Bendik Jenson Plesner Matias Lote Henden

Parvise gjengestenger påført aksialog tverrlast i endeveden av limtrebjelker

Masteroppgave i Bygg- og miljøteknikk Veileder: Kjell Arne Malo Juni 2023

Masteroppgave

NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for ingeniørvitenskap Institutt for konstruksjonsteknikk

Bendik Jenson Plesner Matias Lote Henden

Parvise gjengestenger påført aksial- og tverrlast i endeveden av limtrebjelker

Masteroppgave i Bygg- og miljøteknikk Veileder: Kjell Arne Malo Juni 2023

Norges teknisk-naturvitenskapelige universitet Fakultet for ingeniørvitenskap Institutt for konstruksjonsteknikk

Åpen

MASTEROPPGAVE 2023

FAGOMRÅDE:	DATO:	ANTALL SIDER:
Trekonstruksjoner	11.06.2023	100 + 280 vedlegg

TITTEL:

Parvise gjengestenger påført aksial- og tverrlast i endeveden av limtrebjelker

Pairs of threaded rods screwed into the end grain of glulam

UTFØRT AV:

Bendik Jenson Plesner Matias Lote Henden

SAMM*END*RAG:

Denne oppgaven omhandler parvise gjengestenger innskrudd i endeveden av limtre påkjent av aksial- og tverrbelasting. For å undersøke styrken og stivheten til forbindelsen er det utført eksperimentelle forsøk og analytiske beregninger. Forsøkene ble utført på ulike konfigurasjoner med varierende innskruingslengder og vinkler i forhold til fiberretning. Tidligere studier på dette området har hovedsakelig omhandlet enkle gjengestenger og gjengestenger innskrudd på kanten av bjelken med store vinkler til fiberretningen. Det er derfor et behov for mer forskning på parvise gjengestenger som er innskrudd i endeveden, med lav vinkel mellom gjengestangen og fiberretning.

De eksperimentelle forsøkene omfattet tre konfigurasjoner: konfigurasjon E med en gjengestang, konfigurasjon D med doble gjengestenger stående parallelt, og konfigurasjon V der to gjengestenger dannet en V-formasjon i trestykket. Hver konfigurasjon ble testet med tre ulike innskruingslengder på 650 mm, 880 mm og 1000 mm, hvor deformasjon ble målt ved 50 % av innskruingslengden. Det ble også endret på vinkelen mellom fiberretning og gjengestangen. For hver lengde ble det testet med vinkler på 5°, 10° og 15°. Totalt ble det utført 62 forsøk for å evaluere styrken og stivheten til forbindelsen. Det ble benyttet gjengestenger med en ytre diameter på 22,4 mm, som ble skrudd inn i prøvestykket etter forboring. Hvert prøvestykke ble instrumentert med LVDT-måleinstrumenter for å registrere deformasjoner. Til slutt ble dataene analysert, og stivhetsverdier ble beregnet fra kraft-forskyvningsgrafene som ble plottet.

Resultatene viser at det er flere parametere som påvirker stivheten til forbindelsen. Parameterne som har en påvirkning er; konfigurasjon, lastsituasjon, vinkel til fiberretning, og målelengden. For stivhet er det testet fem forskjellige lastsituasjoner; syklisk strekk, syklisk trykk, full syklisk belastning, og to strekkbelastninger i kapasitetsforsøkene.

De fleste parameterne viste seg også å påvirke styrken til forbindelsen. Til forskjell fra stivhet, er innskruingslengden en faktor istedenfor målelengden. Økt lengde og vinkel førte til økning i kapasiteten. Kapasiteten økte opp til gjengestangens maksimale kapasitet på 210 kN for konfigurasjon E, og for konfigurasjon D og V opptil jekkens maksimale kapasitet på 395 kN. Økt vinkel har i tillegg effekten av å redusere spredningen i forsøksresultatene. Det ble også observert at kapasiteten til konfigurasjonene D og V var tilnærmet lik.

Resultatanalysen indikerte at beregningsmetoden utviklet av Stamatopoulos og Malo viste den sterkeste korrelasjonen med laboratorieresultatene, spesielt for kapasiteten ved en vinkel på 15°. Det ble også bekreftet at beregningsmetoden foreslått i EC5draft er en konservativ for lengdene og vinklene som ble testet. De analytiske beregningene av stivheten viste imidlertid svak korrelasjon med forsøksresultatene.

FAGLÆRER: Kjell Arne Malo VEILEDER(E): Kjell Arne Malo UTFØRT VED: Institutt for konstruksjonsteknikk

Sammendrag

Denne oppgaven omhandler parvise gjengestenger innskrudd i endeveden av limtre påkjent av aksial- og tverrbelasting. For å undersøke styrken og stivheten til forbindelsen er det utført eksperimentelle forsøk og analytiske beregninger. Forsøkene ble utført på ulike konfigurasjoner med varierende innskruingslengder og vinkler i forhold til fiberretning. Tidligere studier på dette området har hovedsakelig omhandlet enkle gjengestenger, og gjengestenger innskrudd på kanten av bjelken med store vinkler til fiberretningen. Det er derfor et behov for mer forskning på parvise gjengestenger som er innskrudd i endeveden, med lav vinkel mellom gjengestangen og fiberretning.

De eksperimentelle forsøkene omfattet tre konfigurasjoner: konfigurasjon E med en gjengestang, konfigurasjon D med doble gjengestenger stående parallelt, og konfigurasjon V der to gjengestenger dannet en V-formasjon i trestykket. Hver konfigurasjon ble testet med tre ulike innskruingslengder på 650 mm, 880 mm og 1000 mm, hvor deformasjon ble målt ved 50 % av innskruingslengden. Det ble også endret på vinkelen mellom fiberretning og gjengestangen. For hver lengde ble det testet med vinkler på 5°, 10° og 15°. Totalt ble det utført 62 forsøk for å evaluere styrken og stivheten til forbindelsen. Det ble benyttet gjengestenger med en ytre diameter på 22,4 mm, som ble skrudd inn i prøvestykket etter forboring. Hvert prøvestykke ble instrumentert med LVDT-måleinstrumenter for å registrere deformasjoner. Til slutt ble dataene analysert, og stivhetsverdier ble beregnet fra kraft-forskyvningsgrafene som ble plottet.

Resultatene viser at det er flere parametere som påvirker stivheten til forbindelsen. Parameterne som har en påvirkning er; konfigurasjon, lastsituasjon, vinkel til fiberretning, og målelengden. For stivhet er det testet fem forskjellige lastsituasjoner; syklisk strekk, syklisk trykk, full syklisk belastning, og to strekkbelastninger i kapasitetsforsøkene.

De fleste parameterne viste seg også å påvirke styrken til forbindelsen. Til forskjell fra stivhet, er innskruingslengden en faktor istedenfor målelengden. Økt lengde og vinkel førte til økning i kapasiteten. Kapasiteten økte opp til gjengestangens maksimale kapasitet på 210 kN for konfigurasjon E, og for konfigurasjon D og V opptil jekkens maksimale kapasitet på 395 kN. Økt vinkel har i tillegg effekten av å redusere spredningen i forsøksresultatene. Det ble også observert at kapasiteten til konfigurasjonene D og V var tilnærmet lik.

Resultatanalysen indikerte at beregningsmetoden utviklet av Stamatopoulos og Malo [1] viste den sterkeste korrelasjonen med laboratorieresultatene, spesielt for kapasiteten ved en vinkel på 15°. Det ble også bekreftet at beregningsmetoden foreslått i EC5draft [2] er en konservativ for lengdene og vinklene som ble testet. De analytiske beregningene av stivheten viste imidlertid svak korrelasjon med forsøksresultatene.

Abstract

This thesis deals with pairs of threaded rods screwed into the end grain of glulam subjected to axial and transverse loads. To investigate the strength and stiffness of the connection, experimental tests and analytical calculations have been performed. The tests were performed on different configurations with varying screw-in lengths and angle-to-grain directions. Previous studies in this area have mainly dealt with simple threaded rods and threaded rods screwed into the edge of the beam at large angles to grain. There is therefore a need for more research on paired threaded rods screwed into the end web, with a low angle between the threaded rods and grain direction.

The experimental trials included three configurations: configuration E with one threaded rod, configuration D with two threaded rods in parallel, and configuration V where the two threaded rods formed a V-shape in the specimen. Each configuration was evaluated with three different screw-in lengths of 650 mm, 880 mm and 1000 mm, where deformation was measured at 50% of the screw-in length. The angle between the fiber direction and the threaded rod was also changed. For each length, angles of 5°, 10° and 15° were tested. In total, sixty-two tests were performed to evaluate the strength and stiffness of the connection. Threaded rods with an outer diameter of 22.4 mm were used, which were screwed in after pre-drilling and attached to a bracket. Each specimen was instrumented with LVDT measuring instruments to record deformations. Finally, the data was analyzed, and stiffness values were calculated from the force-displacement graphs that were plotted.

The results show that there are several parameters that affect the stiffness of the connection. The parameters that have an impact are configuration, load situation, angle-to-grain direction, and measurement length. For stiffness, five different load situations have been tested: cyclic tension, cyclic compression, full cyclic load and two tensile loads from the capacity tests.

Most of the parameters were also found to affect the strength of the connection. Unlike for stiffness, the screw-in length is a factor instead of the measurement length. Increased length together with increased angle led to an increase in capacity. The capacity increased up to the threaded rod's maximum capacity of 210 kN for configuration E and for configurations D and V up to the jack's maximum capacity of 395 kN. Increasing the angle also has the effect of reducing the scatter in the test results. It was also observed that the capacity of configurations D and V were approximately equal.

Analysis of the results indicated that the calculation method developed by Stamatopoulos and Malo [1] showed the greatest correlation with the laboratory results, especially for the capacity at an angle of 15°. It was also confirmed that the calculation method proposed in EC5draft [2] was a conservative for the lengths and angles tested. However, the analytical calculations of the stiffness showed weak correlation with the experimental results.

Forord

Masteroppgaven er en del av det 5-årige masterprogrammet bygg- og miljøteknikk ved Norges tekniske-naturvitenskaplige universitet. Oppgaven omhandler trekonstruksjoner og laboratorieforsøkene er gjort på institutt for konstruksjonsteknikk våren 2023.

Det blir studert hvilke effekter aksial- og tverrbelastning har på enkle og parvise gjengestenger i limtre. Arbeidet er gjennomført i samarbeid med veileder Kjell Arne Malo og studentenes interesse for klimanøytral byggemetode.

Oppgaven inkluderer utførte laboratorieforsøk og analytiske beregninger. Gjengestengene kan bli benyttet i bjelke-søyleforbindelse og i skjøting av bjelker. Det er blitt sett på gjengestenger innskrudd med forskjellige lengder, vinkler til og antall gjengestenger. Det er gjort en sammenligning av analytiske beregningsmodeller og laboratorieresultater. Vi ser på arbeidet med denne masteroppgaven som et positivt bidrag for å øke bruken av klimanøytrale byggematerialer.

Vi vil gjerne takke professor Kjell Arne Malo for hans samarbeid med rådgivning og oppfølging, både under masteroppgaven og den tidligere prosjektoppgaven. Vi ønsker også å rette en stor takk til Christian Jensen og de andre ansatte på laboratoriet for god tilrettelegging og hjelp ved utførelse av forsøkene. Til slutt ønsker vi å takke alle våre medstudenter og professorer vi har hatt ved NTNU gjennom studieløpet.

Innhold

	Figur	er	xii
	Tabe	ller	xiv
	Forko	ortelse	er xvii
1	Int	roduk	sjon1
	1.1	Bak	grunn 1
	1.2	Mål	og avgrensinger 1
2	Тес	ori	
	2.1	Орр	bygning og fiberretning 2
	2.2	Fuk	tighet
	2.3	Lim	tre
	2.4	Klin	าล4
	2.5	Fort	bindelser
	2.5	.1	Dybelforbindelser 4
	2.5	.2	Selvborende skruer 4
	2.5	.3	Gjengestenger
	2.6	Кар	asitet5
	2.6	.1	Bruddformer
	2.6	.2	Kant-, ende- og senteravstander 6
	2.6	.3	Effektive skruer
	2.6	.4	Beregningsmodeller7
	2	.6.4.1	Aksiallast
	2	.6.4.2	2 Tverrlast
	2	.6.4.3	Kombinert tverrbelastede og aksialt belastede forbindelser13
	2	.6.4.4	14 Trykkapasitet14
	2.7	Stiv	het15
	2.7	'.1	Syklisk last15
	2.7	.2	Antall effektive skruer15
	2.7	.3	Beregningsmodeller15
	2	.7.3.1	Aksialstivhet15
	2	.7.3.2	2 Tverrstivhet16
	2	.7.3.3	3 Kombinert aksial- og tverrstivhet17
3	Me	tode .	
	3.1	Fors	øksoppsett19
	3.1	.1	Laboppsett
	3	.1.1.1	Enkle gjengestenger (konfigurasjon E)21

3.1.1.2	Doble gjengestenger (konfigurasjon D)21
3.1.1.3	To gjengestenger i V-formasjon (Konfigurasjon V)22
3.1.2 Mat	terialer23
3.1.2.1	Limtre23
3.1.2.2	Gjengestenger26
3.1.2.3	Braketter, stålplater og hylser26
3.1.3 Mo	ntering av måleinstument27
3.2 Utførels	se28
3.2.1.1	Stivhetsforsøk28
3.2.1.2	Kapasitetsforsøk
3.2.1.3	Kvalitetskontroll
3.3 Behand	ling av data31
3.3.1 Stiv	vhet32
3.3.2 Кар	pasitet
3.3.3 Kar	akteristiske verdier
3.4 Analytis	sk35
4 Resultat	
4.1 Stivhet	
4.1.1 Lab	ooratorisk konfigurasjon E
4.1.1.1	Strekk syklisk36
4.1.1.2	Trykk syklisk
4.1.1.3	Full syklisk
4.1.1.4	Stivhet i kapasitetsforsøk
4.1.2 Lab	ooratorisk konfigurasjon D44
4.1.2.1	Strekk syklisk
4.1.2.2	Trykk syklisk45
4.1.2.3	Full syklisk46
4.1.2.4	Stivhet i kapasitetsforsøk
4.1.3 Lab	ooratorisk konfigurasjon V49
4.1.3.1	Strekk syklisk49
4.1.3.2	Trykk syklisk50
4.1.3.3	Full syklisk51
4.1.3.4	Stivhet i kapasitetsforsøk53
4.1.4 Ana	alytisk54
4.1.4.1	Aksialstivhet54
4.1.4.2	Tverrstivhet55
4.1.4.3	Kombinert aksial- og tverrstivhet55

4.2 Kapa	asitet56
4.2.1	Laboratorisk konfigurasjon E56
4.2.1.1	Kapasitet56
4.2.1.2	Friskjon57
4.2.2	Laboratorisk konfigurasjon D57
4.2.2.1	Kapasitet57
4.2.2.2	Friksjon58
4.2.3	Laboratorisk konfigurasjon V58
4.2.3.1	Kapasitet58
4.2.3.2	Friskjon59
4.2.4	Analytisk
4.2.4.1	Aksialkapasitet59
4.2.4.2	Tverrkapasitet60
4.2.4.3	Kombinert aksial- og tverrkapasitet61
4.2.4.4	Knekking/trykkapasitet61
5 Diskusjor	٥62
5.1 Stivł	net62
5.1.1	Verifisering av resultat62
5.1.1.1	Plassering av LVDT63
5.1.1.2	Effekt av friksjon på stivhetsforsøk66
5.1.1.3	Forskyvninger i prøvestykket66
5.1.1.4	Forsøksoppsett68
5.1.2	Syklisk stivhet68
5.1.3	Sammenligning72
5.1.3.1	Vinkel72
5.1.3.2	Strekk vs. trykk72
5.1.3.3	Monoton vs. syklisk stivhet73
5.1.3.4	Effektivt antall gjengestenger73
5.2 Kapa	asitet74
5.2.1	Pålitelighet av resultater76
5.2.2	Vinkel
5.2.3	Lengde
5.2.4	Karakteristisk uttrekkskapasitet86
5.2.5	Effektivt antall gjengestenger86
5.2.6	Effekt av kantavstand og forsøk 51 og 5287
5.2.7	Bruddform
5.2.8	Friskjonsslipp91

6 Kon	nklusjon	.94
6.1	Feilkilder	.95
6.2	Forslag til videre arbeid	.96
Referan	iser	.97
Vedlegg	J	100

Figurer

Figur 2-1: Effekt av fuktighetsinnholdet i forhold til $u = \omega = 12$ %. Hentet fra Ringhofer
[9]
Figur 2-2: Bruddformer ved strekktesting. Hentet fra F. Hunger, M. Stepinac, V. Rajčić,
og JW. G. van de Kuilen [16]
Figur 2-3: Pull - push konfigurasjon. Hentet fra Stamatopoulos og Malo [17]
Figur 2-4: Visualisering av kant- og endeavstand i henhold til Eurokode 5 [5]. Figur
hentet fra Stamatopoulos og Malo [18]
Figur 2-5: Bi-linear modell for spennings-forskyvningskurve. Hentet fra Stamatopoulos
og Malo [1]
Figur 2-6: Diagram for bestemmelse av λ . Hentet fra Stamatopoulos og Malo [1]10
Figur 2-7: Bruddformer for forbindelser mellom stål og tre. Hentet fra EC5 [5]
Figur 2-8: Prinsippskisse av gjengestang innskrudd i treelement. Hentet fra
Stamatopoulos og Malo [22]
Figur 2-9: Dekomponering av krefter for gjeldende orientering (Selvprodusert)
Figur 2-10: Enkelt skiærplan av en forbindelse med tverrbelastet festemiddel. Hentet fra
EC5 [5]
Figur 2-11: Skruer i krysskonfigurasion. Hentet fra EC5draft [2]
Figur 3-1: Forsøksoppsett for konfigurasjon F
Figur 3-2: Forsøksoppsett for konfigurasjon D
Figur 3-3: Forsøksoppsett for konfigurasjon V
Figur 3-4: Tverrsnitt av limtrebielkene, bielke 1 til venstre og bielke 2 til høvre
Figur 3-5: Prinsippskisse av prøvestykke med vinkel på 10 ° (Selvprodusert)
Figur 3-6: Giengestang benyttet i forsøkene
Figur 3-7: Stålkomponenter benyttet i forsøkene for å koble gjengestang til jekken27
Figur 3-8: Plassering av måleinstrumenter. Konfigurasion E til venstre, konfig. D i midten
og konfig. V til høvre
Figur 3-9: Lastprotokoll for stivhetsforsøk
Figur 3-10: Lastprotokoll for kapasitetsforsøk etter NS-ISO6891 [33]
Figur 3-11: Last-deformasjons for stivhetsanalyse i strekk. Venstre: syv siste syklusene.
Høyre: Syklusene delt i pålast og avlast
Figur 3-12: Last-deformasjon for full syklisk stivhetsanalyse. Venstre: syv siste
syklusene. Høyre: Syklusene delt i strekk- pålast og avlast, trykk- pålast og avlast33
Figur 3-13: Last-deformasjon for stivhetsanalyse av kapasitetsforsøk. Venstre: Hele
kapasitetsforsøket. Høyre: området for monoton og syklisk stivhet
Figur 3-14: Last-tid fra kapasitetsforsøket
Figur 5-1: Gjennomsnittlige stivhetsverdier for konfigurasjonene E, D og V i forhold til
innskruingslengde
Figur 5-2: Stivhet pr mm i forhold til innskruingslengde65
Figur 5-3: Forskyvning i prøvestykket på grunn av lastpåføring67
Figur 5-4: Fiktive deformasjoner på grunn av 1°-rotasjon for konfigurasjon V67
Figur 5-5: Stivhet for lengde 650 mm i forhold til vinkel69
Figur 5-6: Stivhet for lengde 880 <i>mm</i> i forhold til vinkel70
Figur 5-7: Stivbot for longdo 1000 mm i forbold til vinkol
Figur 5-8: Gjennomsnittlig kapasitet for konfigurasjon E
Figur 5-8: Gjennomsnittlig kapasitet for konfigurasjon E

Figur 5-11: Analytisk kapasitet for kombinerte aksial- og tverrkapasitet: konfigurasjon V	
og innskruingslengde på 650mm7	8
Figur 5-12: Gjennomsnittskapasitet fra forsøkene i forhold til ulike vinkler mellom	
gjengestengene og fiberretningen7	8
Figur 5-13: Kapasitet : Lengde 650 mm - eksperimentelt og teoretisk7	9
Figur 5-14 Kapasitet: Lengde 880 mm - eksperimentelt og teoretisk8	0
Figur 5-15: Kapasitet: Lengde 1000 mm - eksperimentelt og analytiske8	1
Figur 5-16: Kapasitet fra forsøkene for for ulike innskruingslengder8	2
Figur 5-17: Kapasitet: vinkel 5° - eksperimentelt og analytisk8	3
Figur 5-18: Kapasitet: vinkel 10° - eksperimentelt og analytisk8	4
Figur 5-19: Kapasitet: vinkel 15° - eksperimentelt og teoretisk8	5
Figur 5-20: Eksempel på bruddform for konfigurasjon E. Splittelsesbrudd (d) til venstre	
og skjærbrudd (a) til høyre8	9
Figur 5-21: Eksempel på bruddform for konfigurasjon D. Splittelsesbrudd til venstre og	
skjærbrudd til høyre8	9
Figur 5-22: Eksempel på bruddform for konfigurasjon V. Splittelsesbrudd i øverst og	
skjærbrudd nederst9	0
Figur 5-23: Brudd på grunn av rotasjon i prøvestykket (F7-E2-5-880)9	1
Figur 5-24: Histogram og graf for friksjonsslipp for enkle gjengestenger9	2
Figur 5-25: Histogram og graf for friksjonsslipp for doble gjengestenger9	2
Figur 5-26: Histogram og graf for friksjonsslipp for gjengestenger i V konfigurasjon9	2

Tabeller

Tabell 2-1: Minimumskrav for kant-, ende- og senteravstander i henhold til i Eurokode 5
[5]7
Tabell 3-1: Forsøksmatrise med forsøksnummer 20
Tabell 3-2: Egenskaper for GL30c [11] 23
Tabell 3-3: Antall prøvestykker kappet for hver vinkel og bjelketype 23
Tabell 3-4: Ende-, kant- og senteravstander for de ulike kombinasjonene25
Tabell 3-5: Egenskaper for gjengestengene 26
Tabell 3-6: Aksial uttrekkskapasitet, Fax_a_Rm, etter Stamatopoulos og Malo [22] gitt i
ligning (2.14)
Tabell 3-7: Sykliske testverdier for konfigurasjon E 29
Tabell 3-8: Sykliske testverdier for konfigurasjon D
Tabell 3-9: Sykliske testverdier for konfigurasjon V 29
Tabell 3-10: Sjekkliste for kvalitetskontroll ved laboratorieforsøk 31
Tabell 3-11: Analytiske beregningsmetoder og tilhørende ligningsnummer
Tabell 4-1: Kstrekk – pålast resultater for konfigurasjon E
Tabell 4-2: Kstrekk – pålast resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)
Tabell 4-3: Kstrekk – avlast resultater for konfigurasjon E37
Tabell 4-4: Kstrekk – avlast resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)
Tabell 4-5: Kstrekk resultater for konfigurasjon E37
Tabell 4-6: Kstrekk resultater for konfigurasjon E med økt kantavstand fra (106 mm) til
(161 <i>mm</i>)
Tabell 4-7: Ktrykk – pålast resultater for konfigurasjon E38
Tabell 4-8: $Ktrykk - palast$ resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)
Tabell 4-9: Ktrykk – avlast resultater for konfigurasjon E
Tabell 4-10: Ktrykk – avlast resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)
Tabell 4-11: Ktrykk resultater for konfigurasjon E39
Tabell 4-12: Ktrykk resultater for konfigurasjon E med økt kantavstand fra (106 mm) til
(161 <i>mm</i>)
Tabell 4-13: <i>Kfull</i> – <i>strekk</i> – <i>p</i> å <i>last</i> resultater for konfigurasjon E
Tabell 4-14: $Kfull - strekk - palast$ resultater for konfigurasjon E med økt kantavstand
fra (106 mm) til (161 mm)
Tabell 4-15: Kfull – strekk – avlast resultater for konfigurasjon E
Tabell 4-16: Kfull – strekk – avlast resultater for konfigurasjon E med økt kantavstand
fra (106 mm) til (161 mm)40
Tabell 4-17: Kfull – strekk resultater for konfigurasjon E40
Tabell 4-18: Kfull – strekk resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)40
Tabell 4-19: <i>Kfull – trykk – pålast</i> resultater for konfigurasjon E41
Tabell 4-20: $Kfull - trykk - pålast$ resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)41
Tabell 4-21: Kfull – trykk – avlast resultater for konfigurasjon E41
Tabell 4-22: Kfull – trykk – avlast resultater for konfigurasjon E med økt kantavstand
fra (106 mm) til (161 mm)41

Tabell 4-23:	<i>Kfull – trykk</i> resultater for konfigurasjon E42
Tabell 4-24:	Kfull – trykk resultater for konfigurasjon E med økt kantavstand fra
(106 <i>mm</i>) til	(161 <i>mm</i>)42
Tabell 4-25:	<i>Kfull</i> resultater for konfigurasjon E42
Tabell 4-26:	<i>Kfull</i> resultater for konfigurasjon E med økt kantavstand fra (106 mm) til
(161 mm)	
Tabell 4-27:	<i>Kkap</i> – <i>syk</i> resultater for konfigurasjon E43
Tabell 4-28:	Kkap - syk resultater for konfigurasjon E med økt kantavstand fra (106 mm)
til (161 mm)	
Tabell 4-29:	<i>Kkap – mon</i> resultater for konfigurasjon E43
Tabell 4-30:	<i>Kkap – mon</i> resultater for konfigurasjon E med økt kantavstand fra
(106 <i>mm</i>) til	(161 <i>mm</i>)
Tabell 4-31:	<i>Kstrekk</i> – <i>p</i> å <i>last</i> resultater for konfigurasjon D44
Tabell 4-32:	<i>Kstrekk – avlast</i> resultater for konfigurasjon D44
Tabell 4-33:	Kstrekk resultater for konfigurasjon D44
Tabell 4-34:	<i>Ktrykk</i> – <i>p</i> å <i>last</i> resultater for konfigurasjon D45
Tabell 4-35:	<i>Ktrykk – avlast</i> resultater for konfigurasjon D45
Tabell 4-36:	<i>Ktrykk</i> resultater for konfigurasjon D45
Tabell 4-37:	<i>Kfull strekk – pålast</i> resultater for konfigurasjon D46
Tabell 4-38:	<i>Kfull – strekk – avlast</i> resultater for konfigurasjon D
Tabell 4-39:	<i>Kfull – strekk</i> resultater for konfigurasjon D46
Tabell 4-40:	<i>Kfull – trykk – pålast</i> resultater for konfigurasjon D47
Tabell 4-41:	<i>Kfull – trykk – avlast</i> resultater for konfigurasjon D47
Tabell 4-42:	<i>Kfull – trykk</i> resultater for konfigurasjon D47
Tabell 4-43:	<i>Kfull</i> resultater for konfigurasjon D
Tabell 4-44:	Kkap - syk resultater for konfigurasjon D
Tabell 4-45:	<i>Kkap – mon</i> resultater for konfigurasjon D
Tabell 4-46:	Kstrekk - palast resultater for konfigurasjon V
Tabell 4-47:	<i>Kstrekk – pålast</i> resultater for konfigurasjon V
Tabell 4-48:	Kstrekk resultater for konfigurasjon V
	<i>Ktrykk – palast</i> resultater for konfigurasjon V
	<i>Ktrykk – avlast</i> resultater for konfigurasjon V
	<i>Ktrykk</i> resultater for konfigurasjon V
	<i>Kfull – strekk – palast</i> resultater for konfigurasjon V
	<i>Kfull – strekk – avlast</i> resultater for konfigurasjon V
Tabell 4-54:	<i>Kfull – strekk</i> resultater for konfigurasjon V
	<i>Kfull – trykk – palast</i> resultater for konfigurasjon V
Tabell 4-56:	<i>Kfull – trykk – avlast</i> resultater for konfigurasjon v
Tabell 4-57:	Kfull – trykk resultator for konfiguracion V
Tabell 4-58:	Kfull resultater for konfiguración V
Tabell 4-59:	Kkap - Syk resultator for konfiguracion V
Tabell 4-60:	Akciplativbat for only a cionacatangor
	Aksialstivitet für enkle gjengestenger
	AKSIGISLIVITEL TOT UODIE GJENGOSLENGER
	Tverretivhet for deble giongestenger
	Kombinert analyticke akcial, og tvorretivbet for enkle gjengestenger
	Kombinert analytiske aksial- og tvertstivheter for deble gjengestenger
1 abell 4-00.	Kombinert anarytiske aksiai- og tveristivneter for upble gjengesteliger

Tabell 4-67: Kombinert analytiske aksialstivhet (Kax_Ha) og tverrstivhet ($Kv_EC5draft$)
Tabell 4-68: Kapasitetsresultater for konfigurasjon E
Tabell 4-69: Kapasitetsresultater for konfigurasjon E med økt endeavstand fra $(106 mm)$
til (161 mm)
Tabell 4-70: Friksjonsslipp resultater for konfigurasjon E57
Tabell 4-71: Friksjonsslipp resultater for konfigurasjon E med økt endeavstand fra
(106 mm) til (161 mm)57
Tabell 4-72: Kapasitetsresultater for konfigurasjon D57
Tabell 4-73: Friksjonsslipp resultater for konfigurasjon D58
Tabell 4-74: Kapasitetsresultater for konfigurasjon V58
Tabell 4-75: Friksjonsslipp 1 resultater for konfigurasjon V
Tabell 4-76: Friksjonsslipp 2 resultater for konfigurasjon V
Tabell 4-77: Analytiske aksialkapasiteter for en gjengestang
Tabell 4-78: Analytiske aksialkapasiteter for to gjengestenger 60
Tabell 4-79: Analytiske vertikalkapasiteter for en gjengestang 60
Tabell 4-80: Analytiske vertikalkapasiteter for to gjengestenger60
Tabell 4-81: Kombinert aksial- og vertikalkapasitet for enkle gjengestenger61
Tabell 4-82: Kombinert aksial- og vertikalkapasitet for to gjengestenger61
Tabell 4-83: Karakteristisk knekking/trykkapasitet for gjengestenger61
Tabell 5-1: Festepunkt for måleinstrument og konsekvens for de forskjellige
konfigurasjonene64
Tabell 5-2: Forholdstall mellom stivhet for ulike innskruingslengder, med 650 mm som
referanselengde64
Tabell 5-3: Forholdstall mellom stivhet for vinkel på 5°, 10° og 15° sammenlignet med
5°
Tabell 5-4: Forholdstall mellom stivhet i strekk og trykk
Tabell 5-5: Forhold mellom montonisk- og sykliskstivhet 73
Tabell 5-6: Effektiv antall gjengestenger, <i>nef</i> , for stivhet
Tabell 5-7: Kapasitetsverdier for en gjengestang (konfigurasjon E)
Tabell 5-8: Kapasitetsverdier for doble gjengestenger, (konfigurasjon D og V)77
Tabell 5-9: Karakteristisk uttrekkskapasitet for eksperimentelle resultater og EC5draft .86
Tabell 5-10: Effektivt antall, <i>nef</i> , for konfigurasjon D og V sammenlignet med
konfigurasjon E og teoretisk86
Tabell 5-11: Effektiv antall gjengestenger, <i>nef</i> , for konfig. D og V og analytisk87
Tabell 5-12: Bruddformer for konfigurasjon E 88
Tabell 5-13: Bruddformer for konfigurasjon D 89
Tabell 5-14: Bruddformer for konfigurasjon V 90
Tabell 5-15: Gjennomsnittlig friksjonskapasitet per skjærflate 93

Forkortelser

Variasjonskoeffisient		
Eurokode 5		
Utkast til ny Eurokode 5		
European technical assessment		
Gjennomsnitt		
Konfigurasjon		
E Enkle gjengestenger		
gurasjon D Doble gjengestenger som står parallelt		
nfigurasjon V To gjengestenger som danner en V-formasjo		
Linear variable differential transducer		
Norges teknisk-naturvitenskapelige universitet		
Standardavvik		

1 Introduksjon

1.1 Bakgrunn

Trevirke har tradisjonelt vært et populært konstruksjonsmateriale for mindre bygg, mens for større bygg har stål og betong vært dominerende [3]. Tre som konstruksjonsmateriale har de siste årene hatt en økende trend, også for større byggverk, og denne trenden ser ut til å fortsette. Årsakene til dette inkluderer trevirkets miljøvennlige egenskaper, bærekraftig skogbruk og dets bidrag til et godt inneklima. For å kunne opprettholde denne positive utviklingen er det behov for økt kunnskap om trekonstruksjoner. Forbindelser er en svært viktig del av enhver konstruksjon og er et tema innen trekonstruksjoner det er mangelfull forskning på.

I de senere årene har det vært økt bruk av gjengestenger som forbindelsesmiddel. Gjengestenger har vist seg å ha gode egenskaper til benyttelse i momentstive forbindelser. I dagens konstruksjoner betraktes de fleste knutepunktene som leddede forbindelser. For å konkurrere med de dominerende byggematerialene, er det behov for å kunne dimensjonere momentstive forbindelser også i trekonstruksjoner. Tidligere studier har undersøkt stivhet og kapasitet for søyledelen av en forbindelse mellom en søyle og bjelke [4]. Denne oppgaven er rettet mot bjelkedelen i en bjelke-søyle-forbindelse.

1.2 Mål og avgrensinger

Målet med denne oppgaven er å studere styrken og stivheten til aksial- og tverrbelastede gjengestenger festet i endeveden. Hensikten er å øke kunnskap og dokumentere egenskaper til gjengestenger som skrus inn i endeveden. Denne kunnskapen er nødvendig for å kunne bruke gjengestenger i bjelke-søyle-forbindelse og ved skøyting av bjelker. Ved utførelse av laboratorieforsøk er formålet å samle inn data og undersøke hvordan ulike parametere, som innskruingslengde, vinkel i forhold til fiberretning, lastsituasjon og konfigurasjon, påvirker styrken og stivheten til forbindelsen.

I dette studiet er det gjort noen avgrensinger. Laboratorieforsøkene er begrenset til prøvestykker med spesifikke dimensjoner med et begrenset antall tester. Forsøkene er utført på spesifikke limtrebjelker og resultatene er begrenset til dette. Denne oppgaven ser heller ikke på alle parameterne som kan påvirke stivheten eller kapasiteten til gjengestenger i limtre. Mulige variabler som her ikke studeres, er diameter på gjengestang, langtidseffekter, fuktighet og materialkvalitet.

2 Teori

Dette kapittelet presenterer en gjennomgang av den relevante teorien knyttet til tre som konstruksjonsmateriale, forbindelser i tre og treets spesifikke egenskaper. Først presenteres de grunnleggende egenskapene til tre, inkludert treets oppbygning og ortotrope oppførsel, limtre, påvirkning av fuktighet og klima, samt ulike typer forbindelser. Deretter blir brudd- og bruksgrensetilstand for aksialt og tverrbelastede gjengestenger presentert. Det blir inkludert føringer gitt i den nåværende Eurokode 5 [5] og det nye utkastet til Eurokode 5 [2]. Videre blir det behandlet analytiske modeller, forskningsstudier og ETA-er relatert til skruer og gjengestenger i den andre delen av kapittelet.

2.1 Oppbygning og fiberretning

Trevirkets oppbygning består av kjerneved, yteved, kambium, bast og bark [6]. Barken fungerer som et beskyttende lag mot soppdannelse og uttørking, samt beskyttelse mot insekter. Kambium produserer nye celler, mens yteved transporterer vann og næringsstoffer oppover i trestammen. Kjerneveden består av døde celler og kan skilles fra yteveden på grunn av sin mørkere farge.

Trevirke har et karakteristisk mønster kalt årringer. Åringer dannes som et resultat fra varierende vekstforhold i de ulike årstidene [7]. Densiteten og volumet i årringene varierer mellom lyse og mørke områder. De mørke områdene har høyere styrke enn de lyse områdene. Forskjellige tresorter har ulik veksthastighet, noe som resulterer i varierende materialegenskaper.

Tre er i utgangspunktet et anisotropt materiale, noe som betyr at det har forskjellig egenskaper i alle retninger [8]. Med god tilnærmelse kan tre imidlertid behandles som et ortotropt materiale på makronivå. Dette innebærer at trevirke har konstante egenskaper langs fiberretningen og på tvers av fiberretningen i henholdsvis radiell og tangentiell retning. Selv om treverket har noe forskjellige egenskaper i radiell og tangentiell retning, er de allikevel små nok til å kunne betrakte dem som like. Dette gjør at tre kan betraktes som et todimensjonalt ortotropt materiale, der materialegenskapene varierer avhengig av retning i forhold til fiberne. Langs fiberretning har tre høyere fasthet og stivhet sammenlignet på tvers av fiberretningen.

I EC5 [5] betegnes retningen langs fiberretningen med indeks 0, og på tvers av fiberretning med indeks 90. Fasthet er klassifisert i henhold til EC5, og har forskjellig verdier for strekk (indeks t) og trykk (indeks c) både langsetter og på tvers av fiberretningen.

2.2 Fuktighet

Selv om treverk er et sterkt og holdbart materiale, kan økt fuktighet føre til nedsatt styrkeog stivhetsegenskaper [7]. Fuktighetsinnholdet (ω) defineres som forholdet mellom massen av vann i trestykke (m_w) og massen til det tørre trestykke (m_0), som vist i ligning (2.1). Fuktighetsinnholdet angis vanligvis som prosentandel.

$$\omega = \frac{m_w}{m_0} * 100\%$$
 (2.1)

Ved avvirkning er fuktighetsinnholdet i tømmeret på rundt 100 % [7]. Tre er et hygroskopisk materiale, dette betyr at det kan absorbere eller avgi fuktighet til omgivelsene rundt seg. For at tre skal brukes som konstruksjonsmateriale må det tørkes. I den første delen av tørkeprosessen vil det frie vannet fjernes fra hulrommet i cellene. Når fibermetningspunktet nås ($\omega \approx 30$ %) er cellene tømt for fritt vann. Frem til fibermetningspunktet vil celleveggenes volum forbli uendret. Videre vil tørkeprosessen føre til krymping av celleveggene frem til treverket i praksis er tørt, ved $\omega \approx 12$ %. På grunn av trevirkets hygroskopiske egenskaper vil fuktighetsinnholdet være påvirket av den relativ luftfuktighet og temperatur til omgivelsene. For gran og furu vil for eksempel en temperatur på 20°*C* og relativ luftfuktighet på 65 % gi et fuktighetsinnhold på ca. 12 %, når likevekt er nådd.

Når trevirke befinner seg i et fuktig klima vil det absorbere fuktighet, og celleveggene vil ekspandere, noe som resulterer i at trevirke vil svelle opp. Som et ortotropt materiale har treverket ulike krymp- og svelleegenskaper i de tre retningene; langs lengderetning, radiell retning og tangentiell retning. Krympingen i lengderetningen er kun omtrent 0,3 %, mens den er omtrent 4 % i radiell retning og omtrent 8 % i tangentiell. Fuktighetsinnholdet kan på grunn av dette føre til sprekkutvikling i trevirket (spesielt for større tverrsnitt) og deformeres (hovedsakelig for mindre tverrsnitt).

De mekaniske egenskapene til trevirket er avhengig av fuktighetsinnholdet, da fasthet er knyttet til vannet bundet i celleveggene [7]. Det vil si at fastheten ikke endrer seg vesentlig, når fuktighetsinnhold er over fibermetningspunktet. Imidlertid fører en økning i fuktighetsinnholdet i området mellom $12\% < \omega < 30\%$ til en betydelig reduksjon i fastheten. Figur 2-1 viser effekten av fuktighetsinnholdet på både eksperimentelle og analytiske målinger sammenlignet med tilstanden $\omega = 12\%$ (på figuren u = 12%).

