
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f C

iv
il

an
d

En
vi

ro
nm

en
ta

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Kvalbein, Asbjørn Voll

Application of physics-informed
neural network to forward and
inverse consolidation and bearing
capacity problems

Master’s thesis in Civil- and enviromental engineering
Supervisor: Ivan Depina
August 2023

Kvalbein, Asbjørn Voll

Application of physics-informed neural
network to forward and inverse
consolidation and bearing capacity
problems

Master’s thesis in Civil- and enviromental engineering
Supervisor: Ivan Depina
August 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering

Abstract
This thesis explores the applications of physics-infomed neural networks (PINN)
in geotechnical engineering problems of consolidation and undrained bearing ca-
pacity for forward and inverse problems. A physics-informed neural network is a
type of deep learning which is constrained by any physical laws that governs the
implemented problem, often in the way of a PDE. The PINNs are implemented
into a scientific library designed for usage of PINNs called DeepXDE. The per-
formance of these models is first checked on consolidation followed by bearing
capacity. A forward analysis seeks the hidden solution based on the physical laws
of the problem given its boundary data. The inverse analysis seeks to approximate
a unknown state for the physical problem and learn its material parameters.

The physical laws governing the consolidation is here represented by Terzaghi’s
one dimensional uncoupled consolidation equation, represented as a PDE in the
model. This equation, which predicts consolidation through excess pore pressure,
is implemented into a PINN for forward and inverse analysis of the single drained
cases, with one open permeable boundary, and the double drained cases with two
permeable boundaries. After these cases, noise is added to the datasets for the
PINNs in order to check their performance with corruption. The results from the
PINNs where evaluated up against the analytical solution for 1D consolidation.
The PINNs implemented converges well and showed good accuracy while keeping
a low time to train.

The governing PDEs for equilibrium in 2D describes the physical laws for the
bearing capacity problems. In order to ensure yielding of the soil, the Tresca cri-
terion for undrained Mohr-Coulomb soil is derived and implemented along with
the PDEs into a PINN. The PINN was first implemented with Cartesian coordi-
nates before switching to polar. The results where evaluated up against results for
the same problem in Plaxis. Both the forward and inverse analysis of undrained
bearing capacity showed very good accuracy and a modest time to train.

In general, it is clear that problems of consolidation and bearing capacity can be
implemented into PINNs and show good performance, which in turn showes great
potential for the further use of PINNs in geotechincal engineering.

i

Sammendrag

Denne masteroppgaven undersøker applikasjonen for fysikkinformerte neurale nettverk
(FINN) i geoteknisk analyse av konsolidering og udrenert bæringskapasitet for
fram- og bakoverorienterte problemer. Et fysikkinformert neuralt nettverk er en
type dyplærings som blir begrenset av de fysiske lover som beskriver det imple-
menterte problemet. FINN blir implementert in i et vitenskapelig bibliotek kalt
DeepXDE. Ytelsen til disse modellene blir først sjekket på konsoliderings problem
før bæringskapasiet. Fram analysen søker en skjult løsning basert på de fysiske
lover som styrer problemet, gitt dets grenseverdier. Bakover analysen prøver å
approximere en ukjent tilstand for det fysiske problemet og gjennom det lære
material parameterne.

De fysiske lover om beskriver konsolideringen er her beskrevet av Terzaghis endi-
mensjonal ukoblet konsoliderings ligning, representert som en PDL. Denne lignin-
gen beskriver konsolidering gjennom å undersøke overtrykket i poretrykket, og
blir implementert inn i en FINN for fram og bakover analyse for enside og to-
side drenerte problemer. Etter disse casene blir støy introdusert til datasettet for
FINN og deretter sjekket for deres ytelse med korrupterte data. Resultatene fra
FINN blir evaluerte opp imot den analytiske løsningen for 1D konsolidering. De
implementerte FINN viser good convergens og god nøyaktighet samtidig som de
tar kort tid å trene.

De beskrivende PDLer for likevekt i 2D beskriver de fysiske lover for bæringska-
pasitets problemene. For å forsikre seg om at jorden gir etter deriveres Tresca
criteriet for udrenert Mohr-Coulomb jord og implementeres sammen med PDLene
inn i FINN. FINNen ble først implementert med kartesiske koordinater før det ble
byttet til polare. Resultatene ble evaluert opp imot resultatene for det samme
problemet i Plaxis. Både de fram- og bakover orienterte analysene for udrenert
bæringskapasitet viste god konvergens med veldig god nøyaktighet med en mod-
erat treningstid.

Generelt er det klart at konsoliderings og bæringskapasitets problem kan bli im-
plementerte inn i FINN og vise good ytelse, noe som igjen viser stort potential for
framtiden for FINN i geoteknisk ingeniørarbeid.

ii

Preface
This thesis concludes my Master of science degree in Geotechnical Engineering at
the department of Civil and Environmental engineering at the Norwegian Univer-
sity of Science and Technology.

I would like to thank my supervisor Ivan Depina for his help and guidance through
this thesis. Thank you! I would also like to thank Sissel for the support during
my years as a student. An additional thank you to Olaus for letting me borrow
his computer these months for running the models

Asbjørn Voll Kvalbein

iii

Contents
Abstracti Prefaceiii

Contents iv
Contentsv

List of Figures vi

List of Tables viii

Abbreviations ix

1 Introduction 1
1.1 Background . 1
1.2 Project description . 2
1.3 Structure of the thesis . 2

2 Theory 3
2.1 Machine learning, Deep learning and Physics-informed neural net-

works . 3
2.1.1 Fully-connected neural networks 4
2.1.2 Loss function and fitting the data 5
2.1.3 Optimization functions, parameters and hyper-parameters . 6
2.1.4 Physics-informed neural networks 7
2.1.5 Sampling methods . 9

2.2 Consolidation . 10
2.2.1 Theory of one-dimensional consolidation 10
2.2.2 Initial- and boundary conditions 11
2.2.3 Analytical solution . 12

2.3 Bearing capacity . 13
2.3.1 Mohr-coulomb soil . 14
2.3.2 Equations of equilibrium in two dimensions 15
2.3.3 Failure zones . 15
2.3.4 Yield function for undrained Mohr-Coulomb soil 17

3 Software 18
3.1 Finite element software . 18

3.1.1 Plaxis 2D Ultimate . 18
3.2 Programming software . 18

3.2.1 Spyder . 18
3.2.2 DeepXDE . 18

3.3 Packages . 18

4 Method 19
4.1 Creation of datasets and sampling method 19

4.1.1 Forward analysis . 19
4.1.2 Inverse analysis . 19

4.2 Defining partial differential equation and initial and boundary con-
ditions . 20
4.2.1 PDE . 20

iv

4.2.2 Initial- and boundary conditions 20
4.3 Compiling data for the PDE . 21
4.4 Compiling model . 22

5 Case studies 23
5.1 Consolidation . 23

5.1.1 Case study 1: Forward analysis: Drained top and undrained
bottom . 23

5.1.2 Case study 2: Forward analysis: Drained top and bottom . . 29
5.1.3 Case study 3: Inverse analysis for drained top and undrained

bottom . 32
5.1.4 Case study 4: Inverse analysis: Drained top and bottom . . 35
5.1.5 Case study 5: Forward analysis with noise: Both cases . . . 37
5.1.6 Case study 6: Inverse analysis with noise: Both cases 39

5.2 Bearing capacity: Cartesian to polar coordinates 40
5.2.1 Case study 1: Forward undrained 42
5.2.2 Case study 2: Inverse undrained 47

6 Discussion 52
6.1 Consolidation . 52

6.1.1 Forward cases . 52
6.1.2 Inverse cases . 53
6.1.3 Forward and inverse with added noise 54
6.1.4 Further suggestion . 54

6.2 Bearing capacity . 55
6.2.1 Forward undrained . 55
6.2.2 Inverse undrained . 55

7 Conclusion 57

References 58

Appendices: 60

v

List of Figures
2.1 Different types of learning . 3
2.2 Simple ANN. Adapted from (Kollmannsberger et al., 2021) 4
2.3 Activation functions. Adapted from Kollmannsberger et al., 2021 . 5
2.4 Underfitting, robust fit and overfitting 6
2.5 PINN architecture . 9
2.6 Latin hypercube sampling . 9
2.7 Illustration of the consolidation problems 12
2.8 Actual relationship . 14
2.9 Elastic - Perfectly plastic . 14
2.10 Plastic flow . 14
2.11 Total stress . 15
2.12 Effective stress . 15
2.13 Failure zone - Undrained . 16
2.14 Undrained Mohr’s circle . 16
2.15 Yield function - Undrained . 17
4.1 Training points for the domain . 19
4.2 Illustration of sampling points for inverse analysis 20
4.3 Simplified code for the PDE . 20
4.4 Simplified code of Initial- and boundary conditions 21
4.5 Simplified code for TimePDE . 21
4.6 Simplified code for the compiling the model 22
5.1 Domain for the Drained top Undrained bottom. Adapted from

(Bekele, 2020) . 23
5.2 Code for the analytical solution of the single drained case 24
5.3 Prediction-Single drained . 26
5.4 Analytical-Single drained . 26
5.5 Prediction-Sigmoid . 27
5.6 Prediction-Tanh . 27
5.7 Analytical - Single drained . 27
5.8 Sigmoid:num_init=300 . 27
5.9 Tanh:num_init=300 . 27
5.10 Sigmoid:num_init=1000 . 27
5.11 Tanh:num_init=1000 . 27
5.12 Analytical . 28
5.13 Domain:Drained top and bottom. Adapted from (Bekele, 2020) . . 29
5.14 Analytical solution for double drained case 29
5.15 Prediction DD . 30
5.16 Analytical DD . 30
5.17 Prediction DD: 35 000 iterations . 31
5.18 Analytical DD . 31
5.19 Inverse analysis for the single drained case 33
5.20 Initial value = 0 . 34
5.21 Initial value = -0.5 . 34
5.22 initial val = 3 . 34
5.23 Initial value = 8 . 34
5.24 Inverse analysis for the double drained case 35

vi

5.25 DD with noise . 38
5.26 SD with noise . 38
5.27 Inverse DD with noise . 39
5.28 Inverse SD with noise . 39
5.29 Full domain . 40
5.30 Half domain and boundary conditions 40
5.31 Prediction of su . 41
5.32 Full domain to polar domain . 42
5.33 Polar domain in model . 43
5.34 Training points sampling polar . 44
5.35 Normalized σ

′
x . 45

5.36 Normalized σ
′
y . 45

5.37 Normalized τ
′
xy . 45

5.38 Predicted su . 45
5.39 σx . 45
5.40 σy . 45
5.41 τxy . 45
5.42 Predicted su . 45
5.43 PFNN architecture . 48
5.44 Normalized σx . 50
5.45 Normalized σy . 50
5.46 Normalized τxy . 50
5.47 Predicted Su . 50
5.48 σx . 50
5.49 σy . 50
5.50 τxy . 50
5.51 Predicted Su . 50

vii

List of Tables
5.1 Neural network for the forward analysis of the single drained case . 24
5.2 Losses and time for single drained 26
5.3 Losses and time for double drained 30
5.4 Convergence study-double drained 30
5.5 Neural network for the inverse analysis of the single drained case . . 32
5.6 Losses and time for inverse single drained 33
5.7 Losses and time for double drained 35
5.8 Extremes of inverse double drained 36
5.9 Losses and time for forward analysis with noise 37
5.10 Losses and time for inverse analysis with noise 39
5.11 Losses and training time for unnormalized undrained bearing capacity 41
5.12 Neural network - Forward undrained Bearing capacity 44
5.13 Losses and time for forward undrained bearing capacity 44
5.14 Forward: Plaxis variables, model prediction and absolute error . . . 46
5.15 Neural network - Forward undrained bearing capacity 49
5.16 Losses and time for inverse undrained bearing capacity 49
5.17 Inverse:Plaxis variables, model predictions and absolute error 51

viii

Abbreviations
List of all abbreviations in alphabetic order:

• 1-D One dimensional

• AI Artificial intelligence

• ANN Artificial neural network

• BC Boundary conditions

• cv Coefficient of consolidation

• DD Double drained

• FEM Finite-element method

• FNN Fully-connected neural network

• k Coefficient of permeability

• LR Learning rate

• LHS Latin hypercube sampling

• MAE Mean absolute error

• ML Machine learning

• MOO Multi-Objective optimization

• mv Confined compressability

• MSE Mean square error

• NN Neural network

• NTNU Norwegian University of Science and Technology

• PDEs Partial differential equations

• PFNN Parallel fully-connected neural network

• PINN Physics-informed neural networks

• ReLU Rectified linear unit function

• SD Single drained

• su Undrained shear strength

• Tanh Hyperbolic tangent function

ix

1 INTRODUCTION

1 Introduction
This thesis is written for the geotechnical department at NTNU. Geotechnics is the
study of soils and rock pertaining to construction purposes. This includes design of
foundations, retaining walls, settlements and earthworks. The aim of this thesis is
the further examine the application of physics-informed neural networks in forward
and inverse problems in geotechnical processes.

1.1 Background

With the rise of computational power and availability of data, machine learning
has become a popular tool to solve complex problems in science and engineering.
Machine learning can use different algorithms to approximate a solution. The
algorithm is then optimized using a artificial neural network which mimics the
process of learning done by a human brain. Deep learning is a term when this
artificial neural network (ANN) consists of more than one layer. Deep learning has
been successfully applied to a number of problems related to science and engineer-
ing such as weather forecasting (Ren et al., 2021), image based medical diagnosis
(Chen et al., 2022) and autonomous driving (Grigorescu et al., 2020). Deep learn-
ing has also had great success at solving problems within applied mathematics,
specifically partial differential equations (PDEs). Both machine learning and deep
learning is reliant on datasets from which they learn, however, adequate dataset
are not always easily obtained. Datasets could be insufficient in size and/or have
missing values and/or spurious extreme values which makes convergence and good
accuracy less likely to be achieved. Because of this there is a need for more robust
ANNs that can handle such complications and still reach convergence with good
accuracy.

