVigil. We were interested in further investigation into
these vulnerabilities to see how the permissions were used in the application.

External Storage Permissions

The application asked for permission to both read and write to the external storage
of the device. As mentioned in the section 6.2.1, the permission associated with
writing to external storage could be because of the Camera permission, where the
user got the opportunity to save the photos taken to the device’s camera roll. After
looking through the files in the classes.dex file of the Biotronik application, we found
several ways that the application accesses external storage.

Firstly, the application uses a method called getExternalStorageDirectory(), which
is not recommended anymore. This was used to access external storage on older

84 6. SECURITY ANALYSIS OF APPLICATIONS

versions but is now deprecated. The returned directory is a storage that is shared
across all applications on the device [27]. In addition, the method getExternalFiles-
Dir() is used to store private data specifically for the app only. Before this method
is used, there is a check to see if the SDK is larger than 19. For these external
storage files, there is no security enforced. This means that any application with the
permission “write_external_storage” can write to the files [18]. The last method
that is frequently used for external storage handling is getExternalCacheDir(). This
method gives the absolute path to an application-specific directory on the primary
storage, where the app can store cache files. These files are internal to the application
and typically not visible to the user. It is important to note that these files are not
always monitored for available space, which means that files might be automatically
deleted [18].

Camera Permission

As determined in the static analysis, the application also asks for permission to
access the camera of the device. When looking through the files of the classes.dex,
we observed that there were two versions of the camera library being used in the
application. As mentioned in section 6.2.1, one of these versions is deprecated today.
This is the “Camera” library. There is however also another library in use, which is
the “Camera2” library. This library provides in-depth control for complex use cases
and requires the developer to manage device-specific configurations [75].

We observed that in classes.dex and classes2.dex, there were several files that
include the Camera or Camera2 libraries. The files situated in classes2.dex are the
ones that utilize the deprecated version of the Camera library. These files are listeners,
that get notified of face detection, by the method Camera.Face[], and zoom changes,
by utilizing OnZoomChangeListener. In addition, there is a CameraEventsListener in
classes2.dex, that looks for changes in focus and frames, as well as capturing frames
from the camera sensor. In classes.dex there is only one file that uses the camera2
library, where there is a CameraManager present.

The onZoomChangeListener is a public method that is called whenever the zoom
value changes during a smooth zoom. The FaceDetectionListener notifies the listener
of faces detected in the frame from the camera sensor. The CameraEvent class uses
a PreviewCallback function, which captures frames from the camera in real-time. In
addition, the class uses an AutoFocusCallback function, which is called when the
camera completes the autofocus. This event listener is notified whenever the camera
captures a frame or the focus is set on a person or object. Therefore, this file contains
the main functionality for the camera usage of the application. All the functions and
interfaces presented in this paragraph are deprecated, and not recommended to use
by the Android Developers pages [66].

6.2. PATIENT APP - BIOTRONIK 85

Location

For the location permission, the application only asks for “fine_location”, which
is the most accurate location of the mobile device. This location is given by the
GPS signal of the device, and can thus determine the location quite accurately.
When asking for this location level, the application also implicitly declares a need for
foreground location. This means that the location is requested because of an activity
within the application when the app is situated in the foreground. If the application
wishes to access the location while the app is running in the background, there is a
separate permission that is needed - “access_background_location”. However, the
application is only required to ask for this for mobile devices running Android 10
(API 28) and higher, for older versions background location is automatically received
when the foreground location is accessed [47].

According to the Android Developer pages, a common reason for an application
to ask for background location is the usage of Geofencing API. Geofencing combines
knowledge of the user’s location with knowledge of locations that might be of interest.
You can define geofences in a specified radius around a point of interest, and define
different characteristics within each “fence” [19]. When looking through the files of the
classes.dex, we saw that the Geofencing.API was present in the Biotronik application.
In addition, there are files such as GeofenceBuilder, that create new Geofences, and
GeofencingRequest that sets how geofence events are triggered. Lastly, there is a
Geofence Transition Receiver present among the broadcast receivers specified in the
manifest file. This means that the application contains all the necessary files to
create geofences, monitor the users’ location in accordance with the geofences, and
trigger related events whenever a user enters a geofence [19].

6.2.3 Structure of the Mobile Application

After the execution of the static analysis, we wanted to dive further into the issues
found by the automated tools. For the manual analysis of the application, we
inspected the code in jd-gui, as described in subsection 4.3.2. We navigated through
the code and expanded the different packages, classes, and methods to get an
overview. We searched for different keywords, field names, constructors, strings,
and method names to analyze the code more specifically. We highlighted suspicious
and interesting codes for further investigation. Furthermore, we set up proxies as
explained in section 4.3.3. This allowed us to uncover various insights regarding the
structure and components of the mobile application.

Communication Protocol

By analyzing the packets in Wireshark, it was determined that the Biotronik app
used TLS. Refer to Figure 6.4 to see the captured HTTPS-traffic with TLS. TLS is a

86 6. SECURITY ANALYSIS OF APPLICATIONS

Figure 6.4: TLS-traffic in Wireshark for PatientApp, the Biotronik mobile applica-
tion

robust cryptographic protocol that ensures the secure transmission of data between
applications over the Internet [92]. Further, the HTTPS is the secure version of
HTTP, and it uses TLS to set up a secure and encrypted connection. To intercept
and manipulate Hypertext Transfer Protocol Secure (HTTPS) traffic, techniques
such as MITM proxy was employed. However, it is important to note that the
security measures implemented in HTTPS/TLS-encrypted communication can make
it difficult for the general public to intercept or manipulate the communication
between a mobile application and a remote server.

In order for the mobile app to trust the intercepted communication, certain
configurations are required. Mobile apps typically rely on trusted certificates and
certificate authorities to ensure the authenticity of the server they communicate
with. This is where a proxy comes in handy. When using a proxy, we generate
a self-signed certificate that mimics the original server certificate. In our case, to
facilitate the analysis, we set up a proxy that intercepted and analyzed HTTPS/TLS-
traffic, generated a certificate, and made the mobile application trust the certificate
by adding it to trusted certificates on the emulator. This allowed us to examine
the packets and gain insights into the behavior and potential vulnerabilities of the
mobile application.

Authentication

By analyzing the mobile applications network traffic in Burp Suite, we determined
which authentication protocol the app was using. The request to validate credentials
in Figure 6.5 includes the path “POST /auth/.../openid-connect/...” which means
that the application uses OpenID Connect (OIDC) for authentication. OIDC is an
authentication protocol built on top of the OAuth 2.0 framework.

Another important tool used was logcat in Android Studio and it provided a log

6.2. PATIENT APP - BIOTRONIK 87

Figure 6.5: Authentication request in Burp Suite

Figure 6.6: Logcat in Android Studio

of system messages. When entering with the wrong credentials in the BIOTRONIK
mobile app, it logged “Failed to get access token for given refresh token (...)”, as shown
in Figure 6.6. The information provided indicates the use of OIDC since it uses to
access and refresh tokens as part of its token-based authentication and authorization
mechanism [87]. Additionally, by intercepting the traffic with mitmproxy (section A.7)
and analyzing the response, we observed that an authorization header started with
Bearer, with an access token we added manually. This again implied that the mobile
application is using OIDC for authentication.

OIDC uses JSON Web Tokens (JWTs) as the primary token format to prove that
users are authenticated between parties. In OIDC, if a user tries to authenticate
(in our case) to a mobile app, the app issues an ID token that is a JWT. A JWT
contains information about the authenticated user, such as username. The use of
JWT has several benefits, including improved security since they are digitally signed,
and efficiency as they are quick to verify [60]. If the JWT is properly implemented
and secured, it could be difficult to forge a token. A forged token is a token created
by an attacker and appears to be from a legitimate source. The goal is to access
protected resources. One of the pitfalls with JWT is insufficient validation checks,
such as checking the signature or verifying other fields in the file. Therefore, we tried
to utilize a common security vulnerability related to JWT by forging a token and
sending it back with mitmproxy.

88 6. SECURITY ANALYSIS OF APPLICATIONS

To bypass access controls it is necessary to understand how a JWT works. A JWT
consists of three parts: a header, a payload, and a signature. The header identifies
the algorithm that generates the signature, the payload contains the information
used to bypass authentication, and the signature is used to validate the token in case
of a tampering attempt. There exist different ways to forge a token, and one of them
is called “none algorithm”. This means that the alg field in the header is set to none,
and the signature section of the token is then empty. In this case, any token with
an empty signature would be considered valid. The following token that supports a
“none” algorithm is taken from the website [42]:

eyAiYWxnIiA6ICJOb25lIiwgInR5cCIgOiAiSldUIiB9Cg.eyB1c2VyX25hbWUgO
iBhZG1pbiB9Cg

After setting up a mitmproxy, described in appendix A.5, a Python script was
made to intercept requests and make responses based on the hosts and the paths
associated with the mobile application. The script is provided in subsection A.7.1
sent with JSON files containing necessary fields for each individual response, such
as token_type, access_token, etc. We assumed that for the userinfo path, it was
essential to include a user_id field in the userid.json file since it uses OpenID. As said
earlier, we interpreted that the response sent to the authentication server of Biotronik
needed an access_token and a refresh_token from Figure 6.6. This was included in
the accesstoken.json. Moreover, our fake server added 200 OK success status codes
to each response. We checked each system message with logcat to observe which
response should be modified - this process was iterative.

By creating messages to roughly correct responses, we achieved new information
and errors. The only error left was a 401 Unauthorized to the server with path
“patientapp-data.biotronik-homemonitoring.com”, see Figure 6.7. By looking up
the URL, the website displayed a JSON response returned by the Couchbase Sync
Gateway. We discuss Couchbase below in section 6.2.3.

Backend Server

Previously, we discovered which type of backend server the application used. The
JSON response was the following:

“‘couchdb’:‘Welcome’,‘vendor’:‘name’:‘Couchbase Sync Gateway’,‘version’:‘3.0’,
‘version’:‘Couchbase Sync Gateway/3.0.4(13;godeps/) EE’”

The “couchdb” indicates the Sync Gateway is based on the CouchDB database.
Next, “vendor” provides information about the vendor of the Sync Gateway, namely
Couchbase Sync Gateway with version 3.0. Finally, “version” tells the full version
number 3.0.4, build number 13, and other information. This response is sent when

6.2. PATIENT APP - BIOTRONIK 89

Figure 6.7: The mitmweb interface

making a request to its root endpoint of the Couchbase Sync Gateway, and the server
responded with that JSON response. PatientApp uses Couchbase Server to store
and manage data that is required by the application and Couchbase Sync Gateway
for data synchronization. Couchbase Server is a NoSQL cloud database often used
as a backend for mobile applications [80].

During the process of bypassing authentication, we received an error saying
“replication auth error unable to get sync gateway session token”, shown in Figure 6.8.
Here, we tried to fake responses to these requests as well, but without succeeding. In
other words, we attempted to authenticate with the Couchbase Sync Gateway server,
but this authentication failed.

HTTP is the primary protocol for communication between clients and the server
used by Couchbase Sync Gateway. Additionally, Sync Gateway uses a protocol
called Replication Protocol and it provides bidirectional replication of data. This
means that the Sync Gateway instances can communicate with each other or with
Couchbase servers. Couchbase Server is used to store and manage data required by
the application, while Couchbase Sync Gateway handles data synchronization. The
protocol is built on top of HTTP. With the replication error, we assumed that we
were unable to authenticate to this Replication Protocol, which prevented the login
attempt from succeeding. When an authentication attempt fails, the user trying to
log in is not able to obtain a session token or establish a replication connection. This
prevents data from being replicated.

The newest version of the Couchbase Sync Gateway is 3.1.0. The version used
in Couchbase Sync Gateway for the application is 3.0.4, and there are two new
versions since this was deployed. We found out that there existed related security

90 6. SECURITY ANALYSIS OF APPLICATIONS

Figure 6.8: Logcat in Android Studio for PatientApp

vulnerabilities to that specific version. On Couchbase’s own documentation page2, a
list of fixed issues for each version is provided. By checking the available release notes
for the public for versions 3.0.5 and 3.1.0, one bug fix in version 3.1.0 addressed an
issue that affected version 3.0, which includes 3.0.4. The bug has the title “AccessLock
not being released when a PUSH replication is ongoing”3 and has the priority as
major. This can potentially affect the users of the database who need to take it
offline for different reasons, such as maintenance. This issue is fixed in 3.1.0.

Version 3.0.4 have one known issue regarding SSL memcached port. It suggests
that Sync Gateway requires all Couchbase server nodes to use the same SSL mem-
cached port. The memcached port is used for communication between the Sync
Gateway and the Couchbase port, and if the SSL is not properly configured, it can
result in communication failures or unexpected behavior. This is a known issue for
the later versions as well. Lastly, the newer versions of the software include bug fixes,
performance improvements, and security enhancements, so upgrading to the latest
version can be beneficial for the system even though issues are not experienced yet.

Couchbase Server, like any other server, can be configured insecurely. If the
best practices for securing are not followed, such as the insecure implementation of
authentication or weak password usage, an attacker can gain unauthorized access
and insight into data. This security pitfall belongs on the server side, hence this is
out of scope and we will not explore this further.

Keycloak

Keycloak is used as an Identity Access Management (IAM) tool to secure PatientApp
by providing authentication and authorization services, among other things. Keycloak
is integrated with the application by using OIDC, explained in the previous paragraph.
We discovered that the mobile application used Keycloak by visiting the web page or
endpoint related to the authentication functionality of the app, see the user interface
in Figure 6.9.

A significant security pitfall related to Keycloak can be exposing its administration
console or API endpoints. The consequence can be providing unauthorized users
access to sensitive information and functionalities which compromise the security of

2https://docs.couchbase.com/sync-gateway/3.0/release-notes.html
3https://issues.couchbase.com/browse/CBG-2731

6.2. PATIENT APP - BIOTRONIK 91

Figure 6.9: One of the server’s websites displaying KeyCloak

the application. We attempted to visit the administration console at /auth/admin,
but were not able to access it. This does not definitively confirm that the site is
secured, but it suggests that access controls may be in place and that restrictions with
appropriate security measures are set. However, we were able to access the Keycloak
interface from the URL, which made it easy for us to learn that the application uses
Keycloak. To increase security even further, users should not be able to access this
interface either.

Firebase

The application has integrated Firebase services. This was discovered in the map
structure when analyzing the code, in the folder com > google > firebase. Firebase
is a mobile and web application development platform owned by Google. It provides
tools and services to build high-quality applications quickly and easily. It includes
services such as authentication, real-time database, analytics, and more [29]. Firebase
was used for analytics. In addition, it encrypts data in transit using HTTPS.

Servers

During the application analysis, we obtained four domain names. A web-based DNS
client, called nslookup.io4, was later used to query DNS records for the domain
names. By entering the discovered servers, we obtained IPv4 addresses for each of
the servers. To acquire ownership information and other relevant details about the
IP addresses, we used a tool called IP WHOIS Lookup.5 It turned out that Biotronik

4https://www.nslookup.io/
5https://www.whatismyip.com/ip-whois-lookup/

92 6. SECURITY ANALYSIS OF APPLICATIONS

Figure 6.10: IP WHOIS Lookup of one of the domain names of Biotronik

owns the IPs of the servers. Other details were also provided, such as the address, the
owner’s name, and the owner’s phone number. Figure 6.10 is a brief excerpt taken
from the website displaying ownership information about the IP address related to
the couchbase server.

A sequence diagram of the authentication process between the user and the
servers is provided to achieve an overview of how the servers are used in the Biotronik
system, see Figure 6.11. This sequence diagram shows a user trying to log into the
mobile application, how the servers are communicating with the mobile application,
and what type of fields and messages are contained in each request and response.

As we can observe in the sequence diagram, the device first sends a message
to validate the version of their application API, to the patientapp-server. This
server thereafter responds with a “Version supported”. The next step for the device
is to send the user login information to the patientapp-iam server, containing the
e-mail address and password of the user. The IAM server then responds with an
access and refresh token to the device, which it uses when communicating with the
servers, to show that it is authenticated. The device also sends some information
about the device, containing versions of OS, information about the application,
and other valuable insights to the analytics server, but this is not a part of the
authentication. After receiving the refresh and access token, the device tries to
validate this refresh token by sending it to the IAM server again. We responded
with a 200 OK and a re-sending of a new access token. According to the OAuth

6.2. PATIENT APP - BIOTRONIK 93

Figure 6.11: A sequence diagram showing a device trying to log in to the application,
with communication with the servers in Biotronik

2.0 specifications, the authorization server was supposed to issue a new access token
and an optional refresh token back to the client [34]. We did not include a refresh
token. Lastly, the device tries to authenticate with the received access token to
the patientapp-data server, which is the server actually containing the patient data
from the user. However, it appears that the login attempt failed due to incorrect
authentication to the Couchbase.

6.2.4 Client Bypass Authentication

We attempted to register a user and bypass regular login, after setting up a mitmproxy,
as described in section 4.3.3. By attempting to bypass authentication, we assessed
the effectiveness of the authentication mechanism and identified some potential
vulnerabilities that could be exploited. The requirement for registration was to
possess a legitimate pacemaker as you need to provide a serial number and production
date of the pacemaker during the procedure. The goal was to register without sending
the request to the actual server, but to trick the mobile application into thinking
that the user was registered properly. Further, we wanted to bypass the login and
gain unauthorized access to determine if there exist any security vulnerabilities that

94 6. SECURITY ANALYSIS OF APPLICATIONS

could potentially be exploited by attackers. In addition, we wanted to validate the
application’s security controls.