Figur 2-1: Effekt av fuktighetsinnholdet i forhold til $u = \omega = 12$ %. Hentet fra Ringhofer [9]

2.3 Limtre

Limtre er et konstruksjonsmateriale som har blitt stadig mer populært på grunn av dets mange fordelaktige egenskaper. Limtre består av fingerskjøtt trevirke eller lameller som er limt sammen i lengderetningen [10]. Denne limprosessen gjør at det kan lages bjelker med forskjellige lengder, former og tverrsnittdimensjoner, som ikke kan oppnås med vanlig konstruksjonsvirke. En viktig egenskap ved limtre er at lamellene er styrkesortert, feil i trevirket kan da fjernes før sammenlimingen. Dette sikrer høy kvalitet på limtreelementene siden limet mellom lamellene er sterkere enn selve treverket. Resultatet er elementer med svært høy kvalitet både for styrke og stivhet.

Det finnes to typer standard limtre: homogent limtre og kombinert limtre. Homogent limtre består av lameller hvor alle er i samme styrkeklasse og er limt sammen til et tverrsnitt [10]. Denne typen blir klassifiseres som GLxxh, der «GL» står for glulam (limtre på engelsk), «xx» angir den karakteristiske bøyefastheten (målt i N/mm^2), og «h» indikerer homogent limtre. Kombinerte limtre bruker lameller av høyere kvalitet i de ytterste lamellene, og klassifiseres som GLxxc. Her står «c» for kombinert limtre. Standarden som brukes for klassifisering av limtre er EN14080 [11].

2.4 Klima

Med et stigende fokus på klima og bærekraft har bruken av trevirke blitt stadig mer aktuelt. Dette skyldes særlig sammenligningen med produksjonen av stål og sement, som er ansvarlige for betydelige CO_2 utslipp. Stål står for omtrent 7 % [12] av verdens totale CO_2 utslipp, og sement for omtrent 7-8 % [13]. Trevirke er derimot et CO_2 -nøytralt og fornybart materiale. Tre absorberer CO_2 fra luften gjennom fotosyntese og bruker karbonet til å vokse. Når trærne blir hogd og brukt som byggemateriale, blir det lagrede karbonet "låst" inne i konstruksjonen så lenge den står. En annen fordel med trevirke er dets evne til gjenbruk og ombruk. Bjelker av tre kan for eksempel gjenbrukes, eller omdannes til andre trebaserte produkter, som spon- og fiberplater, uten betydelige klimautslipp.

2.5 Forbindelser

Forbindelser i trekonstruksjoner betraktes ofte som svake punkter. Ytelsen til forbindelsen kan ofte være avgjørende for konstruksjonens bæreevne [10]. For å ha tilstrekkelig sikkerhet og for å unngå sprøbrudd, er det viktig å ikke bare vurdere forbindelsens kapasitet, men også dens duktilitet. Forbindelser i trekonstruksjoner kan være utfordrende å konstruere som ideelle momentfrie eller fullstendig momentstive forbindelse. Derfor er det nødvendig å ha kunnskap om forbindelsens stivhet og fleksibilitet.

2.5.1 Dybelforbindelser

Bruk av dybelforbindelser er vanlig for å oppnå momentstive forbindelser i trekonstruksjoner [14]. Denne typen forbindelse bruker stålplater som er innslisset i treverket og festet med dybler. Dyblene er stålstaver som bankes inn i forborede hull. En utfordring med denne typen forbindelser er at stålplatene må tilpasses individuelt for hvert knutepunkt, dette fører til høyere kostnader og mer tidkrevende arbeid. Det kan også være utfordringer knyttet til brannsikkerhet ved bruk av dybelforbindelse, da stålplatene som er innslisset i treverket kan være direkte eksponert for brann. Brannbeskyttende tiltak, som brannhemmende maling eller klarlakk, kan være nødvendig for å opprettholde brannsikkerhet til konstruksjonen [15].

2.5.2 Selvborende skruer

Selvborende skruer er et festemiddel som kan brukes uten forboring. Med høyere aksialstivhet enn tverrstivhet er skruer spesielt egnet for innfestinger der kraftretning er parallell med skrueretning [7]. Selvborende skruer kan også være et kostnadseffektivt og effektivt alternativ for forsterkning i tre-elementer ved opplegg og utsparinger.

2.5.3 Gjengestenger

Gjengestenger er en type skruer med metriske gjenger i den ene enden og tregjenger i den andre enden [7]. De har lignende egenskaper og bruksområder som selvborende skruer, men krever forboring før de kan brukes. Når det gjelder bruk av gjengestenger er det få føringer i den nåværende Eurokode 5 [5]. Noe er inkludert i det nye utkastet [2], men det er fortsatt en del mangelfull forskning på området. Føringer fra eurokoden vil bidra til å standardisere bruken av dette festemiddelet i trekonstruksjoner. Gjengestenger har vist seg å være en effektiv måte å øke stivheten og kapasiteten til forbindelser i trekonstruksjoner, og kan være et godt alternativ til tradisjonelle metoder som dybelforbindelser.

2.6 Kapasitet

For å bestemme kapasiteten til en forbindelse er det nødvendig å vurdere kapasiteten til både treverket og festemiddelet som brukes. Dette kapittelet fokuserer spesifikt på styrken til treverket.

2.6.1 Bruddformer

Når et prøvestykke blir aksialt strekkbelastet i fiberretning kan fem mulige bruddformer observeres [16]. Figur 2-2 illustrerer de ulike bruddformene: (a) skjærbrudd i treet langs gjengestanga, (b) strekkbrudd i treverket, (c) blokkutrivelse, (d) splittelsesbrudd og (e) strekkbrudd i gjengestanga. Hvilken bruddform som oppstår avhenger av faktorer som innskruingslengden (*l*), kantavstander, endeavstander, internavstander, diameter til festemidlet (*d* og *d*₁) og eventuell vinkel mellom gjengestang og fiberretning (α). I tillegg kan valg av oppsett eliminere enkelte bruddformer. For eksempel kan en «pull-push» konfigurasjon (se figur 2-3) kunne eliminere bruddform (b) [17]. For å oppnå mest mulig duktile og trygge brudd, er det til fordel å kontrollere disse parameterne for å oppnå bruddform (e), vist i figur 2-2 [16]. Det er også verdt å merke seg at knekkingsbrudd kan oppstå ved trykkbelastning.

Figur 2-2: Bruddformer ved strekktesting. Hentet fra F. Hunger, M. Stepinac, V. Rajčić, og J.-W. G. van de Kuilen [16]

Figur 2-3: Pull - push konfigurasjon. Hentet fra Stamatopoulos og Malo [17]

2.6.2 Kant-, ende- og senteravstander

Kant-, ende- og internavstander spiller en viktig rolle for kapasiteten til en forbindelse. Kantavstanden ($a_{2,CG}$) er definert som «minste avstand fra tyngdepunktet i den gjengede delen av skruen i konstruksjonsdelen til en kant» [5], dette er vist i figur 2-4. Utilstrekkelig kantavstand kan gi svekket festeevne. Med dette menes det at treets evne til å overføre last kan reduseres, noe som igjen kan føre til sprekkdannelse eller kantbrudd. Endeavstanden ($a_{1,CG}$) er «minste avstand fra tyngdepunktet i den gjengede delen av skruen i konstruksjonsdelen til enden» [5], dette er også illustrert i figur 2-4. Senteravstand, a_1 , mellom to skruer er definert som «minste innbyrdes skrueavstand i et plan i fiberretning» [5], mens, a_2 , er «minste innbyrdes skrueavstand i et plan vinkelrett på fiberretningen» [5]. Utilstrekkelige senteravstander kan redusere kapasiteten til forbindelsen, da det kan føre til blokkutrivning. Eurokode 5 [5] har innført krav til minimumsavstander for å unngå blokkutrivning og begrense forekomsten av splittelsesbrudd. For vinkler større enn 30°, mellom fiberretning og gjengestangen (α), er disse kravene definert i eurokoden [5] og gjengitt i tabell 2-1. For $\alpha < 30^\circ$ og stenger innskrudd i endeveden er det ikke gitt føringer i den nåværende eurokoden [5].

Figur 2-4: Visualisering av kant- og endeavstand i henhold til Eurokode 5 [5]. Figur hentet fra Stamatopoulos og Malo [18]

[0]	
Avstand	Krav
<i>a</i> ₁	7 <i>d</i>
$a_{1,CG}$	10 <i>d</i>
a_{2}	5d

4d

 $a_{2,CG}$

Tabell 2-1: Minimumskrav for kant-, ende- og senteravstander i henhold til i Eurokode 5[5]

2.6.3 Effektive skruer

I en forbindelse der to eller flere skruer belastes parallelt med skaftet oppstår det en gruppeeffekt. Gruppeeffekten gjør at det ikke oppnås full utnyttelse av begge festemidlene i en forbindelse. Eurokode 5 [5] definerer n som det faktiske antall skruer, og n_{ef} som det effektive antallet skruer i forbindelsen. Dette beregnes ved følgende ligning:

$$n_{ef} = n^{0.9}$$
 (2.2)

I det nye utkastet til eurokoden [2] er det gitt en lignende ligning som er avhengig av flere faktorer:

 $n_{ef} = \begin{cases} n^{0.9}, & generelt \\ 0.9 n, & for skruer med 30^{\circ} < \alpha < 90^{\circ} med kontrollert innskruing \\ 0.9 n, & for en skruegruppe med mer enn 10 skruer \\ & i en tre til tre forbindelse \\ n, & for en skruegruppe med opptil 10 skruer \\ & i en tre til tre forbindelse \end{cases}$ (2.3)

I Stamatopoulos og Malo sitt studie «Withdrawal of pairs of threaded rods with small edge distances and spacings» [18], er det undersøkt effekten av antall gjengestenger med ulike vinkler. De har foreslått følgende ligning:

$$n_{ef} = \begin{cases} 1,75 + 0,0116 * \left(\frac{\alpha}{60^{\circ}}\right), & \alpha \le 60^{\circ} \\ n^{0.9}, & \alpha > 60^{\circ} \end{cases}$$
(2.4)

2.6.4 Beregningsmodeller

I dette delkapittelet blir det presentert ulike beregningsmodeller for å beregne kapasiteten til gjengestenger i en forbindelse under forskjellige belastninger. Det blir fremstilt beregningsmodeller for aksiallast, tverrlast, kombinert aksial- og tverrlast og til slutt trykklast.

2.6.4.1 Aksiallast

Dette delkapittelet vil fremstille beregningsmodeller for å evaluere kapasiteten til gjengestenger påkjent av aksiallast. I følge EC5 [5] er den karakteristiske uttrekkskapasiteten for gjengestenger eller skruer med vinkler $\alpha \ge 30^{\circ}$ og med diameter d > 12 mm gitt ved følgende ligning:

$$F_{ax,\alpha,Rk} = \frac{n_{ef} * f_{ax,k} * d * l_{ef}}{1,2 * \cos^2(\alpha) + \sin^2(\alpha)} * \left(\frac{\rho_k}{\rho_a}\right)^{0,8}$$
(2.5)

Her er $f_{ax,k}$ er den karakteristiske uttrekksparameteren vinkelrett på fiberretning, l_{ef} er innskruingslengde til gjengestangen, og ρ_k er treverkets densitet. For d > 12 mm bestemmes $f_{ax,k}$ ved testing utført i henhold til NS-EN 14592 [19] med tilhørende referansedensitet ρ_a . For festemidler med vinkel $\alpha < 30^\circ$ er det ikke gitt beregningsmetoder i den nåværende Eurokode 5. Det er imidlertid foreslått en metode i det nye utkastet [2] som gjelder for spiker, gjengestenger og limte stenger med uttrekkslengde $l_w \ge 5d$. Uttrekkskapasiteten i EC5draft kan beregnes ved følgende ligning:

$$F_{w,k} = \pi * d * l_w * f_{ax,k}$$
(2.6)

I ligningen er innskruingslengden begrenset ved $l_w \leq 20d$. Videre oppgis det også ligning for uttrekksparameteren, $f_{w,k}$, som gjelder for skruer og gjengestenger med ytre diameter $3,5 mm \leq d \leq 22 mm$ og indre diameter $0,55d \leq d_1 \leq 0,76d$:

$$f_{w,k} = k_{screw} * k_w * k_{mat} * d^{-0.33} * \left(\frac{\rho_k}{350}\right)^{k_p} \frac{N}{mm^2}$$
(2.7)

Her er k_{screw} avhengig av skruekategorien (k7-k10), og bør oppgis av produsent. For gjengestenger i limtre er koeffisientene k_w og k_{mat} begge lik 1,0. Parameteren k_{ρ} for bartre (softwood) kan beregnes som følger:

$$k_{\rho} = \begin{cases} 1,10, & \text{for } 15^{\circ} \le \alpha \le 90^{\circ} \\ 1,25 - 0,05 * d, & \text{for } 0^{\circ} \le \alpha < 15^{\circ} \end{cases}$$
(2.8)

I følge EAD [20] og ETA-11/0030 [21] kan den karakteristiske uttrekkskapasiteten for alle vinkler $0^{\circ} \le \alpha < 90^{\circ}$ beregnes som:

$$F_{ax,\alpha,Rk} = n_{ef} * k_{ax} * f_{ax,k} * d * l_{ef} * \left(\frac{\rho_k}{\rho_a}\right)^{0,8}$$
(2.9)

Densitet ρ_a er satt til 350 $\frac{kg}{m^3}$ i henhold til ETA-11/0030 [21]. For gjengestenger i limtre med en karakteristisk densitet på opptil 440 kg/m^3 er den karakteristiske uttrekksparameteren gitt som $f_{ax,k} = 11,7 N/mm^2$ [21]. Effekten av vinkelen mellom gjengestangen og fiberretning blir tatt hensyn til i parameteren k_{ax} ved ligningen:

$$k_{ax} = \begin{cases} 1,0, & 45^{\circ} \le \alpha \le 90^{\circ} \\ 0,3 + \frac{0,7 * \alpha}{45^{\circ}}, & 0^{\circ} \le \alpha < 45^{\circ} \end{cases}$$
(2.10)

Stamatopoulos og Malo [22] har utviklet en beregningsmodell basert på uttrykkene i EC5. Modellen er basert på ikke-lineær regresjonsanalyse av eksperimentelle data. Denne modellen er gyldig for disse spesifikke egenskapene:

- $\alpha = 0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$
- $100 \ mm < l < 600 \ mm$
- d = 16 mm, 20 mm
- $422 \frac{kg}{m^3} < \rho_m < 488 \frac{kg}{m^3}$.

Det ligger til grunne at modellen skal gi konservative verdier og samtidig korrelere med forsøksdata. Beregningsmodellen gir følgende uttrykk for den karakteristiske uttrekkskapasiteten:

$$F_{ax,\alpha,Rk} = \frac{f_{ax,k} * d * l}{1,2 * \cos^{2,3}(\alpha) + \sin^{2,3}(\alpha)}$$
(2.11)

Her er $f_{ax,k}$ den karakteristiske uttrekkskapasiteten beregnet etter ligning (2.12). Innskruingslengden blir her ivaretatt med reduksjonsfaktoren $k_{lenath,F}$ gitt i ligning (2.13).

$$f_{ax,k} = 12,2 * \left(\frac{d}{20}\right)^{-0,1} * \left(\frac{\rho_k}{400}\right)^{0,9} * k_{length,F}$$
(2.12)

$$k_{length,F} = \min\left[0,6+0,4*\frac{l}{250},1,0\right]$$
 (2.13)

I samme rapport blir det også foreslått en ligning for middel uttrekkskapasitet:

$$F_{ax,a,Rm} = 15,0 * d * l * (\frac{\rho_m}{470})$$
(2.14)

Hvor ρ_m er gjennomsnittlig densitet av treverket.

Stamatopoulos og Malo [1] har også utviklet en metode for å beregne kapasiteten til aksialbelastede forbindelser basert på Volkersens teori [23]. Metoden antar at skjærdeformasjon skjer i et infinitesimalt tynt skjærsjikt, mens forbindelsen og det omkringliggende treverket antas å være i ren aksial spenning. Forbindelsens spenningsforskyvningskurve er forenklet til en bi-lineær modell, som er delt inn i en elastisk sone og en bruddsone, illustrert i figur 2-5.

Figur 2-5: Bi-linear modell for spennings-forskyvningskurve. Hentet fra Stamatopoulos og Malo [1]

Skjærstivhetsparameterne Γ_e er definert for den elastiske sonen, og Γ_f for bruddsonen. For beregning av kapasiteten for en pull-push-konfigurasjon brukes ligning (2.15), og løses for *P*. Ligningen inneholder den dimensjonsløse bruddlengden λ , som kan bestemmes ved å derivere *P* med hensyn på λ og så løse for λ . En analytisk løsning er ikke mulig, men kan løses grafisk ved å bruk diagrammet i figur 2-6 med parameterne *m* og ω .

Figur 2-6: Diagram for bestemmelse av λ . Hentet fra Stamatopoulos og Malo [1]

Parameteren ω er avhengig av vinkelen mellom fiberretningen og gjengestangen α , og beregnes etter ligning (2.16) og (2.17). Der β er en parameter som er avhengig av treet og stålet som er påkjent av aksielle spenninger. Parameteren $E_{w,\alpha}$ er elastisitetsmodulen til trevirket og A_w er det effektive arealet som er påkjent av aksielle spenninger. Hvis det antas at $A_w \rightarrow \infty$, er β kun avhengig av stålets elastisitetsmodul (E_s) og areal (A_s), og kan forkortes til $\beta = \frac{1}{E_s * A_s}$. Skjærstivhetsparameteren (Γ_e) er funnet av Stamatopoulos til å være korrelert med vinkelen α , og foreslår ligning (2.18) basert på regresjonsanalyse av resultatene.

$$\omega(\alpha) = \sqrt{\pi * d * \Gamma_{e,\alpha} * \beta * l_{ef}^2}$$
(2.16)

$$\beta = \frac{1}{E_s * A_s} + \frac{1}{E_{w,\alpha} * A_w}$$
(2.17)

$$\Gamma_{e,\alpha} = \frac{9,35}{1,5 * \sin^{2,2}(\alpha) + \cos^{2,2}(\alpha)}$$
(2.18)

Det ble av Stamatopoulos og Malo [1] også undersøkt uttrekksstyrken $f_{w,\alpha}$ og parameteren m_{α} , begge parameterne ble funnet å være avhengig av vinkel til fiberretning. Ved regresjonsanalyse ble ligning (2.19) og (2.20) funnet.

$$f_{w,\alpha} = \frac{f_{w,0}}{\frac{f_{w,0}}{f_{w,90}}\sin^2(\alpha) + \cos^2(\alpha)} = \frac{4,35}{0,91 + \sin^2(\alpha) + \cos^2(\alpha)}$$
(2.19)

$$m_{\alpha} = \frac{m_0}{\frac{m_0}{m_{90}} * \sin(\alpha) + \cos(\alpha)} = \frac{0,332}{1,73 * \sin(\alpha) + \cos(\alpha)}$$
(2.20)

2.6.4.2 Tverrlast

I dette delkapittelet vil det bli sett på beregningsmodeller for tverrlastkapasiteten til gjengestenger i trevirke. I henhold til Eurokode 5 [5] kan tverrlastkapasitet for gjengestenger uten glatt skaft og med diameter d > 6 mm beregnes som bolteforbindelser, der effektiv diameter er $d_{ef} = 1,1 * d_1$. For bolter eller gjengestenger med diameter d < 30 mm gis den karakteristiske hullkantfasthesten som:

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90} * \sin^2(\alpha) + \cos^2(\alpha)}$$
(2.21)

Der den karakteristiske hullkantfastheten i fiberretning er gitt ved:

$$f_{h,0,k} = 0.082 * (1 - 0.01 * d) * \rho_k$$
(2.22)

For bartre er faktoren k_{90} gitt ved:

$$k_{90} = 1,35 + 0,015 * d_{ef}$$
(2.23)

Flytemomentet til gjengestangen bergenes ved følgende ligning, hvor $f_{u,k}$ er den karakteristiske strekkfastheten:

$$M_{y,Rk} = 0.3 * f_{u,k} * d_{ef}^{2.6}$$
(2.24)

I EC5draft [2] foreslås det følgende uttrykk for den karakteristiske hullkantkapasiteten:

$$f_{h,\alpha,k} = \frac{0,019 * \rho_k^{1,24} * d^{-0,3}}{2,5 * \cos^2(\alpha) + \sin^2(\alpha)}$$
(2.25)

Kapasiteten til forbindelsen bestemmes ut fra hvilken bruddform som vil inntreffe, de forskjellige bruddformene er illustrert i figur 2-7. For slanke gjengestenger vil den duktile bruddformen (b) være den relevante, og Eurokode 5 [5] bruker ligning (2.26) for beregning av tverrkapasitet.

Figur 2-7: Bruddformer for forbindelser mellom stål og tre. Hentet fra EC5 [5]

$$F_{\nu,Rk} = 1,15 * \sqrt{2 * M_{\nu,Rk} * f_{h,k} * d} + \frac{F_{ax,Rk}}{4}$$
(2.26)

I dette uttrykket er det første leddet basert på Johansens flyteleddteori, mens det andre leddet er representerer taueffekten. Taueffekten er en firedel av aksialkapasiteten, men for skruer er den begrenset til 100% av Johansens leddet [5].

Basert på ligning (2.26) har Stamatopoulos og Malo [22] utarbeidet ligning (2.27), hvor lastangrepspunktet (A) blir tatt hensyn til.

$$F_{\nu,Rk} = f_{h,k} * d_{ef} * \left(\sqrt{\frac{2 * M_{\nu,Rk}}{f_{h,k} * d_{ef}} + e_0^2} - e_0 \right) + \frac{F_{ax,Rk}}{4}$$
(2.27)

I tilfeller der lastangrepspunktet A er fritt til å rotere om O settes e_0 lik lengden til den utkragede delen (l_0) , illustrert i figur 2-8.

Figur 2-8: Prinsippskisse av gjengestang innskrudd i treelement. Hentet fra Stamatopoulos og Malo [22]

Dersom lastangrepspunktet er fast innspent er e_0 definert som:

$$e_0 = (l_0 - l_c)/2$$
 (2.28)

Der l_c er den karakteristisk lengde beregnet etter følgende ligninger:

$$l_c = \sqrt[4]{4 * E_s * I_s / k_v}$$
(2.29)

$$k_v = (0,019 + 0,012 * d) * \rho_k * (\frac{\alpha}{180} + 0,5)$$
 (2.30)

Jockwer et al. [24] foreslår en beregningsmetode som betrakter spenningsfordelingen nær overflaten av forbindelsen. Når avstanden x fra overflaten nærmer seg null (se figur 2-8), vil laget som motstår spenningene ha null tykkelse. Som et resultat av dette kan ikke spenningene overføres til dette laget, og med økende belastning vil det oppstå trykkbrudd og splittelsesbrudd. For å ta hensyn til dette er det foreslått en avstand x_1 fra overflaten der full hullkantstyrke kan oppnås. Ved en avstand mellom $0 \le x < x_1$ må en nedsatt hullkantstyrke benyttes. Lengden x_1 beregnes ved følgende ligning:

$$x_{1} = \frac{f_{h} * d_{ef}}{2 * \tan(\alpha) * f_{v,roll}}$$
(2.31)

Lengden x_1 er avhengig av rulleskjær fasthet $f_{v,roll}$.

Basert på denne beregningsmetoden blir tverrkapasiteten forenklet ved å neglisjere spenningene over x_1 . Ved å neglisjere dette området kan tverrkapasiteten beregnes ved følgende ligning:

$$F_{v} = -f_{h,\alpha,k} * x_{1} + \sqrt{\left(2 * M_{y,Rk} + f_{h,\alpha,k} * x_{1}^{2}\right) * f_{h,\alpha,k} * d_{ef}}$$
(2.32)

2.6.4.3 Kombinert tverrbelastede og aksialt belastede forbindelser

For kombinerte tverr- og aksialbelastede forbindelser krever Eurokode 5 [5] at ligning (2.33) oppfylles.

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{\nu,Ed}}{F_{\nu,Rd}}\right)^2 \le 1$$
(2.33)

Denne ligningen beskriver sammenhengen mellom de virkende kreftene i aksial- og tverretning ($F_{ax,Ed}$ og $F_{v,Ed}$) i forhold til de dimensjonerende kapasitetene ($F_{ax,Rd}$ og $F_{v,Rd}$). Ved dekomponering av kreftene som vist i figur 2-9 kan ligning (2.23) omskrives til ligning (2.34), og gir uttrykk for den maksimale lasten til festemiddelet.

$$F = \sqrt{\frac{1}{\left(\frac{\sin(\alpha)}{F_{ax}}\right)^2 + \left(\frac{\cos(\alpha)}{F_v}\right)^2}}$$
(2.34)

Figur 2-9: Dekomponering av krefter for gjeldende orientering (Selvprodusert)

En alternativ metode er presentert av Jockwer et al. [24], basert på arbeidet til Bejtka og Blaß [25]. Forslaget er ligning (2.35), reformulert for å gjelde notasjonen i figur 2-9. $F_{ax,Rd}$ er den effektive uttrekkskapasiteten redusert med lengden x_1 fra ligning (2.31), og $F_{v,pulling}$ er tverrlastkapasiteten til skruen.

$$F = F_{ax,Rd} * \cos(\alpha) + F_{v,pulling} * \sin(\alpha)$$
(2.35)

2.6.4.4 Trykkapasitet

Festemidler som er utsatt for trykkrefter kan resultere i knekking i festemiddelet. EC5 [5] gir ingen retningslinjer for beregning av trykkapasiteten til gjengestenger eller skruer. Imidlertid kan trykkapasiteten beregnes ved hjelp av ligning (2.36) som er angitt i ETA-11/0030 [21] for selvborende skruer. Ligningen divideres på $\gamma_{m1} = 1,25$ for å gjøre den karakteristiske kapasiteten om til dimensjonerende trykkapasitet.

$$F_{ki,Rd} = \frac{k_c * N_{pl,k} * n_{ef}}{\gamma_{m1}}$$
(2.36)

Denne ligningen benytter en knekkfaktor k_c beregnet etter ligning (2.37) og en knekkfaktor k beregnes etter ligning (2.38) basert på den relative slankheten $\lambda_k = \sqrt{N_{pl,k}/N_{ki,k}}$. Aksialkapasiteten $N_{pl,k}$ er gitt i ligning (2.40), og ideell elastisk knekklast $N_{ki,k}$ er gitt i ligning (2.39). Der f_{yk} er festemiddelets karakteristiske flytespenning.

$$k_{c} = \begin{cases} 1, & \lambda_{k} \leq 0,2 \\ \frac{1}{k + \sqrt{k^{2} - \lambda_{k}^{2}}}, & \lambda_{k} > 0,2 \end{cases}$$
(2.37)

$$k = 0.5 * [1 + 0.49 * (\lambda_k - 0.2) + \lambda_k^2]$$
(2.38)

$$N_{ki,k} = \sqrt{c_h * E_s * I_s}$$
(2.39)

$$N_{pl,k} = \pi * \frac{d_1^2}{4} * f_{yk}$$
(2.40)

$$c_h = (0,19+0,012*d)*\rho_k*(\frac{\alpha}{180}+0,5)$$
 (2.41)

14

Gjengestangens andre arealmoment $(I_s = \frac{\pi}{64} * d_1^2)$ beregnes ved bruk av kjernediameter d_1 . Festemiddelets elastisitetsmodul E_s inngår i ligningene sammen med effekten av elastisk underlag av gjengestangen c_h . Hvor det elastiske underlaget beregnes etter ligning (2.41).

EC5draft [2] gir også en forenklet metode for beregning av trykkapasitet av aksialbelastede skruer. Denne karakteristiske trykkapasiteten beregnes ved hjelp av ligning (2.42). Den dimensjonerende aksialkapasiteten er angitt i ligning (2.40), og knekkfaktoren k_c er gitt i tabeller basert på skruens flytespenning f_{yk} og vinkel mellom fiberretning og skruen.

$$F_{c,k} = 1,18 * k_c * N_{pl,k}$$
(2.42)

2.7 Stivhet

Stivheten til en forbindelse refererer til hvor mye deformasjon forbindelsen får under lastpåføring. Dette delkapittelet tar for seg syklisk belastning og ulike faktorer for bestemmelse av stivheten. Dette inkluderer, antall effektive skruer og ulike beregningsmodeller for aksialstivhet, tverrstivhet og kombinert aksial- og tverrstivhet.

2.7.1 Syklisk last

Syklisk last i bygninger refererer til periodiske belastninger som påvirker en struktur over tid. Disse lastene kan være forårsaket av vind, jordskjelv, andre naturlige fenomener mennesker eller kjøretøy [26]. I mange tilfeller kan svingninger eller vibrasjoner som følge av sykliske laster være det dimensjonerende kriteriet for en konstruksjon. Typisk lastnivå for sykliske laster i bruksgrensetilstand er mellom $0,2 * F_{max} - 0,4 * F_{max}$. Ved dette lastnivået forventes konstruksjonen å oppføre seg lineært elastisk, uten å påføres skader eller sprekker.

2.7.2 Antall effektive skruer

Bestemmelse av stivhet for flere skruer eller gjengestenger i en forbindelse er ikke dekket av EC5 [5]. Krenn og Schickhofer [27] har imidlertid foreslått følgende ligning for effektive antall skruer for dimensjonering i bruksgrensetilstand:

$$n_{ef,ser} = n^{0,8}$$
 (2.43)

Denne ligningen er basert på eksperimentelle resultater av aksielt belastede skruer med stålplater som ytre elementer. For forsøk gjort av Stamatopoulos og Malo [18] i bruksgrensetilstand stemmer imidlertid det effektive antall skruer bedre overens med $n_{ef,ser} = n$.

2.7.3 Beregningsmodeller

2.7.3.1 Aksialstivhet

Aksial stivhet referer til motstanden mot deformasjon i lengderetningen av festemiddelet, når det påføres aksielle krefter. Selv om dette temaet ikke er dekket i den nåværende eurokoden [5], finnes det flere beregningsmetoder for bestemmelse av aksialstivheten. I utkastet til den nye eurokoden [2] er det foreslått ligning (2.44), hvor innskruingslengden l_w her er begrenset til 20 ganger stangens diameter ($l_w = \min(l_w, 20 * d)$).

$$K_{SLS,ax,mean} = 160 * \left(\frac{\rho_{mean}}{420}\right)^{0.85} * d^{0.9} * l_w^{0.6}$$
(2.44)

En annen beregningsmodell er utviklet av Stamatopoulos og Malo [22]. Modellen kombinerer stivheten til den innskrudde delen av gjengestangen, $K_{ser,ax}$, og stivheten til den frie enden som stikker ut av trevirket, $K_{ax,l0}$. Stivheten til den innskrudde delen er vist i ligning (2.45) med lengdeparameter $k_{length,K}$ gitt av ligning (2.46). Modellen er basert på ikke-lineær regresjonsanalyse av eksperimentelle resultater.

$$K_{ser,ax} \approx \frac{50000 * \left(\frac{d}{20}\right)^2 + \left(\frac{\rho_m}{470}\right)^2 * k_{length,K}}{0.4 * \sin^{2.3}(\alpha) + \cos^{2.3}(\alpha)}$$
(2.45)

$$k_{length,K} = \min\left\{ \left(\frac{l}{300}\right)^{0.75}_{1}$$
 (2.46)

Det er imidlertid nevnt av forfatteren at modellen bør brukes innenfor parameternes rammebetingelser som er;

- $\alpha = 0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$
- 100 mm < l < 600 mm
- d = 16 mm, 20 mm
- $422 \frac{kg}{m^3} < \rho_m < 488 \frac{kg}{m^3}$.

Stivheten til den frie lengden av en gjengestang kan beregnes med ligning (2.47). Ligningen er avhengig av den lengden på den utstikkende delen (l_0 i figur 2-8). Ved å kombinere bidraget fra den innskrudde delen og den frie delen av gjengestangen, kan den totale aksialstivheten beregnes med ligning (2.48).

$$K_{ax,l0} = E_s * \frac{A_s * n_{ef,ser}}{l_0}$$
 (2.47)

$$K_{ser,ax,tot} = \frac{K_{ser,ax} * K_{ax,l0}}{K_{ser,ax} + K_{ax,l0}}$$
(2.48)

Det er også utviklet en beregningsmetode basert på Volkersens teori av Stamatopoulos og Malo [1]. Metoden gir aksial stivhet basert på ligning (2.49). Hvor Γ_{e} og ω er de samme parameterne som beskrevet i delkapittel 2.6.4.1.

$$K_{w} = \pi * d * l * \Gamma_{e} * \frac{\tanh(\omega)}{\omega}$$
(2.49)

2.7.3.2 Tverrstivhet

Tverrstivhet er motstanden mot deformasjon i tverretningen av festemiddelet. Det er ulike metoder for å fastsette tverrstivhet. Eurokode 5 [5] har følgende ligning for beregning av stivheten i for tverrbelastede dybler, bolter eller skruer:

$$K_{ser} = \frac{\rho_m^{1,5} * d}{23}$$
(2.50)

Ligning (2.50) gir den kombinerte tverrstivheten mellom to treelementer. For å få stivheten til hvert element i forbindelsen må denne verdien dobles, på grunn av antagelsen om at begge treelementene i forbindelsen har samme stivhet.

I EC5draft [2] er det foreslått et uttrykk for skruer gitt ved ligning (2.51) for beregning av tverrstivhet. Tverrstivheten er for en tre-til-tre forbindelsen, dermed må verdien også her dobles for å bestemme stivheten for hvert enkelt element. Ligning (2.51) er gyldig når forbindelser er belastet i fiberretning ($\alpha = 0^{\circ}$) (se figur 2-10).

$$K_{SLS,v,mean} = 60 * (0,7 * d)^{1,7}$$
(2.51)

Figur 2-10: Enkelt skjærplan av en forbindelse med tverrbelastet festemiddel. Hentet fra EC5 [5]

Cepelka og Stamatopoulos [28] har utviklet et uttrykk for tverrstivheten til tverrbelastede gjengestenger. Ved beregning av stivheten betraktes gjengestangen som en semi-uendelig bjelke på elastisk underlag. Utrykket for tverrstivheten er gitt i følgende ligninger:

$$K_{ser,v} = \frac{3 * k_v * l_c}{4 * \lambda_0^3 + 12 * \lambda_0^2 + 12 * \lambda_0 + 6}$$
(2.52)

$$\lambda_0 = l_0 / l_c \tag{2.53}$$

$$l_c = (4 * E_s * \frac{l_s}{k_v})^{\frac{1}{4}}$$
(2.54)

$$k_{v} = \frac{k_{l} * k_{t}}{k_{l} * \sin^{2}(\alpha) + k_{t} * \cos^{2}(\alpha)}$$
(2.55)

Koeffisienten λ_0 er forholdet mellom den frie lengden av gjengestangen l_0 og den kritiske lengden l_c . Den kritiske lengden beregnes etter ligning(2.54). Parameteren k_v i ligning (2.55) er avhengig av koeffisientene for det elastiske underlaget k_l og k_t . Studier av Gattesco [29] og Gattesco og Toffolo [30] har funnet disse koeffisientene til å være $k_l =$ 1300 *MPa* og $k_t = 710$ *MPa*.

2.7.3.3 Kombinert aksial- og tverrstivhet

For beregning av stivheten til gjengestenger som er utsatt for kombinert aksial- og tverrlast kan det brukes ligning [5]. Hankinsons ligning (2.56) angir stivhet i lastretning:

$$K = \frac{K_{ax} * K_{v}}{K_{ax} * \sin^{2}(\alpha) + K_{v} * \cos^{2}(\alpha)}$$
(2.56)

Her representerer K_{ax} aksialstivheten, K_v er tverrstivheten, og α er vinkel mellom festemiddel og fiberretning.

I EC5draft [2] foreslås ligning (2.57) for skruer i en krysskonfigurasjon, som vist i figur 2-11. Vinkelen ϵ er vinkelen mellom fiberretning og skruer.

$$K_{SLS} = K_v * \sin^2(\varepsilon) + \frac{1}{2} * K_{ax} * \cos^2(\varepsilon)$$
 (2.57)

Figur 2-11: Skruer i krysskonfigurasjon. Hentet fra EC5draft [2]

En alternativ modell for selvborende skruer, utviklet av Tomasi et al [31] og reformulert for gjeldende lastretning, er gitt som ligning (2.58).

$$K = K_{ax} * \cos^{2}(\alpha) + K_{v} * \sin^{2}(\alpha)$$
(2.58)
3 Metode

Dette kapittelet gir en beskrivelse av forsøksoppsettet, gjennomføring av forsøkene, behandling av resultatene og de analytiske beregningsmetodene. Først presenteres en beskrivelse av forsøksoppsettet, inkludert dimensjoner og relevante materialegenskaper, for å gi en helhetlig oversikt over førsøkene. Deretter blir lastprotokollen for stivhets- og kapasitetsforsøkene presentert, sammen med tiltak for å opprettholde høy kvalitet i forsøkene. Videre gis det en beskrivelse om hvordan de eksperimentelle dataene er blitt behandlet og prosessert. Til slutt presenteres en beskrivelse over de analytiske beregningene som er benyttet.

3.1 Forsøksoppsett

Forsøkene ble utført på tre forskjellige konfigurasjoner: konfigurasjon E med en gjengestang, konfigurasjon D med doble gjengestenger plassert parallelt, og konfigurasjon V der to gjengestenger danner en V-formasjon. Konfigurasjon E ble valgt for å kunne sammenligne enkeltstående og doble gjengestenger. Valget av konfigurasjon D og V er basert på antakelsen at dette gjenspeiler plasseringen i reelle konstruksjoner. For hver av disse konfigurasjonene ble det utført tester med forskjellige innskruingslengder og vinkler mellom gjengestengene og fiberretningen. Dette resulterte i totalt 62 forsøk, for å gi en oversikt over alle forsøkene utført er dette vist i tabell 3-1 der tallene 1-65 representerer forsøks-ID.

Forsøk på de tre konfigurasjonene ble gjennomført i følgende rekkefølge: konfig. E, konfig. D og konfig. V. Dette ble gjort for å minimere endringer i oppsettet mellom testene. Det ble underveis besluttet å ikke utføre testene D2 og D3 for vinkel på 10° med lengder 880 mm og 1000 mm. Denne avgjørelsen ble tatt da det ble klart at jekken ikke hadde nok kapasitet for å oppnå maksimal kapasitet til forsøkene. Dette førte dessverre til tap av stivhetsresultatene for disse forsøkene.

På grunn av noe varierende kantavstand for de forskjellige konfigurasjonene var det ønsket å undersøke denne effekten. Det ble derfor utført to ekstra tester på konfigurasjon E med vinkel 10° og lengde 650 mm med større kantavstand. Et ekstra forsøk ble også utført for konfigurasjon V med vinkel 5° og lengde 650 mm.

			Fors	øksnum	mer
	Vinkel	Lengde [mm]	E1	E2	E3
	5°	650	9	10	13
	10°	650	27	28	31
Enkle stonger (E)	15°	650	37	38	39
Enkle Stenger (E)	5°	880	4	7	8
	10°	880	22	25	26
	5°	1000	1	2	3
	10°	1000	19	20	21
	Vinkel	Lengde [mm]	D1	D2	D3
	5°	650	45	46	56
	10°	650	33	50	60
Doble stenger (D)	15°	650	40	63	64
Dobie Stellger (D)	5°	880	43	44	55
	10°	880	49		
	5°	1000	14	15	16
	10°	1000	34		
			1		
	Vinkel	Lengde [mm]	V1	V2	V3
	5°	650	48	57	65
	10°	650	35	36	58
Konfig. V	15°	650	41	42	61
	5°	880	12	17	18
	10°	880	29	30	54
	5°	1000	5	6	11
	10°	1000	23	24	53
			1		
	Vinkel	Lengde [mm]	E4	E5	V4
Svak del, enkel (E)	10°	650	51	52	
Ekstra, konfig, V	.5°	650			47

Tabell 3-1: Forsøksmatrise med forsøksnummer

3.1.1 Laboppsett

Forsøksoppsettene ble opprinnelig designet og beskrevet i prosjektoppgaven [32]. Ut ifra disse er det gjort forbedringer, og nye arbeidstegninger ble utarbeidet basert på tegningene fra prosjektoppgaven. Arbeidstegningene i vedlegg A ble brukt som grunnlag for oppsett av forsøkene. Det ble også gjort tilpasninger og forbedringer underveis i laboratoriearbeidet, og disse blir beskrevet i følgende delkapitler: 3.1.1.1 - 3.1.1.3.

