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Abstract

Water molecules can take di↵erent shapes and can form di↵erent structures such as ice. It also
can form new substances when mixed with other compounds, like Hydrates. However, how the
individual water molecule goes from being free-flowing in its liquid state to participating in forming
solid structures is largely a random event and yet to be investigated in detail. Does there exist a
transitional phase between water and ice or water and hydrate? Does there exist an intermediate
structure that explains this transitional phase?

This Thesis attempted to discover these possible intermediate water structures during the transition
from water to ice or hydrate. This was done by utilizing di↵erent machine learning techniques,
such as DBSCAN and k-means clustering.

A Molecular Dynamics simulation was done, and the trajectory data from this simulation was
used to find intermediate structures. By using di↵erent methods to explore the data, and using
the mentioned machine learning techniques, three di↵erent experiments were conducted to find
potential intermediate structures.

The most promising structures were then revealed in OVITO to see how they behaved during
the MD simulation and see if they could be classified as an intermediate structure. For the first
time, Y-shape structure formed by water molecules were identified in this work, which primarily
validated the existence of intermediate structures in water phase transition.

Keywords: water, ice, hydrate, intermediate structure, molecular dynamics, machine learning,
DBSCAN, k-means, OVITO
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Sammendrag

Vannmolekyler er i stand til å komme i forskjellige former og kan danne forskjellige strukturer, som
is. Vann har ogs̊a evnen til å danne nye sto↵er n̊ar det blander seg med andre forbindelser, som
hydrater. Men hvordan individuelle vannmolekyler g̊ar fra å være fritt flytende i sin væskeform
til å delta i dannelse av solide bindinger, er fortsatt en tilfeldig hendelse som trenger en detaljert
undersøkelse. Finnes det en midlertidig binding som forklarer denne overgangsperioden?

Denne oppgaven vil forsøke å finne disse mulige midlertidige bindingene som forekommer i over-
gangen mellom vann og is, eller hydrat. Dette ble forsøkt ved bruk av forskjellige maskinlærings-
metoder som DBSCAN og k-means-gruppering.

En molekylær dynamikk-simulering ble gjennomført, og banedataene fra denne simuleringen ble
brukt til å finne midlertidige bindinger. Ved å bruke forskjellige metoder for å utforske datasettet,
og ved å bruke nevnte maskinlæringsmetoder, ble tre forskjellige eksperimenter gjennomført for å
finne midlertidige bindinger.

De mest lovende bindingene ble presentert i OVITO for å se hvordan de oppførte seg i MD-
simuleringen, for å vurdere om de kunne klassifiseres som midlertidige bindinger. For første gang
har Y-formede strukturer dannet av vannmolekyler blitt identifisert i dette prosjektet, noe som
primært bekrefter eksistensen av midlertidige bindinger i overgangsfasen mellom vann og is.
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1 Introduction

Water is the most abundant natural resource on this planet [1]. It can take many di↵erent shapes
and can be in di↵erent forms, such as liquid, ice, and gas[2]. It also can form new substances when
mixed with other compounds, like a hydrate[3].

Currently, the investigation of water phase transition at the nanoscale remains an active area of
research, particularly concerning the discovery of previously unexplored water structures [4][5].
To comprehensively comprehend the transition mechanism of water, it is crucial to identify the
intermediate structures that emerge during the process. These intermediate structures serve as
significant indicators of the free energy pathways, attracting scientific interest across various fields
aiming to elucidate phase transitions [6][7][8].

This master’s thesis centers around the investigation of intermediate water structures during the
transition from water to ice and hydrate. The author specifically employed diverse machine-learning
techniques to analyze high-resolution trajectories obtained from molecular dynamics simulations.
The primary objective was to develop e↵ective methods for recognizing water and hydrate struc-
tures and identifying the characteristic intermediate structures that play a crucial role in water
and hydrate phase transitions.

1.1 Motivation

The reason for performing this master thesis is for the simple fact that hydrate and ice raise
challenges for mankind’s activities and made structures[9][10]. For example, ice formation causes
a lot of challenges for a structure like a windmill. Ice formations make it di�cult to operate the
windmills and will cause less power to be generated[9]. Likewise, another water-based structure,
hydrate, also can be highly harmful to infrastructures [10]. In deep sea oil pipes, the conditions
are just right for hydrates to form inside the pipes. When the hydrates form, they can clog up
the pipe, meaning that the oil from the rigs will have di�culty to move through the pipe[10].
By understanding how ice and hydrates form, especially the fundamentals like their intermediate
structures in the phase transition, this information could be used to help prevent the formation
of ice and hydrates. This could be done by finding materials or coatings that could prevent the
nucleation of ice and hydrates.

1.2 Previous work in the field

While numerous studies have explored intermediate structures in various materials such as proteins
and polymers[6][7][8], there is a scarcity of research focusing on intermediate water structures
during the phase transition of water. This lack of investigation is primarily attributed to the
relatively straightforward structure of water (compared to proteins and polymers) and the fleeting
existence of potential intermediate structures. Consequently, this project places a high priority on
using machine learning techniques to identify any potential intermediate water structures based
on rational data derived from molecular dynamics simulations. The verification of these identified
structures will be subject to future investigations.

1.3 Scope of this research

This section presents the objective of the thesis research and an overview of the methodology used
to achieve the objectives.

1.3.1 Objective

The objective of this thesis is to: Use machine learning techniques to try to identify intermediate
structures during ice and hydrate freezing nucleation, and get a better understanding of how

1



machine learning further can be used to identify intermediate structures in an optimal way.

1.3.2 Methodology

This section describes the methodology of how the goal of this thesis was tried to be accomplished.

STEP1 - MD-simulation:
Molecular Dynamics (MD) simulation was performed using the simulation package LAMMPS [11],
which reproduces the phase transition of water to ice and hydrate. The water model utilized in the
simulations was the mW water model specialized in capturing the hydrogen bonding in water [12].
The resulting MD simulation trajectories were then used at the raw data for water intermediate
structure identification.

STEP2 - Water recognition:
To find the intermediate structures the following assumption was made: Intermediate structures
would only be observable in the water layer of the MD simulation. Therefore the machine learning
algorithm DBSCAN was used to filter out all molecules that did not belong to the water layer.
Boundary conditions were also introduced to prevent the artificial ”teleportation” e↵ect of atoms
in the simulation trajectories due to the periodic boundary condition of the simulation systems.

STEP3 - Experiments:
Three di↵erent experiments were conducted to try and find intermediate structures. These exper-
iments had di↵erent approaches on how to find intermediate structures.

STEP4 - Properties:
Each experiment would then utilize a form of average bond distance analysis and an average
volume distance analysis to describe the intermediate structures with properties (bond distance
and volume) as such, patterns in the structures could be analyzed.

STEP5 - Analysing the results:
Finally, the k-means clustering algorithm would be used to find patterns in the intermediate
structures. One sample from each cluster would be chosen from each experiment, and analyzed
by looking at bonding patterns, comparing them to each other, and comparing them to ice and
hydrate structures.

2



2 Theory

This chapter will present the necessary theory needed to understand this paper.

2.1 What is an intermediate structure

An intermediate structure is a molecular structure that forms between the initial stage and final
stage of nucleation. In the case of this paper, it is the structure that forms between the initial stage
and final stage of water-freezing nucleation (water turning into ice). These intermediate structures
are primarily hypothetical.

2.2 The water molecule

To understand intermediate structures we first have to understand the building blocks of these
intermediate structures, which is the water molecule.

Water, with the chemical formula H2O [2], is a familiar and essential compound. It consists of
two hydrogen atoms covalently bonded to a central oxygen atom [13]. The molecular structure of
water gives rise to its unique properties and behavior.

Water molecules exhibit polarity as seen in figure 1, meaning they have a separation of electric
charge. This polarity arises from the unequal sharing of electrons between the oxygen and hydrogen
atoms in a water molecule. The oxygen atom is more electronegative than the hydrogen atoms,
meaning it attracts the shared electrons more strongly [14].

Figure 1: Model of a simple H20 molecule. The red atom is oxygen, the light blue is hydrogen.
The oxygen atom in water is more electronegative than the hydrogen atoms, resulting in a partial
negative charge (d-) on the oxygen atom and partial positive charge (d+) on the hydrogen atoms.
This polarity leads to the formation of hydrogen bonds between water molecules. The average
distance between the oxygen atom and hydrogen atom is depicted in the figure, and the average
angle between the hydrogen bond is also depicted [14].

The polarity of water has several important consequences. First, it gives water the ability to form
hydrogen bonds [15]. The positive hydrogen atom of one water molecule can be attracted to the
negative oxygen atom of another water molecule, forming a relatively weak but significant bond.
These hydrogen bonds also give water unique properties such as high boiling point, high specific
heat, and high surface tension [2].

Furthermore, water’s polarity allows it to dissolve many substances[2]. Water can surround and
separate charged particles or polar molecules, facilitating their dispersion and creating solutions.
This property is crucial for many biological processes, as water is the primary medium for chemical
reactions in living organisms [15]. These properties will however not be investigated in greater detail
as they are not needed for understanding this report.

In its liquid state, the water molecule adopts a bent or V-shaped geometry. The distance between
the hydrogen atoms and the oxygen atom is approximately 0.96 Å (angstroms), and the angle
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between the two hydrogen atoms is around 104.52 degrees[13] as seen in figure 1. These values
reflect the average geometry of water molecules in the liquid phase and are influenced by the
electrostatic interactions between the partially charged atoms[13].

When water transitions to its gaseous state as water vapor, the molecular arrangement changes
slightly. The distance between the hydrogen atoms and the oxygen atom increases to around 0.97
Å, while the angle between the hydrogen atoms remains similar to that of the liquid state[16].
These alterations in bond lengths and angles are a consequence of the weakened intermolecular
forces and increased molecular motion in the gas phase[16].

In the solid state, as in the case of ice, water molecules form a highly ordered lattice structure
due to the formation of extensive hydrogen bonding. In ice, the distance between the hydrogen
atoms and the oxygen atom expands further to approximately 0.99Å[16]. The angle between the
hydrogen atoms in ice can be approximated to the ideal tetrahedral angle of 109.5 degrees[16]. The
slightly larger distances and angles in ice compared to liquid water result from the more rigid and
fixed arrangement of water molecules within the crystal lattice[16].

These variations in bond distances and angles between the di↵erent states of water highlight the
dynamic nature of water molecules and their response to changes in temperature and pressure. The
ability of water to exist in all three states—solid, liquid, and gas—makes it a crucial compound
for supporting life and enabling various natural processes on Earth [2].

2.3 Ice

Ice is water in its solid state. The molecular structure for a single H2O is mostly the same other
than the di↵erences mentioned in section 2.1.

When water freezes, it undergoes a phase transition from the liquid state to the solid state. This
transition occurs at a specific temperature known as the freezing point, which is 273.15 K (0
°C) at normal atmospheric pressure[17]. At this temperature, the thermal energy of the water
molecules decreases to a point where the intermolecular forces, particularly hydrogen bonding,
become strong enough to overcome the molecular motion and hold the water molecules in a fixed,
ordered arrangement.

Homogeneous freezing nucleation occurs when supercooled liquid water droplets are spontaneously
converted into ice without the presence of any external solid surfaces or impurities. Supercooling
refers to the process of cooling a substance below its freezing point without it immediately trans-
itioning into a solid state[18]. In the case of water, supercooling can occur when the temperature
drops below 273.15 K, but the water remains in the liquid state[19].

As the temperature of supercooled water droplets reaches around 230 K (approximately -43 °C) at
normal atmospheric pressure, homogeneous freezing nucleation becomes more likely. At this point,
the thermal energy of the water molecules is significantly reduced, allowing the formation of stable
hydrogen bonding networks between neighboring water molecules. These hydrogen bonds facilitate
the arrangement of the water molecules into an ordered, crystalline structure characteristic of
ice[20].

The process of homogeneous freezing nucleation is initiated by the formation of ice nuclei, which
are clusters of water molecules that adopt the ice lattice structure. Once these ice nuclei form,
they can grow and propagate, eventually transforming the entire supercooled water droplet into a
solid ice particle[20].

It’s important to note that supercooling and homogeneous freezing nucleation are complex phe-
nomena influenced by various factors such as impurities, pressure, and cooling rate[21]. These
factors can a↵ect the stability and kinetics of ice formation in supercooled water, and they play a
significant role in atmospheric processes like cloud formation and precipitation[22].
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2.3.1 Ice structure

This paper will mainly focus on hexagonal ice (ice Ih), but there are other forms of ice structures.
The molecular structure of ice is not the same as in water and water vapor. In the liquid and gaseous
states, the water molecules don’t form any strong bonds with each other, they rather interact with
each other through weak intermolecular forces, such as hydrogen bonding. These interactions are
relatively transient, allowing the molecules to move freely. This is not the case for ice. In the solid
state of ice, each water molecule forms hydrogen bonds with four neighboring water molecules.
Which results in highly ordered and stable arrangement.[16]. These arrangements/bonds give rise
to a hexagonal lattice structure that forms the ice Ih (also called hexagonal ice and the most
common form of ice in the biosphere), which often forms under atmospheric pressure [23] and is
illustrated in figure 2.

Figure 2: Crystal structure of hexagonal (Ih) water ice. Each oxygen (red sphere) forms two
short, covalent bonds, and two long, hydrogen bonds with neighboring protons (white spheres).
Oxygen atoms form an ordered lattice. (a) The structure is viewed perpendicular to the hexagonal
symmetry axis. (b) Structure viewed along the hexagonal symmetry axis. [23]

In ice Ih, each water molecule is surrounded by four other water molecules, arranged tetrahedrally.
Two of these molecules are hydrogen-bonded to the oxygen atom of the central molecule from
above and below, while the remaining two are hydrogen-bonded to its two hydrogen atoms[23]
which is illustrated in figure 2. This interconnected network of hydrogen bonds forms a stable
three-dimensional structure[23].

The hexagonal lattice structure of ice leads to a significant amount of empty space between the
water molecules as seen in figure 2. This arrangement causes ice to have a lower density than liquid
water, which is an unusual property. Typically, substances become denser as they transition from
the liquid to the solid state. However, due to the expansion caused by the hexagonal structure and
the resulting open spaces, ice is less dense than water [24].

The distance between the two nearest water molecules in ice Ih is approximately 2.76 Å (angstroms)
at 273.15 K (0 °C). As the temperature decreases, the distance between the water molecules in ice
may slightly change. For example, at 213.15 K (-60 °C), the distance is approximately 2.755 Å.
These small variations in the distance can be attributed to the thermal motion and the contraction
of the lattice with decreasing temperature[25].

As mentioned at the beginning of this section, there are di↵erent forms of ice, known as ice phases.
They have di↵erent molecular arrangements and densities. These di↵erences arise from variations
in temperature, pressure, and other factors. Each phase has a unique crystal structure and physical
properties, adding to the complexity of ice’s molecular arrangements[26].

2.4 Hydrates

Hydrates are complex crystalline solids that look like ice[27]. They are made up of water mo-
lecules and a guest molecule such as CO2, Cl2, halocarbons or various para�n hydrocarbons[28].
Sometimes the guest molecules can be replaced by Nitrogen (N2)[28]. Hydrates form during low
temperatures, usually above the freezing point of water, but this temperature can increase if the
pressure increases[28]. If the hydrate is warmed up, it will transform back to liquid water and the
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original organic material [27].

As mentioned this paper will mainly focus on the methane hydrate.

2.4.1 Methane hydrate

Methane hydrate is made out of methane (CH4) and water. It is a solid substance that closely
resembles white ice in appearance[29].

To maintain stability, methane hydrate typically requires pressures of 35 bars or more, which is
approximately 35 times atmospheric pressure, and temperatures between 273.15 to 277.15 kelvin
(0 to 4 degrees Celsius)[29]. These conditions are commonly encountered in deep-sea regions with
water depths ranging from 350 to 5000 meters. Within this range, the pressure and temperature
conditions are conducive to the formation and stability of methane hydrate[29]. Bellow 5000m
there is insu�cient organic matter embedded in the deep-sea sediments, so there are little to no
hydrates found beyond this point [29].

2.4.2 Hydrate molecular structure

Methane hydrate, like other hydrates, exhibits a solid molecular structure composed of water
molecules interconnected through hydrogen bonds[28]. These bonds form a polyhedral cage-like
structure, within which the guest molecule, such as methane, is encapsulated[28]. The presence
of the guest molecule stabilizes the hydrate structure by occupying the void spaces in the water
lattice[30].

Hydrates can be classified into three distinct molecular structure types: Type I, Type II, and Type
H (which will not be discussed in this context). Each structure type is characterized by specific
cage geometries formed by the water molecules[30] and is depicted in figure 3.

Figure 3: The polyhedral cages of Type I and Type II hydrates [30]

Type I hydrates exist in two variants: the small cage and the large cage. The small cage takes the
form of a dodecahedron, a 12-sided polyhedron where each face is a regular pentagon. Conversely,
the large cage is a tetrakaidecahedron comprising 14 sides, consisting of 12 pentagonal faces and
2 hexagonal faces. These cage structures can be observed in figure 3. Type I hydrates consist of
approximately 46 water molecules, arranged within the cage structure[30].
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Type II hydrates also manifest in two variants: the small cage and the large cage. The small cage
of Type II hydrates resembles a dodecahedron, while the large cage adopts a hexakaidecahedral
shape, featuring 16 sides comprised of 12 pentagonal faces and 4 hexagonal faces. The small and
large cage variants of Type II hydrates are depicted in figure 3. The cage structure of Type II
hydrates incorporates around 136 water molecules[30].

Methane hydrate conforms to a Type I structure and can be present within both the small and
large cage structures. The specific cage structure in which methane hydrate forms depends on
factors such as temperature, pressure, and the composition of the surrounding environment[30]. A
methane hydrate is depicted in figure 4.

Figure 4: The molecular structure of methane hydrate, with the guest molecule (methane). (a)
small cage, (b) large cage structure [31].

2.5 Molecular dynamics

Molecular dynamics (MD) is a powerful computational technique employed in the field of compu-
tational chemistry and physics. It involves solving the classical Newtonian equations of motion
numerically to simulate the behavior, location, and trajectory of a system comprising of N particles.
These particles represent atoms, molecules, or other entities of interest within the system[32][33].

The simulation is based on specific interatomic or intermolecular potential functions that describe
the forces and interactions between the particles to allow the MD simulation to mimic the behavior
of the real system under investigation[33].

To initiate an MD simulation, certain initial conditions, such as particle positions, velocities, and
orientations, are specified. These conditions reflect the desired starting state of the system and
can be based on experimental data, theoretical predictions, or random sampling techniques[33].

Boundary conditions are used to impose constraints imposed on the system during the simulation
and to describe the environment. For example, periodic boundary conditions can be used to
simulate an infinite system by creating periodic replicas of the simulation box[33].

To simulate the behavior of the particles, MD simulations integrate the equations of motion over
discrete time steps. This provides a detailed atomistic view of the system’s behavior. This is
done by generating the trajectories that describe the positions, velocities, and energies of the
particles as a function of time. By analyzing these trajectories a wide range of information can
be extracted, such as temperature, pressure, and free energy, as well as dynamic properties like
di↵usion coe�cients, reaction rates, and vibrational frequencies[33].

2.5.1 MW-model

To simulate water in an MD simulation, one usually starts by choosing a water model. The water
model describes the interactions of water molecules with other molecules [34]. There are a lot of
water models to choose from like, exp, SPC, SPCE, TIP3P, TIP4P, and TIP5P[12].