In 2018 (Raissi, Perdikaris, and Karniadakis, 2019) realized the potential of deep
learning to solve PDEs and introduced physics - informed neural network (PINN(s)),
which is a deep neural network that can be trained through self-supervised learn-
ing while being constrained by a PDE that governs the problem. By minimising
the loss function, a PINN approximates the solution of one or more PDEs. The
loss function checks not only if the PDE is satisfied in the domain, but also it’s
boundaries and initial conditions. PINN are in all essence a mesh-free technique,
which converts the problem of solving a PDE directly by it’s governing equations
into a problem of optimization with respect to the loss function. PINNs has been
applied to several problems within fields of geotechnical engineering by the method
of data-driven solutions and data-driven discovery of partial differential equations
such as unsaturated flow (Depina et al., 2021) and one dimensional consolida-
tion (Bekele, 2020). Note that data-driven solutions and discovery is also called
forward and inverse analysis respectively.

1

1 INTRODUCTION

1.2 Project description

The purpose of this thesis is to examine the following questions:

Main objective

Investigate the application of PINNs on problems of consolidation and bearing
capacity in geotechnical engineering

Sub-objectives This will be completed by fulfilling a set of sub-objectives:

• Perform a literature study on PINNs and the DeepXDE library

• Implement one-dimensional consolidation equation into a PINN and check
performance for forward and inverse analyses

• Introduce noise to the datasets for one-dimensional consolidation PINN and
check performance

• Implement undrained bearing capacity problem into a PINN for both for-
ward and inverse analysis and check performance

By examining this question, we hope to to further the possible application of PINN
in geotechnical engineering. This will be done by applying PINNs to problems of
consolidation and bearing capacity using a python package called DeepXDE (L. Lu
et al., 2021) which is a library for scientific physics-informed learning. The thesis
starts with the uncoupled problem of Terzaghi’s one dimensional consolidation
equation in the elastic range followed by the coupled problem of bearing capacity
for undrained analysis in Mohr-Coulomb soil.

1.3 Structure of the thesis

After the first introductory chapter, the second chapter of the thesis is dedicated
to the relevant theory for the thesis. First presented is a general introduction to
machine learning and deep learning before continuing to physics-informed neural
networks. After that, the theory on one-dimensional consolidation followed by the
theory of bearing capacity. Chapter three is dedicated to the software that is used
in the thesis. Chapter four shows the method of implementation of PINNs into
python code and the programming package DeepXDE. In chapter five shows the
different case studies and a discussion around the results from each separate case
studie. The thesis concludes with chapter six and the discussion of the results
and the possible paths for further examination of the subject before presenting
the conclusion in chapter 7. All code and relevant data will be added into the
appendix or uploaded to github.

2

2 THEORY

2 Theory
The sections on theory starts off with a small subsection explaining what source
the material has been inspired by before moving on to presenting the actual theory.

2.1 Machine learning, Deep learning and Physics-informed
neural networks

The content of this thesis concerning the topics of machine learning, deep learning
and physics - informed neural networks are heavily inspired the chapters two, three
and five from the book (Kollmannsberger et al., 2021).

Machine learning, a subset of the general term artificial intelligence (AI), uses a
large amount of data that is subject to a set of previously defined rules. The
more formal way of defining machine learning is "a computer program is said to
learn from experience E with respect to some class T, as measured by P, improves
with experience E" (Mitchell, 1997). The majority of algorithms used in machine
learning can be summed up as a sum of the components: a dataset, a cost function,
an optimization procedure and a parameterized model. It is worth pointing out
that the cost function can also be referred to as the loss function which is the term
used in this thesis.

There are three different ways for the machine learning algorithm to learn, as
shown in 2.1: Supervised-, Deep- and Reinforcement learning.

Figure 2.1: Different types of learning

Supervised learning is a method that by using a labeled dataset for training, the
model learns to make predictions about unseen data differing from the original
dataset. With regression in conjunction with supervised learning, the goal is
usually to predict a numerical value. In short, this means the output of the
algorithm is a function which maps the input to an output, often in the form of a
real number. The input vector to such a regression model could be x ∈ Rn which
is used to predict the vector ŷ ∈ R. The vector ŷ represents the labeled dataset
comprising of the targets yi. However, the mathematical model that is required
for regression analysis is not always that easy to define. A possible solution to
this is artificial neural networks (ANN).

3

2 THEORY

2.1.1 Fully-connected neural networks

A artificial neural network that utilizes supervised learning is in many ways and
regards a parameterized function that maps y = fNN(x). The difference from a
normal optimization problem is in the fact that a neural network usually consists
of several different functions within the network. As an example: fNN(x) =
f3(f2(f1(x))) where the functions fi represents a layer in the neural network. The
input which is represented by x goes through a user-specified number of "hidden
layers" in the neural network, where each hidden layer consists of another user-
specified number of neurons in each layer, before the last layer which is called
the output layer. This is why it is called a feed forward neural network since it
runs through from left to right. The number of layers determines the depth of the
neural net, and the number of neurons the width. It is also worth noting that if
the neural network consists of more than one layer, it is usually referred to as a
"deep neural network" or just "Deep learning ". A simple example which consist
of three hidden layers with three nodes in each layer is shown in figure ??.

Figure 2.2: Simple ANN. Adapted from (Kollmannsberger et al., 2021)

Each circle within the figure represents a neuron. x1 and x2 are the two inputs in
the input layer for this ANN, represented here by the blue color. Further, σ is the
activation function applied to each neuron within each hidden layer represented
by the orange color and finally, ŷ is the prediction in the output layer shown with
the orange color. The arrows pointed in between the each neuron can be thought
of as the weights that governs the inputs. If each neuron in the former layer is
connected to all other neurons in the next layer it is referred to as a fully-connected
neural network (FNN). When the network has gone through all layers from left
to right, it has done one iteration of the network. In the process of learning, the
network runs through these layers a user specified number of times. To further
explain what is happening within the network, each neuron receives an input in
form of a vector of features denoted x which is further mapped and outputs a
scalar a(x to the next neuron. In short, the input vector is transformed as shown
in equation 2.1.

z = wTx+ b (2.1)
where it is given the weight w and bias b. The output for the neuron is calculated
by applying a linear or non - linear activation function σ to the scalar z shown by
equation 2.2

4

2 THEORY

a(x) = σ(z) (2.2)

σ is called the activation function and is usually the same for all layers within the
neural network, with the exception of the output layer which can have just a linear
function that does not alter or change the scalar. The activation functions used
in this thesis are the Sigmoid function (eq 2.3), the rectified linear unit (ReLU)
(eq 2.4) and the hyperbolic tangent function (Tanh) (eq 2.5). Following are the
equations for the Sigmoid, ReLU and Tanh functions respectively.

σ(z) =
1

1 + e−x
(2.3) σ(z) = max(0, x) (2.4) σ(z) = tanh(x) (2.5)

The activation functions all have their positives and negatives. In machine learn-
ing, it’s normal to normalize the datasets form it’s original values to values between
values ranging from [−1, 1]. This is due to the decrease in computational cost and
time because of small values being easier to compute and the activation functions
being defined within that interval. But there are differences for the activation
functions. For instance, the non-linear function Tanh is more applicable if you
have a dataset consisting of values ranging from [−1, 1] as shown in figure 2.3a.
Figure 2.3b shows the Sigmoid function, also called the logistic function provides
another non-linear function but for values between [0, 1]. Lastly, shown in figure
2.3c, the ReLU function just returns the value of z if z ≥ 0. Since both the Tanh
and Sigmoid functions are non-linear functions, these take considerably longer
to compute than the ReLU function. This is one of the reasons why the ReLU
function has become a popular choice for the hidden layers of the neural network
in recent years. Another reason is that with the non-linear activation functions,
there is a problem of "vanishing gradients" which is caused by increasing weights
that saturate the function which leads to small gradients that hinder the network
from learning further (Kollmannsberger et al., 2021).

(a) Tanh (b) Sigmoid (c) ReLU

Figure 2.3: Activation functions. Adapted from Kollmannsberger et al., 2021

2.1.2 Loss function and fitting the data

Regression in conjunction with the activation functions measure the performance,
but there is also a need to measure the performance of the model. One common
way to do this is by the use of square error loss. If the prediction is ŷ and the
labeled data is y, the squared error loss is defined as (y− ŷ)2. But as can be seen

5

2 THEORY

from the equation, this only gives the square error loss for one point (xi, yi). In
order to find a measurement for the whole dataset there are two commonly used
methods called mean square error (MSE) and mean absolute error (MAE) shown,
respectively, in the equations below:

MSE =
1

m

m∑
i=1

(y − ŷ)2 (2.6a)

MAE =
1

m

m∑
i=1

|y − ŷ|2 (2.6b)

Shown by equations (2.1a) and (2.1b), the closer ŷj is to yj, the lower the error will
be. Mean square error and mean absolute error are both popular choices for the
cost function, also referred to as the loss function, because they are continuously
derivative and penalize large differences. For the algorithm, it’s goal is to optimize,
meaning minimize, the loss function. This is what is essence of learning, but
what is the differing factor from an optimization problem to machine learning
optimization is that machine learning divides the dataset into different parts for
training, validation and testing. MSE is then applied to these separately and
individually. The training set is used to train the model, while the validation
set is used to evaluate the models performance during training. The test set is
hitherto unseen data for the model and is used after training to evaluate the models
performance. The loss functions for training and validation is a good predictor
for if the model is over- or underfitting. Overfitting means that the model has
learned the detail and noise in the set so well that it impacts it’s performance
negatively when it’s presented with new data. The reason for this is that the
model chooses such a complex function that it fits the data perfectly due to high
variance. Underfitting is the opposite, meaning that the model has not learned
from the dataset and the function it unfit to represent the data because of a high
bias. An illustrative example is provided in figure ??

Figure 2.4: Underfitting, robust fit and overfitting

2.1.3 Optimization functions, parameters and hyper-parameters

There are two optimization function that has been applied to the problems dealt
with in this thesis - the Adam optimizer (P.Kingma and Ba, 2014) which is the
most commonly used optimizer for machine learning problems and the L-BGFS
optimizer (Taylor et al., 2022).

The Adam optimizer has a number of benefits such as suitability for large datsets
and problems, requires little memory and is computes efficiently. It is utilizes a

6

2 THEORY

method of stochastic decent by combining two methods "AdaGrad" and "RM-
SProp" in order to efficiently reach the global minimum.

The BFGS optimizer computes the Hessian matrix of the loss function using gradi-
ent evaluations. The Hessian matrix does not need matrix inversion which results
in a computational complexity of O(n2). The fact that it does not need matrix
inversion makes it computationally efficient but the use of the Hessian matrix
gives rapid growth in memory usage. The L-BFGS optimization algorithm or
Limited-Memory Broyden-Fletcher-Goldfarb-Shanno method is an algorithm that
works well with large datasets because of it requiring less memory than the origi-
nal BFGS algorithm due to it only saving only a few vectors of the Hessian matrix
as a representation.

Both the Adam and the L-BFGS optimizer are gradient based optimizers, meaning
they seek the smallest minima during training. But the L-BFGS optimizer can
get stuck on a local minima rather than a global minima. The Adam optimizer
does not have this same issue. Due to this, it is common to implement the Adam
optimizer first and train the network on this optimizer before switching to the
L-BFGS optimizer at the end of the training cycle.

There are two collective terms for a lot of what goes into an ANN, parameters
and hyper-parameters. Hyper parameters are what controls the learning process
sets the parameters that the algorithm ends up learning. This means that the
hyper-parameters, with hyper meaning top level parameters, are external to the
model and does not change during training of the model. Examples are: Learning
rate (LR), activation function, number of hidden layers and neurons, iterations,
etc.

Parameters are not external to the model, but internal. These are the the param-
eters that will be updated by the model during training. A prime example is the
weights and biases of the ANN which usually starts at zero and is updated as the
training progresses.

2.1.4 Physics-informed neural networks

In the previous section, supervised machine learning with ANNs was introduced.
One of the weaknesses of such a model is that it requires a large amount of data
about the solution in order to predict or generate an accurate surrogate model.
This type of data which can be produced by simulations or experiments can be
hard to come by and/or expensive to produce. In 2019 (Raissi, Perdikaris, and
Karniadakis, 2019). proposed physics-informed neural networks, commonly de-
noted and also referred to in this thesis as PINNs, which utilizes the underlying
physics that describes the problem the machine learning model is trying to gen-
erate. Normally, the physics governing the problem in the form of equations,
ordinary differential equations or partial differential equations that represents the
problem is known in advance. By incorporating this knowledge into the process
of learning, the solution space becomes much more narrow which in turn leads
to a less of a need for training data in order to reach the solution. Due to the

7

2 THEORY

physics part, PINNs are much better at handling datasets with noise than regu-
lar machine learning models. Before going into a general example to exemplify
what PINNs are about, a small explanation of what forward and inverse analysis
is. The forward problem are where the coefficients are known and the hidden
solution is calculated based on the the boundary data and/or initial data and
PDE constraints of the model. The inverse problem is where the coefficients are
unknown and by giving the model scattered data of the the examined problem,
the model utilizes this data in conjunction with the constraints as defined in the
forward analysis, to approximate the unknown variables like material coefficients
of the examined case. PINNs cannot compete with other numerical methods, like
finite element method (FEM), when it comes to the forward analysis. But PINNs
seem to outperform other numerical methods, including FEM, when it comes to
inverse analysis.

du

dt
+N [p;λ] = 0, x ∈ Ω t ∈ ⊔ (2.7)

An example of a PINN is shown by the nonlinear partial differential equation 2.7.
In this example, the solution to the problem p(x,t) is dependent on the factors
for time and space where t ∈ [0, T] and x ∈ Ω. In this case Ω is representative
of a space in RD. Further, the nonlinear part N [p;λ] represents a non-linear
differential operator with the coefficients λ. This description is just illustrative
but could cover different problems like the diffusion equation. If a classic FNN
were implemented, the left hand side of equation 2.7 would evaluate the network
as it approximates the solution p(x,t). The ANN and the physics part are both
using the same parameters in terms of weights and biases. In a normal supervised
learning scenario, there would only be one loss function that works, but in a
PINNs, there are more than one. A general representation with MSE is:

L = MSEu +MSEf (2.8)

The first term MSEu calculates the error at the known points which are the
initial and/or boundary conditions. The second term MSEf uses a larges set of
collocation points randomly sampled within the domain to enforce the PDE. In
addition, the term MSEf checks the error between the left hand side of equation
2.7 and the right hand side and penalizes it at every collocation point within the
domain of the PDE. There are in general only two ways to enforce the boundary
conditions for a forward problem, hard and weak. Weak enforcement means that
there are multiple terms that enforces the solution on the boundaries. In case of
a hard boundary conditions, the output of the network is transformed so that it
automatically satisfies the boundary conditions, which simplifies the loss function
due to the negation of terms.