Prøvestykkene ble plassert på en bom under en hydraulisk jekk, M13 – Amsler, med en maksimal kapasitet på 400 kN. Prøvene ble festet vertikalt med kvadratiske hulprofiler plassert horisontalt over trestykket og under bommen. Hulprofilene ble holdt fast av metriske M27 stenger, som vist på venstre side i figur 3-1. Prøvestykkene ble deretter fastholdt sideveis ved å stramme avstivningsstag mot tre av hjørnene til prøvestykket, som vist til venstre i figur 3-1.

3.1.1.1 Enkle gjengestenger (konfigurasjon E)

For både enkle og doble gjengestenger ble prøvestykkene først kappet i en vinkel på 5°, 10° eller 15° med en lengde på ca. 1,2 m. Deretter ble det forboret hull, og gjengestengene ble skrudd inn. En mutter og en brakett ble deretter festet på den utstikkende delen av gjengestangen, før hele prøvestykket ble plassert i riggen som vist i figur 3-1. Braketten ble festet til jekken ved bruk av stålplater. I konfigurasjon E bestod forbindelsen mellom stålplatene og braketten av en M27 bolt, mutter, skive på yttersiden av stålplatene og hylse på innsiden av stålplatene. Mutteren ble strammet med et dreiemoment på 2000 Nm for å oppnå høy friksjon. Jekken ble festet til stålplatene med en M30 bolt og mutter, fire hylser ble også benyttet, men forbindelsen ble ikke strammet.

Figur 3-1: Forsøksoppsett for konfigurasjon E

Det første forsøket som ble utført (F7-E2-5-880) var gjennomført med kun ett avstivningsstag i toppen av prøvestykket. Avstivningsstaget sviktet, og det ble nødvendig med forbedringer. For de påfølgende forsøkene ble det benyttet tre avstivningsstenger i toppen.

3.1.1.2 Doble gjengestenger (konfigurasjon D)

I konfigruasjon D var mye av oppsettet likt som for konfigurasjon E. For konfig. D var det lagt til ekstra avstvning av prøvestykket ved å bruke to avstivningstag nede til venstre og en ekstra kvadratisk hulprofil på toppen (som vist i figur 3-2). Disse tilpasningene ble gjort for å håndtere de betydelige større kreftene som oppstod i forbindelsen med doble gjengestenger.

Figur 3-2: Forsøksoppsett for konfigurasjon D

I forbindelsen ble det brukt én stålplate istedenfor to for å opprettholde et symmetrisk oppsett. Stålplaten ble plassert mellom brakettene og festet med en M27 bolt, skiver og mutter (som vist på høyre side i figur 3-2). Også her ble bolten strammet med et dreiemoment på 2000 *Nm*. For å feste stålplaten til jekken ble det her brukt en M39 bolt.

3.1.1.3 To gjengestenger i V-formasjon (Konfigurasjon V)

Etter at alle prøvene for konfigurasjon E og D var utført ble prøvestykkene kappet på nytt, vinkelrett på bjelkeaksen. Etter forboring og innskruing av gjengestengene var prøvestykkene plassert i riggen. For å oppnå sideveis avstivning for konfigurasjon V ble prøvestykkene rotert 90° i forhold til konfig. E og D. De to brakettene ble festet til nye stålplater (vist til høyre i figur 3-3), symmetrisk om jekkens senter. De ble festet med en M27 bolt og mutter med braketten i midten (som vist til venstre i figur 3-3). På grunn av lave friksjonstall observert i konfigurasjon D, ble de første ti prøvene kjørt uten å stramme mutterne og boltene. Dette ga imidlertid ikke gode resultater, og det gav i enkelte tilfeller sprekker i prøvestykket under syklisk testing. Oppsettet ble derfor endret ved å stramme de to boltene med et dreiemoment på 2500 *Nm*. I forbindelsen mellom stålplatene og jekken ble det brukt en skive med samme tykkelse som braketten, og en M30 bolt med mutter som festemiddel.

Figur 3-3: Forsøksoppsett for konfigurasjon V

3.1.2 Materialer

3.1.2.1 Limtre

Limtrebjelkene som ble brukt i forsøkene var av norsk gran (picea abies) og med styrkeklasse GL30c. Egenskaper for limtrebjelkene, GL30c, er gitt i tabell 3-2. Bjelkene har tidligere blitt brukt i forsøk av Ivarsøy og Erstad [4]. Limtrebjelkene ble kuttet opp i kortere prøvestykker. For konfigurasjon E og D ble det kappet 12 prøvestykker med vinkler på 5°, 10° og 15° i henhold tabell 3-3. Lengden til prøvestykkene var på omtrent 1,2 m. For konfigurasjon V ble 11 av prøvestykkene kappet på nytt med en vinklel på 0° til en lengde på ca. 1,0 m.

Tabell 3-2: Egenskaper for GL30c [11]

Egenskap	Verdi
$E_{0,mean}$	$13000 N/mm^2$
E _{90,mean}	$300 N/mm^2$
$ ho_{g,m}$	430 kg/m^3
$f_{v,roll}$	$1,2 N/mm^2$

Tabell 3-3: Antall prøvestykker kappet for hver vinkel og bjelketype

Vinkel	Bjelke 1 (4 «bjelker»)	Bjelke 2 (3 «bjelker»)	Totalt
5°	4 stk.	1 stk.	5 stk.
10°	3 stk.	1 stk.	4 stk.
15°	2 stk.	1 stk.	3 stk.

Det var begrenset antall limtrebjelker tilgjengelig. Det ble dermed benyttet bjelker med to forskjellige dimensjoner som vist i figur 3-4. Den første typen, bjelke 1, bestod av fire sammenlimte 112,5 mm tykke «bjelker», hvor hver «bjelke» bestod av ni sammenlimte 45 mm tykke lameller. Den andre typen, bjelke 2, bestod av tre sammenlimte 135 mm tykke «bjelker», hvor hver av «bjelkene» bestod av ti sammenlimte 45 mm tykke lameller. Dimensjoner for de to bjelkene var som følger:

- Bjelke 1: b x h = 450 x 405 mm
- Bjelke 2: b x h = 405 x 450 mm

Her er b bredden på tvers av «bjelkene», og h er høyden på tvers av lamellene, som illustrert i figur 3-4.

Figur 3-4: Tverrsnitt av limtrebjelkene, bjelke 1 til venstre og bjelke 2 til høyre

Dimensjonene som ble benyttet er utsatt for sprekkdannelser ved uttørking. For å unngå uttørking ble prøvestykkene oppbevart på et klimarom med en relativ luftfuktighet på 65 % og en temperatur på 20°. Det kan bemerkes at klimarommet var midlertidig ute av drift i en kort periode, og enkelte prøvestykker stod utenfor klimarommet over natten.

Figur 3-5 viser en prinsippskisse som illustrerer hvordan stengene med en vinkel på 10° utnytter materialet for de forskjellige konfigurasjonene. Konfig. E og D er representert til venstre, mens konfig. V er representert til høyre i figur 3-5.

I figur 3-4 er det beskrevet hvilke «bjelker» som ble brukt til hver konfigurasjon. I konfigurasjon V ble de ytterste «bjelkene» på hver side brukt, men kun fra den ene enden av prøvestykket. For konfigurasjon E og D ble de midterste «bjelkene» benyttet, dette for å begrense rotasjon ut av planet hvor avstivning var vanskelig. I de to konfigurasjonene ble begge sidene av prøvestykket benyttet, for høyst mulig materialutnyttelse.

Figur 3-5: Prinsippskisse av prøvestykke med vinkel på 10° (Selvprodusert)

Hullene hvor gjengestengene skulle skrues inn var plassert om senterlinjen til hver «bjelke». For konfig. E og D var avstanden 50 mm fra kanten til senter gjengestang ($a_{k-E \circ g D}$ i figur 3-4). For konfigurasjon V var avstand a_{k-V} først sett til 18 mm og senere 25 mm. Det ble erfart at en kantavstand a_{k-V} på 18 mm medførte risiko for sprekkdannelse ved innskruing av gjengestengene. Etter hullplassering var markert på prøvestykkene, ble det forboret med en lengde som tilsvarte gjengestengene innskruingslengde, og med en diameter $d_1 = 16 \text{ mm}$. Etter forboringen ble gjengestengene skrudd inn. For å hindre armerende bidrag fra gjengestengene, ble de skrudd ut etter testing og før nye stenger ble skrudd inn.

Kant- og endeavstand for prøvene er angitt i tabell 3-4. Senteravstanden for konfig. V gjelder for bjelke 1 (bestående av 4 «bjelker»). For bjelke 2 (bestående av 3 «bjelker») er senteravstanden 45 mm større enn oppgitt.

Lengde [mm]	Kantavstand [mm]	Endeavstand [mm]	Senteravstand [mm]
	Konfiguras	jon E og D	Konfigurasjon D
650	78*	324	50*
650	106	320	50*
650	134	314	50*
880	88	438	50*
880	126	433	50*
1000	94	498	50*
1000	137	492	50*
	Konfigurasjon V		V
650	53*	324	298
650	81*	320	242
650	109	314	187
880	63*	438	278
880	101	433	202
1000	69*	498	268
1000	112	492	181
	Lengde [mm] 650 650 650 880 880 880 1000 1000 650 650 650 650 880 880 880 880 880 880 1000	Lengde Kantavstand [mm] [mm] 650 78* 650 106 650 106 650 134 880 88 880 126 1000 94 1000 94 650 53* 650 81* 650 109 880 63* 880 101 1000 69* 1000 112	Lengde [mm]Kantavstand [mm]Endeavstand [mm][mm][mm][mm]650Konfiguras J2432465010632065013431488088438880126433100094498100013749265053*32465081*32065010931488063*438880101433100069*4981000112492

Tabell 3-4: Ende-, kant- og senteravstander for de ulike kombinasjonene

* Oppfyller ikke kravene til minimumsavstander i henhold til EC5, gitt i tabell 2-1

3.1.2.2 Gjengestenger

Det ble benyttet to forskjellige typer gjengestenger i forsøkene. Den ene typen var ferdigkappet med en lengde på 650 mm som vist i figur 3-6. Den andre typen gjengestenger var lengre, med lengder opptil 1,5 - 2,0 m. De lengste gjengestengene ble kappet med en båndsag til lengdene 880 mm og 1000 mm. Tregjengene i tuppen av gjengestengene ble slipt ned for at de lettere kunne følge det forborede hullene. De metriske gjengene ble kappet så det gjenstod en lengde på 50 mm.

Figur 3-6: Gjengestang benyttet i forsøkene

Gjengestengene hadde styrkeklasse på 8.8, og deres flytespenning (f_y) , bruddspenning (f_u) , E-modul (E_s) , indre diameter (d_1) og ytre diameter (d) er oppført i tabell 3-5.

Egenskap	Verdi
f_y	$660 \ N/mm^2$
f_u	$830 \ N/mm^2$
F _u	169,6 kN
Es	210 000 MPa
d_1	16,13 mm
d	22,40 mm

Tabell 3-5: Egenskaper for gjengestengene

3.1.2.3 Braketter, stålplater og hylser

Stålkomponentene (brakett, stålplate og hylse) som ble benyttet i forsøkene er vist i figur 3-7. Tegninger med dimensjoner for stålplatene er vist i vedlegg A, og ble utarbeidet i prosjektoppgaven [32].

Kontaktflatene på stålkomponentene ble sandblåst mellom hvert forsøk. Det ble sandblåst til det oppstod en jevn og ru kontaktflate som det kan observeres på bilde av stålplaten nede til høyre i figur 3-7. Etter flere tester med de samme brakettene ble det etter hvert observert skader i stålet som ikke kunne fjernes med sandblåsing, dette er vist på bilde øverst til høyre i figur 3-7. Brakettene ble derfor byttet når det ble observert betydelige irreversible skader.

Figur 3-7: Stålkomponenter benyttet i forsøkene for å koble gjengestang til jekken

3.1.3 Montering av måleinstument

Det ble benyttet LVDT, linear variable differential transducer, måleinstrument for å måle forskyvningen. Det ble for forsøkene i konfigurasjon E benyttet fire separate LVDTinstrumenter som vist i figur 3-8. Det var hentet inspirasjon til plasseringen av måleinstrumentene for konfigurasjon E fra Erstad og Ivarsøy [4]. For konfigurasjon D, ble festepunktene til LVDT-instrumentene endret til slik som det er vist i figur 3-8. Endringen ble gjort for å få deformasjonsmålinger direkte i gjengestangen. Det ble prøvd å bruke samme oppsett av måleinstrumentene som konfig. D i konfig. V. På grunn av tverrlast for denne konfigurasjonen, oppstod det rotasjon i platene der måleinstrumentene var festet. Dette førte til fiktive målte deformasjoner. Løsningen ble å montere på klemmer på gjengestangen og festet fire 50mm LVDT-er som vist i figur 3-8.

På grunn av ingen konsensus om hvor stivhet bør måles, er det her for alle konfigurasjonene valgt å måle deformasjon med en avstand fra enden av prøvestykket lik 50 % av innskruingslengden.

Figur 3-8: Plassering av måleinstrumenter. Konfigurasjon E til venstre, konfig. D i midten og konfig. V til høyre

3.2 Utførelse

Her vil det fremgå hvordan forsøkene er gjennomført i laboratoriet. Det er i stor grad gjennomført likt i alle forsøkene, men med noen tilpasninger for hver konfigurasjon. Forsøkene ble først utført på stivhet før det så ble utført kapasitetsforsøk. Det blir i dette kapittelet beskrevet utførelse og kvalitetskontroll på de to typene forsøk.

3.2.1.1 Stivhetsforsøk

Siden stivhetsforsøk er en ikke-destruktiv testmåte ble denne utført først. Stivhetsforsøkene ble gjennomført ved bruk av laststyrt påføring av krefter. Lasten ble påført prøvene syklisk: først ti sykluser i strekk, deretter ti i trykk, og til slutt ti fulle sykluser med strekk og trykk. Lastbildet er vist i figur 3-9, der lasten går gradvis mellom syklene. Lastpåføringshastigheten i syklusene ble satt til $20 \frac{kN}{c}$ pr gjengestang.

Figur 3-9: Lastprotokoll for stivhetsforsøk

For å fastsette hvilke område lasten skal oscillere mellom er det beregnet en middels aksial uttrekkskapasiteten etter Stamatopoulos og Malo [22]. Beregnede verdier for de forskjellige lengdene er presentert i tabell 3-6.

Tabell 3-6: Aksial uttrekkskapasitet, $F_{ax,a,Rm}$, etter Stamatopoulos og Malo [22] gitt iligning (2.14)

Lengde	1 gjengestang	2 gjengestenger
650 mm	199,8 <i>kN</i>	372,9 <i>kN</i>
880 mm	270,5 <i>kN</i>	504,8 <i>kN</i>
1000 mm	307,4 <i>kN</i>	573,6 <i>kN</i>

For konfigurasjon E oscillerte lasten for det tre første forsøkene mellom cirka 20% og 40% av uttrekkskapasitet gitt i tabell 3-6. Det oppstod problemer knyttet til friksjonsslipp, dermed ble kreftene redusert til verdier vist i tabell 3-7.

Lastsituasjon\Lengde	650mm og 880mm	1000mm
Syklisk strekk/trykk		
Last	40 - 60 kN	30 - 70 kN
Amplitude	10 <i>kN</i>	20 <i>kN</i>
Frekvens	0,5 <i>Hz</i>	0,25 <i>Hz</i>
Full syklisk		
Last	-60 - 60 kN	-70 - 70 kN
Amplitude	60 <i>kN</i>	70 <i>kN</i>
Frekvens	0,0833 Hz	0,07143 <i>Hz</i>

Tabell 3-7: Sykliske testverdier for konfigurasjon E

Ved testing av konfigurasjon D, oppstod det også problemer med friksjonsslipp ved høye laster. Dette gjorde at 40% av kapasitetsverdiene gitt i tabell 3-6 ble for høye. Etter diskusjoner med veileder ble forsøkene testet med verdiene gitt i tabell 3-8.

Lastsituasjon\Lengde	650 mm	880 mm og 1000 mm
Syklisk strekk/trykk		
Last	$50 - 100 \ kN$	$50 - 110 \ kN$
Amplitude	25 <i>kN</i>	30 <i>kN</i>
Frekvens	0,4 <i>Hz</i>	0,3333 <i>Hz</i>
Full syklisk		
Last	$-100 - 100 \ kN$	$-110 - 110 \ kN$
Amplitude	100 kN	110 <i>kN</i>
Frekvens	0,1 <i>Hz</i>	0,0909 Hz

Tabell 3-8: Sykliske testverdier for konfigurasjon D

Ved testing av konfigurasjon V ble alle prøvene kjørt med verdier i tabell 3-9. Lastpåføringsområdet ble bestemt ut fra erfaringer fra tidligere tester i konfig. E og D. Det ble erfart at store laster gav deformasjoner i fastholdingen. Deformasjonene i fastholdningen gav rotasjoner og bevegelser i prøvestykket, noe som kan påvirke resultatene. Lastpåføringshastigheten for full syklisk ble satt lavere for å unngå at det oppstod sprekker når lasten passerte 0 kN. Det ble først utført forsøk med en lastpåføringshastighet på $2,8 \frac{kN}{s}$, den ble senere økt til $10 \frac{kN}{s}$.

Tabell 3-9: Sykliske testverdier for konfigurasjon V

Lastsituasjon\Lengde	650 mm og 880 mm og 1000 mm		
Syklisk strekk/trykk			
Last	$30 - 70 \ kN$		
Amplitude	20 kN		
Frekvens	0,5 <i>Hz</i>		
Full syklisk			
Last	$-70 - 70 \ kN$		
Amplitude	70 <i>kN</i>		
Frekvens	0,04 <i>Hz</i>		

3.2.1.2 Kapasitetsforsøk

I kapasitetsforsøkene ble prøvestykkene påført last i samsvar med lastprotokollen gitt i NS-ISO6891 [33], som vist i figur 3-10. For å estimere aksialkapasitet, F_{est} , ble ligning (2.14) fra Stamatopoulos og Malo [22] benyttet. Verdier for F_{est} er oppført i tabell 3-6. Den kapasiteten ble brukt for å definere lastprotokollen for forsøkene. Jekken belastet prøvestykkene i kapasitetsforsøkene laststyrt. Belastningen hadde en hastighet på 0,2 * Fest pr minutt, opp til en last på $0.4 * F_{est}$. Lasten ble deretter holdt i 30 sekunder før den ble redusert med en hastighet på $0.2 * F_{est}$ pr minutt ned til en last på $0.1 * F_{est}$. Denne lasten ble deretter holdt i 30 sekunder før den igjen ble økt med en hastighet på $0.2 * F_{est}$ pr minutt. Ifølge NS-ISO6891 skulle lasten stige til $0.7 * F_{est}$ og deretter senke hastigheten til $0.1 * F_{est}$ pr minutt, og påføre last til prøvene gikk til brudd. På grunn av usikkerhet knyttet til hvilke krefter som ville føre til brudd i prøvene, ble lasten kun økt til $0.5 * F_{est}$. Fra 0.5 * F_{est} ble lastpåføringen endret til å være deformasjonsstyrt med hastighet på 0,05 $\frac{mm}{s}$. Prøvene ble da kjørt til brudd med to last begrensninger. Det var en begrensning for konfigurasjon E, der testen ble stoppet på 210 kN. Dette var gjort for å unngå at gjengestangen ryker to. Dette ble observert for ett forsøk og skjedde mellom 210 - 215 kN. Den andre begrensningen var riggens maksimale kapasitet på 395 kN. Det ble diskutert om forsøkene med to gjengestenger burde utføres i en rigg med høyere kapasitet. Det ble imidlertid besluttet å ikke endre rigg, da kapasiteten til gjengestengene var nær fullt utnyttelse ved 395 kN. Det ble notert hvilke forsøk som oppnådde maksimal kapasitet for riggen.

Figur 3-10: Lastprotokoll for kapasitetsforsøk etter NS-ISO6891 [33]

3.2.1.3 Kvalitetskontroll

For å opprettholde kvaliteten på alle forsøkene ble det utarbeidet en sjekkliste. Sjekklisten var til hjelp for å sikre at relevante mål og observasjoner ble skrevet ned, samt for å montere prøvestykkene så likt som mulig i hvert forsøk. Sjekklisten ble fylt ut for hvert forsøk og er vist i tabell 3-10.

Tabell 3-10: Sjekkliste for k	kvalitetskontroll ved	laboratorieforsøk
-------------------------------	-----------------------	-------------------

Sjekk	Utført
Sandblåst	
Mutter strammet til brakett og rigg	
Forsøksnummer på prøvestykket	
Måleinstrumenter festet riktig	
Kanal på måleinstrumenter er likt	
Tatt bilde med forsøksnummer	
Gjøre nødvendige notater med tid og	
forsøksnummer, materialdefekter og	
unøyaktigheter	
Måle og notere avstander, le og posisjon	
gjengestang	
Innspenningskraft på bolt	
Måle fuktighet av prøvestykke*	

* Gjennomsnitt av fire målinger

3.3 Behandling av data

I denne delen vil det bli gjennomgått hvordan dataene fra laboratorieforsøkene er blitt etterbehandlet. Det vil også bli gjennomgått de ulike utregningsmetodene for stivhet og kapasitet. Dataene fra laboratorieforsøkene ble behandlet ved hjelp av Excel for enkel fremstilling og videre analyse.

Først ble alle forsøkene gitt en unik identifikasjon (ID) for å kunne identifisere og skille prøvene og resultatene. Identifikasjonen fulgte formatet: «Fx-Yn-a-l», «Fx» var et tidligere ID-nummer brukt før et mer strukturert system ble etablert. Det neste leddet «Y» indikerer konfigurasjon av forsøket (E for konfig. E, D for konfig. D og V for konfig. V), etterfulgt av forsøksnummeret «n». Forsøksnummeret anga nummeret til det gjentatte forsøket (mellom en og tre). «a» representerer vinkelen mellom gjengestang og fiberretning, mens «I» står for innskruingslengden. For eksempel betyr «F13-E3-5-650» det tredje forsøk med vinkel 5°, lengde 650 mm og konfigurasjon E (enkle gjengestenger).

På grunn av høy samplingfrekvensen til måleinstrumentene (300 Hz) ble det generert store mengder rådata for hvert forsøk. Før videre analyse ble overflødige verdier fjernet. I rådataen til stivhetsforsøkene ble hver åttende verdi hentet ut fra starten av strekk syklusen til slutten av full syklus, noe som reduserte samplingfrekvensen til 37,5 Hz. De uthentede verdiene ble lagt inn i et nytt Excel-ark kalt «strippetdata-stivhet». I kapasitetsforsøkene, hvor lastpåføringen var langsom, ble det kun hentet ut hver 180. verdi fra starten av kraftøkningen til prøvestykket gikk til brudd. De uthentede verdiene for kapasitetsforsøkene hadde en målefrekvens på 1,67 Hz, og ble lagt i et nytt Excel-ark kalt «strippetdata-kapasitet». For å måle deformasjonen ble det brukt LVDT-måleinstrumenter, som nevnt i delkapittel 3.1.3. Deformasjonsverdiene (Δ_{LVDT}) må vektes så det finnes deformasjonen $(\Delta_{gjengestang})$ der hvor gjengestangen står. For konfigurasjon E og D ble målte deformasjonsverdier vektet basert på posisjonen $(X_{foran} \text{ og } X_{bak})$ til gjengestengene i prøvestykket. I vedlegg D er de målte avstandene mellom LVDT-instrumentene og gjengestengene oppgitt. Deformasjonen til gjengestengene ble beregnet ved hjelp av ligning (3.1).

$$\Delta_{gjengestang} = \Delta_{LVDT-50mm,foran} * \frac{X_f}{X_f + X_b} + \Delta_{LVDT-50mm,bak} * \frac{X_b}{X_f + X_b}$$
(3.1)

$$X_{f/b} = X_{foran/bak} + \frac{X_{midt}}{2} + \frac{d_{gjengestang}}{2}$$
(3.2)

For konfigurasjon D ble målte avstander korrigert ved hjelp av ligning (3.2). Halvparten av avstanden mellom gjengestengene og halvparten av diameteren til gjengestangen ble lagt til for å få vektet deformasjon i midten av de doble gjengestengene. For å få den vektede deformasjonen i midten av gjengestengene for konfigurasjon V, ble gjennomsnittet av de fire LVDT-målingene brukt.

3.3.1 Stivhet

I dette delkapittelet vil det bli beskrevet hvordan stivhetsverdier ble analysert fra forsøkene. Det er benyttet forsøk F13-E3-5-650 som eksempel.

Metoden for analysering av stivhetsverdiene for syklisk strekk gikk ut på å først plotte lastdeformasjonsdiagrammet for de siste syv syklusene. De tre første syklusene ble fjernet da de hadde en tendens til å ha en annen stivhet enn de påfølgende syklusene. Syklusene ble delt inn i «pålast» og «avlast» som vist i figur 3-11. Området for på- og avlasting varierte for hvert forsøk. Det lineære området før kraften snur, ble valgt for å beregne stivheten. I et last-deformasjonsdiagram er stivheten representert som stigningstallet. Det ble benyttet trendlinjefunksjonen i Excel til å finne en lineær samheng for hver av de to delene (pålast og avlast). For å øke presisjonen til trendlinjefunksjonen ble starten av hver på- og avlasting forskjøvet slik at den starter ved null deformasjon. Stigningstallet for trendlinjene representerer stivheten for strekk-pålast ($K_{strekk-pålast}$) og strekk-avlast ($K_{strekk-avlast}$). Gjennomsnittet av disse to verdiene representerer stivheten for syklisk strekk (K_{strekk}), og ble beregnet etter ligning (3.3). Det ble benyttet samme metode for syklisk trykk.

Figur 3-11: Last-deformasjons for stivhetsanalyse i strekk. Venstre: syv siste syklusene. Høyre: Syklusene delt i pålast og avlast

$$K_{strekk} = \frac{K_{strekk-pålast} + K_{strekk-avlast}}{2}$$
(3.3)

I analysen av full syklisk belastning oppstod det noen ekstra utfordringer som friksjonsslipp og «knipe-effekt» i overgangen mellom strekk og trykk. Dette området er kan observeres til venstre i figur 3-12 mellom -10 kN og 10 kN. Syklusene ble derfor delt inn i en strekkdel og en trykkdel. Både strekk- og trykkdelen ble videre delt inn i pålastings- og avlastingsdel. De fire områdene hadde ulike kraftintervaller for hvert forsøk. De lineære områdene som var tilnærmet parallelle i på- og avlast, ble valgt ut for analyse. På samme måte som i syklisk strekkanalysene ble starten av hver på- og avlast syklus forskjøvet til å starte ved null deformasjon. Trendlinjefunksjonen i Excel ble deretter brukt for å finne en lineær samheng for hver av de fire områdene: strekk-pålast ($K_{Full-strekk-pålast}$), strekk-avlast trykk-pålast ($K_{Full-trykk-pålast}$) trykk-avlast ($K_{Full-trykk-avlast}$). og $(K_{Full-strekk-avlast}),$ Stigningstallet til trendlinjene representerer stivheten for hvert område. Stivhet for strekkområdet ($K_{Full-strekk}$) og trykkområdet ($K_{Full-trykk}$) ble beregnet med ligning (3.3). Den totale stivheten for full syklus (K_{Full}) ble beregnet som gjennomsnitt av strekk og trykkstivheten i samsvar med ligning (3.4).

Figur 3-12: Last-deformasjon for full syklisk stivhetsanalyse. Venstre: syv siste syklusene. Høyre: Syklusene delt i strekk- pålast og avlast, trykk- pålast og avlast

$$K_{Full} = \frac{K_{Full-strekk} + K_{Full-trykk}}{2}$$
(3.4)

Fra kapasitetsforsøksdataene ble det hentet ut monoton stivhet (K_{mon}) og syklisk stivhet (K_{syk}) fra last-deformasjonsdiagrammet vist til venstre i figur 3-13. Området for monoton stivhet ble definert fra første gang lasten økte fra 10 % av F_{est} til 40 % av F_{est} . Det andre området for syklisk stivhet ble definert fra andre gang lasten går fra 10 % av F_{est} til 40 % av F_{est} . Det ble gjort tilpasninger av områdene for hvert forsøk på grunn av friksjonsslipp og støy i målingene. Det ble videre brukt trendlinjefunksjonen i Excel for å finne en lineær samheng i hvert av de to områdene, som vist til høyre i figur 3-13. Stigningstallet til trendlinjefunksjonen representerer stivheten.

Figur 3-13: Last-deformasjon for stivhetsanalyse av kapasitetsforsøk. Venstre: Hele kapasitetsforsøket. Høyre: området for monoton og syklisk stivhet

3.3.2 Kapasitet

Resultater fra kapasitetsforsøkene ble i tillegg brukt for å bestemme den maksimale kapasiteten og friksjonskapasitet. I figur 3-14 er det mulig observere hvor friksjonsslippet og maksimal kapasitet oppstod for forsøk F13-E3-5-650. Disse er markert som henholdsvis $F_{friksjon}$ og F_{kap} .

Figur 3-14: Last-tid fra kapasitetsforsøket

3.3.3 Karakteristiske verdier

Den karakteristiske kapasiteten til treverket beregnes i samsvar med NS-EN14358 [34] basert på testresultatene. Testresultatene antas å følge en log-normal fordeling, selv om det er en øvre begrensing for kapasiteten (kapasitet til gjengestengene og jekken). Beregningsmetoden tar hensyn til antall testresultat (n) og er relativt konservativ med få resultater. Den karakteristiske uttrekkskapasiteten ble beregnet på følgende måte:

$$F_{w,Rk,eksp} = e^{\bar{y} - k_s(n) * s_y}$$
(3.5)

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} \ln(F_{max}(i))$$
 (3.6)

$$s_{y} = max \begin{cases} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left[\ln(F_{max}(i)) - \bar{y} \right]^{2}} \\ 0.05 \end{cases}$$
(3.7)

$$k_s(n) = \frac{0.05}{3.7n - 3}$$
(3.8)

3.4 Analytisk

De ble utført analytiske beregninger ved bruk av Python-programmering. Python-koden er utviklet med utgangspunkt i ligningene presentert i delkapittel 2.6.4 og 2.7.3 og tabell 3-11. Vedlegg B inneholder den utviklede Python-koden. Koden er utformet slik at den itererer gjennom ulike innskruingslengde, vinkler og antall gjengstenger. Når det gjelder beregning av de analytiske stivhetene for to gjengestenger, er det benyttet n_{ef} lik n [18]. For kapasitetsberegningene ble det benyttet retningslinjer fra EC5 [5], $n_{ef} = n^{0.9}$.

	Beregnings-meto	Ligninger	
Stivhet			
Aksialstivhet	EC5draft [2]	K _{ax_EC5draft}	(2.44)
	Stamatopoulos og Malo[22]	K _{ax_MS}	(2.45)+(2.46)+
			(2.47)+(2.48)
	Harris Stamatopoulos og	K _{ax_HA}	(2.49)+(2.16)+(2.17)
	Malo [1]		
Tverrstivhet	EC5draft[2]	$K_{v_EC5draft}$	(2.51)
	Stamatopoulos [28]	K_{v_s}	(2.52)+(2.53)+
			(2.54)+(2.55)
Kombinert	Komb 1 – Hankinsons [5]	$K_{ax_+v_komb1}$	(2.56)
aksial- og	Komb 2 – selvborende	$K_{ax_+v_komb_2}$	(2.58)
tverrstivhet	skruer [31]		
Kapasitet			
Aksialkapasitet	EC5draft [2]	$F_{ax_EC5draft}$	(2.6)+(2.7)+(2.8)
	Stamatopoulos og Malo [22]	F _{ax_MS}	(2.11)+(2.12)+(2.13)
	ETA [21]	F_{ax_ETA}	(2.9)+(2.10)
	Harris Stamatopoulos og	F _{ax_HA}	(2.15)+(2.16)+(2.17)+
	Malo [1]		(2.19)+(2.20)
Tverrkapasitet	EC5 [5]	F_{v_EC5}	(2.21)+(2.22)+(2.27)
	EC5draft [2]	$F_{v_EC5draft}$	(2.25)+(2.27)
	R Jockwer [24]*	F_{v_RJ}	(2.31)+(2.32)
Kombinert	Jockwer kombinasjon [24]	$F_{x,x}$	(2.35)
aksial- og			
tverrkapasitet			
Trykkapasitet	ETA [21]	F_{c_ETA}	(2.36)+(2.37)+(2.38)
			+(2.39)+(2.40)+(2.41)

Tabell 3-11: Analytiske beregningsmetoder og tilhørende ligningsnumm
--

* Hullkantkapasitet fra EC5draft [2]

4 Resultat

I dette kapittelet er det fremstilt resultater fra laboratorieforsøkene og de analytiske beregningene. På grunn av stor mengde blir resultatene delt i en stivhets- og en kapasitetsdel. Alle de beregnede resultatene fra forsøkene er inkludert i denne delen. Dette ble gjort for å ikke utelukke noen viktige resultater som kan benyttes i videre arbeid på temaet. Det blir også skilt mellom forsøksresultater og analytiske resultater. I tillegg blir det inkludert kommentarer til enkelte resultater som eventuelt ikke blir tatt med videre. Det er en del tabeller og resultater i dette kapittelet, og disse blir diskutert i dybden i kapittel 5.

4.1 Stivhet

Resultatene til stivhetsforsøkene blir presentert i dette kapittelet. Det blir også i tabellene presentert gjennomsnittsverdi, medianverdi og standardavvik for de forsøksresultatene med lik konfigurasjon, lengde og vinkel.

Tabellene ble fargekodet for å skille ut enkelte tall. Fargen på ruta betyr følgende:

- Svart Forsøket ikke ble utført.
- **Gult** Ikke funnet resultater for pålasting og bare blitt brukt avlastingsresultater. Verdiene ble tatt med i videre behandling og validiteten av disse resultatene er diskutert i delkapittel 5.1.1.
- **Rødt** Resultatet var ikke mulig å hente ut eller de er så dårlig at de ikke er representative. De røde tallene er ikke med i gjennomsnittet, medianen eller standardavviket

4.1.1 Laboratorisk konfigurasjon E

I denne delen blir stivhetsresultatene for konfigurasjon E presentert i tabell 4-1 til tabell 4-30. Resultatene er delt opp i strekk-, trykk- og full syklisk samt stivhet fra kapasitetsforsøk. For hver av delene strekk-, trykk- og full syklisk blir det først presentert dataene for pålast og avlast, etterfulgt av kombinerte stivhetsverdiene slik det ble beskrevet i delkapittel 3.3.1. For denne konfigurasjonen ble det gjort to tester med endret kantavstand, disse er dataene blir presentert i egne tabeller. Til slutt presenteres stivhetsverdiene for kapasitetsforsøkene.