This paper will not focus on any of the mentioned models but will focus on the monatomic water
model mW, simply called the mw model. This is a Coarse-Grained Model, which represents each
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molecule as a single particle that interacts through anisotropic short-ranged potentials that favor
“hydrogen-bonded” water structures[35]. The mW model uses the three-body Stillinger–Weber
(SW) potential to account for angle-dependent inter-atomic interactions in water, featuring hydro-
gen bonding[34]. By using the three-body interactions among the water molecules, the mw model
is able to capture the tetrahedron structures of the hydrogen bonding network, which is crucial in
the studies of hydrate and ice[36]. This makes it a suitable candidate when one works with ice and
hydrates.

When simulating hydrates, the mw model will describe the guest molecules as a “M” particle,
especially methane in the hydrate. The “M” particle interacts with other particles through the
two-body SW potentials[34].

2.6 Machine learning

Machine learning (ML) is a field in computer science that is rapidly evolving. It aims to develop
algorithms and models capable of automatically learning patterns, making predictions, and ex-
tracting meaningful insights from empirical data[37], by also implementing statistical models to
enable computers to learn and improve from experience without being explicitly programmed.[38].

While there are other types of ML algorithms and techniques beyond supervised, unsupervised,
and reinforcement learning, these three categories are among the most commonly used and studied
in the field. Each type serves di↵erent purposes and is suited to specific problem domains and data
characteristics[37].

ML algorithms operate on large datasets, using statistical models and computational techniques
to uncover patterns, relationships, and structures within the data. The algorithms analyze the
data, identify patterns and trends, and generate models that can be used for various tasks, such
as classification, regression, clustering, or anomaly detection[39].

Understanding the distinctions between these types of ML is crucial for selecting appropriate
algorithms and methodologies to tackle real-world problems e↵ectively. In this paper, the focus
will mainly be on exploring and discussing the principles and applications of unsupervised learning,
but an explanation of the most important fundamentals of supervised and reinforcement learning
will be given, to better understand the choices made in the experiments later.

2.6.1 Supervised learning

In Supervised learning the algorithm is trained using a labeled data set, to predict outcomes or
classify data accurately. This labeled dataset is often called a training dataset and is used by the
algorithm to train itself to yield the desired outputs. This is done by feeding the algorithm with
input data, it will then spit out an output. This output will be compared to the outputs contained
in the training dataset, to validate the output of the algorithm. The model will use these inputs
and outputs from the training dataset to make changes to its weights and learn over time to give
the correct output that matches the output of the training dataset. The correctness or accuracy
is measured using a loss function, and the model will adjust itself until its error is su�ciently
minimized[40].

Supervised learning focuses on two types of problems: classification and regression[39].

Classification problems use an algorithm that is able to recognize specific entities within the dataset
and attempts to find patterns on how these entities should be labeled. This gives it the ability
to accurately assign test data into specific categories. A lot of di↵erent types of algorithms has
emerged to handle these task, such as linear classifiers, support vector machines (SVM), decision
trees, k-nearest neighbor, and random forest[39].

A simple example would be the image classification of animals in pictures. The algorithm is
supposed to recognize cats, dogs, and cows from one another. It would receive a dataset containing
pictures of the mentioned animals. The pictures of the dog would be labeled as a dog, the pictures
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of the cat would be labeled cat, and so on. The algorithm would use this training dataset to learn
a function that helps it map the right words (dog, cat, or cow) to the right picture. When fully
trained, the algorithm can now be used to make predictions for a new dataset (unseen images
of cats, dogs, and cows, that are not labeled). By inputting the image data into the model the
algorithm would give out its predicted label as an output.

Regression analysis is used to understand the relationships between independent and dependent
variables and is mostly used to make projections such as for sales revenue for a given business.
Some popular algorithms are Linear regression, logistical regression, and polynomial regression[39].

Supervised learning is a powerful tool that can be used to classify and make predictions from data,
but it has some drawbacks too. It can be time-consuming to train an algorithm, and it might
require a lot of data to be able to be su�cient enough to make the right predictions. Datasets with
human errors will result in the algorithm learning incorrectly and supervised learning needs some
form of a reference (a dataset with the correct output for a given input) to cluster and classify a
dataset (unlike unsupervised learning)[39].

2.6.2 Reinforcement learning

Reinforcement learning is quite similar to supervised learning, other than that the algorithm does
not get a training dataset. In reinforcement learning the model has to learn by trial and error.
To find the desired sequence of outcomes a reward system is often implemented. This helps the
algorithm to learn and remember the right steps, to archive the preferable goal[41].

IBM’s Watson system which won the game Jeopardy in 2011 is a famous example of a reinforcement
learning algorithm. By using this method, the system knew when to do the right moves according
to the circumstances [41].

2.6.3 Unsupervised learning

Unsupervised learning uses algorithms to cluster or/and analyze unlabeled datasets. Unlike super-
vised learning, there is no human intervention, and the algorithms are capable of finding hidden
patterns or groupings in the data all by itself[41]. Unsupervised learning is usually deployed to
perform one of three tasks: clustering, association, and dimensionality reduction[39]. This paper
will only focus on the clustering tasks, as association and dimensionality reduction are not needed
to understand the topic of this paper.

Clustering is a technique that groups unlabeled data based on their similarities (or di↵erences).
The clustering algorithms will process the raw unlabeled data, into cluster groups depending on
their structures or/and patterns. There exist di↵erent clustering algorithms, but they can all be
divided into di↵erent types. Some types are exclusive, overlapping, hierarchical probabilistic, and
density clustering[41].

Exclusive clustering is referred to as ”hard” clustering, which means that a datapoint is only able
to be part of one cluster[39]. One of the most common exclusive cluster algorithms is the k-means
clustering algorithm [41] (more about k-means clustering in section 2.6.5).

Overlapping clustering is ”soft” clustering, which allows for a datapoint to be part of more than
one cluster[39].

Hierarchical clustering is an algorithm that enables the grouping of similar data points into clusters
based on their characteristics or proximity to one another. The algorithm is implemented by using
either choosing agglomerative or a divisive approach.

Agglomerative is a ”bottoms-up” approach[42]. Each data point is treated as an individual cluster.
The clusters are iteratively merged based on their similarity, resulting in a hierarchical dendrogram,
a tree-like diagram that visualizes the merging (or splitting) of data points at each iteration. [43].

The other method, divisive hierarchical clustering is a ”top-down” approach[42]. It is not as popular
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as the agglomerative approach, where all the data points start in a single cluster. The cluster is
recursively split into smaller subclusters based on dissimilarity. This also forms a dendrogram [44].

The specific characteristics of the dataset and the desired clustering objectives are the prime
deciders for which method to choose. Researchers often employ various distance metrics and
linkage methods. The four most common methods used to find similarities or dissimilarities are:

• Ward’s linkage: Where the sum of squared defines the distance between two clusters after
they have merged[42].

• Average linkage: Where the mean distance between each cluster is the defining parameter[42]

• Complete (or maximum) linkage: Defines the maximum distance between two points in each
cluster[42]

• Single (or minimum) linkage: Defines the minimum distance between two points in each
cluster[42]

Di↵erent metrics can be used to calculate these distances, but the Euclidean distance is the most
commonly used[39].

Probabilistic clustering is used to help solve density estimation or ”soft” clustering problems. Like
overlapping clustering, this model also allows a data point to be part of more than one cluster. The
main di↵erence is that in probabilistic clustering, the points are clustered based on the likelihood
that they belong to a particular distribution[39]. One popular approach for probabilistic clustering
is The Gaussian Mixture Model (GMM)[42]. Gaussian Mixture Models are classified as mixture
models, which means that they are made up of an unspecified number of probability distribution
functions. GMMs are primarily leveraged to determine which Gaussian, or normal, probability
distribution a given data point belongs to. If the mean or variance is known, then we can determine
which distribution a given data point belongs to. However, in GMMs, these variables are not known,
so we assume that a latent, or hidden, variable exists to cluster data points appropriately. While
it is not required to use the Expectation-Maximization (EM) algorithm, it is commonly used to
estimate the assignment probabilities for a given data point to a particular data cluster[39].

Density-based clustering is a technique that clusters (as the name suggests) based on the density of
data points in the feature space, rather than relying on distance or similarity measures. This means
that density-based methods can uncover clusters of arbitrary shapes and e↵ectively handle noise
in the data[45]. One prominent density clustering algorithm is DBSCAN (Density-Based Spatial
Clustering of Applications with Noise). This algorithm groups together neighboring data points
within a predetermined distance, and with a minimum number of neighbors. A more detailed
explanation of DBSCAN will be given in the section [“ref ]sec:dbscan. Another notable algorithm
is HDBSCAN (Hierarchical Density-Based Spatial Clustering), which extends DBSCAN by creating
a hierarchy of clusters and automatically determining the optimal number of clusters[39].

2.6.4 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clus-
tering algorithm that is able to discover clusters of arbitrary shapes and handle noise e↵ectively
compared to other popular algorithms such as k-means. This algorithm is able to di↵erentiate
between regions of high and low densities, allowing it to adapt to di↵erent density variations in
the dataset.

DBSCAN is dependent on two variables: Epsilon ✏ and minimum points per cluster MinPts. ✏
is the maximum straight line distance tow points are allowed to have between each other to be
considered neighbouring points. MinPts is the minimum number of neighbors required for a point
to be considered a core point. Both variabels are set by the user [46].

DBSCAN worsk as follow:
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1. The algorithm starts by randomly selecting a point in the dataset. It will then find all the
neighbours within a distance ✏. If the number of neighbors is greater than or equal to MinPts,
the point is marked as a core point and becomes the starting point of a new cluster. This
process is done for all the points in the data set. Points that do not qualify as core points is
called non-core points[46].

2. It then selects one random core point and assigns it as the first cluster. The cluster will then
add all core points that are within a distance ✏ into the cluster, the non-core points will be
added later[46].

3. It will then use the newly added points and add all core points that are within a distance ✏
into the cluster, and continue this process until it cannot find any core points to add[46].

4. Then all non-core points that are within the distance ✏ of a core point in the cluster will be
added to the cluster. When this is done, the first cluster is complete[46].

5. A new random core point that is not in a cluster is then selected, and the process is repeated
until all core points are assigned a cluster[46].

All non-core points that were not assigned to a cluster are called outliers or noise points. In the
end, most of the points, if not all of them will be assigned to a cluster, those that are not are
classified as noise or outliers[46].

DBSCAN has some advantages over other algorithms. It requires minimal knowledge of the domain
to determine the values of its input parameters, which is a very important problem for large data
sets. It is able to discover arbitrary-shaped clusters compared to other algorithms. Lastly, it has
good computational e�ciency on large data sets [47].

2.6.5 K-means clustering

K-means clustering is a popular unsupervised machine learning algorithm used for partitioning
a given dataset into distinct groups or clusters based on their similarity. The algorithm aims to
minimize the within-cluster sum of squares, which measures the squared distances between data
points and their assigned cluster centroids [42][44][48].

The k-means algorithm operates in the following manner:

1. Initialization: The algorithm begins by randomly selecting k random data points as the initial
set of centroids. k is determined by the user and represents the desired number of clusters[49]
as seen in figure 5 a to b.

2. Assignment: Each data point is then assigned to the cluster with the nearest centroid based on
a distance metric, commonly Euclidean distance. This step involves calculating the distance
between each data point and all cluster centroids and assigning the data point to the cluster
with the minimum distance as seen in figure 5 c. distance[49].

3. Update: After the assignment step, the cluster centroids are updated and repositioned (figure
5 d. By recalculating the centroid of every cluster as the mean of all data points assigned to
each cluster[49].

4. Iteration: Steps 2 and 3 are repeated iteratively until convergence (no further improvement)
or until a maximum number of iterations is reached. Convergence occurs when the cluster
assignments no longer change or change minimally between iterations [49], depicted in figure
5 d to f.

The final result of the k-means clustering algorithm is a set of k clusters, where each data point is
assigned to one of the clusters based on its proximity to the corresponding centroid[49].

K-means clustering o↵ers several advantages. It is computationally e�cient and scalable, making
it suitable for large datasets. The algorithm’s simplicity and ease of implementation make it widely
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Figure 5: Visualisation of the k means algorithm, for k=2 [48].

accessible and applicable to various domains. K-means clustering is also highly interpretable, as
the resulting clusters can be easily visualized and analyzed. Additionally, the algorithm can handle
both numerical and categorical data, making it versatile for di↵erent types of datasets[39].

However, k-means clustering has some limitations. It requires the user to specify the number of
clusters (k) in advance, which can be challenging if the optimal number of clusters is unknown.
The algorithm is sensitive to the initial selection of centroids, leading to potential convergence to
suboptimal solutions. K-means is also sensitive to outliers, as they can disproportionately influence
the centroid calculation and clustering results[42].

2.6.6 Silhouette analysis

Silhouette analysis is a technique used for evaluating the quality of the k-means clustering results.
It provides a quantitative measure of how well each data point fits within its assigned cluster,
allowing for an assessment of the overall clustering structure[50][51][52].

The silhouette analysis process begins by computing:

• The average distance to other data points within the same cluster denoted as a

• The average distance to data points in the nearest neighboring cluster denoted as b

These distances are typically calculated using a distance metric such as Euclidean distance[50].
The silhouette coe�cient, sc, for a data point is then defined as (b - a) divided by the maximum
of either a or b, as seen in equation 1.

sc =
(b� a)

max(a, b)
(1)

This coe�cient ranges from -1 to 1, where values close to 1 indicate that the data point is well-
clustered, with a substantial distance to other clusters. Values close to -1 indicate a potential
misclassification, as the data point is closer to neighboring clusters than its assigned cluster. A
silhouette coe�cient close to 0 suggests that the data point resides on or near the decision boundary
between clusters[50].

Examining the silhouette coe�cients of all data points within a clustering solution gives insights
into the overall quality and cohesion of the clusters. A higher average silhouette coe�cient across
all data points indicates a more appropriate and distinct clustering structure, while a lower average
silhouette coe�cient suggests potential issues, such as overlapping or poorly separated clusters[50].

Silhouette analysis provides several benefits for k-means clustering. First, it o↵ers a numerical
measure to evaluate the performance of k-means clustering, enabling researchers and practitioners
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to compare di↵erent clustering solutions and select the one that yields the highest silhouette
coe�cient. Second, it helps in determining the optimal number of clusters, k, by evaluating the
silhouette coe�cients for di↵erent values of k and selecting the one that maximizes the overall
cohesion and separation of data points. Lastly, silhouette analysis aids in identifying individual
data points that may be misclassified or located near the decision boundaries, providing insights
for potential cluster refinement or adjustments[51].

2.7 Convex Hull

The convex hull is the smallest convex polyhedron enclosing a given set of points [53]. In three-
dimensional space, the convex hull encompasses all the points, forming a solid object with flat
faces and straight edges [54] as seen in figure 6

Figure 6: (a) The point cluster turned into a convexhull (d) [55].

Computing the convex hull in 3D involves determining the vertices and faces that define the
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boundary of the polyhedron. Several algorithms have been developed to calculate the convex hull
e�ciently, but this paper will mainly focus on the QuickHull algorithm [56], only a quick overview
will be given.

The process of computing the 3D convex hull typically involves the following steps:

Input: A set of points in 3d are received and represent the objects to be enclosed by the convex
hull [56].

Convex hull construction: A face of hulls will be constructed by iterative selecting a set of points.
This process continues until all points are enclosed or no more points can be added to the hull [56].

Face determination: The faces are determined by considering the orientation of each point with
respect to the current set of faces. If a point lies inside the face, it gets removed. If a point lies
outside, new faces are added to enclose the point [56].

Vertex determination: Lastly the extreme point on the faces are used to identify the vertices of
the convex hull. These extreme points form the corners of each face [56].

The result is a convex hull in 3D as depicted in 6. The convex hull provides an enclosed structure
for the given set of points [56].

The 3D convex hull has various applications in computational geometry, computer graphics, col-
lision detection, robotics, and computer-aided design (CAD). It plays a crucial role in tasks such
as finding the collision-free path for robots, calculating the enclosing volume of 3D objects, or
generating 3D mesh models from point clouds [56].

2.8 Simple euclidean geometry

To understand some of the geometric calculations made in this paper, a simple explanation will be
given for the most critical ones.

2.8.1 Euclidean distance

Euclidean distance is a metric used to find the shortest distance between two points (that is a
straight line) in Euclidean space. It is a fundamental concept that is widely used in mathematics
and computer science [57].

In Euclidean 3d-space, the distance, d, between a point A = (x1, y1, z1) and B = (x2, y2, z2)

can be computed as the square root of the sum of the squared di↵erences between their corres-
ponding coordinates[57] as shown in formula 2:

d =
p
(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2 (2)

A benefit of Euclidean distance is that its computationally e�cient. The calculation involves
straightforward arithmetic operations, such as subtraction and squaring, followed by a square root
computation. These operations are fast and easily implemented in computer programs, making
Euclidean distance an e�cient distance measure for large datasets and real-time applications.

Euclidean distance also possesses several desirable mathematical properties. It satisfies the re-
quirements of a metric, including non-negativity, symmetry, and triangle inequality [58]. These
properties ensure that Euclidean distance provides consistent and reliable measures of separation
between points, allowing for meaningful comparisons and reliable analysis.

Furthermore, Euclidean distance has been extensively studied and analyzed, leading to the develop-
ment of various techniques and algorithms that leverage its properties. It serves as a foundation for
numerous algorithms and methods, such as k-means clustering[42]. The availability of these estab-
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lished techniques enhances the practical utility of Euclidean distance and facilitates its integration
into existing frameworks and workflows.

Finally, Euclidean distance has broad applicability across di↵erent domains. It is particularly
useful in spatial analysis, image processing, machine learning, and pattern recognition tasks[59].
Its ability to capture the straight-line distance between points makes it suitable for scenarios where
the spatial arrangement or similarity between objects needs to be measured.

2.8.2 Angle between two points and the origin in 3D

To find the angle between two points and the origin, one can define two vectors. One that spans
from the origin to point a = (a1, a2, a3) , and one that spans from the origin to point b = (b1, b2, b3).
To find the angle between these two vectors in a three-dimensional space, the dot product and
trigonometric functions can be utilized.

Let’s consider two vectors, A and B, with their respective components: A = [a1, a2, a3] and B =
[b1, b2, b3].

Calculate the dot product of the two vectors using the formula:

A ·B = a1 ⇤ b1 + a2 ⇤ b2 + a3 ⇤ b3 (3)

Next, find the magnitudes (lengths) of the vectors A and B using the formula:

||A|| =
q

a21 + a22 + a23 (4)

||B|| =
q

b21 + b22 + b23 (5)

Then by using the dot product and magnitudes, gives us the angle between the two vectors in
radians [60]:

✓ = cos�1((A ·B)/(||A|| ⇤ ||B||)) (6)

To convert the angle from radians to degrees, the following formula can be used:

✓degrees = (✓ ⇤ 180)/� (7)

The angle between two vectors can range from 0 to 180 degrees (or 0 to p radians).

It is important to be careful of some special cases. For instance, if either of the vectors A or B has
zero magnitudes (i.e., it is the zero vector), the angle calculation is not meaningful, as the angle
between a vector and the zero vector is undefined.

2.8.3 Shifting: Rotating a vector

There are di↵erent ways to rotate a vector in 3D space by an angle ✓, but this paper will only
focus on how to do this by using a rotation matrix, to rotate around the z-axis.

Using rotation matrices, assume the axis of rotation is represented by a unit vector: U = (u1, u2, u3).