8

2 THEORY

An example of PINN architecture is:

Figure 2.5: PINN architecture

As shown in the figure, the loss function consists of several terms that act as the
constraints for the PINN. Loss functions like this fall into the category of Multi-
Objective optimization (MOO) since they have several terms with their individual
weights. For example, LPDE could be given significantly higher weights than LBC .
By tuning the weights, one could control each part of the loss functions influence
on the total loss. These parameters are very sensitive and should only be tweaked
carefully.

2.1.5 Sampling methods

In the previous section, it was mentioned that the term MSEf in equation 2.8 uses
collocation points which are sampled within the domain. There are several differ-
ent sampling methods for these collocation points, but in this thesis there are only
two applied methods: Uniform (equispaced grid) sampling(“Uniform distribution”,
n.d.) and Latin hypercube sampling (Shields and Zhang, 2015) (LHS).

Uniform training distribution means that the sampling function samples points
at an equispaced distance within the domain including the initial and boundary
data. This distribution is the default distribution in the DeepXDE library.

Latin hypercube sampling is a statistical method of taking sampling points at near-
random from a distribution of several dimensions. A latin hypercube sampling
means that if you have a square grid of n x m dimensions, there has to be one,
and only one sample in each row and column. An example is provided for this in
figure 2.6.

Figure 2.6: Latin hypercube sampling

9

2 THEORY

2.2 Consolidation

The theory concerning one dimensional consolidation is inspired by (Craig and
Knappett, 2020a). Consolidation is the study of vertical displacement of the
soil surface over time. The study of consolidation is a very relevant field for
the geotechnical engineer, and improvements made in terms of efficiency made
by PINNs is an important investigation. First presented is the theory of one-
dimensional consolidation which will be used to predict consolidation of the soil
due to dissapation of excess pore pressure over time represented by the coefficient
of consolidation cv, followed by the initial- and boundary conditions for the rel-
evant consolidation problems before ending with the analytical solutions to the
consolidation equation.

2.2.1 Theory of one-dimensional consolidation

The analytical model for determining consolidation within the soil at any time
that was developed by Terzaghi (1943) makes a number of assumptions: That the
soil is homogeneous and fully saturated. The solid particles in the soil as well as
water is incompressible. That compression and flow are only vertical in dimension.
Strains will be and remain small. All hydraulic gradients are valid according to
Darcy’s law. The coefficients of permeability (k) and volume compressibility (mv

will remain constant. Lastly, there exists a special and unique relationship which
is independent of time between the void ratio and effective stress.

The following three quantities, excess porewater pressure (p), the distance form
the top of the soil layer (y) and the transitioned time (t) from the application of
the load (q), relates to the theory. Considering the small element shown in figure
2.7 when a total vertical stress q is applied. Darcy’s law defines the flow through
the element as

νy = kiy = −k
∂h

∂y
(2.9)

Where k is the coefficient of permability and iz is the total head. The change in
total head at any fixed position is only due to a change in pore water pressure:

νy = − k

γw

∂p

∂y
(2.10)

If there is no change to the element and the assumption that water is incompress-
ible, the water entering the element and leaving it per unit of time has to be zero.
Thus:

∂νy
∂y

= 0 (2.11)

However, if there is a volumetric change, the equation of continuity is:

∂νy
∂y

dxdydz =
dV

dt
(2.12)

Using equation 2.12 as a basis, equation 2.10 becomes:

10

2 THEORY

− k

γw

∂2p

∂y2
dxdydz =

dV

dt
(2.13)

dV
dt

is the rate of volume change per unit time. It can also be expressed as

dV

dt
= mv

∂q

∂t
dxdydz (2.14)

mv is the confined compressability of the element. Over time, the total stress q is
absorbed by the soil skeleton which leads to the effective stresses increasing with
the decrease of excess pore pressure. This leads to:

dV

dt
= −mv

∂p

∂t
dxdydz (2.15)

Now, combining equation 2.13 and 2.15 into:

mv
∂p

∂t
=

k

γw

∂2p

∂y2
(2.16)

or expressed as:

∂p

∂t
= Cv

∂2p

∂y2
(2.17)

The unit of cv = k
mvγw

is called the coefficient of consolidation which in this
thesis has the denotation m2

year
. Following the assumption that the coefficient of

permeability and compressability of volumetric change is constant, cv remains
constant throughout the process. The consolidation equation is uncoupled due to
the differential equations only depending on one variable.

2.2.2 Initial- and boundary conditions

It is assumed that the load (q) is constant throughout the process (t > 0) and
defines the initial conditions for both the single and double drained as:

p = p0 = q
}
t = 0 (2.18)

The boundary conditions applied to the problems of consolidation are twofold. The
single drained case, where the top is open permeable boundary and the bottom
closed impermeable boundary. In the double drained case, both boundaries are
open and permeable. There are two different boundary conditions applied to these
problems: Dirichlet and Von Neumann (Tveito and Winther, 2009). The boundary
conditions for the single drained case is

y = 0 : p = 0

y = h :
∂p

∂z
= 0

 t > 0 (2.19)

where the top boundary (z=0) is the Dirichlet boundary condition which is open
and the bottom boundary (z=h) is closed due to the Von Neumann boundary
condition. For the double drained case both boundaries are open the boundary
conditions are:

11

2 THEORY

y =
h

2
: p = 0

y = −h

2
: p = 0

 t > 0 (2.20)

The difference between the two cases is apparent in terms of the boundary condi-
tions as well as the different values for h. For the double drained case the depth of
the domain is 2h and the single drained case it’s h. For the open layered (double
drained) case, the center of the sample is located at y = 0. This is due to the
symmetry around the center line for which there is no flow, which in turn pro-
vides is what provides the closed off boundary for the half - layered case (single
drained). An illustration of the problems is shown in figure 2.7. In the center
figure is what is called the isochrone curves which are a product of plotting the
porewater pressures p against z for different values of t. The factor of Tv =

cvt
d2

is
called the Time factor and is a dimensionless number. Note that the values for Tv

in this case are pure approximate guesses for illustrative purposes and does not
correlate directly to the cases in question later in the thesis. The value of Tv is
called the dimensionless time factor.

Figure 2.7: Illustration of the consolidation problems

2.2.3 Analytical solution

The solution to the consolidation equation, equation 2.17, (Verruijt, 2013) is solved
using Laplace transform:

p =

∫ ∞

0

p ∗ e−stdt (2.21)

which transforms the equation 2.17 into

d2p

dy2
= λ2(p− p0

s
) with λ2 =

s

Cv

(2.22)

The solution to equation 2.22 is

p =
p0
s
+ A cosh (λz) +B sinh (λz) (2.23)

In this solution, the integration constants A and B are independent z. The constant
B = 0 due to the lower boundary condition in equation 2.19, which leads to A
being −p0

coshλh
. This gives the equation

12

2 THEORY

p =
p0
s
− p0 cosh (λy)

s cosh (λy)
(2.24)

The second term of this equation has a pole at s = 0, and subsequent poles when
cosh (λh) is equal to zero. λ and s are zero when

λk = (2k − 1)
iπ

2h
and sk = −(2k − 1)2

cπ2

4h2
, k = 1, 2, 3.... (2.25)

The first term only has one pole which is at s = 0 and the residual being po.
Concerning the second term, when s = 0, the residual is −p0 which cancels out
the first term. When s = sk, the residual is

Resk = [− p0 cosh (λy)e
st

d[s cosh (λh)]/ds
]s=sk (2.26)

Due to the fact that

d

ds
cosh (λh) = h sinh (λh)

dλ

ds
and

dλ

ds
=

d
√

s/cv
ds

=
1

2
√
scv

=
1

2λcv
(2.27)

Using equations 2.25 it gives

Resk =
4p0
π

(−1)k−1

2k − 1
cos [(2k − 1)

πy

2h
] exp [(−2k − 1)2

π2

4

cvt

4h2
] (2.28)

The complete normalized solution for the single drained case is

p

p0
=

4

π

∞∑
k=1

(−1)k−1

2k − 1
cos[(2k − 1)

πy

2h
] exp[−(2k − 1)2

π2cvt

4h2
] (2.29)

The solution to the double drained case is

p

p0
=

4

π

∞∑
k=1

(−1)k−1

2k − 1
cos[(2k − 1)

πy

h
] exp[−(2k − 1)2

π2cvt

h2
] (2.30)

The difference between the two solutions is due to the difference in the domain
with one being open layered and the other being half layered as shown in figure
2.7.

2.3 Bearing capacity

The inspiration for this part of the thesis came from the article "Complete limiting
stres solutions for the bearing capacity of strip footings on Mohr-Coulomb soil"
(Smith, 2005). Bearing capacity within geotechnical engineering is almost present
in every analysis, and is characterized by the search for the peak pressure, qult,
that the soil can withstand. There are two types of bearing capacity problems,
undrained and drained analysis. Undrained analysis is short-term analysis of the
bearing capacity of the soil. Drained is long-term. In this thesis, only undrained
will be examined.

13

2 THEORY

The chapter starts with an explanation of the material model before continuing to
the governing PDE for the system, thereby followed by the derivation of the yield
function equations for the yield functions for both the undrained and drained case.
It finishes with a short introduction to the failure zones produced by qult

2.3.1 Mohr-coulomb soil

Previously, the theory of one-dimensional consolidation was within the elastic
range. In order to explain the Mohr - Coulomb model (Craig and Knappett,
2020b), the concept of elastic - perfectly plastic material has to be introduced.
As shown in figures 2.8 and 2.9, which are adapted from the source material,
the material model for the elastic - perfectly plastic behavior is highly idealized
compared to the actual relationship between stress and strain in the soil soil. From
figure 2.8, E represents the elastic part of the curve, Y is the yield, F is the failure
and P the line for plastic strain, also called plastic flow. The concept of plastic
flow is shown in 2.10, where if the load is applied as an increment shown in A, it
will force the stresses back down to the failure surface shown in line Y - P. If the
load increment is as B, the response is elastic.

Figure 2.8: Actual relationship Figure 2.9: Elastic - Perfectly plastic

Figure 2.10: Plastic flow

If the load increments are cumulatively large enough that they reach the yield sur-
face, the soil will obviously yield. The associated yield function, also called Tresca
citerion, can be written both in terms of principal stresses and stress components.

14

2 THEORY

For the undrained soil, this yield function will be derived later. Although standard
Mohr - Coulomb soil notation usually uses σ1 and σ3 for major and minor stress
component. However, within this thesis the notation of minor and major principal
stress is denoted as σx and σy.

2.3.2 Equations of equilibrium in two dimensions

Previously the problems of consolidation has been in one-dimension with only
vertical stress. The bearing capacity problem is in two dimensions. Within a
typical element of soil, the loading would be vertical, due to the self weight, and
horizontal due to the applied loading externally (e.g a foundation). This may
additionally introduce an applied shear stress to the element. The governing
partial differential equations for such a two dimensional system both for total
and effective stresses in equilibrium is given in Craig’s soil mechanics (Craig and
Knappett, 2020b) and shown in equation 2.31. Further, a visual representation of
the two dimensional element in equilibrium is shown in figures 2.11 and 2.12.

∂σx

∂x
+

∂τyx
∂y

= 0
∂σx′

∂x
+

∂τyx
∂y

= 0

∂τxy
∂x

+
∂σy

∂y
− γ = 0

∂τxy
∂x

+
∂σy′

∂y
− (γ − γw) = 0

(2.31)

Figure 2.11: Total stress Figure 2.12: Effective stress

2.3.3 Failure zones

In bearing capacity problems there are three different modes of failure (Barnes,
2016), general, local and punching shear, with general shear being the main focus
in this thesis. General shear has a few characteristics:

• The continuous slip surface is well defined and reaches ground level

• On both sides of the foundation, there occurs heaving with a tilt to one side
after the final collapse.

• The failure is catastrophic and sudden with the ultimate value for the load
being peak value.

15

2 THEORY

For the undrained failure zone, the shape of general shear to the left side of the
foundation is

Figure 2.13: Failure zone - Undrained

There are three zones that form when general shear occurs - active and passive
Rankine and Prandtl zone. The active and passive Rankine zones are characterized
with the stress orientation being constant throughout the zone. For the active
Rankine, the major principal stress is vertical which pushes the soil down to the
force on the foundation q. In the Prandtl zone, the stress orientation is not
constant and rotates through the zone which pushes the soil sideways. In the
passive Rankine zone, the stress is rotated to such a degree that the major principal
stress is horizontal, and for this zone, the stress is also constant throughout. This
leads to the soil being pushed sideways and up.

For the undrained analysis, it is known that the maximum shear stress coincides
with the critical plane which is on an orientation of π

4
for the active and passive

Rankine zones. This leads to the Prandtl zone having the shape of a circle, which is
what gives it the opening π

2
. The active and passive Rankine zones are represented

in a Mohr’s circle as

Figure 2.14: Undrained Mohr’s circle

16

2 THEORY

2.3.4 Yield function for undrained Mohr-Coulomb soil

The simples way to derive the yield function for undrained soil is to represent the
major and minor principal stresses of undrained soil in a Mohr’s circle. For the
undrained analysis, the yield surface is horizontal to the undrained shear strength
(su) exhibited by the soil. Following the figure of the failure zone for the undrained
case, the su value is equal to the critical shear strength τmax that occurs along the
three zones border. With q being the major principal stress and p being the minor
- it is possible to use Pythagoras in order to derivative the yield function, as is
shown equations 2.32. Note that R = su‘. Note that the yield function can also
be referred to as the Tresca criterion.

(2su)
2 = (σy − σx)

2 + (2τxy)
2

4s2u = (σy − σx)
2 + 4τ 2xy

1

4
(σx − σy)

2 + τ 2xy − s2u = 0

(2.32)

Figure 2.15: Yield function - Undrained

17

3 SOFTWARE

3 Software
This section describe the software that has been used either to implement or
validate the case studies in this thesis. It is divided into two subsections: Finite
element software, which has been used for validation and programming applied
for implementation of the physics - informed neural networks.