Register User

We successfully tricked the application into thinking we registered a user, the receipt
is shown in Figure 6.12. This was done without a pacemaker ID, by responding
back to the mobile application with multiple 200 OK messages. This was done by
constructing a response, visit section A.7 for the Python script and the JSON file
named register.json. When going through the registration process on the device, the
app tried to validate if the user inputs valid information at several points. First, the
patient’s pacemaker serial number and HMU serial number were checked for validity.
This request went to “patientapp-server”, which was intercepted and we faked a 200
OK response. After this check, the user was sent to the final step of the registration,
which was a generation of a password for login. The password criteria are shown in
Figure 6.12a and a confirmation of a successfully registered user for the Biotronik
Patient App. This success message was obtained by intercepting the request going
to the server and answering with a 200 OK. The application thus thought that the
user was registered correctly with the server and that all information that had been
inserted was valid. We wanted to trick the application into registering a user to the
app, in order to observe the different checks on the client side during the process. In
addition, this strategy was followed to find the password criteria for the application.

Login User

We have discussed the steps to “fake login” as a user already, during the explanation
of how the application is structured in Figure 6.11. After several attempts of
constructing responses, we successfully sent 200 OK messages to all the requests from
our fake server, as seen in Figure 6.13. This was accomplished by intercepting all the
requests and creating responses with necessary fields in the body, shown in section A.7.
However, the content of the body is still somewhat uncertain. We achieved an error
replication error, shown in Figure 6.8. As explained in section 6.2.3, we tried to
authenticate with the Couchbase Sync Gateway server. This gave replication errors
since the credentials provided were invalid, or the Couchbase database was protected.
We can observe in Figure 6.13 that multiple exact get-requests are sent to path
/userinfo, as the requests contain the wrong information. To conclude, our forged
tokens with fake credentials would not bypass authentication.

6.2.5 Application Authentication

As mentioned in section 6.2.1, we found a string in the Configuration.json file that
was a possible secret. The string is called ClientSecret and is shown in Figure 6.14.
This vulnerability is related to ID 6 in Table 6.1. When looking through the file

6.2. PATIENT APP - BIOTRONIK 95

(a) The password critera
(b) The message in the mobile application
of a successful registration

Figure 6.12: The final process of registering a user

Figure 6.13: The requests in mitmproxy with 200 OK status responses

96 6. SECURITY ANALYSIS OF APPLICATIONS

Figure 6.14: The ClientSecret and ClientId in strings.xml

itself, we also found that on the previous line of code was another credential, namely
ClientId. This client secret is a randomly generated string of characters and numbers
and appears to be in plaintext. The key is meant to be accessible only to the client
and server. Further, it can be used as a secret key between the application and
the authentication server to verify the application’s identity [81]. It is generally
recommended to keep the ClientSecret confidential and protect it from unauthorized
access.

When looking at this information from Configuration.json, we wanted to see
what kind of implications this could have for the security of the app. The OAuth
Authorization framework includes registration of a client to an authorization server
[34]. This document describes the authentication of a client to the server and states
that the client can use the HTTP Basic authentication scheme. Alternatively, the
client can authenticate by sending client_id and client_secret in the request body.
These are the parameters that were discovered in the configuration file.

We revisited the requests sent to the server for login of a user, found in Fig-
ure 6.11. It was not possible to see any request being sent that authenticated the
application itself (the client) before the patient credentials were sent (the end-user).
However, it was observed that every request being sent to the servers included a Basic
Authentication field in the header. All the requests had the exact same string for the
authentication, as seen in Figure 6.15. After reading more about Basic authentication,
we learned that this is a simple authentication scheme, that encodes a client id and
secret key pair on the form “id:key” with Base64 encoding [8]. Base64 can easily
be reversed by using online tools, such as base64decode6 or base64 command-line
tool. The results of this can be seen in Figure 6.16. The Basic Authentication string
being sent with every request to the server is identical to the two strings found in
the Configuration.json file, separated by a colon.

As a result, the two strings found in plaintext in the APK of the application can
be used to authenticate the application with the server by using Basic Authentication.
After encoding the strings with Base64, this authentication was used on all commu-
nication with the server. Consequently, as these strings were not encrypted in any

6https://www.base64decode.org/

6.2. PATIENT APP - BIOTRONIK 97

Figure 6.15: Header of the request going to the authorization server

Figure 6.16: Decoding of a string with Base64 encoding

98 6. SECURITY ANALYSIS OF APPLICATIONS

way, it would be easy and straightforward for an attacker to succeed in stealing this
information. The attacker can take advantage of this vulnerability. By successfully
obtaining these credentials, the attacker can impersonate the application to the
authorization server. This means that an attacker can successfully get a phishing
app authenticated, by using the credentials of the legitimate application. This gives
unauthorized access to the data and makes it possible to perform unauthorized
actions. Potential actions can be data theft, where an attacker can retrieve sensi-
tive information stored on the server. Moreover, the attacker can manipulate the
communication between the phishing app and the server, and perform an injection
attack that can compromise the system. If the attacker is successful with a patient
downloading the phishing app instead of the real one, it can steal the patient’s
credentials and use this to log into the real application. As a result, the attacker can
potentially achieve all the sensitive information about the exposed patient in the
original app.

For a more advanced attack, once the attacker obtains valid credentials from the
user and logs into the original application, he can set up a proxy. Afterward, he can
listen and analyze all the traffic to learn how valid requests to the server are sent.
This can be utilized in the malicious phishing app connected to the same server, to
send valid requests to the server and obtain data from other patients. Once a new
patient downloads the phishing application, the attacker already knows how to send
requests to the server and can mimic the behavior of the legitimate application. The
attacker will be able to continuously gather information about the user without them
raising suspicion.

6.2.6 Certificate Details

In section 6.1.3 we discussed the potential vulnerabilities for Medtronic when using
weak algorithms in certificate signing. Despite the fact that this was not an issue
given in the static analysis for Biotronik, we still wanted to print and analyze the
certificate details in case of warnings the static analysis missed out. See Figure 6.17
for the result. As observed, Biotronik uses both SHA-1 and SHA-256, similar to
Medtronic. Further, the app uses SHA-256 with RSA as a signature algorithm, in
contrast to Medtronic which uses SHA-1 with RSA. Moreover, the key size of the
subject public key algorithm is 4096-bit vs. 1024-bit used in Medtronic. Because
of the 4096-bit RSA key, the certificate’s signature algorithm is considered strongly
secured and possesses no security risk as it is above the recommendation given by
NIST. Lastly, no warnings appeared. To conclude, the Biotronik app appears to use
secure and appropriate signature algorithms.

6.2. PATIENT APP - BIOTRONIK 99

Figure 6.17: Certificate details of Biotronik

6.2.7 Unverified Issues

In order to maintain clarity, this section is dedicated to issues found during the static
analysis, described in subsection 6.2.1, that were tested and analyzed. However,
we could not prove that these issues are valid or have an impact on the security of
the application. As a result, the remaining issues with a severity level of warning
and high, which have not been previously discussed, are further investigated in the
following sections and their outcome are presented.

Insecure Random Number Generator

The threat with ID 5 in Table 6.1 states that the Biotronik app uses an insecure
Random Number Generator (RNG). We wanted to investigate if this issue can
be exploited by an attacker, and eventually how. To check if Biotronik uses an
insecure RNG, we used ADB (appendix A.3) and an emulator (appendix A.2).
By using the command below, it displayed the logs related to the usage of the
“java.security.SecureRandom” class in real-time.

1 $./ adb logcat | grep SecureRandom

ADB is a powerful tool making it possible to communicate with the device. One
feature ADB has is to monitor the system and app logs. If the application uses the
insecure algorithm, it logs warnings and errors while playing around on the Biotronik
app in the emulator. After attempting to bypass authentication and register a user,
there was no sign of RNG.

Another way to check the presence of the “SecureRandom” class was to
conduct code analysis. By searching through the code with this particular
keyword, we noticed that the class was used in three different files, all under the
folder “com.google.android.gms.internal.ads”. The code is using a library called

100 6. SECURITY ANALYSIS OF APPLICATIONS

“java.security.SecureRandom” in Java, which is known to be cryptographically secure
[69]. Therefore, we can say that the RNG was suitable for cryptographic purposes.
As a result, we assumed that it could be a false positive in the static analysis done
by MobSF. If we did not have any restrictions on accessing the application, we would
conduct further investigation to confirm the use of RNG.

MD5

The vulnerability regarding the weak cryptographic algorithm MD5 is found in four
different files in the application. They are all situated in the Google folder, within ads.
All the files contain a method called getInstance(“MD5”). The only part of the code
that is obfuscated, is the files placed in the “com.google.android.gms.internal.ads”.
Functions containing getInstance(“MD5” are obfuscated, which made it hard to
understand them. This again resulted in difficulty to understand what the algorithm
was used for. It was not possible to determine the use cases where MD5 might
be employed in the app. This could for example be verifying the integrity of
files, generating checksums for data integrity checks, storing passwords, or data
identification [90]. Even though we did not know what its functionality was, it was
considered to be insecure and it would be a good security practice to change to a
better hashing algorithm, such as SHA-256. However, it seemed as though there
were only some functions of the analytics performed by Google that used this, and
therefore the impact of this cryptographic algorithm might not be that severe.

Frida

After our login attempts described earlier had failed, we wanted to take a different
approach to bypass the login functionality of the application. To execute this, we
used Frida, as explained in section 4.3.3. This is a powerful tool that enables dynamic
changing of the inserted values into functions while the application is running. We
wanted to try to see in which order functions were called during the login process, in
order to locate a function that we could alter the response to, in order to trick the
application. Our hypothesis from earlier was that the connection to the Couchbase
database was the last step and that we did not manage to fake this connection. We
wanted to verify this hypothesis, by looking for the functions where we received the
error earlier. As seen in Figure 6.8, we received an “replication auth error unable to
get the sync gateway session token”, which was present in two different functions
“DeprecatedPull” and “DeprecatedPush”. These functions can be searched for when
running the application with Frida, to see if we can learn some more about what
they ask for and how to bypass them.

In order to check for a specific function during the execution of Frida, we used
the same command as described in the Medtronic analysis:

1 frida - trace -U -i "* DeprecatedPull *" -F

6.2. PATIENT APP - BIOTRONIK 101

Figure 6.18: The result from running Frida with the Biotronik app.

The -U is for an external device, the -i specifies the function to look for, and the -F
states that it is on the frontmost application. However, when we ran this command
the Frida tool stated “Started tracing 0 functions”, which means that it was unable
to find this method. This can be seen in Figure 6.18. As we see from the figure, this
was the case for both the Push and Pull of the aforementioned functions. Therefore,
we tried to change the approach, in order to try and receive some information from
Frida. Firstly, we tried to not specify any functions, just the application to run. This
was not successful, as the program did not seem to understand what it was looking
for. Thereafter, we tried to iterate through several different function names that
could be associated with login, such as “authenticate”, “checkValidity” etc. None of
these gave us any interesting findings either, even though the command itself worked
with a more generic function name, such as “open”. After several attempts, we had
to admit that we were not able to learn anything useful about the login process with
the use of Frida. As there was not much time left to study this any further, we had
to accept that we had to let this go. If we had more time, we would have explored
the usage of Frida further, to try to use this in the bypassing of the login.

6.2.8 Summary of our Findings

In contrast to the Medtronic app, we had the possibility to do various analyses on the
application which resulted in numerous findings, see Table 6.5 for the summary. The
analysis of the mobile application’s network traffic in Burp Suite, code inspection,
logcat in Android Studio, and mitmproxy revealed multiple important findings about
the authentication mechanisms used and the server infrastructure in the application.
Additionally, we achieved some unverified issues in subsection 6.2.7 that are not
included in the table.

102 6. SECURITY ANALYSIS OF APPLICATIONS

Table 6.5: The summary of findings for PatientApp

Discovery Explanation Covered In
Geofencing API The app uses background location for Ge-

ofencing, which keeps track of users’ loca-
tion in relation to places of interest. It is
difficult to see the need for this feature.

6.2.2

Authentication
protocol

The request sent to validate credentials in-
dicated that the application used OIDC
for authentication. This protocol is built
on top of the OAuth 2.0 framework and
provides Single Sign-On (SSO) capabilities
which simplify the authentication process
for users.

6.2.3

JWT OIDC relies on JWT as the primary token
format for authentication. Our attempt
to forge a token was unsuccessful, which
can indicate that the token verification is
properly implemented and secure.

6.2.3

Backend server The app uses the Couchbase Sync Gateway,
which is based on the CouchDB database.
It uses an older version of the gateway and
has known issues.

6.2.3

Keycloak The application use Keycloak as an IAM
tool for authentication and authorization
services. The interface was accessible
through a URL. Keycloak is a part of the
application’s security architecture.

6.2.3

Server infras-
tructure

Four domain names were discovered. By
querying DNS records and performing an
IP WHOIS lookup, it was determined that
the servers belong to Biotronik. Owner-
ship information and details about the IP
addresses were also obtained.

6.2.3

Password crite-
ria

By tricking the mobile application into
thinking we successfully registered a user,
we obtained the password criteria for all
users, which had a low-security level.

6.2.4

The ClientSecret
and ClientId

Possible secrets strings shown in plaintext
in the code. These were used for authenti-
cating the app, using a simple authentica-
tion scheme that can be easily reversed.

6.2.5

Chapter7Questionnaire

This chapter relates to research objective 3, section 1.4, “Gathering information
about the patient’s perspective by executing a survey and analyzing the results”. The
questionnaire is performed in order to give us a more accurate understanding of
the patient’s stance and thoughts on the evolution of bringing a mobile application
into the pacemaker ecosystem. All the questions in their entirety can be seen in
appendix B. The questionnaire was posted in a closed Facebook group for pacemaker
patients, named “Young pacemaker patients”. This group contains patients from all
over the world.

With regard to the ethical concerns we discussed in section 4.5, the first page of
the questionnaire included information for the respondents. We included information
about the purpose of the questionnaire and its intended usage. We specified that
the answers would be used in a master thesis, and gave contact information in order
to give the respondents the possibility to reach us if they had any comments or
questions. There was information present to explain that we did not collect any
personally identifiable information and that the respondents had the possibility to
skip any questions throughout the questionnaire if they wished. We also stated that
the target groups were patients who currently use a mobile application connected to
their pacemaker and patients that do not.

After the initial information page, the question pages arrived. We used a combi-
nation of multi-choice questions with single-select answers, Likert scale questions,
and open-ended questions where the respondents could write themselves. For the
Likert scale, we provided several statements, where the patient could respond how
much they agreed with the statement from “Strongly disagree” to “Strongly agree”.
The open-ended question was at the end of the questionnaire, after some additional
information about why we asked these questions and the possibility to skip these
questions if they wanted. The questionnaire was divided into different parts with
their own overarching theme, and we splitted the presentation of results into the
same sections.

103

104 7. QUESTIONNAIRE

7.1 Demographics and Clinical

In total, we received 38 responses to our questionnaire. We observed that not
everyone has answered all the questions provided, which was expected as no questions
were obligatory. For the demographics part of the questionnaire, we only asked the
respondents their age and their gender. Both questions provided an opportunity for
the respondents to answer “Prefer not to answer”. This option was not chosen on
any of these two questions.

For the age demographic, it can be observed that the majority of the respondents,
45%, are in the age range 35-49. This equals 17 of the total respondents. Thereafter
comes the 20-34 range, followed by the 50-64 range, and lastly the 65-80 range, with
respectively 13 respondents (34%), 7 respondents (18%), and 1 respondent (3%).
We did not get any respondents over the age of 80, which was our last option. The
reason for this can be that the pacemaker group we sent out the questionnaire in
was targeting younger pacemaker patients.

We also asked about the gender of the respondents, to get a better understanding
of which group of people responded to the questionnaire. The result was that the
vast majority of the respondents were female, at 86%, and 32 individuals. There
were also 5% male respondents (2 individuals) and 8% non-binary (3 individuals).
Even with the option of answering “Prefer not to answer”, we can observe that we
had a total of 37 responses to this question, while there were 38 responses to the last
question. The graph for both of the demographic questions can be seen in Figure 7.1.

After the demographic questions, we wanted to look at the clinical differences
between our respondents. Therefore, we asked them both what kind of device type
they currently have and from which manufacturer. When it comes to the device type,
we included options for pacemakers, implantable defibrillators (ICD), and Cardiac
Resynchronization Therapy (CRT). These are the three most common IMDs for
patients with heart-related disorders. From the responses, we observe that 81% (31
individuals) have a pacemaker, while the number of ICDs and CRTs are 11% (4) and
8% (3) respectively.

The device manufacturer question was a bit more evenly distributed than the two
previous questions. For this question, we included four common device manufacturers,
and the option to answer “Other”. All the respondents to our questionnaire have
one of the four mentioned vendors for their devices. The largest part of the group
had Medtronic as their manufacturer, with 55% or 21 of the respondents. Tied for
second was Abbot/St. Jude and Boston Scientific, with 18% of the respondents
each, or 7 individuals. Lastly, there were 3 individuals who had Biotronik as their
manufacturer, which totals 8% of the respondents.

7.2. MOBILE PHONE USAGE 105

Figure 7.1: Graphs of Demographics

To conclude on the information gathered from these two sections, we observed
that the respondents to our questionnaire are mainly females, between the age of 20
- 49. In addition, there was a large majority that had a pacemaker device as their
ICD, and the manufacturer of the device was primarily Medtronic, Abbot/St. Jude
or Boston Scientific.

7.2 Mobile Phone Usage

We included a section about the patients’ mobile phone usage as we wanted to gain
a better understanding of the respondents’ habits when it comes to mobile phones.
This included their habits on updates, making passwords, and general knowledge of
password security. For this section, we used a combination of multi-answer questions
and a Likert scale. The number of respondents per question is about 36 individuals.