4.1.1.1 Strekk syklisk

Tabell 4-1: K _{strekk-pålast}	resultater fo	r konfigurasjon E
--	---------------	-------------------

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	444,02	90,86	349,77	294,88	349,77	182,87
10	650	224,19	340,57	438,73	334,50	340,57	107,40
15	650	98,86	111,70		105,28	105,28	9,08
5	880	123,42	198,43	75,73	132,53	123,42	61,85
10	880	265,40	144,38	108,00	172,59	144,38	82,41
5	1000	75,02	101,48	243,04	139,85	101,48	90,34
10	1000	86,16	84,29	70,21	80,22	84,29	8,72

Tabell 4-2: K _{strekk-pålast}	resultater for konfigurasjon E med økt kantavstand fra (10	6 mm) til
	(161 mm)	

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	159,94	103,23	131,59	131,59	40,10

Tabell 4-3: K _{strekk-avlast}	resultater for	konfigurasjon E
Tabell 4-3: K _{strekk-avlast}	resultater for	Konfigurasjon

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	317,70	63,73	319,44	233,62	317,70	147,13
10	650	238,03	680,02	453,62	457,22	453,62	221,02
15	650	102,17	120,51		111,34	111,34	12,97
5	880	118,90	75,26	78,97	91,04	78,97	24,20
10	880	238,42	140,05	100,01	159,49	140,05	71,22
5	1000	65 <i>,</i> 65	81,16	296,73	147,85	81,16	129,17
10	1000	104,58	115,95	73,66	98,06	104,58	21,89

Tabell 4-4: K_{strekk-avlast} resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	176,60	105,17	140,89	140,89	50,51

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	380,86	77,30	334,61	264,25	334,61	163,55
10	650	231,11	510,30	446,18	395,86	446,18	146,24
15	650	100,52	116,11	41,97	108,1	108,31	11,02
5	880	121,16	136,85	77,35	111,79	121,16	30,84
10	880	251,91	142,22	104,01	166,04	142,22	76,78
5	1000	70,34	91,32	269,89	143,85	91,32	109,66
10	1000	95,37	100,12	71,94	89,14	95,37	15,09

Tabell 4-5: K_{strekk} resultater for konfigurasjon E

Tabell 4-6: K_{strekk} resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	168,27	104,20	136,24	136,24	45,30

4.1.1.2 Trykk	syklisk
---------------	---------

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
ľ	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	535,35	517,72	1001,60	684,89	535,35	274,42
10	650	192,12	319,60	426,78	312,83	319,60	117,48
15	650	173,74	372,24	140,57	228,85	173,74	125,28
5	880	193,15	278,29	203,82	225,09	203,82	46,38
10	880	180,56	231,37	246,56	219,50	231,37	34,56
5	1000	147,81	133,62	230,65	170,69	147,81	52,41
10	1000	159,58	169,04	87,76	138,79	159,58	44,45

Tabell 4-7: $K_{trykk-pålast}$ resultater for konfigurasjon E

Tabell 4-8: $K_{trykk-pålast}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	126,43	254,68	190,56	190,56	90,69

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	391,49	251,79	530,87	391,38	391,49	139,54
10	650	188,07	324,04	445,84	319,32	324,04	128,95
15	650	156,10	337,88	139,45	211,14	156,10	110,07
5	880	184,26	452,34	176,11	270,90	184,26	157,18
10	880	178,05	275,20	232,42	228,56	232,42	48,69
5	1000	86,63	127,82	195,25	136,57	127,82	54,84
10	1000	157,50	166,79	68,62	130,97	157,50	54,20

Tabell 4-9: K_{trykk-avlast} resultater for konfigurasjon E

Tabell 4-10: $K_{trykk-avlast}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm)til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	138,29	197,12	167,71	167,71	41,60

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	463,42	384,76	766,24	538,14	463,42	201,42
10	650	190,10	321,82	436,31	316,08	321,82	123,21
15	650	164,92	355,06	140,01	220,00	164,92	117,63
5	880	188,71	365,32	189,97	248,00	189,97	101,60
10	880	179,31	253,29	239,49	224,03	239,49	39,34
5	1000	117,22	130,72	212,95	153,63	130,72	51,81
10	1000	158,54	167,92	78,19	134,88	158,54	49,32

Tabell 4-11: K_{trykk} resultater for konfigurasjon E

Tabell 4-12: K_{trykk} resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	132,36	225,90	179,13	179,13	66,14

4.1.1.3 Full syklisk

Full syklisk strekkdel

Tabell 4-13: K _{full-strekk-pålas}	resultater for	konfigurasjon	E
---	----------------	---------------	---

Vinkel [°]	Lengde [mm]	E1 [kN/mm]	E2 [kN/mm]	E3 [kN/mm]	Gjennomsnitt [kN/mm]	Median [kN/mm]	Standardavvik [kN/mm]
5	650	96,97	53,79	203,22	117,99	96,97	76,90
10	650	83 <i>,</i> 37	94,57	116,87	98,27	94,57	17,05
15	650	62,11	40,46	476,85	51,29	51,29	15,31
5	880		98,29	29,67	63,98	63,98	48,52
10	880	127,40		57,24	92,32	92,32	49,61
5	1000	38 <i>,</i> 97			38,97	38 <i>,</i> 97	
10	1000	50,86		31,18	41,02	41,02	13,92

Tabell 4-14: $K_{full-strekk-pålast}$ resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	119,77	82,65	101,21	101,21	26,25

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	121,14	68,97	252,18	147,43	121,14	94,39
10	650	167,76	105,31	129,66	134,24	129,66	31,48
15	650	79,19	64,25	477,72	71,71	71,71	10,56
5	880	101,66	101,92	77,39	93,66	101,66	14,09
10	880	143,42	160,03	104,77	136,07	143,42	28,35
5	1000	47,93	83,31	374,56	65,62	65,62	25,02
10	1000	94,48	107,02	68,62	90,04	94,48	19,58

Tabell 4-15: K_{full-strekk-avlast} resultater for konfigurasjon E

Tabell 4-16: $K_{full-strekk-avlast}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm) til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	111,53	103,91	107,72	107,72	5,39

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	109,06	61,38	227,70	132,71	109,06	85,65
10	650	125,57	99,94	123,27	116,26	123,27	14,18
15	650	70,65	52 <i>,</i> 36	477,29	61,50	61,50	12,94
5	880	101,66	100,11	53,53	85,10	100,11	27,35
10	880	135,41	160,03	81,01	125,48	135,41	40,44
5	1000	43,45	83,31	374,56	63,38	63,38	28,19
10	1000	72,67	107,02	49,90	76,53	72,67	28,75

Tabell 4-18: $K_{full-strekk}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°۱	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	115,65	93,28	104,47	104,47	15,82

١	/inkel [°]	Lengde [mm]	E1 [kN/mm]	E2 [kN/mm]	E3 [kN/mm]	Gjennomsnitt [kN/mm]	Median [kN/mm]	Standardavvik [kN/mm]
	5	650	316,20	162,12	140,82	206,38	162,12	95,70
	10	650	113,98	179,23	143,18	145,46	143,18	32,68
	15	650	141,21	51,83	116,94	103,33	116,94	46,22
	5	880		81,42	48,19	64,81	64,81	23,50
	10	880	102,68			102,68	102,68	
	5	1000	91,65			91,65	91,65	
	10	1000	68,85		25,40	47,13	47,13	30,72

Full syklisk trykkdel

Tabell 4-19: K_{full-trykk-pålast} resultater for konfigurasjon E

Tabell 4-20: $K_{full-trykk-pålast}$ resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	116,84	109,67	113,26	113,26	5,07

abell 4-21: K _{full-trykk-avlast}	resultater for	r konfigurasjon E
--	----------------	-------------------

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	179,75	195,68	137,97	171,13	179,75	29,80
10	650	165,15	218,93	106,25	163,44	165,15	56,36
15	650	150,79	140,47	120,51	137,26	140,47	15,39
5	880	143,56	87,94	82,80	104,77	87,94	33,69
10	880	137,07	193,81	219,79	183,56	193,81	42,30
5	1000	62 <i>,</i> 83	123,82	200,55	129,07	123,82	69,01
10	1000	168,57	162,25	52,38	127,73	162,25	65,33

Tabell 4-22: $K_{full-trykk-avlast}$ resultater for konfigurasjon E med økt kantavstand fra
(106 mm) til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	138,61	108,39	123,50	123,50	21,37

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	247,98	178,90	139,40	188,76	178,90	54,96
10	650	139,57	199,08	124,72	154,45	139,57	39,35
15	650	146,00	96,15	118,73	120,29	118,73	24,96
5	880	143,56	84,68	65,50	97,91	84,68	40,68
10	880	119,88	193,81	219,79	177,83	193,81	51,84
5	1000	77,24	123,82	200,55	100,53	100,53	32,94
10	1000	118,71	162,25	38,89	106,62	118,71	62,56

Tabell 4-23: K_{full-trykk} resultater for konfigurasjon E

Tabell 4-24: $K_{full-trykk}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	127,73	109,03	118,38	118,38	13,22

Full syklisk

Tabell 4-25: K_{full} resultater for konfigurasjon E

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	178,52	120,14	183,55	160,73	178,52	35,25
10	650	132,57	149,51	123,99	135,36	132,57	12,99
15	650	108,33	74,25	298,01	91,29	91,29	24,09
5	880	122,61	92,39	59,51	91,51	92,39	31,56
10	880	127,64	176,92	150,40	151,65	150,40	24,66
5	1000	60,35	103,57	287,56	81,96	81,96	30,56
10	1000	95,69	134,64	44,40	91,57	95,69	45,26

Tabell 4-26: K_{full} resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	121,69	101,16	111,42	111,42	14,52

4.1.1.4 Stivhet i kapasitetsforsøk

Syklisk stivhet

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	94,50	59,17	180,90	111,52	94,50	62,63
10	650	170,31	112,86	133,32	138,83	133,32	29,12
15	650	86,20	97,12	640,32	91,66	91,66	7,72
5	880	100,37	119,20	55,73	91,77	100,37	32,60
10	880	145,33	173,35	98,01	138,90	145,33	38,08
5	1000	72,89	95,45	1116,00	84,17	84,17	15,95
10	1000	89,83	61,88	55,82	69,18	61,88	18,14

Tabell 4-27: $K_{kap-syk}$ resultater for konfigurasjon E

Tabell 4-28: $K_{kap-syk}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	122,90	95 <i>,</i> 56	109,23	109,23	19,33

Monoton stivhet

Tabell 4-29: K _{kap-mot}	$_{i}$ resultater for	konfigurasjon E
-----------------------------------	-----------------------	-----------------

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	47,48	38,88	174,31	86,89	47,48	75,83
10	650	129,53	66,92	132,86	109,77	129,53	37,15
15	650	57 <i>,</i> 48	36,95	267,24	47,22	47,22	14,52
5	880	41,29	68,19	74,25	61,24	68,19	17,54
10	880	72,12	106,72	92,97	90,60	92 <i>,</i> 97	17,42
5	1000	22,85	64,85		43,85	43,85	29,70
10	1000	41,26	42,34	42,11	41,90	42,11	0,57

Tabell 4-30: $K_{kap-mon}$ resultater for konfigurasjon E med økt kantavstand fra (106 mm) til(161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
10	650	98,87	76,90	87,89	87,89	15,54

4.1.2 Laboratorisk konfigurasjon D

På samme måte som for enkle gjengestenger i forrige delkapittel presenteres stivhetsverdier her for doble gjengestenger (konfig. D) i tabell 4-31 til tabell 4-45.

4.1.2.1 Strekk syklisk

Tabell 4-31: K _{strekk-nålast}	resultater for	konfigurasjon D
strekk-palast	resultater for	Konnigarabjon B

Vinkel [°]	Lengde [mm]	D1 [kN/mm]	D2 [kN/mm]	D3 [kN/mm]	Gjennomsnitt [kN/mm]	Median [kN/mm]	Standardavvik [kN/mm]
5	650		393,07	641,93	641,93	641,93	
10	650	172,55	281,92	430,34	294,94	281,92	129,39
15	650	218,80	194,12	744,59	385,84	218,80	310,93
5	880		451,95		451,95	451,95	
10	880						
5	1000	361,38		143,50	143,50	143,50	
10	1000						

Tabell 4-32: K_{strekk-avlast} resultater for konfigurasjon D

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650		227,66	1011,60	619,63	619,63	554,33
10	650	247,60	346,12	459,49	351,07	346,12	106,03
15	650	207,05	171,55	930,20	436,27	207,05	428,13
5	880		586,36		586,36	586,36	
10	880						
5	1000	586,36		113,95	113,95	113,95	
10	1000						

Tabell 4-33: K_{strekk} resultater for konfigurasjon D

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650		310,37	826,77	826,77	826,77	
10	650	210,08	314,02	444,92	323,00	314,02	117,68
15	650	212,93	182,84	837,40	411,05	212,93	369,53
5	880		519,16		519,16	519,16	
10	880						
5	1000	473,87		128,73	128,73	128,73	
10	1000						

Tabell 4-54: K _{trykk-pålast} resultater for konngulasjon D										
Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik			
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]			
5	650	486,08	343,90	2386,80	1436,44	1436,44	1344,01			
10	650	584,18	490,38	467,84	514,13	490,38	61,70			
15	650	178,52	453,51	652,36	415,44	415,44	335,06			
5	880	210,58	369,29	1104,40	561,42	369,29	476,88			
10	880	305,50			305,50	305,50				
5	1000		348,61	215,03	281,82	281,82	94,46			

4.1.2.2 Trykk syklisk

10

1000

500,15

 Tabell 4-35:
 K_{trykk-avlast} resultater for konfigurasjon D

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	508,17	154,85	970,22	739,20	739,20	326,72
10	650	580,15	502,66	318,13	466,98	502,66	134,60
15	650	156,52	453,51	512,40	334,46	334,46	251,65
5	880	217,77	382,58	1073,30	557,88	382,58	453,91
10	880	332,76			332,76	332,76	
5	1000		234,25	200,09	217,17	217,17	24,15
10	1000	1212,00					

 Tabell 4-36: K_{trykk} resultater for konfigurasjon D

V	inkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
	[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
	5	650	497,13	249,38	1678,51	1087,82	1087,82	835,37
	10	650	582,17	496,52	392,99	490,56	496,52	94,73
	15	650	167,52	453,51	582,38	374,95	374,95	293,35
	5	880	214,18	375,94	1088,85	559,65	375,94	465,38
	10	880	319,13			319,13	319,13	
	5	1000		291,43	207,56	249,50	249,50	59,31
	10	1000	856,08					

4.1.2.3 Full syklisk

Full syklisk strekkdel

Vinkel [°]	Lengde [mm]	D1 [kN/mm]	D2 [kN/mm]	D3 [kN/mm]	Gjennomsnitt [kN/mm]	Median [kN/mm]	Standardavvik [kN/mm]
5	650			300,89	300,89	300,89	
10	650	47,57	260,98		154,28	154,28	150,90
15	650		266,54				
5	880	269,87			269,87	269,87	
10	880						
5	1000			122,86	122,86	122,86	
10	1000						

Tabell 4-37: $K_{full strekk-pålast}$ resultater for konfigurasjon D

Tabell 4-38: K_{full-strekk-avlast} resultater for konfigurasjon D

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
	լՠՠյ	[KN/mm]	[KN/mm]	[KN/mm]	[KN/mm]	[KN/mm]	[KN/MM]
5	650		169,47	400,76	285,12	285,12	163,55
10	650	161,81	260,98		211,40	211,40	70,12
15	650	203,14	266,54		203,14	203,14	
5	880	262,96	350,36		262,96	262,96	
10	880	183,33			183,33	183,33	
5	1000			80,85	80,85	80,85	
10	1000						

Tabell 4-39: K_{full-strekk} resultater for konfigurasjon D

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650		169,47	350,83	260,15	260,15	128,24
10	650	104,69	260,98		182,84	182,84	110,51
15	650	203,14	266,54		203,14	203,14	
5	880	266,42	350,36		266,42	266,42	
10	880	183,33					
5	1000			101,86	101,86	101,86	
10	1000						

			juli li jiki	parast			
Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650						
10	650		260,98	412,41	336,70	336,70	107,08
15	650		266,54				
5	880	269,87			269,87	269,87	
10	880						
5	1000			122,86	122,86	122,86	
10	1000						

Full syklisk trykkdel

Tabell 4-40: K_{full-trykk-pålast} resultater for konfigurasjon D

Tabell 4-41: $K_{full-trykk-avlast}$ resultater for konfigurasjon D

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	524,94	262,45	457,66	360,06	360,06	138,03
10	650		260,98	481,06	371,02	371,02	155,62
15	650	156,52	266,54	835,95	156,52	156,52	
5	880	285,57	424,00	488,06	285,57	285,57	
10	880	335,73			335,73	335,73	
5	1000		172,23	214,35	214,35	214,35	
10	1000	688,50					

Tabell 4-42: K_{full-trykk} resultater for konfigurasjon D

Vinkel [°]	Lengde [mm]	D1 [kN/mm]	D2 [kN/mm]	D3 [kN/mm]	Gjennomsnitt [kN/mm]	Median [kN/mm]	Standardavvik [kN/mm]
5	650	524,94	262,45	457 <i>,</i> 66	360,06	360,06	138,03
10	650		260,98	446,74	353,86	353,86	131,35
15	650	156,52	266,54	835,95	156,52	156,52	
5	880	277,72	424,00	488,06	277,72	277,72	
10	880	335,73					
5	1000		172,23	168,61	168,61	168,61	
10	1000	688,50					

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650	524,94	215,96	404,24	310,10	310,10	133,14
10	650	104,69	260,98	446,74	260,98	260,98	
15	650	179,83	266,54	835,95	179,83	179,83	
5	880	272,07	387,18	488,06	272,07	272,07	
10	880	259,53					
5	1000		172,23	135,23	135,23	135,23	
10	1000	688.50					

Full syklisk

Tabell 4-43: K_{full} resultater for konfigurasjon D

4.1.2.4 Stivhet i kapasitetsforsøk

Syklisk stivhet

Vinkel [°]	Lengde [mm]	D1 [kN/mm]	D2 [kN/mm]	D3 [kN/mm]	Gjennomsnitt [kN/mm]	Median [kN/mm]	Standardavvik [kN/mm]
5	650	1023,20	266,59	461,55	364,07	364,07	137,86
10	650	188,81	420,82	419,32	342,98	419,32	133,52
15	650	150,92	165,26	483,96	266,71	165,26	188,28
5	880	554,95	227,96	685,52	391,46	391,46	231,22
10	880	102,11					
5	1000	188,62		297,97			
10	1000	1187,10					

Tabell 4-44: $K_{kap-syk}$ resultater for konfigurasjon D

Monoton stivhet

Tabell 4-45: K _{kap-mon}	resultater	for konf	figurasjon	D
-----------------------------------	------------	----------	------------	---

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]	[kN/mm]
5	650		44,08	327,96	186,02	186,02	200,73
10	650	435,90	207,69	264,88	302,82	264,88	118,74
15	650	69 <i>,</i> 58	303,84	448,05	258,82	258,82	267,62
5	880	194,44	91,36	352,26	212,69	194,44	131,40
10	880	29,53					
5	1000	422,06		64,87			
10	1000	239,53					

4.1.3 Laboratorisk konfigurasjon V

I tabell 4-46 til 4-60 blir resultater fra forsøk utført på konfig. V presentert.

• **Mørkeblått** – Forsøk utført uten friksjon. Blir ikke behandlet videre og utelatt fra de tre siste kolonene. Når det ikke er friksjon, oppstår det effekter som ikke blir diskutert i denne oppgaven.

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	762,10	554,15	546,93	391,64	550,54	550,54	5,11
10	650	240,94	544,69	195,33				
15	650	736,25	532,19	409,49				
5	880	485,63	446,81	574,55		502,33	485,63	65,49
10	880		673 <i>,</i> 09	480,92		673,09	673,09	
5	1000	627,11	494,00	493,33		538,15	494,00	77,05
10	1000	319,32	442,03	414,13		391,83	414,13	64,32

4.1.3.1 Strekk syklisk

Tabell 4-46: K_{strekk-pålast} resultater for konfigurasjon V

Tabell 4-47: K_{strekk-pålast} resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	598,91	590,16	443,87	238,37	517,02	517,02	103,44
10	650	356,54	517,90	167,20				
15	650	631,45	555,71	359,82				
5	880	409,76	377,46	507,21		431,48	409,76	67,55
10	880		682,55	476,45		682,55	682,55	
5	1000	612,09	503,86	427,37		514,44	503,86	92,81
10	1000	307,37	416,08	437,87		387,11	416,08	69,91

Tabell 4-48: K_{strekk} resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	680,51	572,16	495,40	315,01	533,78	533,78	54,27
10	650	298,74	531,30	181,27				
15	650	683,85	543,95	384,66				
5	880	447,70	412,14	540,88		466,90	447,70	66,49
10	880		677,82	478,69		677,82	677,82	
5	1000	619,60	498,93	460,35		526,29	498,93	83,08
10	1000	313,35	429,06	426,00		389,47	426,00	65,94

4.1.3.2 Trykk syklisk

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	860,90		532,09	1114,90	532,09	532,09	
10	650	1506,20	240,40	1003,40				
15	650	335,23	446,52	611,90				
5	880	445,81	398,61	517,84		454,09	445,81	60,04
10	880		332,07	400,92		332,07	332,07	
5	1000	1265,30	629,89	444,82		780,00	629,89	430,35
10	1000	290,97	310,02	243,49		281,49	290,97	34,26

Tabell 4-49: $K_{trykk-pålast}$ resultater for konfigurasjon V

 Tabell 4-50: K_{trykk-avlast} resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	1224,40		462,67	1150,00	462,67	462,67	
10	650	1549,20	229,21	1086,40				
15	650	398,64	494,81	676,08				
5	880	380,79	323,53	455,63		386,65	380,79	66,24
10	880		271,82	398,23		271,82	271,82	
5	1000	1083,60	716,28	450,13		750,00	716,28	318,08
10	1000	298,10	298,87	193,47		263,48	298,10	60,63

Tabell 4-51: K_{trykk} resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	1042,65		497,38	1132,45	497,38	497,38	
10	650	1527,70	234,81	1044,90				
15	650	366,94	470,67	643,99				
5	880	413,30	361,07	486,74		420,37	413,30	63,13
10	880		301,95	399,58		301,95	301,95	
5	1000	1174,45	673,09	447,48		765,00	673,09	372,10
10	1000	294,54	304,45	218,48		272,49	294,54	47,03

4.1.3.3 Full syklisk

Full syklisk strekkdel

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650		323,21	428,93		376,07	376,07	74,76
10	650		289,46					
15	650	389,64	421,26	300,40				
5	880	430,14	253,46	471,19		384,93	430,14	115,69
10	880		400,02	286,37		400,02	400,02	
5	1000	475,58	379,00	542,19		465,59	475,58	82,05
10	1000	280,96	407,38	312,56		333,63	312,56	65,79

Tabell 4-52: $K_{full-strekk-pålast}$ resultater for konfigurasjon V

Tabell 4-53: $K_{full-strekk-avlast}$ resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650		117,24	569,81	278,08	343,53	343,53	320,02
10	650		269,63					
15	650	435,66	494,81	433,17				
5	880	337,29	351,14	460,56		383,00	351,14	67,53
10	880		493,11	423,76		493,11	493,11	
5	1000	540,60	350,15	407,71		432,82	407,71	97 <i>,</i> 68
10	1000	264,19	438,86	193,47		298,84	264,19	126,31

Tabell 4-54: K_{full-strekk} resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650		220,23	499,37	278,08	359,80	359,80	197,39
10	650		279,55					
15	650	412,65	458,04	366,79				
5	880	383,72	302,30	465,88		383,96	383,72	81,79
10	880		446,57	355,07		446,57	446,57	
5	1000	508,09	364,58	474,95		449,21	474,95	75,14
10	1000	272,58	423,12	253,02		316,24	272,58	93,08

Full syklisk trykkdel

Tabell 4-55: K _{full-trykk-pålast}	resultater for	konfigurasjon V	V
---	----------------	-----------------	---

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650			522,26		522,26	522,26	
10	650		114,73					
15	650	121,48	212,48	559,11				
5	880	288,82	239,93	477,81		335,52	288,82	125,63
10	880		356,92	251,22		356,92	356,92	
5	1000	554,70	833,96	340,40		576,35	554,70	247,49
10	1000	235,75	417,05	312,56		321,79	312,56	91,00

Tabell 4-56: *K*_{full-trykk-avlast} resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650			565,46	1112,80	565,46	565,46	
10	650		229,10					
15	650	310,29	445,29	550,43				
5	880	309,56	318,14	522,33		383,34	318,14	120,44
10	880		447,17	383,02		447,17	447,17	
5	1000	1132,70	642,99	390,12		721,94	642,99	377,53
10	1000	253,57	315,77	372,95		314,10	315,77	59,71

Tabell 4-57: $K_{full-trykk}$ resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650			543,86	1112,80	543,86	543,86	
10	650		171,92					
15	650	215,89	328,89	554,77				
5	880	299,19	279,04	500,07		359,43	299,19	122,21
10	880		402,05	317,12		402,05	402,05	
5	1000	843,70	738,48	365,26		649,15	738,48	251,42
10	1000	244,66	366,41	342,76		317,94	342,76	64,56

Full syklisk

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650		220,23	521,62	695,44	521,62	521,62	
10	650		225,73					
15	650	314,27	393,46	460,78				
5	880	341,45	290,67	482,97		371,70	341,45	99,66
10	880		424,31	336,09		424,31	424,31	
5	1000	675,90	551,53	420,11		549,18	551,53	127,91
10	1000	258.62	394.77	297.89		317.09	297.89	70.08

Tabell 4-58: K_{full} resultater for konfigurasjon V

4.1.3.4 Stivhet i kapasitetsforsøk

Syklisk stivhet

Tabell 4-59: $K_{kap-syk}$ resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650	606,02	288,05	621,05	294,58	454,55	454,5	235,47
10	650	482,67	301,74					
15	650	519,68	499,51	485,41				
5	880	464,01	656,11	519,23		546,45	519,23	98,90
10	880		704,04	800,62		704,04	704,04	
5	1000	606,60	401,78	611,66		540,01	606,60	119,74
10	1000	341,95	497,56	396,00		411,84	396,00	79,00

Monoton stivhet

Tabell 4-60: $K_{kap-mon}$ resultater for konfigurasjon V

Vinkel [°]	Lengde [mm]	V1 [kN/ mm]	V2 [kN/ mm]	V3 [kN/ mm]	V4 [kN/ mm]	GJ. Snitt [kN/mm]	Median [kN/mm]	SD [kN/ mm]
5	650		143,27	463,16		303,22	303,22	226,20
10	650		282,21					
15	650	236,55	541,38	327,62				
5	880	257,21	287,46	440,98		328,55	287,46	98,53
10	880		503,34	460,16		503,34	503,34	
5	1000	348,06	324,59	449,90		374,18	348,06	66,61
10	1000	267,91	395,15	303,31		322,12	303,31	65,67

4.1.4 Analytisk

Her blir det presenter de analytiske stivhetsverdiene. I første rad står det hvilken beregningsmetode som ble benyttet for å beregne stivhetsverdiene. I rad to av tabellene står ligningsnummeret som hører til beregningsmodellen.

4.1.4.1 Aksialstivhet

De analytiske aksialstivhetene blir vist i tabell 4-61 for en gjengestang og i

tabell 4-62 for to gjengestenger. Aksialstivheten for både EC5draft [2] ($K_{ax_EC5draft}$) og Stamatopoulos [22] (K_{ax_S}) er uavhengig av innskruingslengden.

$K_{ax_EC5draft}$ [2] [kN/mm]		<i>K_{ax_S}</i> [22] [kN/mm]	<i>K_{ax_Ha}</i> [1] [kN/mm]		
Vinkel	Ligning (2.44)	Ligning (2.45)	Lengde	Ligning (2.49)	
			650 mm	218,1	
5°	104,4	125,9	880 mm	225,8	
			1000 mm	227,2	
			650 mm	216,0	
10°	104,4	124,8	880 mm	223,4	
			1000 mm	224,7	
			650 mm	212,2	
15°	104,4	121,9	880 mm	219,0	
			1000 mm	220,3	

Tabell 4-61: Aksialstivhet for enkle gjengestenger

Tabell 4-62: Aksialstivhet for doble gjengestenger

	<i>K_{ax_EC5draft}</i> [2] [kN/mm]	<i>K_{ax_S}</i> [22] [kN/mm]	<i>K_{ax_Ha}</i> [1] [kN/mm]		
Vinkel	Ligning (2.44)	Ligning (2.45)	Lengde	Ligning (2.49)	
			650 mm	436,2	
5°	208,8	251,9	880 mm	451,6	
			1000 mm	454,4	
			650 mm	432	
10°	208,8	249,6	880 mm	446,7	
			1000 mm	449,4	
			650 mm	424,4	
15°	208,8	243,8	880 mm	438,1	
			1000 mm	440,5	
4.1.4.2 Tverrstivhet

De analytiske tverrstivhetene for en gjengestang blir presentert i tabell 4-63 og to gjengestenger i tabell 4-64. Tverrstivhet er ifølge EC5draft [2] og Stamatopoulos [28] uavhengig av innskruingslengde og vinkel.

Tabell 4-63: Tverrstivhet for enkle gjengestenger

	$K_{v_EC5daft}$ [2] [kN/mm]	<i>K_{v_S}</i> [28] [kN/mm]
Vinkel	Ligning (2.51)	Ligning (2.52)
5°/10°/15°	12,9	6,5

Tabell 4-64: Tverrstivhet for doble gjengestenger

	$K_{v_EC5daft}$ [2] [kN/mm]	<i>K_{v_S}</i> [28] [kN/mm]
Vinkel	Ligning (2.51)	Ligning (2.52)
5°/10°/15	25,8	12,9

4.1.4.3 Kombinert aksial- og tverrstivhet

Det er flere metoder for å kombinere aksial- og tverrstivhet. Det ble benyttet to metoder for å beregne den kombinerte stivheten: Komb. 1 - Hankinsons formel [5], Komb. 2 - R. Tomasi et al. [31]. Det blir presentert kombinerte aksial- og tverrstivhet for en gjengestang i tabell 4-65 og for to gjengestenger i tabell 4-66. Tabell 4-67 inneholder kombinerte aksialstivhet fra Stamatopoulos og Malo [1] og tverrstivhet fra EC5draft [2]. Rad en i tabellene beskriver hvilke beregningsmetoder som ble kombinert med kombinasjonsformel i beskrevet i rad to.

Tabell 4-65: Kombinert analytiske aksial- og tverrstivhet for enkle gjengestenger

	$K_{ax_EC5draft} + K_{v_EC}$	_{5draft} [2] [kN/mm]	$K_{ax_{S}} + K_{v_{S}}$ [22]],[28] [kN/mm]
	Komb. 1 [5]	Komb. 2 [31]	Komb. 1[5]	Komb. 2 [31]
Vinkel	Ligning (2.56)	Ligning (2.58)	Ligning (2.56)	Ligning(2.58)
5°	99,1	104,5	110,9	125
10°	86,0	104,8	801,1	121,2
15°	70,8	105,0	55,8	114,2

Tabell 4-66: Kombinert analytiske aksial- og tverrstivheter for doble gjengestenger

	$K_{ax_EC5draft} + K_{v_EC5}$	_{idraft} [2] [kN/mm]	$K_{ax_{S}} + K_{v_{S}}$ [22]	, [28] [kN/mm]
	Komb. 1 [5]	Komb. 2 [31]	Komb. 1[5]	Komb. 2 [31]
Vinkel	Ligning (2.56)	Ligning (2.58)	Ligning (2.56)	Ligning (2.58)
5°	198,2	209,0	221,8	250,1
10°	172,1	209,5	162,2	242,4
15°	141,6	210,1	111,7	228,3

		En gjer	ngestang	To gjengestenger			
		$K_{ax_Ha} + K_{v_EC5draf}$	_t [1],[2] [kN/mm]	$K_{ax_Ha} + K_{v_EC5draft}$	[1],[2] [kN/mm]		
		Komb. 1 [5]	Komb. 2 [31]	Komb. 1[5]	Komb. 2 [31]		
Vinkel	Lengde [mm]	Ligning (2.56)	Ligning (2.58)	Ligning(2.56)	Ligning (2.58)		
5°	650	206,4	216,6	389,2	433,1		
10°	650	176,8	210,3	293,1	419,8		
15°	650	143,1	199,7	208,7	397,7		
5°	880	213,3	224,3	401,3	448,3		
10°	800	181,5	217,4	299,6	434,0		
5°	1000	214,5	225,7	403,6	451,2		
10°	1000	182,4	218,7	300,7	436,6		

Tabell 4-67: Kombinert analytiske aksialstivhet ($K_{ax,Ha}$) og tverrstivhet ($K_{v,EC5draft}$)

4.2 Kapasitet

Resultatene fra kapasitetsforsøkene blir presentert i dette kapittelet. Det blir også i tabellene presentert gjennomsnittsverdi, medianverdi og standardavvik for de forsøkensresultatene med lik konfigurasjon, lengde og vinkel. Det blir også presentert friksjonskapasitet og analytisk kapasitet.

Tabellene ble fargekodet for å skille ut enkelte tall. Fargen på ruta betyr følgende:

- **Svart** Forsøket ikke utført.
- **Rødt** Resultater ble ikke funnet eller av en grunn ikke tatt med videre i beregningene (forklares der de oppstår).
- **Blått** Resultater der stangen ikke ryker, men stålet flyter og makskapasitet til gjengestangen antas ble nådd.
- Grønt Forsøk der makskapasitet ikke ble nådd på grunn av «runout» på jekken

4.2.1 Laboratorisk konfigurasjon E

Denne delen viser kapasitetsresultat for prøvestykker med en gjengestang (konfig. E).

4.2.1.1 Kapasitet

Kapasitetsresultatene for konfig. E vises i tabell 4-68 og tabell 4-69.

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5	650	130,82	171,15	140,67	147,55	140,67	21,03
10	650	183,50	188,50	186,17	186,06	186,17	2,50
15	650	207,57	203,61	199,84	203,67	203,61	3,87
5	880	209,44	152,03	155,35	182,40	182,40	38,25
10	880	180,23	209,51	213,00	200,91	209,51	18,00
5	1000	154,00	210,65	210,54	191,73	210,54	32,68
10	1000	215.07	191.82	122.87	176.59	191.82	47.95

Tabell 4-68: Kapasitetsresultater for konfigurasjon E

Som nevnt i kapittel 3.1.1.1 skjedde det utknekking av avstivningsstaget for forsøk F7-E2-5-880. Dette førte til store sideveis forskyvninger og bøying av gjengestangen. Denne verdien ble derfor markert med rødt og ikke tatt med i videre beregninger og diskusjoner.

Tabell 4-69: Kapasitetsresultater for konfigurasjon E med økt endeavstand fra (106 mm)til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]
10	650	203,61	164,64	184,13	184,13	27,56

4.2.1.2 Friskjon

Friksjonsslippkapasiteten for konfigurasjon E er vist i tabell 4-70 og tabell 4-71.

Vinkel	Lengde	E1	E2	E3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5	650	115,83	91,09	110,12	105,68	110,12	12,95
10	650	55,14	89 <i>,</i> 33	137,82	94,10	89,33	41,55
15	650	117,57	73,31	137,01	109,30	117,57	32,65
5	880	92 <i>,</i> 92	115,78	54,67	87,79	92,92	30,88
10	880	84,32	44,22	27,49	52,01	44,22	29,20
5	1000	14,14	38,90	54,31	35,78	38,90	20,27
10	1000	41,26	53,22	36,43	43,64	41,26	8,64

Tabell 4-70: Friksjonsslipp resultater for konfigurasjon E

Tabell 4-71: Friksjonsslipp resultater for konfigurasjon E med økt endeavstand fra(106 mm) til (161 mm)

Vinkel	Lengde	E4	E5	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]
10	650		99,42	99,42	99,42	

4.2.2 Laboratorisk konfigurasjon D

Dette delkapittelet inneholder kapasitetsverdier for doble gjengestenger som står parallelt (konfig. D).

4.2.2.1 Kapasitet

I tabell 4-72 er kapasitetsresultatene for konfig. D presentert.

Tabell 4-72: Kapasitetsresultater for konfigurasjon D

Vinkel [°]	Lengde [mm]	D1 [kN]	D2 [kN]	D3 [kN]	Gjennomsnitt [kN]	Median [kN]	Standardavvik [kN]
5	650	265,65	315,42	232,88	271,32	265,65	41,56
10	650	250,76	267,25	309,77	275,93	267,25	30,45
15	650	321,57	338,84	395,44	351,95	338,84	38,64
5	880	240,65	284,73	387,77	304,38	284,73	75,50
10	880	394,89			394,89	394,89	
5	1000	345,45	249,08	258,57	284,37	258,57	53,11
10	1000	395,58			395,58	395,58	

4.2.2.2 Friksjon

Tabell 4-73 inneholder friksjonsslipskapasiteten for konfigurasjon D.

Vinkel	Lengde	D1	D2	D3	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5	650	68,36	37,88	32,19	46,14	37,88	19,45
10	650	61,46	69,19	45,07	58,57	61,46	12,32
15	650	52 <i>,</i> 42	66,71	85,94	68,36	66,71	16,82
5	880	61,35	76,82	62,15	66,77	62,15	8,71
10	880	37,10			37,10	37,10	
5	1000	56 <i>,</i> 92		73,50	65,21	65,21	11,72
10	1000	180,52			180,52	180,52	

Tabell 4-73: Friksjonsslipp resultater for konfigurasjon D

4.2.3 Laboratorisk konfigurasjon V

I denne delen er resultater fra kapasitetsforsøkene hvor to gjengestenger er plassert i en V-formasjon (konfig. V).

4.2.3.1 Kapasitet

Tabell 4-74 inneholder kapasitetsresultater for konfigurasjon V

Vinkel	Lengde	V1	V2	V3	V4	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5	650	245,60	322,63	267,87	173,78	252,47	256,74	61,64
10	650	273,24	289,77	311,08		291,36	289,77	18,97
15	650	349,88	328,73	329,62		336,08	329,62	11,96
5	880	223,02	297,41	394,88		305,10	297,41	86,19
10	880	217,60	389 <i>,</i> 84	380,32		385,08	385,08	6,73
5	1000	395,33	396,81	395,27		395,80	395,33	0,87
10	1000	323,34	367,58	395,22		362,05	367,58	36,26

Tabell 4-74: Kapasitetsresultater for konfigurasjon V

Forsøk F29-V1-10-880 ble markert med rødt, på grunn av at det ble observert tydelige utknekking av gjengestengene og oppsprekking av treverket. Dette skyltes at det ikke ble brukt friksjon under syklisktesting. Det ble derfor vurdert at dette påvirket resultatet i så stor grad at verdien anses som ikke representativ.

4.2.3.2 Friskjon

Konfig. V oppnår to forskjellige friksjonsslipp: Friksjonsslipp 1 - første friksjonsslipp og presentert i

tabell 4-75, Friksjonsslipp 2 – andre friksjonsslipp er presentert i tabell 4-76.

Vinkel [°]	Lengde [mm]	V1 [kN]	V2 [kN]	V3 [kN]	V4 [kN]	Gjennomsnitt [kN]	Median [kN]	Standardavvik [kN]
5	650		248,32	226,55		237,44	237,44	15,39
10	650							
15	650							
5	880	148,27	237,28	262,35		215,97	237,28	59,95
10	880		224,11			224,11	224,11	
5	1000	289,03	262,37	238,73		263,38	262,37	25,17
10	1000	235,45	279,40	230,88		248,58	235,45	26,79

Tabell 4-75: Friksjonsslipp 1 resultater for konfigurasjon V

Tabell 4-76: Friksjonsslipp 2 resultater for konfigurasjon V

Vinkel	Lengde	V1	V2	V3	V4	Gjennomsnitt	Median	Standardavvik
[°]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5	650		268,88	213,06		240,97	240,97	39,47
10	650							
15	650							
5	880	219,88	254,48	330,52		268,29	254,48	56,60
10	880		217,29			217,29	217,29	
5	1000	355,96	269,53	238,73		288,07	269,53	60,78
10	1000	249,35	319,65	293,12		287,37	293,12	35,50

4.2.4 Analytisk

Det er utført analytiske beregninger av kapasitet til gjengestenger i limtre. Det er beregnet aksial-, trykk- og tverrkapasitet samt kombinasjon mellom aksial- og tverrkapasitet. Formler og beskrivelse av formlene er skrevet om i del kapittel 2.6.4.

4.2.4.1 Aksialkapasitet

De analytiske beregningene er presentert for en gjengestang i tabell 4-77 og for to i tabell 4-78. Rad en viser hvilken beregningsmodell som er benyttet og i rad to står tilhørende ligning.

Tabell 4-77: Analy	ytiske aksialkapasitet	er for en gjengestang
--------------------	------------------------	-----------------------

		$F_{ax_EC5draft_Rk}$ [2]	<i>F_{ax_MS_Rk}</i> [22]	<i>F_{ax_ETA_Rk}</i> [21]	$F_{ax_Ha_Rm}$ [1]
Vinkel [°]	Lengde [mm]	Ligning (2.6)	Ligning (2.11)	Ligning (2.9)	Ligning (2.15)
5	650	92,9 kN	157,1 kN	64,9 kN	189,6 kN
10	650	92,9 kN	159,4 kN	78,2 kN	191,7 kN
15	650	113,4 kN	162,6 kN	91,6 kN	193,5 kN
5	880	92,9 kN	212,7 kN	87,8 kN	246,2 kN
10	880	92,9 kN	215,7 kN	105,9 kN	250,9 kN
5	1000	92,9 kN	241,7 kN	99,8 kN	272,3 kN

10	1000	92,9 kN	245,2 kN	120,3 kN	278,9 kN			
	Tabell 4-78: Analytiske aksialkapasiteter for to gjengestenger							
Vinkel [°]	Lengde [mm]	F _{ax_EC5draft_Rk} [2] Ligning (2.6)	F _{ax_MS_Rk} [22] Ligning (2.11)	<i>F_{ax_ETA_Rk}</i> [21] Ligning (2.9)	$F_{ax_{Ha},Rm}[1]$ Ligning (2.15)			
5	650	173,3 kN	293,2 kN	121,0 kN	353,7 kN			
10	650	173,3 kN	297,4 kN	145,9 kN	357,7 kN			
15	650	192,2 kN	202,5 kN	170,9 kN	361,0 kN			
5	880	173,3 kN	396,9 kN	163,8 kN	459,4 kN			
10	880	173,3 kN	402,6 kN	197,6 kN	468,2 kN			
5	1000	173,3 kN	451,0 kN	186,2 kN	508,2 kN			
10	1000	173,3 kN	457,5 kN	224,5 kN	520,5 kN			

4.2.4.2 Tverrkapasitet

De analytiske resultatene for tverrkapasitet med en gjengestang blir presentert i tabell 4-79 og for to gjengestenger i tabell 4-80. I de analytiske modellene for tverrkapasitet er lengde ikke en variabel. Tabellens første rad viser hvilken beregningsmodell som er benyttet og i rad to står tilhørende ligningsnummer.

Tabell 4-79: Analytiske vertikalkapasiteter for en gjengestang

	<i>F_{v_EC5}</i> [5]	$F_{v_EC5draft}$ [2]	<i>F_{v_RJ}</i> [24]
Vinkel [°]	Ligninger (2.21)	Ligninger (2.25)	Ligninger (2.31)
5	42,7 kN	28,0 kN	12,0 kN
10	42,6 kN	28,1 kN	10,8 kN
15	42,5 kN	28,4 kN	10,7 kN

Tabell 4-80: Analytiske vertikalkapasiteter for to gjengestenger

	F_{v_EC5} [5]	$F_{v_EC5draft}$ [2]	<i>F_{v_RJ}</i> [24]
Vinkel [°]	Ligninger (2.21)	Ligninger (2.25)	Ligninger (2.31)
5	79,8 kN	52,3 kN	22,4 kN
10	79,5 kN	52,5 kN	20,1 kN
15	79,2 kN	53,0 kN	10,0 kN

4.2.4.3 Kombinert aksial- og tverrkapasitet

Det ble benyttet ligning (2.35) fra Jockwer [24] for å kombinere kapasiteten mellom aksialog tverrkapasitet. Resultater fra analysen blir for en gjengestang blir fremstilt i tabell 4-81 og for to gjengestenger i tabell 4-82. I første rad er står det hvilke aksialkapasiteter som er kombinert med vertikalkapasiteten beskrevet i rad to.

		F_{ax_EC}	_{5draft} [2] +	$F_{ax_{-}S}[22] +$		
Vinkel [°]	Lengde [mm]	F_{v_EC5} [5]	$F_{v_EC5draft}$ [2]	<i>F_{v_EC5}</i> [5]	$F_{v_EC5draft}$ [2]	
5	650	96,2 kN	94,9 kN	160,2 kN	158,9 kN	
10	650	98,8 kN	96,3 kN	164,3 kN	161,8 kN	
15	650	120,5 kN	116,9 kN	168,1 kN	164,4 kN	
5	880	96,2 kN	94,9 kN	215,6 kN	214,3 kN	
10	880	98,8 kN	96,3 kN	219,8 kN	217,3 kN	
5	1000	96,2 kN	94,9 kN	244,5 kN	243,2 kN	
10	1000	98,8 kN	98,8 kN	248,8 kN	246,3 kN	

Tabell 4-81: Kombinert aksial- og vertikalkapasitet for enkle gjengestenger

Tabell 4-82: Kombinert aksial- og vertikalkapasitet for to gjengestenger

		F_{ax_ECS}	_{5draft} [2] +	<i>F_{ax_MS}</i> [22] [2] +		
Vinkel [°]	Lengde [mm]	<i>F_{v_EC5}</i> [5]	$F_{v_EC5draft}$ [2]	F_{v_EC5} [5]	$F_{v_EC5draft}[2]$	
5	650	179,6 kN	177,2 kN	299,0 kN	296,6 kN	
10	650	184,4 kN	179,7 kN	306,6 kN	301,9 kN	
15	650	206,2 kN	199,4 kN	313,6 kN	306,8 kN	
5	880	179,6 kN	177,2 kN	402,3 kN	399,9 kN	
10	880	184,4 kN	179,7 kN	410,3 kN	405,6 kN	
5	1000	179,6 kN	177,2 kN	456,2 kN	453,8 kN	
10	1000	184,4 kN	179,7 kN	464,3 kN	459,6 kN	

4.2.4.4 Knekking/trykkapasitet

De analytiske resultatene for trykkapasitet som er basert på knekking av gjengestenger blir fremstilt i tabell 4-83.