One can construct a 3x3 rotation matrix R(✓) that represents the rotation around the axis by theta
degrees. The rotation matrix is defined as:
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R=

2

4
cos(✓) sin(✓) 0
sin(✓) cos(✓) 0

0 0 1

3

5

To rotate the vector A, take the dot product with the rotation matrix, R(✓):

Arotated = R(✓) ·A (8)

The resulting vector Arotated represents the rotated version of vector A by an angle ✓ around the
z-axis [61].
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3 Method

3.1 Molecular dynamics simulation

The MD simulation was conducted using the LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) package. The system consisted of 23,058 molecules, with 216 methane mo-
lecules and the remaining molecules being water molecules. The simulation duration was 50,000
picoseconds (ps), with a timestep of 500 ps. The simulation system was composed of three parts:
a pre-built hexagonal ice lattice and a methane hydrate lattice on each end, with water molecules
in the middle (as depicted in the figure 7). The trajectory file can be found in the attachment.

In the simulation, the system employed a periodic boundary condition, allowing for atomistic inter-
actions between the top and bottom layers of the simulation box. The interactions between water
molecules were described using the monatomic water model mW[12]. This model utilizes the three-
body Stillinger-Weber (SW) potential to account for angle-dependent interatomic interactions in
water, specifically capturing hydrogen bonding.

The simulation was performed at a temperature of 230 Kelvin (K). Throughout the simulation,
various system properties were monitored and recorded. The final system snapshots at the conclu-
sion of the simulation were collected and stored in a data file for further analysis and examination
(figure 8).

3.2 Python

To perform the rest of the methods explained, various Python scripts where made to perform
computational analysis. A README.txt file is attached to the attachments and describes the
necessary procedures needed to run the scripts.

3.3 Data preparation using boundary conditions

The provided molecular dynamics (MD) simulation data contained essential information, which
included the time step, atom count, simulation box dimensions, and the positional and velocity
attributes (x, y, z) of each atom. A snip of this can be seen in figure 8.

As seen the data was written to a .lammpstrj.txt file (LAMMPS trajectory file). That contained
the mentioned information for 101 timeframes. Each frame beeing 500ns.

During the simulation, it was observed that a considerable number of atoms were in close proximity
to the ends of the simulation box exhibiting teleportation behavior, rapidly transitioning from the
uppermost region to the lowermost region (depicted in figure 9). This phenomenon of teleportation
posed challenges in accurately analyzing individual atoms and their local environments. The
environment is the neighboring atoms. Suddenly getting all new neighbors, made it impossible to
compare a specific atom and how its neighboring atoms moved compared to each other when all
the neighbors suddenly changed (see figure 11c). To address this issue, boundary conditions were
implemented in the y and z directions of the simulation box.

Specifically, the boundaries were defined as < 4.5, 32 > in the y-direction and < 7, 30 > in the
z-direction. Consequently, the simulation box e↵ectively contracted by approximately four atoms
on each side. By imposing these limitations, the teleportation phenomenon was successfully elim-
inated, facilitating reliable analysis of atom trajectories and their interactions.

Furthermore, the simulation file was partitioned into 101 distinct files, with each file containing
MD simulation data pertaining to a specific time step. To see the code for this section, please refer
to the script provided in appendix A.
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(a) The system in its initial phase

(b) A close-up of the system in its initial phase, with the

hexagonal ice to the left of the blue line, and methane hydrate

to the right of the white line. The water is between the blue and

white lines.

(c) A close-up of hexagonal ice to the left

and liquid water to the right

(d) A close-up of hydrate to the right and

liquid water to the left

Figure 7: OVITO snapshot of the first frame (the initial phase of the MD simulation).
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Figure 8: A snippet of the lammpstrj.txt. file used in this project. As seen the first and second
line defines the timestep, the second and third the number of atoms, line five to eight defines the
simulation box size, and the lines after defines the positions and velocities for a specific atom with
a specific id and atom type (denoted by a number). The snip only shows the beginning of the file,
this being the first frame. The other frames are written with the same setup in this same file.

3.4 Water, Ice and Hydrate di↵erentiation with DBSCAN

After successfully addressing the teleportation issue, the subsequent task involved identifying the
atoms being a part of liquid water, and not being a part of ice of hydrate

To accomplish this, a Python script was developed, utilizing the widely-used scikit-learn library, to
implement the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm
(see appendix). The script processed the simulation data, applying the DBSCAN algorithm to
detect clusters corresponding to water, ice, and hydrate. Following the completion of the clustering
process, the points associated with the second largest cluster, representing the water molecules in
the water component, were extracted and saved in a separate file. This procedure was repeated
for all simulation frames. The cluster containing water molecules was of particular interest, as it
was assumed to be the only place to encompass potential intermediate structures during ice and
hydrate nucleation.

The Python script for this part can be found in appendix B for experiment 1 and appendix F for
experiments 2 and 3.

After identifying the molecules being a part of liquid water, three experiments were conducted to
investigate and identify intermediate structures during the formation of ice and hydrate.

3.5 Experiment 1

The initial method entailed employing the DBSCAN algorithm once more to explore potential
intermediate structures. This involved investigating whether the clusters that corresponded to
these structures exhibited any similarities or common characteristics.

3.5.1 Timeframe di↵erences

During the MD simulation, a notable observation was that each water molecule remained either in
the liquid state throughout the entire simulation or became part of the ice or hydrate structure.
With this understanding, an assumption was made that if a water molecule appeared within the
water cluster in frame N (where N represents the frame number within the range of 1 to 101) but
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(a) Di↵erent atoms in the simulation box.

(b) As time goes all the atoms will move around.

(c) Some of the atoms will ”teleport” from the top to bottom

or vice versa. Here you see that the yellow atom has teleported

from the top to the bottom. In doing so it has gained new

neighbours.

Figure 9: This figure illustrates how the teleportation phenomena take place, and how an atom (the
yellow) goes from one neighborhood (the green atoms) to a new neighborhood (the blue atoms)
when teleporting.
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(a) Atoms in the liquid water region in frame N

(b) Atoms in the liquid water region in frame N+1. The light-

shaded atoms are atoms that have disappeared from the liquid

water region compared to frame N. The dark-shaded ones are

the ones that remain. The light-shaded atoms will then be saved

on a .txt file for further analysis.

Figure 10: This figure illustrates how some atoms disappear between frame N and frame N+1 in
the liquid water region.

was absent in frame N+1, it likely underwent a transformation into ice, hydrate, or an intermediate
structure. Hence, comparisons were made between frame N and frame N+1 to identify potential
intermediate structures.

By tracking the absence of water molecules within the water cluster in frame N+1 compared to
frame N, the objective was to identify instances where transitions occurred, indicating the formation
of ice, hydrate, or intermediate structures. The water molecules that were absent in frame N+1
were then extracted and saved in a new file. This process was performed for all time frames of the
simulation. The process is depicted in figure 10b.

The Python code used to implement this method can be seen in appendix B.

3.5.2 DBSCAN again

Subsequent to identifying the absence of water molecules, the DBSCAN algorithm was once again
utilized to conduct a cluster analysis on this newly generated dataset. In this analysis, a value of 4
was chosen as the ✏ (epsilon) parameter, while the minimum number of points required to form a
cluster (MPC) was set to 2. Additionally, in order to enhance the selection process, a criterion was
implemented to exclude clusters comprising six or more molecules. This procedure was repeated
for each frame interval, and the resulting clustering information was saved in a text file. To see
the code please refer to appendix C.
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3.5.3 Analyse the data

To analyze the data, two di↵erent approaches were employed to identify similarities. The first
approach focused on examining the average bond distance between each molecule and the total
bond distance within the molecule. Specifically, only small molecular bonds consisting of 3 to 5
molecules were considered (to see the code please refer to appendix D). Subsequently, k-means
clustering was applied to identify similarities within this modified dataset (see appendix N for the
code). The silhouette analysis technique was utilized to determine the optimal number of clusters.
For each cluster size representing 3, 4, and 5 molecules, a representative sample was chosen. These
samples were selected as the ones closest to the centroid of each cluster.

The second approach involved assessing the volume encompassed by each cluster and its corres-
ponding density. The volume was determined by computing the convex hull of each cluster and
subsequently calculating the volume of the convex hull. It is worth noting that a cluster needed to
contain at least 4 atoms to construct a convex hull; therefore, clusters with 3 or fewer molecules
were excluded from this analysis. To compute the density, the number of molecules within each
cluster was divided by its convex hull volume. See appendix E for the Python script. Following this,
k-means clustering was once again performed, and the silhouette analysis was utilized to identify
the optimal number of clusters (See appendix N for code). Similarly, a representative sample was
chosen from each cluster, specifically the samples closest to the centroid of each cluster.

3.6 Experiment 2

The second method employed for identifying intermediate structures focused on analyzing the
rotational and translational movement of molecules within each timestep.

To evaluate the rotational movement, the angular displacement of each molecule was calculated by
measuring the change in its orientation over the course of the timestep. This information was then
used to determine if any molecules exhibited significant rotational motion, which could indicate
the formation of intermediate structures.

In addition, the translational movement of the molecules was examined by analyzing their displace-
ments during the timestep. By measuring the distance traveled by each molecule and comparing it
to a threshold value, it was possible to identify molecules that displayed considerable translational
movement.

By combining the analysis of rotational and translational movement, potential intermediate struc-
tures could be inferred based on significant changes in both aspects of molecular motion. Further
investigations, such as clustering or statistical analyses, could then be conducted to validate and
explore these identified structures in more detail.

3.6.1 Neihgbours

The initial step involved identifying the neighboring molecules for each center molecule within
the water cluster. A neighboring molecule was defined as one located within a distance of d
from the center molecule, where d was set to 8 Angstroms. The process is shown in figure 11.
The Euclidean distance was computed to measure the distance between the center molecule and
potential neighboring molecules. This process was performed for all molecules within the water
cluster identified in each frame of the simulation. The results of this analysis were recorded in a
text file. See appendix G for the code.

To facilitate the calculation of molecule displacement or shift during each frame, a new coordinate
system was established for each neighborhood. In this new coordinate system, the center atom
was positioned at the origin (0, 0, 0), and all other atoms were located relative to this center.
To determine the new coordinates of the neighbors, the original coordinates of the center atom
were subtracted from the original coordinates of the neighboring molecules. The resulting new
coordinates were then saved in a text file. The code for this can be found in appendix H
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(a) A center atom is picked, depicted as the yellow atom

(b) The distances from the atoms to the center atom are calcu-

lated using the Euclidean distance

(c) The atoms within a distance d, is selected as the neighbors

(depicted in blue) for the center atom.

Figure 11: This figure depicts how the neighboring atoms within a distance d are found.

23



3.6.2 Rotational shift

Once the new coordinate system was established for each neighborhood, the shift of each atom was
computed during each frame. This involved comparing the rotational and translational displace-
ments between frame N and frame N+1 for the corresponding neighbors in each neighborhood.

To perform this calculation, a neighborhood was selected in frame N, and the corresponding neigh-
borhood in frame N+1 was identified. Neighbors that did not have the same ID in both frames were
discarded. Subsequently, a random atom was chosen, and the rotational displacement, represented
by the angle alpha, was computed for this atom. The entire neighborhood was then shifted back
based on their positions in frame N+1 using the calculated angle alpha. The displacement (Euc-
lidean distance) from the atom’s position in frame N+1 to its new position after the shift was then
determined. Additionally, the (Euclidean) distance from each atom to the center in frame N+1
was calculated, and atoms with a distance greater than 4 were discarded. The average distance
from the center to the atoms was computed, and the displacement lengths were summed for the
remaining atoms. The entire process is visualized in figure 12 and figure 13.

Appendix I contains the code for this section

Using this modified data, k-means clustering was performed to identify similarities among the
neighborhoods. The k-means algorithm utilized the average distance to the center for each atom
in a neighborhood and the total displacements for all the atoms in each neighborhood. The
silhouette analysis technique was employed to determine the optimal number of clusters in the
k-means clustering results.

See appendix N for the k-means clustering code.

3.7 Experiment 3

In this third and final method, the concept of angular displacement was once again utilized to
detect intermediate structures. The angular displacement of each molecule was compared to a
reference value, denoted as theta, which represents the average angular value for hexagonal ice or
hydrate structures.

3.7.1 Neighbours

In this experiment, the neighboring atoms were also identified and placed in a new coordinate
system, similar to the approach used for the neighborhoods in Experiment 2 (as described in
section 3.6.1). The same procedure of establishing a new coordinate system with the center atom
at the origin and determining the coordinates of the neighboring atoms relative to the center was
applied to these neighboring atoms as well. This step allowed for a consistent reference frame and
facilitated further analysis and comparisons between the neighboring atoms.

3.7.2 Angular displacement

With the new coordinate system established, the angular displacement was calculated using the
same method as described in section 3.6.2. However, in this case, the angular displacement was
calculated for all the atoms within each neighborhood. Subsequently, atoms with an angular
displacement less than the reference value theta were discarded from each neighborhood.

By comparing the angular displacement of each atom to the reference value ✓, molecules that
exhibited angular patterns significantly di↵erent from those observed in the desired intermediate
structures were filtered out as depicted in figure 14. This step aimed to retain only the atoms
within each neighborhood that displayed angular displacements indicative of potential intermediate
structures, resembling those observed in hexagonal ice or hydrate formations.
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(a) A center atom is picked, depicted as the yellow atom

(b) A center atom (yellow) and its neighbors in frame N (blue)

and its neighbors in frame N+1 (red), with their id’s.

(c) A random atom is picked and the angular displacement is

calculated for this atom. The angular displacement is calculated

as the angle between two vectors (the orange ones) in a 3D space.

Each vector spans from the center atom to its matching atom

in frame N and frame N+1.

Figure 12: Process of calculating the angular displacement of an atom.
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(a) Using the angle, theta, found in 12c, all the atoms are shifted

back. They are shifted by rotating them at an angle theta on

the Z-axis. Their new position is depicted in pink, their previ-

ous (frame N+1) position is depicted in red. The shifting was

performed by using the steps and rotational matrix described in

section 2.10.3 described.

(b) The distance between their frame N+1 and the new rotated

position is calculated for all atoms, depicted as d.

(c) Finally their average distance to the center is calculated from

their frame N+1 position, by summing all distances and dividing

it by the number of neighbors remaining.

Figure 13: This figure showcases how the atoms are shifted back, how the distance they have
moved after getting shifted is calculated, and how the neighbour’s average distance to the center
atom is calculated.
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(a) The angular displacement of all the neighbors are calculated

(b) The molecules with an angular displacement bigger than ✓
is discarded.

Figure 14: This figure depicts how the neighbors with an angular displacement bigger than ✓ are
discarded.
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The Python script for this process can be found in appendix K

This filtering process allowed for the selection of atoms with notable angular displacements, po-
tentially representing the formation of intermediate structures.

Before the k means clustering a volume analysis was performed as in experiment 1 (see section
3.5.3 for more details), and an average angle and average bond length analysis was performed
on the structures. The average angle and average bond length analysis were done by computing
the average displacement angle for each neighbor, and calculating the average distance from each
neighbor to the center atom. This can be seen in appendix L(average angle and average bond
length analysis) and appendix M(volume analysis).

Finally, the k-means clustering would be performed. The Python script for the k means analysis
could be found in appendix N

3.8 Final result analysis

After the k means analysis the structures closest to the centroids were picked out and plotted on
a 3D graph. They were inspected and compared to each other to see if there were any similarities
between one another, or if they showed similarities to ice and methane hydrate structures. Fur-
thermore, the molecules in the structures analyzed in the original trajectory file (using OVITO)
to see if these intermediate structures would transform to ice or hydrate during the simulations,
if they did they would be classified as a potential intermediate structure, if not they would be
classified as being liquid water.

3.9 Life cycle

The last thing that was done, was to look a the behavior of intermediate structures throughout
the entire simulation. The molecules that showed the most promising intermediate structures were
selected.

The life cycle analysis was done by selecting each molecule from the intermediate structure, then
looking at all molecules that were within a distance of 3.5 Angstroms of these molecules (interacting
molecules) by using the original trajectory file. Then a new trajectory file containing only the
molecules from the intermediate structure and the interacting molecules was made. It was then
simulated using OVITO and examined visually for features of interest.

The code for the life cycle analysis can be found in appendix O
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4 Results

In this section, the results (potential intermediate structures) obtained from each method used in
the research will be presented. These structures were carefully examined and analyzed to gain a
deeper understanding of their characteristics. The purpose of this section is to provide a clear and
comprehensive overview of the findings.

4.1 Experiment 1

4.1.1 Average distance and total bond length analysis

This simple method involved the identification of a comprehensive set of 1239 potential intermediate
structures. It is worth noting that the size of these structures, as measured by the number of
atoms they comprised, exhibited a considerable range, spanning from a minimum of 3 atoms to a
maximum of 75 atoms.

To facilitate a more focused investigation, as mentioned in section 3.4 a selection criterion was
applied to isolate and analyze structures consisting solely of 3, 4, and 5 atoms. With the power of
k-means clustering in combination with silhouette analysis, these similar structures were clustered
together as seen in figure 15. Furthermore, one sample/structure was chosen from each cluster as
mentioned in section 3.4.
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(a) Clusters with centroid for structure with size 3

(b) Clusters with centroid for structure with size 4

(c) Clusters with centroid for structure with size 5

Figure 15: Resulting clusters after k-means clustering, with their respective centeroids
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

Figure 16: Potential intermediate structures of size 3.

Finally, a close look at each selected structure yields potential intermediate structures. Starting
with the size 3 intermediate structures visualized in figure 16.

Upon further examination, it appears that the potential intermediate structures consisting of 3
atoms do not exhibit significant distinguishing characteristics amongst themselves. These struc-
tures, forming a triangular configuration in the plane, share similar bonding patterns and spatial
arrangements. However, by considering their respective positions within the simulation and their
proximity to the ice structure and hydrate, an interesting observation emerges.

Among the 3-atom structures, the one depicted in figure 16b is found in close proximity to the
ice structure. This particular positioning suggests that this structure may indeed serve as an
intermediate structure. The proximity to the ice structure implies a potential relationship or
interaction between the two, indicating a potential role of this structure in the transformation or
progression toward the formation of ice.

Upon scrutinizing the structures comprising 4 and 5 atoms, a more intricate and intriguing set
of results emerges, providing valuable insights into the intermediate stages of the system under
investigation. Let’s delve into these findings in more detail.
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

Figure 17: Potential intermediate structures of size 4.

A closer examination of the potential intermediate structures with 4 atoms (visualized in figure
17) reveals interesting and distinct characteristics between two specific structures.

The intermediate structure in 17b (the red one) exhibits a wider and more flattened/square shape,
setting it apart from the other structures. This distinctive morphology suggests that it may possess
specific bonding patterns or spatial arrangements that di↵erentiate it from the rest. Additionally,
its flattened shape bears a resemblance to certain regions of a hexagonal ice structure, implying a
potential connection between this structure and ice formation.

On the other hand, the structure in figure 17a forms a Y shape with its bonds, as seen in figure
18. This Y-shaped configuration shares a resemblance with specific segments of a hexagonal ice
structure. This striking similarity strengthens the hypothesis that this structure might indeed
serve as an intermediate structure for ice formation.

Furthermore, when considering the placement of both structures relative to the ice and hydrate
structures within their respective frames, an intriguing pattern emerges. The structure with the
y-bonds appears to be closely associated with the ice structure, indicating a potential intermediary
role in the ice formation process. This observation further supports the hypothesis that the y-bond
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Figure 18: The red lines indicate the bonds between the molecules. One molecule is bonded to all
the other molecules, making a ”Y” shape with the bonds. This particular intermediate structure
is the one depicted in figure 17a

structure represents an intermediate stage during the transition from ice to hydrate.