3.1 Finite element software

3.1.1 Plaxis 2D Ultimate

Plaxis 2D is a finite element software created by Bentley systems (“Plaxis 2D”,
n.d. Plaxis can perform analysis of both stability and deformation with respect to
geotechnical processes. Plaxis 2D uses one procedure for input where it applies a
CAD -like drawing system for easy definition of loads type and element type, and
one procedure for output where it gives detailed presentation of the results from
the computation. Plaxis’s easy-to-use systems along with it’s fast computational
powers and leading industry standard is the reason is was used in this thesis.

3.2 Programming software

3.2.1 Spyder

Spyder is a open source integrated development envirometn (IDE) for scientific
programming in python (“Spyder”, n.d. This framework has been used since it
provides multiple IPython consoles. Since machine learning is a lot of trial and
error, the easy comparison of plots with older plots in an IPython console have
been especially handy along with its debugging tool.

3.2.2 DeepXDE

DeepXDE (L. Lu et al., 2021) is a library used for scientific machine and physics-
informed learning. DeepXDE has been applied in the problems of this thesis due
to its easy implementation of complex problems in compact code, especially for
PINNs. The implementation of code into DeepXDE also resembles closely the
mathematical formulation of the problem making the code easy to understand
if the reader has an understanding of the mathematical basis of the problems.
DeepXDE supports backends for tensor libraries such as Tensorflow as well as
others.

3.3 Packages

Within DeepXDE, the tensorflow backend has been applied. Tensorflow (“Ten-
sorflow”, n.d.) is an open source platform for machine learning. Other packages
that has been used is NumPy and Matplotlib. NUmPy (“NumPy”, n.d.) is used
for production and manipulation of arrays in the code. Matplotlib (“Matplotlib”,
n.d.) has been used for the plots of predictions by the network and analytical
solutions.

18

4 METHOD

4 Method
Following is the section with a general description of the workflow for the problems
of PINN within DeepXDE in consolidation. The code applied will be general and
simplified just for explanatory purposes alone. Since the purpose is to explain
workflow, the examples used are taken from the problems of consolidation as these
are the simplest.

4.1 Creation of datasets and sampling method

4.1.1 Forward analysis

A PINN implemented into DeepXDE will be constrained by a PDE and the con-
straints on the boundary and initial conditions. For the forward analysis DeepXDE
uses one of several training distributions to sample training points both in the do-
main and on its boundaries and/or initial points. The two methods applied are
as indicated in the chapter on theory; uniform and Latin hypercube sampling.
This means that DeepXDE does not require an external dataset as a target for
its neural network since it uses the PDE as a constrain within the domain for
the PDE or PDEs in question. An illustration of a the way data is sampled for
training is provided in the following figure where beige are the training points for
the domain, blue is for the boundary points and orange are the initial conditions.

Figure 4.1: Training points for the domain

4.1.2 Inverse analysis

In order to perform an inverse analysis, the model is reliant on external data in
the form of imported values. These training sampling points become points of
constraint for the model which it uses to train an external trainable variable. It
finds the parameters λ that describes the observed data best. Contrary to the
forward analysis, these observed data are chosen at random within the network.

19

4 METHOD

Figure 4.2: Illustration of sampling points for inverse analysis

4.2 Defining partial differential equation and initial and
boundary conditions

4.2.1 PDE

Figure 4.3: Simplified code for the PDE

Figure 4.3 shows a simple function for the diffusion equation in DeepXDE. It
consists of two inputs, x and y. x is a set of columns containing the variables for
the domain, be it in space or space - time. y has in these cases the same structure
but contains the underived variables for the output. The two modules applied
called jacobian and hessian referres to the Jacobian and hessian matrix for the
first and second derivative respectively (“Jacobian and hessian matrix”, n.d.). An
example of the two matrices is provided in equation 4.1.

Jij =
dyi
dxj

Hij =
d2y

dxidxj

(4.1)

4.2.2 Initial- and boundary conditions

Defining the initial- and boundary conditions requires an explanation of two func-
tions that are applied to evaluate the location of said conditions: on_boundary
and np.isclose(). An example is shown in the following figure:

20

4 METHOD

Figure 4.4: Simplified code of Initial- and boundary conditions

In DeepXDE, on_boundary is a boolean function that returns true or false de-
pending on if the criteria is met. In order to ensure that the function does
not exclude points that are very close to the boundary but not directly at -
numpy.isclose is applied. Numpy.isclose is a boolean array that checks if condi-
tions a and b are met. The default relative and absolute tolerance of this function
(rtol = 1e−5, atol = 1e−8) is unchanged. Further after the functions for finding the
location of both initial and boundary boundaries - they are given their boundary
conditions using DeepXDE’s built-in functions. The theory behind the boundary
conditions is referenced in equation 2.18 and 2.20 for the Dirichlet and Von Neu-
mann BC respectively. The functions for both Dirichlet and Von Neumann uses
the geometry, or in this case geometry and time to define the domain. The lambda
function whether or not the x is on the boundary or not which is evaluated by the
function previously explained. For the initial conditions, the same is done using
an in-house function for DeepXDE - on_initial. Just to clarify, if the boundary
conditions were the same, the same function for the boundaries (on_boundary)
would be applied since it evaluates the whole of the domain. But that is not the
case in this thesis.

4.3 Compiling data for the PDE

Figure 4.5: Simplified code for TimePDE

For DeepXDE, the data need to be compiled into one. For consolidation this is
done by using the class module TimePDE. An example is provided in figure 4.5.
The attentive reader will recognise the variables shown for the PDE and initial-
and boundary conditions. Geomtime is the compiled domain for geometry and
time. The variables for num_initial and num_boundary specifies the number of
sampling points on the given boundary to be used for traning. Num_test is the
number of points to be excluded from the training set and applied to the test set.
Solution = anasol is a reference solution for the PDE to be evaluated up against
a user specified test-metric which is later specified in the compiling of the model
in the next section.

21

4 METHOD

4.4 Compiling model

Figure 4.6: Simplified code for the compiling the model

As shown in figure 4.6, DeepXDE allows for neural networks to be compiled with
just a few lines of code using its in-house functions. Starting from the top, the
layer_size defines the architecture of the neural network from the number of in-
puts and output, the number of nodes and hidden layers. The number of hidden
layers is created using python notation for multiplication of list which gives . As
an example: [32] ∗ 4 = [32, 32, 32, 32]. The activation functions used in this the-
sis has been previously explained in figures 2.3c, 2.3b and 2.3a as well as their
corresponding equations 2.4, 2.3 and 2.5. The initializer is a function that deter-
mines the how the initial weights are set for the hidden layers. Net is where the
actual network is compiled. Seen in the code it uses FNN which stands for Fully-
connected neural network which is explained in section 2.1.1. Model is simply the
definition of the neural network that trains on data.

Model compile is the configuration of the model previously specified. The opti-
mizer, which is Adam has previously been explained in the same section as fully
- connected neural networks. The learning rate defines the step size when moving
through the loss function. Not shown here is that within compile is where the loss
function is defined. By default it is set to MSE. Metric is the metric which the
training points taken by num_test is tested on. Further, the command model.train
defines the number of iterations the network is supposed to run though the model.
As seen, model.train returns the losshistory and the train_state. Using the in-
house functions of saveplot, these can, depending on their boolean values, be saved
or plotted.

22

5 CASE STUDIES

5 Case studies
The goal for this thesis is as stated to see if physics-informed neural networks can
predict both consolidation and bearing capacity. Since this thesis deals with two
quite different problems they are separated by into their own sections.

5.1 Consolidation

The methods of implementation for consolidation was inspired by (Bekele, 2020).
First presented is the forward analysis for the single and double drained case
respectively. Followed by the inverse analysis for both of the cases and the chapter
on consolidation ends with the both cases in forward and inverse analysis with
added noise to the datasets. The sections of the chapter follows the same structure.
First presented are the mathematical properties of the problem followed by the
implementation of the problem into the neural network. Lastly, the results are
presented before moving on to a small discussion/development of the results. The
models here are run on a Nvidia Geforce 250MX GPU.

5.1.1 Case study 1: Forward analysis: Drained top and undrained
bottom

Domain, boundary conditions and initial conditions

Figure 5.1: Domain
for the Drained top
Undrained bottom.
Adapted from (Bekele,
2020)

The first case is the case with a drained boundary at
the top and an undrained boundary at the bottom.
As stated in the theory before, the Dirichlet bound-
ary condition represents an open permeable boundary
with drainage while the Von Neumann BC represents a
closed impermeable boundary. In figure 5.1 is an illus-
tration of the domain where Lt and Lb represents the
top and bottom boundary. The boundary conditions
are

Lt P = 0

Lb
∂p

∂t
= 0

 t > 0 (5.1)

The initial conditions are as shown in figure 5.1 as being
P = P0 = q for t = 0. The value for h is called the
drainage path which for the single drained case is equal
to the height of the domain. In keeping with normalized
values the variables for the spatial - temporal domain -
the values for h and t are both set to [0,1]. The origin
has in this case been chosen at the top meaning we have
0 ≤ y ≤ h. Since the rate of dissapation of the excess

porepressure can only happen through one boundary, the factor of cv is chosen as
0.5 m2

yr
.

23

5 CASE STUDIES

Neural network
The analytical solution, which is the test-metric, is implemented into the code for
the model in such that it acts as a test-metric for the model to be evaluated against
in addition to the test metric. The test-metric is evaluated using L2 relative error
(L. Lu et al., 2021). The formula for L2 relative error is given as

L2 Relative error =
y − ŷ

y
(5.2)

The In the case for forward analysis of 1D consolidation, the function for the test-
metric is the analytical solution. In the code for the analytical solution used to
create an array with the exact solution with the spatial and temporal discretization
of Nz = 100 and Nt = 100 and the same limits for the variables z and t is shown
here in the following figure. The value for the rate of consolidation has been
chosen as Cv = 0.5m2

yr
for the single drained case. The number of points for the

test-metric is num_test = 10000.

Figure 5.2: Code for the analytical solution of the single drained case

In order to compress the text and have an easy way to show the specifics of the
model, the choices for the the neural network is shown in table 5.1. I should be
mentioned that this is the result of trail and error. Several activation functions
were applied and with differing length and width of the neural network. A com-
parison between Tanh and Sigmoid activation function will be presented in the
discussion. The results shown in table 5.1 the chosen variables for this presenta-
tion.

Hidden Layers Nodes Activation Initializer Optimizer LR Iterations
3 32 Sigmoid Glorot uniform Adam 0.001 20 000

Table 5.1: Neural network for the forward analysis of the single drained case

24

5 CASE STUDIES

The sampling of training data for the forward problem involves the initial- and
boundary values of z and t in order to predict the excess pore pressure values
p(z,t) at the given sampling point. Using mean square error, the training loss is
calculated as:

MSEp =
1

N

N∑
k=1

|p(zk, tk)− p̂(zk, tk)|2 (5.3)

where the total number of training data are N and (zk, tk) is the point of the
training data. The governing PDE, equation 2.17, that provides the physical
constraint is sampled at randomly generated collocation points. For the forward
cases, a uniform sampling strategy is applied. The constraint by the PDE is
evaluated at the collocation points using the predicted excess pore pressure and
automatic differentiation:

fc =
∂p̂

∂tc
− Cv

∂2p̂

∂z2c
(5.4)

The loss from this constraint is also calculated using the mean square error:

MSEc =
1

Nc

Nc∑
k=1

|fc(zck, tck)|2 (5.5)

Here Nc is the total number of collocation points, and (zck, tck) represents a collo-
cation data point. The total loss from training is thus:

MSE = MSEp +MSEc (5.6)

This is more or less the same way that the loss function is for all the cases in
this thesis, with small modifications. For the forward problem, the number of
points sampled in each iteration is num_domain = 400, num_boundary = 200
and num_initial = 100. The loss function for the forward consolidation analysis
is:

LTot = WPDELPDE +WBCLBC +WICLIC

LPDE = LPDE

LBC = WBC1Lt +WBC2Lb

LIC = LIC

(5.7)

25

5 CASE STUDIES

Result
The network described in the previous section was used to train the model. The
results are presented in the following tables and figures:

Training loss Test loss Test metric Training time
7.44e− 3 8.01e− 3 7.38e− 1 142.53 sec

Table 5.2: Losses and time for single drained

Figure 5.3: Prediction-Single
drained

Figure 5.4: Analytical-Single
drained

Discussion
Since this was the simplest and original case, it bore the brunt of frustration when
it came to the optimization in terms of changing the parameters. As can be seen
when comparing the two plots in figures 5.3 and 5.4, they show a large degree
of similarity even after a relatively short training period. But looking at the left
side of the plot, the initial conditions, it becomes apparent that the model cannot
accurately predict the same initial conditions as they are in the analytical model.
At first the Tanh activation function was applied, but after testing with other
parameters like the ReLU activation function, which gave bad results because it
cannot calculate second derivatives, and the Sigmoid function, it became apparent
that the Sigmoid function gave a smoother transition between the zones as well
as having a more closely related output to the analytical solution than the Tanh
function. Tanh seemed to underpredict the dissipation. A comparison of the
activation functions with the analytical solution is shown in figures:

26

5 CASE STUDIES

Figure 5.5: Prediction-Sigmoid Figure 5.6: Prediction-Tanh

Figure 5.7: Analytical - Single drained

Sigmoid performs better when comparing the initial conditions alone. Tanh how-
ever shows a more similar decline in excess pore pressure after the initial condi-
tions. It should be noted that the differences are small. Since DeepXDE allows
the user to determine the number of points taken at boundary, domain and initial
- a test was done with a different value for num_initial with both the Tanh and
Sigmoid function in order to see if it improved the results. First num_initial was
increased to 300. Then the test was done with an extreme example by multiplying
num_initial = 100 by ten. These values where chosen by trial and error in order
to find the most optimal value. The results are:

Figure 5.8: Sigmoid:num_init=300 Figure 5.9: Tanh:num_init=300

Figure 5.10: Sigmoid:num_init=1000 Figure 5.11: Tanh:num_init=1000

27

5 CASE STUDIES

Figure 5.12: Analytical

As seen from the plots the best results in the authors opinion is the Sigmoid
function with num_initial = 300. It can’t reproduce the hard boundary conditions
like the analytical solution can but the plots looks close to identical after that
fact. It’s also shown that if the variable for num_initial is raised to an extreme,
it supersedes the other training points and makes the prediction for the domain
less correlated to the analytical solution.