Tabell 4-83: Karakteristisk knekking/trykkapasitet for gjengestenger

	F_{c_ETA} - 1 gjengestang [21] [kN]	F_{c_ETA} - 2 gjengestang [21] [kN]
Vinkel [°]	Ligning (2.36)	Ligning (2.36)
5	109,1 kN	203,6 kN
10	110,2 kN	205,7 kN
15	111,3 kN	207,7 kN

5 Diskusjon

I dette kapittelet blir det diskutert og analysert de store mengdene data som ble samlet inn under forsøkene. For å oppnå en grundig og oversiktlig diskusjon, er kapittelet blitt delt inn i ulike temaer. Relevante observasjoner blir presentert under hvert tema. Dette har gitt mulighet til å analysere spesifikke egenskaper ved gjengestengenes oppførsel grundig. Diskusjonskapittelet er delt opp i to deler: en stivhetsdel og en kapasitetsdel.

I diskusjonsdelen både for stivhet og kapasitet blir det hovedsakelig brukt gjennomsnittsverdier. Det kan imidlertid argumenteres for at medianverdier bør brukes. Dette på grunn av det begrensede antall forsøksresultater fra likt forsøksoppsett og et datasett som ikke er normalfordelt. Selv om enkeltavvik kan ha betydelig innvirkning på gjennomsnittet, betraktes likevel gjennomsnittet som den mest representative verdien for datasettet. Medianverdien blir likevel presentert og kan være interessant å studere nærmere enn det som er gjort i denne rapporten.

Som hjelpemiddel for å vurdere dataene benyttes standardavviket. Denne verdien brukes til å vurdere spredningen av dataene rundt gjennomsnittet. Tallet gir informasjon om hvor mye de individuelle datapunktene avviker fra gjennomsnittet. Variasjonskoeffisienten blir også brukt for å vurdere spredningen rundt gjennomsnittet. Det er behov for å sammenligne verdier med både en og to gjengestenger, da kan variasjonskoeffisient gi en bedre sammenheng mellom variabilitetene.

5.1 Stivhet

I denne delen blir stivheten i trykk, strekk, full syklisk, samt første og andre lastpåføring fra kapasitetsforsøkene diskutert. Før stivhetsresultatene blir diskutert blir det først sett på gyldigheten av resultatene. Det oppstod noen problemer knyttet til forsøksoppsettet. Å diskutere disse problemene vil bidra til å bedre forståelsen av resultatene. Dette blir dermed gjennomgått først. Deretter blir det sett på hvordan resultatene og analytiske metoder varierer med vinkel. Til slutt blir det sammenlignet og studert effekten av konfigurasjon og lastsituasjon.

5.1.1 Verifisering av resultat

Det blir her diskutert hvilke effekter forsøksoppsettet hadde på forsøksresultatene, og hvordan dette påvirket påliteligheten av resultatene. Som det kommer frem av tabellene i kapittel 4.1, er det en del mangelfulle resultater (markert med rødt). Disse mangelfulle resultatene ble utelatt fra videre databehandling. Dette fører til færre sammenlignbare resultater og usikkerheten i analysen blir større.

I tillegg er det noen resultater som er markert med gult i tabellene for full syklisk belastning. Dette skyldes at stivheten for strekk- og trykkdelen i full syklisk belastning kun er bestemt av avlastingsdelen. Det gjorde at $K_{full-strekk}$ ble betraktet som lik $K_{full-strekk-avlast}$ og $K_{full-trykk}$ ble betraktet som lik $K_{full-trykk-avlast}$. Grunnen til at dette ble gjort er observasjonen om at stivheten i på- og avlasting for både syklisk trykk ($K_{trykk-avlast} \approx K_{trykk-pålast}$) og syklisk strekk ($K_{strekk-avlast} \approx K_{strekk-pålast}$) var tilnærmet like.

5.1.1.1 Plassering av LVDT

LVDT-ene ble montert i senter av den tregjengede delen av gjengestengene, som fører til at det ble målt over lenger avstand. Ved antagelse av lineær oppførsel i bjelken, vil dette føre til større målte deformasjoner for de lengre stengene enn de korte. Dette resulterer i at stivheten ikke kan direkte sammenlignes for de ulike lengdene. For å illustrere denne effekten er den totale stivheten plottet mot innskruingslengde i figur 5-1. Stivheten i figuren er den gjennomsnittlige stivheten av forsøksverdiene. I figur 5-1 kan det observeres en markant nedgang i stivheten ved økende innskruingslengde. For konfigurasjon V er det en mindre nedgang i stivheten enn for de to andre konfigurasjonene. Funnet stemmer ikke helt overens med teorien som indikerer at stivheten øker med økende lengder opptil omtrent 600 mm [1]. Ved innskruingslengder rundt 600 mm flater økningen av stivheten ut, og stivheten blir omtrent uavhengig av lengden. Dermed tyder det på at plasseringen av måleinstrumentene påvirker de målte stivhetsverdiene.

Figur 5-1: Gjennomsnittlige stivhetsverdier for konfigurasjonene E, D og V i forhold til innskruingslengde

Det er også viktig å merke seg en forskjell i festeposisjonen til måleinstrumentene på den utstikkende delen av gjengestangen. Dette har medført variasjon i hvor mye av den utstikkende delen som er tatt med i deformasjonsmålingene. Stålet i den utstikkende delen vil få en deformasjon på grunn av belastningen. Når det er tatt med mer av denne delen i målingene vil de målte deformasjonene bli større. Hvordan dette påvirker de forskjellige konfigurasjonene er beskrevet i tabell 5-1.

Konfigurasjon	Festepunkt måleinstrument	Konsekvens i forhold til konfig. D	
E	Rolton som går gjennom braketten	Størst utstikkende del $ ightarrow$ Større målte	
L	bolten som går gjennom braketten	deformasjoner $ ightarrow$ Lavere målt stivhet	
D	Plater som ligger oppunder	Referanse	
U	brakettene		
V	En klemme festet oppunder	Minst utstikkende del $ ightarrow$ Mindre målte	
v	brakettene	deformasjoner 🔿 Høyere målt stivhet	

Tabell 5-1: Festepunkt for måleinstrument og konsekvens for de forskjelligekonfigurasjonene

For å kompensere for ulik målelengde er stivheten delt på målingslengden. Dette er ikke gjort for resultater fra forsøk på 15°, da de kun ble testet for en innskruingslengde på 650 mm. Som det kan observeres i figur 5-2, er det fortsatt en trend med nedgang i stivheten med økende lengde. Dette tyder på at hvor målepunktet på prøvestykket er, har betydning for de målte stivhetsverdiene. For å kunne fastslå om lengden på gjengestangen har en effekt på stivheten, vil det være nødvendig med forsøk hvor det måles fra samme sted på prøvestykket. Det er imidlertid ingen konsensus i litteraturen for hvor denne stivheten bør måles. Det antas også en sammenheng mellom måleposisjon (eller målelengde) og stivheten. For å finne den trengs det flere målinger med ulik plassering langs gjengestangen. Det er et forslag å bruke senterlinjene som referansepunkt for hvor det skal måles. Det kan dermed være at stivheten målt ved 50 % av innskruingslengden ned på prøvestykket, som gjort her, gir gode stivhetsverdiene for et knutepunkt.

Det er beregnet et forholdstall basert på gjennomsnittlige stivhetsverdier som ble målt ved 50 % av innskruingslengden. Dette er gjort ved å dividere stivheten for 880 mm og 1000 mm på stivheten til 650 mm. Tabell 5-2 viser forholdet mellom stivhet for ulike lengder for strekk, trykk, full og et gjennomsnitt av dem. Effekten av ulik målelengde resulterer i at 880 mm er omtrent 29 % mykere, og 1000 mm er omtrent 36 % mykere enn gjengestengene med innskruingslengde på 650 mm. Det ser ut til at strekk får større effekt av ulik målelengde og blir enda mykere enn trykk og full.

Tabell 5-2: Forholdstall mellom stivhet for ulike innskruingslengder, med 650 mm somreferanselengde

Lengde [mm]	Total	Strekk	Trykk	Full
650	1,00	1,00	1,00	1,00
880	0,71	0,64	0,67	0,81
1000	0,64	0,51	0,71	0,69

Figur 5-2: Stivhet pr mm i forhold til innskruingslengde

5.1.1.2 Effekt av friksjon på stivhetsforsøk

Resultatene fra stivhetsforsøkene i kapittel 4.1 viser at det er en del av forsøkene som har dårlige resultater, «røde» tall. Hovedårsaken til dette er friksjonsslipp som oppstod under stivhetsforsøkene. Spesielt for konfigurasjon D var dette et stort problem. I konfigurasjon D var det høye belastninger og få friksjonsflater, dette resulterte i slipp på samtlige forsøk. Friksjonsslipp er problematisk, fordi når slippet skjer faller kraften drastisk. Når lastpåføringen er kraftstyrt, vil jekken da prøve å kompensere for dette ved å øke lasten hurtig til ønsket nivå. Denne kraftige økningen kan betraktes som et slag for treverket. Dette førte til risting i prøvestykket og målingene ble i de fleste tilfellene ubrukelige.

Det ble også noen dårlige målinger for stivhetsforsøker på konfigurasjon V. Som beskrevet i kapittel 3 ble det forsøkt å kjøre noen forsøk for konfigurasjon V uten friksjon. Uten friksjon oppstod det imidlertid en «slag»-effekt for laster rundt null (for full syklisk), og tverrbøying av gjengestengene for strekk- og trykkbelastningen. Dette var spesielt problematisk for trykk hvor tverrbøyingen førte til sprekkdannelser i prøvestykket.

For å slippe de overnevnte problemene trengs det høyest mulig friksjonskapasitet. Med tanke på å øke friksjonen ville det antakeligvis vært fordelaktig å droppe hylsene for enkle gjengestenger. Uten hylsene ville det muligens vært tilstrekkelig friksjon til å unngå friksjonsslipp i forsøkene. Det kunne også vært til fordel å stramme boltene med et dreiemoment på 2500 Nm for alle forsøkene, selv om dette medfører plastisk deformasjon i boltene. Bruk av sterkere bolter som 10.9 eller 12.9 ville også vært et godt alternativ. Friksjonskapasiteten blir behandlet videre i delkapittel 5.2.8.

5.1.1.3 Forskyvninger i prøvestykket

I stivhets- og kapasitetsforsøkene påføres prøvestykket store krefter som overføres til riggen gjennom stålavstivere. Det har vist seg at stålet var for mykt og det ble relativt store deformasjoner i stålet. Dette medførte at toppen på prøvestykket fikk både horisontal- og vertikalforskyvning, som vist i figur 5-3. Horisontalforskyvning skal i utgangspunktet ikke påvirke målingene, da målingene utføres som relative målinger mellom bjelken og gjengestangen. Likevel kan det ha påvirket resultatene for stivhetsforsøkene ved full syklisk belastning. Når lasten gikk fra strekk til trykk i et høyt tempo, gav dette risting og støy i måleinstrumentene. Antageligvis er dette også med på å øke antallet «røde» tall i resultatdelen for full syklisk belastning. Spesielt gjaldt dette for konfigurasjon D der full syklisk hadde størst amplitude og dermed størst deformasjon i stålet. Den største utfordringen både for de sykliske forsøkene og kapasitetsforsøkene var horisontalforskyvningen i toppen. På grunn av eksentrisk lastpåføring roterte prøvestykket om rotasjonspunktet markert i figur 5-3. Dette gav horisontalforskyvning som avstivningsstaget i toppen ikke klarte å holde igjen. Horisontalforskyvningen førte til sprekkdannelse langs fibrene, noe som kan ha redusert kapasitet til prøvestykket.

Figur 5-3: Forskyvning i prøvestykket på grunn av lastpåføring

For konfigurasjon V kan den horisontale forskyvningen i toppen av prøvestykket føre til fiktive deformasjoner og dermed påvirke stivhetsresultatene. To av måleinstrumentene var i denne konfigurasjonen plassert på siden markert i figur 5-4figur 5-3. I figuren er det illustrert forskyvninger som kan oppstå i måleinstrumentene ved en rotasjon på 1° om rotasjonspunktet. Dette kan ha resultert i at de to LVDT-ene på venstre side fikk en fiktiv deformasjon mellom 0 - 1 mm. I dataanalysen ble det tatt gjennomsnittet av alle fire LVDT-ene, og dermed blir bidraget fra de fiktive deformasjonene halvparten så store. Dette kan ha medført at stivhetsresultatene for konfigurasjon V i strekk ble stivere enn de egentlig skulle være.

Figur 5-4: Fiktive deformasjoner på grunn av 1°-rotasjon for konfigurasjon V

5.1.1.4 Forsøksoppsett

Basert på diskusjonen i dette kapittelet, erfaringer fra forsøkene og databehandlingen er det identifisert flere mulige forbedringer som kunne ha ført til flere pålitelige resultater. Følgende forslag til forbedringer er listet opp:

- Bruk av kamera i stedet for LVDT-måleinstrument: Bruk av kamera kan gi bedre oversikt over deformasjonene og målepunkter. Målepunktene kan da være ett i underkant av braketten, ett på bolten i braketten, og f.eks. hver 10. cm langs gjengestangen.
- Bruk av bolter med høyere fasthet: Ved bruk bolter med høyere fasthet, for eksempel 10.9 eller 12.9, kan styrken og påliteligheten til festemidlene økes.
- Påføre høyere dreiemoment: Sammen med sterkere bolter, kan innstramming med høyere dreiemoment (2500 Nm) under monteringen sikre bedre festing av boltene og redusere risikoen for slitasje og friksjonsslipp.
- Bytte friksjonsbolt ved mistanke om slitasje: Hvis det er mistanke om slitasje på friksjonsboltene, bør de byttes ut for å opprettholde pålitelig friksjon.
- Stivere festing av prøvestykket: Ved bedre festingen av prøvestykket kan rotasjon og forskyvning under belastning reduseres.
- Kjøre stivhetsforsøk på krefter mellom 30 70 kN: Ved å begrense kreftene til den sykliske lasten kan deformasjonene i stålet reduseres, og det kan oppnås mer pålitelige resultater.
- Lavere frekvens på lastpåføring: Ved å senke frekvensen på lastpåføringen kan støy og uønskede effekter reduseres når lasten går fra strekk til trykk og motsatt for full syklisk testing.
- Unngå bruk av hylser som friksjonsflater: Bruk av hylser gir ingen god friksjonsflate og bør om mulig unngås. Dette kan øke friksjonen og dermed senke risikoen for friksjonsslipp.
- Unngå eksentrisitet av lastpåføring: Hvis mulig bør eksentrisitet i lastpåføringen unngås for å redusere uønskede rotasjoner og forskyvninger i prøvestykket.

5.1.2 Syklisk stivhet

Med bakgrunn i delkapittel 5.1.1.1 blir det videre diskutert og samelignet resultater for forsøk med lik innskruingslengde. Det blir delt opp i lengder på 650mm, 880mm og 1000mm. Forsøksresultatene blir i figur 5-5 til figur 5-7 sammenlignet med teoretiske verdier for de forskjellige konfigurasjonene. De teoretiske aksialstivhetsverdiene er representert som stiplete linjer. Siden konfigurasjon V i tillegg til å være aksialbelastet også er tverrbelastet, sammenlignes det med kombinasjonsstivhetsverdier av aksial- og tverrstivhet. I figur 5-5 til figur 5-7 er det brukt Hankinsons formel (komb. 1) plottet som firkanter. Det er også inkludert stivhetsverdier fra kombinasjonsligning 2 for selborende skruer i ligning (2.58) av Tomasi et al. [31] plottet som prikket linje.

For å undersøke effekten av vinkelendring på stivheten, er det i figur 5-5 til figur 5-7 plottet stivhet som funksjon av vinkelen. Strekk, trykk og full syklisk testing er selvstendige forsøk, og det er observert forskjellige stivhetsverdier for de forskjellige lastsituasjonene. Det ble dermed valgt å plotte syklisk strekk i blått, syklisk trykk i grønt og full (trykk og strekk) syklisk i rødt.

Figur 5-5: Stivhet for lengde 650 mm i forhold til vinkel

I figur 5-5 til figur 5-7 er det enkelte tendenser som går igjen. Ses det bort fra strekk og full syklisk for innskruingslengde på 880 mm i figur 5-6, hvor stivheten øker, er tendensen tydelig for de resterende tilfellene at går stivheten ned med økende vinkel. Dette er også tilfelle i de teoretiske beregningene, men der i mye mindre grad.

Det er verdt å merke seg at for enkelte av grafene er det kun en verdi, noe som gjør usikkerheten veldig stor. Dette kan for eksempel observeres for vinkel på 10° nederst til høyre i figur 5-6. Det kan også observeres større spredning for vinkel 5° (enn 10° og 15°), dette kan være på grunn av få data og gjør usikkerheten for disse verdiene større.

Figur 5-6: Stivhet for lengde 880 mm i forhold til vinkel

Figur 5-7: Stivhet for lengde 1000 mm i forhold til vinkel

Full syklisk stivhet har en tydelig tendens til å være mykere enn strekk og trykk. Dette ble også observert av Erstad og Ivarsøy [4]. Erstad og Ivarsøy antyder i sin masteroppgave at grunnen til dette er «pinching»-effekten, og hvor på grafen stivhetsverdiene ble hentet ut. Det ble forsøkt å hente ut verdier som ligger i det lineære området etter «pinching»effekten. I og med at samme observasjon er gjort her, kan det tyde på at stivheten hvor lasten går syklisk mellom trykk til strekk er mykere enn om det kun blir belastet syklisk i trykk eller strekk. Det observeres at stivheten for syklisk trykk i de fleste tilfellene er høyere enn for syklisk strekk, dette diskuteres i delkapittel 5.1.3.2.

Ved å sammenligne stivhetsverdiene fra forsøkene med de teoretiske verdiene, er det ingen sterk korrelasjon observert for noen av beregningsmodellene. Noen av modellene treffer i enkelte punkter, men gir store avvik i andre punktet. Det varierer også hvilke lastsituasjoner som gir minst differanse til de analytiske modellene. Det er dermed ingen modeller som klarer å predikere stivheten med god nøyaktighet.

5.1.3 Sammenligning

I denne delen blir det sett på sammenhenger ulike parametere har på stivhetsverdiene. Det blir beregnet forholdstall og sett på sammenhenger ut fra disse forholdstallene. Det er imidlertid viktig å være oppmerksom på visse begrensninger ved bruk av forholdstall. Det er beregnet forholdstall ut fra gjennomsnittsverdier. Siden gjennomsnittsverdiene har et standardavvik ulikt null, resulterer dette i en feilforplantning. Gauss' lov for feilforplantning sier at et forholdstallet vil få et høyere avvik enn de to gjennomsnittsverdiene [35]. Dette kan illustreres med et relevant eksempel for effektivt antall stenger. Hvis gjennomsnittet til en kombinasjon for en gjengestang er lavere enn den faktiske verdien og for doble stenger er høyere enn den faktiske verdien, vil forholdstallet få effekt av begge avvikene. I dette tilfellet ville usikkerheten gi et for høyt forholdstall. Det blir imidlertid vurdert at slike forholdstall til tross for sine svakheter gir et dypere innblikk i resultatene og blir dermed benyttet.

5.1.3.1 Vinkel

Det blir her sett nærmere på effekten vinkelendringen har på stivheten. Forholdstallene blir her beregnet ved å dividere resultatene fra testene med vinkel på 10° og 15° på resultatene fra 5°, disse er vist i tabell 5-3 (siden 5° sammenlignes med seg selv blir denne verdien lik 1,0). Ut ifra tabellen er det tydelig at stivheten synker med økende vinkel. Denne trenden er ikke-lineær og for 15° synker stivheten ned til omtrent 50 % av stivheten for 5°.

Konfigurasjon E			Konfigurasjon D			Konfi				
Vinkel [°]	Strekk	Trykk	Full	Strekk	Trykk	Full	Strekk	Trykk	Full	Gj. snitt
5	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
10	1,49	0,79	1,21	0,39	0,51	0,84	1,10	0,54	0,86	0,86
15	0,41	0,41	0,57	0,50	0,34	0,58				0,47

5.1.3.2 Strekk vs. trykk

Type lastpåføring har vist seg å påvirke stivheten. I tabell 5-4 er det beregnet forholdstall mellom stivhetene i strekk og trykk. For konfigurasjon E og D er det tendenser til at stivheten er lavere i strekk enn i trykk, i gjennomsnitt på henholdsvis 30 % og 20 %. For konfigurasjon V er alle stivhetene (utenom 5-1000) i strekk, høyere enn i trykk. Strekkstivheten i konfigurasjon V er i gjennomsnitt 30 % høyere enn i trykk. Grunnen til dette kan være de fiktive deformasjonene diskutert i delkapittel 5.1.1.3 som vil gi stivere resultater i strekk.

Tabell 5-4: Forholdstall mellom stivhet i strekk og trykk

Vinkel [°]	Lengde [mm]	Konfigurasjon E $\frac{K_{strekk}}{K_{trykk}}$	Konfigurasjon D $rac{K_{strekk}}{K_{trykk}}$	Konfigurasjon V $rac{K_{strekk}}{K_{trykk}}$
5	650	0,5	0,8	1,1
10	650	1,3	0,7	
15	650	0,5	1,1	
5	880	0,5	0,9	1,1
10	880	0,7		2,2
5	1000	0,9	0,5	0,7
10	1000	0,7		1,4
Gjen	nomsnitt	0,7	0,8	1,3

5.1.3.3 Monoton vs. syklisk stivhet

Her blir det sett på om stivheten er forskjellig i kapasitet- og stivhetsforsøkene. I tabell 5-5 blir det presentert forholdstall mellom to stivhetsverdier. Som beskrevet i delkapittel 3.3.1, er K_{mon} stivheten som ble funnet fra kapasitetsforsøkene ved første belasting, mens K_{syk} er stivheten ved andre belasting. Resultatene for begge disse parameterne er presentert i kapittel 4.1. Forholdstallene ble funnet ved å dele den sykliske stivheten, K_{strekk} , også fra kapittel 4.1, på de to verdiene. Verdiene i tabell 5-5 viser at K_{strekk} er betydelig større enn K_{mon} . Nederst i tabellen er det regnet ut gjennomsnitt for alle vinklene og lengdene samlet. Ved å kombinere alle konfigurasjonene er det regnet ut at K_{strekk} større enn K_{mon} med en faktor på 2,1. Et relativt høyt forholdstall var forventet, ettersom det ble observert at første strekkbelasting alltid var mykere enn påfølgende belastningene. Gjennomsnittet av forholdene mellom K_{strekk} og K_{syk} for de tre konfigurasjonene er regnet ut til å være 1,4. Her var det forventes et forholdstall nærmere 1,0. Det er imidlertid ikke overraskende at tallet er over 1,0 siden K_{strekk} ble målt fra syklus fire til ti, mens K_{syk} ble målt i kapasitetsforsøket på syklus to (andre belastning).

		Konfigu	rasjon E	Konfigu	rasjon D	Konfigurasjon V		
Vinkel [°]	Lengde [mm]	K _{strekk}						
		K _{mon}	K _{syk}	K _{mon}	K _{syk}	K _{mon}	K _{syk}	
5	650	3,0	2,4	4,4	2,3	1,8	1,2	
10	650	3,6	2,9	1,1	0,9			
15	650	2,3	1,2	1,6	1,5	1		
5	880	1,8	1,2	2,4	1,3	1,4	0,9	
10	880	1,8	1,2			1,4	1,0	
5	1000	3,3	1,7			1,4	1,0	
10	1000	2,1	1,3			1,2	1,0	
Gjennomsnitt		2,6	1,7	2,4	1,5	1,4	1,0	

Tabell 5-5: Forhold mellom montonisk- og sykliskstivhet

5.1.3.4 Effektivt antall gjengestenger

Effektivt antall gjengestenger blir beregnet som forholdstallet mellom en og to gjengestenger. Dette beregnes ved å dividere stivheten for konfigurasjon D og V på stivheten for konfigurasjon E. Stivhetene som er benyttet i beregningene er gjennomsnittsverdiene for de forskjellige konfigurasjonene. Forholdstallene er presentert i tabell 5-6. For konfigurasjon D og V oppnås det et gjennomsnittlig effektivt antall gjengestenger på henholdsvis $n_{ef} = 2,17$ og $n_{ef} = 3,30$. Det er riktignok verdt å merke seg at det er stor usikkerhet knyttet til disse tallene tallet.

Som beskrevet i teorien er det to forslag til antall effektive gjengestenger i bruksgrensetilstand. Ut ifra disse forsøkene er det tydelig at resultatene stemmer bedre overens med modellen til Stamatopoulos og Malo [18] på $n_{ef,ser} = n = 2$ enn forslaget til Krenn og Schickhofer [27] på $n_{ef,ser} = n^{0.8} = 1,74$. Effektivt antall for konfigurasjon V er en god del høyere enn det teorien tilsier. En årsak til at stivheten i strekk og full syklisk er så mye stivere i konfig. V enn D kan være de fiktive deformasjonene diskutert i delkapittel 5.1.1.3, og forskjell i måleposisjonen beskrevet i 5.1.1.1. Dette har trolig medført at stivheten for konfig. E er noe lavere, og konfig. V er noe høyere enn de hadde vært om det ble målt på samme plass som for konfig. D. Dette er imidlertid en effekt som vil være ganske liten, men som dobles ved beregning av forholdstall. Det er derfor ikke helt riktig å bruke tall for effektivt antall stenger for å sammenligne konfigurasjonene D og V.

I tabell 5-6 det også en del ekstremverdier som skiller seg tydelig ut. Det er verdier på opp mot 6,70 og ned mot 0,82 (for konfig. V og D henholdsvis). En forklaring på dette er de individuelle avvikene som påvirker forholdstallet, beskrevet i starten av dette delkapittelet (5.1.3). Dette, sammen med plassering av LVDT og målelengde, samt forskyvninger i prøvestykket er trolig grunnen til de store avvikene.

		Ka	onfig D)	Konfig V			
		Ka	onfig E	7	Konfig E			
Vinkel [°]	Lengde [mm]	Strekk	Trykk	Full	Strekk	Trykk	Full	
5	650	3,13	2,02	1,93	2,02	0,92	3,25	
10	650	0,82	1,55	1,93				
15	650	3,80	1,70	1,97				
5	880	6,40	2,26	2,97	4,18	1,70	4,06	
10	880		1,42		4,08	1,35	2,80	
5	1000	0,89	1,62	1,65	3,66	4,98	6,70	
10	1000				4,37	2,02	3,46	
Gjennomsnitt		2,66	1,76	2,09	3,66	2,19	4,05	
Gjennomsnitt			2,17			3,30		

Tabell 5-6: Effektiv antall gjengestenger, n_{ef} , for stivhet

5.2 Kapasitet

I denne delen blir det diskutert rundt resultatene i kapasitetsforsøkene samt de analytiske beregningene. Det blir sett på hvordan ulike parametere påvirker kapasiteten til gjengestengene. Her inkluderes vinkelen mellom fiberretning, innskruingslengden og antall gjengestenger. Det blir også sett på bruddformene, effekt av kantavstand og friksjon mellom stålelementene i forbindelsen.

For å gi en god oversikt over resultatene er det i figur 5-8 til figur 5-10 presentert overflateplot for hver konfigurasjon der lengde og vinkel er plottet mot kapasitet. Siden det ikke ble utført tester med vinkel 15° og innskruingslengdene 880 mm og 1000 mm, er det ingen verdier for disse kombinasjonene i grafene. Plottene er basert på gjennomsnittsverdier fra kapasitetsforsøkene.

Figur 5-8: Gjennomsnittlig kapasitet for konfigurasjon E

Figur 5-9: Gjennomsnittlig kapasitet for konfigurasjon D

Figur 5-10: Gjennomsnittlig kapasitet for konfigurasjon V

Plottene i figurene figur 5-8 til figur 5-10 viser en tendens til at kapasiteten øker både med økende lengde og vinkel. Det er imidlertid enkelte resultater som ikke følger denne trenden. Både for konfigurasjon E og V synker grafen ved kombinasjonen 1000mm og 10°. En mulig årsak til dette blir diskutert i neste delkapittel.

5.2.1 Pålitelighet av resultater

I dette delkapittelet blir det diskutert påliteligheten av resultatene fra kapasitetsforsøkene. Det blir identifisert faktorer som kan ha bidratt til økt variasjon i resultatene. For å analysere dette presenteres det i tabell 5-7 og tabell 5-8 gjennomsnittskapasitet, median kapasitet, standardavvik (SD) og variasjonskoeffisient (CoV). I introduksjonen av kapittel 5 er det diskutert rundt bruken av gjennomsnittverdier fremfor medianverdier. Det er i tillegg en ekstra ulempe knyttet til bruken av gjennomsnittskapasitet når det eksisterer en maksimal kapasitet for forsøkene. Siden jekken har en maksimal kapasitet på 395 kN og gjengestengene på 210kN, vil ethvert resultat over disse grensene kun påvirke gjennomsnittet til å bli lavere. På den annen side kan dette bidra til å redusere variasjonskoeffisienten, dersom flere av kapasitetsresultatene oppnår makskapasitet.

		Konfigurasjon E								
Vinkel	Lengde	Gj. snitt	Median	SD						
[°]	[<i>mm</i>]	[kN]	[kN]	[kN]	COV					
5	650	147,6	140,7	21	14 %					
10	650	186,1	186,2	2,5	1%					
15	650	203,7	203,6	3,9	2 %					
5	880	182,4*	182,4*	32,2	19 %					
10	880	200,9	209,5	18	9 %					
5	1000	191,7	210,5	32,7	17 %					
10	1000	176,6	191,8	48	27 %					

Tabell 5-7: Kapasitetsverdier for en gjengestang (konfigurasjon E)

* Kun to gjeldende resultater

		Konfi	Konfigurasjon V						
Vinkel [°]	Lengde [<i>mm</i>]	Gj. Snitt [kN]	Median [kN]	SD [kN]	CoV	Gj. Snitt [kN]	Median [kN]	SD [kN]	CoV
5	650	271,3	265,7	41,6	15 %	252,5	256,7	61,6	24 %
10	650	275,9	267,3	30,5	11 %	291,4	289,8	19	7 %
15	650	352	338,8	38,6	11 %	336,1	329,6	12	4 %
5	880	304,4	284,7	75,5	25 %	305,1	297,4	86,2	28 %
10	880	394,9*	394,9			385,1**	385,1	6,7	2 %
5	1000	284,4	258,6	53,1	19 %	395,8	395,3	0,9	0 %
10	1000	395,6*	395,6			362,1	367,6	36,3	10 %

Tabell 5-8: Kapasitetsverdier for doble gjengestenger,	(konfigurasjon D og V)
--	------------------------

* Kun gjennomført et forsøk

** To gjeldende resultater

Det kan observeres at variasjonskoeffisienten er relativt høy for enkelte kombinasjoner, med verdier på opptil 28 %. En mulig årsak til dette er små sprekker som er observert i varierende grad før testing. Prøvestykkene har blitt testet tidligere i en annen masteroppgave, samtidig som det her blir utført fire forsøk på hvert prøvestykke. Likevel er ikke størrelsen på de observerte sprekkene så store at dette alene kan være årsaken.

En annen faktor som har påvirket resultatet er oppsettet av forsøkene. Som det er diskutert i delkapittel 5.1.1.3, oppstod det forskyvinger i prøvestykkene under testing. For kapasitetsresultatene var det i hovedsak rotasjon som skapte problemer. På grunn av de horisontale forskyvningene i toppen av prøvestykket oppstod det tverrkrefter i gjengestengene. Dette vil på grunn av treets lave strekkapasitet på tvers av fiberretning kunne føre til splitting og lavere maksimal kapasitet. For konfig. V oppstod det også en annen type tverrkrefter for forsøkene som ble utført uten friksjon. Stengene var da frie til å forskyve seg horisontalt. En strekkbelastning fra jekken vil da trekke gjengestengene inn mot midten og vil føre til trykkrefter vinkelrett på fibrene.

Ved sammenligning av forsøksresultatene oppimot de analytiske resultatene, kan tverrkapasiteten for vinkler så lave som 5°, 10° og 15° neglisjeres. Dette vises i figur 5-11 hvor det er minimal differanse mellom aksialkapasitet (F_{ax_-}) og kombinert aksial- og tverrkapasitet (F_-) ved disse vinklene. I de videre delkapitlene blir forsøksresultatene dermed kun sammenlignet med de analytiske aksialkapasitetene.

Det er verdt å merke seg at det er stor usikkerhet knyttet de analytiske beregningsmodellene til Stamatopoulos og Malo [22] (F_{ax_MS} og $F_{ax_mean_MS}$). Disse modellene har et gyldighetsområde for innskruingslengder mellom 100 mm og 600 mm. Det er da benyttet ekstrapolering for å estimere kapasiteten for innskruingslengder lengre enn 600 mm.

Figur 5-11: Analytisk kapasitet for kombinerte aksial- og tverrkapasitet: konfigurasjon V og innskruingslengde på 650mm

5.2.2 Vinkel

En viktig parameter som blir analysert nærmere er vinkelen mellom gjengestangen og fiberretningen. Her blir det undersøkt hvilken effekt vinkelen har på kapasiteten. En hypotese er at økt vinkel vil føre til økt kapasitet på grunn av at gjengestangen går gjennom flere årringer eller lameller. I figur 5-12 kan det observeres tendenser som støtter denne hypotesen. I figuren kan det observeres at økt vinkel gir høyere kapasitet. Det kan se ut som de forskjellige konfigurasjonene påvirkes ulikt. De forskjellige konfigurasjonene er representert med ulike linjetyper: Konfigurasjon E har heltrukke linjer, konfigurasjon D har prikkede linjer, og konfigurasjon V har stiplede linjer.

Figur 5-12: Gjennomsnittskapasitet fra forsøkene i forhold til ulike vinkler mellom gjengestengene og fiberretningen

Figur 5-13 til figur 5-15 inkluderer resultater fra forsøkene sammen med analytiske beregninger. De ulike symbolene i figurene representerer:

- Kryss Eksperimentelleresultater
- Rosa horisontale streker Gjennomsnittsverdi med standardavvik
- Svart stiplet linje Konfig. E: makskapasitet til gjengestang. Konfig. D og V: makskapasitet til hydraulisk jekk
- Heltrukne linjer Analytiske kapasitetsverdier

I figur 5-13 vises det at kapasiteten går ned med økt vinkel fra 5° til 10° for konfigurasjon E og V med innskruingslengde på 1000 mm. For konfig. E er en årsak til dette det store avviket med det ene resultatet på ca. 125 kN. Dette illustrer noe av problemet ved bruk av gjennomsnittsverdier, ved at kun ett stort avvik justerer mye på snittet. Tabell 5-7 viser også en stor variasjonskoeffisient for denne verdien. Dersom denne ene verdien utelates, vil gjennomsnittet ligge på rundt 200 kN. Det ville da ikke observeres en nedgang i kapasiteten med økt vinkel. Grunnen til en nedgang i kapasitet ved vinkelendring fra 5° til 10° for konfig. V i figur 5-15, er at for vinkel på 5° har kapasiteten allerede nådd maksimalkapasitet. Ethvert avvik fra makskapasitet ved vinkel på 10°, vil da kun påvirke resultatet negativt.

Figur 5-13: Kapasitet : Lengde 650 mm - eksperimentelt og teoretisk

De analytiske beregningene er i ulik grad avhengig av vinkelen. I EC5draft er det for eksempel en overgang ved vinkel på 15. Kapasiteten blir avhengig av vinkel for vinkler over 15°. Når forsøkene sammenlignes med de andre teoretiske verdiene ser det ut som de har lik stigning i kapasitet når vinkel øker. Resultatene stemmer tilsynelatende mest overens med beregningene til Stamatopoulos [22], oransje linje i figur 5-13 til figur 5-15. Det er viktig å merke seg at denne beregningsmodellen gir karakteristiske verdier og er ikke direkte sammenlignbar.

Figur 5-14 Kapasitet: Lengde 880 mm - eksperimentelt og teoretisk

En interessant effekt som er mulig å observere ut ifra disse figurene er at spredningen i resultatene er større for de laveste vinklene. Dette kan observeres i de fleste grafene i figur 5-13 til figur 5-15. Det er markert i grafene hvor det kun ble utført ett forsøk, og dermed ikke er noe standardavvik. Disse verdiene må dermed utelukkes fra denne betraktningen. Likevel er det noen avvik, for eksempel den tidligere diskuterte verdien på $125 \ kN$, som trekker standardavviket opp. Konfig. V med lengde på $1000 \ mm$ er også et avvik fra trenden, se nede til høyre i figur 5-15. Det kan der observeres at det er minst spredningen for resultater med vinkelen på 5° .

Figur 5-15: Kapasitet: Lengde 1000 mm - eksperimentelt og analytiske

5.2.3 Lengde

Det blir her studert effekten av lengde har på kapasiteten til forbindelsen. I figur 5-16 er kapasiteten plottet mot innskruingslengden. For forsøk med vinkel 15° er det kun utført tester med innskruingslengde på 650 mm. For disse forsøkene er det dermed ikke mulig å identifisere sammenhengen mellom ulike lengder. Resultatene for vinkel på 15° tas likevel med for å se på ulike sammenhenger med teoretiske betraktninger og i lys av de andre vinklene.

Figur 5-16: Kapasitet fra forsøkene for for ulike innskruingslengder

For alle konfigurasjonene med en vinkel på 5° og 10°, stiger kapasiteten mellom 650 mm og 880 mm. Videre antyder dataene en utflating av kapasitetene når lengden øker til 1000 mm. Som beskrevet i delkapittel 5.2.1 kan den gjennomsnittlige kapasiteten, som ligger oppimot den makskapasiteten til jekken vær misvisende. Grunnet at avvik bare kan påvirke til lavere gjennomsnitt, oppstår det tilfeller der kapasiteten synker mellom 880 mm og 1000 mm.

I figur 5-17 til figur 5-19 vises resultatene fra forsøkene sammen med de analytiske verdiene. De ulike symbolene representerer:

- Kryss Forsøksresultater
- Rosa streker gjennomsnittskapasitet med standardavvik
- Svart stiplet linje makskapasitet til gjengestang (215 kN) eller jekk (395 kN)
- Heltrukken linje analytisk kapasitet

Figur 5-17: Kapasitet: vinkel 5° - eksperimentelt og analytisk

Som det kommer frem av figur 5-17 til figur 5-19 er kapasiteten til gjengestengene og jekken en tydelig begrensning for forsøkene gjort på lengdene 880 mm og 1000 mm. For lengden 650 mm ville det forventes at resultatene skulle lagt seg rundt middelverdiene til de teoretiske betraktningene. De to analytiske modellene som gir middelverdier er modellen til Stamatopoulos [22] ($F_{ax_{MS_{Rm}}} - rød$ linje) og beregningsmetoden til Stamatopoulos og Malo [1] ($F_{ax_{Ha}}$ - grønn linje). For å studere om dette stemmer blir det sett på lengden 650 mm. For stengene med en vinkel på 15° i figur 5-18 stemmer resultatene godt overens med de teoretiske betraktningene. Derimot for de lavere vinklene i figur 5-17 og figur 5-18, ligger resultatene jevnt litt under de teoretiske verdiene. Det er en tendens til at kapasiteten for vinkelen på 10° ligger rundt den karakteristiske beregningsmodellen til Stamatopoulos og Malo [22]. For vinkel på 5° er kapasiteten enda lavere og det er også større spredning. Videre for de lengre gjengestengene forventes det kapasitet opp mot makskapasitet til gjengestangen eller jekken. Dette stemmer relativt bra for resultatene med en vinkel på 10°, mens det er ganske store avvik ved 5°. Det kan også observeres i figur 5-17 at for vinkel på 5° er det større standardavvik i resultatene, enn for vinklene 10° (se figur 5-18) og 15° (se figur 5-19).