The first question was regarding the type of smartphone that the respondents own.
This statistic is interesting for us, as we only made a security analysis of Android
versions of the applications. Therefore, it was interesting to see if the perceived
security of the applications was correlated to which device the respondents own. We
observed that the majority of our respondents had an Apple phone, with iOS. This
amount constituted 67% or 24 individuals. On the other hand, there was 33% that

106 7. QUESTIONNAIRE

owned an Android phone. Once again, there was no one that chose to use the “Other”
option for their response.

A Likert scale was used to get the respondents’ thoughts on five different state-
ments in this part of the questionnaire. The scale ran from “Strongly disagree” to
“Strongly agree”, where these represent 1 and 5, respectively. All the statements were
written with personal pronouns, such as “I” and “me”, in order to make it easier for
the respondents to reflect on their own behavior. The first three statements were
related to the making of passwords, whether the respondents use different passwords
for different logins, and have an active relationship to the security of their passwords.
The two last questions were related to updates, where we asked both if the respondent
update their phone and their application often.

The number of responses on the Likert scale questions was 35 for each statement,
and the result is presented in Figure 7.2. The first two statements address whether
the user has a strong, unique password and how advanced passwords the users make.
Most are agreeing with these statements, where the first statement has a weighted
average of 3.63 out of 5, where 5 again means “Strongly agree”. The second statement
has a score of 3.77. This might be a result of password policies established for almost
every password generation. Further, the third one states “I use different passwords for
different logins in apps, websites, etc.”, where the participants answer to be agreeing
as well, with a weighted average of 3.71 out of 5. When asked if they update the
applications and their phones regularly, the participants answered closer to strongly
agreeing with these statements. The statements achieved a weighted average of 4.2 on
the fourth statement about updating apps, and 4.29 on updating the phone. Overall,
the majority of the participants agreed with each of these statements, suggesting
that they think about and have a concern for the security of their mobile phones.
Alternatively, it could indicate that they may not be fully aware of what is good
and bad mobile security practices. This is discussed further in section 8.4 about the
difference between actual security and perceived security.

To gain further understanding we also asked multi-choice questions if the re-
spondents update their application automatically on their phone, and how they
make their passwords. The reason for this is that a Likert scale gives more of a
comparative result, while multi-choice questions can give some more detailed and
extensive information, to elaborate on the result from the Likert. For the question
on application updates, 75% (27) of the respondents answered that they have turned
on automatic updates. 19% (7) answered that they did not use automatic updates,
while 6% (2) answered that they did not know. It is good security practice to update
your applications whenever there is a new version published, as this might include
bug fixes to issues that your device otherwise can be vulnerable to.

7.2. MOBILE PHONE USAGE 107

Figure 7.2: The result of the Likert scale questions on mobile phone usage

For the question regarding how the respondents make their passwords, we provided
different alternatives of common password-making techniques. We wanted to see if
the way the respondents make their passwords corresponds to their statement on
whether they think about their password strength. The different alternatives we
presented were to use random numbers and/or letters, memorable words/phrases,
“suggested” from Google, Apple, etc., or not having a consistent method. There
was also an option for answering “Not sure”. The results from this question are
presented in Figure 7.3. As we can observe, the majority of the respondents use the
“Memorable words/phrases” option for their passwords. This is not necessarily a very
secure way to make passwords, as people often choose phrases that are related to
themselves in some way. This can be the name of a child or pet, the birth year of
someone in the family, or other similar words. When using such passwords, it could
be possible for an attacker to quickly guess the correct password. This can be done
by employing social engineering techniques on the victim or doing brute-force attacks
with tools such as psudohash.1 This answer does not correspond very well with the
answer from the Likert scale, where a large amount of the respondents answered
“Strongly agree” to the statement “I think about the difficulty of my passwords when
I make them”, the second statement shown in Figure 7.2.

The last question of this section was regarding whether the respondent stores
their password in a password manager. In addition to this question, we asked what
type of password manager they use, for those who answered “Yes” in the multi-choice.
In order to explain what we meant by a password manager, we included examples
for the respondents. The examples were Google password manager, 1Password, and
writing them down in a notebook. Of the 16 individuals that answered Yes to using a
password manager (46%), 14 of these further answered which password manager they
utilized. The password managers mentioned in this field were: Last Pass, OnePass,

1https://github.com/t3l3machus/psudohash

108 7. QUESTIONNAIRE

Figure 7.3: Graph of how the respondents make their passwords

Smartsheet, Apple Passwords, Keeper app, Proton, Google Password, and notes on
their phones. Of these, Last Pass was mentioned the most. There were also two
responses of “Don’t know”. On the question of whether they use a password manager,
there were also a few that were unsure, 4 individuals, totaling 11%. Lastly, 43% of
respondents, 15 individuals, answered no to password manager usage.

7.3 Perception of Applications Connected to IMDs and
Cybersecurity

The next section considered the mobile application aspect, where we investigated
patients’ perceptions and habits when it comes to mobile applications connected
to IMDs. In addition, we asked some more general questions about the patient’s
relationship to cybersecurity. This part contained one multiple-choice question, six
Likert scale questions, and seven open-ended questions. The open-ended questions
gave patients the opportunity to provide more details and allowed us to deliver a
better discussion on this subject.

The first question asked the respondent if they use an application connected
to their pacemaker. 23% (7) answered “Yes”, 74% (23) answered “No”, while one
respondent answered “Not sure”, in total 31 respondents. An examination of the
individual answers showed that 6 out of 7 participants that responded yes have the
mobile application from Medtronic, and one from Boston Scientific.

The result from the Likert scale questions is presented in Figure 7.4, where each
statement had around 30 respondents. The first statement was whether they use
one or more apps to keep track of their health, and a large part of the respondents

7.3. PERCEPTION OF APPLICATIONS CONNECTED TO IMDS AND
CYBERSECURITY 109

Figure 7.4: The result of the Likert scale questions on perception of application
connected to IMDs and cybersecurity

agreed, with a weighted average of 4.03 out of 5. The next statement assessed the
respondents’ perception of having an application connected to a pacemaker, stating
that it is a good development for their needs. Similar to the previous statement,
the majority agreed, with a score of 4.1. The rest of the statements were related to
the cybersecurity aspect of the application and mobile phone. The third statement
presented in the figure states that they are worried about the possibility of their
phone being hacked. In contrast to previous statements, a larger portion of the
respondents disagreed, with a weighted score of 2.8 out of 5. This can be a result of
people having confidence in the security measures on their phone, where they trust
the security of the device, they have low personal risk, and/or lack of awareness.
Additionally, the fourth statement also regards security concerns, “I am concerned
about my data leaking from an application I use”. Here, the participants have a
weighted average of 3.33 out of 5, which indicates that the majority are neutral
toward the statement. When it comes to the awareness of permissions, which is the
fifth statement, the average score was 4.03. This means that they agreed on average,
stating that they think about which permissions an application asks them. Lastly, we
gave a general statement saying they think about the security of medical applications
on their phones. The weighted average for this statement is 3.21, indicating a neutral
value where the average participant neither strongly disagrees nor strongly agrees.

The last segment of the questionnaire contained seven open-ended questions
regarding their thoughts and opinions on the application, its security, and general
security aspects. The respondents’ engagement was good, with an average response

110 7. QUESTIONNAIRE

rate of 21.5 respondents. To visualize the answers, we utilized word clouds from a
free online word cloud generator2. This approach highlighted words and phrases that
occur more frequently in the responses, giving them greater visibility in the word
clouds.

The first two questions considered their thoughts on the benefits and drawbacks of
an application connected to their pacemaker. The question we asked was “What do
you think are the benefits of an application connected to your pacemaker?”, and the
result is presented as a word cloud in Figure 7.5a. As seen, words and phrases that
occur frequently are real-time, self-monitor, and ease of use. The patients are able to
observe real-time happenings, which can provide them reassurance and/or gather
information about their condition and their pacemaker performance. In addition,
they are able to see events and trends as they happen, instead of twice a year at the
device clinic. This can provide peace of mind as the patient have more knowledge of
their status. For the monitoring part, the patients are able to constantly record and
monitor their condition, allowing them to send reports of a cardiac event directly to
their cardiologist. This can result in fewer appointments in person. Furthermore,
the application is easy to use and convenient, for instance when out traveling. One
respondent specifically mentioned that the application had reduced the number of
in-clinic appointments by half, thereby lowering the risk of exposure to COVID-19,
and saving time and money that would have been spent on appointments. In addition,
the respondents liked that they no longer have to keep track of a separate device.

(a) The benefits (b) The disadvantages

Figure 7.5: The respondents’ thoughts of an application connected to their pace-
maker

2https://www.wordclouds.com/

7.3. PERCEPTION OF APPLICATIONS CONNECTED TO IMDS AND
CYBERSECURITY 111

The following question asked was “What do you think are the disadvantages of an
application connected to your pacemaker?”. The word cloud of the drawbacks pro-
vided by the respondents is demonstrated in Figure 7.5b. While several disadvantages
were mentioned, it is worth highlighting that the word that occurred most frequently
was “none” when addressing the drawbacks. The reason for this might be a lack of
knowledge and awareness, limited experience, or a positive overall experience of the
application. Nonetheless, they also mentioned the potential of being hacked, losing
their phone, and relying too much on technology. One participant emphasized the
importance of patients being in tune with what their body is telling them, stating
that “Numbers and statistics reported by a mobile application should always be
verified by a professional.” Another respondent mentioned that their personal data
being used by the company could be a disadvantage. However, they also noted that
in today’s generation, where Apple and Google have access to lots of information
about individual users, they don’t see how a medical technology company could be
any worse in terms of data privacy and security. Another respondent underlined that
despite the fact that so much data is collected, they are not allowed to see or access
any of the data.

An interesting drawback mentioned of having an application connected is the
possibility of over-analyzing the data and developing an obsession with constantly
checking it. This can increase anxiety for some people, which contradicts the
benefit of tracking to provide peace of mind. One respondent expressed their
complete dependence on their pacemaker device for monitoring their heartbeats.
They underlined concerns about connecting a mobile app and interrogating the
device on a regular basis, as they believed it might have a negative impact on the
pacemaker’s battery life. In addition, they were concerned about the possibility of
unintentionally changing settings and thus preferred not to take the risk.

The third question was directed towards respondents who do not currently
have the application, asking them, “What would make you consider using such an
application?”. Their response is presented in Figure 7.6. We observe that the most
commonly mentioned factors are the application’s ability to provide patients with
access to their data and its functionalities. One of the respondents pointed out that
the app provides better access, especially for travelers who prefer the convenience
of an application instead of carrying a large transmitter box. Another respondent
considered the possibility to access data and reports on daily status, pacing status,
etc. Additionally, education about the pacemaker device is specifically mentioned
as a significant consideration for using such an app. Lastly, there is one user who
also mentioned that the user interface must be good, including accessible options,
for them to consider the app.

After finding out their considerations of using such an app, we wanted to highlight

112 7. QUESTIONNAIRE

Figure 7.6: The respondents answer on what would make them consider an
application connected to a pacemaker

one of the main functions of the app and asked the respondents “What are your
thoughts about the opportunity to keep track of your pacemaker device and its data?”.
Out of 24 answers, 19 of the respondents were positive and excited about the data
tracking, and many of them would prefer to see more data in the app. One possible
reason for this could be that today’s technology already offers wearables that collect
health data, so the concept of tracking health information through technology is not
unknown to them. In addition, the group of respondents for this survey is relatively
young, and thus they are often more positive toward technology. It was highlighted
that keeping track of data on the app could improve their ability to monitor their
condition, reduce anxiety, improve their ability to cope with arrhythmias through
pacemaker correction and body adjustments, and in the end give them peace of mind.
On the other hand, some of the respondents expressed that they are worried and do
not like the idea of having access to data that they can’t possibly interpret. Further,
one respondent emphasized that they already had access to their pacemaker data for
a long time, and did not find any data on the app useful. They mentioned that the
data they have access to from their remote monitor covers their needs already and
that there should be an opportunity to access real-time information about arrhythmia
events. It was also mentioned that accessing what has been transmitted instead of
the transmission status would be preferred.

To gain an overview of the respondents’ perspectives on mobile security in general,
we asked the question: “What are your general thoughts on mobile security?”. Some

7.3. PERCEPTION OF APPLICATIONS CONNECTED TO IMDS AND
CYBERSECURITY 113

participants demonstrated an awareness of mobile security, acknowledged the need
for improvement, and expressed concerns. On the other hand, there were also
respondents who admitted not thinking much about mobile security or considering
themselves naive about the topic. Some of the respondents admitted potential for
improvement, without naming ways they could become better. Interestingly, some
respondents said they were more worried about losing their phone than about security
issues. The respondents’ perspectives on mobile security were mixed, which were in
line with our expectations.

After gaining a high-level overview of their thoughts on mobile security, we wanted
to redirect to the medical device topic. Therefore, we asked them “Have you ever
thought about the security of your medical device?” and the answers were split in
half. The first half simply answered “No”, with no further explanation. Some of
the respondents admitted that their awareness was on and off, they did not think
much about it except when it was on the news. Another respondent provided an
honest response, stating that they did not understand why anyone would want to
track them down as they considered themselves to be uninteresting. In contrast,
the other part answered “Yes”, and one respondent mentioned that they do not like
to sign a document allowing Medtronic unlimited access to their device. Another
one highlighted that they have done much research into how secure their device is.
Further, one believed that the security of their device would never be compromised,
as most of these cases happen in the USA, whereas they live in Europe.

Exploring further into the previous question, we finished the open-ended questions
with “Are you aware of any previous security issues related to your medical device”.
18 out of 22 answers expressed that they were not aware. One specified that they
were aware that there have been Medtronic issues on older versions, but not on their
specific device, but these have been resolved and mitigated for now. Lastly, one of
the respondents had heard about issues regarding Bluetooth-compatible devices, but
not theirs. Some were also very assertive in stating that there had been no issues
related to their device.

An interesting aspect was examining the responses of patients who have the appli-
cation to gain insights into their perceptions. Therefore, we investigated deeper into
their answers. Most of them were satisfied with the application and its functionalities
and said it benefits them in daily life, without raising any noteworthy concerns.
However, one disadvantage of the app frequently mentioned was the limited amount
of accessible data. Further, the majority did not think about the security of their
medical device and none of them expressed any thoughts about mobile security in
general.

In conclusion, the respondent’s perceptions and habits regarding mobile applica-

114 7. QUESTIONNAIRE

tions connected to their IMDs were investigated. The majority of the respondents
did not use such an application, but those who used it found the app beneficial.
The security concerns varied among the respondents, with some of them expressing
confidence in mobile security, and others worried about the possibility of data leaks
and getting hacked. Overall, the participants were positive when it came to tracking
their devices and their data, and very few were aware of previous security issues.
The results from this chapter are used when we discuss actual security vs. perceived
security from patients in section 8.4.

Chapter8Discussion

This chapter address and discuss the findings provided within chapters 5, 6, and 7.
Based on the results from the security analysis and the questionnaire, we describe
the vulnerabilities that arise and how they can potentially affect different groups of
people. First, we discuss the findings from Medtronic and Biotronik’s systems and
suggest improvements. Further, strengths and drawbacks related to the use of mobile
applications were presented. The subsequent section compares the old hardware
HMU with the new evolution of mobile applications in the pacemaker ecosystem to
answer parts of our research question, as described in section 1.4. Next, from the
questionnaire, we evaluate the actual security of the applications in contrast to the
perceived security obtained from patients. Lastly, we provide some limitations that
have affected our work.

8.1 Security of the Mobile Application System

The findings from the security analysis of the two separate mobile applications are
taken from chapter 6. This is the section that answers our research question about
potential cyber security concerns when it comes to patient safety and privacy on
mobile applications connected to the pacemaker. Additionally, we provide suggestions
for improving the security of the discussed mobile applications. We recommend
adopting additional countermeasures based on previous security analyses to enhance
the security of the applications.

8.1.1 Discussion on Findings from Medtronic’s System

When starting with the analysis of the Medtronic application, the first step executed
was a static analysis of the application. To begin with, we only used MobSF for the
analysis, which gave a low-security score to the application, 41 out of 100. This was
a low score, and therefore, we thought we would find a lot of vulnerabilities in the
application. Although the analysis stated where in the code the issues were situated,
we later learned that there seemed to be some false positives within the issues of the

115

116 8. DISCUSSION

MobSF analysis. Therefore, we utilized an additional static analysis tool, to see if
this provided the same weak result for Medtronic. When running the application
through the BeVigil analysis, it received a security score of 8.7 out of 10 - or 87 out
of 100. This implies more than doubling the score from one analysis tool to another.

The significant difference in results between the two tools sheds light on the fact
that these static analysis tools are automatic, and therefore one should never take
the results as a fact. It is important to be aware of the ability for error, even from
these types of tools. In addition, there seemed to be different focus areas for these
tools, which also can affect the score given to a specific application. This is also
something to be aware of, as it is easy to focus solely on one analysis tool and thereby
lose sight of the areas that this particular tool does not emphasize. A static analysis
tool is an excellent basis for discovering possible issues within an application, but it
is important to always look further into the findings from such a tool, as they might
not always be accurate.

In Medtronic’s case, for instance, we were surprised to see that the application
received such a low score from MobSF. During our further analysis of the application,
it was quite difficult for us to find any vulnerabilities. It was however mainly due to the
powerful obfuscation of the application that we were not able to analyze the findings
from the static analysis or other parts of the code base properly. Therefore, it is also
challenging to make any statements regarding the security of the rest of the application.
There is a possibility of the obfuscation technique being their main security mechanism,
which would not be a good practice. For skilled attackers or attackers with appropriate
resources, it is possible to deobfuscate the code base, no matter how well the
obfuscation tool performs. There exist very powerful deobfuscation tools online.
These are usually quite expensive, but for an attacker with some means available, it
could be feasible to deobfuscate the code base of the application. Therefore, it is
important to have a high level of security in the communication protocols, storage of
data and so forth as well.