The analysis of the structures containing 5 atoms presents the most intriguing and diverse set of
results thus far (figure 19). These structures exhibit distinctive characteristics, and their place-
ment relative to ice and hydrate structures provides valuable insights into their potential roles as
intermediates.

The first structure, depicted in blue (figure 19a), stands out due to its compactness and resemblance
to a portion of a hexagonal ice structure. This compact and hexagonal-like shape suggests a po-
tential connection to ice formation. Its similarity to a known ice structure supports the hypothesis
that this structure may serve as an intermediate during the water-to-ice transformation.

The second structure, represented in black (figure 19b), displays an ”arrow” structure, elongating
it. This unique arrangement di↵erentiates it from the rest and hints at possible distinct bonding
patterns. However, upon considering the placement of these structures relative to ice and hydrate,
no promising results emerge, limiting the potential significance of further analysis.

The last structure, in red (figure 19c), also exhibits an elongated structure. While visually in-
triguing, the analysis of its placement relative to ice and hydrate structures does not either yield
any promising insights or correlations.

Given the lack of significant findings regarding the placement of these 5-atom structures in relation
to ice and hydrate, it may be prudent to halt further analysis of these structures for now. However,
it’s important to note that this decision should be revisited if new information or insights emerge
in future investigations.

4.1.2 Convex hull

Through the implementation of the convex hull method, a total of 455 potential intermediate
structures were identified. These structures were meticulously analyzed to gain further insights
into their characteristics. For a more focused investigation, the selection was narrowed down to
structures containing 4 and 5 atoms. With the help of k-means clustering patterns/similarities in
the structures were determined. The resulting clusters can be seen in figure 20.

Plotting the volume of the structures on one axis and the density on another axis allows for the
examination of their size and compactness. The volume represents the spatial extent occupied by
the structure, while the density indicates the mass or number of atoms contained within a given
volume. Analyzing these plots with the k-means clustering, yields trends and correlations of the 4
and 5-atom intermediate structures.
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

(c) Potential intermediate structure from the third cluster.

Figure 19: Potential intermediate structures of size 5.
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(a) k-means clustering result for structure with size 4

(b) k-means clustering result for structure with size 5

Figure 20: Resulting clusters after k-means clustering, with their respective centeroids
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By selecting the structures closest to each centroid, three distinct structures within the set of 4-
atom intermediates were identified. These structures exhibit unique characteristics and proximity
to their respective centroids, highlighting their potential significance. These structures can be seen
in figure 21.

Upon closer examination of the second structure (black) (figure 21b), we observe a distinctive
Y-shaped bond arrangement. This Y-shaped structure stands out compared to the other two
structures (in figure 21), which exhibit more flat and trapezoid-like configurations.

The presence of the Y-shaped bond pattern in the black structure is intriguing and reminiscent
of certain segments found in a hexagonal ice structure. This resemblance suggests a potential
connection between the black structure and the formation of ice. Additionally, when considering
the placement of these structures relative to ice, it becomes evident that the Y-shaped structure
is the only one in close proximity to the ice structure.

The proximity of the Y-shaped structure to the ice structure indicates its potential role as an
intermediate structure specifically related to ice formation. This finding aligns with the hypothesis
that this particular structure may play a crucial role in the transition from water to ice.

Upon analyzing the structures containing 5 atoms (figure 22), we observe two very di↵erent struc-
tures that do not seem to resemble any ice or hydrate structures. However, when considering the
positions of these structures relative to ice and hydrates, a compelling observation emerges.

Comparing the placement of these structures in relation to ice and hydrates, it becomes apparent
that the black structure is in close proximity to hydrate structures. This observation suggests that
the black structure may serve as an intermediate structure specifically involved in the formation
of hydrates.

4.2 Experiment 2

A total of 29623 potential intermediate structures were found. As in experiment 1, only the
intermediates with a size of 3, 4, and 5 were analyzed. The k means clustering yielded the results
shown in figure 23.

The size 3 structures seen in figure 24 are again very di↵erent and do not show any particularly not-
able features. Indicating that these structures are too simple to analyze properly by the purposed
methods in this paper.

For the size 4 intermediates, the Y bond structure is again found as seen in figure 25b, figure 26a,
and figure 26c. However, this time the Y bond structures are more likely to become a hydrate
structure. All three are located close to the hydrates during the simulation.

The blue (figure 25a) and cyan (figure 26c) structure also look like Y bond structures, but never
turns into ice nor a hydrate during the simulation, which weakens the idea that these structures
are intermediate structures.

The rest of the size 4 structures do not show any significant or reacquiring patterns or similarities
to hexagonal ice or methane hydrate.

For the size 5 structures, all form di↵erent kinds of structures (as seen in figure 27), with hard-
to-distinguish features. The black structure (figure 27b) is the only structure that turns into ice
during the simulation. The other two size 5 structures are liquid water throughout the entire
simulation.
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

(c) Potential intermediate structure from the third cluster.

Figure 21: Potential intermediate structures of size 4.
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

Figure 22: Potential intermediate structures of size 5.
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(a) Clusters with centroid for structure with size 3

(b) Clusters with centroid for structure with size 4

(c) Clusters with centroid for structure with size 5

Figure 23: Resulting clusters after k-means clustering, with their respective centeroids
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(a) Potential intermediate structure from the

first cluster.

(b) Potential intermediate structure from the

second cluster

(c) Potential intermediate structure from the

third cluster

(d) Potential intermediate structure from the

fourth cluster

Figure 24: Potential intermediate structures of size 3
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(a) Potential intermediate structure from the

first cluster.

(b) Potential intermediate structure from the

second cluster

(c) Potential intermediate structure from the

third cluster

(d) Potential intermediate structure from the

fourth cluster

Figure 25: Potential intermediate structures of size 3
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(a) Potential intermediate structure from the fifth cluster.

(b) Potential intermediate structure from the sixth cluster

(c) Potential intermediate structure from the seventh cluster

Figure 26: Potential intermediate structures of size 4
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster

(c) Potential intermediate structure from the third cluster

Figure 27: Potential intermediate structures of size 5
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4.3 Experiment 3

4.3.1 Average distance and average angle analysis

For the method employed in this experiment, a total of 5755 potential intermediate structures were
identified. Following the procedures outlined in section 3.6, the k-means algorithm provided the
clusters depicted in figure 28.

Upon examining each cluster within the set of potential intermediate structures with a size of 3,
we observe the structures in figure 29.

Upon closer examination of the structures within the size 3 cluster, we confirm the observation that
these structures predominantly adopt a triangular arrangement. This recurring pattern suggests a
limited range of bonding shapes given the small number of atoms involved.

Moreover, analyzing the positions of these structures during their respective frames provides valu-
able insights into their potential roles. Among these structures, one stands out, the red one (figure
29c) in its proximity to the ice structure. This finding implies that this particular structure has
the potential to serve as an intermediate structure in the formation of ice.

Although the structures within the size 3 cluster may share similarities and form a triangular
configuration, the identification of a structure in close proximity to the ice structure highlights its
significance in the ice formation process. Further analysis of this particular structure, including its
bonding properties, energetic considerations, and dynamic behavior, will deepen our understanding
of its role as an intermediate structure in ice formation.

Looking at the structures with a size of 4, we observe the structures showcased in figure 30.

In the investigation of the structures with a size of 4, we once again encounter the presence of
the Y-shaped bond structure (the blue one, figure 30a), which has been previously associated with
potential ice formation. Furthermore, this structure is again found close to ice when its position
relative to ice and hydrate is compared.

Inspecting the black structure (figure 30b), uncovers a flat square-like shape. The distinctive
features of this structure, distinct from the Y-shaped configuration, suggest a di↵erent bonding
pattern. This structure is found close to established hydrate structures, indicating that this might
be an intermediate structure for hydrates.

Conversely, the final structure, represented by the red structure (figure 30c), does not exhibit
discernible features that can be readily associated with either ice or hydrates. Its lack of distinctive
characteristics and absence of clear signs pointing towards hydrate or ice formation raises the
possibility that this structure may simply be a representation of water molecules captured by the
algorithm rather than a significant intermediate structure.
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(a) Clusters with centroid for structure with size 3

(b) Clusters with centroid for structure with size 4

(c) Clusters with centroid for structure with size 5

Figure 28: Resulting clusters after k-means clustering, with their respective centeroids
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

(c) Potential intermediate structure from the third cluster.

Figure 29: Potential intermediate structures of size 3.
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

(c) Potential intermediate structure from the third cluster.

Figure 30: Potential intermediate structures of size 4.

47



Finally, for structure size=5 we obtain these intermediates in figure 31, figure 32, and figure 33.

Analyzing the figures shows that the black, yellow, and green structures (in figure 31 and 32)
lay close to hydrate structures indicating that they might be intermediate structures. The other
structures do not show any potential to be intermediate structures.

4.3.2 Convex hull

For this method, we obtained 944 potential intermediates. The same procedures described for the
other convex hull methods were also done this time and provided the clustering plot presented in
figure 34.

From the clustering the two structures shown in figure 35 were extracted.

Only the biggest cluster was chosen since the smallest cluster did not have a significant amount
of points to be considered valid enough. This was done for both the analysis for structures size 4
and size 5.

The size 4 structure looks like a Y bond structure, and as with previous results, these Y bond
structures show potential to be an intermediate ice structure when its position is looked at relative
to ice and hydrate.

For the size 5 structures, there is di�cult to spot any distinguishing features, however, looking
at its position for its given frame shows that this structure does not show any signs to be an
intermediate structure.

4.4 Life cycle analysis

Since the Y bond structure occurred in all the 4 sized structure analysis methods, a life cycle
analysis was performed. From the life cycle analysis, only two of the four structures showed
evidence of being an intermediate structure, as seen in figure 36 and figure 37.

For the hydrate Y bond structures the results are of the opposite case. The intermediates from
figure 25b, figure 26a and figure 26b. All three structures end opp splitting up, indicating that
this is not an intermediate structure as seen in figure 38, figure 39, and figure 40.
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(a) Potential intermediate structure from the first cluster.

(b) Potential intermediate structure from the second cluster.

(c) Potential intermediate structure from the third cluster.

Figure 31: Potential intermediate structures of size 5.

49



(a) Potential intermediate structure from the fourth cluster.

(b) Potential intermediate structure from the fifth cluster.

(c) Potential intermediate structure from the sixth cluster.

Figure 32: Potential intermediate structures of size 5.
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Figure 33: Potential intermediate structure from the seventh cluster.

(a) k-means clustering result for structure with size 4

(b) k-means clustering result for structure with size 5

Figure 34: Resulting clusters after k-means clustering, with their respective centeroids
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(a) Potential intermediate structure of size 4.

(b) Potential intermediate structure of size 5.

Figure 35: Potential intermediate structures of size 4 and 5.
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(a) Snapshot when the molecules are in their water phase

(b) Snapshot when the molecules have formed a Y bond struc-

ture

(c) Snapshot when the molecules have become a part of

hexagonal ice

Figure 36: Snapshots of the life cycle of the molecules in the Y bond structure in the figure. The
red molecules are the ones in the Y-bond structure, the blue are the ones that interact with the
red ones during the life cycle. This is the intermediate from figure 17a.
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(a) Snapshot when the molecules are in their water phase

(b) Snapshot when the molecules have formed a Y bond struc-

ture

(c) Snapshot when the molecules have become a part of

hexagonal ice

Figure 37: Snapshots of the life cycle of the molecules in the Y bond structure in the figure. The
red molecules are the ones in the Y bond structure, the blue is the ones that interact with the red
ones during the life cycle. This is the intermediate from figure 30a.
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(a) The potential intermediate structure before it splits up

(b) The intermediate structure has been split up indicating that

this is not an intermediate structure.

Figure 38: Life cycle analysis of hydrate depicted in figure 25b. The red molecules are the molecules
that form the intermediate structure, the blue ones are molecules that interact with the red ones.
This is the intermediate from figure 25b.
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(a) The potential intermediate structure before it splits up

(b) The intermediate structure has been split up indicating that

this is not an intermediate structure.

Figure 39: Life cycle analysis of hydrate depicted in figure 26a. The red molecules are the molecules
that form the intermediate structure, the blue ones are molecules that interact with the red ones.
This is the intermediate from figure 26a.
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(a) The potential intermediate structure before it splits up

(b) The intermediate structure has been split up indicating that

this is not an intermediate structure.

Figure 40: Life cycle analysis of hydrate depicted in figure 26b. The red molecules are the molecules
that form the intermediate structure, the blue ones are molecules that interact with the red ones.
This is the intermediate from figure 26b.
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5 Discussion

In this section, we will mainly discuss the reasons why di↵erent approaches were made, why
algorithms like DBSCAN and k-means were chosen, and what impact the di↵erent decisions has
on the results. At the end of this section, the results will be evaluated and discussed.

5.1 MD-simulation

For the MD simulation, the mW water model was chosen. The primary reason for this comes from
the fact that mw water models can correctly capture the tetrahedron structures of the hydrogen
bonding network from the three-body interactions among the water molecules [34]. This is crucial
for studies of hydrate and ice.

The conditions for the simulation were set at 230K at normal atmospheric pressure. As mentioned
in section 2.3, in these conditions homogeneous freezing nucleation becomes more likely. The
reduced thermal energy of the water molecules allows for the formation of stable hydrogen bonding
networks between neighboring water molecules. This makes it easier to study the interactions
between the molecules and is the reason for choosing these conditions.

5.2 Unsupervised learning

The choice of unsupervised learning over supervised learning and reinforcement learning in the
context of identifying intermediate structures during ice and hydrate formations is indeed justified
by several key reasons.

Firstly, the lack of known intermediate structures presents a significant challenge when applying
supervised learning. Supervised learning relies on labeled training data, where the model learns
from examples with predefined labels. In the absence of labeled data for intermediate structures, it
becomes impractical to train a supervised learning model to recognize and identify these structures
accurately.

Similarly, reinforcement learning, which involves learning through trial and error based on a reward
system, faces challenges in the absence of a well-defined reward framework for identifying interme-
diate structures. Without a clear understanding of what constitutes an intermediate structure and
how to measure its quality or relevance, establishing an e↵ective reward system becomes highly
challenging or even infeasible.

In contrast, unsupervised learning approaches, such as clustering algorithms and dimensionality
reduction techniques, do not rely on labeled data or predefined reward systems. They allow for the
exploration of patterns, similarities, and relationships within the data without explicit guidance
or predefined labels. By leveraging unsupervised learning techniques, researchers can discover
latent structures and patterns in the data, potentially revealing intermediate structures that were
previously unknown.

Furthermore, the received dataset, lacking information about intermediate structures, would not
serve as suitable training data for supervised or reinforcement learning approaches. The absence
of labeled instances or a reliable reward system would hinder the e↵ectiveness of these learning
approaches, rendering them less viable for the specific task of identifying intermediate structures.

Considering the limitations and challenges associated with supervised learning and reinforcement
learning, an unsupervised learning approach emerges as the most appropriate and optimal solution.
By allowing the algorithm to autonomously uncover patterns (without any human interference)
and relationships within the data, unsupervised learning enables the exploration and potential
discovery of intermediate structures without the need for explicit labeling or a predefined reward
system.
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5.3 Boundary conditions

Boundary conditions were implemented to minimize the teleportation e↵ect during the MD sim-
ulation to ensure reliable analysis. Boundary conditions were implemented in the MD simulation
to minimize the ”teleportation e↵ect.” The teleportation e↵ect refers to situations where atoms
undergo abrupt position changes, resulting in drastic modifications to their neighborhoods within
the simulation. This e↵ect poses challenges in tracking and analyzing the evolving neighborhoods
of individual atoms, which was a fundamental part of experiments 2 and 3.

By introducing boundary conditions, the teleportation e↵ect was mitigated, reducing the occur-
rences of atoms experiencing significant positional changes and acquiring entirely new neighbors.
Consequently, the neighborhood analysis could be conducted more e↵ectively and consistently, as
the neighborhoods of atoms remained relatively stable throughout the simulation.

It is important to note that implementing boundary conditions led to a reduction in the data
sample size by more than half. However, despite this reduction, the remaining number of samples
was still considered su�cient for meaningful analysis. The decision to proceed with the reduced
sample size was based on the judgment that it provided a satisfactory representation of the system
under investigation.

However, it should be emphasized that for experiment 1, the introduction of boundary conditions
was not necessary. Since the neighborhood analysis was not employed in this particular experiment,
the application of boundary conditions, in this case, may have inadvertently resulted in the loss of
potential intermediate structures. It is plausible that certain intermediate structures might have
been missed due to the influence of the boundary conditions.

Additionally, it is worth considering the possibility that atoms that could potentially be part of
intermediate structures may have been lost as a result of the boundary conditions. This means
that the observed intermediate structures might not have been complete, as some atoms relevant
to these structures might have been a↵ected by the boundary e↵ects. However, based on the
analysis, it is reasonable to assume that this was not a significant concern, as most of the identified
intermediate structures were located su�ciently far away from the boundaries. This observation
enhances the validity and reliability of the results obtained from experiment 1.

By introducing the boundary conditions, the dataset loosed slightly over half of the atoms. The
initial dataset, comprising approximately 23,000 atoms, was now reduced to approximately 11,000
atoms. Nonetheless, the remaining population of around 11,000 atoms still provided a substantial
dataset for our analysis purposes.

In summary, the introduction of boundary conditions played a crucial role in minimizing the
teleportation e↵ect during the MD simulation, ensuring more reliable analysis for experiments 2
and 3. However, it is acknowledged that the use of boundary conditions in experiment 1 may
have resulted in the potential loss of intermediate structures, which should be considered when
interpreting the results of that specific experiment.

5.4 Why use DBSCAN?

The selection of DBSCAN as one of the clustering algorithms used was primarily driven by two
key reasons, which make it particularly suitable for the analysis of the system under investigation.

Firstly, DBSCAN is well-suited for identifying clusters of arbitrary shapes and varying densities.
Given that hexagonal ice, methane hydrate, and liquid water possess di↵erent shapes and densities,
DBSCAN’s ability to handle such diverse cluster characteristics makes it a reasonable choice. Un-
like other clustering algorithms, DBSCAN is capable of detecting clusters that are not necessarily
spherical or evenly distributed. This flexibility allows for a more accurate representation of the
complex and diverse structural arrangements observed in the system.

Furthermore, DBSCAN is e↵ective in identifying clusters that may be entirely surrounded by a
di↵erent cluster, without being directly connected to it. This characteristic of DBSCAN helps
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mitigate the issue of the so-called ”single-link e↵ect,” where di↵erent clusters can be connected
by a thin line of points. By specifying a minimum number of points (MinPts) required to form a
cluster, DBSCAN reduces the impact of these thin connections and ensures more meaningful and
distinct clustering results.

The parameter settings for DBSCAN, specifically epsilon and MinPts, were determined based on
the knowledge of water molecules. Epsilon was chosen as 4, representing the maximum possible
interaction length of a water molecule (rounded up from the actual value of 3.5 [62]). MinPts was
set to 2, considering that a water molecule can bond with at least two other atoms, including itself.

To validate the e↵ectiveness of DBSCAN in identifying liquid water clusters, the results were
compared with the OVITO simulation. The clusters of water molecules identified by DBSCAN
were visually inspected on three frames to confirm their correspondence with the expected liquid
water regions. It is acknowledged that visual inspection is not an ideal method for verification and
that a more reliable algorithm, such as the chill+ algorithm commonly used in the MD simulation
community, would have been preferable. However, based on the positive results observed in the
selected frames, it was assumed that DBSCAN would perform similarly for the remaining frames,
given the consistent data format and relatively stable structural characteristics of ice, hydrate, and
water across frames.