Figur 5-18: Kapasitet: vinkel 10° - eksperimentelt og analytisk

For EC5draft [2] er det lagt vekt på å gi en konservativ kapasitet. Dette er også karakteristisk kapasitet og kan dermed ikke direkte sammenlignes med forsøksresultatene. Som nevnt i kapittel 2 er effekten av lengden begrenset til $l_w \leq 20 * d$ ved beregning av kapasitet etter EC5draft. Dette resulterer i ekstra konservative kapasiteter for lengder over 440 mm. Forsøkene viser dette ved at resultatene ligger over den blå linjen til EC5draft i figur 5-17 til figur 5-19. Det blir sett på karakteriske kapasiteter i neste delkapittel.

I figur 5-17 til figur 5-19 er det også mulig å studere effekten av de ulike konfigurasjonene. Selv om konfig. D og V har noe ulik lastsituasjon (tverrlast for konfig. V) kan dette ikke observeres. Forsøksresultatene tyder på at de gir relativt lik kapasitet. Det ser ut som kapasiteten for de to konfigurasjonen blir likt påvirket av innskruingslengde og vinkel.

Når det kommer til hvilken av de teoretiske betraktningene som stemmer best med forsøkene, vil dette kunne sies å være F_{ax_HA} [1] for en vinkel på 15°. Den er noe mer konservativ og passer best med de doble gjengestengene i konfigurasjon D og V. For konfig E, stemmer $F_{ax,MS,Rm}$ noe bedre for samme vinkel. For de øvrige vinklene ville det passet bedre med et mer konservativt forslag. Et slikt forslag bør ta høyde for de store variasjonene til de minste vinklene.

Figur 5-19: Kapasitet: vinkel 15° - eksperimentelt og teoretisk

Noe som var ønsket å finne var, hva som er en «lang nok» lengde på en gjengestang. Med lang nok lengde menes det at det er gjengestangen som går til brudd og ikke treverket. Kriteriet for når gjengestangen er lang nok ble her satt til $210 \, kN$ for enkeltstenger og $395 \ kN$ for doble stenger. Dette valget kan diskuteres og det kan være ønskelig å benytte andre verdier i kriteriet, men dette blir ikke diskutert videre her. Å få en konklusjon på dette må ses på i sammenheng med vinkel og konfigurasjon. Som nevnt tidligere stemmer forsøksresultatene godt overens med teorien for vinkel 15°. Ved å da følge de analytiske linjene ved en vinkel på 15° i figur 5-19 til bruddkriteriet nås, blir lengden funnet til å være i overkant 700 mm for de doble stengene og i underkant av 700mm for de enkle stengene. For vinkel på 10° ligger de analytiske verdiene over forsøksverdiene. Dersom det likevel brukes en lik stigning som de analytiske modellene, med utgangspunkt i forsøksverdiene, vil en «lang nok» gjengestang være noe i underkant av 880 mm. For vinkel på 5° i figur 5-19 har kun konfigurasjonen V oppnådd makskapasitet ved en innskruingslengde på 1000 mm. Det er riktignok høy usikkerhet knyttet til resultatene ved vinkel på 5°. For denne vinkelen er det også størst grad av forskjeller i forhold til konfigurasjon. Det er mye som tyder på at en meter heller ikke er langt nok når vinkelen er så lav.

5.2.4 Karakteristisk uttrekkskapasitet

Det var ønskelig å kunne sammenligne eksperimentelle data med utkastet til eurokode 5. For å gjøre dette var det nødvendig å beregne karakteristisk uttrekkskapasitet for forsøksresultatene. Metodikken for å beregne de karakteristiske kapasitetene er beskrevet i kapittel 3.3.3. Siden EC5draft [2] ikke differensierer for lengder over 20 * d, blir dette heller ikke gjort for forsøkene, det vil si at resultatene for alle lengdene er kombinert for beregning av den karakteristiske verdien. Dette gjør også datasettet større og de karakteristiske verdiene blir mindre usikre. Vinklene 5° og 10° blir også kombinert mens forsøkene på 15° blir tatt for seg selv. Dette er på grunn av utkastets ikke differensierer for vinkler under 15°. Utregning og karakteristiske verdier er vist i tabell 5-9.

			El	ksperin	nentel	le data	EC5draft [2]	Sammenligning
Konfig.	Vinkel	n	k_s	\overline{y}	s _y	$F_{w,Rk,eksp}[kN]$	$F_{ax,EC5draft,Rk}$ [kN]	$\frac{F_{w,Rk,eksp}}{F_{ax,EC5draft,Rk}}$
-	5 °, 10°	19	1,92	5,19	0,17	128,0	92, 9	138 %
E	15°	3	3,15	5,32	0,05	174,0	113,4	153%
DogV	5 °, 10°	32	1,85	5,73	0,22	205, 1	173,3	118 %
Dugv	15°	6	2.34	5.84	0.08	287.7	192.2	150 %

Tabell 5-9: Karakteristisk uttrekkskapasitet for eksperimentelle resultater og EC5draft

Det kan tydelig observeres at eksperimentelle data ligger godt over tilsvarende verdier fra utkastet til eurokode 5. Sammenligningstallene viser at forsøksverdiene er omtrent 50 % større enn EC5draft for en vinkel på 15°. For de lavere vinklene er disse tallene noe mindre, men det illustrerer uansett at verdiene for EC5draft er veldig konservative.

5.2.5 Effektivt antall gjengestenger

I tabell 5-10 vises det effektive antall gjengestenger (n_{ef}) for konfigurasjon D og V. Verdiene er funnet ved å dividere kapasiteten for konfig. V og D på kapasiteten til konfig. E (som gjort for stivhet i kapittel 5.1.3.4). Ifølge både EC5draft [2] og den nåværende eurokoden [5] er $n_{ef} = n^{0.9}$, hvor n er antall gjengestenger (beskrevet i kapittel 2.6.3). For to gjengestenger gir dette en verdi for n_{ef} lik 1,87 ($n_{ef} = n^{0.9} = 2^{0.9} = 1,87$).

Tabell 5-10: Effektivt antall, n_{ef} , for konfigurasjon D og V sammenlignet med
konfigurasjon E og teoretisk

Minkel Lengde [mm]		Konfigurasjon D Effektivt antall	Konfigurasjon V Effektivt antall	Teoretisk [18] Effektivt antall	
Vinkel	Lengde [mm]	n_{ef}	n_{ef}	n_{ef}	
5°	650	1,84	1,71	1,76	
10°	650	1,48	1,57	1,77	
15°	650	1,73	1,65	1,78	
5°	880	1,67	1,67	1,76	
10°	880	1,97	1,92	1,77	
5°	1000	1,48	2,06	1,76	
10°	1000	2,24	2,05	1,77	
Gjennomsnitt		1,77	1,80	-	

Nederst i tabell 5-10 er det beregnet gjennomsnitt fra alle forsøkene. Dette gir effektivt antall gjengestenger $n_{ef} = 1,77$ og $n_{ef} = 1,80$ for henholdsvis konfigurasjon D og V. Disse tallene stemmer relativt godt overens med teorien. Det er viktig å merke seg at på grunn av store variasjoner i kapasitetsdataene, er det stor usikkerhet knyttet til disse verdiene. Siden antall effektive stenger er et forholdstall vil svakhet som feilforplanting også oppstå her, beskrevet i kapittel 5.1.3. Det er store variasjoner i resultatene og effektivt antall gjengestenger varierer fra 1,48 til 2,24. Det er noen forskjeller mellom de to konfigurasjonene, og det kan observeres større spredning for konfigurasjon D enn V. Likevel er forskjellene i gjennomsnitt relativt små.

Stamatopoulos og Malo [18] sitt forslag (ligning (2.4)) til effektivt antall gjengestenger er utregnet i tabell 5-11. Tabellen inneholder også gjennomsnittlig n_{ef} for de ulike vinklene for konfig. D og V. Ifølge denne beregningsmodellen stiger n_{ef} med økende vinkel, men minimalt for så små vinkler. Det observeres ingen tydelig effekt av økende vinkel for disse resultatene. Resultatene stemmer godt overens med denne modellen, selv om effekten av økende vinkel ikke observeres.

	Konfigurasjon D	Konfigurasjon V	Analytisk [18]			
Vinkel	Effektivt antall	Effektivt antall	Effektivt antall			
	n_{ef}	n_{ef}	n_{ef}			
5°	1,70	1,75	1,76			
10°	1,90	1,85	1,77			
15°	1,73	1,65	1,78			

Tabell 5-11: Effektiv antall gjengestenger, n_{ef} , for konfig. D og V og analytisk

5.2.6 Effekt av kantavstand og forsøk 51 og 52

Det er ulike kantavstander i forsøkene utført for konfigurasjon E/D og V. Som det kommer frem i delkapittel 5.2.5 er det liten forskjell i de observerte kapasitetsverdier for de to konfigurasjonene. Det er ikke alle forsøkene som oppfyller kravet for minimumsavstander i henhold til eurokode 5 [5]. Dette gjelder:

- Konfigurasjon: E og D. Vinkel: 5°. Lengde: 650 mm
- Konfigurasjon: V. Vinkel: 5°. Lengde: alle lengder
- Konfigurasjon: V. Vinkel: 10°. Lengde: 650 mm

Disse forsøkene er markert med asterisk i tabell 3-4. Som beskrevet i kapittel 5.2.2 Vinkel ble det observert en større grad av spredning for de minste vinklene. En mulig grunn til dette kan derfor være at kantavstandene var for små for noen av disse kombinasjonene.

To forsøk ble utført med økt kantavstand, forsøk F51-E4-10-650 og F52-E5-10-650. Kantavstanden var der 161 mm i stedet for 106 mm som for resten av forsøkene på E-10-650. Som en konsekvens av økt kantavstand ble gjengestangen skrudd inn i tredje lamell. Dette er en svakere lamell enn de to ytterste i en GLc-bjelke. De to ytterste lamellene har høyere densitet og styrke en de i midten. Dette betyr at gjengestangen kun er skrudd inn i de svake lamellene, som trolig kunne gjort forbindelsen svakere.

Det er ingen tydelig effekt av verken kantavstand eller svakere material for kapasiteten. Resultatene for disse to forsøkene viser en gjennomsnittlig kapasitet på 184,1 kN sammenlignet med 186,1 kN for gjengestenger plassert nærmere kanten. Ifølge EC5 [5] er minimumskravet til kantavstand 4 * d = 4 * 22 = 88mm, noe som gjør at gjengestangen som er nærmest kanten også oppfyller minimumskravet. Ifølge teorien skal også svakere tremateriale påvirke kapasiteten, men dette ble ikke observert i forsøkene. Noe som kan være interessant er at standardavviket er større for forsøkene med økt kantavstand, med standardavvik på 27,6 kN kontra 2,5 kN, vist i tabell 4-68 og tabell 4-69.

5.2.7 Bruddform

Forskjellige bruddformer oppstod under testing. Bilde av de ulike bruddformene for alle forsøkene kan studeres i vedlegg C. Der sprekkene som har oppstått er tegnet med tusj på prøvestykkene for synliggjøring av sprekkene. Ut ifra tolkningen er tre typer bruddformer observert. I tabell 5-12 til tabell 5-14 er det notert hvilken bruddform som inntraff for forsøkene til de tre konfigurasjonene. De forskjellige bruddformene a) – e) er beskrevet i nærmere i delkapittel 2.6.1 og vist i figur 2-2. De gjengis her sammen med f) som ikke er en bruddform, men fortsatt en begrensning for forsøkene med to gjengestenger.

- a) Skjærbrudd langs gjengestang
- d) Splittelsesbrudd
- e) Strekkbrudd gjengestang
- f) Jekkens makskapasitet

Bestemmelse av bruddform er basert på tolkning av grafene kraft-tid og kraft-deformasjon i vedlegg E sammen med bilder av sprekkutbredelse i vedlegg C. Hvilken bruddform som inntraff ble basert på tolkning kraftgrafen etter brudd, sammen med bilder av sprekkutbredelsen. Det ble definert følgende tolkning:

- Skjærbrudd langs gjengestang: Kraften etter brudd la seg på et jevnt nivå høyere enn 30 kN, og det i tillegg var observert liten grad av oppsprekking rundt gjengestengene.
- Splittelsesbrudd: der graden av oppsprekking var større, og kraften etter brudd lå rundt null.
- Brudd i gjengestang: der det skjedde utflating av kraften med økende deformasjoner. Denne tolkningen ble gjort under selve utførelsen av forsøkene.
- «*»: Det er notert med asterisk hvis det er en viss grad av oppsprekking for prøvene selv om disse ikke er gått til splittelsesbrudd.

For konfigurasjon E oppstod alle de tre typene bruddformer, se tabell 5-12. Ved innskruingslengde 650 mm er omtrent alle bruddene skjærbrudd (a), utenom et tilfelle som gikk til splittelsesbrudd (d). For lengdene 880 mm og 1000 mm var bruddene mer jevnt fordelt mellom strekkbrudd i gjengestang (e) og skjærbrudd (a), igjen med ett tilfelle av splittelse (d). Eksempel bruddtypene splittelsesbrudd og skjærbrudd langs gjengestangen for konfigurasjon E er vist i figur 5-21.

Vinkel \ lengde	650 mm				8	380 mn	ı	1000 mm			
5°	а	а	а			е	d**	а	а	е	е
10°	a*	d	a*	а	а	a*	е	е	е	а	а
15°	а	a*	a*						•		

* tydelig oppsprekking rundt gjengestangen ** F7

Figur 5-20: Eksempel på bruddform for konfigurasjon E. Splittelsesbrudd (d) til venstre og skjærbrudd (a) til høyre

Siden konfigurasjon D består av to gjengestenger, er det tenkelig at to forskjellige bruddformer kan inntreffe for hver test. Dette er imidlertid ikke observert og det er dermed antatt samme type bruddform for begge gjengestengene. For konfigurasjon D er bruddformene som oppstod vist i tabell 5-13. For alle lengdene er det skjærbrudd (a) som dominerer. Det er imidlertid tendenser til at makskapasiteten til jekken blir «bruddformen» ved kombinasjon av større vinkler og lengder. Også for denne konfigurasjonen er det likevel to tilfeller der det skjer splittelsesbrudd (d). Eksempel på bruddformene splittelsesbrudd og skjærbrudd for konfigurasjon D er vist i figur 5-21.

Tabell 5-13: Bruddformer for konfigurasjon D

Vinkel \ Lengde	650 mm				880 mn	n	$1000 \ mm$			
5°	а	а	a*	а	a*	a**	а	a*	а	
10°	а	а	d	f			f			
15°	a*	d	f							

* tydelig oppsprekking rundt gjengestangen

** Strekkbrudd (røk i to) i gjengestang nummer to etter den første gjengestangen røk med skjærbrudd

Figur 5-21: Eksempel på bruddform for konfigurasjon D. Splittelsesbrudd til venstre og skjærbrudd til høyre

For konfigurasjon V er det to gjengestenger. Likevel, på grunn av at stålplatene vil rotere ved første brudd, er det kun den ene av gjengestengene som går til brudd. De ulike bruddformene for konfig. V er vist i tabell 5-14. Med antagelsen om at tolkningen av resultatene er riktig, virker det som at lengden på gjengestangen har innvirkning på bruddformen. For innskruingslengden 650 mm observeres splittelsesbrudd (d) for alle tilfellene med unntak av ett tilfelle. For de lengre stengene er det mer jevnt fordelt mellom makskapasitet til jekken (f) og skjærbrudd (a). Dette ligner mer på det som er observert for konfigurasjon D.

Det er flere mulige årsaker til at splittelse er den dominerende bruddformen for de korteste stengene i denne konfigurasjon. Noen årsaker kan være følgende:

- Kantavstanden er liten og ikke innenfor kravene til Eurokode 5 [5]. Som det er konkludert av både Serrano [36], [37] kan for kort kantavstand føre til splittelsesbrudd.
- Selv om det ikke er observert for de andre konfigurasjonene kan lengden ha en påvirkning på bruddformen ved at lavere innskruingslengde gir større sannsynlighet for splittelsesbrudd. Siden dette kun er observert for konfig. V, kan det ikke fastslås sikkert. Testing er muligens nødvendig med enda kortere stenger.
- For konfigurasjon V er det eksentrisitet i lastpåføringen hvor gjengestengene går parallelt med fiberretning, i motsetning til de andre konfigurasjonene. Denne eksentriske lastpåføring kan føre til rotasjon i prøvestykket, som diskutert i delkapittel 5.1.1.3. Dette kan ha bidratt til hyppigere forekomst av splittelsesbrudd.

Eksempler på splittelsesbrudd og skjærbrudd for konfig. V er vist i figur 5-22.

Tabell 5-14: Bruddformer for konfigurasjon V

Vinkel \ Lengde	650 mm				880 mm			$1000\ mm$		
5°	d	d	a*	d	a*	a*	f	f	f	f
10°	d	d	d**		a*	f	d	a*	a*	f
15°	d	d	d							

* tydelig oppsprekking rundt gjengestangen

** Kan ikke støttes med data fra kapasitetsforsøk, datafil mangler

Figur 5-22: Eksempel på bruddform for konfigurasjon V. Splittelsesbrudd i øverst og skjærbrudd nederst
På grunn av utfordringer knyttet til fastholding av prøvestykkene, se delkapittel 5.1.1.3, oppstod det for enkelte forsøk store forskyvninger i prøvestykket. Dette gav ukontrollerte tverrkrefter i gjengestangen og resulterte i brudd langs stangen (se figur 5-23). Dette skjedde for eksempel med forsøk F7-E2-5-880 og kan ha skjedd til mindre grad for andre forsøk, noe som kan ha resultert i lavere kapasitet.

Figur 5-23: Brudd på grunn av rotasjon i prøvestykket (F7-E2-5-880)

For stengene som gikk til skjærbrudd, ble det i starten av delkapittelet nevnt at den gjenværende friksjonskraften var større enn 30 kN. Det som ble observert var at gjenværende friksjonskraft lå på $50 kN \pm 20 kN$ for alle forsøkene som fikk skjærbrudd. Dette gjaldt både for enkle gjengestenger (konfig. E) og doble gjengestenger (konfig. D og V).

5.2.8 Friskjonsslipp

Til høyre i figur 5-24 til figur 5-26 er testrekkefølge plottet mot friksjonskapasitet per skjærflate. Dette gir muligheten til å studere hvordan slitasje på stålet påvirker friksjonskapasiteten. Histogrammer er også brukt med intervaller på 7,5 kN for å studere fordelingen av dataene.

Figur 5-26: Histogram og graf for friksjonsslipp for gjengestenger i V konfigurasjon

Det er viktig å merke seg at konfigurasjonene ikke er dirkete sammenlignbare på grunn av forskjellige kontaktflater og dreiemoment i innspenningen. I konfigurasjon E er kontaktflaten som bærer friksjon mellom hylsen mot braketten. Både i konfigurasjon D og V bestod friksjonsflaten av braketten mot stålplaten, konfigurasjon D var imidlertid innspent med 2000 *Nm*, mens V var innspent med 2500 *Nm*. Opprinnelig ble ikke bolten strammet med mer kraft, fordi bolten ikke tåler mer enn 1500 – 2000 *Nm* i dreiemoment. Det ble erfart i konfig. V at å stramme bolten med opptil 2500 *Nm* førte til ødeleggelse av gjengene i bolten. Konsekvensen var at det ble vanskelig å skru mutteren av bolten etter forsøk. Ulik friksjon mellom bolten og mutteren er noe som kan føre til variasjon i normalkraften når bolten strammes mot mutteren med likt dreiemoment. For å bestemme friksjonskoeffisient for en friksjonsflate ville det vært nødvendig å vite normalkraften mellom flatene. Normalkraften kan måles ved bruk av en ringlastcelle, dette ble imidlertid ikke gjort i disse forsøkene. Studeres grafene til høyre i figur 5-24 til figur 5-26, basert på testrekkefølgen, kan det observeres en synkende trend for konfigurasjonen E. Dette er intuitivt, da stålet blir slitt ved gjentatt testing. De to andre konfigurasjonene støtter derimot ikke denne observasjonen, der kan det se ut som at trendlinjen er flat eller til og med stiger. For konfigurasjon E kan det også observeres store variasjoner i friksjonskapasitet. Dette kan være relatert til at stålplatene ble vridd 180° eller utbytting av hylser og braketter. Dette ble også gjort for de to andre konfigurasjonene, men i mindre grad. Det ble riktignok ikke notert når brakettene og hylsene var byttet eller når platene ble snudd.

På grunn av friksjonsslippets natur (det at negative verdier er umulig) antas det i utgangspunktet log normalfordeling. Dette kan imidlertid ikke støttes av histogrammet for konfigurasjon E til venstre i figur 5-24, hvor det er stor spredning i dataene. Heller ikke de andre konfigurasjonene i figur 5-25 og figur 5-26 kan støtte dette, noe som kan være på grunn av mangel på data.

Gjennomsnittene for de tre konfigurasjonene er oppført i tabell 5-15. Spesielt for konfigurasjonen D ble lave friksjonsslipp problematisk, som det ble beskrevet i delkapittel 5.1.1.2. Med høye laster og lave friksjonstall resulterte dette i dårlige resultater for den sykliske testingen av denne konfigurasjonen. Det er det også verdt å merke at det ene resultatet på over 90 kN trekker gjennomsnittet snittet betydelig opp.

Konfigurasjon	Gjennomsnitt [kN]
E	37,74
D	33,64
V	64,45

Tabell 5-15: Gjennomsnittlig friksjonskapasitet per skjærflate

6 Konklusjon

Styrke og stivhet er studert for gjengestenger innskrudd i endeveden. Det er utført forsøk på tre forskjellige konfigurasjoner, hvor hver konfigurasjon har tre forskjellige lengder og vinkler. Resultatene viser at både stivheten og kapasiteten til forbindelsen påvirkes av ulike variabler som konfigurasjon, lengde, vinkel og lastsituasjon. For en oversiktlig fremstilling blir stivhet og kapasitet behandlet hver for seg.

Stivhet:

Det er funnet at følgende variabler påvirker stivheten til en forbindelse bestående av gjengestenger innskrudd i endeveden av en limtrebjelke:

- De analytiske betraktningene stemmer i liten grad overens med forsøksresultatene: Analytiske beregninger og eksperimentelle resultater viser betydelig avvik. Det er tre mulige årsaker til dette, og antageligvis er det en kombinasjon av disse:
 - De anvendte analytiske modellene gir ikke en god nok prediksjon for forsøkene og konfigurasjonene
 - Det er ingen konsensus for posisjon av målepunkt for stivhet, dermed kan avvik i måleposisjon føre til avvik i stivhet
 - Deformasjonene ble ikke godt nok målt med dette forsøksoppsettet
- Det er observert at økt innskruingslengde fører til lavere målt stivhet: Den målte stivheten er avhengig av posisjonen til måleinstrumentet. Det ble valgt å plassere måleinstrumentene med en avstand fra enden av prøvestykket lik 50 % av innskruingslengden. Dette medførte observert stivhet ble lavere med økt innskruingslengde. Ut ifra forsøkene er det ikke nok informasjon til å vite nøyaktig hvordan den reelle stivheten til forbindelsen påvirkes av lengden til gjengestangen.
- Økende vinkel har en tendens til å gi lavere stivhet: Resultatene viser en ikkelineær trend der det observeres omtrent 50 % lavere stivhet for en vinkel på 15° sammenlignet med en vinkel på 5°.
- Stivheten er avhengig av lastsituasjon:
 - Resultatene viser at stivheten varierer avhengig av om festemidlet utsettes for strekk- eller trykkbelastning. For E- og D-konfigurasjonene viser resultatene at trykkbelastning gir en stivhet som er 30% høyere enn strekkbelastning. For V-konfigurasjonen er det motsatt, hvor strekkbelastning gir en 30% høyere stivhet enn trykkbelastning.
 - Det er observert at full syklisk stivhet er lavere enn både strekk- og trykkstivhet.
 - Monoton strekkstivhet er funnet til å være omtrent halvparten av syklisk strekkstivhet. Det ser ut til at stivheten for gjengestangen øker ved gjentatte lastpåføringer. Denne økningen er størst for de første lastpåføringene.
- Effektivt antall gjengestenger for stivhet er større for konfigurasjon V enn D: For Vkonfigurasjonen er det effektive antallet beregnet til å være $n_{ef} = 3,30$, mens det for D-konfigurasjonen er beregnet til å være $n_{ef} = 2,17$. Dette tallet gjenspeiler ikke helt den observerte forskjellen mellom konfig. D og V. Det er observert at konfig. V kun er noe stivere enn konfig. D.

Kapasitet:

Følgende variabler er funnet til å påvirke kapasiteten for gjengestenger i endeveden av limtrebjelker:

- *Kapasiteten øker med økt vinkel:* Det har vist seg at gjengestengene er mer effektive i å overføre kreftene med økende vinkel mellom gjengestangen og fiberretningen.
 - Forsøksresultatene har vist seg å stemme bedre overens med de analytiske verdiene med økende vinkel. Ved en vinkel på 15° er forsøksresultatene tilnærmet like den analytiske beregningsmodellen F_{ax_Ha} [1].
 - Det er observert at standardavviket for kapasiteten er større ved lavere vinkler.
- Økt vinkel gir reduksjon i innskruingslengde for å oppnå brudd i gjengestangen: Det er observert at ved ulike vinkler trengs ulike lengder for å oppnå brudd i gjengestangen. Dette er de estimerte lengdene som gir brudd i gjengestangen med tilhørende vinkel:
 - \circ 5°: lengre enn 1000 mm
 - o 10°: i underkant av 880 mm
 - 15°: lengde på omtrent 700 mm
- Økende lengde gir økt kapasitet: Kapasiteten øker ved økt innskruingslengde, opptil den maksimale kapasiteten til gjengestangen.
- EC5draft gir et konservativt forslag for uttrekkskapasitet: Det nye utkastet til eurokode 5 gir konservative verdier for lange gjengestenger. Karakteristisk kapasitet fra forsøksresultatene er omtrent 50 % høyere enn den predikerte verdien fra EC5draft ved 15°. Ved vinkel på 5° og 10° gav forsøksresultatene for en gjengestang (konfig. E) omtrent 40 % høyere karakteristisk kapasitet enn EC5draft, og doble gjengestenger (konfig. D og V) omtrent 20% høyere enn EC5draft.
- *Ingen observert effekt av kantavstand:* Det er ikke funnet betydelig forskjell i kapasiteten ved økt kantavstand fra 106 mm til 161 mm
- Observert en gruppeeffekt: Ved å øke antall gjengestenger fra en til to er det observert en tilnærmet lik gruppeeffekt for konfig. D og V. Konfigurasjon D og V har en gruppeeffekt på henholdsvis $n_{ef} = 1,77$ og $n_{ef} = 1,80$.
- *Kapasitet uavhengig av konfigurasjon:* Det er ikke funnet noen betydelige forskjeller i kapasiteten for konfig. D og V.
- Tre ulike typer bruddformer: De tre bruddformene som ble observert var: skjærbrudd i treet langs gjengestangen, splittelsesbrudd og strekkbrudd i gjengestangen. Skjærbrudd inntraff oftest. For enkelte forsøk med doble stenger, konfig. D og V, ble jekkens makskapasitet oppnådd og bruddform kan ikke bestemmes.
- *Friksjon kan ikke fastsettes:* Forsøksoppsettet gir ikke muligheten til å fastsette friksjonskoeffisienten og effekten av slitasje på stålet.

6.1 Feilkilder

Det er noen feilkilder som kan ha påvirket resultatene. Den første feilkilder er at alle forsøkene er utført på prøvestykker som er testet tidligere. Det er variasjoner i hvor mye og hvor store skader som var i prøvestykkene før testing. Det ble imidlertid forsøkt å skru inn gjengestengene i de minst skadde endene av prøvestykkene. Forboring og innskruing av stengene ble gjort for hånd, og det ble dermed ikke oppnådd fullstendig nøyaktighet. Både lengde på kapping av gjengestengene, forboringslengde og innskruingslengde, er faktorer på feilkilder. Det ble også observert at gjengestengene ikke alltid fulgte det forborede hullet. Dette kan ha gjort at noen gjengestenger fikk en annen vinkel enn det som var tiltenkt og boret opp. Det er også usikkerhet rundt vinkelen prøvestykkene ble kappet for konfigurasjon E og D. Det kan dermed være at noen av resultatene tilhører en annen vinkel enn det som er skrevet ned og tiltenkt. Som det er observert så påvirker vinkelen både stivhet og kapasitet.

Fuktinnholdet av trevirket ble testet ved overflaten noe som ikke nødvendigvis er representativt gjennom hele tverrsnittet. Fuktigheten i prøvestykket kan ha blitt påvirket av at klimarommet var ute av drift i en periode. Det ble målt fuktighet for hvert forsøk hvor det laveste var nede på 9,9% og høyeste på 13,2%. Det er usikkert hvor stor påvirkning dette vil ha. Ut fra studiet til Ringhofer et al. [9] kan det virke som om effekten er liten, men det kan fortsatt være større individuelle påvirkninger. Det var heller ikke hundre prosent kontroll på hvor prøvestykkene ble oppbevart tidligere. Dermed kan det ikke utelukkes at bjelkene ble utsatt for fuktighetsvariasjoner som igjen kan føre til sprekkdannelse.

Merking av hvor måleinstrumentene skulle plasseres ble gjort med meterstokk og vater. Dette kan føre til unøyaktigheter av plasseringen. Det kan heller ikke garanteres at LVDTene ble montert helt loddrett ettersom kun øyemål ble brukt ved montering av disse. Usikkerhet er også knyttet til feilmarginene til instrumentene. LVDT-ene og jekken, M13 – Amsler (400 kN), har en feilmargin på under 1,0 %.

6.2 Forslag til videre arbeid

Det er i denne oppgaven lagt vekt på testing av gjengestenger i forskjellige vinkler og lengder for forskjellige konfigurasjoner. På grunn av mange variabler var det begrenset hvor mange forsøk som var mulig å gjennomføre for hver lengde og vinkel på en konfigurasjon. Med kun tre tester for hver kombinasjon vil det være stor usikkerhet knyttet til dataene. Som beskrevet i diskusjonen er det også forbedringspotensial på forsøksoppsettene. Dette gikk spesielt ut over stivhetsforsøkene, hvor det ikke alltid var mulig å hente ut data. Det foreslås å gjøre flere tester på kombinasjonene for å få et større datagrunnlag med bedre oppsett.

Det var lenge ønsket å bruke Abaqus til å utvikle numeriske modeller for å sammenligne analytiske og eksperimentelle resultater. Dette ble dessverre nedprioritert av tidsmessige årsaker. Som et relevant tema er dette noe som kan studeres i videre arbeid.

Det er benyttet gjennomsnittsverdier ved analysering av resultatene. Det kan være interessant å benytte medianverdier isteden. Median verdier har andre fordeler og ulemper enn gjennomsnittsverdier, og kan dermed gi flere interessante funn.

En mulighet for videre studier er å undersøke friksjon mellom braketten og stålplaten. Dette kan studeres ved å kun se på brakett mot stål, eller i en forbindelse som gjort her. Det anbefales bruk av ringlastcelle eller en annen innretning som kan måle normalkraften i forbindelsen.

I dette studiet ble forskyving kun målt på ett punkt i lengden av gjengestangen. Punktet var midt på gjengestangen. Det kan være interessant å studere hvordan stivhet varierer med ulik posisjon av målepunktene. For eksempel ved bruk av kamerateknologi eller flere målepunkter med ulike avstander.

Referanser

- H. Stamatopoulos og K. A. Malo, «Characteristic withdrawal capacity and stiffness of threaded rods», presentert på 2nd meeting of the International Network on Timber Engineering Research, INTER. Paper 48-7-2, Šibenik, Croatia: INTER, aug. 2015.
 Åpnet: 1. februar 2023. [Online]. Tilgjengelig på: https://ntnuopen.ntnu.no/ntnuxmlui/handle/11250/2416595
- [2] «Consolidated Draft prEN 1995-1-1 with Markups». European Committee for Standardization, 2023.
- [3] «Denne tre-trenden tar Norge med storm», *Tu.no*, 12. mars 2018. https://www.tu.no/tumstudio/bygg/annonse-denne-tre-trenden-tar-norge-med-storm/431205 (åpnet 27. april 2023).
- [4] B. Ivarsøy og M. Erstad, «Parvise gjengestenger påkjent aksial- og tverrbelastning i trekonstruksjoner», Masteravhandling, Institutt for konstruksjonsteknikk, Norges teknisk-naturvitenskapelige universitet, Trondheim, 2022. [Online]. Tilgjengelig på: upulisert
- [5] «Eurocode 5: Design of Timber Structures Part 1-1: General Common Rules and Rules for Buildings». CEN, 2010. Åpnet: 26. januar 2023. [Online]. Tilgjengelig på: https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?Pro ductID=436137
- [6] E. Skaug, «Fokus 40 Trevirkets oppbygging og egenskaperr», TreFokus, bd. 40. Norsk Treteknisk Insitutt, 2007. Åpnet: 1. desember 2022. [Online]. Tilgjengelig på: http://www.trefokus.no/resources/filer/fokus-pa-tre/40-Trevirkets-oppbygging-ogegenskaper.pdf
- [7] K. Bell, *Dimensjonering av trekonstruksjoner*, 1. utg. Bergen: Fagbokforlaget, 2017.
- [8] B. D. Kristian, «Mechanical properties of clear wood from Norway spruce», Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for konstruksjonsteknikk, 2009. Åpnet: 1. desember 2022. [Online]. Tilgjengelig på: https://ntnuopen.ntnu.no/ntnuxmlui/handle/11250/236422
- [9] A. Ringhofer, M. Grabner, C. Silva, J. Branco, og G. Schickhofer, «The influence of moisture content variation on the withdrawal capacity of self-tapping screws», *holztechnologie*, bd. 55, s. 33–40, mai 2014.
- [10] K. Bell, *LIMTREBOKA*, 2. utg. Norsk Limtreprodusenters Forening, 2015.
- [11] «Timber structures Glued laminated timber and glued solid timber Requirements». Standard Norge, 2013. Åpnet: 8. mars 2023. [Online]. Tilgjengelig på: https://online.standard.no/ns-en-14080-2013na-2016
- [12] «Reduser CO2- utslippene dine med Miljømetall[™]», Reduser CO2- utslippene dine med Miljømetall[™], 2022. https://www.norskstaal.no/Default.aspx?ID=7592 (åpnet 8. mars 2023).
- [13] A. K. Kvalheim og K. Bramslev, «Betong er en del av klimaløsningen», SINTEF, 14. april 2020. https://www.sintef.no/siste-nytt/2020/-betong-er-en-del-avklimalosningen/ (åpnet 8. mars 2023).
- [14] E. D. Sæle og H. Grytting, «Aksial- og tverrbelastede gjengestenger i trekonstruksjoner», PhD thesis, Norges teknisknaturvitenskaplige unviersitet, Trondheim, 2015. Åpnet: 25. november 2022. [Online]. Tilgjengelig på: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2359022
- [15] K. Malo, R. Abrahamsen, og M. Bjertnæs, «Some structural design issues of the 14-storey timber framed building "Treet" in Norway», *European Journal of Wood and Wood Products*, bd. 74, mai 2016, doi: 10.1007/s00107-016-1022-5.
- [16] F. Hunger, M. Stepinac, V. Rajčić, og J.-W. G. van de Kuilen, «Pull-compression tests on glued-in metric thread rods parallel to grain in glulam and laminated veneer

lumber of different timber species», *Eur. J. Wood Prod.*, bd. 74, nr. 3, s. 379–391, mai 2016, doi: 10.1007/s00107-015-1001-2.

- [17] H. Stamatopoulos og K. A. Malo, «Withdrawal stiffness of threaded rods embedded in timber elements», *Construction and Building Materials*, bd. 116, s. 263– 272, jul. 2016, doi: 10.1016/j.conbuildmat.2016.04.144.
- [18] H. Stamatopoulos og K. A. Malo, «Withdrawal of pairs of threaded rods with small edge distances and spacings», *Eur. J. Wood Prod.*, bd. 76, nr. 1, s. 31–42, jan. 2018, doi: 10.1007/s00107-016-1146-7.
- [19] «Timber structures Dowel-type fasteners Requirements». Standard Norge, 2022. Åpnet: 26. januar 2023. [Online]. Tilgjengelig på: https://www.standard.no/nettbutikk/produktkatalogen/produktpresentasjon/?Product ID=1421221
- [20] «Screws and threaded rods for use in timber constructions». European assessment document, 2019. Åpnet: 27. april 2023. [Online]. Tilgjengelig på: https://www.eota.eu/download?file=/2018/18-13-0516/for%20ojeu/ead%20130118-01-0603_ojeu2020.pdf
- [21] «ETAssessment 11/0030 Rotho Blaas Self-tapping screws and threaded rods». Rotho Blaas s.r.l, 2020. Åpnet: 26. januar 2023. [Online]. Tilgjengelig på: https://www.rothoblaas.com/ftp/ETA_11_0030_RB_screws_2019.pdf
- [22] H. Stamatopoulos og K. A. Malo, «On strength and stiffness of screwed-in threaded rods embedded in softwood», *Construction and Building Materials*, bd. 261, s. 119999, nov. 2020, doi: 10.1016/j.conbuildmat.2020.119999.
- [23] O. Volkersen, «Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten 15», bd. 15, s. 41–48, 1938.
- [24] R. Jockwer, R. Steiger, og A. Frangi, «Fully Threaded Self-tapping Screws Subjected to Combined Axial and Lateral Loading with Different Load to Grain Angles», presentert på RILEM Bookseries, okt. 2013, s. 265–272. doi: 10.1007/978-94-007-7811-5_25.
- [25] I. Bejtka, «Verstärkung von Bauteilen aus Holz mit Vollgewindeschrauben», 2005. https://publikationen.bibliothek.kit.edu/1000003354 (åpnet 2. mars 2023).
- [26] R. Abrahamsen, «Mjøstårnet Construction of an 81 m tall timber building», 23. Internationales Holzbau-Forum IHF 2017, 2017, Åpnet: 27. april 2023. [Online]. Tilgjengelig på: https://www.forum-holzbau.com/pdf/31_IHF2017_Abrahamsen.pdf
- [27] H. Krenn og G. Schickhofer, «Joints with inclined Screws and Steel Plates as outer Members: International Council for Research and Innovation in Building and Construction, Working Commission W18 - Timber Structures, Meeting», International Council for Research and Innovation in Building and Construction, Working Commission W18 - Timber Structures, Meeting, s. 42-7–2, 1-42-7–2, 12, 2009.
- [28] M. Cepelka, K. A. Malo, og H. Stamatopoulos, «Effect of rod-to-grain angle on capacity and stiffness of axially and laterally loaded long threaded rods in timber joints», *European Journal of Wood and Wood Products*, 2018, doi: 10.1007/s00107-018-1314-z.
- [29] N. Gattesco, «Strength and Local Deformability of Wood Beneath Bolted Connectors», *Journal of Structural Engineering*, bd. 124, nr. 2, s. 195–202, feb. 1998, doi: 10.1061/(ASCE)0733-9445(1998)124:2(195).
- [30] N. Gattesco og I. Toffolo, «Experimental study on multiple-bolt steel-to-timber tension joints», *Mat. Struct.*, bd. 37, nr. 2, s. 129–138, mar. 2004, doi: 10.1007/BF02486609.
- [31] R. Tomasi, A. Crosatti, og M. Piazza, «Theoretical and experimental analysis of timber-to-timber joints connected with inclined screws», *Construction and Building Materials*, bd. 24, nr. 9, s. 1560–1571, sep. 2010, doi: 10.1016/j.conbuildmat.2010.03.007.
- [32] M. Henden og B. Plesner, «Prosjektoppgave TKT4550». NTNU, 2022.
- [33] «Timber structures Joints made with mechanical fasteners General principles for the determination of strength and deformation characteristics (ISO 6891:1983)». Comite Europeen de Normalisation, 1991.