As a last observation is the colourbar besides the plots for which both exceeds the
analytical range [0, 1]. The Sigmoid function in general produces output values
closer to the original interval than the Tanh function. The exception being for
num_initial = 1000 where they give similar values.

28

5 CASE STUDIES

5.1.2 Case study 2: Forward analysis: Drained top and bottom

Domain, boundary conditions and test-metric

Figure 5.13: Do-
main:Drained top and
bottom. Adapted from
(Bekele, 2020)

Concerning the domain for the drained top and bottom,
the only thing that changes are the boundary conditions
and the height of the domain. As previously explained
in figure 2.7, the model starts at y = 0 and the height of
the model ranges from −h

2
≤ y ≤ h

2
since there is no flow

along the center line. This differs from what is shown
in figure 2.7, but this domain was chosen for numerical
reasons in an attempt to keep the values for the domain
between [0,1]. In figure 5.13 the dotted line represents
the center line. Also shown is the open boundary at the
bottom which means the present boundary conditions
are Dirichlet at both boundaries as shown:

Lt P = 0

Lb P = 0

}
t > 0 (5.8)

Concerning the test-metric, the solution changes due to
y being place at center. This gives the function in figure
5.14. The values for output of this function as well as
the network are again normalized. Since this case has
two open boundaries where the excess pore pressure can
dissipate through. Because of the excess pore pressure having two borders to
escape through, the rate of consolidation is faster than the single drained case.
Therefore it is chosen as Cv = 0.2m2

yr
for the double drained case.

Figure 5.14: Analytical solution for double drained case

Neural network
For the specifics of the neural network, they are the same as for the previous case,
shown in table 5.1. The loss function becomes slightly simplified since the double
drained case has the Dirichelt BC on both boundaries. Carried over from the single
drained case is the change sampling points: num_initial = 300. For the other
sampling numbers, they remain the same num_domain = 400, num_boundary =
200 and num_test = 10000.

LTot = WPDELPDE +WBCLBC +WICLIC

LPDE = LPDE

LBC = LBC

LIC = LIC

(5.9)

29

5 CASE STUDIES

Results
As before, the results are as follows:

Training loss Test loss Test metric Training time
5.97e− 3 7.68e− 3 4.93e− 1 136.62s

Table 5.3: Losses and time for double drained

Figure 5.15: Prediction DD Figure 5.16: Analytical DD

Discussion
As with the single drained case, the same problem occurs, meaning the initial
conditions. Both the Sigmoid and Tanh function were tested and check what
produced the best results, but again, the Sigmoid function gave the best approx-
imation to the analytical results overall. It is however noted that in this case, it
seems to be that the model predicts a lower degree of dissipation over time than
the analytical solution along the boundaries and end of time. In order to test if
this was a matter of number of iterations, a convergence study was done for this
case. The only thing changed in this study is the number of hidden layers and
nodes.

Hidden layers Nodes Training loss Test loss
3 32 5.97e− 3 7.68e− 3
3 64 1.63e− 2 1.69e− 2
5 32 6.29e− 3 7.29e− 3
5 64 3.78e− 3 5.68e− 3

Iterations = 35 000
5 32 3.84e− 3 7.34e− 3

Table 5.4: Convergence study-double drained

As seen from table 5.4 the loss does not decrease with a significant amount due to
the added number of hidden layers and nodes. Since the best results was from five
hidden layers and 32 nodes, an additional analysis was made with 35 000 iterations
shown in the last row of table 5.4. The results from the loss function are not
noticeably improved compared to the others suggesting that the model has indeed
reached a convergence and the curves flattened out. Looking at the comparative
plots however, they are more closely comparative compared to before, except for
the initial conditions of course. The results have improved with adjustments but
worth noting is that for the normal analysis of three hidden layers with 32 nodes
in each averaged around 140 seconds for the training of the model, while with five
hidden layers and 32 nodes in each with 35 000 iterations - the time to train was
720 seconds.

30

5 CASE STUDIES

[h]

Figure 5.17: Prediction DD: 35 000
iterations

[h]

Figure 5.18: Analytical DD

31

5 CASE STUDIES

5.1.3 Case study 3: Inverse analysis for drained top and undrained
bottom

Domain, boundary conditions and import of data
For the inverse analysis of the single drained case, it is the same as for the forward
analysis in terms of domain and boundary conditions. What does change is that
the inverse analysis does not use collocation points in the same way to approximate
a solution. It uses imported data to train the model while approximating an
external variable within the physical constraint defined to the model. More on
that later. The imported data is created using the analytical solution, same as
before with a 100x100 matrix consisting in a total of 10 000 points that can be
sampled for each variable (z,t,p). The sampled data for inverse analysis is usually
larger than for the forward analysis and in this case 2000 points are sampled from
the imported data at random.

The imported data which consists of the combined vertical columns of the spatial
- temporal variables z and t and the excess pore pressure p, is fed to DeepXDE
through a function called PointSetBC which compares the output, that is associ-
ated with the points, with the target data, meaning the imported points, using
a Dirichlet BC. These values are then evaluated up agains the values for z and t
which are fed to the model as Anchors. During training of the model, these are
hard constraints that must be satisfied.

Neural network
In order to ensure that the sampled points are evenly spread out, the Latin Hy-
percube sampling function was applied. The use of LHS also decreases the com-
putation time due to it picking points that are the only ones in each axis-aligned
hyperplane which contains it. The trainable value from the original training data
will be the coefficient of consolidation like:

fc =
∂p̂

∂t
− Cvt

∂2p̂

∂z2
(5.10)

where the subscript t represents trainable. The value for Cvt is initially set at
1.0 m2

year
and the target value for Cvt is 0.5 m2

year
. Although the Sigmoid function

has given the best results for the forward analysis - the inverse analysis is more
timeconsuming. The Tanh function is slightly less complex than Sigmoid, and
was thus chosen for the inverse analysis. The remaining specifics of this neural
network is gathered in the following table and are unchanged from the previous
neural nets.

Hidden Layers Nodes Activation Initializer Optimizer LR Iterations
3 32 Tanh Glorot uniform Adam 0.001 20 000

Table 5.5: Neural network for the inverse analysis of the single drained case

32

5 CASE STUDIES

The loss function for the inverse single drained consolidation analysis is

LTot = WPDELPDE +WBCLBC +WICLIC +WDataLData

LPDE = LPDE

LBC = WBC1Lt +WBC2Lb

LIC = LIC

LData = LData

(5.11)

Result
The results are shown below. A short note is that the final value for the predicted
Cvt was only printed with six decimals which is why the error is given as being
less than 1e − 6. Also note that the error for the variable cv is calculated by the
following equation:

e =
|p̂− p|
|p|

(5.12)

Training loss Test loss Training time Final Variable Error
4.92e− 3 4.92e− 3 336.71s 0.50000 e < 1e− 6

Table 5.6: Losses and time for inverse single drained

Figure 5.19: Inverse analysis for the single drained case

Discussion
In the case of the inverse analysis for the same problem, the network converged
towards a different solution when fed the analytical solution as it was created. But
through trial and error, the matrix was fed to the inverse model in the same way
as it was outputted by the forward model, by rotating the matrix for the analytical
solution 270 degrees. After doing so, the network converges towards the correct
solution for both high positive values and negative values that are not to extreme.

33

5 CASE STUDIES

In order to prove that the inverse analysis for this case works - some results with
different initial values and consolidation factors are given in the plots 5.20, 5.21,
5.22 and 5.23. These plots show the extremes of the model. It can approximate
the solution from very high positive values but does not converge for very low
negative values.

Figure 5.20: Initial value = 0 Figure 5.21: Initial value = -0.5

Figure 5.22: initial val = 3 Figure 5.23: Initial value = 8

34

5 CASE STUDIES

5.1.4 Case study 4: Inverse analysis: Drained top and bottom

Domain, boundary conditions and import of data
The domain and boundary conditions are the same here as in the forward case for
the double drained. The importing of data is done with the same method as for
the single drained case, just using the analytical solution for the double drained
case.

Neural network
The neural network has the same specifics as the single drained case seen in table
5.5. For the double drained case, the consolidation factor is set to a value of
Cv = 0.2 where the initial value for the trainable variable Cvt = 0.5. Other than
that everything is the same as for the single drained case. The loss function for
the double drained inverse analysis is:

LTot = WPDELPDE +WBCLBC +WICLIC +WDataLData

LPDE = LPDE

LBC = LBC

LIC = LIC

LData = LData

(5.13)

Result
Results are as follows:

Training loss Test loss Training time Final Variable Error
5.68e− 3 5.68e− 3 383.95s 0.204 0.02

Table 5.7: Losses and time for double drained

Figure 5.24: Inverse analysis for the double drained case

35

5 CASE STUDIES

Discussion
Initially, the results does not seem as accurate as they where with the single
drained case where the the error was less than 1e− 6 compared to 2e− 2 but it is
important to note that this may also be because of a really good training cycle by
the single drained model and a not so good training cycle by the double drained
model. In order to see if the model was indeed as robust as the single drained case
- a series of test were performed. The summary of those tests are found in table
5.8.

Initial value Target value Results Error
4.0 0.2 0.205 0.025
-0.2 0.2 0.203 0.015

Table 5.8: Extremes of inverse double drained

As shown, it was not as robust as the single drained model. This may be due
to the 100x100 matrix being for a full layer domain which gives it more complex
structure than the single drained which leads to a weaker prediction. Optimizing
hyper-parameters was attempted but did not yield a significant improvement. A
further convergence study with more iterations was also attempted but the loss-
function and the approximation by the model towards cv flattened out after 20
000 iterations.

36

5 CASE STUDIES

5.1.5 Case study 5: Forward analysis with noise: Both cases

In this section there is nothing new to the models except the introduction of noise
to the dataset. Because of this the information about the models used will not be
restated here and the reader is referred to the cases on the respective models.

In order to introduce the model to noise - Numpys normal distribution function
(“Numpy normal”, n.d.) is applied which add noise to the dataset by using Gaussian
distributions. The probability density for Gaussian distribution is

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (5.14)

where µ is the mean, σ is the standard deviation and σ2 is the variance. It is
assumed that the reader is familiar with statistics, but if not, a short summary

• Mean value, also called the expected value, is the average number that’s
found by adding all the sampling points together and dividing it by the the
number of sampling points

• Standard deviation is a value for the amount of dispersion or deviation there
is form the dataset. A high σ means the values are spread out over a larger
range. A low σ means it’s closer to the mean.

• Variance is measure of dispersion over the dataset, meaning how far the data
points spread out from the mean.

Results
In the cases with added noise, the noise is added by increasing the standard
deviation thus increasing the limits of the dataset. Because of this fact it was
tried to see how well the model would predict with added noise to the dataset for
z and t. The results are:

Single drained Training loss Test loss Test metric Training time
Without noise 7.44e− 3 8.01e− 3 7.38e− 1 142.53 sec

With noise 1.12e− 2 1.12e− 3 7.27e− 1 186.42 sec

Double drained Training loss Test loss Test metric Training time
Without noise 5.97e− 3 7.68e− 3 4.93e− 1 136.62s

With noise 6.43e− 3 1.01e− 2 4.92e− 1 129.97

Table 5.9: Losses and time for forward analysis with noise

37

5 CASE STUDIES

Figure 5.25: DD with noise Figure 5.26: SD with noise

Discussion
As seen from the plots, the model is able to predict the correct solution in terms
of form, but the dissipation is not as strong as for the analytical solution. That
being said, the solutions does not show a significant decrease in performance due
to the added noise, meaning that the model can predict relatively good results
despite having corrupted data in its dataset. The losses and time, although added
to the results does not have that much applicability here since the noise was added
to the dataset used for prediction. Overall, the model shows robustness against
corrupted data for its predictions.

38

5 CASE STUDIES

5.1.6 Case study 6: Inverse analysis with noise: Both cases

For the inverse analysis it is doable to apply noise to the dataset used for training.
Since the forward case had noise applied to the spatial - temporal variables - the
inverse case had noise added to the imported values for excess pore pressure (p)
with the following results:

Single drained Training loss Test loss Training time Final Variable Error
Without noise 4.92e− 3 4.92e− 3 336.71s 0.50000 e < 1e− 6

With noise 1.84e− 2 1.84e− 2 397.65s 0.5001 2e− 4

Double drained Training loss Test loss Training time Final Variable Error
Without noise 5.68e− 3 5.68e− 3 383.95s 0.204 0.02

With noise 1.59e− 2 1.59e− 2 416.72s 0.204 0.02

Table 5.10: Losses and time for inverse analysis with noise

Figure 5.27: Inverse DD with noise Figure 5.28: Inverse SD with noise

Discussion
Concerning the losses and training time for this case, both the single and double
drained cases show the expected results of decreased losses and increased training
time. This is probably due to the model actually having to evaluate the noise
added to the excess pore pressure since it is fed to the model through the observed
values which are evaluated against the output, see case study 3. This gives the
noisy dataset higher influence which in turn gives the expected difference shown
in table 5.10. But despite this it does predict the values for Cv very well with a
difference of approximately e − 2 and exactly the same for the single and double
drained respectively.

39

5 CASE STUDIES

5.2 Bearing capacity: Cartesian to polar coordinates

The bearing capacity problem as a problem was inspired by (Smith, 2005) and his
paper on "Complete limiting stress solutions of bearing capacity of strip footings
on Mohr-Coulomb soil". The following section explains shortly the failed attempt
at predicting bearing capacity using Cartesian coordinates first by introducing the
initial domain, its boundary conditions and defining the loads for the system before
moving on to showing the transformation from Cartesian to polar coordinates. It
should be noted that here as well, the model are run on a Nvidia Geforce 250MX
GPU.