DBSCAN was also employed to cluster the atoms in experiment 1. The same reasons mentioned
above, including the ability to handle arbitrarily shaped clusters and the lack of requirement to
specify the number of clusters in advance, make DBSCAN a suitable choice for this experiment as
well.

By utilizing DBSCAN, researchers can e↵ectively analyze the system without the need for prior
knowledge of the exact number of clusters or making assumptions about their shapes and densities.
This flexibility and adaptability of DBSCAN contribute to its suitability for the clustering analysis
of the given dataset.

5.5 Why use k-means

K-means clustering was selected for its simplicity, guaranteed convergence, and scalability to large
datasets. It is also computationally e�cient. Another important reason for selecting k means
clustering was that the resulting clusters can be easily visualized and analyzed in a simple way.
However, it has certain drawbacks that needed to be addressed. One limitation is the need to
manually specify the number of clusters, which can be subjective and may not always be known
in advance. Another challenge is that if one data axis has a significantly larger scalar value than
the others, it can dominate the clustering process and result in suboptimal clusters.

To mitigate these disadvantages, two techniques were implemented. Firstly, data normalization was
applied to standardize the data and ensure that all dimensions had a similar scale. This helped
to alleviate the dominance of certain axes and improved the clustering performance. Secondly,
silhouette analysis was employed to determine the optimal number of clusters for each analysis.
Silhouette analysis was preferred over the elbow plot method because it eliminated the need for
manual interpretation and decision-making. It automated the process of finding the optimal num-
ber of clusters, saving time and reducing the possibility of human error. The silhouette analysis
provided a more objective and reliable criterion for selecting the optimal number of clusters, com-
pared to visually analyzing elbow plots.

By incorporating data normalization and silhouette analysis, the k-means clustering method could
be utilized e↵ectively to identify intermediate structures in all three experiments. These techniques
enhanced the clustering process and increased the reliability and objectivity of the results.

5.5.1 Intermediate structure selection process

The plots given by the k-means clustering served as valuable tools to depict and comprehend the
intricate spatial arrangements and bonding characteristics inherent within the 3, 4, and 5-atom
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structures. By examining and interpreting these plots, a comprehensive understanding of the
structural properties and bonding tendencies of these smaller intermediates was achieved.

The decision to focus on the structure closest to the centroid was driven by the understanding that
the centroid represents a central point that encapsulates the overall characteristics and tendencies
of the structures within a given cluster. Thus, selecting the structure nearest to the centroid would
yield an intermediate representation that most faithfully captures the collective features and traits
exhibited by the structures in that cluster.

This careful selection process ensured that the chosen intermediate structures e↵ectively repres-
ented the broader cluster from which they were derived. Consequently, the subsequent analysis
and interpretation of these intermediate structures would provide valuable insights into the shared
properties and behaviors of the structures within each cluster, enabling a more comprehensive
understanding of their overall similarities and dissimilarities.

5.6 Other clustering algorithms

For the final analysis k-means clustering was chosen. However, there are other alternatives.

Overlapping clustering could have been used since this algorithm allows for a datapoint to be part
of more than one cluster [39]. Which could have been able to find patterns between the di↵erent
size clusters, something k-means clustering is not able to do. For the same reason, Probabilistic
clustering could also have been used, by choosing The Gaussian Mixture Model (explained in
section 2.6.3).

Hierarchical clustering is an algorithm that enables the grouping of similar data points into clusters
based on their characteristics or proximity to one another [43]. This clustering technique could
also have been used to find patterns in the data points. The resulting hierarchical dendrogram
could help find patterns and relations in the intermediate structures.

By using di↵erent techniques new results will be gained to give better insight into identifying
the characteristic intermediate structures that play a crucial role in water and hydrate phase
transitions.

5.7 Experiment 1

This experiment was quite simple. By going from the assumption that if a molecule is absent
from a water cluster in a frame but exists in the cluster in all previous frames, it should be safe
to assume that this molecule is now, in fact, part of an intermediate structure, an ice structure or
hydrate structure. Unfortunately, this is not exactly the case. As some molecules appear in the
water cluster in frame N and be missing in frame n+i, they sometimes reappear in frame n+j (j¿i,
and both in [0,100]). This undermines the validity of the results since the assumption is now not
fully supported. This reappearance problem could be a result of choosing the wrong algorithm,
meaning that DBSCAN is not the most optimal algorithm for this task. A better choice might
have been using the chill+ algorithm. This algorithm has shown great potential in identifying
ice, hydrates, and water with great accuracy by looking at di↵erent bond structures[63]. Another
possibility might be that the assumption actually isn’t true, but this does not seem like the case.

For this experiment the parameters for DBSCAN were set as ✏ = 4Å, this is the maximum in-
teraction distance for a water molecule rounded up from 3.5 Å. Having a larger ✏ value does not
make sense since the atoms in these clusters would then not interact with each other, hence not
performing any bonds. The reason to round up was done for simplicity reasons. However, keeping
✏ at 3.5 Å would have strengthened the validity of the results. The minPts was chosen as 2 since
clusters containing one single molecule would not be an interest (since they don’t interact with
anything), but clusters containing two might be an intermediate structure, see appendix C for
code.
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5.8 Experiment 2

By using the shifting technique the idea was to see how a molecular neighborhood behaved over
time to see if they showed any particular behavior of interest. However, this technique has a minor
flaw that a↵ects the results form this experiment. Since the shifting back (rotation) is being done
according to the z-axis of a normal coordinate system, the shifting back is not being done correctly.
The use of this method decreases the validity of the results of this experiment

A more accurate way would be to perform the rotation in a new coordinate axis where the center
molecule still is in the origin, but the molecule used to compute the angular displacement should
lay either on the x or y-axis. With this new coordinate axis in place, the rotation of all the
neighboring molecules should be done according to the newly define z-axis. This will result in a
more accurate shift back (rotation).

5.9 Experiment 3

Using the angular rotation to determine intermediate structures was done because water molecules
within a crystal lattice do have a solid and fixed arrangement (as mentioned in section 2.2 and
2.3). It was therefore assumed that an intermediate structure of ice (and hydrate) maybe would
share these properties. The solid arrangement would be determined by the angular displacement
of a molecule. A big movement would mean that the molecule was in a liquid state, while a small
displacement would mean a more solid arrangement that could possibly indicate an intermediate
structure. This small angular displacement was seen as anything below 10 degrees. This number
was chosen by looking at the angular displacement of the water molecules of ice and hydrate and
choosing a max value that was fitted around 90 percent of the angular displacement of ice and
hydrate.

5.10 Average distance and total bond length or angel analysis

The decision to use the average distance and total bond length for experiments 1 and 2, and
average distance and angel for experiment 3 as parameters to find patterns in the di↵erent potential
intermediate structures were used because these parameters can describe the shape, size, and
relations between each molecule in a structure. Thereby give a set of data that can be compared
to find patterns.

There are of course other ways to compare structures that might be more useful, like looking at
the bonding forces or intermolecular pair forces like Lennard-Jones potential that might describe
potential intermediate structures in a better way.

5.11 Convex hull analysis

The decision to use convex hull analysis was motivated by its ability to generate a 3D shape
using a cluster of at least four points. This enabled the study to conduct shape analysis, which
was crucial for the research objectives. Specifically, the volume of the convex hull was selected
as a straightforward scalar parameter to facilitate the comparison of di↵erent cluster shapes and
identify potential patterns. Additionally, the density of each convex hull was calculated to provide
an additional scalar value for cluster comparison.

However, upon analyzing the resulting plots from the convex hull analysis, it became apparent
that using volume and density as sole metrics for analysis might not be suitable. The negative
exponential-looking plot did not exhibit a fitting pattern for analysis, hence the shape of the plot,
and the application of k-means clustering did not demonstrate strong clustering capabilities in this
particular context. Nevertheless, through the utilization of k-means clustering, certain patterns
were observed, indicating that incorporating both volume and density metrics together could yield
more meaningful insights for cluster analysis.

62



One limitation of the convex hull method is its inability to e↵ectively analyze clusters consisting
of only three atoms. However, in the context of this study, this limitation may not be significant
since the results obtained from other analysis methods suggest that intermediate structures with
three atoms are generally not of particular interest.

Overall, while the initial implementation of convex hull analysis provided some preliminary in-
sights, the limitations, and challenges associated with using volume and density as the sole metrics
necessitated further exploration and consideration of alternative approaches to enhance the cluster
analysis.

5.12 Results

A lot of the results from experiment 1, 2, and 3 was not deemed plausible to become an intermediate
structure, since they did not showcase any significant features or potential to become ice or hydrate
(they never went from water to ice or hydrate during the simulation).

Especially the size 3 structures were hard to analyze. These structures were mostly overlooked
because the analysis techniques that were used (average bond length and volume analysis) were not
good enough to examine these structures. For a better understanding of these structures, invest-
igation, and analysis in terms of their bonding properties, dynamics, and energetic considerations,
can shed light on their potential role as an intermediate structure in the overall process of hydrate
or ice formation.

The analysis of the 5-molecule structures highlights the diversity and complexity of potential
intermediate structures. While some structures show compelling features with their placement
relative to ice and hydrate, they do not provide substantial evidence to support their role as
intermediates. This emphasizes the need for ongoing research to unravel the intricate mechanisms
and dynamics involved in the transformation process from ice to hydrate. Like the size 3 structures,
these structures could also be better understood with investigation and analysis in terms of their
bonding properties, dynamics, and energetic considerations.

For the 4-molecule structures, only the Y-bond structure showed the potential of being an in-
termediate structure. However as with 3 and 5 molecular structures, to better understand the
other structures investigation and analysis in terms of their bonding properties, dynamics, and
energetic considerations should have been done. This could also provide more evidence to support
the findings.

It should be mentioned that all clusters containing only two molecules were discarded since analyz-
ing them in a reasonable way was not deemed possible with the analyzing methods that were used.
Furthermore, clusters containing more than 5 molecules were neither analyzed. This was because
of their more complex structures made it hard to see any specific patterns. To solve this the life
cycle analysis was performed on the most promising intermediate structures to better understand
how molecules interacted with each other. Another reason to not look at clusters bigger than 5
was the fact that a water molecule could maximally have 4 hydrogen bonds (making it 5 molecules
in total).

5.12.1 Hydrates

The results from experiment 2 show that there are three promising results. The structure in figure
25b, figure 26a and figure 26b. All these structures pose the Y-bond feature and showed the
potential of being a hydrate, but a life cycle analysis shows that this is not the case. As all the
molecules end up breaking apart, which indicates that these are not intermediate structures.

For the rest of the hydrate intermediates, there is not enough evidence to claim that one of
the recognized structures from the experiments is indeed an intermediate structure for hydrate
nucleation. The structures that were found are too dissimilar to each other to confidently say that
they are intermediate structures for hydrates. However, this does not fully neglect the fact that
these structures might be intermediate structures for hydrates. A hydrate can have more than one
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intermediate structure, and the di↵erent results from the experiments show that there might be
more than one intermediate structure for a hydrate.

5.12.2 Ice

Turning the attention to ice shows that there is a di↵erent story. The Y bond structure shows the
most potential to be an intermediate structure, specifically an intermediate structure for ice. This
structure showed up numerous times in the 4 atom-size clusters and was mostly located close to
existing ice structures. The atoms in this structure also always ended up as part of hexagonal ice
after some time was passed from the time step they were observed, further indicating that these
Y-bond structures could be an intermediate structure for ice.

An interesting observation is that these Y bonds can be found in hexagonal ice, as seen in figure
41, which strengthens the case of these Y bond structures being intermediate structures.

Figure 41: The blue and green molecules represent two Y bond structures in hexagonal ice.

By studying the interactions and dynamics of atoms within the identified intermediate structures
with a life cycle analysis, a deeper understanding of their stability and potential transition pathways
could be obtained, contributing to the overall comprehension of the system under investigation.

The life-cycle simulation of the four Y bond structures showed mixed results, however, two of the
four structures show signs of being an intermediate structure. As seen in figure 36 and figure 37,
the molecules start out as water (figure 36a and figure 37a), forms the Y bond structure (figure 36b
and figure 37b), and then stabilizes and becomes part of hexagonal ice (figure 36c and figure 37c).
Both Y-bond structures take the same ”positions” in hexagonal ice when comparing figure 36c and
figure 37c, indicating that the Y-bond structure might be an intermediate structure for a certain
part of hexagonal ice. It is however worth mentioning that these two results are not enough to say
confidentially that this Y-bond structure is an intermediate structure, but that there is evidence to
support this idea. Further investigation of the Y bond structure is needed to safely classify it as an
intermediate structure by doing more experiments (or gathering more data/results) that support
this idea.

It is worth mentioning that the intermediate structures that were found are found in a specific
environment with specific conditions. The MD simulation that was performed was performed in an
environment that allows for homogeneous freezing nucleation at 230 Kelvin at normal atmospheric
pressure. At this temperature, water is supercooled. This means that homogeneous freezing nucle-
ation becomes more likely. At this point, the thermal energy of the water molecules is significantly
reduced, allowing the formation of stable hydrogen bonding networks between neighboring water
molecules. These hydrogen bonds facilitate the arrangement of the water molecules into an ordered,
crystalline structure characteristic of ice. This can be spotted in all the Y-bond structures, where
the molecules form the mentioned order structure of a Y.

With di↵erent conditions, other intermediate structures may appear, that form di↵erent ordered
structures. Finally the environment would also probably play a part in the formation of interme-
diate structures. There are no solid surfaces for ice to latch onto and form in this simulation. The
introduction of a solid surface might influence the results. Therefore investigating and comparing
intermediate structures in di↵erent conditions and environments will help with understanding the
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formation of intermediates during ice-freezing nucleation. By doing this more data will be gathered
to give a better understanding of the topic.

Finally, the timestep used in the MD simulation should be addressed. As this is an important
factor in recognizing the intermediate structures. The few promising results indicate that a smaller
timestep might be able to catch the nucleation process from liquid process to ice or hydrate more
accurately. Looking at the life cycle analysis results also indicates that a smaller timestep would
be able to capture how the Y molecules in the Y-bond structures interact with other molecules or
other potential intermediate structures to form hexagonal ice (or methane hydrate).
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6 Conclusion

The investigation of intermediate structures during the nucleation process of ice and hydrates
represents a compelling and intriguing area of study. By employing various machine learning tech-
niques, attempts were made to identify these intermediate structures during the phase transition
of water to ice and hydrate.

The final results show significant promise with the Y bond-structures being a potential intermediate
structure for hexagonal ice. These results confirm that there is a plausibility of the existence of an
intermediate structure in the phase transition of water to hexagonal ice. It is thus worthy of the
further verification of such water intermediate structures and the further understanding of their
e↵ect on the free energy pathway of phase transition. As mentioned in section 5, other methods
should be investigated to provide a more su�cient way to analyze the potential intermediate
structures.

The outcomes demonstrate considerable promise, particularly about the Y-bond structures, which
exhibit potential as intermediate structures in the formation of hexagonal ice. These results provide
empirical support for the plausibility of intermediate structures during the water-to-hexagonal-ice
phase transition. Consequently, further investigation is warranted to verify the existence of such
intermediate structures and to deepen our understanding of their impact on the free energy pathway
of phase transitions. As mentioned in section 5, it is crucial to explore alternative methods that
can o↵er more robust analyses of potential intermediate structures.

Additionally, revisiting the molecular dynamics (MD) simulations with smaller timeframes is es-
sential to e↵ectively capture subtle changes in the nucleation process of ice and hydrates. The
chosen timeframe of 500ps falls short of providing su�cient insights into the molecular dynamics
and temporal evolution of the system.

Furthermore, it is crucial to perform MD simulations under di↵erent conditions and environments,
as these factors can influence the development and characteristics of intermediate structures during
the nucleation process. Examining diverse conditions will contribute to a more comprehensive
understanding of the influence of external factors on the formation of intermediate structures.

In summary, while there is still more work to be done, the application of machine learning has
demonstrated its potential in recognizing intermediate structures. By implementing the aforemen-
tioned adjustments, the likelihood of identifying intermediate structures using machine learning
techniques increases, as there is already evidence pointing towards the existence of such structures
during ice and hydrate nucleation.
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7 Further work

Based on the performed research it is believed that several of the following ideas should be done if
further research is performed, and might serve as interesting topics to examine:

• Utilizing the chill+ algorithm instead of DBSCAN for identifying water, hydrate, and ice:
Research indicates that the Chill+ algorithm has higher accuracy in identifying water, hy-
drate, and ice [63]. By employing the Chill+ algorithm in the identification process, potential
errors associated with DBSCAN could be minimized. This would enhance the reliability of
the identification process and contribute to more accurate results.

• Performing molecular dynamics (MD) simulations in a di↵erent environment: To gain deeper
insights into the formation of ice and hydrates, it is recommended to conduct MD simulations
within an environment featuring a solid surface conducive to ice formation. This investigation
holds particular relevance for industrial applications, as it would facilitate a better under-
standing of the formation processes. The outcomes of such simulations could be utilized in
developing coatings or structures that impede the development of intermediate structures,
subsequently preventing ice formation on windmills or hydrate formation in deep-sea oil
cables.

• Reducing the timestep in MD simulations to enhance nucleation process analysis: As high-
lighted in section 5.12.2 of the research, a decrease in the timestep utilized in MD simulations
would enable a more precise analysis of the nucleation process. By capturing smaller tem-
poral intervals, researchers can gain finer-grained insights into the mechanisms and dynamics
of nucleation. This adjustment would contribute to a more comprehensive understanding of
the process and potentially reveal crucial details that might have been missed with larger
timesteps.

• Exploring Y bond structures: Given that the research identified Y bond structures as the
most promising in terms of intermediate structures, further investigation into these structures
is warranted. One interesting approach is to employ a supervised learning framework that
focuses on identifying and analyzing these specific bond structures. By utilizing machine
learning techniques, researchers can potentially uncover new insights and patterns associated
with Y bond structures, ultimately enhancing our understanding of their role and implica-
tions.

• Using other types of clustering algorithms: Exploration of alternative clustering algorithms,
such as overlapping, probabilistic, or hierarchical clustering techniques, holds the potential
to illuminate additional intermediate structures that emerge during the phase transitions of
water and hydrates. By incorporating these diverse clustering methodologies into the ana-
lysis, researchers can expand the scope of the investigation and potentially uncover novel
intermediate structures that were not captured by the previous methods. These alternative
algorithms provide a valuable avenue for further exploration, allowing for a more compre-
hensive understanding of the complex dynamics and structural transformations occurring
during the phase transitions.