However, we were able to find that the application uses SHA-1 for the signature
of the certificate. This is a weak hash function, that is no longer considered secure.
It is vulnerable to hash collisions and has been proved to be practically broken, by
researchers that were able to choose two different PDF files that resulted in the exact
hash value. Therefore, SHA-1 is not advised to use in any signature functions. The
use of SHA-1 in MyCareLink Heart was to some extent surprising, as the rest of the
application seems to focus on keeping the security high. This seemed inconsistent with
the security measures implemented with the obfuscation of the code base. It is a flaw
that an attacker can make another certificate that receives the same signature hash,
as this makes it possible to forge an application that is accepted as the Medtronic
application.

8.1. SECURITY OF THE MOBILE APPLICATION SYSTEM 117

Threat Modeling vs. Identified Threats

In chapter 5 we went through the ecosystem with Medtronic’s application and found
possible threats against the mobile phone and application, shown in Table 5.3. In
addition, we found some threats against the communication between the components
in the system, as seen in Table 5.6 and Table 5.7. We compare the identified threats
in our threat modeling with the actual security issues identified in the analysis
chapter 6. To keep the discussion concise, we compare only the threats which we
have identified and the actual issues discovered during the analysis. Our focus is on
the application and its communication, excluding threats against the mobile phone
itself.

The first threat associated with the mobile application is ID 5, which is related to
an attacker pretending to be an authorized application that the patient downloads.
We did not find any indication that credentials were available in cleartext in the
application during our analysis. However, there exists a possibility of forging an
application and attempting to convince patients to use this app instead. By doing
so, the attacker could gain the login credentials of a valid user, which can be used to
access the actual application. Additionally, we found that the application’s certificate
is signed with a weak hash algorithm. In practice, this means it is possible to create
another certificate that generates the same hash value for the signature. This could
result in the acceptance of the forged application as the Medtronic application, as
they share the same signature.

ID 6 concerns the attacker bypassing the authentication of the application if they
have physical access to the device. If such an attack was executed, the attacker could
gain the view of a logged-in user and observe their health data. However, it seems
as though there are several tools that cannot be used with the application because
of the checks implemented by the Arxan obfuscation. This makes a process like
bypassing the authentication more troublesome. In such a situation, it seems most
likely that the attacker is able to access the view of a logged-in user by guessing
the user’s password correctly. This is related to ID 9, which is about the attacker
brute-forcing the password of the user. We were not able to verify if there was a
limitation to the number of attempts for user logins. Therefore, this might not be
possible to perform either.

The next threat is ID 7, which relates to the attacker’s ability to hijack the
application and send wrongful data to the doctor or show fake information to the
user. This requires the attacker to gain unauthorized access to the application and
then be able to change the information displayed to the user during the runtime of
the app. The other option is to interfere with the information when it passes through
the application and change the content before it is sent to the doctor. Both of these
require an authenticated view of the application, which we have already concluded

118 8. DISCUSSION

might be difficult to achieve. There are also checks in place to prevent the tampering
of the code during runtime in the services offered by Arxan for obfuscation.

For the threats concerning communication over the internet, we focus on ID 25,
26, and 28, as these are the ones we have tried to check the validity of. That is not
to say that the other threats in Table 5.6 are not applicable, only that we do not
have enough knowledge to comment on them. For Table 5.7, we focus on ID 31 and
32. Again, that is not to say that the rest of the threats are not applicable.

Firstly, we have IDs 25 and 26, concerning the interception and alteration of data
on the interface between the phone and the server. According to the information on
Medtronic’s own websites, the communication between the phone and the backend
network is over regular Wi-Fi [52]. We were unable to study this traffic directly but
assumed that the communication is encrypted, seeing as the communication between
the phone and pacemaker applies encryption. If that is the case, one way to perform
an interception of the communication is by inserting a proxy between the phone
and the server. This requires the phone to accept the certificate of the proxy, but
once this step is completed, all communication can be intercepted. It is also possible
to set up a fake base station between the phone and the server, but this does not
necessarily allow the attacker to read the data being sent. For the ID 26 attack,
it is not necessary to be able to understand the communication flowing between
the two devices, although it is an advantage. As long as the attacker receives the
information going from the phone to the server, they can alter the packets, which
leads to incorrect information going to the server.

The next threat has ID 28 and detailed a DoS attack where the attacker blocks
the transmission of data from the mobile phone, making the doctor unaware of
the patient’s status. This is a plausible attack, but would most likely require the
attacker to block all communication from the mobile phone, such as by jamming
the frequency the phone sends signals on. This would require a jamming device
situated in appropriate proximity to the phone, which is impractical. Additionally, it
would quickly be noticed by the user if all signals are gone. Therefore, it would be
challenging to maintain this blockage for longer periods of time, which is necessary to
effectively prevent the doctor from having sufficient information about the patient.

Moving on to IDs 31 and 32, concerning communication between the pacemaker
and the mobile phone. These are similar to the ones already discussed, where one
concerns the interception of data between the pacemaker and phone, and the other
involves tampering with this data. When it comes to the communication between the
pacemaker and phone, it is harder for an attacker to insert themselves as a MITM.
This is because the communication was over BLE, and thus no base station or other
components are in between the two communicating parts. In addition, the proxies we

8.1. SECURITY OF THE MOBILE APPLICATION SYSTEM 119

have discussed in this thesis are Hypertext Transfer Protocol (HTTP) proxies, which
do not work for this communication. However, there exist tools that can be used
to sniff BLE communication. Even if an attacker is successful in doing this, they
need to understand how BlueSync works in order to make sense of the data from the
pacemaker. Therefore, it is uncertain to what extent such an attack can be executed.

Improvements

We begin by introducing a best practice for Medtronic based on previous security.
Thereafter, we offer two suggestions for potential improvements, focusing on areas
Medtronic can enhance its security. It is important to note that both suggestions
may not be directly applicable, but can be considered.

As discussed in subsection 8.1.1, the application uses SHA-1 as the signature
algorithm for the certificate. Naturally, the best practice of security is to upgrade the
hash function, such as SHA-256 or SHA-512, to use a stronger algorithm. Additionally,
using a strong hash function with a strong key length is also recommended best
practice to mitigate the risk of an attacker breaking the encryption. A key length
of 2048 bits or more is considered strong, and thus we would advise Medtronic to
increase the key length from the 1024 bits they currently use to follow best practices.

One suggestion we have for Medtronic is to establish a process for regular updates
on security to stay up-to-date and to discover known vulnerabilities of their mobile
application. Discovering a vulnerability as early as possible saves them time and
money when updating the mobile app to secure the patient’s privacy and safety. In
general, improving the certificate management process by using strong cryptographic
certificates and following the industry’s best practices is suggested. Medtronic
should conduct regular reviews and update certificates to prevent the use of weak or
compromised certificates. Having a thorough process for security updates can help
prevent the exploitation of newly discovered vulnerabilities.

Lastly, we suggest increasing the number of supported devices of Android phones.
We understand choosing to start with only one type of device, especially when the
security requirements need to be high, to ensure a secure application for the users.
However, if the number of devices supported by the application increases, this would
improve the ease of use for the patients. As it is now, a large number of patients
would have to switch out their phones in order to use the application. It should be a
goal for Medtronic to be accessible to the majority of the patient group, and thus
they should look into what can be done to increase the number of supported devices.

120 8. DISCUSSION

8.1.2 Discussion on Findings from Biotronik’s System

When executing the static analysis for Biotronik’s application, we observed the same
findings as we did for Medtronic. The application received a score of 50 out of 100
from MobSF, and while this is better than Medtronic, it is still a mediocre score.
When running the same APK file through the BeVigil analyzer, the application
received a 9.1 out of 10, or 91 out of 100. This was a significantly higher result.
We observed that for Biotronik’s application as well, the BeVigil analysis gave a
score that was a lot closer to excellent than what MobSF provided. This once again
highlighted the importance of double-checking the findings from such automated
tools, and not blindly accepting them as true. During our deep dive into the issues
from the static analysis we found several results that turned out to not be any
vulnerability in the application in practice.

We can also note that Biotronik’s application generally received a higher score
from both the static analysis tools than Medtronic’s application obtained. The
difference was not significant, but we would expect the Biotronik application to be a
little better at security measures. At first glance, the Biotronik application was more
transparent, as the code base was not obfuscated. The classes had more descriptive
names, and it was easier for us to search for important keywords in the code. In
addition, there were no checks applied to see whether the application was run in
an unsafe environment, such as on an emulator or on a rooted phone. This allowed
us to open the application on our emulator, leading to many more possibilities to
explore whether we could exploit the vulnerabilities. In this regard, the Biotronik
application had fewer security mechanisms present, which in turn broadened our
attack surface for the application.

During our ethical hacking process, we had the opportunity to access and explore
the application within the emulator. To further test the application, we set up a
proxy on the emulator. However, it is important to note that no actual interaction
with the server was conducted. By looking at the messages being sent to the server we
were able to gain significant knowledge about how the application was structured. We
learned about the different servers Biotronik uses and the flow of the authentication of
a user trying to log in. This, in turn, was utilized to try and bypass the authentication
for the application, register a new user, and log in as a fake user. We were able to
fake the correct responses from the server to complete the registration process for a
new user. This allowed us to see the password criteria for the users of the application,
as well as gain information about which information the user must provide to register
their device. The difficulty of adding a proxy to the emulator was quite low, which
in turn helped us to gain a lot of understanding about the inner workings of the
application. This is not good for the security of the application, and thus the addition
of a proxy should be harder to perform.

8.1. SECURITY OF THE MOBILE APPLICATION SYSTEM 121

With regard to the authorization of the application, we were able to locate the
credentials that the app uses to authenticate with the server. Both the ID of the
client and the secret were located in cleartext in a file in the code base. We also
observed that all requests going from the application to the server were authorized
by a Basic authentication scheme. This scheme uses Base64 encoding, which is
easily reversed by using an online tool. When reversing, we could see that this
authentication matched the two strings that we had found in the aforementioned
file. This was one of our most important findings from the analysis, as the presence
of these strings in cleartext implies the possibility of an attacker impersonating the
application to the server. We have already presented the possible implications of
this finding in subsection 6.2.5. These attacks are feasible to perform and it is not
unlikely the patients can be influenced to download another application than the
one presented in the information from the hospital. It is possible to have a similar
icon and name so it is possible to mix them up, or an attacker could send download
instructions as mail to the pacemaker patients with a link to the fake app. However,
Google Play Store and Apple Store have robust security mechanisms to mitigate the
risk of phishing apps being available for download.

As we were unable to successfully log in to the application, there are several
vulnerabilities that were not fully explored. Given more available time, it would
have been beneficial to further investigate these issues in greater depth. In the login
process, we suspect that the step we were unable to bypass was the authentication
to the CouchBase server. In addition, our JWT was not valid. These are positive
findings for the security of the application, as it implies that there exist some checks
for validity. However, as we are not able to log in to the application, we are also
unable to make any statements about the security of the internal functions of the
application. As an example, we wanted to look at the storage of data the application
receives from the data server, to see if this is done in a satisfactory way.

Threat Modeling vs. Identified Threats

In chapter 5 the analysis of the ecosystem involving Biotronik’s application revealed
potential threats to the mobile phone and the application itself. These threats can
be seen in Table 5.3. Furthermore, we identified threats against the communication
between the different components of the system, seen in Table 5.7. In this section,
we compare the possible threats identified in the threat modeling and the actual
issues discovered in the security analysis in chapter 6. We limit our discussion by
comparing only the threats which we have found in threat modelling and the actual
issues from the security analysis.

The ID 5 of the table concerns the possibility of an attacker pretending to be
an authorized application that the patient downloads. Then, the attacker gets

122 8. DISCUSSION

hold of the patient’s data. This is a threat observed to be possible throughout the
analysis, as we were able to find the credentials of the Biotronik application in the
configuration files. However, as stated in the threat modeling, this attack has a low
impact, as the potential attack can affect a small group of patients’ privacy, but is
not harming their safety. Secondly, we have ID 6, regarding the attacker’s ability
to bypass authentication with physical access to the device. This particular threat
required significant effort and time to validate, but unfortunately, we were unable to
successfully demonstrate its validity. Nevertheless, this is not to say that this threat
does not exist for the Biotronik application. It could still be possible to bypass the
authentication. Still, it requires time and comprehensive knowledge of the different
parts of the system that is in play for the process of authenticating a user.

Further, we have ID 9, related to an attacker brute-forcing the password of a user
to gain access to a logged-in view. For this to work, the attacker requires physical
access to the device, as well as a valid email belonging to a user of the application.
We have not been able to find any limit to the number of logins a user can test, and
thus this seems to be an attack that is plausible. Combining the lack of restrictions
on attempts with the weak password requirements we found in the registration of a
user process (section 6.2.4), this can potentially be an attack that does not require
too much computing power or time for an attacker either.

For ID 13, related to an attacker’s ability to gain access to other parts of the phone
because of app permissions, we identified some findings. The Biotronik application
asks for permission to read and write to the external storage of the device. Therefore,
if an attacker can hijack the application, he will be able to read the storage of the
mobile phone. This also makes it possible for an attacker to add things to storage,
and overwrite previously saved items. In addition, the application asks for camera
permission. This makes it possible for an attacker to access the camera whenever
the application is in the foreground. Both of these permissions allow an attacker to
access other parts of the mobile phone of the user, without them being aware.

Moving on to the communication between the phone and the backend server, we
focused on ID 25 and 26 from Table 5.6. As mentioned earlier, this does not mean that
the other threats present in the table are irrelevant. Our focus has primarily been on
specific threats for which we have gathered a significant amount of information. We
did not discuss ID 28, which we did for Medtronic, as there was little communication
of importance moving from the phone to the server, and there was no real danger
with the information being blocked.

ID 25 and ID 26 are connected as they both concern intercepting the communica-
tion between the phone and server, with one being just a passive listening attack and
the other tampering with the data being sent. For the communication between the

8.1. SECURITY OF THE MOBILE APPLICATION SYSTEM 123

phone and the server, we have observed that HTTPS with Transport Layer Security
(TLS) is used. This means that the communication itself is encrypted, and hard to
read for an MITM. However, if an attacker is able to set up a proxy, as we have done
in the analysis, the communication flowing between phones and servers is easy to get
ahold of. Another option would be to set up a fake base station between the two
communicating parties. However, this would not automatically make the attacker
able to decrypt the communication, even though he would be able to change the
packets flowing through. To intercept the traffic and make sense of the content, the
most efficient approach would be to install a proxy that listens to the communication.
In order to read the HTTPS communication, we need a certificate installed on the
phone of the patient.

Improvements

We present best practices and options for the Biotronik app based on our results.
Further, we provide suggestions for improvements if we were to advise Biotronik of
what can be done better. Naturally, all the suggestions may not be applicable to the
mobile application.

Biotronik needs extra secure practices for storing sensitive information, such as
client IDs and secrets. A best practice would be encrypting the sensitive information,
or the entire JSON file, and implementing access control for authorized users to have
access. In addition, it is important to secure the storage of sensitive information
which includes servers, intrusion-detecting systems, firewalls, etc. Even though the
attacker is able to obtain the file, encryption ensures that the content is unreadable
and unusable without the correct decryption key. This requires that the key is stored
securely, for example by using Android Keystore.1

Another best practice is to train patients and make them aware of how to prevent
and mitigate user risk, which reduces the threat of being exposed to a phishing attack.
Being aware of social engineering and phishing is also presented as an important best
practice in [46]. Biotronik already provides installation and registration guidance. If
this is educated to patients properly, it helps to address the potential risk of users
being influenced to download malicious apps from a third-party website or unknown
sources. Unfortunately, the password criteria presented in Figure 6.12a does not
contribute to the importance of the patients having strong, unique passwords on the
app.

The best practice when it comes to the login process is to automatically log out
the user after a time period, to protect the health data in the app. The Biotronik
application has the possibility to choose “Remember me”, which we assume keeps the

1Android Keystore: https://developer.android.com/training/articles/keystore

124 8. DISCUSSION

patient logged in. Another security recommendation is to remove this opportunity,
which makes it harder to read the data even though an attacker has physical access to
the phone. For better user-friendliness, it could be advisable to implement a biometric
login for the patients. Furthermore, if the application cannot support biometrics,
it should implement a Two-Factor Authentication instead. This is a second form
for verification, to add an extra layer of security for best security practices. It is
generally important to have user authentication as a high priority [46].

The first suggestion considered the underlying reason for the results obtained from
the code analysis. To increase the difficulty of reading and analyzing the code for
Biotronik, it was suggested to obfuscate the code, similar to Medtronic. Implementing
code obfuscation could add an additional layer of protection against potential reverse
engineering attempts and unauthorized analysis of the code. However, it is important
to acknowledge that no obfuscation technique can guarantee secure protection. While
code obfuscation can make it more challenging for attackers to understand and
manipulate the code, it is not foolproof and other security measures should be
included to ensure comprehensive protection. Furthermore, obfuscation increases
the complexity of the code but this can make it harder for developers to perform
debugging and troubleshooting. Therefore, it is important to think about all these
aspects before implementing such protection.

The Biotronik app already uses a secure communication protocol, HTTPS with
TLS. However, it is still possible to execute a MITM attack, where an attacker
sets up a proxy, mimics the server’s certificate, and intercepts and modifies the
network traffic. Therefore, to enhance security, additional countermeasures can be
considered. We suggest that certificate pinning should be implemented within the
app. By enforcing this, only specific certificates are trusted in the application. This
prevents interception by proxy servers with unauthorized certificates [15]. Without
the possibility to add a trusted certificate to the mobile device, it reduces the ability
to perform a MITM attack.