In order to investigate the problem, a simple model of the problem was analysed
in Plaxis 2D. Using the full domain of the Plaxis model and examining the stresses
created by the loading conditions - half of the model with its corresponding bound-
ary conditions was extrapolated form that model. Examples are as follows

Figure 5.29: Full domain

Figure 5.30: Half domain and
boundary conditions

Seen from figure 5.30 is also the load conditions. At first it was attempted to reach
yield with just a vertical load for both q and p. This was because only vertical
loads produces punching shear in the soil and not the stress field for a yield zones
as wanted. Because of this, the collapse loads (Nordal, 2020) was augmented with
a lower bound solution for the undrained case with the factors of σx = q − 2su
and σx = 2su + p for the active and passive Rankine zones respectively in order
to produce the wanted yield. Note that the derivation for these collapse loads is
a lower bound solution following only one zone in Mohr’s cicle like figure 2.14.

su =

√
1

4
(σx − σy)2 + τ 2xy (5.15)

Using the predicted shear strength, one could predict the bearing capacity for the
foundation. Assuming that the variable p, the analytical solution (Eiksund et al.,
2019) for bearing capacity for undrained vertically loaded soil is

q = p+Ncsu, Nc = π + 2 = 5.14 (5.16)

40

5 CASE STUDIES

Nc is a factor that varies with the roughness of the foundation. In the cases for
bearing capacity the foundations are assumed to be smooth foundations r = 0.
Skipping the description of implementation of the neural network, its specifics
are the same as in table 5.1, and using the activation function ReLU, due to its
mentioned inability to calculate second order derivatives, in order to enhance and
show the problem when using Cartesian coordinates - the results are the following.
Notice that the axis are unimportant but the colourbar shows the predicted value
for su.

Training loss Test loss Training time
4.5e− 3 4.5e− 3 305.5s

Table 5.11: Losses and training time for unnormalized undrained bearing capac-
ity

Figure 5.31: Prediction of su

A short explanation of the figure 5.31: Shown is the prediction of the undrained
shear strength of the soil in this case. In the model - the load is applied on the
left side of the plot. It was first attempted to apply the loads at the exact location
that they where placed q ∈ 0 ≤ x ≤ B

2
and p ∈ B

2
≤ x ≤ 2B. This caused the

singularity to happen each time at the same spot since the network didn’t know
how to handle the point at which there was a gap with no defined load, regardless
of how small the intersection was made. Another attempt was made at leaving
a larger area of 0.5 meters, like q ∈ 0 ≤ x ≤ B

2
and p ∈ B

2
+ 0.5m ≤ x ≤ 2B,

where the load was undefined in order to see what the network would do with
that area as in the case in figure 5.31. However, the singularity continued to form
despite this change and it was suggested that in order to counteract this problem
the domain would be transformed from cartesian to polar coordinates.

41

5 CASE STUDIES

5.2.1 Case study 1: Forward undrained

Domain, PDEs and yield function
Changing from a cartesian to polar coordinate system changes the domain quite
significantly. The biggest change is the exclusion of boundary conditions on both
sides of the domain because it is confined to the failure zones. The loads however
stay the same. This means that the upper boundary is the only one present in the
geometry that’s defined for the model. An outline of the change in domain is

Figure 5.32: Full domain to polar domain

Due to this new domain, the PDEs and yield function must also be transformed
to polar coordinates. This is done by the equations

∂

∂x
= cos θ

∂

∂r
− 1

r
cos θ

∂

∂θ

∂

∂y
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

(5.17)

This leads to a new set of PDEs and yield function. These also has to be normalized
in order to train the network efficiently. This derivation is quite long and the
derivation is shown in appendix B. Note that the original PDEs and yield function
are presented in equations 2.31 and 2.32. The new normalized PDEs and yield
function with normalized stresses, radius and θ shown by (’) which in this case
means normalized and not effective stress, are:

42

5 CASE STUDIES

r
′
π cos θ

′ ∂σx′

∂r′ − sin θ
′ ∂σx′

∂θ′ + r
′
π sin θ

′ ∂τ
′
xy

∂r′ + cos θ
′ ∂τ

′
xy

∂θ′ = 0

r
′
π cos θ

′ ∂τ
′
xy

∂r′ − sin θ
′ ∂τ

′
xy

∂θ′ + r
′
π sin θ

′ ∂σy′

∂r′ + cos θ
′ ∂σy′

∂θ′ − r
′
πγB

q + γB

1

4
(σ

′

x − σ
′

y)
2 + τ

′2
xy − (

su
q + γB

)2 = 0

(5.18)

Neural network
Implementing the transformed domain into the neural network presented some
problem. First of, the half-circle represented in figure 5.32 is not the type of
geometry that DeepXDE has a function for. Since this problem had only two
loads to define and no boundary conditions, the neural network had to interpret
it a different way as a rectangle with boundaries 0.01 ≤ r ≤ B and 0 ≤ θ ≤ π
where the loads could be applied at either end of the domain like

Figure 5.33: Polar domain in model

The left side now represents the boundary on top of the foundation while the right
side is besides the foundation. The top unnamed area is an area that is undefined
for the domain. As a consequence of the load being applied on just two sides of
the rectangle - the loss function now only samples those two boundaries with the
rest of the points being labeled domain. This yields the following loss function:

LTot = wPDELPDE + wBCLBC

LPDE = LPDE1 + LPDE2 + LY ield

LBC = LFoundσx + LFoundσy + LFoundτxy + LSideσx + LSideσy + LSideτxy

(5.19)

43

5 CASE STUDIES

This reduces the number of constraint that the model has but also decreases the
time to train. Example of training points sampling for bearing capacity is

Figure 5.34: Training points sampling polar

Another constraint to the model will be the undrained yield function shown in
5.18. It acts as an additional constraint on the model in addition to the two
PDEs.

In this part of the thesis, the model will be trained with two optimization algo-
rithms. First the Adam optimizer for 20 000 iterations and then the model will
be compiled again and trained again with the L-BFGS optimizer. The L-BFGS
optimizer does not need a fixed learning rate since it adjusts the learning rate
for each iteration to the approximation given by the Hessian matrix. This makes
it ideal for late stage optimization. The remaining variables for the network is
summed up as

Hidden Layers Nodes Activation Initializer Optimizer LR Iterations
3 50 Tanh Glorot uniform Adam 0.001 35 000

-||- -||- -||- -||- L-BFGS -||- Runs until converged

Table 5.12: Neural network - Forward undrained Bearing capacity

Result
Presented below is the table with results from the training of the model followed
by the output of the model - first normalized, then shown unnormalized in the
failure zones. In addition, the value for undrained shear strength su was defined as
an external trainable variable in the network, and it is this value that the network
uses to predict the bearing capacity with. The results are

Optimizer Training loss Test loss Training time
Adam 6.12e− 5 5.75e− 5 204.69s

L-BFGS 8.84e− 7 8.56e− 7 120.77s

Table 5.13: Losses and time for forward undrained bearing capacity

44

5 CASE STUDIES

Figure 5.35: Normalized σ
′
x Figure 5.36: Normalized σ

′
y

Figure 5.37: Normalized τ
′
xy Figure 5.38: Predicted su

Figure 5.39: σx Figure 5.40: σy

Figure 5.41: τxy Figure 5.42: Predicted su

45

5 CASE STUDIES

As mentioned, the results will be compared with Plaxis, but first it is compared
to the analytical solution q − p = Ncsu. r = 0 gives Nc = 5.14 which yields:

q − p = Nc ∗ su− > su =
100kPa− 10kPa

5.14
= 17.51kPa (5.20)

The variables applied for the Plaxis model is summed up in table below along
with the maximum values for the stresses as given by the Plaxis model along with
the mean predicted value for su by the model.

γunsat = γsat Eu.ref νu su,ref
20kN

m3 20000kPa 0.495 17.5kPa

σx σy τxy su,ana
250.54kPa 254.62kPa 17.346kPa 17.51kPa

σ̂x σ̂y ˆτxy ˆsumean

249.13kPa 269.90kPa 16.847 17.580kPa

| σ̂x−σx

σx
| | σ̂y−σy

σy
| | ˆτxy−τxy

τxy
| | Ŝu−Su,ana

su,ana
|

5.63e− 3 6.0e− 2 2.89e− 2 3.99e− 3

Table 5.14: Forward: Plaxis variables, model prediction and absolute error

Development/Discussion
Before implementing the PDE’s in the way that they are, it was attempted to
implement the bearing capacity problem with a different approach to the con-
strained PDE’s which involved transforming the yield function into a function for

τxy =
1
2

√
sin (ϕ)2(σx + σy)2 − (σx − σy)2 and taking the partial derivatives of this

function in order to make the model predict only σx and σy. τxy could thereafter
be calculated analytically. This was thought to be a more computationally effi-
cient way of training the model, but when implemented, it blew up at the first
iteration and did not learn anything due to exploding gradients.
A lot of the problems with the implementation of the model that predicts all three
stresses and their solutions concerning domain, boundary conditions and normal-
ization of the PDEs and yield function have already been addressed previously in
the case study. Once those solutions where in place, the problem lay in optimizing
the model in order to prevent the formation of singularities and spurious extreme
predictions by the network. One such problem was the formation of a large singu-
larity when predicting the undrained shear strength. A solution that was tested
was changing the parameters and hyper-parameters.

In the end, the solution to this problem lay in the radius for the domain. By
reducing it from 0.01 meters to 0.001 meters, the singularity did not form. Singu-
larities usually form when there are values very close to or at zero. Using the yield
function in equation 5.18 as an example would be when the model test values that
yield σx − σy = 0. Here it seems that the reduced radius reduced the influence of
r on the PDE’s enough which made it converge towards the correct solutions and
eliminate the singularity.

46

5 CASE STUDIES

5.2.2 Case study 2: Inverse undrained

Importing external dataset
Since the domain and boundary conditions are the same here as for the forward
case, the difference lies in the importation of data and its implementation into the
neural network. The importation of the external dataset was done by extrapolating
the data from the same Plaxis model that defined the forward problem. The values
for r, θ, x and y where created synthetically and has the same values as in the
forward case. The values for σx, σy and τxy where extrapolated from Plaxis within
the failure zone as shown in figure 5.32. The code for extracting data from Plaxis
is uploaded to Github as shown in appendix 7.

Using 400 of the imported values from the variables, this was fed into the network
in the same way as done in the inverse analysis for consolidation using PointSetBC
and anchors. The imported values where normalized in the same way that the
stresses in the normalized PDEs were, like:

r
′
=

r

B
θ
′
=

θ

π
(5.21a)

σ
′

x =
σx

q + γB
σ

′

y =
σy

q + γB
τ

′

xy =
τxy

q + γB
(5.21b)

Neural network
The neural network type for the case of inverse undrained is not the same as in
forward undrained. It has been changed from a FNN to a PFNN. A PFNN is a
parallel fully-connected neural network. In the normal FNN, there are one network
which predicts all the outputs. In a PFNN, there are independent sub-networks
that predicts each variable individually. Following the example for a FNN shown
in figure 2.5, the same architecture with a PINN in this case is:

47

5 CASE STUDIES

Figure 5.43: PFNN architecture

In addition to the new network architecture, there was also added a point resam-
pler, which resamples the points within the PDE at a specified interval. In this
case, the interval was chosen at every 100 iteration. The number of points sampled
follows the parameter num_domain and num_boundary. Also changed from the
forward case is the parameters for the weights of the imported shear forces and
the global tolerance for the L-BFGS optimizer. The changed values are listed in
the following table. Besides these, the parameters and hyper-parameters stay the
same.

48

5 CASE STUDIES

Loss_weights gtol num_domain num_boundary num_test
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14] 1e-10 500 200 1000

Table 5.15: Neural network - Forward undrained bearing capacity

A short explanation for the list for the loss_weights is that the first three from the
left represents the two governing PDEs and the yield function. Thereby followed
by the six boundary conditions, one for each stress component on the foundation
and beside it. Lastly are the three observed values defined by PointSetBC for the
three stress components. DeepXDE allows for individual weight to be changed
in the loss function. This yields the following loss function for inverse bearing
capacity analysis:

LTot = WPDELPDE +WBCLBC +WDataLData

LPDE = LPDE1 + LPDE2 + LY ield

LBC = LFound,σx + LFound,σy + LFound,τxy + LSide,σx + LSide,σy + LSide,τxy

LData = LData,σx + LData,σy + wData,τxyLData,τxy

(5.22)

Results
The results are presented in the same plots as for the forward analysis with the
sampled imported training points in the same plot.

Optimizer Training loss Test loss Training time
Adam 4.25e− 4 4.19e− 5 1649.11s

L-BFGS 8.84e− 7 8.56e− 7 309.38s

Table 5.16: Losses and time for inverse undrained bearing capacity

49

5 CASE STUDIES

Figure 5.44: Normalized σx Figure 5.45: Normalized σy

Figure 5.46: Normalized τxy Figure 5.47: Predicted Su

Figure 5.48: σx Figure 5.49: σy

Figure 5.50: τxy Figure 5.51: Predicted Su

50

5 CASE STUDIES

σx σy τxy Su,ana

250.54kPa 254.62kPa 22.96kPa 17.51kPa

σ̂x σ̂y ˆτxy ˆSumean

250.373kPa 265.86kPa 29.513kPa 17.446kPa

| σ̂x−σx

σx
| | σ̂y−σy

σy
| | ˆτxy−τxy

τxy
| | Ŝu−Su

Su
|

6.66e− 4 4.41e− 2 2.85e− 1 3.655e− 3

Table 5.17: Inverse:Plaxis variables, model predictions and absolute error

Development/Discussion
This case had some problems with singularities in the predictions of su. Initially
the network was defined in the same way as for the forward problem, but it was
later discovered that when importing the stress components that since the failure
zone consisted of the whole foundation due to the value for B, it also imported
shear forces of equal on opposite sign on the other side of the symmetry line shown
in figure 5.29. This lead to the network initially predicting shear forces for both
positive and negative values, which lead to an increase in predicted su at certain
points. It was attempted to just remove the opposite values but this also gave
bad predictions. By changing the sign of the opposite shear force it gave a much
more clean predictions across the domain. The increased weights for the imported
shear functions was chosen as the optimal value after trail and error due to it
being overestimated in comparison with the other forces.

But the model was still not give a consistent value for su throughout the domain
ever time the model was trained. This problem could be fixed by increasing the
number of iterations significantly, but this decreased the performance since it also
increased the training time. By introducing the PFNN and the PDE-resampler,
this allowed the model to predict a clean result in a much shorter time with more
consistently.