By pursuing these research directions, significant advancements can be made in the field. The
proposed ideas have the potential to improve accuracy in identification methodologies, provide
practical applications for industrial settings, refine simulation techniques for better analysis, and
shed light on the characteristics of specific bond structures. Such endeavors would contribute to
the scientific knowledge base and potentially lead to practical solutions for challenges related to
ice and hydrate formation.
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Appendix

A frame splitter and boundary checker.py

# This . py f i l e s p l i t s the o r i g i n a l LAMMPS t r a j e c t o r y t e x t
# f i l e s i n t o s epe ra t e f i l e s con ta in ing only one frame
# I t a l s o g e t s r i d o f a l l e the molecu le s t ha t does ' nt f u l f i l l
# the boundary cond i t i on

#This f unc t i on s p l i t s the MD−s imu la t i on f i l e i n t o frames .
def f r ameSp l i t t e r ( r e a d f i l e , path ) :

framenumber = 0
f = open( r e a d f i l e , ” r ” )
f 2 = open( path+”/ frame ”+str ( framenumber)+” . txt ” , ”w” )
for l i n e in f :

#Closes the wr i t i n g f i l e and opens a new one to wr i t e t e next frame on .
i f ( l i n e . s t r i p ( ' \n ' ) == ”ITEM: TIMESTEP” ) :

f 2 . c l o s e ( )
framenumber+=1
f2 = open( path+”/ frame ”+str ( framenumber)+” . txt ” , ”w” )
f2 . wr i t e ( l i n e )

#Writes the l i n e s to the f i l e
else :

f 2 . wr i t e ( l i n e )
f 2 . c l o s e ( )
f . c l o s e ( )

def dataExtractor ( path ) :
#Goes through evry s i n g l e frame
for i in range ( 1 0 2 ) :

frame = path+”/ frame ”+str ( i )+” . txt ”
f = open( frame , ” r ” )
f 2 = open( path+”/temp” , ”w” )
atoms=0
for j in range ( 9 ) :

l i n e = f . r e ad l i n e ( )
f 2 . wr i t e ( l i n e )

for l i n e in f :
va lue s=l i n e . s p l i t ( )
#Discards a l l mo lecu les t h a t s not w i th in the boundary cond i t i on s .
i f ( f loat ( va lue s [ 3 ] ) >4 .5 and f loat ( va lue s [3 ])<32 and
f loat ( va lue s [4 ])>7 and f loat ( va lue s [ 4 ] ) <30 ) :

f 2 . wr i t e ( l i n e )
atoms+=1

f . c l o s e ( )
f 2 . c l o s e ( )
f = open( frame , ”w” )
f2 = open( path+”/temp” , ” r ” )
#wr i t e s the atoms to a new f i l e
for k in range ( 3 ) :

l i n e = f2 . r e ad l i n e ( )
f . wr i t e ( l i n e )

f 2 . r e ad l i n e ( )
f . wr i t e ( str ( atoms)+”\n” )
for l i n e in f 2 :

i f l i n e . s t r i p ( ”/n” )!=”” :
f . wr i t e ( l i n e )
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f . c l o s e ( )
f 2 . c l o s e ( )

#The run func t i on i n i t i a l i z e s the f r amSp l i t t e r f unc t i on and
#dataEx t rac tor f unc t i on
def run ( f i l e , path ) :

f r ameSp l i t t e r ( f i l e , path )
dataExtractor ( path )

#Path to the f o l d e r where the f i l e i s saved
path = ” f i na lThr e e /growth”
#MD−s imu la t i on f i l e
f i l e = ” f i na lThr e e / Ice−Amorphous−Hydrate−growth−500ps 230K . lammpstrj . tx t ”

#Remember to change the path , and f i l e v a r i a b l e i f you have saved the f i l e s
#elsewhere , or the f i l e has a d i f f e r e n t name

#The func t i on t ha t runs the en t i r e s c r i p t
run ( f i l e , path )
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B DBSCAN1.py

#imports
import numpy as np
import pandas as pd
from s k l e a rn . c l u s t e r import DBSCAN

#This func t i on uses DBSCAN to f i nd the the water in frame n and frame n+1, then
# wr i t e the molecu le s t ha t on ly apperar in frame n ( and not in frame n+1) to
# a csv f i l e
def dbscanCluste r ing ( frame1 , frame2 , w r i t e f i l e ) :

with open( frame1 , ' r ' ) as f :
l i n e s = f . r e a d l i n e s ( )
l i n e s = l i n e s [ 9 : ]

mo lecu le s = [ ]
for l i n e in l i n e s :

va lue s = l i n e . s p l i t ( )
va lue s . pop (1 )
va lue s . pop(−1)
va lue s . pop(−1)
va lue s . pop(−1)
molecu le s . append ( va lue s )

df = pd . DataFrame ( molecules , columns=[ ' id ' , 'x ' , 'y ' , ' z ' ] )
ogdf = df
df2 = df . drop ( ' id ' , a x i s =1)

# Convert DataFrame to numpy array
X = df2 . va lue s . astype (np . f loat )

# crea t e a DBSCAN ob j e c t wi th the de s i r ed parameters
eps = 4
min samples = 8
dbscan = DBSCAN( eps=eps , min samples=min samples )

# f i t and p r e d i c t the c l u s t e r s
dbscan . f i t (X)
c l u s t e r s = dbscan . l a b e l s

# count the number o f po in t s in each c l u s t e r
un i qu e c l u s t e r s , counts = np . unique ( c l u s t e r s , r e tu rn count s=True )
num clus te r s = len ( un i q u e c l u s t e r s )

# f ind the c l u s t e r wi th the l a r g e s t number o f po in t s
l a r g e s t c l u s t e r i d x = np . argmax ( counts )
l a r g e s t c l u s t e r l a b e l = un i qu e c l u s t e r s [ l a r g e s t c l u s t e r i d x ]
l a r g e s t c l u s t e r p o i n t s = X[ c l u s t e r s == l a r g e s t c l u s t e r l a b e l , : ]

d f3 = pd . DataFrame ( l a r g e s t c l u s t e r p o i n t s , columns=[ 'x ' , 'y ' , ' z ' ] )
d f [ ' id ' ] = df [ ' id ' ] . astype ( int )
df [ 'x ' ] = df [ 'x ' ] . astype ( f loat )
df [ 'y ' ] = df [ 'y ' ] . astype ( f loat )
df [ ' z ' ] = df [ ' z ' ] . astype ( f loat )
merged = pd . merge ( df , df3 , on=[ 'x ' , 'y ' , ' z ' ] )
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with open( frame2 , ' r ' ) as f :
l i n e s = f . r e a d l i n e s ( )
l i n e s = l i n e s [ 9 : ]

mo lecu le s = [ ]
for l i n e in l i n e s :

va lue s = l i n e . s p l i t ( )
va lue s . pop (1 )
va lue s . pop(−1)
va lue s . pop(−1)
va lue s . pop(−1)
molecu le s . append ( va lue s )

df = pd . DataFrame ( molecules , columns=[ ' id ' , 'x ' , 'y ' , ' z ' ] )
df2 = df . drop ( ' id ' , a x i s =1)

# Convert DataFrame to numpy array
X = df2 . va lue s . astype (np . f loat )

# crea t e a DBSCAN ob j e c t wi th the de s i r ed parameters
eps = 4
min samples = 8
dbscan = DBSCAN( eps=eps , min samples=min samples )

# f i t and p r e d i c t the c l u s t e r s
dbscan . f i t (X)
c l u s t e r s = dbscan . l a b e l s

# count the number o f po in t s in each c l u s t e r
un i qu e c l u s t e r s , counts = np . unique ( c l u s t e r s , r e tu rn count s=True )
num clus te r s = len ( un i q u e c l u s t e r s )

# f ind the c l u s t e r wi th the l a r g e s t number o f po in t s
l a r g e s t c l u s t e r i d x = np . argmax ( counts )
l a r g e s t c l u s t e r l a b e l = un i qu e c l u s t e r s [ l a r g e s t c l u s t e r i d x ]
l a r g e s t c l u s t e r p o i n t s = X[ c l u s t e r s == l a r g e s t c l u s t e r l a b e l , : ]

d f3 = pd . DataFrame ( l a r g e s t c l u s t e r p o i n t s , columns=[ 'x ' , 'y ' , ' z ' ] )
d f [ ' id ' ] = df [ ' id ' ] . astype ( int )
df [ 'x ' ] = df [ 'x ' ] . astype ( f loat )
df [ 'y ' ] = df [ 'y ' ] . astype ( f loat )
df [ ' z ' ] = df [ ' z ' ] . astype ( f loat )
merged2 = pd . merge ( df , df3 , on=[ 'x ' , 'y ' , ' z ' ] )

i d s d f 1 = set (merged [ ' id ' ] )
i d s d f 2 = set (merged2 [ ' id ' ] )
i n t e rmed i a t e s = l i s t ( i d s d f 2 . d i f f e r e n c e ( i d s d f 1 ) )

matching rows = ogdf [ ogdf [ ' id ' ] . i s i n ( i n t e rmed i a t e s ) ]

f i l t e r e d r ow s = matching rows [
( matching rows [ 'x ' ] >= (307) )
& ( matching rows [ 'x ' ] <= 430 ) ]
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f i l t e r e d r ow s . t o c sv ( w r i t e f i l e , index=False )

def run ( path ) :
for i in range ( 1 , 1 0 1 ) :

frame1 = path + ' f rame ' + str ( i ) + ' . tx t '
frame2 = path + ' f rame ' + str ( i +1) + ' . tx t '
w r i t e f i l e = path + ' i n t e rmed i a t e s ' + str ( i ) + ' ' + str ( i +1) +

' . csv '
dbscanCluste r ing ( frame1 , frame2 , w r i t e f i l e )
print ( i )

path = ' f i n a lThr e e /growth/ '

run ( path )

76



C doubleDBSCAN.py

#imports
import numpy as np
import pandas as pd
from s k l e a rn . c l u s t e r import DBSCAN

def po t en i a l I n t e rmed i a t e s ( r e a d f i l e , w r i t e f i l e , w r i t e f i l e 2 , l a r g e s t c l u s t e r ) :
d f = pd . r ead c sv ( r e a d f i l e )
df2 = df . drop ( ' id ' , a x i s =1)

# Convert DataFrame to numpy array
X = df2 . va lue s . astype (np . f loat )

# crea t e a DBSCAN ob j e c t wi th the de s i r ed parameters
eps = 4 # maximum in t e r a c t i o n d i s t ance between two water mo lecu les
min samples = 2 #can be j u s t a s i n g e l water molecu le wi th no bonds
dbscan = DBSCAN( eps=eps , min samples=min samples , n j obs=1)

# f i t and p r e d i c t the c l u s t e r s
dbscan . f i t (X)
c l u s t e r s = dbscan . l a b e l s

# count the number o f po in t s in each c l u s t e r
un i qu e c l u s t e r s , counts = np . unique ( c l u s t e r s , r e tu rn count s=True )
num clus te r s = len ( un i q u e c l u s t e r s )

# crea t e a boo lean mask to on ly keep c l u s t e r s between 3 and 5 po in t s .
mask = ( counts > 2)

# ge t the i n d i c e s o f the po in t s in c l u s t e r s wi th more than one and l e s s
# than s i x po in t s
i n d i c e s = np . where (mask ) [ 0 ]
p o i n t i n d i c e s = [ np . where ( c l u s t e r s == i ) [ 0 ] for i in un i qu e c l u s t e r s [ i n d i c e s ] ]

with open( w r i t e f i l e 2 , 'w ' ) as f :
for c l u s t e r in p o i n t i n d i c e s :

ne ighbours =[ ]
for i in c l u s t e r :

ne ighbours . append ( l i s t ( df . i l o c [ i ] ) )
c l u s t e r s i z e=len ( ne ighbours )
i f c l u s t e r s i z e > l a r g e s t c l u s t e r :

l a r g e s t c l u s t e r=c l u s t e r s i z e
f . wr i t e ( str ( ne ighbours )+ ' \n ' )

# crea t e a new DataFrame with the s e l e c t e d po in t s
new df = df . i l o c [ np . concatenate ( p o i n t i n d i c e s ) ]

new df . t o c sv ( w r i t e f i l e , index=False )

return l a r g e s t c l u s t e r

def run ( path ) :
l a r g e s t c l u s t e r=0
for i in range ( 1 , 1 0 1 ) :

r e a d f i l e = path + ' i n t e rmed i a t e s ' + str ( i ) + ' ' + str ( i +1) + ' . csv '
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w r i t e f i l e = path + ' ana l y z ed i n t e rmed i a t e s '+ str ( i )
+ ' ' + str ( i +1) + ' . csv '
w r i t e f i l e 2 = ' f i n a lThr e e /method1/ ' ' ana l y z ed i n t e rmed i a t e s '+ str ( i )
+ ' ' + str ( i +1) + ' . tx t '
l a r g e s t c l u s t e r=po t en i a l I n t e rmed i a t e s ( r e a d f i l e , w r i t e f i l e ,
w r i t e f i l e 2 , l a r g e s t c l u s t e r )

print ( ' l a r g e s t c l u s t e r i s : '+str ( l a r g e s t c l u s t e r ) )

path = ' f i n a lThr e e /growth/ '
run ( path )
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D method1 average dist.py

#imports
import numpy as np
import os

#This func t i on c a l c u l a t e s the average d i s t ance from a neighbour to the cen ter
# atom fo r an in t e rmed ia t e s t r u c t u r e .
#I t a l s o c a l c u l a t e s the sum of a l l ne ighbours to cen ter d i s t anc e s in an
#in t e rmed ia t e s s t r u c t u r e .
#The v a r i a b e l r e a d f i l e con ta ins the f i l e to be analyzed ,
# w r i t e f i l e i s the f i l e where i n t e rmer i a t e s o f each
# s i z e found i s wr i t t en , and w r i t e f i l e 2 conta ins a l l
# in t e rmed ia t e s t r u c t u r e s . The v a r i a b l e frame i s the
# frame tha t i s ana lyzed .
po in t s =[ ]
numbers=[ ]
def ave r ag e d i s t anc e ( r e a d f i l e , w r i t e f i l e , w r i t e f i l e 2 , frame ) :

with open( r e a d f i l e , ' r ' ) as f , open( w r i t e f i l e 2 , ' a ' ) as f 3 :
for l i n e in f :

ne ighbours=np . array ( eval ( l i n e ) , f loat )
ne ighbours=neighbours . t o l i s t ( )
n = len ( ne ighbours )
t o t a l d i s t a n c e = 0
t o t a l p a i r s = n ∗ (n − 1) / 2
atoms=[ ]
for atom in ne ighbours :

atoms . append ( int ( atom [ 0 ] ) )
for i in range (n − 1 ) :

for j in range ( i + 1 , n ) :
id1 , x1 , y1 , z1 = neighbours [ i ]
id2 , x2 , y2 , z2 = neighbours [ j ]
e u c l i d e an d i s t an c e = np . sq r t (
( x2 − x1 ) ∗∗ 2 + ( y2 − y1 ) ∗∗ 2+(z2 − z1 )∗∗2)
t o t a l d i s t a n c e += euc l i d e an d i s t an c e

ave r ag e d i s t anc e = round( t o t a l d i s t a n c e / t o t a l p a i r s , 4 )
i n f o =[n , atoms , ave rage d i s tance , round( t o t a l d i s t a n c e , 4 ) , frame ]
i n f o 2 =[n , atoms , frame ]
w r i t e f i l e = ' f i n a lThr e e /method1/
in t e rmed ia t e s method1 n 1 c '+str (n)+ ' . tx t '
f 2 = open( w r i t e f i l e , ' a ' )
f 2 . wr i t e ( str ( i n f o )+ ' \n ' )
f 2 . c l o s e
f 3 . wr i t e ( str ( i n f o 2 )+ ' \n ' )

i f n==4:
po int=[ ave rage d i s tance , round( t o t a l d i s t a n c e , 4 ) ]
numbers . append ( ave r ag e d i s t anc e )
po in t s . append ( po int )

#ave rag e d i s t anc e ( ' f i na lThree /method1/ ana l y z ed i n t e rmed i a t e s 1 2 . t x t ' , ' ' )

#This f unc t i on i n i t i a t e s the s c r i p t . The v a r i a b l e l a r g e s t c l u s t e r i s the
# number o f mo lecu le s in the l a r g e s t c l u s t e r t ha t was found in the prev iouse s t ep .
def run ( l a r g e s t c l u s t e r ) :

for i in range (3 , l a r g e s t c l u s t e r +1):
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w r i t e f i l e = ' f i n a lThr e e /method1/ in t e rmed ia t e s method1 n 1 c '
+str ( i )+ ' . tx t '
f = open( w r i t e f i l e , 'w ' )
f . c l o s e

w r i t e f i l e 2= ' f i n a lThr e e /method1/ i n t e rmed i a t e s me thod1 n 1 a l l c l u s t e r s . tx t '
f = open( w r i t e f i l e 2 , 'w ' )
f . c l o s e
for i in range ( 1 , 1 0 1 ) :

r e a d f i l e = ' f i n a lThr e e /method1/
ana l y z ed i n t e rmed i a t e s '+str ( i )+ ' '+str ( i+1)+ ' . tx t '
ave r ag e d i s t anc e ( r e a d f i l e , w r i t e f i l e , w r i t e f i l e 2 , i )

for i in range (3 , l a r g e s t c l u s t e r +1):
i f os . s t a t ( ' f i n a lThr e e /method1/
in t e rmed ia t e s method1 n 1 c '+str ( i )+ ' . tx t ' ) . s t s i z e == 0 :

os . remove ( ' f i n a lThr e e /method1/
in t e rmed ia t e s method1 n 1 c '+str ( i )+ ' . tx t ' )

run (75)
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E convex hull method1.py

#imports
import numpy as np
from s c ipy . s p a t i a l import ConvexHull

#This func t i on take s in a s e t o f po ints , makes a convex h u l l out o f t h e s e po ints ,
# then c a l c u l t e and re tu rns the volume o f t h i s convex h u l l
def ca l cu l a t e vo lume ( po in t s ) :

hu l l = ConvexHull ( po in t s )

# Get the v e r t i c e s and s imp l i c e s o f the convex h u l l
v e r t i c e s = hu l l . po in t s [ hu l l . v e r t i c e s ]
s imp l i c e s = hu l l . s imp l i c e s

# Ca l cu l a t e the volume us ing the decomposi t ion in t o t e t r ahed ra
volume = 0 .0
for s implex in s imp l i c e s :

t e t rahedron = v e r t i c e s [ s implex ]
s igned volume = np . dot ( te t rahedron [ 0 ] ,
np . c r o s s ( te t rahedron [1]− t e t rahedron [ 0 ] , t e t rahedron [2]− t e t rahedron [ 0 ] ) )
volume += signed volume / 6 .0

return abs ( volume )

#This func t i on does a convexhu l l a na l y s i s . I t t a k e s in the f i l e
# ( r e a d f i l e ) to perform t h i s ana l y s i s , then wr i t e s a l l the r e s u l t s too the w r i t e f i l e ,
# the s i z e 4 in t e rmed ia t e s to w r i t e f i l e 2 , the s i z e 5 in t e rmed ia t e s to w r i t e f i l e 3 .
#Some in t e rmed ia t e s can not be used to perform a convexhu l l ana l y s i s ,
# the s e w i l l be wr i t t en to the e r r o r f i l e .
def ana lyze ( r e a d f i l e , w r i t e f i l e , w r i t e f i l e 2 , w r i t e f i l e 3 , e r r o r f i l e ) :

with (open( w r i t e f i l e , 'w ' ) as f2 , open( w r i t e f i l e 2 , 'w ' ) as f3 ,
open( w r i t e f i l e 3 , 'w ' ) as f4 , open( e r r o r f i l e , 'w ' ) as f 5 ) :

for i in range ( 1 , 1 0 1 ) :
print ( i )
r e a d f i l e 1=r e a d f i l e+str ( i )+ ' '+str ( i+1)+ ' . tx t '
with open( r e a d f i l e 1 , ' r ' ) as f :

for l i n e in f :
po in t s =[ ]
molecu le s=np . array ( eval ( l i n e ) , f loat )
molecu le s=molecu le s . t o l i s t ( )
i d s =[ ]
for mol in molecu le s :

id=int (mol . pop ( 0 ) )
po in t s . append (mol )
i d s . append ( id )

i f len ( po in t s )>3:
try :

c a l cu l a t e vo lume ( po in t s )
except :

print ( po in t s )
f 5 . wr i t e ( str ( len ( po in t s ))+ ' : '+l i n e )

else :
volume=ca l cu l a t e vo lume ( po in t s )
dens i ty= len ( i d s )/ volume
# i i n d i c a t e s the frame
i n f o =[ len ( i d s ) , ids , volume , dens i ty , i ]
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f 2 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==4:

f 3 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==5:

f 4 . wr i t e ( str ( i n f o )+ ' \n ' )

' ' '
ana lyze ( ' f i na lThree /method1/ ana l y z e d i n t e rmed i a t e s ' ,
' f i na lThree /method1/ c o n v e x h u l l a l l . t x t ' ,
' f i na lThree /method1/ c on v e x hu l l c 4 . t x t ' ,
' f i na lThree /method1/ c on v e x hu l l c 5 . t x t ' ,
' f i na lThree /method1/ c on v e x h u l l e r r o r s . t x t ')
' ' '
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F DBSCAN2.py

#imports
import numpy as np
import pandas as pd
from s k l e a rn . c l u s t e r import DBSCAN

def water ( frame , w r i t e f i l e ) :
# Read the f i l e to be ana lysed
with open( frame , ' r ' ) as f :

l i n e s = f . r e a d l i n e s ( )
l i n e s = l i n e s [ 9 : ]

mo lecu le s = [ ]
for l i n e in l i n e s :

va lue s = l i n e . s p l i t ( )
va lue s . pop (1 )
va lue s . pop(−1)
va lue s . pop(−1)
va lue s . pop(−1)
molecu le s . append ( va lue s )

# Store the va l u e s fram the t x t f i l e in a dataframe c a l l e d d f
df = pd . DataFrame ( molecules , columns=[ ' id ' , 'x ' , 'y ' , ' z ' ] )
# copy df , but n e g l e c t the id ' s
df2 = df . drop ( ' id ' , a x i s =1)

# Convert DataFrame to numpy array
X = df2 . va lue s . astype (np . f loat )

# crea t e a DBSCAN ob j e c t wi th the de s i r ed parameters
eps = 4
min samples = 8
dbscan = DBSCAN( eps=eps , min samples=min samples )

# f i t and p r e d i c t the c l u s t e r s
dbscan . f i t (X)
c l u s t e r s = dbscan . l a b e l s

# count the number o f po in t s in each c l u s t e r
un i qu e c l u s t e r s , counts = np . unique ( c l u s t e r s , r e tu rn count s=True )

# f ind the c l u s t e r wi th the l a r g e s t number o f po in t s
l a r g e s t c l u s t e r i d x = np . where ( ( un i q u e c l u s t e r s != −1) &
( counts == max( counts [ u n i q u e c l u s t e r s != − 1 ] ) ) ) [ 0 ] [ 0 ]
l a r g e s t c l u s t e r l a b e l = un i qu e c l u s t e r s [ l a r g e s t c l u s t e r i d x ]
l a r g e s t c l u s t e r p o i n t s = X[ c l u s t e r s == l a r g e s t c l u s t e r l a b e l , : ]

# Create dataframes
df3 = pd . DataFrame ( l a r g e s t c l u s t e r p o i n t s , columns=[ 'x ' , 'y ' , ' z ' ] )
d f [ ' id ' ] = df [ ' id ' ] . astype ( int )
df [ 'x ' ] = df [ 'x ' ] . astype ( f loat )
df [ 'y ' ] = df [ 'y ' ] . astype ( f loat )
df [ ' z ' ] = df [ ' z ' ] . astype ( f loat )

# merge dataframe d f and df3
merged = pd . merge ( df , df3 , on=[ 'x ' , 'y ' , ' z ' ] )
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# Write the dataframe to a csv f i l e
merged . t o c sv ( w r i t e f i l e , index=False )

#The run funct ion , t h i s f unc t i on l oops through every fram en app l i e s
# the water f unc t i on on them
def run ( path ) :

for i in range (1 , 102 ) :
frame = path + ' / frame ' + str ( i ) + ' . tx t '
w r i t e f i l e = path + ' 2/water ' + str ( i ) + ' . csv '
water ( frame , w r i t e f i l e )

#The path to the f o l d e r where e v e r y t h i n g can be found .
path = ' f i n a lThr e e /growth '

#The run func t i on i n i t i a t e the en t i r e s c r i p t
run ( path )
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G water neighbours.py

#imports
import pandas as pd
import numpy as np

#This func t i on take s in a frame conta ing a l l mo lecu le s in the l i q u i d s t a t e ,
# then f i n d s the ne ighbours o f each molecu le w i th in a d i s t ance 4 ,
# and wr i t e s the r e s u l t s to a t e x t f i l e w r i t e f i l e .

def ne ighbours ( r e a d f i l e , w r i t e f i l e ) :
d f = pd . r ead c sv ( r e a d f i l e )
df2 = pd . r ead c sv ( r e a d f i l e )
con ta ine r =[ ]

def neighbourhood ( row ) :
ne ighbours =[ ]
x=f loat ( row [ 1 ] )
y=f loat ( row [ 2 ] )
z=f loat ( row [ 3 ] )
po int =np . array ( ( x , y , z ) )
molecule = [ int ( row [ 0 ] ) , x , y , z ]
ne ighbours . append ( molecule )
for atom in df2 . i t e r t u p l e s ( index=False ) :

x=f loat ( atom [ 1 ] )
y=f loat ( atom [ 2 ] )
z=f loat ( atom [ 3 ] )
po int2 =np . array ( ( x , y , z ) )
d i s t anc e = np . l i n a l g . norm( point−point2 )
i f ( d i s t anc e !=0 and d i s t anc e <=4):

molecule=[ int ( atom [ 0 ] ) , x , y , z ]
ne ighbours . append ( molecule )

con ta ine r . append ( ne ighbours )

df . apply ( neighbourhood , ax i s=1)

with open( w r i t e f i l e , 'w ' ) as f :
for element in con ta ine r :

f . wr i t e ( str ( element)+ ' \n ' )

#I n i t i a t e s the en t i r e s c r i p t , path i s the where the f i l e s t h a t w i l l be
# ana lyzed can be found .
def run ( path ) :

for i in range (1 , 102 ) :
r e a d f i l e = path + ' /water ' + str ( i ) + ' . csv '
w r i t e f i l e = ' f i n a lThr e e /method3 .2/ wate r ne ighbour s ' + str ( i ) + ' . tx t '
ne ighbours ( r e a d f i l e , w r i t e f i l e )
print ( i )

path = ' f i n a lThr e e /growth2 '

run ( path )
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H new coordinates.py

import numpy as np

# This func t i on makes a new coord ina te system accord ing to the new
# center molecu le
def coo rd ina t e s ( r e a d f i l e , w r i t e f i l e ) :

f = open( r e a d f i l e , ' r ' )
f 2 = open( w r i t e f i l e , 'w ' )
for l i n e in f :

ne ighbours=np . array ( eval ( l i n e ) , f loat )
ne ighbours=neighbours . t o l i s t ( )
i f len ( ne ighbours ) !=1 :

c en t e r = neighbours . pop (0 )
centerX=cente r [ 1 ]
centerY=cente r [ 2 ]
centerZ=cente r [ 3 ]
newCords=[ ]
centerMol = [ int ( c en t e r [ 0 ] ) , 0 . 0 , 0 . 0 , 0 . 0 ]
newCords . append ( centerMol )
for molecule in ne ighbours :

newX=molecule [1]− centerX
newY=molecule [2]− centerY
newZ=molecule [3]− centerZ
newMol = [ int ( molecule [ 0 ] ) , round(newX, 6 ) , round(newY, 6 )
,round(newZ , 6 ) ]
newCords . append (newMol )

f 2 . wr i t e ( str ( newCords)+ ' \n ' )
f . c l o s e ( )
f 2 . c l o s e ( )

#i n i t i a t e s the en t i r e s c r i p t
def run ( path ) :

for i in range ( 1 , 1 0 2 ) :
r e a d f i l e = path + ' /wate r ne ighbour s ' + str ( i ) + ' . tx t '
w r i t e f i l e = path + ' /wate r ne ighbour s ' + str ( i ) + ' new coord inate s . txt '
coo rd ina t e s ( r e a d f i l e , w r i t e f i l e )
print ( i )

path1 = ” f i na lThr e e /method3 . 2 ”

run ( path1 )
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I rotater.py

#imports
import numpy as np
import pandas as pd
import math

#This func t i on take s the coord ina t e s o f two molecu les and c a l c u l a t e s the
# ro t a t i n ange l between them
def c a l c u l a t e r o t a t i o n a n g l e d i r e c t i o n ( x1 , y1 , z1 , x2 , y2 , z2 ) :

# Vector A at t=0
A0 = np . array ( [ x1 , y1 , z1 ] )
# Vector A at t=1
A1 = np . array ( [ x2 , y2 , z2 ] )

# Normalize v e c t o r s
A0 normalized = A0 / np . l i n a l g . norm(A0)
A1 normalized = A1 / np . l i n a l g . norm(A1)

# Compute cros s product and ro t a t i on ang l e
c r o s s p roduc t = np . c r o s s ( A0 normalized , A1 normalized )
ang le = math . acos (np . dot ( A0 normalized , A1 normalized ) )

# Determine r o t a t i on d i r e c t i o n
r o t a t i o n d i r e c t i o n = 1 i f np . dot ( c ro s s product , A1 normalized ) > 0 else −1

return angle , r o t a t i o n d i r e c t i o n

# This func t i on performs the r o t a t i o n a l s h i f t in a neighbourhood .
def ana lyze r ( r e a d f i l e , r e a d f i l e 2 , w r i t e f i l e ) :

f = open( r e a d f i l e , ' r ' )
f 3 = open( w r i t e f i l e , 'w ' )
ho lder = [ ]

for l i n e in f :
ne ighbours=np . array ( eval ( l i n e ) , f loat )
ne ighbours=neighbours . t o l i s t ( )
f 2 = open( r e a d f i l e 2 , ' r ' )

for l i n e 2 in f 2 :
ne ighbours2=np . array ( eval ( l i n e 2 ) , f loat )
ne ighbours2=neighbours2 . t o l i s t ( )
#Find the matching cen ter atoms in both frames
i f ne ighbours [0 ] [ 0 ]== neighbours2 [ 0 ] [ 0 ] :

c ente r1=neighbours . pop (0 )
cente r2=neighbours2 . pop (0 )
columnNames=[ ' id ' , 'x ' , 'y ' , ' z ' ]
d f = pd . DataFrame ( neighbours , columns=columnNames )
df2 = pd . DataFrame ( neighbours2 , columns=columnNames )
merged df = pd . merge ( df , df2 , on= ' id ' , how= ' i nne r ' )
x1 = merged df . i l o c [ 1 ] [ ' x x ' ]
y1 = merged df . i l o c [ 1 ] [ ' y x ' ]
z1 = merged df . i l o c [ 1 ] [ ' z x ' ]
x2 = merged df . i l o c [ 1 ] [ ' x y ' ]
y2 = merged df . i l o c [ 1 ] [ ' y y ' ]
z2 = merged df . i l o c [ 1 ] [ ' z y ' ]
theta , r o t a t i o n d i r e c t i o n = c a l c u l a t e r o t a t i o n a n g l e d i r e c t i o n ( x1 ,
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y1 , z1 , x2 , y2 , z2 )
#we want to r o t a t e the atoms back so we mu l t i p l y
# with r o t a t i o n d i r e c t i o n
r o t a t i o n d i r e c t i o n = r o t a t i o n d i r e c t i o n ∗(−1)
ang le = round(np . degree s ( theta ) , 2 )
df3 = merged df . drop (0 )
df4 = pd . DataFrame ( columns=[ ' id ' , 'x ' , 'y ' , ' z ' , ' ang le ' ] )
c ente r2 . append ( ang le )
df4 . l o c [ len ( df4 ) ] = cente r2
ro ta ted = [ [ int ( cente r2 [ 0 ] ) , c ente r2 [ 1 ] , c ente r2 [ 2 ]
, c ente r2 [ 3 ] , c ente r2 [ 4 ] ] ]

def r o t a t e ( row ) :
# Define the 3D vec to r
vec to r = np . array ( [ row [ 4 ] , row [ 5 ] , row [ 6 ] ] )

# Define the r o t a t i on matrix
r o t z = np . array ( [

[ np . cos ( theta ) , −r o t a t i o n d i r e c t i o n ∗np . s i n ( theta ) , 0 ] ,
[ r o t a t i o n d i r e c t i o n ∗np . s i n ( theta ) , np . cos ( theta ) , 0 ] ,
[ 0 , 0 , 1 ]

] ) # 3x3 ro t a t i on matrix around z−ax i s

# Perform the r o t a t i on
v e c t o r r o t a t ed = np . dot ( ro t z , vec to r )
d i sp lacement =np . s q r t (
( row [4]− v e c t o r r o t a t ed [0 ] )∗∗2+( row [5]− v e c t o r r o t a t ed [ 1 ] ) ∗ ∗ 2
+(row [6]− v e c t o r r o t a t ed [ 2 ] ) ∗ ∗ 2 )
vr = [ row [ 0 ] , v e c t o r r o t a t ed [ 0 ] , v e c t o r r o t a t ed [ 1 ] ,
v e c t o r r o t a t ed [ 2 ] , ang le ]
df4 . l o c [ len ( df4 ) ] = vr
ro ta ted . append ( vr )

df3 . apply ( rotate , ax i s=1)
f3 . wr i t e ( str ( ro ta ted )+ ' \n ' )
f 2 . c l o s e ( )
break

#ho lde r . append ( ro t a t ed )

f . c l o s e ( )
f 3 . c l o s e ( )
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J method2 average dist.py

#imports
import numpy as np
import pandas as pd

#This func t i on c a l c u l a t e s the average d i s t ance from a neighbour to the
# cen ter atom fo r an in t e rmed ia t e s t r u c t u r e .
# I t a l s o c a l c u l a t e s the d i sp lacement from frame n to frame n+1
# in an in t e rmed ia t e s s t r u c t u r e .
#The v a r i a b e l t h e t a i s l a r g e s t angu lar disp lacemen tha t i s a l lowed , and r i s the
# maximum d i s t ance a l l owed between a neighbour and the cen ter molecu le .
def disp lacement ( theta , r ) :

w r i t e f i l e = ' f i n a lThr e e /method2/ d i s t an c e s . txt '
w r i t e f i l e 2 = ' f i n a lThr e e /method2/ avg d i s t . txt '
w r i t e f i l e 3 = ' f i n a lThr e e /method2/ avg d i s t c 3 . txt '
w r i t e f i l e 4 = ' f i n a lThr e e /method2/ avg d i s t c 4 . txt '
w r i t e f i l e 5 = ' f i n a lThr e e /method2/ avg d i s t c 5 . txt '
f 3 = open( w r i t e f i l e , 'w ' )
f 4 = open( w r i t e f i l e 2 , 'w ' )
f 5 = open( w r i t e f i l e 3 , 'w ' )
f 6 = open( w r i t e f i l e 4 , 'w ' )
f 7 = open( w r i t e f i l e 5 , 'w ' )

for i in range ( 1 , 1 0 1 ) :
r e a d f i l e 1 = ' f i n a lThr e e /growth2/ ro t a t ed '+str ( i )+ ' '+str ( i+1)+ ' . tx t '
r e a d f i l e 2 = ' f i n a lThr e e /growth2/wate r ne ighbour s '+str ( i +1)
+ ' new coord inate s . txt '
f = open( r e a d f i l e 1 , ' r ' )
for l i n e in f :

ne ighbours=np . array ( eval ( l i n e ) , f loat )
ne ighbours=neighbours . t o l i s t ( )
i f ne ighbours [0 ] [4 ]<= theta :

f 2 = open( r e a d f i l e 2 , ' r ' )
for l i n e 2 in f 2 :

ne ighbours2=np . array ( eval ( l i n e 2 ) , f loat )
ne ighbours2=neighbours2 . t o l i s t ( )
i f ne ighbours [0 ] [ 0 ]== neighbours2 [ 0 ] [ 0 ] :

columnNames=[ ' id ' , 'x ' , 'y ' , ' z ' , ' ang le ' ]
columnNames2=[ ' id ' , 'x ' , 'y ' , ' z ' ]
d f = pd . DataFrame ( neighbours , columns=columnNames )
df2 = pd . DataFrame ( neighbours2 , columns=columnNames2 )
merged df = pd . merge ( df2 , df , on= ' id ' , how= ' i nne r ' )
d i s t an c e s =[ ]
t o t a l d=0
t o t a l c e n t e r d i s t a n c e=0
id s =[ ]
data =[ ]
for index , row in merged df . i t e r r ows ( ) :

x1 = row [ 1 ]
y1 = row [ 2 ]
z1 = row [ 3 ]
x2 = row [ 4 ]
y2 = row [ 5 ]
z2 = row [ 6 ]
#disp lacement from prev ious frame
d = round(np . s q r t ( ( x2 − x1 )∗∗2 + ( y2 − y1 )∗∗2
+ ( z2 − z1 )∗∗2 ) , 4 )
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d i s t a n c e t o c e n t e r = round(np . s q r t ( ( x1 − 0)∗∗2 +
( y1 − 0)∗∗2 + ( z1 − 0)∗∗2) , 4 )
atom =[ int ( row [ 0 ] ) , x2 , y2 , z2 , d , d i s t a n c e t o c e n t e r ]
d i s t an c e s . append (atom)
i f d i s t an c e t o c en t e r<=r :

i d s . append ( int ( row [ 0 ] ) )
t o t a l c e n t e r d i s t a n c e+=d i s t a n c e t o c e n t e r
t o t a l d+=d

i f len ( i d s )>0:
a v e r a g e c en t e r d i s t an c e=round(
t o t a l c e n t e r d i s t a n c e / len ( i d s ) , 4 )
i n f o =[ len ( i d s ) , ids , a v e r a g e c en t e r d i s t an c e
,round( t o t a l d , 4 ) ]
f 4 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==3:

f 5 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==4:

f 6 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==5:

f 7 . wr i t e ( str ( i n f o )+ ' \n ' )

f 3 . wr i t e ( str ( d i s t an c e s )+ ' \n ' )
f 2 . c l o s e ( )
break

print ( i )
f . c l o s e ( )
f 3 . c l o s e ( )
f 4 . c l o s e ( )
f 5 . c l o s e ( )
f 6 . c l o s e ( )
f 7 . c l o s e ( )

d i sp lacement (10 ,4 )
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K angle.py

#imports
import numpy as np
import pandas as pd

#This func t i on take s in an vec to r and re turns the un i t v e c t o r
def un i t v e c t o r ( vec to r ) :

””” Returns the un i t v e c t o r o f the vec t o r . ”””
return vec to r / np . l i n a l g . norm( vec to r )