Couchbase introduces a concept called Field-Level Encryption (FLE) [28]. With
this, Biotronik can encrypt sensitive fields and protect unauthorized users from
gaining access to the database. FLE would mitigate MITM to some extent, as it is
primarily designed to protect data at rest and in transit. It does not prevent all data
leaks, for instance, statistics can still leak. However, it is important to note that
it depends on which version of Couchbase is used. In the case of Biotronik, they
would need an update to a compatible version (Couchbase version 3.0.5) to employ
the concept, since as of now they have 3.0.4. Whether or not this is applicable for
Biotronik, depends on what the data is used for. Unfortunately, we cannot determine
what the purpose is since we were unable to successfully authenticate and explore
more of the traffic on the app.

8.2. BENEFITS AND DRAWBACKS OF THE MOBILE APPLICATIONS 125

8.2 Benefits and Drawbacks of the Mobile Applications

In this following section, we look further into what can be the advantages and
drawbacks of switching from HMU to a mobile application as the communication
gateway in the ecosystem. In general, there are clear practical advantages to switching
from an embedded device to a mobile application. The development of modern
technology has led to a lifestyle where mobile phones have become an integral part of
our daily routines. Consequently, patients nowadays can bring the monitoring device
everywhere, instead of depending on staying home to access the communication
gateway with the HMU. There exist additional positive aspects, but we divided
the discussion into two parts. We discuss both the positive and negative aspects of
having your device with you at all times and include some of the results from our
questionnaire in the discussion.

8.2.1 Positive Aspects of Changing to an Application

The amount of people owning a smartphone continues to increase on a global basis.
In this kind of environment, it is common to keep your phone with you at all times,
as we rely on the device for a lot of functions in our everyday lives. Because of
this established dependence, it could be a huge advantage for pacemaker patients to
have their communication gateway as a mobile application on their phone. This is
a device that they already bring with them whenever they are traveling, a device
they are familiar with, and a device that they already use for different purposes.
It can therefore be easier for some parts of the user group to learn how to use an
application to transmit data to their doctor than to learn a new external device. An
app can also be easier to use in everyday life for the patients, as it is not an external
device that needs its own power supply and so forth.

One of the things that were mentioned the most as an advantage of using the
application from the respondents of our questionnaire, was the ability to keep the
communication gateway with them at all times. For some of the HMU versions,
it is not possible to take the device along when traveling. This can be a large
inconvenience for patients that travel for work or otherwise, as the data from their
devices can not be sent to the hospital before they arrive back home. If anything
were to happen with the device during the travel, the doctors would not be alerted.
When an application is used as a communication gateway, the patient is not limited
to transmission in one specific location. There is also a possibility for the patient
to check on the go whether the transmission was successfully sent to the hospital,
which can give peace of mind. Even though the possibility to check the status of
transmission also exists on the HMU, this requires the patient to remember to look
at it while they are at home. In addition, if something is wrong and the transmission
has not been sent, the patient needs to stay situated at a close distance to the HMU

126 8. DISCUSSION

during retransmission. For the mobile application, retransmission can also take place
while the patient is out, which improves ease of use.

Another huge advantage of converting the communication gateway to a mobile
application is that it is cheaper and easier for the vendors. Making a dedicated
hardware component for every patient that owns a pacemaker is costly. They need
the materials to build such a device, in addition to software developers to configure
the device correctly. The added cost for each new version of the HMU is high.
If they can successfully use a mobile application as the communication gateway
instead, this drastically reduces the costs associated with the communication between
pacemakers and hospitals. The need for specialized hardware is completely gone, and
the vendors only need to spend money on software developers to make and maintain
the application. It is also easier for the vendors to continuously develop and update
the gateway, as they only need to deploy an update of the application. This can lead
to a more constant development process and also increases their ability to respond
to found security issues.

8.2.2 Negative Aspects of Changing to an Application

Even though the benefits of moving the communication gateway to a mobile phone
are present, there exist some disadvantages as well. First, it introduces new attack
vectors. If you have a dedicated gateway that is situated in the patient’s home, there
is plenty of attacks one can perform on this system. Despite the previous theses on
this subject have found a lot of vulnerabilities of the HMU and its communication
channels, these are attacks that require skilled attackers with good resources and
time. If the gateway is part of a mobile phone there are more potential attacks
present. Not only can the attacker target the application directly, but it can also
try to gain access to the patient’s data through the surroundings. An attacker could
intercept the communication from the phone, for example by gaining access to the
network the device is connected to. In addition, they could access the mobile phone
through another application on the device, and try to gain access to the patient’s data
through the common folders on the phone. The available attack surface increases,
which also gives more possibility for attackers to get creative with how to access the
data.

One can also argue that the population today is already too reliant on their
mobile phones. If the phone gets lost or stolen, there are a lot of critical things that
a person can lose access to, such as their banking services, contact info, or media and
files with sentimental value. It is not necessarily smart to add sensitive health data
to that list. In addition, if a patient were to lose their device, there could be several
serious consequences. Theft of their data is one alternative, but this requires that
someone steals their device and is able to open their phone and applications. A more

8.3. HARDWARE HMU VS. MOBILE APPLICATIONS 127

important consequence is that the patient stands without a way to send their device
data from the pacemaker to the doctor if they lose their device. This is in most cases
not necessarily a major problem, as they can log in to the application from another
device that they buy or borrow, but might be a bigger issue if the patient is in a
remote location without access to spare devices. The patient is totally dependent on
the phone for communication with their doctor. In addition, the patient needs to
keep Bluetooth on at all times, as this is the communication protocol used for the
data being sent between the pacemaker and the phone. This can drain the battery
life of the patient’s mobile phone.

A concern from the respondents from our questionnaire was also that the increased
availability of their own health data could lead to increased anxiety for some patients.
The patients could become obsessed with checking their data at all times, and could
potentially start to overanalyze their information. This could lead to a higher concern
for own well-being, and perhaps even an increased number of calls to the clinics.
The patient is also able to get a more active relationship with their pacemaker
transmissions, as they are notified when transmissions are performed, or if there
are any connectivity issues, and so on. Even though these notifications also existed
for the hardware HMU, the patient could keep more of a balanced distance from it
when the device was situated at home. With these reminders constantly present,
the patient might become more aware of their own health situation. This can be
negative, as they might feel inhibited from their heart condition by being constantly
reminded of its existence.

8.3 Hardware HMU vs. Mobile Applications

We compared the hardware HMU with the result of the security analysis of mobile
applications from chapter 6. To achieve the comparison, previous work on Biotronik’s
HMU is included. We have chosen to base the analysis of the HMU on a paper
that works as a case study summarizing the previous theses written on the security
of the HMU. The paper was written by Bour et al. and can be found at [12]. In
this paper, they went through the findings on all the different versions of the HMU
that have been tested by the SINTEF research group, with a focus on hardware,
firmware, communication, and infrastructure vulnerabilities. Our results from the
security analysis constitute the comparison of the systems regarding patient safety
and privacy.

8.3.1 Security of the HMU System

We briefly state the findings discussed in the paper, in order to give a broad under-
standing of the tests that have been performed on the HMU and their outcomes.
Firstly, for the hardware part of the analysis, they found that debug interfaces were

128 8. DISCUSSION

available for all the different versions of the HMU. This means that the authors were
able to interact with the interfaces, which gave them access to dump the memory as
well as the Flash, which again gave access to the firmware of the device [12].

For the analysis of the firmware, there were several findings. Firstly, they found
that all the data of the device was stored unencrypted on the external Flash. This
means that if an attacker has physical access to the device, they can dump the Flash
and obtain all the data in cleartext. Secondly, they found that the firmware was not
obfuscated or protected by encryption in any way. In addition, they found that log
strings written in clear text on the firmware actually made the reverse engineering
process easier. The memory was not protected either, which means that anyone with
physical access to the HMU could copy it and gain access to the patient data if any
is present. Next, they found hardcoded credentials and cryptographic keys, which
the device used to connect to the network and backend server. These were unique
per device but stayed the same for each connection attempt. The keys found were
Advanced Encryption Standard (AES) and Data Encryption Standard (DES) keys,
which ties to the found encryption algorithms. The proprietary protocol for patient
data uses AES CBC, while single DES is used for the log data over SMS. DES is a
broken algorithm from a security perspective, and an attacker can therefore get the
log data by setting up a fake base station. The patient data can also be obtained by
finding the AES key on the HMU and thereafter obtaining the patient data during
transmission [12].

For issues associated with communication, the authors made several findings.
Firstly, they observed that the credentials were sent in clear text to the modem from
the microcontroller. This allowed them to get access to credentials used to connect to
the manufacturer’s Virtual Private Mobile Network (VPMN). They also found that
there was no mutual authentication in place, which made it possible to spoof the back-
end server and trick the HMU to send the data to the fake server. Thirdly, the paper
states that the two newest versions of the HMU use a proprietary protocol on top of
TCP. This protocol was reverse-engineered by exploiting the hardware vulnerabilities
found, in combination with the raw network data obtained by interacting with the
device. Next, they observed that credentials used to authenticate to the backend
server and VPMN were reused, and sent unencrypted in both cases. They also found
that the communication between the pacemaker and HMU was unencrypted, which
means that an attacker can read the data being sent if they are able to intercept the
radio signal from the pacemaker. Lastly, they were able to perform a DoS attack
against the modem of the HMU, which prevented it from communicating with the
backend server before being rebooted [12].

From these findings, the report introduces three broader attacks that would be
possible to perform. These attacks utilize the vulnerabilities found in the analysis.

8.3. HARDWARE HMU VS. MOBILE APPLICATIONS 129

First, they introduce a MITM attack that is possible to execute as they can spoof
the identity of both the HMU and the backend server, as these are sent in cleartext.
The second attack is unauthorized access to the backend server, which is possible by
obtaining credentials from the HMU and accessing the VPMN. This would give access
to the backend server, which could lead to a data leak if this server was compromised.
The last attack was a large-scale DoS attack, as they found a way to make the HMU
crash by sending a special SMS to it. In order to make the attack large-scale, the
attacker would need to obtain the phone number of the devices, which could come
from a leak from the manufacturers or from an internal source.

8.3.2 Comparison of the Systems

We perform a comparison of the different systems available in the pacemaker ecosystem
today. There are currently three different versions available for the patient, depending
on their pacemaker vendor. Firstly, the ecosystem where the HMU is the primary
communication gateway between the pacemaker and the backend servers, without
a mobile application available. Thereafter, there is the system with a HMU as the
gateway and an additional mobile application to give patients more insight into
their own data. Lastly, a version of the mobile application substituting the HMU
completely. We did not perform a comparison of the two versions that include a mobile
application against each other. We wanted to see the difference in security levels
when moving from a dedicated hardware component to a mobile application, and
also the security level of having the mobile application as an additional component.

It is important to note that the analysis of the HMU that we base the discussion
on, was performed on different versions of Biotronik’s HMUs. This means that we
have no precise knowledge of how the HMU for Medtronic works. The vulnerabilities
identified from the analysis performed in the paper [12] are therefore not necessarily
applicable to the Medtronic HMU. One can say that making a proper comparison of
the security differences from moving from the hardware component to the mobile
application should be done based on devices from the same manufacturer, in order
to make the comparison as accurate as possible. However, we did not have the time
or resources to perform an analysis of any hardware HMUs produced by Medtronic.
In addition, there were no devices from this manufacturer available in the SINTEF
lab. Therefore, the comparison between the mobile application from Medtronic and
the hardware HMU from Biotronik was carried out, despite not being ideal.

Comparison HMU vs. Mobile Application Substitute

As we can see from the Table 8.1, there exist similarities and differences between the
two versions of the systems. We can observe that the Medtronic application seems to
score better on security than the Biotronik HMU on some issues, such as obfuscation
(ID 1), communication (ID 4), and cost (ID 7). We assume that the encryption of

130 8. DISCUSSION

Table 8.1: Comparison between the HMU and the mobile application from Medtronic

ID Factor HMU Medtronic app
1 Obfuscation Code not obfuscated Code is obfuscated
2 Encryption algo-

rithm
Uses AES-CBC and DES
for encryption of data from
HMU to backend, these are
weak

Do not know which algo-
rithm is used for encryp-
tion of data (BlueSync)

3 Signature algo-
rithm

Do not know Uses SHA-1 for certificate
signing

4 Communication Communication between
pacemaker and HMU is
not encrypted

Comunication between
server and mobile app is
encrypted

5 Prerequisites The user needs a HMU, in-
ternet, (for some versions)
a continuous power supply

The user needs a Samsung
or Apple device, new ver-
sions of the mobile opera-
tive system, internet, Blue-
tooth always on

6 Competence Plug and play, set up by
the hospital

Technical competence for
registering a user and
maintaining (e.g. updates)
the app

7 Costs Hardware, development,
distribution of the HMU

Development of mobile
app

8 Transmission op-
tions

Possible to send data to
the doctor when at home,
or when carrying the ded-
icated device (for newest
version)

Possible to send data to
doctor whenever and wher-
ever

the communication for the application is to be better than the one for the HMU, as
the HMU uses weak algorithms. Another benefit of the Medtronic application is that
it allows the patient to make transmission of pacemaker data to the doctor without
being in their own home (ID 8). For the majority of the factors present in this table,
we can observe that the application performs better than the HMU. However, the
app uses a weak signature algorithm, but it is not relevant to compare this with the
HMU as we do not know if it has any certificates needed to sign at all.

On the other hand, we can observe that the application has stricter requirements
when it comes to prerequisites (ID 5) and competence from the user (ID 6). This is
negative as the pacemaker is a medical necessity for a lot of patients, and therefore
there should not be high demands for their equipment and skills in order to make

8.3. HARDWARE HMU VS. MOBILE APPLICATIONS 131

their device function as optimally as possible. According to a study performed by a
Japanese hospital on the initial pacemaker implantation age of their patients, the
age for implantation has risen in the last decades [48]. They found that for patients
that received their initial pacemaker implantation during the 2010s, the average age
was 75.8 ± 10. In addition, the number of patients over the age of 90 at the time of
first insertion was 5.2%. It should be noted that Japan has a population with a high
life expectancy, but these results still give a picture of the evolution of pacemaker
patients over the last decades. As the age of pacemaker patients increase, it might not
be wise to advance the technology connected to their pacemaker too much, as they
may struggle to keep up with the evolution. Particularly for Medtronic’s application,
which requires very specific versions of which mobile devices are supported, this
might be a limitation for the patients. Both as it is an added cost for the patient if
they need to change their device to a supported one, and as an added challenge if
they need to learn a new, unfamiliar device.

Comparison HMU With and Without Mobile Application

The comparison between the pure HMU and the combined HMU and mobile ap-
plication from Biotronik reveals both similarities and differences, as summarized
in Table 8.2. As shown, there exist several contrasts such as the use of weak and
strong encryption algorithms, where the mobile app uses stronger algorithms (ID
10). Additionally, Biotronik’s mobile app incorporates encrypted communication
with secure protocols, whereas the HMU does not encrypt (ID 12). It is also not
relevant to compare the signature algorithm, but it is important to notice that the
app from Biotronik uses a strong algorithm for certificate signature. As a result of
these factors, we can determine that the mobile app is the most secure device in the
system, even though the patient has the vulnerable features of the HMU as well.

However, if the patient only has the HMU, there is a lower requirement for
prerequisites (ID 13), competence (ID 14), and costs (ID 15). As mentioned earlier,
a trend in a paper from 2022 concludes that the average age at first implantation
has increased by the years [48]. This trend may influence the use and requirements
of technical devices, as older individuals may have less familiarity with them. Conse-
quently, the level of technical competence among users could potentially impact the
overall security of the system. If the patient group is increasingly older individuals,
it might not be beneficial to introduce a system with two devices. Despite this, on
Biotronik’s own website2, users express that they like that they can record symptoms
and get details about their device on their smartphone when traveling. Considering
these factors, it appears that there is a trade-off between providing users with more
details and information and ensuring security. When more information is accessible

2https://www.biotronik.com/en-de/patients/home-monitoring/patientapp

132 8. DISCUSSION

Table 8.2: Comparison between the HMU and the combination of HMU and mobile
application from Biotronik

ID Factor HMU Biotronik app and HMU
8 Sensitive fields Credentials in plaintext Credentials in plaintext
9 Obfuscation Code not obfuscated Code not obfuscated
10 Encryption algo-

rithm
Uses AES-CBC and DES
for encryption

Uses HTTPS with TLS for
communication and no fur-
ther encryption in the mo-
bile app. Uses AES-CBC
and DES for encryption in
HMU

11 Signature algo-
rithm

Do not know Uses SHA-256 with RSA
algorithm for certificate
signature of the app

12 Communication Communication between
pacemaker and HMU is
not encrypted

Comunication between
server and mobile app is
protected by HTTPS and
TLS, while pacemaker and
HMU is not encrypted

13 Prerequisites The user needs a HMU, in-
ternet, (for some versions)
continuous power supply

The user needs a HMU, in-
ternet, (for some versions)
continuous power supply,
and additionally a func-
tioning smartphone

14 Competence Plug and play, set up by
the hospital

Technical competence for
registering a user and
maintaining (e.g. updates)
the app, plug and play for
the HMU

15 Costs Hardware, development,
distribution of the HMU

Hardware, development,
distribution of the HMU.
An extra development cost
of having an app in addi-
tion to HMU

16 Attacks Exposed for MITM attack,
an attacker can spoof the
identity of the HMU

Exposed for MITM attack,
an attacker can spoof the
identity of the mobile app
and the HMU

8.4. ACTUAL SECURITY VS. PERCEIVED SECURITY FROM PATIENTS 133

to users it increases the potential attack surface and the risk of the sensitive data
being exploited or stolen.

When it comes to the similarities, we have discovered in both options that sensitive
fields were shown in plaintext (ID 8). Further, they are both been proven to be
exposed for MITM attack (ID 16). It is also important to note that all the items that
the HMU is vulnerable for, also is applicable to the hybrid system, as the HMU is not
taken out of the equation. This means, i.e. that for the Biotronik system with both
app and HMU there are not only the credentials of the mobile app present for an
attacker but also the credentials of the HMU. Thus, the attack surface is the largest
for the hybrid system, as an attacker has the possibility of exploiting vulnerabilities
in both components.

In conclusion, it seems as though having both the HMU and mobile app in a
combined system might not be the most beneficial. Both alternatives at the same
time may not be a viable long-term solution for Biotronik, as it is the most costly
option for the vendor. The added benefits for the patient of being able to see some
information from their device do not seem to make up for the added security risks
of having two vulnerable devices in the ecosystem. Therefore, we would advise the
vendor to move to just one of the two components. This simplifies the ecosystem as
a whole and limits the number of devices that Biotronik needs to manage.

8.4 Actual Security vs. Perceived Security From Patients

This section addresses the findings of the questionnaire which can affect the security
level of the usage of mobile apps. We put the results from the questionnaire in
perspective with the security findings from our analysis. In general, we observed
that the patients do not seem very bothered by the security of the applications. The
observation implied that they feel as though the benefits of the application weigh
up the drawbacks that might exist, as the majority seem very positive about the
applications. We discuss some of the findings from the questionnaire that we find
interesting.

Increased and Decreased Anxiety

An application linked to a pacemaker has the potential to impact anxiety in patients,
both positively and negatively. In the questionnaire, the respondents were asked
about their thoughts regarding keeping track of the pacemaker device and its data.
With this functionality, patients have their data and can monitor their condition
wherever they are at any given time, resulting in reduced anxiety. On the other
hand, one respondent from the questionnaire expressed a concern that having an app
connected to their pacemaker could increase anxiety for certain individuals. Some

134 8. DISCUSSION

people may feel afraid of what can happen with that information or they can lack the
knowledge to understand the data. In addition, the possibility of constantly checking
the data since it is available and accessible on their phone might lead some people to
develop an obsession.

Patient Reach of the Mobile Application

As discussed in section 7.3, only 7 of the respondents used a mobile application used in
the pacemaker ecosystem. Overall, the respondents seem generally positive about the
idea of having a mobile app connected to their pacemaker, but still, few patients use
the app to this day. Further in the questionnaire, we asked those who do not use the
app already, what would make them consider the app. Several respondents answered
that a doctor’s recommendation made them use the application, which suggests
that it is a lack of information regarding the app and its’ existence. Additionally,
one respondent highlighted that the app was not FDA-approved. This suggests a
necessity for better regulation of the apps for patients who value this functionality.

The Value of Health Data

The overall result from the questionnaire suggests that the respondents were not con-
cerned about their security in medical devices. As mentioned earlier, one respondent
did not understand why someone would track them, as they perceived themselves as
uninteresting. This can show a lack of awareness when it comes to security implica-
tions, as health data is extremely valuable for certain groups. According to reports,
medical records are worth more than 10 times more than credit card information sold
on the dark web [72]. Medical records contain sensitive personal information which
can be used for insurance fraud, identity theft, blackmail, etc. Since a pacemaker
app collects a lot of data from the patient, it could be very beneficial for an attacker
to get a hold of a “normal” person’s data, to sell it on the black market.

Password Criteria and Password Habits

From our security analysis of the Biotronik application, we identified the password
requirements for the users as weak. In addition, we observed from the questionnaire
that the majority of the patients chose to make their passwords by memorable
words/phrases. The combination of these two findings results in password generation
with a low-security level. If applications have weak requirements for passwords, this
can to some extent facilitate the choice of bad passwords. For a service showing
health data, which is highly valuable, the passwords should be strong and hard for
an attacker to guess.

8.4. ACTUAL SECURITY VS. PERCEIVED SECURITY FROM PATIENTS 135

Misunderstandings

It seems as though the respondents to our questionnaire were concerned about
things that do not seem possible to achieve on the applications we have studied
in our analysis. For example, some were concerned about the application’s ability
to accidentally override settings or leave the pacemaker in a “safe mode”. For the
Medtronic application, which is the only one connecting to the pacemaker directly, it
does not seem to be able to communicate with the pacemaker other than to set up a
BlueSync connection. However, we are not sure to what extent it would be possible
to misuse such a connection to send other commands.

Lack of Security Concerns

The patients generally did not seem to be especially concerned about the security of
the pacemaker applications. Several answered that they did not see any drawbacks
to using a mobile application connected to their pacemaker. It might be advisable
that patients are a bit more mindful of the security of their devices. For example, we
have found it possible to make a phishing app that can be authenticated with the
Biotronik servers. These types of attacks were not mentioned by any of the users,
and it seems as if there is little knowledge of the possibilities.

Request of More Information

Responses to the question of what would make the patients consider using an app
with their pacemaker brought forward a wish for more data in the application. It
seems as if the general consensus is that the respondents wish for more information
about the transmissions being sent, and some more insight into what data is collected
from the device. This introduces a trade-off between increased transparency for
patients and an increase in security risk by introducing even more information in
the apps. The more health data present in the application, the more incentive an
attacker has to try and hack these types of applications. This is related to the value
of health data presented above. In addition, we can connect even more data to the
increased anxiety discussed above.

The patients do not seem to think the security of these applications is very weak.
There are some concerns about the theft of data, or being hacked, but generally, they
seem positive about the opportunities that the applications bring to their everyday
lives. There might be some patients that want stricter restrictions when it comes
to the development of these applications. If regulations are introduced, this could
be beneficial to increase the number of patients using the application. In addition,
the vendors could benefit from running their applications through external security
analyses before they are published to the market. This can also give the patients
some increased reassurance that the applications keep their data safe.

136 8. DISCUSSION

8.5 Limitations of our Work

As outlined in section 6.1.3, we discovered a restriction within Medtronic. We found a
method that implemented a check to determine if the phone was a Samsung phone or
not. The first limitation of this research is therefore the lack of a Samsung device to
gain access to the Medtronic app. This limitation hinders a comprehensive evaluation
of the functionality of the mobile app. We did not have the possibility to obtain
a device that was valid for Medtronic’s checks throughout the thesis period, which
limited our ability to observe the functionality of the device.

If the scope was to be extended, and we were allowed to be able to communicate
with the servers, the test cases would have been more flexible and have a bigger test
space. Firstly, it would have been possible to evaluate the communication protocols
to ensure the confidentiality and integrity of the data transmitted from the mobile
app to the server. Further, an analysis of the authentication mechanisms would be
conducted, to verify if the implementation was secure. In addition, we could check
how the app handles user credentials to the server, to see if the implementation is
secure against unauthorized access.

For the questionnaire, there was a potential bias due to the members of the
particular Facebook group where the survey was shared. This group consisted of
younger patients, and they may have different concerns, expectations, and levels
of familiarity with mobile applications and technology compared to older patients.
Furthermore, individuals that are a member and participate in such groups are likely
to be more concerned about mobile security than individuals that are not part of
these groups. Therefore, the group of respondents for our questionnaire is not fully
representative of the attitudes of the pacemaker patient group as a whole.

In addition to the aforementioned limitations, we can address our time restrictions.
We had to limit the time doing further security analysis, such as analysis with Frida
and other dynamic tools. Additional analysis could be useful in the process of
accessing the Medtronic app without a Samsung device (section 6.1.3) and the
process of bypassing authentication in the Biotronik app (section 6.2.7). If we had
the time to explore possible tools a bit further, we might also have found some other
tools that could be helpful for further analysis. In addition, we spent a lot of time at
the beginning of our work to learn new tools and methods. This time could have
been used more effectively if the thesis had been written by someone with more
experience doing mobile application analysis.

8.6. FUTURE WORK 137

8.6 Future work

Our work brings valuable insights to the field of mobile applications connected to
pacemakers, which has not been analyzed and investigated before. Our contribution
is valuable for further research, providing important findings and observations. In
addition, we have gained valuable insight into the perspectives of a small group of
patients. It is noteworthy that our analysis did not uncover any critical vulnerabilities
that pose an immediate and severe threat. However, the research in this thesis has
left certain uncovered issues that should be further investigated to ensure the security
of the application. These new elements can expose new vulnerabilities, which might
cause other attacks. Therefore, we provide this section as future work within our
research objectives in the field of mobile applications used in the pacemaker ecosystem.

Repeat the security analysis with a Samsung device: Performing the
security analysis on this type of device helps with the compatibility issue for the
Medtronic application. If this does not seem possible, one can also set up a Virtual
Machine that can root as a Samsung device.

Dynamic analysis with Frida: Continuing on the security analysis with a
dynamic analysis tool, such as Frida, provides a deeper understanding of how the
app’s behavior is during runtime. By dynamically changing the code during the
authentication process, it can identify vulnerabilities that possibly exist.

Creating a phishing app: As a result of the client secret being accessible, an
interesting and technical experiment could be to design a phishing app to deceive users
into downloading it instead of the original, legitimate mobile app. Conducting user
tests with patients, under ethical conditions, can reveal potential vulnerabilities in user
awareness. This experiment can help to evaluate the effectiveness of countermeasures
like training on security and user awareness. It can also determine if additional
measures are needed to prevent such phishing attacks.

Further analysis of the mobile applications: As we were not able to
successfully bypass the login of the applications, there are a few aspects of their
functionality that we have not explored. For example, one can analyze the code base
further to improve the understanding of how the application operates, analyze the
data storage for a logged-in user, and so on. These aspects should be studied in more
detail, to give a broader understanding of the security of these mobile applications.

Perform a more extensive questionnaire: In the future, it could be valuable
to obtain a more diverse patient group and perform the same type of questionnaire
for them. This gives insight into their habits, which again can indicate whether the
patients are improving or worsening the security of the mobile applications connected
to their devices.

Chapter9Conclusion

The merging of technology and healthcare in recent years has transformed the medical
industry, giving several advantages and progress. This includes the integration of
applications with medical devices, enabling better patient care, accessible data to
the patient, and more efficient medical procedures. In this thesis, we examined two
applications that are connected to pacemakers provided by the vendors Medtronic and
Biotronik, giving us two different systems. Our research question was the following:

What are the main cyber security concerns for mobile applications in the pacemaker
ecosystem when it comes to patient safety and privacy?

Our focus through the thesis was on the potential impact on patients’ safety and
privacy. To answer this question we did a threat modeling. All the threats are listed
in chapter 5. The threat modeling performed revealed potential threats, and several
of them were confirmed to be realistic during the security analysis in chapter 8. It
included additional security vulnerabilities that were discovered. Overall, the analysis
demonstrated how the two different vendors had different approaches when it comes
to protecting their applications. The analysis suggests that the main functions of
the applications affect which security measures the vendors are implementing. The
results of our findings are shown in Table 6.3 for the Medtronic app, and in Table 6.5
for the Biotronik app. The findings reveal attacks where patient privacy could
be compromised. The results highlighted the weaknesses in signature algorithms,
ineffective password policies, and the risk of downloading a phishing app.

Furthermore, a questionnaire for pacemaker patients was conducted to discover
potential security flaws in these two applications. The results of the questionnaire
indicated that they generally had a positive view of mobile applications, but their
habits and awareness could impact security levels. Furthermore, they had some poor
mobile security practices, including weak password habits and a lack of consideration
for the potential security consequences of these apps when asked about this.

139

140 9. CONCLUSION

Our work provides opportunities for further research on these mobile applications
on either these vendors or others, and also on other parts of the ecosystem. In
addition, further information gathering on patients’ perspectives on security can also
be conducted.

References

[1] <application>. en. url: https://developer.android.com/guide/topics/manifest/appli
cation-element (last visited: Mar. 6, 2023).

[2] <permission>. en. url: https://developer.android.com/guide/topics/manifest/permi
ssion-element (last visited: May 18, 2023).

[3] Android Permissions - BATTERY_STATS. en. url: http://androidpermissions.com
/permission/android.permission.BATTERY_STATS (last visited: May 18, 2023).

[4] API security best practices | Google Maps Platform. en. url: https://developers.googl
e.com/maps/api-security-best-practices (last visited: May 13, 2023).

[5] Apktool - A tool for reverse engineering 3rd party, closed, binary Android apps. en.
url: https://ibotpeaches.github.io/Apktool/ (last visited: Apr. 17, 2023).

[6] Arxan Application Protection. en-US. June 2017. url: https://cybersecurity-excellen
ce-awards.com/candidates/arxan-application-protection-2/ (last visited: Apr. 17,
2023).

[7] Japan Smartphone Security Association. Android Application Secure Design/Secure
Coding Guidebook. en. 2022. url: https://www.jssec.org/dl/android_securecoding_e
n_20220117/6_difficult_problems.html (last visited: May 25, 2023).

[8] Authorization - HTTP | MDN. en-US. Apr. 2023. url: https://developer.mozilla.org
/en-US/docs/Web/HTTP/Headers/Authorization (last visited: May 9, 2023).

[9] Ali Balapour, Hamid Reza Nikkhah, and Rajiv Sabherwal. «Mobile application
security: Role of perceived privacy as the predictor of security perceptions». en. In:
International Journal of Information Management 52 (June 2020), p. 102063. url:
https://www.sciencedirect.com/science/article/pii/S0268401219309041 (last visited:
Jan. 31, 2023).

[10] Elaine Barker and Quynh Dang. Recommendation for Key Management, Part 3:
Application-Specific Key Management Guidance. en. Tech. rep. NIST Special Publica-
tion (SP) 800-57 Part 3 Rev. 1. National Institute of Standards and Technology, Jan.
2015. url: https://csrc.nist.gov/publications/detail/sp/800-57-part-3/rev-1/final
(last visited: May 15, 2023).

[11] BeVigil - The internet’s first and only security search engine for mobile apps. en. url:
https://bevigil.com/about (last visited: May 20, 2023).

141

https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
http://androidpermissions.com/permission/android.permission.BATTERY_STATS
http://androidpermissions.com/permission/android.permission.BATTERY_STATS
https://developers.google.com/maps/api-security-best-practices
https://developers.google.com/maps/api-security-best-practices
https://ibotpeaches.github.io/Apktool/
https://cybersecurity-excellence-awards.com/candidates/arxan-application-protection-2/
https://cybersecurity-excellence-awards.com/candidates/arxan-application-protection-2/
https://www.jssec.org/dl/android_securecoding_en_20220117/6_difficult_problems.html
https://www.jssec.org/dl/android_securecoding_en_20220117/6_difficult_problems.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://www.sciencedirect.com/science/article/pii/S0268401219309041
https://csrc.nist.gov/publications/detail/sp/800-57-part-3/rev-1/final
https://bevigil.com/about

142 REFERENCES

[12] Guillaume Bour, Anniken Wium Lie, et al. Security Analysis of the Internet of
Medical Things (IoMT) - Case Study of the Pacemaker Ecosystem. en. 2023. url:
https://guillaumebour.fr/publications/ (last visited: May 24, 2023).

[13] Guillaume Nicolas Bour. «Security Analysis of the Pacemaker Home Monitoring Unit:
A BlackBox Approach». eng. Accepted: 2019-10-18. MA thesis. NTNU, 2019. url:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2623154 (last visited: Oct. 21,
2022).

[14] Elaine Bzochniewicz, Melissa Chase, et al. «Playbook for Threat Modeling Medical
Devices». In: (2021), pp. 20–25.

[15] Certificate and Public Key Pinning | OWASP Foundation. en. url: https://owasp.or
g/www-community/controls/Certificate_and_Public_Key_Pinning (last visited:
June 4, 2023).

[16] Deborah Chung. «Materials for electromagnetic interference shielding». en. In: Mate-
rials Chemistry and Physics 255 (Nov. 2020), p. 123587. url: https://www.sciencedir
ect.com/science/article/pii/S0254058420309500 (last visited: May 6, 2023).

[17] Catalin Cimpanu. SHA-1 collision attacks are now actually practical and a looming
danger. en. May 2019. url: https://www.zdnet.com/article/sha-1-collision-attacks-a
re-now-actually-practical-and-a-looming-danger/ (last visited: Mar. 6, 2023).

[18] Context - getExternalFilesDir and getExternalCacheDir. en. url: https://developer.a
ndroid.com/reference/android/content/Context#getExternalFilesDir(java.lang.Str
ing) (last visited: May 15, 2023).

[19] Create and monitor geofences. en. url: https://developer.android.com/training/locat
ion/geofencing (last visited: May 15, 2023).

[20] CWE - Common Weakness Enumeration. en. url: https://cwe.mitre.org/ (last
visited: Feb. 21, 2023).

[21] CWE-89: Improper Neutralization of Special Elements used in an SQL Command
(’SQL Injection’). en. url: https://cwe.mitre.org/data/definitions/89.html (last
visited: Mar. 8, 2023).

[22] «Cybersecurity Framework». en. In: NIST (Feb. 2018). Last Modified: 2022-11-
09T11:31-05:00. url: https://www.nist.gov/cyberframework/framework (last visited:
Feb. 7, 2023).

[23] Dagger basics | Android Developers. en. url: https://developer.android.com/training
/dependency-injection/dagger-basics (last visited: May 13, 2023).

[24] Tamara Denning, Alan Borning, et al. «Patients, pacemakers, and implantable defib-
rillators: human values and security for wireless implantable medical devices». en. In:
(2010).

[25] Difference between Active Attack and Passive Attack. en-us. Section: Computer Net-
works. May 2019. url: https://www.geeksforgeeks.org/difference-between-active-att
ack-and-passive-attack/ (last visited: May 4, 2023).