The results for the σx and su had a very good accuracy, which is also represented by
the low loss function for training and test in table 5.16, but the model overestimates
both σy and τxy. Looking at the plots for these two variables, σy has a uniform
plot across the domain for the prediction by the model and its imported values
which shows that it does indeed overestimate this value. But in the plot for τxy,
the imported values are for the majority, quite close to the predictions made by
the model except for one especially spurious value shown by the color yellow in
the plot. This single value is probably what gives the large value that’s shown in
5.17. Excluding this spurious value, the predictions of τxy by the model is very
good compared to the imported values. The time to train has been increased a
significant amount 500% compared to the forward model. This was due to the
inverse undrained model giving uneven predictions after training. But with the
addition of two extra sub-ANNs and a resampler which resamples values in the
domain ten times each iteration, the time to compute is still relatively low.

51

6 DISCUSSION

6 Discussion
This section is divided into two parts. Consolidation and bearing capacity. In both
parts, the implementation of the PINNs will be discussed along with its problems
and results. Additionally, the further improvements and cases that could expand
on these PINNs will also be presented discussed.

6.1 Consolidation

A lot of the initial work on the implementation of 1D consolidation built upon the
paper by (Bekele, 2020). Because of this, it is natural to compare the results from
the consolidation cases with this papers results as far as that is possible. (Bekele,
2020) will be referred to simply as "Bekele" from now on. The models in this thesis
will be refereed to by their case abbreviations. E.g single drained = SD, double
drained = DD, etc. It should be noted that Bekele measures the performace of
his forward models by MSE and L2 relative error. Mean L2 relative error was
attemted to implement into DeepXDE as a loss function but gave infinity in the
loss function immediately.

6.1.1 Forward cases

The first implementation of the the single drained consolidation problem gave
good results when compared to the analytical solution. This was also reflected by
the low loss of the loss function. Comparing the results for the MSE loss at the
end of training in DeepXDE with Bekeles’, the results were 7.44e − 3 vs 1e − 5.
Bekele’s produced a better accuracy than the DeepXDE model. When training
the model in DeepXDE, it was attempted to use a larger number of iterations
in order to reach better accuracy, but the loss-function curve flattened out. This
despite increasing the sampling number of collociation points in the domain. The
same result is apparent for the DD case and is shown in table 5.4. Thus, with the
implementation that is done into DeepXDE, the accuracy of the model did not
outperform Bekele’s. Where it did outperform Bekele’s model was in the time to
train. The difference between the two was approximately 12 minutes versus 142.52
seconds for Bekele and DeepXDE respectively. This is a remarkable improvement
in efficiency. By reducing the time to train by almost nine and a half minute,
this shows that the DeepXDE library is very computationally efficient for running
PINNs. It should be noted that the hardware the models have been trained on
was a Nvidia Tesla K80 for Bekele versus Nvidia GeForce MX250. A comparison
between the two GPU’s is given in (“Comparison - Tesla K80 and GeForce MX250”,
n.d.). Bekele’s GPU is much stronger than the GPU used in this thesis which
further proves the point that the code used in this thesis in accordance with the
DeepXDE library is very computationally efficient. This is an important factor
for a geotechnical engineer as efficiency is key factor in the design process.

For the double drained case, Bekele does not state neither the training time or the
MSE error. Assumptions could be made based on the time to train taking almost
as long with the same accuracy but a comparison between the values in between
the would be pure speculation and will therefore be left out. The implementation
of this problem into DeepXDE was very effortless after the single drained was

52

6 DISCUSSION

implemented. The time to train ,136.62 seconds, was shorter than for the single
drained case and the accuracy about the same 5.97e− 3.

In both forward problems, predicting the initial conditions accurately was a prob-
lem. One solution to this problem could be to create a function which is the
solution to the problem in terms of boundary conditions and enforce that as a
hard constraint on the ICs. DeepXDE enforces the ICs as soft constraints by de-
fault as is done in the thesis. The difference between hard and soft ICs is that
the hard ICs must be satisfied exactly. If such a function where created, it would
be assumed that it would fix the issue with the ICs. Further improvements to
the forward SD and DD cases could include the implementation of the L-BFGS
optimizer at the end of the training cycle. Implementing this is expected to in-
crease the accuracy of the model and reduce MSE of the loss-function and bring it
closed to the accuracy shown by Bekele. For the DD case, since the model showed
a lower degree of dissapation, the PDEPointResampler, which was applied in the
bearing capacity cases could also be a relevant improvement here.

6.1.2 Inverse cases

The implementation of the cases were relatively straight forward compared to
the forward cases in terms of geometry and neural network. Comparing the SD
case first - Bekele’s took about eight minutes to train the model. The DeepXDE
model took 336.71 seconds. What is interesting here is that Bekele’s code had a
reduction in time to train by 1

3
% whereas the code in DeepXDE had an increase in

time to train by 35.7%. The expectation would be that both models took longer
to train due to the extra trainable variables into the the constraints. One reason
why Bekele’s model may have gotten the time to train reduced is that for the
forward cases, 10 000 collocation points where applied as training points versus
2000 randomly selected points from the analytical solution in the inverse case. For
the DeepXDE model, it trains the inverse model more or less the same way as for
the forward model, but with an additional 2000 randomly selected points from
the analytical solution. This is what allows it to predict su in the forward bearing
capacity cases. But these are assumptions based on Bekele’s paper and not on
his code. Concerning the accuracy of the models, Bekele SD model achieved an
accuracy of of 3e−3 for the estimation of cv. The SD model achieved an accuracy
of e > 1e−6 which is a remarkably good result showing that the DeepXDE model
outperformed Bekele’s in terms of both time and accuracy. On the DD however,
Bekele achieved an error of 6e−4 compared to 2e−2 for the DeepXDE model. Not
accounting for time, this proves that Bekele’s models for the inverse cases are more
consistent in term of accuracy than the DeepXDE models. In identifying material
parameters, accuracy would be very important which makes this a drawback for
this model. The result is sill within 2% which is an acceptable result.

Improvement could be made when it comes to the inverse cases for the DeepXDE
models. The hyper-parameters for the sampling in the domain, boundary- and
initial conditions were kept the same as they were in the forward cases and not
optimized for the inverse case. By optimizing these, the model could reach higher
accuracy and/or reduce time to train with little effort. A convergence study was

53

6 DISCUSSION

done for the DD case but the results did not improve with more iterations. One
improvement that could help here as well is the the L-BFGS optimizer for the same
reason as stated in the forward cases. Since both of the cases have almost reached
their converged values before 10 000 iterations, the number of iterations with Adam
optimizer could safely be cut in half with the L-BFGS optimizer while still reaching
better convergence. This is represented in the results for the SD and DD case
studies. L-BFGS would be especially beneficial for the double drained case where
the accuracy was low. As before, other implementations like PDEPointResampler
could also be beneficial but this increases time to train and does not come without
a cost. Another implementation that would be interesting to implement into these
inverse problems would be to use a PyTorch backend when importing the values.
DeepXDE as a library, with this backend allows for the imported values to be
sampled and fed to the model in batches at random. Compared to the way it’s
implemented in the DeepXDE model here, all 2000 points are fed to the model
and only sampled once. 2000 points is a relatively large amount but it does not
represent the whole of the data as well as it would if sampled randomly in batches
of 200 for 20 000 iterations. This would probably lead to a higher accuracy and is
expcted to not increase the time to train by a significant amount since the data
is loaded for the whole of the imported domain once and then sampled.

6.1.3 Forward and inverse with added noise

Lastly in consolidation came the introduction of noise to the datasets. There
are no comparison with Bekele’s results here since he did not add noise to his
datasets. However, while the results for these cases are discussed in the case
studies, it would again be interesting to see how well the models would perform
with the improvements suggested in the previous discussions. By doing this, the
models could possibly handle even more noise and corrupted data. In the cases
for this thesis, Gaussian normal distribution was applied. A further examination
of the effect of noise on PINNs would be to remove values form the dataset and
check performance. A limit analysis of how much noise the PINN could handle
and still perform within acceptable parameters would also be a further prospect.

6.1.4 Further suggestion

In terms of benefits for a geotechnical engineer, the 1D consolidation models does
not have all that much benefits in terms of forward analysis, but the inverse anal-
ysis can be very beneficial. A suggestion for the further work with consolidation
PINNs would be to create a plug-in for Plaxis where the inverse models could be
used to approximate a material coefficient given the data in Plaxis or external
data from real life projects. Also, all these models are in 1-D. It is not suggested
to upscale the consolidation PINNs to 2-D as that has already been done (Y. Lu
and Mei, 2022). Instead it is suggested to upscale the problem of consolidation
to 3D next. But before doing that, the addition of more than one layer into the
models would also a point for focus.

54

6 DISCUSSION

6.2 Bearing capacity

There is no comparative paper on this part that the author of this thesis knows of.
The problem was first implemented with Cartesian coordinates and then converted
to polar coordinates. After which it was implemented for the forward and inverse
undrained case.

6.2.1 Forward undrained

The implementation for the forward undrained bearing capacity problem has been
thoroughly discussed in the case study along with its implementation. The results
showed great accuracy and short time to train. The absolute error where all below
2.89e − 2. However, the forward problem was implemented with a FNN despite
it having to predict three variables. This would mean that the PFNN would
probably help this model reach even better accuracy and thus produce an even
cleaner plot for su especially. Further investigations into this problem would be
the introduction of inclined load on the foundation or the addition of more than
one layer.

One discovery that was made when working on the forward undrained problem was
that the boundary condition seem to be under-influencing as a constraint when
contributing to the loss function. The governing equation always seem to have
the largest contribution on the loss function. The way this was discovered was
through trying to implement the load q as an external trainable variable. When
training the model, the variable would only differ with ±1e− 2 from it’s original
value. Having q as a trainable variable would be a very good way to predict
bearing capacity and would have great benefits in terms of usage of PINNs in
geotechnical engineering. The suggestion for further work to implement q as a
trainable variable would be to implement q as a variable in accordance with the
stresses σx and σy into the PDE constraint as that has the highest influence on the
model. Note that it was tested to increase the weights on the boundary conditions
that contained q in an effort to make the model focus on this variable, but this
did not yield any significant postivie results.

6.2.2 Inverse undrained

The inverse undrained is the most elaborate of the models in this thesis and the
last to be created, thus it is also the most optimized. Inverse undrained has been
explained in great detail in the case study, both in terms of its hyper-parameters
and parameters. It produced predictions with a very good accuracy compared to
the Plaxis model for the same case except for τxy. Why this was, was discussed
in the case study. The imported values can produce spurious extreme values, as
was shown for τxy. Because of this, the inverse model would benefit greatly from
an adaptive scaling method to be implemented in terms of its parameters. This
method would scale the weights of the model while training. For the forward
undrained case - many of the same suggestions for further work will also work
here, like layers, inclined load and more. As for consolidation, inverse analysis is
a PINNs strength in terms of usefulness. It is also suggested here that a plug-in
could be created for use in commercial programming software.

55

6 DISCUSSION

Bearing capacity as a problem is suggested to be expanded into drained bear-
ing capacity. The introduction of drained analysis would introduce three more
material parameters to predict ϕ, a, c

′ . If drained PINNs was produces, further
investigation into layers with differing waterline would is suggested. It should be
noted that the drained problem was attempted to be solved in this thesis, but the
model for the forward case produced a singularity for the stresses which made the
model unusable. The singularity was not large and the model predicted correctly
for the stresses σx and τxy when compared to Plaxis. But it overpredicted σy by
almost 15%. An external trainable variable was defined for ϕ, which is the the
angle of friction in drained analysis, and the model converged on this soution, but
the singularity made it so that the accuracy was ≥ 6% due to the singularites.
Many things i order to solve this including transforming the trigonometric func-
tions of the PDEs form sin and cos to tan, a small value 1e− 8 was added to all
the stresses for them to not be zero, and different collapse loads were derived and
implemented. But in the end, the singularity remained. What was an interesting
discovery from this analysis and the undrained case was that the collapse loads
that correctly predicted the forces, in the undrained case, and had the best ap-
proximation, in the drained case were the lowest bound solutions i could find. In
the case of undrained: σx = q − 2su and σx = 2su + p for the active and passive
Rankine zone respectively, and in the drained case: q/N for active and N*P for
passive Rankine zones. The factor of N is tan2 (π

4
+ ϕ

2
) and is derived from the

Mohr’s circle for the drained case. A way for further investigation would be to
derive the PDE for equilibrium in 2D by the method of characteristic into ordinary
partial differential equations and implement into PINNs.

Further suggestions for the bearing capacity cases is to expand the problem to 3D
or introduce layers into the 2D undrained cases. Also, introduction of other ma-
terial models like elasto-plasticity would be of interest. Especially for the analysis
of bearing capacity on sand.

56

7 CONCLUSION

7 Conclusion
The purpose of this thesis was to investigate the following question:

Investigate the application of PINNs on problems of consolidation and bearing
capacity in geotechnical engineering

which would be completed by fulfilling a set of sub-objectives:

• Perform a literature study on PINNs and the DeepXDE library

• Implement one-dimensional consolidation equation into a PINN and check
performance for forward and inverse analyses

• Introduce noise to the datasets for one-dimensional consolidation PINN and
check performance

• Implement undrained bearing capacity problem into a PINN for both for-
ward and inverse analysis and check performance

The purpose of this thesis was to check the application of PINNs on consolidation
and bearing capacity. The first six case studies shows that PINNs can predict
1D consolidation through uncoupled PDEs with good accuracy and in a short
amount of time, but also that these models can be improved to produce better
results. Also show that the consolidation models can handle corrupted data and
still performing reasonably well for both the forward and inverse analyses. The
last two case studies shows that PINNs can make the transition from 1D to 2D
and shows that PINNs can make produce good predictions with coupled PDEs.
The performance for the models have been gone from good in the consolidation
cases to very good in the bearing capacity. that are included in this thesis.

The benefit of the work in this thesis is very theoretical and for the consolidation,
rather simple. But with the rising applications of machine learning, deep learning
and PINNs, the possibility of expansion is very large. The concepts introduced
here can be expanded upon with addition more complex coupled problems with
more material parameters. By optimizing the models created here, the forward
analysis would predict the numerical solutions faster on very little data because of
the physical constraint. This could be very useful for use in a digital-twin where
quick numerical predictions wanted. The inverse analysis would be very useful
for optimization of constitutive material and model parameters. It is clear that
PINNs can be implemented for both forward and inverse analysis for a variety of
problems and have great performance while doing so in a reasonably short time.