- [34] «Timber structures Calculation and verification of characteristic values». Standard Norge, 2016. Åpnet: 23. mai 2023. [Online]. Tilgjengelig på: https://online.standard.no/ns-en-14358-2016
- [35] K. S. Gjerden, «Brukerkurs i Gauss' feilforplantning», *NTNU*, 2011. https://home.phys.ntnu.no/brukdef/undervisning/fy1001_lab/orientering/gaussbruke r.pdf (åpnet 1. juni 2023).
- [36] E. Serrano, «Glued-in rods for timber structures—An experimental study of softening behaviour», *Materials and Structures*, bd. 34, s. 228–234, jan. 2001, doi: 10.1007/BF02480593.
- [37] G. Tlustochowicz, E. Serrano, og R. Steiger, «State-of-the-art review on timber connections with glued-in steel rods», *Mater Struct*, bd. 44, nr. 5, s. 997–1020, jun. 2011, doi: 10.1617/s11527-010-9682-9.

Vedlegg

- A Arbeidstegninger
- B Analytiske beregninger i Python
- C Bilder av sprekkutbredelser
- D Målte avstander fra forsøk
- E Forsøksresultat

A - Arbeidstegninger

Dette vedlegget består av arbeidstegninger brukt i planlegging og utførsel av laboratorieforsøkene. Disse tegningene er utarbeidet i forprosjektet og oppdatert i masteroppgaven.

A.1 Konfigruasjon E/D – 5 grader – frontvisning

A.2 Konfigruasjon E/D – 10 grader - frontvisning

A.3 Konfigruasjon E/D – 15 grader - frontvisning

A.4 Konfigruasjon V 5/10/15 grader- frontvisning

A.5 Konfigruajson E – sidevisning

A.6 Konfigruajson D - sidevisning

A.7 Konfigruajson V - sidevisning

A.8 Stålplater

Figur A-1: Dimensjoner stålplate 1

Figur A-2: Dimensjoner stålplate 2

Figur A-3: Dimensjoner stålplate 3

Figur A-4: Dimensjoner for hylse

B - Analytiske beregninger i Python

```
import numpy as np
import pandas as pd
#variabler
d=22.4
           #mm
d1=16.9
           #mm
pm=430
          #kg/m^3
.
kmat=1
kp=1.15
kmod=0.8
gammam=1.25
           #N/mm^2
fu=952
fy=872
           #N/mm^2
Es=210000
fvroll = 1.55 #MPa
kser = 500
#Lengde
#l = list(range(300,1001,10))
l = [650,880,1000] #mm
#Antall
n = [1, 2]
#Effektiv antall gjengestenger
nef = [1, 2^{**0.9}]
#Vinkel
a = [5,10,15] #grader
#Hjelpefunksjoner
#-----
#deg to rad
def rad(a):
   return a*np.pi/180
#Tabell
def tabell(Matrise,namn, antallgjegestenger):
   df = pd.DataFrame(Matrise[antallgjegestenger-1], columns=1, index=a)
   print(namn)
   print(df)
   print()
#Kapasitet gjengestenger
#-----
#-----
#Mean kapasitet
Fax_mean = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
   nefi = nef[i]
   for y in range(len(a)):
       for x in range(len(1)):
           lx=l[x]
           fi = nefi*15*d*lx*pm/470
           Fax_mean[i][y][x]=round(fi/1000,1)
#tabell(Fax_mean, "Fax_mean, 1 gjengestang",1)
#tabell(Fax_mean, "Fax_mean, 2 gjengestang",2)
```

```
#Aksial kapasitet
#---
#Maksiaml kapasitet gjengestang
#EC5draft
#variabler for EC5draft
kmat_EC5draft =1
kw_EC5draft=1
kscrew = 8 # endre til den som passer best
FaxEC5draft = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    nefi = nef[i]
    for y in range(len(a)):
        if a[y] >=15:
            kp_EC5draft = 1.1 #15<a<90
         else:
            kp_EC5draft=1.25-0.05*d #0<a<15
         for x in range(len(1)):
             lx=l[x]
             if 1x>20*d:
                 lw = 20*d
             else:
                 lw = lx
             fwk_EC5draft=kscrew*kw_EC5draft*kmat_EC5draft*d**(-0.33)*(pm/350)\
                  **kp_EC5draft
             ftk = 0.9*np.pi*d1**2/4*fu*10**(-3)
             fwk = (np.pi*d*lw*fwk_EC5draft*nefi)*10**(-3)
             FaxEC5draft[i][y][x]=round(min(ftk,fwk),2)
#tabell(FaxEC5draft,"Eurokode 5-utkast, 1 gjengestang",1)
#tabell(FaxEC5draft,"Eurokode 5-utkast, 2 gjengestang",2)
#Regresjon analyse Malo og Stamatopulous
FaxMS = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
        ay = a[y]
         for x in range(len(1)):
             lx=l[x]
             klengthF=min(0.6+0.4*lx/250,1)
             faxk_MS=12.2*(d/20)**(-0.1)*(pm/400)**0.9*klengthF
             FaxMS[i][y][x]=round(((faxk_MS*d*lx*nef[i])/(1.2*np.cos(rad(ay))\
                                       **2.3+np.sin(rad(ay))**2.3))*10**-3,2)
#tabell(FaxMS, "FaxMS, 1 gjengestang",1)
#tabell(FaxMS, "FaxMS, 2 gjengestang",2)
# ETA - aksial kapsitet
Fax_Rk = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
#Variabler for ETA
fax_Rk = 11.7 # N/mm^2
pa = 350 #kg/m^3
```

```
for i in range(len(nef)):
     for y in range(len(a)):
         ay = a[y]
          for x in range(len(1)):
              lx=l[x]
              kax = 0.3+0.7*ay/45 #a<45
              Fax_Rk[i][y][x]=round((nef[i]*kax*fax_Rk*d*lx*(pm/pa)**0.8)\
                                        *10**-3,2)
#tabell(Fax_Rk,"ETA, 1 gjengestang",1)
#tabell(Fax_Rk,"ETA, 2 gjengestang",2)
# Aksialkapasitet etter Harris
Fs = 210000
As = np.pi*d**2/4
Ew = 13000
Ew0 = 13000
Ew90 = 410
Aw = 405*450
fw = 3.5
Fax_Harris = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
omega = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
m = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
lambdu= [[0.92,0.91,0.905],
            [0.93,0.93,0.92],
            [0.95,0.945,0.94]]
for i in range(len(nef)):
     for y in range(len(a)):
         ai = a[y]
          for x in range(len(1)):
              lx=l[x]
              if ai >= 15:
                  y1=2
              elif ai>=10:
                  y1=1
              else:
                  y1=0
              if lx>=1000:
                   x1=2
              elif lx >=880:
                  x1=1
              else:
                   x1=0
              T=9.35/(1.5*np.sin(rad(ai))**2.2+np.cos(rad(ai))**2.2)
              Ew_a = Ew0*Ew90/(Ew0*np.sin(rad(ai))**2+Ew90*np.cos(rad(ai))**2)
omegai = np.sqrt(np.pi*d*T*lx**2*(1/(Es*As)+1/(Ew_a*Aw)))
              omega[i][y][x] = round(omegai,2)
              mi = 0.332/(1.73*np.sin(rad(ai))+np.cos(rad(ai)))
              m[i][y][x] = round(mi,2)
fw = 4.35/(0.91*np.sin(rad(ai))**2+np.cos(rad(ai))**2)
              lami =lambdu[y1][x1]
              Fax_Harris[i][y][x]=round(((nef[i]*np.pi*d*lx*fw\
```

```
*(np.sin(mi*omegai*lami)/(omegai*mi)+np.tanh((1-lami)*omegai)\
 *np.cos(mi*omegai*lami)/omegai))*10**-3),2)
```

```
#Tverlast kapasitet
#-----
                   _____
#Karakteristisk kapasitet til skruer ved tverrlast ihht Stamatopoulos
deff=d1*1.1 #mm
Is=np.pi*d1**4/64
kv=1200
Es = 210000
lf = 15
#karakteristisk hullkantfasthet etter Eurokode 5
fh0k =0.082*(1-0.01*deff)*pm #karakteristisk hullkantfasthet
MyRk = 0.3*fu*deff**2.6 #Flytemoment
k90_EC5 = 1.35+0.015*deff
fhak_EC5 = [0]*len(a)
for i in range(len(a)):
   ai = a[i]
    fhak_EC5[i] = (fh0k)/(k90_EC5*(np.sin(rad(ai))**2+np.cos(rad(ai))**2))
#karakteristisk hullkantfasthet etter uttkast til Eurokode 5
fhek_EC5draft = [0]*len(a)
k90_EC5draft = 1.15+0.015*deff
for i in range(len(a)):
   ai = a[i]
    ei = a[i]
    k_3 = max(d/(d-2), 1.15)
    fhek_EC5draft[i] = (0.019*pm**1.24*d**(-0.3))/(np.sin(rad(ei))**2\
                                        +(2.5*np.cos(rad(ei))**2))
#Eurokode 5, bruddform b
10 = 30 \# mm
e0 = [0]*len(a)
for i in range(len(a)):
    ai = a[i]
    kv = (0.019+0.012*d)*pm*(ai/180+0.5)
    lc = (4*Es*Is/(kv))**(1/4)
    e0[i] = (10-1c)/2 \# kontroller
Fvk_EC5 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
fhk = fhak_EC5 #karakteristisk hullkantfasthet etter Eurokode 5
for i in range(len(nef)):
    nefi = nef[i]
    for y in range(len(a)):
        ay = a[y]
        for x in range(len(1)):
            lx=l[x]
            Fvk_i = (fhk[y]*deff*(np.sqrt(2*MyRk/(fhk[y]*deff)+e0[y]**2\
                                          -e0[y])))*10**(-3) #kN
            Fvk_johansen = FaxMS[i][y][x]/4
            Fvk_EC5[i][y][x] = round(nefi*(Fvk_i+min(Fvk_i, Fvk_johansen)),2)
#tabell(Fvk_EC5, "Vertikal kapsitet EC5, 1 gjengestang",1)
```

```
#tabell(Fvk_EC5, "Vertikal kapsitet EC5, 2 gjengestang",2)
#Utkast til Eurokode 5
Fvk_EC5draft = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
fhk = fhek_EC5draft #karakteristisk hullkantfasthet etter Eurokode 5
for i in range(len(nef)):
    nefi = nef[i]
    for y in range(len(a)):
        ay = a[y]
        for x in range(len(1)):
            lx=l[x]
            Fvk_i = (fhk[y]*deff*(np.sqrt(2*MyRk/(fhk[y]*deff)+e0[y]**2))
                                    -e0[y]))*10**(-3) #kN
             Fvk_johansen = FaxMS[i][y][x]/4
             Fvk_EC5draft[i][y][x] = round(nefi*(Fvk_i+\
                                                   min(Fvk_i, Fvk_johansen)),2)
#tabell(Fvk_EC5draft,"Vertikal kapsitet EC5 utkast, 1 gjengestang",1)
#tabell(Fvk_EC5draft,"Vertikal kapsitet EC5 utkast, 2 gjengestang",2)
#Fv ihht R Jockwer
Fvk_RJ = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
fhk = fhek EC5draft
for i in range(len(nef)):
    nefi = nef[i]
    for y in range(len(a)):
        ai = a[y]
        if ai ==0:
            x1 = 0
        else:
            x1 = fhk[y]*deff/(2*np.tan(rad(ai))*fvroll)
        for x in range(len(1)):
            1x = 1[x]
            Fvk_RJ[i][y][x] = round(nefi*(-fhk[y]*x1+np.sqrt((2*MyRk+\
                                      fhk[y]*x1**2)*fhk[y]*deff))*10**(-3),2)
#tabell(Fvk_RJ,"Vertikal kapsitet ihht R Jockwer, 1 gjengestang",1)
#tabell(Fvk_RJ,"Vertikal kapsitet ihht R Jockwer, 2 gjengestang",2)
#Kombinasjon tverr- og aksialkapasitet
#----
#F ihht aksial - EC5-utkast og vertikal - EC5
F_EC5 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
        ai = a[y]
        for x in range(len(1)):
            F_EC5[i][y][x] = round(np.cos(rad(ai))*FaxEC5draft[i][y][x]+
                                     +np.sin(rad(ai))*Fvk_EC5[i][y][x],1)
#F ihht aksial - EC5-utkast og vertikal - EC5-utkast
F_EC5 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
        ai = a[y]
        for x in range(len(1)):
```

```
F_EC5[i][y][x] = round(np.cos(rad(ai))*FaxEC5draft[i][y][x]+
                                       +np.sin(rad(ai))*Fvk_EC5draft[i][y][x],1)
#F ihht aksial- Stamatopoulos og Malo og vertikal etter EC5
F_EC5 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
         ai = a[y]
         for x in range(len(1)):
             F_EC5[i][y][x] = round(np.cos(rad(ai))*FaxMS[i][y][x]+\
                                       np.sin(rad(ai))*Fvk_EC5[i][y][x],1)
#F ihht aksial- Stamatopoulos og Malo og vertikal etter EC5-utkast
F_EC5 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
         ai = a[y]
         for x in range(len(1)):
             \label{eq:F_EC5[i][y][x] = round(np.cos(rad(ai))*FaxMS[i][y][x]+ \label{eq:F_EC5[i][y][x]}
                                        np.sin(rad(ai))*Fvk_EC5draft[i][y][x],1)
#Stivhet
#-----
#Utkast EC5
#Total stivhet
K_EC5draft_versjon1=[[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
K_EC5draft_versjon2=[[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
K_EC5draft_versjon3=[[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
#Aksial stivhet
Kax_EC5draft = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
#Vertikal stivhet
Kv_EC5draft = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    ni = n[i]
    for y in range(len(a)):
         ai = a[y]
         for x in range(len(1)):
             1x = 1[x]
             if 1x>20*d:
                  lw = 20*d
              else:
                  lw = lx
              #Aksial stivhet
             Kax = ni*160*(pm/420)**0.85*d**0.9*lw**0.6*10**(-3)
             Kax_EC5draft[i][y][x] = round(Kax,1)
             #Vertikal stivhet
             Kv = ni*2*60*(0.7*d)**1.7*10**(-3)
             Kv_EC5draft[i][y][x] = round(Kv,1)
              #Kombinert stivhet
             K_EC5draft_versjon1[i][y][x] = round((Kax*Kv)/(Kax*np.sin(rad(ai))\
                                                       **2+Kv*np.cos(rad(ai))**2),1)
             K_EC5draft_versjon2[i][y][x] = round(Kax*np.cos(rad(ai)**2)\
                                                       +Kv*np.sin(rad(ai))**2,1)
             K_EC5draft_versjon3[i][y][x] = round(Kv*np.sin(rad(ai))**2+\
                                                       0.5*Kax*np.cos(rad(ai))**2,1)
```

```
#Stamatopoulos stivhetsberegning
```

```
dc=16.9
Kserv = 2*pm**1.5*deff/23
kt = 710
kl = 1300
Lf = 30
EI = Es*np.pi*d1**4/64
nmo = 0.5
As = np.pi*dc**2/4
betta = 1/(Es*As)
#Total stivhet
K_S_versjon1 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
K_S_versjon2 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
K_S_versjon3 = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]

#Aksial stivhet
Kax_S = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
#Vertikal stivhet
Kv_S = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    ni = n[i]
     for y in range(len(a)):
         ai = a[y]
         for x in range(len(1)):
             lx = l[x]
             klengd = min((lx/300)**0.75,1)
             #Vertikal stivhet
             k = kl*kt/(kt*np.cos(rad(ai))**2+kl*np.sin(rad(ai))**2)
             Ic = (4*Es*Is/k)**(1/4)
             hatt = Lf/Ic
             Kv = ni*3*k*Ic*10**(-3)/(4*hatt**3+12*hatt**2+12*hatt+6)
             Kv_S[i][y][x] = round(Kv,1)
             #Aksial stivhet
             Kserax = ni*50000*(d/20)**2*(pm/470)**2*1/1000/(0.4*\
                                        np.cos(rad(ai))**2.3+np.sin(rad(ai))**2.3)
             Kax utstikk = ni*Es*As*2/(Lf*1000)
             Kax = Kserax*Kax_utstikk/(Kserax+Kax_utstikk)
             Kax_S[i][y][x] = round(Kax,1)
             #Totalt stivhet
             K_S_versjon1[i][y][x] = round((Kax*Kv)/(Kax*np.sin(rad(ai)))
                                                     **2+Kv*np.cos(rad(ai))**2),1)
             K_S_versjon2[i][y][x] = round(Kax*np.cos(rad(ai))**2+Kv*
                                                     np.sin(rad(ai))**2,1)
             K_S_versjon3[i][y][x] = round(Kv*np.sin(rad(ai))**2+0.5\
                                                     *Kax*np.cos(rad(ai))**2,1)
#Harris
```

Es = 210000 As = np.pi*d**2/4 Ew = 13000 Ew0 = 13000 Ew90 = 410 Aw = 405*450

#---

```
#Aksial stivhet
Kax_Harris = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
         ai = a[y]
         for x in range(len(1)):
             lx=l[x]
             TT=9.35/(1.5*np.sin(rad(ai))**2.2+np.cos(rad(ai))**2.2)
Ew_a = Ew0*Ew90/(Ew0*np.sin(rad(ai))**2+Ew90*np.cos(rad(ai))**2)
omegai = np.sqrt(np.pi*d*T*lx**2*(1/(Es*As)+1/(Ew_a*Aw)))

             mi = 0.332/(1.73*np.sin(rad(ai))+np.cos(rad(ai)))
             Kax_harris=(n[i]*np.pi*d*lx*T*np.tanh(omegai)/omegai)
             #Aksial stivhet
             Kax_Harris[i][y][x] = round(Kax_harris/1000,1)
#Trykkapasitet
#-
                   -----
#knekking, ETA Danmark
pk = 390
fyk = 872
gamma1 = 1.15
nef_ETA = [1,max(2**0.9,0.9*2)]
Nplk = np.pi*d1**2*fyk/4
Fkird = [[[0]*len(1) for _ in range(len(a))] for i in range(len(n))]
for i in range(len(nef)):
    for y in range(len(a)):
        ai = a[y]
         for x in range(len(1)):
             lx = l[x]
             ch = (0.19+0.012*d)*pk*(ai/180+0.5)
             Nkik = np.sqrt(ch*Es*Is)
             lambdak = np.sqrt(Nplk/Nkik)
             k_alpha = 0.5*(1+0.49*(lambdak-0.2)+lambdak**2)
             if lambdak <= 0.2:</pre>
                 kc = 1
             else:
                 kc = 1/(k_alpha+np.sqrt(k_alpha**2-lambdak**2))
             Fkird[i][y][x] = kc*Nplk*nef_ETA[i]/gamma1*10**(-3)
```

C – Bilder av sprekkutbredelser

Figurer

Figur C-1: F9-E1-5-650 og F10-E2-5-650	.22
Figur C-2: F13-E3-5-650 og F14-D1-5-1000	.22
Figur C-3: F27-E1-10-650, F28-E2-10-650 og F52-E5-10-650	.23
Figur C-4: F31-E3-10-650	.23
Figur C-5: F51-E4-10-650 og F25-E2-10-880 og F26-E3-10-880	.23
Figur C-6: F37-E1-15-650 og F38-E2-15-650	.24
Figur C-7: F39-E3-15-650 og F40-D1-15-650	.24
Figur C-8:F4-E1-5-880 og F3-E3-5-1000	.24
Figur C-9: F7-E2-5-880 og F8-E3-5-880	.25
Figur C-10: F22-E1-10-880 og F21-E3-10-1000	.25
Figur C-11: F1-E1-5-1000 og F2-E2-5-1000	.25
Figur C-12: F19-E1-10-1000 og F20-E2-10-1000	.26
Figur C-13_ F45-D1-5-650 og F46-D2-5-650	.26
Figur C-14: F56-D3-5-650	.26
Figur C-15: F33-D1-10-650 og F34-D1-10-1000	.27
Figur C-16: F50-D2-10-650	.27
Figur C-17: F60-D3-10-650	.27
Figur C-18: F63-D2-15-650 og F64-D3-15-650	.28
Figur C-19: F50-D2-10-650	.28
Figur C-20_ F43-D1-5-880 og F44-D2-5-880	.28
Figur C-21: F55-D3-5-880	.29
Figur C-22: F49-D1-10-880	.29
Figur C-23: F15-D2-5-1000 og D16-D3-5-1000	.29
Figur C-24: F48-V1-5-650	.30
Figur C-25: F57-V2-5-650 og F12-V1-5-880	.30
Figur C-26: F57-V2-5-650	.31
Figur C-27: F65-V3-5-650	.31
Figur C-28, E47-1/4-5-650	32
Tigur C-20. 147-04-3-030	102
Figur C-29: F35-V1-10-650 og F36-V2-10-650	.32
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650	.32 .33
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650	.32 .33 .33
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650	.32 .33 .33 .33
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650	.32 .33 .33 .34 .34
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880	.32 .33 .33 .34 .34 .34
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880	.32 .33 .33 .34 .34 .34 .34 .35
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880 Figur C-36: F18-V3-5-880	.32 .33 .33 .34 .34 .34 .34 .35 .35
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880 Figur C-36: F18-V3-5-880 Figur C-37: F29-V1-10-880	.32 .33 .33 .34 .34 .34 .34 .35 .35 .35
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880 Figur C-36: F18-V3-5-880 Figur C-37: F29-V1-10-880 Figur C-38: F30-V2-10-880 og F53-V3-10-1000	.32 .33 .33 .34 .34 .34 .34 .35 .35 .35 .35
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880 Figur C-36: F18-V3-5-880 Figur C-37: F29-V1-10-880 Figur C-38: F30-V2-10-880 og F53-V3-10-1000 Figur C-39: F54-V3-10-880	.32 .33 .33 .34 .34 .34 .34 .35 .35 .35 .36 .36
Figur C-28: F47-V4-5-050 Figur C-29: F35-V1-10-650 og F36-V2-10-650. Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880 Figur C-36: F18-V3-5-880 Figur C-36: F18-V3-5-880 Figur C-37: F29-V1-10-880 Figur C-38: F30-V2-10-880 og F53-V3-10-1000 Figur C-39: F54-V3-10-880 Figur C-40: F6-V2-5-1000	.32 .33 .33 .34 .34 .34 .35 .35 .35 .35 .36 .36 .37
Figur C-29: F35-V1-10-650 og F36-V2-10-650 Figur C-30: F58-V3-10-650 Figur C-31: F41-V1-15-650 Figur C-32: F42-V2-15-650 Figur C-33: F61-V3-15-650 Figur C-34: F12-V1-5-880 Figur C-35: F17-V2-5-880 Figur C-36: F18-V3-5-880 Figur C-37: F29-V1-10-880 Figur C-38: F30-V2-10-880 og F53-V3-10-1000 Figur C-39: F54-V3-10-880 Figur C-40: F6-V2-5-1000	.32 .33 .33 .34 .34 .34 .35 .35 .35 .35 .36 .37 .37

Figur C-43: F24-V2-10-1000	.38
----------------------------	-----

C.1 Konfigruasjon E og D

Svarte streker: sprekker oppstått under testing. Der det ikke er merket med tusj er alle synlige sprekker fra testing.

Figur C-1: F9-E1-5-650 og F10-E2-5-650

Figur C-2: F13-E3-5-650 og F14-D1-5-1000

Figur C-3: F27-E1-10-650, F28-E2-10-650 og F52-E5-10-650

Figur C-4: F31-E3-10-650

Figur C-5: F51-E4-10-650 og F25-E2-10-880 og F26-E3-10-880

Figur C-6: F37-E1-15-650 og F38-E2-15-650

Figur C-7: F39-E3-15-650 og F40-D1-15-650

Figur C-8:F4-E1-5-880 og F3-E3-5-1000

Figur C-9: F7-E2-5-880 og F8-E3-5-880

Figur C-10: F22-E1-10-880 og F21-E3-10-1000

Figur C-11: F1-E1-5-1000 og F2-E2-5-1000

Figur C-12: F19-E1-10-1000 og F20-E2-10-1000

Figur C-13_ F45-D1-5-650 og F46-D2-5-650

Figur C-14: F56-D3-5-650

Figur C-15: F33-D1-10-650 og F34-D1-10-1000

Figur C-16: F50-D2-10-650

Figur C-17: F60-D3-10-650

Figur C-18: F63-D2-15-650 og F64-D3-15-650

Figur C-19: F50-D2-10-650

Figur C-20: F43-D1-5-880 og F44-D2-5-880

Figur C-21: F55-D3-5-880

Figur C-22: F49-D1-10-880

Figur C-23: F15-D2-5-1000 og D16-D3-5-1000

C.2 Konfigurajson V

Røde streker: sprekker som er oppstått før testing. Blå/svarte streker: sprekker fra testing

Figur C-24: F48-V1-5-650

Figur C-25: F57-V2-5-650 og F12-V1-5-880

Figur C-26: F57-V2-5-650

Figur C-27: F65-V3-5-650

Figur C-28: F47-V4-5-650

Figur C-29: F35-V1-10-650 og F36-V2-10-650

Figur C-30: F58-V3-10-650

Figur C-31: F41-V1-15-650

Figur C-32: F42-V2-15-650

Figur C-33: F61-V3-15-650

Figur C-34: F12-V1-5-880

Figur C-35: F17-V2-5-880

Figur C-36: F18-V3-5-880

Figur C-37: F29-V1-10-880

Figur C-38: F30-V2-10-880 og F53-V3-10-1000

Figur C-39: F54-V3-10-880

Figur C-40: F6-V2-5-1000

Figur C-41: F11-V3-5-1000

Figur C-42: F23-V1-10-1000

Figur C-43: F24-V2-10-1000

D - Målte avstander fra forsøk

Kolonne 1 består av ID til forøket, kolonne 2-4 er målt posisjon til gjengestangen. Kolonne 5 inneholder avstanden mellom overflaten på prøvestykket til underkant brakett. Kolonne 6 og 7 er vektet verdi ved konfigurasjon D for å beregne deformasjon i midten av de to gjengestengene.

ID/ målte verdier	X_foran [mm]	x_midt [mm]	X_bak [mm]	le [mm]	Verdi for vekting	x_f [mm]	x_b [mi	m]
F1	282	0	179	24			282	179
F2	165	0	278	40			165	278
F3	286	0	170	25			286	170
F4	173	0	284	21			173	284
F5	25		25	45				
F6	25		25	37			170	200
F/	170	0	288	31			170	288
F0	1//	0	202	24			286	171
F10	179	0	793	25			179	783
F11	25	0	205	34			175	205
F12	25	0	25	32				
F13	287		170	31				
F14	256	50	149	25			292	185
F15	262	50	145	25			298	181
F16	150	50	255	35			186	291
F17	25		25	30				
F18	25		25	32				
F19	285		172	25			285	172
F20	174		285	41			174	285
F21	175		285	26			175	285
F22	287		174	22			287	174
F23	25		25	38				
F24 E25	25		25	34			207	172
F26	178		285	29			178	285
F27	287		174	23			287	174
F28	175		285	25			175	285
F29	25		25	38				
F30	25		25	38				
F31	285		174	26			285	174
F33	259	50	149	26			295	185
F34	149	50	259	30			185	295
F35	25		25	35				
F36	25		25	37				
F37	283		1/1	29			283	1/1
F38	1/4		289	24			1/4	289
F39	202	50	262	27			191	200
F40	25	50	205	45			101	255
F42	25		25	40				
F43	255	50	151	29			291	187
F44	144	50	261	34			180	297
F45	255	50	150	27			291	186
F46	145	50	261	31			181	297
F47	15		15	29				
F48	15		15	32				
F49	187	50	179	29			223	215
F50	185	50	180	32			221	216
F51	251		208	27			251	208
F52	202		257	26			202	257
F53	25		25	50				
F54 F55	184	50	195	40			220	221
F56	178	50	187	20			214	221
F57	25	50	25	34				-23
F58	25		25	35				
	23		20	55				
F60	185	50	181	25			221	217
F61	25		25	43				
F63	254	50	153	47			290	189
F64	147	50	260	26			183	296
F65	25		25	42				

E - Forsøksresultater

I dette dokumentet er det lagt ved stivhets- og kapasitetsresultater fra alle laboratorieforsøkene. For hvert forsøk er det lagt ved en tabell med verdier etterfulgt av grafer der enn ser hvor verdiene er hentet ut. Det blir ført presenter forsøkene for konfigurasjon E (enkle gjengestneger), deretter konfigurasjon D (doble gjengestenger) og til slutt konfigurasjon V (to gjengestenger som danner en V-formasjon).

Innhold

1	Enkle gjengestenger	4
	F9-E1-5-650	5
	F10-E2-5-650	9
	F13-E3-5-650	.13
	F27-E1-10-650	.17
	F28-E2-10-650	.21
	F31-E3-10-650	.25
	F51-E4-10-650	.29
	F52-E5-10-650	.33
	F37-E1-15-650	.37
	F38-E2-15-650	.41
	F39-E3-15-650	.45
	F4-E1-5-880	.49
	F7-E2-5-880	.53
	F8-E3-5-880	.57
	F22-E1-10-880	.61
	F25-E2-10-880	.65
	F26-E3-10-880	.69
	F1-E1-5-1000	.73
	F2-E2-5-1000	.77
	F3-E3-5-1000	.81
	F19-E1-10-1000	.85
	F20-E2-10-1000	.89
	F21-E3-10-1000	.93
2	Doble gjengestenger	.97
	F45-D1-5-650	.98
	F46-D2-5-6501	102
	F56-D3-5-6501	106
	F33-D1-10-6501	110
	F50-D2-10-6501	14
	F60-D3-10-6501	118
	F40-D1-15-6501	122
	F63-D2-15-6501	126
	F64-D3-15-6501	130
	F43-D1-5-8801	134

	F44-D2-5-880	.138
	F55-D3-5-880	.142
	F49-D1-10-880	.146
	F14-D1-5-1000	.150
	F15-D2-5-1000	.154
	F16-D3-5-1000	.158
	F34-D1-10-1000	. 162
3	Konfigurasjon V	.166
	F47-V4-5-650	.179
	F48-V1-5-650*	.167
	F57-V2-5-650	.171
	F65-V3-5-650	.175
	F36-V2-10-650	.179
	F58-V3-10-650	.191
	F41-V1-15-650	.194
	F42-V2-15-650	. 198
	F61-V3-15-650	.202
	F12-V1-5-880	.206
	F17-V2-5-880	.210
	F18-V3-5-880	.214
	F29-V1-10-880	.218
	F30-V2-10-880	.221
	F54-V3-10-880	.225
	F5-V1-5-1000	.229
	F6-V2-5-1000	.233
	F11-V3-5-1000	.237
	F23-V1-10-1000	.241
	F24-V2-10-1000	.245
	F53-V3-10-1000	.249

1 Enkle gjengestenger/ konfig. E

F9-E1-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	444,02	
Strekk syklisk - avlast	317,70	
Strekk syklisk –	380,86	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	458,75	
Trykk syklisk - pålast	535,35	
Trykk syklisk - avlast	391,49	
Trykk syklisk - gjennomsnitt	463,42	
(pålast/avlast)		
Trykk syklisk (alle data)	629,99	
Full syklisk – strekk - pålast	96,97	
Full syklisk – strekk - avlast	121,14	
Full syklisk – strekk -	109,06	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	316,2	
Full syklisk – trykk - avlast	179,75	
Full syklisk – trykk -	247,98	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	178,52	
(strekk/trykk)		
Full syklisk (alle data)	50,85	
Kapasitet – stivhet syklisk	94,50	
Kapasitet – stivhet mon	47,48	
	[kN]	
Kapasitet	130,82	
Friksjon	115,83	

F10-E2-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	90,86	Litt spredning
Strekk syklisk - avlast	63,73	
Strekk syklisk –	77,39	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	107,94	
Trykk syklisk - pålast	517,72	
Trykk syklisk - avlast	251,79	
Trykk syklisk - gjennomsnitt	384,76	
(pålast/avlast)		
Trykk syklisk (alle data)	47,66	Dårlig data
Full syklisk – strekk - pålast	53,79	
Full syklisk – strekk - avlast	68,97	
Full syklisk – strekk -	61,38	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	162,12	
Full syklisk – trykk - avlast	195,68	
Full syklisk – trykk -	178,9	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	120,14	
(strekk/trykk)		
Full syklisk (alle data)	49,62	Dårlig data
Kapasitet – stivhet syklisk	59,17	
Kapasitet – stivhet mon	38,88	
	[kN]	
Kapasitet	171,15	
Friksjon	91,09	

F13-E3-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	349,77	
Strekk syklisk - avlast	319,44	
Strekk syklisk –	334,61	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	426,46	
Trykk syklisk - pålast	1001,6	Litt usikker data
Trykk syklisk - avlast	530,87	
Trykk syklisk - gjennomsnitt	766,24	
(pålast/avlast)		
Trykk syklisk (alle data)	1118,00	
Full syklisk – strekk - pålast	203,22	
Full syklisk – strekk - avlast	252,18	
Full syklisk – strekk -	227,70	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	140,82	
Full syklisk – trykk - avlast	137,97	
Full syklisk – trykk -	139,40	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	183,55	
(strekk/trykk)		
Full syklisk (alle data)	85,05	For slak
Kapasitet – stivhet syklisk	180,90	
Kapasitet – stivhet mon	174,31	
	[kN]	
Kapasitet	140,67	
Friksjon	110,12	

F27-E1-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	224,19	
Strekk syklisk - avlast	238,03	
Strekk syklisk –	231,11	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	217,74	
Trykk syklisk - pålast	192,12	
Trykk syklisk - avlast	188,07	
Trykk syklisk - gjennomsnitt	109,1	
(pålast/avlast)		
Trykk syklisk (alle data)	232,95	
Full syklisk – strekk - pålast	83,37	
Full syklisk – strekk - avlast	167,76	
Full syklisk – strekk -	125,57	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	113,98	
Full syklisk – trykk - avlast	165,15	
Full syklisk – trykk -	139,57	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	202,35	
(strekk/trykk)		
Full syklisk (alle data)	15,51	Ubrukelig
Kapasitet – stivhet syklisk	170,31	
Kapasitet – stivhet mon	129,53	
	[kN]	
Kapasitet	183,50	
Friksjon	55,14	

F28-E2-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	340,57	
Strekk syklisk - avlast	680,02	
Strekk syklisk –	510,30	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	522,7	
Trykk syklisk - pålast	319,6	
Trykk syklisk - avlast	324,04	
Trykk syklisk - gjennomsnitt	321,82	
(pålast/avlast)		
Trykk syklisk (alle data)	344,65	
Full syklisk – strekk - pålast	94,57	
Full syklisk – strekk - avlast	105,31	
Full syklisk – strekk -	114,79	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	179,23	
Full syklisk – trykk - avlast	218,93	
Full syklisk – trykk -	199,08	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	156,94	
(strekk/trykk)		
Full syklisk (alle data)	60,91	
Kapasitet – stivhet syklisk	112,86	
Kapasitet – stivhet mon	66,92	
	[kN]	
Kapasitet	188,50	
Friksjon	89,33	

F31-E3-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	438,73	
Strekk syklisk - avlast	453,62	
Strekk syklisk –	446,18	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	451,77	
Trykk syklisk - pålast	426,78	
Trykk syklisk - avlast	445,84	
Trykk syklisk - gjennomsnitt	436,31	
(pålast/avlast)		
Trykk syklisk (alle data)	423,42	
Full syklisk – strekk - pålast	116,87	
Full syklisk – strekk - avlast	129,66	
Full syklisk – strekk -	123,27	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	143,18	
Full syklisk – trykk - avlast	106,25	
Full syklisk – trykk -	124,72	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	123,99	
(strekk/trykk)		
Full syklisk (alle data)	94,66	
Kapasitet – stivhet syklisk	133,32	
Kapasitet – stivhet mon	132,86	
	[kN]	
Kapasitet	186,17	
Friksjon	137,82	

F51-E4-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	159,94	
Strekk syklisk - avlast	176,60	
Strekk syklisk –	168,27	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	198,80	
Trykk syklisk - pålast	126,43	Litt spredning
Trykk syklisk - avlast	138,29	Litt spredning
Trykk syklisk - gjennomsnitt	132,36	
(pålast/avlast)		
Trykk syklisk (alle data)	187,48	
Full syklisk – strekk - pålast	119,77	
Full syklisk – strekk - avlast	111,53	
Full syklisk – strekk -	115,65	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	116,84	
Full syklisk – trykk - avlast	138,61	
Full syklisk – trykk -	127,73	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	121,69	
(strekk/trykk)		
Full syklisk (alle data)	135,56	
Kapasitet – stivhet syklisk	122,90	
Kapasitet – stivhet mon	98,87	
	[kN]	
Kapasitet	203,61	
Friksjon	-	

F52-E5-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	103,23	
Strekk syklisk - avlast	105,17	
Strekk syklisk –	104,2	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	109,85	
Trykk syklisk - pålast	254,68	
Trykk syklisk - avlast	197,12	
Trykk syklisk - gjennomsnitt (pålast/avlast)	225,9	
Trykk syklisk (alle data)	174,76	
Full syklisk – strekk - pålast	82,65	
Full syklisk – strekk - avlast	103,91	
Full syklisk – strekk -	93,28	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	109,67	Spredning i resultat, mulig for lav
Full syklisk – trykk - avlast	108,39	
Full syklisk – trykk -	109,03	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	101,15	
(strekk/trykk)		
Full syklisk (alle data)	89,06	
Kapasitet – stivhet syklisk	95,56	
Kapasitet – stivhet mon	76,90	
	[kN]	
Kapasitet	164,64	
Friksjon	99,42	

F37-E1-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	98,86	
Strekk syklisk - avlast	102,17	
Strekk syklisk –	100,51	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	110,02	
Trykk syklisk - pålast	173,74	
Trykk syklisk - avlast	156,10	
Trykk syklisk - gjennomsnitt	164,92	
(pålast/avlast)		
Trykk syklisk (alle data)	191,75	
Full syklisk – strekk - pålast	62,11	
Full syklisk – strekk - avlast	79,19	
Full syklisk – strekk -	70,41	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	141,21	
Full syklisk – trykk - avlast	150,79	
Full syklisk – trykk -	145,44	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	107,93	
(strekk/trykk)		
Full syklisk (alle data)	59,28	
Kapasitet – stivhet syklisk	86,20	
Kapasitet – stivhet mon	57,48	
	[kN]	
Kapasitet	207,57	
Friksjon	117,57	

F38-E2-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	111,70	
Strekk syklisk - avlast	120,51	
Strekk syklisk –	116,11	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	116,18	
Trykk syklisk - pålast	372,24	
Trykk syklisk - avlast	337,88	
Trykk syklisk - gjennomsnitt	355,06	
(pålast/avlast)		
Trykk syklisk (alle data)	356,55	
Full syklisk – strekk - pålast	40,46	
Full syklisk – strekk - avlast	64,25	
Full syklisk – strekk -	52,36	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	51,83	
Full syklisk – trykk - avlast	140,47	Kort område
Full syklisk – trykk -	96,15	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	74,26	
(strekk/trykk)		
Full syklisk (alle data)	-	
Kapasitet – stivhet syklisk	97,12	
Kapasitet – stivhet mon	36,95	
	[kN]	
Kapasitet	203,61	
Friksjon	73,31	
	105,09	

F39-E3-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	70,06	Dårlig data
Strekk syklisk - avlast	41,97	Dårlig data
Strekk syklisk –	56,02	Dårlig data
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	73,56	Dårlig data, Kun en
		LVDT som virket
Trykk syklisk - pålast	140,57	
Trykk syklisk - avlast	139,45	
Trykk syklisk - gjennomsnitt	140,01	
(pålast/avlast)		
Trykk syklisk (alle data)	159,28	Kun en LVDT som virket
Full syklisk – strekk - pålast	476,85	Veldig bratt i forhold til
		resten
Full syklisk – strekk - avlast	477,72	Veldig bratt i forhold til
		resten
Full syklisk – strekk -	477,29	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	116,94	
Full syklisk – trykk - avlast	120,51	
Full syklisk – trykk -	118,73	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	298,01	Usikker data
(strekk/trykk)		
Full syklisk (alle data)	79,19	Kun en LVDT som virket
Kapasitet – stivhet syklisk	640,32	Kun en LVDT som virket
Kapasitet – stivhet mon	267,24	Kun en LVDT som virket
	[kN]	
Kapasitet	199,84	
Friksjon	137,01	