#This func t i on c a l c u l a t e s the angu lar d i sp lacement in a neighbourhood from frame n
# and frame n+1.
#The v a r i a b e l r e a d f i l e con ta ins frame n , wh i l e r e a d f i l e 2 conta ins frame n+1
#the v a r i a b l e w r i t e f i l e i s the name o f the f i l e where the angu lar d i sp lacement
# between two frames i s saved .
#The v a r i a b l e t h e t a i s the the maximum ang le t ha t i s a l l owed as an angu lar
# dispa lcement f o r a molecu le .
def ana lyze r ( r e a d f i l e , r e a d f i l e 2 , w r i t e f i l e , theta ) :

with open( r e a d f i l e , ' r ' ) as f , open( w r i t e f i l e , 'w ' ) as f 3 :
for l i n e in f :

ne ighbours=np . array ( eval ( l i n e ) , f loat )
ne ighbours=neighbours . t o l i s t ( )
f 2 = open( r e a d f i l e 2 , ' r ' )
c ente r1=neighbours . pop (0 )
for l i n e 2 in f 2 :

ne ighbours2=np . array ( eval ( l i n e 2 ) , f loat )
ne ighbours2=neighbours2 . t o l i s t ( )
c ente r2=neighbours2 . pop (0 )
i f cente r1 [0]== cente r2 [ 0 ] :

columnNames=[ ' id ' , 'x ' , 'y ' , ' z ' ]
d f = pd . DataFrame ( neighbours , columns=columnNames )
df2 = pd . DataFrame ( neighbours2 , columns=columnNames )
merged df = pd . merge ( df , df2 , on= ' id ' , how= ' i nne r ' )
#df3 = pd . DataFrame( columns=[ ' i d ' , ' x1 ' , ' y1 ' , ' z1 ' , ' x2 ' , ' y2 '
, ' z2 ' , 'd1 ' , 'd2 ' , ' ang le ' ] )
for i in range ( 6 ) :

c ente r2 . append (0 )
#df3 . l o c [ l en ( d f3 ) ] = center2
data=[ cente r2 ]
for index , row in merged df . i t e r r ows ( ) :

i n f o=l i s t ( row )
x1 = row [ 1 ]
y1 = row [ 2 ]
z1 = row [ 3 ]
vec tor1 = [ x1 , y1 , z1 ]
x2 = row [ 4 ]
y2 = row [ 5 ]
z2 = row [ 6 ]
vec tor2 = [ x2 , y2 , z2 ]
un i tvec1 = un i t v e c t o r ( vec tor1 )
un i tvec2 = un i t v e c t o r ( vec tor2 )
ang l e rad = np . a r c co s (np . c l i p (np . dot ( unitvec1 , un i tvec2 )
, −1.0 , 1 . 0 ) )
ang le = round(np . degree s ( ang l e rad ) , 2 )
i f angle<=theta :

e u c l i d e an d i s t a n c e 1=np . sq r t ( x1∗∗2+y1∗∗2+z1 ∗∗2)
i n f o . append ( e u c l i d e an d i s t an c e 1 )
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e u c l i d e an d i s t a n c e 2=np . sq r t ( x2∗∗2+y2∗∗2+z2 ∗∗2)
i n f o . append ( e u c l i d e an d i s t an c e 2 )
i n f o . append ( ang le )
data . append ( i n f o )

i f len ( data )>1:
f 3 . wr i t e ( str ( data)+ ' \n ' )
#df3 . l o c [ l en ( d f3 ) ] = in f o

#The run func t i on i n i t i a t e s the en t i r e s c r i p t
#The v a r i a b l e path i s a s t r i n g t ha t conat ins the path to the f o l d e r
# where the f i l e s t h a t w i l l be ana lyzed i s contained , and where the ana lyzed
# f i l e s w i l l be saved .
#The v a r i a b l e t h e t a i s the the maximum ang le t ha t i s a l l owed as an angu lar
# dispa lcement f o r a molecu le .
def run ( path , theta ) :

for i in range ( 2 , 1 0 2 ) :
r e a d f i l e = path + ' /wate r ne ighbour s ' + str ( i ) + ' new coord inate s . txt '
r e a d f i l e 2 = path + ' /wate r ne ighbour s ' + str ( i +1) + ' new coord inate s . txt '
w r i t e f i l e = path+ ' / ang le '+str ( i )+ ' '+str ( i+1)+ ' . tx t '
ana lyze r ( r e a d f i l e , r e a d f i l e 2 , w r i t e f i l e , theta )
print ( i )

path1 = ” f i na lThr e e /method3 . 2 ”

run ( path1 , 10)

92



L method3 average dist and angle.py

#imports
import numpy as np

#This func t i on c a l c u l a t e s the average d i s t ance from a ne ighbor to the cen ter
# molecu le f o r an in t e rmed ia t e s t r u c t u r e .
# I t a l s o c a l c u l a t e s the average angu lar d i sp lacement f o r
# an in t e rmed ia t e s s t r u c t u r e .
#The v a r i a b l e path conta ins in format ion about where the f o l d e r con ta in ing
# the f i l e s t h a t shou ld be ana lyzed are conta ined .
def ana lyse ( path ) :

w r i t e f i l e = path + ' i n t e rmed i a t e s me thod 3 avg d i s t and ang l e a l l . tx t '
w r i t e f i l e 2 = path + ' i n t e rmed i a t e s me thod 3 avg d i s t and ang l e c 3 . txt '
w r i t e f i l e 3 = path + ' i n t e rmed i a t e s me thod 3 avg d i s t and ang l e c 4 . txt '
w r i t e f i l e 4 = path + ' i n t e rmed i a t e s me thod 3 avg d i s t and ang l e c 5 . txt '
with open( w r i t e f i l e , 'w ' ) as f , open( w r i t e f i l e 2 , 'w ' ) as f 2
, open( w r i t e f i l e 3 , 'w ' ) as f3 , open( w r i t e f i l e 4 , 'w ' ) as f 4 :

for i in range ( 1 , 1 0 0 ) :
r e a d f i l e= ' f i n a lThr e e /method3 .2/ ang le '+str ( i )+ ' '+str ( i+1)+ ' . tx t '
with open( r e a d f i l e , ' r ' ) as f 5 :

for l i n e in f 5 :
t o t a l d i s t a n c e=0
t o t a l a n g l e=0
molecu le s=np . array ( eval ( l i n e ) , f loat )
molecu le s=molecu le s . t o l i s t ( )
i f len ( molecu le s )>2:

c en t e r=molecu le s . pop ( )
i d s =[ int ( c en t e r [ 0 ] ) ]
for atom in molecu le s :

i d s . append ( int ( atom [ 0 ] ) )
t o t a l d i s t a n c e+=atom [ 7 ]
t o t a l a n g l e+=atom [ 9 ]

ave rage d i s ance=round( t o t a l d i s t a n c e /( len ( i d s )−1) ,4)
ave rage ang l e=round( t o t a l a n g l e /( len ( i d s )−1) ,4)
i n f o =[ len ( i d s ) , ids , average d i sance , average ang le , i ]
f . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==3:

f 2 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==4:

f 3 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==5:

f 4 . wr i t e ( str ( i n f o )+ ' \n ' )

ana lyse ( ' f i n a lThr e e /method3 .2/ ' )
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M convex hull method3.py

import numpy as np
from s c ipy . s p a t i a l import ConvexHull

#This func t i on take s in a s e t o f po ints , makes a convex h u l l out o f t h e s e po ints ,
# then c a l c u l t e and re tu rns the volume o f t h i s convex h u l l
def ca l cu l a t e vo lume ( po in t s ) :

hu l l = ConvexHull ( po in t s )

# Get the v e r t i c e s and s imp l i c e s o f the convex h u l l
v e r t i c e s = hu l l . po in t s [ hu l l . v e r t i c e s ]
s imp l i c e s = hu l l . s imp l i c e s

# Ca l cu l a t e the volume us ing the decomposi t ion in t o t e t r ahed ra
volume = 0 .0
for s implex in s imp l i c e s :

t e t rahedron = v e r t i c e s [ s implex ]
s igned volume = np . dot ( te t rahedron [ 0 ] ,
np . c r o s s ( te t rahedron [1]− t e t rahedron [ 0 ] , t e t rahedron [2]− t e t rahedron [ 0 ] ) )
volume += signed volume / 6 .0

return abs ( volume )

#This func t i on does a convexhu l l a na l y s i s . I t t a k e s in the f i l e ( r e a d f i l e )
# to perform t h i s ana l y s i s , then wr i t e s a l l the r e s u l t s too the
# w r i t e f i l e , the s i z e 4 in t e rmed ia t e s to w r i t e f i l e 2 ,
# the s i z e 5 in t e rmed ia t e s to w r i t e f i l e 3 . Some in t e rmed ia t e s can
# not be used to perform a convexhu l l ana l y s i s , t h e s e w i l l
# be wr i t t en to the e r r o r f i l e .
def ana lyze ( r e a d f i l e , w r i t e f i l e , w r i t e f i l e 2 , w r i t e f i l e 3 , e r r o r f i l e ) :

with (open( w r i t e f i l e , 'w ' ) as f2 ,
open( w r i t e f i l e 2 , 'w ' ) as f3 , open( w r i t e f i l e 3 , 'w ' ) as f4 ,
open( e r r o r f i l e , 'w ' ) as f 5 ) :

for i in range ( 1 , 1 0 1 ) :
print ( i )
r e a d f i l e 1=r e a d f i l e+str ( i )+ ' '+str ( i+1)+ ' . tx t '
with open( r e a d f i l e 1 , ' r ' ) as f :

for l i n e in f :
po in t s =[ ]
molecu le s=np . array ( eval ( l i n e ) , f loat )
molecu le s=molecu le s . t o l i s t ( )
i d s =[ ]
for mol in molecu le s :

po int=[mol [ 4 ] , mol [ 5 ] , mol [ 6 ] ]
id=int (mol . pop ( 0 ) )
po in t s . append ( po int )
i d s . append ( id )

i f len ( po in t s )>3:
try :

c a l cu l a t e vo lume ( po in t s )
except :

f 5 . wr i t e ( str ( len ( po in t s ))+ ' : '+l i n e )
else :

volume=round( ca l cu l a t e vo lume ( po in t s ) , 4 )
dens i ty= round( len ( i d s )/ volume , 4 )
# i i n d i c a t e s the frame
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i n f o =[ len ( i d s ) , ids , volume , dens i ty , i ]
f 2 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==4:

f 3 . wr i t e ( str ( i n f o )+ ' \n ' )
i f len ( i d s )==5:

f 4 . wr i t e ( str ( i n f o )+ ' \n ' )

' ' '
ana lyze ( ' f i na lThree /method3 .2/ ang l e ' ,
' f i na lThree /method3 .2/ c o n v e x h u l l a l l . t x t ' ,
' f i na lThree /method3 .2/ c on v e x hu l l c 4 . t x t ' ,
' f i na lThree /method3 .2/ c on v e x hu l l c 5 . t x t ' ,
' f i na lThree /method3 .2/ c on v e x h u l l e r r o r s . t x t ')
' ' '
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N kmeans.py

#imports
import numpy as np
import matp lo t l i b . pyplot as p l t
from s k l e a rn . c l u s t e r import KMeans
from s k l e a rn . met r i c s import s i l h o u e t t e s c o r e
from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler

#This func t i on performs the k means c l u s t e r i n g .
#The v a r i a b l e r e a d f i l e i s the f i l e t h a t w i l l be ana lyzed by the func t i on .
#The v a r i a b l e c on v e x hu l l i s a boo lean t ha t i s True i f a c onv e x hu l l f i l e i s
# inputed as a r e a d f i l e .
def kmeans ( r e a d f i l e , convex hu l l ) :

with open( r e a d f i l e , ' r ' ) as f :
data =[ ]
volumes =[ ]
for l i n e in f :

i n f o = eval ( l i n e )
va lue s=[ i n f o [ 2 ] , i n f o [ 3 ] ]
volumes . append ( i n f o [ 2 ] )
data . append ( va lue s )

# Separate the x and y coord ina t e s in t o separa t e l i s t s
x = [ po int [ 0 ] for point in data ]
y = [ po int [ 1 ] for point in data ]

# Create a s c a t t e r p l o t
p l t . s c a t t e r (x , y )

# Add l a b e l s and t i t l e
i f convex hu l l :

p l t . x l ab e l ( 'Volume ' )
p l t . y l ab e l ( ' Density ' )

else :
p l t . x l ab e l ( 'Average d i s t anc e ' )
p l t . y l ab e l ( ' Total d i s t anc e ' )

p l t . t i t l e ( ' Sca t t e r Plot ' )

# Disp lay the p l o t
p l t . show ( )

# Create an ins tance o f StandardSca ler
s c a l e r = StandardSca ler ( )

# Fit and transform the data

# Convert the po in t s to a NumPy array
i f convex hu l l !=True :

normal i zed data = s c a l e r . f i t t r a n s f o rm ( data )
X = np . array ( normal i zed data )

else :
X = np . array ( data )

X2 = np . array ( data )

# Define the range o f c l u s t e r numbers to e va l ua t e
min c l u s t e r s = 2
max c lus t e r s = 9
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# Perform s i l h o u e t t e ana l y s i s f o r d i f f e r e n t c l u s t e r numbers
b e s t s c o r e = −1
op t ima l c l u s t e r s = −1

#For the s i l h o u e t t e ana l y s i s
for k in range ( m in c lu s t e r s , max c lus t e r s +1):

# Perform k−means c l u s t e r i n g
kmeans = KMeans( n c l u s t e r s=k )
kmeans . f i t (X)
l a b e l s = kmeans . l a b e l s

# Compute the s i l h o u e t t e score
s co r e = s i l h o u e t t e s c o r e (X, l a b e l s )

# Update the b e s t score and opt imal number o f c l u s t e r s
i f s co r e > b e s t s c o r e :

b e s t s c o r e = sco r e
o p t ima l c l u s t e r s = k

# Define the number o f c l u s t e r s
k = op t ima l c l u s t e r s

# Perform k−means c l u s t e r i n g
kmeans = KMeans( n c l u s t e r s=k )
kmeans . f i t (X)

# Get the c l u s t e r l a b e l s and c l u s t e r c en t e r s
l a b e l s = kmeans . l a b e l s
c en t e r s = kmeans . c l u s t e r c e n t e r s

# Count the number o f po in t s in each c l u s t e r
counts = np . bincount ( l a b e l s )

# Plot the po in t s wi th d i f f e r e n t c o l o r s f o r each c l u s t e r
p l t . s c a t t e r (X2 [ : , 0 ] , X2 [ : , 1 ] , c=l a b e l s )

# Plot the c l u s t e r c en t e r s
i f convex hu l l !=True :

#Sca le back the cen t e r s to f i t the o r i g i n a l data (non normal ized data )
c en t e r s=s c a l e r . i nv e r s e t r an s f o rm ( c en t e r s )

p l t . s c a t t e r ( c en t e r s [ : , 0 ] , c en t e r s [ : , 1 ] , c= ' red ' , marker= 'x ' )

# Add l a b e l s and t i t l e
i f convex hu l l :

p l t . x l ab e l ( 'Volume ' )
p l t . y l ab e l ( ' Density ' )

else :
p l t . x l ab e l ( 'Average d i s t anc e ' )
p l t . y l ab e l ( ' Total d i s t anc e ' )

p l t . t i t l e ( ' Sca t t e r Plot ' )

# Disp lay the number o f po in t s in each c l u s t e r
for i , count in enumerate( counts ) :

p l t . t ex t ( c en t e r s [ i , 0 ] , c en t e r s [ i , 1 ] , f 'Count : { count} '
, c o l o r= ' black ' , ha= ' c en t e r ' )

# Disp lay the p l o t
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p l t . show ( )

#method1
#kmeans ( ' f i na lThree /method1/ c o n v e x h u l l a l l . t x t ' , True )
#kmeans ( ' f i na lThree /method1/ c on v e x hu l l c 4 . t x t ' , True )
#kmeans ( ' f i na lThree /method1/ c on v e x hu l l c 5 . t x t ' , True )
#kmeans ( ' f i na lThree /method1/ in t e rmed ia t e s me thod1 n 1 c 3 . t x t ' , Fa l se )
#kmeans ( ' f i na lThree /method1/ in t e rmed ia t e s me thod1 n 1 c 4 . t x t ' , Fa l se )
#kmeans ( ' f i na lThree /method1/ in t e rmed ia t e s me thod1 n 1 c 5 . t x t ' , Fa l se )

#Method2
#kmeans ( ' f i na lThree /method2/ a v g d i s t c 3 . t x t ' , Fa l se )
#kmeans ( ' f i na lThree /method2/ a v g d i s t c 4 . t x t ' , Fa l se )
#kmeans ( ' f i na lThree /method2/ a v g d i s t c 5 . t x t ' , Fa l se )

#Method3
#kmeans ( ' f i na lThree /method3 .2/ i n t e rmed i a t e s me t hod 3 a v g d i s t and ang l e c 3 . t x t '
, Fa l se )
#kmeans ( ' f i na lThree /method3 .2/ i n t e rmed i a t e s me t hod 3 a v g d i s t and ang l e c 4 . t x t '
, Fa l se )
#kmeans ( ' f i na lThree /method3 .2/ i n t e rmed i a t e s me t hod 3 a v g d i s t and ang l e c 5 . t x t '
, Fa l se )
#kmeans ( ' f i na lThree /method3 .2/ c o n v e x h u l l a l l . t x t ' , True )
#kmeans ( ' f i na lThree /method3 .2/ c on v e x hu l l c 4 . t x t ' , True )
#kmeans ( ' f i na lThree /method3 .2/ c on v e x hu l l c 5 . t x t ' , True )

98



O life cycle simulation.py

#imports
import numpy as np

#This wr i t e s a t r a j e c t o r y f i l e t h a t s imu la t e the ” l i f e ” o f a #
i n t e rmed ia t e s t r u c tu r e
#The v a r i a b l e c l u s t e r i s the in t e rmed ia t e s t r u c t u r e t ha t w i l l be s imu la ted
#The v a r i a b l e w r i t e f i l e i s a s t r i n g t ha t con ta ins the in format ion on where the
# t r a j e c t o r y f i l e w i l l be saved and the name o f the new t r a j e c t o r y f i l e
def s imulate ( c l u s t e r , w r i t e f i l e ) :

atoms=c l u s t e r [ 1 ]
with open( w r i t e f i l e , 'w ' ) as f :

for i in range ( 1 , 1 0 2 ) :
a toms f rame in fo =[ ]
l i n e s t o w r i t e =[ ]
r e a d f i l e= ' f i n a lThr e e /growth/ frame '+str ( i )+ ' . tx t '
with open( r e a d f i l e , ' r ' ) as f 2 :

l i n e s=f2 . r e a d l i n e s ( )
f i r s t=l i n e s [ : 3 ]
second=l i n e s [ 4 : 9 ]
data=l i n e s [ 9 : ]
for atom in atoms :

for l i n e in data :
i n f o=l i n e . s p l i t ( )
i f int ( atom)==int ( i n f o [ 0 ] ) :

a toms f rame in fo . append ( [ int ( i n f o [ 0 ] ) ,
f loat ( i n f o [ 2 ] ) , f loat ( i n f o [ 3 ] ) , f loat ( i n f o [ 4 ] ) ] )

for atom2 in atoms f rame in fo :
x=atom2 [ 1 ]
y=atom2 [ 2 ]
z=atom2 [ 3 ]
for l i n e 2 in data :

i n f o=l i n e 2 . s p l i t ( )
x2=f loat ( i n f o [ 2 ] )
y2=f loat ( i n f o [ 3 ] )
z2=f loat ( i n f o [ 4 ] )
d i s t anc e=np . s q r t ( ( x2−x)∗∗2+(y2−y)∗∗2+(z2−z )∗∗2)
i f di s tance <=3.5:

l i n e s t o w r i t e . append ( l i n e 2 )
for l in f i r s t :

f . wr i t e ( l )
f . wr i t e ( str ( len ( l i n e s t o w r i t e ))+ ' \n ' )
for l in second :

f . wr i t e ( l )
for l in l i n e s t o w r i t e :

f . wr i t e ( l )
print ( i )

s imulate ( [ 4 , [ 20290 , 14882 , 13457 , 15448 ] , 1 . 939 , 3 . 68 , 37 ]
, ' f i n a lThr e e /method3 .2/ t e s tCyc l e I c e 4 . txt ' )
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