[26] NHS Digital. Janus Android Vulnerability. en. url: https://digital.nhs.uk/cyber-alert
s/2017/cc-1886 (last visited: Feb. 22, 2023).

https://guillaumebour.fr/publications/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2623154
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://www.sciencedirect.com/science/article/pii/S0254058420309500
https://www.sciencedirect.com/science/article/pii/S0254058420309500
https://www.zdnet.com/article/sha-1-collision-attacks-are-now-actually-practical-and-a-looming-danger/
https://www.zdnet.com/article/sha-1-collision-attacks-are-now-actually-practical-and-a-looming-danger/
https://developer.android.com/reference/android/content/Context#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/content/Context#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/content/Context#getExternalFilesDir(java.lang.String)
https://developer.android.com/training/location/geofencing
https://developer.android.com/training/location/geofencing
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/89.html
https://www.nist.gov/cyberframework/framework
https://developer.android.com/training/dependency-injection/dagger-basics
https://developer.android.com/training/dependency-injection/dagger-basics
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://digital.nhs.uk/cyber-alerts/2017/cc-1886
https://digital.nhs.uk/cyber-alerts/2017/cc-1886

REFERENCES 143

[27] Environment - getExternalStorageDirectory. en. url: https://developer.android.co
m/reference/android/os/Environment#getExternalStorageDirectory() (last visited:
May 15, 2023).

[28] Field Level Encryption | Couchbase Docs. en. url: https://docs.couchbase.com/sdk-e
xtensions/field-level-encryption.html (last visited: May 24, 2023).

[29] Firebase. en. url: https://firebase.google.com/ (last visited: May 9, 2023).

[30] OWASP Foundation. OWASP Top Ten | OWASP Foundation. en. url: https://owas
p.org/www-project-top-ten/ (last visited: Feb. 21, 2023).

[31] Frida - Welcome. en-US. Apr. 2023. url: https://frida.re/docs/home/ (last visited:
May 18, 2023).

[32] Shivi Garg and Niyati Baliyan. «Comparative analysis of Android and iOS from
security viewpoint». en. In: Computer Science Review 40 (2021), p. 100372. url:
https://www.sciencedirect.com/science/article/pii/S1574013721000125.

[33] Daniel Halperin, Thomas S. Heydt-Benjamin, et al. «Pacemakers and Implantable
Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses». en. In:
2008 IEEE Symposium on Security and Privacy (sp 2008). ISSN: 1081-6011. Oakland,
CA, USA: IEEE, May 2008, pp. 129–142. url: http://ieeexplore.ieee.org/document
/4531149/.

[34] Dick Hardt. The OAuth 2.0 Authorization Framework. en. Request for Comments
RFC 6749. Num Pages: 76. Internet Engineering Task Force, Oct. 2012. url: https:
//datatracker.ietf.org/doc/rfc6749 (last visited: May 9, 2023).

[35] Is MyCareLink Heart safe? | com.medtronic.crhf.mclh BeVigil. en. url: https://bevig
il.com/report/com.medtronic.crhf.mclh (last visited: May 3, 2023).

[36] Is Patient App safe? | de.biotronik.PatientApp BeVigil. en. url: https://bevigil.com
/report/de.biotronik.PatientApp (last visited: May 3, 2023).

[37] Java Decompiler. en. url: http://java-decompiler.github.io/ (last visited: Apr. 17,
2023).

[38] Kal. Exploiting Android’s Task Hijacking. en-us. June 2022. url: https://medium.co
m/mobis3c/android-task-hijacking-6a3a8848f16e (last visited: May 3, 2023).

[39] Jakob Stenersen Kok and Bendik Aalmen Markussen. «Fuzzing the Pacemaker Home
Monitoring Unit». eng. Accepted: 2021-09-23. MA thesis. NTNU, 2020. url: https:
//ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2781133 (last visited: Oct. 21, 2022).

[40] Learn about using and managing API keys for Firebase | Firebase Documentation. en.
url: https://firebase.google.com/docs/projects/api-keys (last visited: May 13, 2023).

[41] Statens legemiddelverk. Glossary – Medical devices - Legemiddelverket. en. url:
https://legemiddelverket.no/english/medical-devices/glossary-%5C%E2%5C%80
%5C%93-medical-devices#active-implantable-medical-device (last visited: Feb. 3,
2023).

[42] Vickie Li. Hacking JSON Web Tokens (JWTs). en. Jan. 2020. url: https://medium.c
om/swlh/hacking-json-web-tokens-jwts-9122efe91e4a (last visited: Apr. 27, 2023).

https://developer.android.com/reference/android/os/Environment#getExternalStorageDirectory()
https://developer.android.com/reference/android/os/Environment#getExternalStorageDirectory()
https://docs.couchbase.com/sdk-extensions/field-level-encryption.html
https://docs.couchbase.com/sdk-extensions/field-level-encryption.html
https://firebase.google.com/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://frida.re/docs/home/
https://www.sciencedirect.com/science/article/pii/S1574013721000125
http://ieeexplore.ieee.org/document/4531149/
http://ieeexplore.ieee.org/document/4531149/
https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749
https://bevigil.com/report/com.medtronic.crhf.mclh
https://bevigil.com/report/com.medtronic.crhf.mclh
https://bevigil.com/report/de.biotronik.PatientApp
https://bevigil.com/report/de.biotronik.PatientApp
http://java-decompiler.github.io/
https://medium.com/mobis3c/android-task-hijacking-6a3a8848f16e
https://medium.com/mobis3c/android-task-hijacking-6a3a8848f16e
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2781133
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2781133
https://firebase.google.com/docs/projects/api-keys
https://legemiddelverket.no/english/medical-devices/glossary-%5C%E2%5C%80%5C%93-medical-devices#active-implantable-medical-device
https://legemiddelverket.no/english/medical-devices/glossary-%5C%E2%5C%80%5C%93-medical-devices#active-implantable-medical-device
https://medium.com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a
https://medium.com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a

144 REFERENCES

[43] Anniken Wium Lie. «Security Analysis of Wireless Home Monitoring Units in the
Pacemaker Ecosystem». eng. Accepted: 2019-10-18. MA thesis. NTNU, 2019. url:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2623147 (last visited: Jan. 31,
2023).

[44] Wenjun Lin, Ming Xu, et al. «Privacy, security and resilience in mobile healthcare
applications». en. In: Enterprise Information Systems 0.0 (June 2021). Publisher:
Taylor & Francis, pp. 1–15. url: https://doi.org/10.1080/17517575.2021.1939896
(last visited: Oct. 14, 2022).

[45] Muddy Waters Capital LLC. MW is Short St. Jude Medical (STJ:US). en-US. 2016.
url: https://www.muddywatersresearch.com/research/stj/mw-is-short-stj/.

[46] Pere Llorens-Vernet and Jordi Miró. «Standards for Mobile Health–Related Apps:
Systematic Review and Development of a Guide». en. In: JMIR mHealth and uHealth
8.3 (Mar. 2020). Company: JMIR mHealth and uHealth, Publisher: JMIR Publications
Inc., Toronto, Canada, e13057. url: https://mhealth.jmir.org/2020/3/e13057 (last
visited: Feb. 1, 2023).

[47] Location Data | Maps SDK for Android. en. url: https://developers.google.com/map
s/documentation/android-sdk/location (last visited: Feb. 22, 2023).

[48] Tomomi Matsubara, Masataka Sumiyoshi, et al. «Trend in Age at the Initial Pacemaker
Implantation in Patients With Bradyarrhythmia — A 50-Year Analysis (1970–2019)
in Japan —». en. In: Circulation Journal 86.8 (July 2022), pp. 1292–1297. url:
https://www.jstage.jst.go.jp/article/circj/86/8/86_CJ-21-0947/_article (last visited:
May 25, 2023).

[49] Medical devices. en. url: https://www.who.int/health-topics/medical-devices (last
visited: Feb. 3, 2023).

[50] Medtronic. Cardiac Device Features - BlueSync Technology. en. url: https://global
.medtronic.com/xg-en/healthcare-professionals/therapies-procedures/cardiac-rhyth
m/cardiac-device-features/bluesync-technology.html (last visited: Apr. 6, 2023).

[51] Medtronic. MyCareLink Heart App. en. url: https://global.medtronic.com/xg-en
/mobileapps/patient-caregiver/cardiac-monitoring/mycarelink-heart-app.html (last
visited: Feb. 22, 2023).

[52] Medtronic. Patient Monitoring Solutions | Medtronic. en. url: https://europe.medtro
nic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/managing-your-
patients/remote-management/monitoring-solutions.html (last visited: May 20, 2023).

[53] Medtronic debuts first apps to let heart patients monitor their pacemakers. en-US. Jan.
2019. url: https://venturebeat.com/mobile/medtronic-debuts-first-apps-to-let-heart
-patients-monitor-their-pacemakers/ (last visited: Feb. 2, 2023).

[54] mitmproxy - an interactive HTTPS proxy. en. url: https://mitmproxy.org/ (last
visited: May 4, 2023).

[55] Mobile App Experiences (MAX) Explained. en-US. url: https://www.airship.com/r
esources/explainer/mobile-app-experiences-max-explained/ (last visited: May 16,
2023).

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2623147
https://doi.org/10.1080/17517575.2021.1939896
https://www.muddywatersresearch.com/research/stj/mw-is-short-stj/
https://mhealth.jmir.org/2020/3/e13057
https://developers.google.com/maps/documentation/android-sdk/location
https://developers.google.com/maps/documentation/android-sdk/location
https://www.jstage.jst.go.jp/article/circj/86/8/86_CJ-21-0947/_article
https://www.who.int/health-topics/medical-devices
https://global.medtronic.com/xg-en/healthcare-professionals/therapies-procedures/cardiac-rhythm/cardiac-device-features/bluesync-technology.html
https://global.medtronic.com/xg-en/healthcare-professionals/therapies-procedures/cardiac-rhythm/cardiac-device-features/bluesync-technology.html
https://global.medtronic.com/xg-en/healthcare-professionals/therapies-procedures/cardiac-rhythm/cardiac-device-features/bluesync-technology.html
https://global.medtronic.com/xg-en/mobileapps/patient-caregiver/cardiac-monitoring/mycarelink-heart-app.html
https://global.medtronic.com/xg-en/mobileapps/patient-caregiver/cardiac-monitoring/mycarelink-heart-app.html
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/managing-your-patients/remote-management/monitoring-solutions.html
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/managing-your-patients/remote-management/monitoring-solutions.html
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/managing-your-patients/remote-management/monitoring-solutions.html
https://venturebeat.com/mobile/medtronic-debuts-first-apps-to-let-heart-patients-monitor-their-pacemakers/
https://venturebeat.com/mobile/medtronic-debuts-first-apps-to-let-heart-patients-monitor-their-pacemakers/
https://mitmproxy.org/
https://www.airship.com/resources/explainer/mobile-app-experiences-max-explained/
https://www.airship.com/resources/explainer/mobile-app-experiences-max-explained/

REFERENCES 145

[56] Jalal Al-Muhtadi, Basit Shahzad, et al. «Cybersecurity and privacy issues for socially
integrated mobile healthcare applications operating in a multi-cloud environment». en.
In: Health Informatics Journal 25.2 (June 2019). Publisher: SAGE Publications Ltd,
pp. 315–329. url: https://doi.org/10.1177/1460458217706184 (last visited: Oct. 21,
2022).

[57] NIST. Glossary | CSRC. en. Mar. 2023. url: https://csrc.nist.gov/glossary (last
visited: June 4, 2023).

[58] «NIST Retires SHA-1 Cryptographic Algorithm». en. In: NIST (Dec. 2022). Last
Modified: 2022-12-15. url: https://www.nist.gov/news-events/news/2022/12/nist-re
tires-sha-1-cryptographic-algorithm (last visited: May 19, 2023).

[59] NX bit. en. url: https://microsoft.fandom.com/wiki/NX_bit (last visited: May 15,
2023).

[60] OAuth vs JWT (JSON Web Tokens): An In-Depth Comparison. en. url: https://sup
ertokens.com/blog/oauth-vs-jwt (last visited: Apr. 27, 2023).

[61] Our History | Digital.ai. en_US. url: https://digital.ai/why-digital-ai/about-us/our
-history/ (last visited: May 25, 2023).

[62] OWASP MASVS - OWASP Mobile Application Security. en. url: https://mas.owasp
.org/MASVS/ (last visited: Feb. 21, 2023).

[63] Pacemaker implantation. en. Section: conditions. Oct. 2017. url: https://www.nhs.u
k/conditions/pacemaker-implantation/ (last visited: Feb. 3, 2023).

[64] Bob Pan. dex2jar. en. original-date: 2015-03-16T09:13:07Z. Apr. 2023. url: https://g
ithub.com/pxb1988/dex2jar (last visited: Apr. 17, 2023).

[65] Patient App | Biotronik. en. url: https://www.biotronik.com/en-de/patients/home-
monitoring/patientapp (last visited: Mar. 9, 2023).

[66] Reference - android.hardware. en. url: https://developer.android.com/reference/and
roid/hardware/package-summary (last visited: May 15, 2023).

[67] Runtime Permissions. en. url: https://source.android.com/docs/core/permissions/r
untime_perms (last visited: Feb. 22, 2023).

[68] Sven Schleier, Carlos Holguera, et al. OWASP MASTG - OWASP Mobile Application
Security Testing Guide. en. Version 1.5.0. 2022. url: https://mas.owasp.org/MASTG/
(last visited: Feb. 2, 2023).

[69] SecureRandom. en. url: https://developer.android.com/reference/java/security/Sec
ureRandom (last visited: May 16, 2023).

[70] SHAttered. en. url: https://shattered.it/ (last visited: May 19, 2023).

[71] SQLCipher README.md. en. original-date: 2008-07-30T17:20:41Z. Mar. 2023. url:
https://github.com/sqlcipher/sqlcipher (last visited: Mar. 8, 2023).

[72] Brian Stack. Here’s How Much Your Personal Information Is Selling for on the Dark
Web. en-US. Dec. 2017. url: https://www.experian.com/blogs/ask-experian/heres-h
ow-much-your-personal-information-is-selling-for-on-the-dark-web/ (last visited:
May 30, 2023).

https://doi.org/10.1177/1460458217706184
https://csrc.nist.gov/glossary
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm
https://microsoft.fandom.com/wiki/NX_bit
https://supertokens.com/blog/oauth-vs-jwt
https://supertokens.com/blog/oauth-vs-jwt
https://digital.ai/why-digital-ai/about-us/our-history/
https://digital.ai/why-digital-ai/about-us/our-history/
https://mas.owasp.org/MASVS/
https://mas.owasp.org/MASVS/
https://www.nhs.uk/conditions/pacemaker-implantation/
https://www.nhs.uk/conditions/pacemaker-implantation/
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://www.biotronik.com/en-de/patients/home-monitoring/patientapp
https://www.biotronik.com/en-de/patients/home-monitoring/patientapp
https://developer.android.com/reference/android/hardware/package-summary
https://developer.android.com/reference/android/hardware/package-summary
https://source.android.com/docs/core/permissions/runtime_perms
https://source.android.com/docs/core/permissions/runtime_perms
https://mas.owasp.org/MASTG/
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/java/security/SecureRandom
https://shattered.it/
https://github.com/sqlcipher/sqlcipher
https://www.experian.com/blogs/ask-experian/heres-how-much-your-personal-information-is-selling-for-on-the-dark-web/
https://www.experian.com/blogs/ask-experian/heres-how-much-your-personal-information-is-selling-for-on-the-dark-web/

146 REFERENCES

[73] Stack Canaries – Gingerly Sidestepping the Cage | SANS Institute. en. url: https:
//www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/ (last visited:
May 19, 2023).

[74] Android Developer Studio. Bluetooth permissions. en. url: https://developer.android
.com/guide/topics/connectivity/bluetooth/permissions (last visited: Feb. 28, 2023).

[75] Android Developer Studio. Camera API. en. url: https://developer.android.com/tra
ining/camera/choose-camera-library (last visited: Feb. 28, 2023).

[76] Android Developer Studio. Data and file storage overview. en. url: https://developer
.android.com/training/data-storage (last visited: Feb. 28, 2023).

[77] Android Developer Studio. Shrink, obfuscate, and optimize your app. en. url: https:
//developer.android.com/studio/build/shrink-code (last visited: Feb. 27, 2023).

[78] Yingnan Sun, Frank Po. Lo, and Benny Lo. «Security and Privacy for the Internet
of Medical Things Enabled Healthcare Systems: A Survey». en. In: IEEE Access 7
(2019). Conference Name: IEEE Access, pp. 183339–183355. url: https://ieeexplore.i
eee.org/abstract/document/8936335.

[79] Tomas Surin. Inspecting APK Files. en. url: https://pspdfkit.com/blog/2019/inspec
ting-apk-files/ (last visited: Mar. 3, 2023).

[80] Sync Gateway. en-US. url: https://www.couchbase.com/products/sync-gateway/
(last visited: Apr. 28, 2023).

[81] The Client ID and Secret. en-US. Aug. 2016. url: https://www.oauth.com/oauth2-se
rvers/client-registration/client-id-secret/ (last visited: May 12, 2023).

[82] The GNU C Library (glibc). en. url: https://www.gnu.org/software/libc/ (last
visited: Mar. 10, 2023).

[83] Top 10 Mobile Risks - Final List 2016 | OWASP Foundation. en. url: https://owasp
.org/www-project-mobile-top-10/2016-risks/ (last visited: Feb. 24, 2023).

[84] Jeanette Tran and Helene Bolkan. Security Analysis of the Alternatives for the Home
Monitoring Unit in the Pacemaker Ecosystem. en. Project report in TTM4502. De-
partment of Information Security & Communication Technology, NTNU – Norwegian
University of Science and Technology, Dec. 2022.

[85] Sean Turner. Updated Security Considerations for the MD5 Message-Digest and the
HMAC-MD5 Algorithms. en. Request for Comments RFC 6151. Num Pages: 7. Internet
Engineering Task Force, Mar. 2011. url: https://datatracker.ietf.org/doc/rfc6151
(last visited: May 16, 2023).

[86] Paweł Weichbroth and Łukasz Łysik. «Mobile Security: Threats and Best Practices».
en. In: Mobile Information Systems 2020 (Dec. 2020). Publisher: Hindawi, e8828078.
url: https://www.hindawi.com/journals/misy/2020/8828078/ (last visited: Jan. 31,
2023).

[87] What Are Refresh Tokens and How to Use Them Securely. en. url: https://auth0.co
m/blog/refresh-tokens-what-are-they-and-when-to-use-them/ (last visited: May 3,
2023).

https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://developer.android.com/guide/topics/connectivity/bluetooth/permissions
https://developer.android.com/guide/topics/connectivity/bluetooth/permissions
https://developer.android.com/training/camera/choose-camera-library
https://developer.android.com/training/camera/choose-camera-library
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://ieeexplore.ieee.org/abstract/document/8936335
https://ieeexplore.ieee.org/abstract/document/8936335
https://pspdfkit.com/blog/2019/inspecting-apk-files/
https://pspdfkit.com/blog/2019/inspecting-apk-files/
https://www.couchbase.com/products/sync-gateway/
https://www.oauth.com/oauth2-servers/client-registration/client-id-secret/
https://www.oauth.com/oauth2-servers/client-registration/client-id-secret/
https://www.gnu.org/software/libc/
https://owasp.org/www-project-mobile-top-10/2016-risks/
https://owasp.org/www-project-mobile-top-10/2016-risks/
https://datatracker.ietf.org/doc/rfc6151
https://www.hindawi.com/journals/misy/2020/8828078/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/

REFERENCES 147

[88] What is a public key certificate? en. url: https://www.techtarget.com/searchsecurity
/definition/public-key-certificate (last visited: May 15, 2023).

[89] What is Burp Suite? en-us. Section: Web Technologies. Aug. 2019. url: https://www
.geeksforgeeks.org/what-is-burp-suite/ (last visited: May 4, 2023).

[90] What is MD5 (MD5 Message-Digest Algorithm)? en. url: https://www.techtarget.co
m/searchsecurity/definition/MD5 (last visited: May 16, 2023).

[91] What is the MD5 Algorithm? en-us. Section: Computer Networks. June 2022. url:
https://www.geeksforgeeks.org/what-is-the-md5-algorithm/ (last visited: May 3,
2023).

[92] What is TLS & How Does it Work? | ISOC Internet Society. en-US. url: https://ww
w.internetsociety.org/deploy360/tls/basics/ (last visited: May 19, 2023).

[93] Anders Been Wilhelmsen and Eivind Skjelmo Kristiansen. «Security Testing of the
Pacemaker Ecosystem». en. MA thesis. NTNU, 2018, p. 167. url: https://ntnuopen
.ntnu.no/ntnu-xmlui/handle/11250/2609516.

[94] Guanglou Zheng, Guanghe Zhang, et al. «From WannaCry to WannaDie: security
trade-offs and design for implantable medical devices». English. In: 2017 17th Inter-
national Symposium on Communications and Information Technologies, ISCIT 2017.
Vol. 2018-January. 17th International Symposium on Communications and Informa-
tion Technologies, ISCIT 2017 ; Conference date: 25-09-2017 Through 27-09-2017.
United States: Institute of Electrical and Electronics Engineers (IEEE), 2017, pp. 1–5.

Appendices

https://www.techtarget.com/searchsecurity/definition/public-key-certificate
https://www.techtarget.com/searchsecurity/definition/public-key-certificate
https://www.geeksforgeeks.org/what-is-burp-suite/
https://www.geeksforgeeks.org/what-is-burp-suite/
https://www.techtarget.com/searchsecurity/definition/MD5
https://www.techtarget.com/searchsecurity/definition/MD5
https://www.geeksforgeeks.org/what-is-the-md5-algorithm/
https://www.internetsociety.org/deploy360/tls/basics/
https://www.internetsociety.org/deploy360/tls/basics/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2609516
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2609516

AppendixATools and Procedures

A.1 Decompiling an APK File to a JAR File

1. Download apktool and jd-gui with brew with these commands:
1 $ brew install apktool
2 $ brew install --cask jd -gui

2. Decompile an apk with apktool:
1 $ apktool -d <name of the file >. apk

3. Download dex2jar on sourceforge 1

4. Unzip the dex2jar-2.1.zip. Go into the folder dex-tools-2.1 in the terminal

5. Export the classes.dex file into a JAR file with dex2jar:
1 $ sh d2j - dex2jar .sh -f ~/ path/to/<name of the file >. apk

6. Open Java Decompiler in the jd-gui-osx-1.6.6 folder and open the JAR file:
1 $ java -jar JD -GUI.app/ Contents / Resources /Java/jd -gui -1.6.6 -

min.jar

A.2 Create and Run an Emulator

An Android emulator is an Android Virtual Device (AVD) representing a specific
Android device. The emulator was used to test the mobile applications used in the
pacemaker ecosystem.

1. Download Android Studio
1https://sourceforge.net/projects/dex2jar/

149

150 A. TOOLS AND PROCEDURES

2. Go to Tools > SDK Manager and download the preferred Android versions

3. Go to Tools > Device Manager and click on Create device

4. Start the emulator from the command line in the folder ./Library/Android/sd-
k/emulator/emulator. See the following command:

1 $./ emulator -avd <name_of_device > -writable - system -no -
snapshot

A.3 How to Install ADB

ADB is a command-line tool used to communicate with an Android device or emulator

1. Go to Android’s SDK Platform Tools release notes and download SDK Platform-
Tools

2. Go to folder ./Library/Android/sdk/platform-tools in the terminal

3. Run the following command to check the list of devices attached. When
starting the emulator from the command line as in section A.2 above, ADB is
automatically connected to the emulator

1 ./ adb devices

A.4 Configure the Emulator to Work with Burp Suite

Burp Suite is used to interact, test and modify the network traffic on the mobile
application.

1. Download Burp Suite

2. Go to Proxy and click on Proxy settings

3. Click on Add under Proxy listeners and set Bind to port to 8082 and specific
address 127.0.0.1. Click OK

4. On the running Android emulator, click on the three dots for Extended Controls,
see Figure A.1

5. Click on Settings > Proxy and choose Manual proxy configuration. Fill in
hostname 127.0.0.1 and port number 8082 and click on Apply which will give
Proxy status equal Success

6. In Burp Suite, go back to Proxy > Proxy settings. Click on Import/export CA
certificate and export Certificate in DER format and save it as cacert.cer

https://developer.android.com/tools/releases/platform-tools

A.5. CONFIGURE THE EMULATOR TO WORK WITH MITMPROXY 151

Figure A.1: Emulator showing the option for Extended Controls

7. Install the certificate from Burp Suite on the emulator with these steps in the
terminal in the folder ./Library/Android/sdk/platform-tools:

1 $./ adb root
2 $./ adb remount
3 $./ adb push ~/ path/to/<name of the file >. cer / system /etc/

security / cacerts
4 $./ adb shell chmod 664 / system /etc/ security / cacerts /<name of

pushed certificate >. cer
5 $./ adb reboot

A.5 Configure the Emulator to Work with Mitmproxy

Mitmproxy is a tool for intercepting, modifying, and inspecting network traffic on
the mobile application.

1. Download mitmproxy with

1 $ brew install mitmproxy

2. Run mitmweb (mitmproxy’s web-based user interface), bound to port is 8080.
Connect the emulator to the proxy as steps 1-5 in section A.4

3. On the emulator, go to mitm.it and download the certificate

4. Execute step 7 in section A.4

152 A. TOOLS AND PROCEDURES

A.6 Intercept a Request with Burp Suite

1. Open Burp Suite

2. Go to Proxy > Intercept tab

3. Click on Intercept is off. It will switch to Intercept is on, see Figure A.2

Figure A.2: Toggle the intercept button

4. Go on the emulator and open the mobile application

5. You will see the requests on Proxy > Intercept tab

6. Study and/or modify the request, before forwarding/dropping the request to
the server

7. To study and/or modify the response, right-click on the request and forward.
Then you will receive the request and modify as you want, see Figure A.3

A.7 Intercept a Request with Mitmproxy

To intercept requests with mitmproxy, a script is necessary to do changes. This
involves intercepting a request and returning the desired response instead of sending
it to the actual server.

1. Write a mitmproxy script in Python that intercept the requests from the
mobile application. See subsection A.7.1 for our script wanting to bypass
authentication

2. Run the following command:
1 $ mitmweb -s <name on the script >. py

A.7. INTERCEPT A REQUEST WITH MITMPROXY 153

Figure A.3: How to respond to a request

A.7.1 The Script and Corresponding JSON Files

Pythonfile: mock.py
1 from mitmproxy import http
2 import os
3 import json
4

5 def request (flow: http. HTTPFlow) -> None:
6 host_auth =" patientapp -iam.biotronik - homemonitoring .com"
7 host_session =" patientapp -data.biotronik - homemonitoring .com"
8 register =" patientapp - server .biotronik - homemonitoring .com"
9 token_path ="openid - connect / token "

10 id_path ="openid - connect / userinfo "
11 dirpath =os.path. dirname (os.path. abspath (__file__))
12 if host_auth == flow. request . pretty_host and flow. request .path.

endswith (token_path):
13 print (" request for token ")
14 flow. response = http. Response .make(
15 200 ,
16 open(dirpath + "/ accesstoken .json", "r").read () ,
17 {"Content -Type": " application /json"}
18)
19 return
20 elif host_auth == flow. request . pretty_host and flow. request .path.

endswith (id_path):
21 print (" request for userid ")
22 flow. response = http. Response .make(
23 200 ,

154 A. TOOLS AND PROCEDURES

24 open(dirpath + "/ userid .json", "r").read () ,
25 {"Content -Type": " application /json"}
26)
27 return
28 elif host_session == flow. request . pretty_host :
29 print (" request for session ")
30 flow. response = http. Response .make(
31 200 ,
32 open(dirpath + "/ couchbase .json", "r").read () ,
33 {"Content -Type": " application /json"}
34)
35 elif register == flow. request . pretty_host :
36 print (" request for registration ")
37 flow. response = http. Response .make(
38 200 ,
39 open(dirpath + "/ register .json", "r").read () ,
40 {"Content -Type": " application /json"}
41)

JSON File: accesstoken.json
1 {
2 " token_type ": " Bearer ",
3 " expires_in ": 3600,
4 " access_token ": " eyJraWQrm 8EA4osYg",
5 " refresh_token ": " eyAiYWxnIiA 6ICJOb25 lIiwgInR 5

cCIgOiAiSldUIiB 9Cg.eyB1c2VyX25 hbWUgOiBhZG 1pbiB9Cg"
6 }

JSON File: userid.json
1 {
2 " user_id ": 123,
3 " access_token ": " eyJraWQrm 8EA4osYg"
4 }

JSON File: couchbase.json
1 {
2 " couchdb ":" Welcome ",
3 " vendor ":{"name":" Couchbase Sync Gateway "," version ":"

3.0"},
4 " version ":" Couchbase Sync Gateway /3.0.4(13; godeps /)

EE"
5 }

A.8. SETTING UP FRIDA 155

JSON File: register.json
1 {
2 " status ": 200
3 }

A.8 Setting Up Frida

In order to make Frida work as a tool for dynamic code instrumentation, we need to
install it both on our local machines and on the emulator of the phone.

Starting with our local machine, we want to download the main logic of the tool.
This was achieved by downloading Frida in our terminal:

1 $ pip install frida - tools

After successfully downloading the tools onto our machine, we had to install
the Frida server for the emulator. First, we downloaded the correct server for our
emulator from the official GitHub page.2. Thereafter we unpacked this on our
machine with:

1 $ unxz frida - server .xz

The next few steps need to be performed while the emulator is running and with
ADB connected to the emulator:

1. Make sure that the emulator is running with root:
1 $ adb root

2. Export the downloaded server to the emulator:
1 $ adb push frida - server /data/ local /tmp/

3. Make sure that the server has enough access permissions to perform the tasks:
1 $ adb shell " chmod 755 /data/ local /tmp/frida - server "

4. Start running the Frida server in the background on the emulator
1 $ adb shell "/data/ local /tmp/frida - server &"

In order to check that everything is running smoothly, you can run the command
2Frida Github: https://github.com/frida/frida/releases

156 A. TOOLS AND PROCEDURES

1 $ frida -ps -U

on your local computer. If everything is configured correctly, this should give a list
of processes running on the emulator.

AppendixBQuestionnaire

B.1 The Questions

This is the full questionnaire with answer alternatives sent out to the patients.

Demographics

– Age
□ 20-34 □ 35-49 □ 50-64 □ 65-79 □ 80+

– Gender
□ Female □ Male □ Nonbinary □ Prefer not to answer

Clinical Information

– Device Type
□ Pacemaker
□ Implantable Defibrillator (ICD)
□ Cardiac Resynchronization Therapy (CRT)

– Device Manufacturer
□ Medtronic
□ Boston Scientific
□ Abbott / St.Jude
□ Biotronik
□ Other

Mobile Phone Usage

For the following statements, please indicate whether you agree or disagree by
selecting the phrase that best describes your view

157

158 B. QUESTIONNAIRE

– I update my phone often
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I update the applications on my phone regularly
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I use different passwords for different logins in apps, websites etc.
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I think about the difficulty of my passwords when I make them
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I make sure that my presence online is secure by having strong, unique passwords
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– Do you update the applications on your phone automatically?
□ Yes
□ No
□ Not sure

– How do you make your passwords?
□ Random numbers and/or letters
□ Memorable words/phrases

B.1. THE QUESTIONS 159

□ “suggested” - e.g. from Chrome, Apple etc.
□ No consistent method
□ Not sure

– Do you store your passwords in a password manager?

– If yes: what type of password manager do you use? I.e. online, offline?

Perceptions of Applications Connected to IMDs

– Do you use an app connected to your pacemaker?
□ Yes
□ No
□ Not sure

For the following statements, please indicate whether you agree or disagree by
selecting the phrase that best describes your view

– I think about the security of the medical applications on my phone
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I think about which permissions an application asks of me, e.g. sharing my
location, contacts etc.
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I am concerned about my data leaking from an application I use
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I am worried about the possibility of my smartphone being hacked
□ Strongly Agree

160 B. QUESTIONNAIRE

□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– The opportunity to connect my pacemaker to an application on my phone is a
good development for my needs
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

– I use one or more apps to keep track of my everyday health
□ Strongly Agree
□ Agree
□ Neither Agree nor Disagree
□ Disagree
□ Strongly Disagree

The following questions are open-ended. You do not have to answer them, but
we would appreciate your input on these topics. The answers will help us better
understand your perception of security and your thoughts on mobile applications
connected to your device.

– What do you think are the benefits of an application connected to your pace-
maker?

– What do you think are the disadvantages of an application connected to your
pacemaker?

– If you don’t use an app already: What would make you consider using such an
application?

– What are your thoughts about the opportunity to keep track of your pacemaker
device and its data?

Relationship to Cybersecurity

– What are your general thoughts on mobile security?

– Have you ever thought about the security of your medical device?

– Are you aware of any previous security issues related to your medical device?

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context
	Implantable Medical Devices
	The Pacemaker Ecosystem

	Motivation
	Scope of the Project
	Research Questions
	Structure of the Thesis

	Related Work
	Previous Work on Mobile Application Security
	Previous Work on Pacemaker Hacking

	Technical Background
	Relevant Guidelines
	Standards
	Security Terminology
	Android Applications

	Methodology
	Threat Modeling
	Datagram Flow Diagrams
	STRIDE
	Mitigation Techniques

	Black Box Testing
	Analysis of Applications
	Extracting APK Files
	Decompile APK File to JAR File
	Tools for Security Analysis

	Sending out Questionnaires
	Finding Questions

	Ethical Concerns

	Threat Modeling
	Medtronic's Ecosystem
	What Are We Working On?
	What Can Go Wrong?
	What Are We Going to Do About It?

	Biotronik's Ecosystem
	What Are We Working On?
	What Can Go Wrong?
	What Are We Going to Do About It?

	Security Analysis of Applications
	MyCareLink Heart App - Medtronic
	Static Analysis
	Permissions
	Analysis of the APK
	Structure of the Mobile Application
	Summary of our Findings

	Patient App - Biotronik
	Static Analysis
	Permissions
	Structure of the Mobile Application
	Client Bypass Authentication
	Application Authentication
	Certificate Details
	Unverified Issues
	Summary of our Findings

	Questionnaire
	Demographics and Clinical
	Mobile Phone Usage
	Perception of Applications Connected to IMDs and Cybersecurity

	Discussion
	Security of the Mobile Application System
	Discussion on Findings from Medtronic's System
	Discussion on Findings from Biotronik's System

	Benefits and Drawbacks of the Mobile Applications
	Positive Aspects of Changing to an Application
	Negative Aspects of Changing to an Application

	Hardware HMU vs. Mobile Applications
	Security of the HMU System
	Comparison of the Systems

	Actual Security vs. Perceived Security From Patients
	Limitations of our Work
	Future work

	Conclusion
	References
	Tools and Procedures
	Decompiling an APK File to a JAR File
	Create and Run an Emulator
	How to Install ADB
	Configure the Emulator to Work with Burp Suite
	Configure the Emulator to Work with Mitmproxy
	Intercept a Request with Burp Suite
	Intercept a Request with Mitmproxy
	The Script and Corresponding JSON Files

	Setting Up Frida

	Questionnaire
	The Questions