F4-E1-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	123,42	
Strekk syklisk - avlast	118,90	
Strekk syklisk –	121,16	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	124,25	
Trykk syklisk - pålast	193,15	
Trykk syklisk - avlast	184,26	
Trykk syklisk - gjennomsnitt	188,71	
(pålast/avlast)		
Trykk syklisk (alle data)	196,09	
Full syklisk – strekk - pålast	-	Ikke god nok data
Full syklisk – strekk - avlast	101,66	
Full syklisk – strekk -	101,66	Kun avlasting
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	Ikke god nok data
Full syklisk – trykk - avlast	143,56	
Full syklisk – trykk -	143,56	Kun avlasting
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	122,61	
(strekk/trykk)		
Full syklisk (alle data)	37,21	
Kapasitet – stivhet syklisk	100,37	
Kapasitet – stivhet mon	41,29	
	[kN]	
Kapasitet	209,44	Stoppet, gjengestang
		ryker snart
Friksjon	92,92	

F7-E2-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	198,43	
Strekk syklisk - avlast	75,26	
Strekk syklisk –	136,85	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	89,00	
Trykk syklisk - pålast	278,29	
Trykk syklisk - avlast	452,34	
Trykk syklisk - gjennomsnitt	365,32	
(pålast/avlast)		
Trykk syklisk (alle data)	190,04	
Full syklisk – strekk - pålast	98,40	
Full syklisk – strekk - avlast	101,92	
Full syklisk – strekk -	100,16	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	81,42	
Full syklisk – trykk - avlast	87,94	
Full syklisk – trykk -	84,68	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	92,42	
(strekk/trykk)		
Full syklisk (alle data)	81,75	
Kapasitet – stivhet syklisk	119,20	
Kapasitet – stivhet mon	68,19	
	[kN]	
Kapasitet	153,03	
Friksjon	115,78	

F8-E3-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	75,73	
Strekk syklisk - avlast	78,97	
Strekk syklisk –	77,35	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	78,66	
Trykk syklisk - pålast	203,82	
Trykk syklisk - avlast	176,11	
Trykk syklisk - gjennomsnitt	189,97	
(pålast/avlast)		
Trykk syklisk (alle data)	186,41	
Full syklisk – strekk - pålast	29,67	
Full syklisk – strekk - avlast	77,39	
Full syklisk – strekk -	53,53	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	48,19	
Full syklisk – trykk - avlast	82,80	
Full syklisk – trykk -	65,50	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	59,51	
(strekk/trykk)		
Full syklisk (alle data)	13,84	
Kapasitet – stivhet syklisk	55,73	
Kapasitet – stivhet mon	74,25	Lite område, 6-23 kN
	[kN]	
Kapasitet	155,35	
Friksjon	54,67	

F22-E1-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	265,40	
Strekk syklisk - avlast	238,42	
Strekk syklisk –	201,91	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	262,04	
Trykk syklisk - pålast	180,56	
Trykk syklisk - avlast	178,05	
Trykk syklisk - gjennomsnitt	179,31	
(pålast/avlast)		
Trykk syklisk (alle data)	233,53	
Full syklisk – strekk - pålast	127,4	
Full syklisk – strekk - avlast	143,42	
Full syklisk – strekk -	135,41	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	102,68	
Full syklisk – trykk - avlast	137,07	
Full syklisk – trykk -	119,88	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	127,64	
(strekk/trykk)		
Full syklisk (alle data)	110,78	
Kapasitet – stivhet syklisk	145,33	
Kapasitet – stivhet mon	72,12	
	[kN]	
Kapasitet	180,23	
Friksjon	84,32	

F25-E2-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	144,38	
Strekk syklisk - avlast	140,05	
Strekk syklisk –	142,22	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	157,8	
Trykk syklisk - pålast	231,37	
Trykk syklisk - avlast	275,20	
Trykk syklisk - gjennomsnitt	253,29	
(pålast/avlast)		
Trykk syklisk (alle data)	290,96	
Full syklisk – strekk - pålast	-	Ikke mulig å hente ut
Full syklisk – strekk - avlast	160,03	
Full syklisk – strekk -	160,03	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	Ikke mulig å hente ut
Full syklisk – trykk - avlast	193,81	
Full syklisk – trykk -	193,81	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	176,92	
(strekk/trykk)		
Full syklisk (alle data)	18,18	
Kapasitet – stivhet syklisk	173,35	
Kapasitet – stivhet mon	106,72	
	[kN]	
Kapasitet	209,51	Stoppet, gjengestang
Frikcion	44.22	
ГПКЅЈОП	44,22	

F26-E3-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	108,00	
Strekk syklisk - avlast	100,01	
Strekk syklisk –	104,01	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	108,88	
Trykk syklisk - pålast	246,56	
Trykk syklisk - avlast	232,42	
Trykk syklisk - gjennomsnitt (pålast/avlast)	239,49	
Trykk syklisk (alle data)	250,78	
Full syklisk – strekk - pålast	57,24	
Full syklisk – strekk - avlast	104,77	
Full syklisk – strekk -	81,00	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	Ikke mulig å hente ut
Full syklisk – trykk - avlast	219,79	
Full syklisk – trykk -	219,79	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt (strekk/trykk)	150,40	
Full syklisk (alle data)	76,78	
Kapasitet – stivhet syklisk	98,01	
Kapasitet – stivhet mon	92,97	50-80 kN
	[kN]	
Kapasitet	213,00	Stoppet, gjengestang ryker snart
Friksjon	27,49	

F1-E1-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	75,02	
Strekk syklisk - avlast	65,65	
Strekk syklisk –	70,34	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	81,81	
Trykk syklisk - pålast	147,81	
Trykk syklisk - avlast	86,63	
Trykk syklisk - gjennomsnitt	117,22	
(pålast/avlast)		
Trykk syklisk (alle data)	288,51	
Full syklisk – strekk - pålast	38,97	
Full syklisk – strekk - avlast	47,93	
Full syklisk – strekk -	43,45	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	91,65	
Full syklisk – trykk - avlast	62,83	
Full syklisk – trykk -	77,24	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	60,35	
(strekk/trykk)		
Full syklisk (alle data)	14,51	
Kapasitet – stivhet syklisk	72,89	
Kapasitet – stivhet mon	22,85	
	[kN]	
Kapasitet	154,00	
Friksjon	14,14	

F2-E2-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	101,48	
Strekk syklisk - avlast	81,16	
Strekk syklisk –	91,32	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	107,25	
Trykk syklisk - pålast	133,62	
Trykk syklisk - avlast	127,82	
Trykk syklisk - gjennomsnitt (pålast/avlast)	130,72	
Trykk syklisk (alle data)	152,54	
Full syklisk – strekk - pålast	-	Dårlig data
Full syklisk – strekk - avlast	83,31	
Full syklisk – strekk -	83,31	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	Dårlig data
Full syklisk – trykk - avlast	123,82	
Full syklisk – trykk - gjennomsnitt (pålast/avlast)	123,82	
Full syklisk – gjennomsnitt (strekk/trykk)	103,57	
Full syklisk (alle data)	17,62	
Kapasitet – stivhet syklisk	95,45	
Kapasitet – stivhet mon	64,85	10-30 kN
	[kN]	
Kapasitet	210,65	Stoppet, gjengestang ryker snart
Friksjon	38,90	

F3-E3-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	243,04	
Strekk syklisk - avlast	296,73	
Strekk syklisk –	269,89	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	304,58	
Trykk syklisk - pålast	230,65	
Trykk syklisk - avlast	195,25	
Trykk syklisk - gjennomsnitt (pålast/avlast)	212,95	
Trykk syklisk (alle data)	232,79	
Full syklisk – strekk - pålast	-	Dårlig data
Full syklisk – strekk - avlast	374,56	
Full syklisk – strekk -	374,56	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	Dårlig data
Full syklisk – trykk - avlast	200,55	
Full syklisk – trykk - gjennomsnitt (pålast/avlast)	200,55	
Full syklisk – gjennomsnitt (strekk/trykk)	287,56	
Full syklisk (alle data)	160,31	
Kapasitet – stivhet syklisk	1116	Usikker data
Kapasitet – stivhet mon	-	Ikke mulig å hente ut
	[kN]	
Kapasitet	210,54	Stoppet, gjengestang ryker snart
Friksjon	54,31	

F19-E1-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	86,16	
Strekk syklisk - avlast	104,58	
Strekk syklisk –	95,37	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	103,60	
Trykk syklisk - pålast	159,58	
Trykk syklisk - avlast	157,5	
Trykk syklisk - gjennomsnitt	158,54	
(pålast/avlast)		
Trykk syklisk (alle data)	171,18	
Full syklisk – strekk - pålast	50,86	
Full syklisk – strekk - avlast	94,48	
Full syklisk – strekk -	72,67	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	68,85	
Full syklisk – trykk - avlast	168,57	
Full syklisk – trykk -	118,71	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	95,69	
(strekk/trykk)		
Full syklisk (alle data)	19,30	
Kapasitet – stivhet syklisk	89,83	
Kapasitet – stivhet mon	50,70	
	[kN]	
Kapasitet	215,07	Gjengestang røk
Friksjon	41,26	10-40 kN

F20-E2-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	84,29	
Strekk syklisk - avlast	115,64	
Strekk syklisk –	99,94	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	104,95	
Trykk syklisk - pålast	169,04	
Trykk syklisk - avlast	166,79	
Trykk syklisk - gjennomsnitt	167,92	
(pålast/avlast)		
Trykk syklisk (alle data)	187,25	
Full syklisk – strekk - pålast	-	Dårlig data
Full syklisk – strekk - avlast	107,02	
Full syklisk – strekk -	107,02	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	Dårlig data
Full syklisk – trykk - avlast	162,25	
Full syklisk – trykk -	162,25	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	134,64	
(strekk/trykk)		
Full syklisk (alle data)	21,08	
Kapasitet – stivhet syklisk	61,88	
Kapasitet – stivhet mon	42,34	
	[kN]	
Kapasitet	191,82	
Friksjon	53,22	

F21-E3-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	70,21	
Strekk syklisk - avlast	73,66	
Strekk syklisk –	71,93	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	76,12	
Trykk syklisk - pålast	87,76	
Trykk syklisk - avlast	68,62	
Trykk syklisk - gjennomsnitt	78,19	
(pålast/avlast)		
Trykk syklisk (alle data)	130,53	
Full syklisk – strekk - pålast	31,18	
Full syklisk – strekk - avlast	63,44	
Full syklisk – strekk -	47,31	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	25,40	
Full syklisk – trykk - avlast	52,38	
Full syklisk – trykk -	38,89	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	43,10	
(strekk/trykk)		
Full syklisk (alle data)	14,19	
Kapasitet – stivhet syklisk	55,82	
Kapasitet – stivhet mon	42,11	55-87 kN
	[kN]	
Kapasitet	122,87	
Friksjon	36,43	

2 Doble gjengestenger

F45-D1-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	-	
Strekk syklisk - avlast	-	
Strekk syklisk –	-	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	-	
Trykk syklisk - pålast	486,08	
Trykk syklisk - avlast	508,17	
Trykk syklisk - gjennomsnitt	497,13	
(pålast/avlast)		
Trykk syklisk (alle data)	496,67	
Full syklisk – strekk - pålast	-	
Full syklisk – strekk - avlast	-	
Full syklisk – strekk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	
Full syklisk – trykk - avlast	524,94	Dårlig data
Full syklisk – trykk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	-	
(strekk/trykk)		
Full syklisk (alle data)	-	
Kapasitet – stivhet syklisk	1023,2	Dårlig data
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	265,65	
Friksjon	68,36	

F46-D2-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	393,07	Dårlig data
Strekk syklisk - avlast	227,66	
Strekk syklisk –	310,37	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	606,37	
Trykk syklisk - pålast	343,9	
Trykk syklisk - avlast	110,75	Dårlig data
Trykk syklisk - gjennomsnitt	227,33	
(pålast/avlast)		
Trykk syklisk (alle data)	154,85	
Full syklisk – strekk - pålast	-	
Full syklisk – strekk - avlast	169,47	
Full syklisk – strekk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	
Full syklisk – trykk - avlast	262,45	
Full syklisk – trykk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	-	
(strekk/trykk)		
Full syklisk (alle data)	64,99	
Kapasitet – stivhet syklisk	266,59	
Kapasitet – stivhet mon	44,08	
	[kN]	
Kapasitet	315,42	
Friksjon	37,88	

F56-D3-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	641,93	
Strekk syklisk - avlast	1011,6	
Strekk syklisk –	826,77	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	930,41	
Trykk syklisk - pålast	2386,8	
Trykk syklisk - avlast	970,22	
Trykk syklisk - gjennomsnitt	1678,51	
(pålast/avlast)		
Trykk syklisk (alle data)	2113,1	
Full syklisk – strekk - pålast	300,89	
Full syklisk – strekk - avlast	400,76	
Full syklisk – strekk -	350,83	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	
Full syklisk – trykk - avlast	457,66	
Full syklisk – trykk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	-	
(strekk/trykk)		
Full syklisk (alle data)	197,76	
Kapasitet – stivhet syklisk	461,55	
Kapasitet – stivhet mon	327,96	
	[kN]	
Kapasitet	232,88	
Friksjon	32,19	

F33-D1-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	172,55	
Strekk syklisk - avlast	247,6	
Strekk syklisk –	210,08	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	257,62	
Trykk syklisk - pålast	584,18	
Trykk syklisk - avlast	580,15	
Trykk syklisk - gjennomsnitt	582,17	
(pålast/avlast)		
Trykk syklisk (alle data)	649,81	
Full syklisk – strekk - pålast	47,57	
Full syklisk – strekk - avlast	161,81	
Full syklisk – strekk -	104,69	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	
Full syklisk – trykk - avlast	-	
Full syklisk – trykk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	-	
(strekk/trykk)		
Full syklisk (alle data)	-	
Kapasitet – stivhet syklisk	188,81	
Kapasitet – stivhet mon	435,9	
	[kN]	
Kapasitet	250,76	
Friksjon	61,46	

F50-D2-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	281,92	
Strekk syklisk - avlast	346,12	
Strekk syklisk –	314,02	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	387,84	
Trykk syklisk - pålast	490,38	
Trykk syklisk - avlast	502,66	
Trykk syklisk - gjennomsnitt	496,52	
(pålast/avlast)		
Trykk syklisk (alle data)	641,77	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	260,98	Mest representativ for
		alle data over
Kapasitet – stivhet syklisk	420,82	
Kapasitet – stivhet mon	207,69	
	[kN]	
Kapasitet	267,25	
Friksjon	69,19	

F60-D3-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	430,34	
Strekk syklisk - avlast	459,49	
Strekk syklisk –	444,92	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	452,37	
Trykk syklisk - pålast	467,84	
Trykk syklisk - avlast	318,13	
Trykk syklisk - gjennomsnitt	392,99	
(pålast/avlast)		
Trykk syklisk (alle data)	578,89	
Full syklisk – strekk - pålast	-	
Full syklisk – strekk - avlast	-	
Full syklisk – strekk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	412,41	Dårlig data
Full syklisk – trykk - avlast	481,06	
Full syklisk – trykk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	-	
(strekk/trykk)		
Full syklisk (alle data)	-	
Kapasitet – stivhet syklisk	419,32	Målt mellom 105-176 kN
Kapasitet – stivhet mon	264,88	
	[kN]	
Kapasitet	309,77	
Friksjon	45,07	

F40-D1-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	218,8	
Strekk syklisk - avlast	207,05	
Strekk syklisk –	212,93	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	218,21	
Trykk syklisk - pålast	178,52	
Trykk syklisk - avlast	156,52	
Trykk syklisk - gjennomsnitt	167,52	
(pålast/avlast)		
Trykk syklisk (alle data)	182,69	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast	203,14	
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	156,52	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	55,82	
Kapasitet – stivhet syklisk	150,92	28-110 kN
Kapasitet – stivhet mon	69,58	5-56 kN
	[kN]	
Kapasitet	321,57	
Friksjon	52,42	

F63-D2-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	194,12	
Strekk syklisk - avlast	171,55	
Strekk syklisk –	184,84	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	178,41	
Trykk syklisk - pålast	-	
Trykk syklisk - avlast	-	
Trykk syklisk - gjennomsnitt	-	
(pålast/avlast)		
Trykk syklisk (alle data)	453,51	Dårlig data
Full syklisk – strekk - pålast	-	
Full syklisk – strekk - avlast	-	
Full syklisk – strekk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	-	
Full syklisk – trykk - avlast	-	
Full syklisk – trykk -	-	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	-	
(strekk/trykk)		
Full syklisk (alle data)	266,54	Dårlig data
Kapasitet – stivhet syklisk	165,26	
Kapasitet – stivhet mon	303,84	
	[kN]	
Kapasitet	338,61	
Friksjon	66,71	

F64-D3-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	744,59	
Strekk syklisk - avlast	930,2	
Strekk syklisk –	837,40	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	1052,3	
Trykk syklisk - pålast	652,36	
Trykk syklisk - avlast	512,4	
Trykk syklisk - gjennomsnitt	582,38	
(pålast/avlast)		
Trykk syklisk (alle data)	624,15	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	835,95	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	576,45	
Kapasitet – stivhet syklisk	483,96	
Kapasitet – stivhet mon	448,05	
	[kN]	
Kapasitet	395,44	Maks kapasitet til rigg
Friksjon	85,94	

F43-D1-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	-	
Strekk syklisk - avlast	-	
Strekk syklisk –	-	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	-	
Trykk syklisk - pålast	210,58	
Trykk syklisk - avlast	217,77	
Trykk syklisk - gjennomsnitt	214,18	
(pålast/avlast)		
Trykk syklisk (alle data)	231,25	
Full syklisk – strekk - pålast	296,87	Brukt full syklisk alle
		data
Full syklisk – strekk - avlast	262,96	
Full syklisk – strekk -	266,42	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	269,87 (80,09)	Dårlig data, så brukte i
		stedet (Full -alle data)
Full syklisk – trykk - avlast	285,57	
Full syklisk – trykk -	182,83	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	224,62	
(strekk/trykk)		
Full syklisk (alle data)	269,87	
Kapasitet – stivhet syklisk	554,95	
Kapasitet – stivhet mon	194,44	
	[kN]	
Kapasitet	240,65	
Friksjon	61,35	

F44-D2-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	451,95	
Strekk syklisk - avlast	586,36	
Strekk syklisk –	519,16	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	463,84	
Trykk syklisk - pålast	369,29	
Trykk syklisk - avlast	382,58	
Trykk syklisk - gjennomsnitt	375,94	
(pålast/avlast)		
Trykk syklisk (alle data)	358,41	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast	350,36	Dårlig data
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	424	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	110,75	
Kapasitet – stivhet syklisk	227,96	
Kapasitet – stivhet mon	91,36	
	[kN]	
Kapasitet	284,73	
Friksjon	76,82	

F55-D3-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	-	
Strekk syklisk - avlast	-	
Strekk syklisk –	-	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	-	Grafen går «feil» vei
Trykk syklisk - pålast	1104,4	
Trykk syklisk - avlast	1073,3	
Trykk syklisk - gjennomsnitt	1088,85	
(pålast/avlast)		
Trykk syklisk (alle data)	1025,9	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	488,06	Så godt som ubrukelig
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	349,79	Dårlig data
Kapasitet – stivhet syklisk	685,52	150-220 kN
Kapasitet – stivhet mon	352,26	
	[kN]	
Kapasitet	387,77	
Friksjon	62,15	

F49-D1-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	-	
Strekk syklisk - avlast	-	
Strekk syklisk –	-	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	-	
Trykk syklisk - pålast	305,5	
Trykk syklisk - avlast	332,76	
Trykk syklisk - gjennomsnitt	319,13	
(pålast/avlast)		
Trykk syklisk (alle data)	360,07	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast	183,33	
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	335,73	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	131	
Kapasitet – stivhet syklisk	102,11	220-300 kN
Kapasitet – stivhet mon	29,53	20-66 kN
	[kN]	
Kapasitet	394,89	Runout
Friksjon	37,10	

F14-D1-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	361,38	
Strekk syklisk - avlast	586,36	
Strekk syklisk –	473,87	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	324,58	
Trykk syklisk - pålast		
Trykk syklisk - avlast		
Trykk syklisk - gjennomsnitt		
(pålast/avlast)		
Trykk syklisk (alle data)		
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	559,29	
Kapasitet – stivhet syklisk	188,62	220-300 kN
Kapasitet – stivhet mon	422,06	6-45 kN
	[kN]	
Kapasitet	345,45	
Friksjon	56,92	

F15-D2-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast		
Strekk syklisk - avlast		
Strekk syklisk –		
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)		
Trykk syklisk - pålast	348,61	
Trykk syklisk - avlast	234,25	
Trykk syklisk - gjennomsnitt	291,43	
(pålast/avlast)		
Trykk syklisk (alle data)	351,25	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	172,23	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	105,29	NB! Kun 6 sykler ble
		kjørt på full
Kapasitet – stivhet syklisk		
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	249,08	
Friksjon		

F16-D3-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	143,5	
Strekk syklisk - avlast	113,95	
Strekk syklisk –	128,73	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	146,81	
Trykk syklisk - pålast	215,03	
Trykk syklisk - avlast	200,09	
Trykk syklisk - gjennomsnitt	207,56	
(pålast/avlast)		
Trykk syklisk (alle data)	274,58	
Full syklisk – strekk - pålast	90,05	
Full syklisk – strekk - avlast	80,85	
Full syklisk – strekk -	101,86	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	122,86	
Full syklisk – trykk - avlast	214,35	
Full syklisk – trykk -	168,61	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	135,23	
(strekk/trykk)		
Full syklisk (alle data)	96,27	
Kapasitet – stivhet syklisk	297,97	150-220 kN
Kapasitet – stivhet mon	64,87	5-40 kN
	[kN]	
Kapasitet	258,57	
Friksjon	73,50	

F34-D1-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast		
Strekk syklisk - avlast		
Strekk syklisk –		
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)		Dårlig data
Trykk syklisk - pålast	500,15	Dårlig data
Trykk syklisk - avlast	1212	Dårlig data
Trykk syklisk - gjennomsnitt		Dårlig data
(pålast/avlast)		
Trykk syklisk (alle data)	209,19	Dårlig data
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	688,5	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)		
Kapasitet – stivhet syklisk	1187,1	82-150 kN
Kapasitet – stivhet mon	239,53	80-150 kN
	[kN]	
Kapasitet	395,58	Maks kapasitet til rigg
Friksjon	180,52	

Tid [s]

3 Konfigurasjon V

F48-V1-5-650*

*Usikker på om utregningene er riktige

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	762,1	
Strekk syklisk - avlast	598,91	
Strekk syklisk –	680,51	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	769,64	
Trykk syklisk - pålast	860,9	
Trykk syklisk - avlast	1224,4	
Trykk syklisk - gjennomsnitt	1042,65	
(pålast/avlast)		
Trykk syklisk (alle data)	683,27	
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)	**	
Kapasitet – stivhet syklisk	606,02	
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	245,60	
Friksjon		Kjørt uten friksjon

** ingen data for «full – syklisk» grunnet feilkjøring

F57-V2-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	554,15	
Strekk syklisk - avlast	590,16	
Strekk syklisk –	572,16	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	281,04	
Trykk syklisk - pålast		
Trykk syklisk - avlast		
Trykk syklisk - gjennomsnitt		Grafen går feil vei
(pålast/avlast)		
Trykk syklisk (alle data)		
Full syklisk – strekk - pålast	323,21	
Full syklisk – strekk - avlast	117,24	
Full syklisk – strekk -	220,23	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)		
Kapasitet – stivhet syklisk	288,05	
Kapasitet – stivhet mon	143,27	
	[kN]	
Kapasitet	322,63	
Friksjon	248,32	
	268,88	

F65-V3-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	546,93	
Strekk syklisk - avlast	443,87	
Strekk syklisk –	495,4	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	565,91	
Trykk syklisk - pålast	532,09	
Trykk syklisk - avlast	462,67	
Trykk syklisk - gjennomsnitt	497,38	
(pålast/avlast)		
Trykk syklisk (alle data)	568,72	
Full syklisk – strekk - pålast	428,93	
Full syklisk – strekk - avlast	569,81	
Full syklisk – strekk -	499,37	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	522,26	
Full syklisk – trykk - avlast	565,46	
Full syklisk – trykk -	543,86	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	521,62	
(strekk/trykk)		
Full syklisk (alle data)	469,42	«Ganske» godt
		representativt for alle
		data
Kapasitet – stivhet syklisk	621,05	
Kapasitet – stivhet mon	463,16	
	[kN]	
Kapasitet	267,87	
Friksjon	226,55	
	213,06	

F47-V4-5-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	391,64	Usikre data
Strekk syklisk - avlast	238,37	Usikre data
Strekk syklisk –		
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)		
Trykk syklisk - pålast	1114,9	
Trykk syklisk - avlast	1150	
Trykk syklisk - gjennomsnitt		
(pålast/avlast)		
Trykk syklisk (alle data)		
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast	278,08	
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast	1112,8	
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)		
Kapasitet – stivhet syklisk	294,58	
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	173,78	
Friksjon		

F35-V1-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	240,94	
Strekk syklisk - avlast	356,54	
Strekk syklisk –	298,74	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	367,88	
Trykk syklisk - pålast	1506,2	Dårlig data
Trykk syklisk - avlast	1549,2	Dårlig data
Trykk syklisk - gjennomsnitt		
(pålast/avlast)		
Trykk syklisk (alle data)		
Full syklisk – strekk - pålast		
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)		*
Kapasitet – stivhet syklisk	482,67	20-62 kN
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	273,24	
Friksjon		**

* Forsøk på «full – syklisk» ble ikke utført

** Ikke påført friksjon

F36-V2-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	544,69	
Strekk syklisk - avlast	517,90	
Strekk syklisk –	531,30	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	587,39	
Trykk syklisk - pålast	240,40	
Trykk syklisk - avlast	229,21	
Trykk syklisk - gjennomsnitt	234,81	
(pålast/avlast)		
Trykk syklisk (alle data)	234,49	
Full syklisk – strekk - pålast	289,46	
Full syklisk – strekk - avlast	269,63	
Full syklisk – strekk -	279,55	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	114,73	
Full syklisk – trykk - avlast	229,1	
Full syklisk – trykk -	171,92	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	225,73	
(strekk/trykk)		
Full syklisk (alle data)	17,60	
Kapasitet – stivhet syklisk	301,74	
Kapasitet – stivhet mon	282,21	
	[kN]	
Kapasitet	289,77	
Friksjon		Ikke påført friksjon

F58-V3-10-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	195,33	
Strekk syklisk - avlast	167,20	
Strekk syklisk –	181,27	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	226,99	
Trykk syklisk - pålast	1003,40	Lite område å hente ut data fra
Trykk syklisk - avlast	1086,40	
Trykk syklisk - gjennomsnitt (pålast/avlast)	1044,90	
Trykk syklisk (alle data)	494,59	
Full syklisk – strekk - pålast		Ikke utført full syklisk test
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk - gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt (strekk/trykk)		
Full syklisk (alle data)		
Kapasitet – stivhet syklisk		Ingen fil å hente data fra
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	311,08	Hentet direkte fra pc-en som kjører riggen
Friksjon		Ikke påført friksjon

Kapasitetsforsøket var utført, men det var feil på filen.

F41-V1-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	736,25	
Strekk syklisk - avlast	631,45	
Strekk syklisk –	683,85	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	686,98	
Trykk syklisk - pålast	335,23	
Trykk syklisk - avlast	398,48	
Trykk syklisk - gjennomsnitt	366,86	
(pålast/avlast)		
Trykk syklisk (alle data)	1158,1	
Full syklisk – strekk - pålast	389,64	
Full syklisk – strekk - avlast	435,66	
Full syklisk – strekk -	412,65	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	121,48	
Full syklisk – trykk - avlast	310,29	
Full syklisk – trykk -	215,89	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	314,27	
(strekk/trykk)		
Full syklisk (alle data)	164,20	
Kapasitet – stivhet syklisk	519,68	
Kapasitet – stivhet mon	236,55	
	[kN]	
Kapasitet	349,88	
Friksjon		Ikke påført friksjon

F42-V2-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	532,19	
Strekk syklisk - avlast	555,71	
Strekk syklisk –	543,95	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	555,61	
Trykk syklisk - pålast	446,52	
Trykk syklisk - avlast	572,57	
Trykk syklisk - gjennomsnitt	509,55	
(pålast/avlast)		
Trykk syklisk (alle data)	587,64	
Full syklisk – strekk - pålast	421,26	
Full syklisk – strekk - avlast	494,81	
Full syklisk – strekk -	458,04	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	212,48	
Full syklisk – trykk - avlast	445,29	
Full syklisk – trykk -	328,89	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	393,46	
(strekk/trykk)		
Full syklisk (alle data)	268,45	
Kapasitet – stivhet syklisk	499,51	
Kapasitet – stivhet mon	541,38	
	[kN]	
Kapasitet	328,73	
Friksjon		Ikke påført friksjon

F61-V3-15-650

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	409,49	
Strekk syklisk - avlast	359,82	
Strekk syklisk –	384,66	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	402,35	
Trykk syklisk - pålast	611,90	
Trykk syklisk - avlast	676,08	
Trykk syklisk - gjennomsnitt	643,99	
(pålast/avlast)		
Trykk syklisk (alle data)	709,13	
Full syklisk – strekk - pålast	300,40	
Full syklisk – strekk - avlast	433,17	
Full syklisk – strekk -	366,79	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	559,11	
Full syklisk – trykk - avlast	550,43	
Full syklisk – trykk -	554,77	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	460,78	
(strekk/trykk)		
Full syklisk (alle data)	160,78	
Kapasitet – stivhet syklisk	485,41	
Kapasitet – stivhet mon	327,82	
	[kN]	
Kapasitet	329,62	
Friksjon		Ikke påført friksjon

F12-V1-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	485,63	
Strekk syklisk - avlast	409,76	
Strekk syklisk –	447,70	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	522,5	
Trykk syklisk - pålast	445,81	
Trykk syklisk - avlast	380,79	
Trykk syklisk - gjennomsnitt	413,30	
(pålast/avlast)		
Trykk syklisk (alle data)	463,68	
Full syklisk – strekk - pålast	430,14	
Full syklisk – strekk - avlast	337,29	
Full syklisk – strekk -	383,72	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	288,82	
Full syklisk – trykk - avlast	309,56	
Full syklisk – trykk -	299,19	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	341,45	
(strekk/trykk)		
Full syklisk (alle data)	265,12	
Kapasitet – stivhet syklisk	464,01	
Kapasitet – stivhet mon	257,21	
	[kN]	
Kapasitet	223,02	
Friksjon	148,27	
	219,88	

F17-V2-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	446,81	
Strekk syklisk - avlast	377,46	
Strekk syklisk –	412,14	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	458,06	
Trykk syklisk - pålast	398,61	
Trykk syklisk - avlast	323,53	
Trykk syklisk - gjennomsnitt	361,07	
(pålast/avlast)		
Trykk syklisk (alle data)	399,34	
Full syklisk – strekk - pålast	253,46	
Full syklisk – strekk - avlast	351,14	
Full syklisk – strekk -	302,3	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	239,93	
Full syklisk – trykk - avlast	318,14	
Full syklisk – trykk -	279,04	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	290,67	
(strekk/trykk)		
Full syklisk (alle data)	163,66	
Kapasitet – stivhet syklisk	656,11	
Kapasitet – stivhet mon	287,46	
	[kN]	
Kapasitet	297,41	
Friksjon	237,28	
	254,48	

F18-V3-5-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	574,55	
Strekk syklisk - avlast	507,21	
Strekk syklisk –	540,88	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	637,77	
Trykk syklisk - pålast	517,84	
Trykk syklisk - avlast	455,63	
Trykk syklisk - gjennomsnitt	486,74	
(pålast/avlast)		
Trykk syklisk (alle data)	557,78	
Full syklisk – strekk - pålast	471,19	
Full syklisk – strekk - avlast	460,56	
Full syklisk – strekk -	465,88	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	477,81	
Full syklisk – trykk - avlast	522,33	
Full syklisk – trykk -	500,07	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	482,97	
(strekk/trykk)		
Full syklisk (alle data)	352,78	
Kapasitet – stivhet syklisk	519,23	
Kapasitet – stivhet mon	440,98	
	[kN]	
Kapasitet	394,88	Maks kapasitet til rigg
Friksjon	262,35	
	330,52	

F29-V1-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast		Ikke god data, deformasjon går feil vei
Strekk syklisk - avlast		
Strekk syklisk –		
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)		
Trykk syklisk - pålast		Dårlig data
Trykk syklisk - avlast		
Trykk syklisk - gjennomsnitt		
(pålast/avlast)		
Trykk syklisk (alle data)		
Full syklisk – strekk - pålast		Dårlig data
Full syklisk – strekk - avlast		
Full syklisk – strekk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast		
Full syklisk – trykk - avlast		
Full syklisk – trykk -		
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt		
(strekk/trykk)		
Full syklisk (alle data)		
Kapasitet – stivhet syklisk		Dårlig data
Kapasitet – stivhet mon		
	[kN]	
Kapasitet	217,60	
Friksjon		Ikke påført friksjon

F30-V2-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	673,09	
Strekk syklisk - avlast	682,55	
Strekk syklisk –	677,82	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	705,55	
Trykk syklisk - pålast	332,07	
Trykk syklisk - avlast	271,82	
Trykk syklisk - gjennomsnitt	301,95	
(pålast/avlast)		
Trykk syklisk (alle data)	300,35	
Full syklisk – strekk - pålast	400,02	
Full syklisk – strekk - avlast	493,11	
Full syklisk – strekk -	446,57	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	356,92	
Full syklisk – trykk - avlast	447,17	
Full syklisk – trykk -	402,05	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	424,31	
(strekk/trykk)		
Full syklisk (alle data)	242,41	
Kapasitet – stivhet syklisk	704,04	
Kapasitet – stivhet mon	503,34	
	[kN]	
Kapasitet	389,84	
Friksjon	224,11	
	217,29	

F54-V3-10-880

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	480,92	
Strekk syklisk - avlast	476,45	
Strekk syklisk –	478,69	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	523,11	
Trykk syklisk - pålast	400,92	
Trykk syklisk - avlast	398,23	
Trykk syklisk - gjennomsnitt	399,58	
(pålast/avlast)		
Trykk syklisk (alle data)	461,71	
Full syklisk – strekk - pålast	286,37	
Full syklisk – strekk - avlast	423,76	
Full syklisk – strekk -	355,07	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	251,22	
Full syklisk – trykk - avlast	383,02	
Full syklisk – trykk -	317,12	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	336,09	
(strekk/trykk)		
Full syklisk (alle data)	252,50	
Kapasitet – stivhet syklisk	800,62	Litt støy i målingene
Kapasitet – stivhet mon	460,16	Litt støy i målingene
	[kN]	
Kapasitet	380,32	
Friksjon		Ikke påført friksjon

F5-V1-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	627,11	
Strekk syklisk - avlast	612,09	
Strekk syklisk –	619,60	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	748,61	
Trykk syklisk - pålast	1265,30	
Trykk syklisk - avlast	1083,60	
Trykk syklisk - gjennomsnitt	1174,45	
(pålast/avlast)		
Trykk syklisk (alle data)	854,34	
Full syklisk – strekk - pålast	475,58	
Full syklisk – strekk - avlast	540,60	
Full syklisk – strekk -	508,09	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	554,70	
Full syklisk – trykk - avlast	1132,70	
Full syklisk – trykk -	843,20	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	675,65	
(strekk/trykk)		
Full syklisk (alle data)	281,64	
Kapasitet – stivhet syklisk	606,6	
Kapasitet – stivhet mon	348,06	
	[kN]	
Kapasitet	395,33	Maks kapasitet til rigg
Friksjon	289,03	
	355,96	

F6-V2-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	494,00	
Strekk syklisk - avlast	503,86	
Strekk syklisk –	498,93	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	595,78	
Trykk syklisk - pålast	629,89	
Trykk syklisk - avlast	716,28	
Trykk syklisk - gjennomsnitt	673,09	
(pålast/avlast)		
Trykk syklisk (alle data)	737,73	
Full syklisk – strekk - pålast	379,00	
Full syklisk – strekk - avlast	350,15	
Full syklisk – strekk -	364,58	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	833,96	
Full syklisk – trykk - avlast	642,99	
Full syklisk – trykk -	738,48	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	551,53	
(strekk/trykk)		
Full syklisk (alle data)	375,67	
Kapasitet – stivhet syklisk	401,78	
Kapasitet – stivhet mon	324,59	
	[kN]	
Kapasitet	396,81	Maks kapasitet til rigg
Friksjon	262,37	
	269,53	

F11-V3-5-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	493,33	
Strekk syklisk - avlast	427,37	
Strekk syklisk –	460,35	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	531,07	
Trykk syklisk - pålast	444,82	
Trykk syklisk - avlast	450,13	
Trykk syklisk - gjennomsnitt	447,48	
(pålast/avlast)		
Trykk syklisk (alle data)	502,55	
Full syklisk – strekk - pålast	542,19	
Full syklisk – strekk - avlast	407,71	
Full syklisk – strekk -	474,95	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	340,40	
Full syklisk – trykk - avlast	390,12	
Full syklisk – trykk -	365,26	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	420,11	
(strekk/trykk)		
Full syklisk (alle data)	324,67	
Kapasitet – stivhet syklisk	611,66	
Kapasitet – stivhet mon	449,90	
	[kN]	
Kapasitet	395,27	Maks kapasitet til rigg
Friksjon	238,73	
	238,73	Slipp samtidig

F23-V1-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	319,32	
Strekk syklisk - avlast	307,37	
Strekk syklisk –	313,35	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	336,01	
Trykk syklisk - pålast	290,97	
Trykk syklisk - avlast	298,10	
Trykk syklisk - gjennomsnitt	294,54	
(pålast/avlast)		
Trykk syklisk (alle data)	295,60	
Full syklisk – strekk - pålast	280,96	
Full syklisk – strekk - avlast	264,19	
Full syklisk – strekk -	272,58	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	235,75	
Full syklisk – trykk - avlast	253,57	
Full syklisk – trykk -	244,66	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	258,62	
(strekk/trykk)		
Full syklisk (alle data)	228,46	
Kapasitet – stivhet syklisk	341,95	
Kapasitet – stivhet mon	267,91	
	[kN]	
Kapasitet	323,34	
Friksjon	235,45	
	249,35	

F24-V2-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	442,03	
Strekk syklisk - avlast	416,08	
Strekk syklisk –	429,06	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	470,75	
Trykk syklisk - pålast	310,02	
Trykk syklisk - avlast	298,87	
Trykk syklisk - gjennomsnitt	304,10	
(pålast/avlast)		
Trykk syklisk (alle data)	337,47	
Full syklisk – strekk - pålast	407,38	
Full syklisk – strekk - avlast	438,86	
Full syklisk – strekk -	423,12	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	417,05	
Full syklisk – trykk - avlast	315,77	
Full syklisk – trykk -	366,41	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	394,77	
(strekk/trykk)		
Full syklisk (alle data)	397,41	
Kapasitet – stivhet syklisk	497,56	
Kapasitet – stivhet mon	395,15	
	[kN]	
Kapasitet	367,58	
Friksjon	279,40	
	319,65	

F53-V3-10-1000

Resultat	Stivhet [kN/mm]	Kommentar
Strekk syklisk - pålast	414,13	
Strekk syklisk - avlast	437,87	
Strekk syklisk –	426,00	
gjennomsnitt (pålast/avlast)		
Strekk syklisk (alle data)	473,74	
Trykk syklisk - pålast	243,49	
Trykk syklisk - avlast	193,47	
Trykk syklisk - gjennomsnitt	218,48	
(pålast/avlast)		
Trykk syklisk (alle data)	229,88	
Full syklisk – strekk - pålast	312,56	
Full syklisk – strekk - avlast	372,95	
Full syklisk – strekk -	343,76	
gjennomsnitt (pålast/avlast)		
Full syklisk – trykk - pålast	254,98	
Full syklisk – trykk - avlast	268,29	
Full syklisk – trykk -	261,64	
gjennomsnitt (pålast/avlast)		
Full syklisk – gjennomsnitt	302,70	
(strekk/trykk)		
Full syklisk (alle data)	-	
Kapasitet – stivhet syklisk	396,00	
Kapasitet – stivhet mon	303,31	
	[kN]	
Kapasitet	395,22	Maks kapasitet til rigg
Friksjon	230,88	
	293,12	