57

REFERENCES

References
Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., & Wang, X. (2021). Deep

learning-based weather prediction: A survey. Big Data Research, 23, 100178.
https://doi.org/https://doi.org/10.1016/j.bdr.2020.100178

Chen, X., Wang, X., Zhang, K., Fung, K.-M., Thai, T. C., Moore, K., Mannel,
R. S., Liu, H., Zheng, B., & Qiu, Y. (2022). Recent advances and clini-
cal applications of deep learning in medical image analysis. Medical Image
Analysis, 79, 102444. https://doi.org/10.1016/j.media.2022.102444

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of
deep learning techniques for autonomous driving. Journal of Field Robotics,
37 (3), 362–386. https://doi.org/10.1002/rob.21918

Raissi, M., Perdikaris, P., & Karniadakis, G. (2019). Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational
Physics, 378, 686–707. https://doi.org/https://doi.org/10.1016/j.jcp.2018.
10.045

Depina, I., Jain, S., Valsson, S., & Gotovac, H. (2021). Application of physics-
informed neural networks to inverse problems in unsaturated groundwater
flow. Georisk: Assessment and Management of Risk for Engineered Systems
and Geohazards, 16, 1–16. https://doi.org/10.1080/17499518.2021.1971251

Bekele, Y. W. (2020). Deep learning for one-dimensional consolidation.
Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning

library for solving differential equations. SIAM Review, 63 (1), 208–228.
https://doi.org/10.1137/19M1274067

Kollmannsberger, S., D’Angella, D., Jokeit, M., & Herrmann, L. (2021). Deep
learning in computational mechanics - an introductory course. Springer.

Mitchell, T. M. (1997). Machine learning. McGraw Hill.
P.Kingma, D., & Ba, J. (2014). Adam: A Method For Stochastic Optimization, 1.

https://doi.org/https://doi.org/10.48550/arXiv.1412.6980
Taylor, J., Wang, W., Bala, B., & Bednarz, T. (2022). Optimizing the optimizer

for data driven deep neural networks and physics informed neural networks.
Uniform distribution. (n.d.). https://deepxde.readthedocs.io/en/latest/_modules/

deepxde/nn/initializers.html
Shields, M., & Zhang, J. (2015). The generalization of latin hypercube sampling.

Reliability Engineering [?] System Safety, 148, 97. https ://doi .org/10 .
1016/j.ress.2015.12.002

Craig, R., & Knappett, J. (2020a). Craig’s soil mechanics. Taylor Francis Group.
Tveito, A., & Winther, R. (2009). Introduction to partial differential equations - a

computational approach. Springer-Verlag Berlin Heidelberg.
Verruijt, A. (2013). Theory and problems of poroelasticity. Delft university of Tech-

nology.
Smith, C. (2005). Complete limiting stress solutions for the bearing capacity of

strip footings on a mohr-coulomb soil. Géotechnique, 55, 607–612. https:
//doi.org/10.1680/GEOT.2005.55.8.607

Craig, R., & Knappett, J. (2020b). Craig’s soil mechanics. Taylor Francis Group.
Barnes, G. (2016). Soil mechanics - principles and practice. RED GLOBE PRESS.

58

https://doi.org/https://doi.org/10.1016/j.bdr.2020.100178
https://doi.org/10.1016/j.media.2022.102444
https://doi.org/10.1002/rob.21918
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1080/17499518.2021.1971251
https://doi.org/10.1137/19M1274067
https://doi.org/https://doi.org/10.48550/arXiv.1412.6980
https://deepxde.readthedocs.io/en/latest/_modules/deepxde/nn/initializers.html
https://deepxde.readthedocs.io/en/latest/_modules/deepxde/nn/initializers.html
https://doi.org/10.1016/j.ress.2015.12.002
https://doi.org/10.1016/j.ress.2015.12.002
https://doi.org/10.1680/GEOT.2005.55.8.607
https://doi.org/10.1680/GEOT.2005.55.8.607

REFERENCES

Plaxis 2d. (n.d.). Retrieved June 12, 2023, from https : / /www . bentley. com/
software/plaxis-2d/

Spyder. (n.d.). Retrieved July 12, 2023, from https://www.spyder-ide.org
Tensorflow. (n.d.). Retrieved June 12, 2023, from https://www.tensorflow.org/

overview
Numpy. (n.d.). Retrieved June 12, 2023, from https://numpy.org
Matplotlib. (n.d.). Retrieved June 12, 2023, from https://matplotlib.org
Jacobian and hessian matrix. (n.d.). Retrieved June 13, 2023, from https : / /

deepxde . readthedocs . io / en/ latest /modules /deepxde . html ?highlight=
jacobian#deepxde.gradients.jacobian

Numpy normal. (n.d.). Retrieved June 22, 2023, from https://numpy.org/doc/
stable/reference/random/generated/numpy.random.normal.html

Nordal, S. (2020). Geotechnical engineering - advanced course. NTNU.
Eiksund, G., Grimstad, G., Janbu, N., Nordal, S., Emdal, A., & Grande. (2019).

5100 theoretical soil mechanics. NTNU.
Comparison - tesla k80 and geforce mx250. (n.d.). Retrieved July 30, 2023, from

https://technical.city/en/video/Tesla-K80-vs-GeForce-MX250
Lu, Y., & Mei, G. (2022). A deep learning approach for predicting two-dimensional

soil consolidation using physics-informed neural networks (pinn). Mathe-
matics, 10 (16). https://doi.org/10.3390/math10162949

59

https://www.bentley.com/software/plaxis-2d/
https://www.bentley.com/software/plaxis-2d/
https://www.spyder-ide.org
https://www.tensorflow.org/overview
https://www.tensorflow.org/overview
https://numpy.org
https://matplotlib.org
https://deepxde.readthedocs.io/en/latest/modules/deepxde.html?highlight=jacobian#deepxde.gradients.jacobian
https://deepxde.readthedocs.io/en/latest/modules/deepxde.html?highlight=jacobian#deepxde.gradients.jacobian
https://deepxde.readthedocs.io/en/latest/modules/deepxde.html?highlight=jacobian#deepxde.gradients.jacobian
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
https://technical.city/en/video/Tesla-K80-vs-GeForce-MX250
https://doi.org/10.3390/math10162949

Appendices
A - Github repository

All code and latex-files used in this document are included in the Github repository
linked below. Further explanations are given in the readme-file.

Github repository link

• https://github.com/Asbjorvk/Thesis

60

https://github.com/Asbjorvk/Thesis

B - Normalization of undrained PDEs and Yield function

Original PDEs

∂σx

∂x
+

∂τxy
∂y

∂τxy
∂x

+
∂σy

∂y

Normalizing with respect to r and θ

r
′
=

r

B
θ
′
=

θ

π

∂σx

∂x
= cos (θ

′
π)

∂σx

∂r
− 1

r′B
sin (θ

′
π)

∂σx

∂θ

∂σx

∂x
= cos (θ

′
π)

∂σx

∂r′

∂r
′

∂r
− 1

r′B
sin (θ

′
π)

∂σx

∂θ′

∂θ
′

∂θ

∂σx

∂x
= cos (θ

′
π)

∂σx

∂r′

1

B
− 1

r′B
sin (θ

′
π)

∂σx

∂θ′

1

π

∂σy

∂y
= sin (θ

′
π)

∂σy

∂r
+

1

r′B
cos (θ

′
π)

∂σy

∂θ

∂σy

∂y
= sin (θ

′
π)

∂σy

∂r′

∂r
′

∂r
+

1

r′B
cos (θ

′
π)

∂σy

∂θ′

∂θ
′

∂θ

∂σy

∂y
= sin (θ

′
π)

∂σy

∂r′

1

B
+

1

r′B
cos (θ

′
π)

∂σy

∂θ′

1

π

∂τxy
∂x

= cos (θ
′
π)

∂τxy
∂r′

1

B
− 1

r′B
sin (θ

′
π)

∂τxy
∂θ′

1

π

∂τxy
∂y

= sin (θ
′
π
∂τxy
∂r′

1

B
+

1

r′B
cos θ

′
π
∂τxy
∂θ′

1

π

61

Insert into PDEs

∂σx

∂x
+

∂τxy
∂y

= 0 =>

cos (θ
′
π)

∂σx

∂r′

1

B
− 1

r′B
sin (θ

′
π)

∂σx

∂θ′

1

π
+ sin (θ

′
π)

∂τxy
∂r′

1

B
+

1

r′B
cos (θ

′
π)

∂τxy
∂θ′

1

π
= 0

∂τxy
∂x

+
∂σy

∂y
= γ =>

cos (θ
′
π)

∂τxy
∂r′

1

B
− 1

r′B
sin (θ

′
π)

∂τxy
∂θ′

1

π
+ sin (θ

′
π)

σy

∂r′

1

B
+

1

r′B
cos (θ

′
π)

∂σy

∂θ′

1

π
= γ

Normalizing with respect to stresses

Larges value is assumed as q + γB = 100kN
m2 + 20kN

m3 ∗ 10m = 300kN
m2 . Multiplying

polar PDE with r
′
γB yields:

r
′
π cos (θ

′
π)

∂σx

∂r′ − sin (θ
′
π)

∂σx

∂θ′ + r
′
π sin (θ

′
π)

∂τxy
∂r′ + cos (θ

′
π)

∂τxy
∂θ′ = 0

r
′
π cos (θ

′
π)

∂τxy
∂r′ − sin (θ

′
π)

∂τxy
∂θ′ + r

′
π sin (θ

′
π)

∂σy

∂r′ + cos (θ
′
π)

∂σy

∂θ′ = r
′
πBγ

62

Stress normalization - PDE1

σ
′

x =
σx

q + γB
σ

′

y =
σy

q + γB
τ

′

xy =
τxy

q + γB

r
′
π cos (θ

′
π)

∂σx

∂σ′
x

∂σ
′
x

∂r′ − sin (θ
′
π)

∂σx

∂σ′
x

∂σ
′
x

∂θ′ +

r
′
π sin (θ

′
π)

∂τxy
∂τ ′

xy

∂τ
′
xy

∂r′ + cos (θ
′
π)

∂τxy
∂τ ′

xy

∂τ
′
xy

∂θ′ = 0

r
′
π cos (θ

′
π)(q + γB)

∂σ
′
x

∂r′ − sin (θ
′
π)(q + γB)

∂σ
′
x

∂θ′ +

r
′
π sin (θ

′
π)(q + γB)

∂τ
′
xy

∂r′ + cos (θ
′
π)(q + γB)

∂τ
′
xy

∂θ′ = 0 |/(q + γB)

r
′
π cos (θ

′
π)

∂σ
′
x

∂r′ − sin (θ
′
π)

∂σ
′
x

∂θ′ +

r
′
π sin (θ

′
π)

∂τ
′
xy

∂r′ + cos (θ
′
π)

∂τ
′
xy

∂θ′ = 0

63

Stress normalization - PDE2

r
′
π cos (θ

′
π)

∂τxy
∂τ ′

xy

∂τ
′
xy

∂r′ − sin (θ
′
π)

∂τxy

∂τ ′
xy

∂τ
′
xy

∂θ′ +

r
′
π sin (θ

′
π)

∂σy

∂σ′
y

∂σ
′
y

∂r′ + cos (θ
′
π)

∂σy

∂σ′
y

∂σ
′
y

∂θ′ = r
′
πBγ

r
′
π cos (θ

′
π)(q + γB)

∂τ
′
xy

∂r′ − sin (θ
′
π)(q + γB)

∂τ
′
xy

∂θ′ +

r
′
π sin (θ

′
π)(q + γB)

∂σ
′
y

∂r′ + cos (θ
′
π)(q + γB)

∂σ
′
y

∂θ′ = r
′
πBγ |/(q + γB)

r
′
π cos (θ

′
π)

∂τ
′
xy

∂r′ − sin (θ
′
π)

∂τ
′
xy

∂θ′ +

r
′
π sin (θ

′
π)

∂σ
′
y

∂r′ + cos (θ
′
π)

∂σ
′
y

∂θ′ =
r
′
πBγ

(q + γB)

Yield function

S2
u = (

σx − σy

2
)2 + τ 2xy

S2
u = (

σ
′
x(q + γB)− σ

′
y(q + γB)

2
)2 + τ 2xy(q + γB)2

(
Su

q + γB
)2 = (

σ
′
x − σ

′
y

2
)2 + τ

′2
xy

64

	Abstract
	Preface
	Contents
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Project description
	Structure of the thesis

	Theory
	Machine learning, Deep learning and Physics-informed neural networks
	Fully-connected neural networks
	Loss function and fitting the data
	Optimization functions, parameters and hyper-parameters
	Physics-informed neural networks
	Sampling methods

	Consolidation
	Theory of one-dimensional consolidation
	Initial- and boundary conditions
	Analytical solution

	Bearing capacity
	Mohr-coulomb soil
	Equations of equilibrium in two dimensions
	Failure zones
	Yield function for undrained Mohr-Coulomb soil

	Software
	Finite element software
	Plaxis 2D Ultimate

	Programming software
	Spyder
	DeepXDE

	Packages

	Method
	Creation of datasets and sampling method
	Forward analysis
	Inverse analysis

	Defining partial differential equation and initial and boundary conditions
	PDE
	Initial- and boundary conditions

	Compiling data for the PDE
	Compiling model

	Case studies
	Consolidation
	Case study 1: Forward analysis: Drained top and undrained bottom
	Case study 2: Forward analysis: Drained top and bottom
	Case study 3: Inverse analysis for drained top and undrained bottom
	Case study 4: Inverse analysis: Drained top and bottom
	Case study 5: Forward analysis with noise: Both cases
	Case study 6: Inverse analysis with noise: Both cases

	Bearing capacity: Cartesian to polar coordinates
	Case study 1: Forward undrained
	Case study 2: Inverse undrained

	Discussion
	Consolidation
	Forward cases
	Inverse cases
	Forward and inverse with added noise
	Further suggestion

	Bearing capacity
	Forward undrained
	Inverse undrained

	Conclusion
	References
	Appendices:

